missing Changelog
[official-gcc.git] / gcc / tree-scalar-evolution.c
blobd19154265e392a21671a0f5bf5f525cfbd223b69
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2a: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 2b: Multivariate chains of recurrences.
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
181 Example 3: Higher degree polynomials.
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
198 Example 4: Lucas, Fibonacci, or mixers in general.
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
207 a -> (1, c)_1
208 c -> {3, +, a}_1
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
219 Example 5: Flip-flops, or exchangers.
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
228 a -> (1, c)_1
229 c -> (3, a)_1
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
234 a -> |1, 3|_1
235 c -> |3, 1|_1
237 This transformation is not yet implemented.
239 Further readings:
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "gimple-pretty-print.h"
261 #include "tree-flow.h"
262 #include "cfgloop.h"
263 #include "tree-chrec.h"
264 #include "tree-scalar-evolution.h"
265 #include "dumpfile.h"
266 #include "params.h"
268 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
269 static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
270 tree var);
272 /* The cached information about an SSA name VAR, claiming that below
273 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
274 as CHREC. */
276 struct GTY(()) scev_info_str {
277 basic_block instantiated_below;
278 tree var;
279 tree chrec;
282 /* Counters for the scev database. */
283 static unsigned nb_set_scev = 0;
284 static unsigned nb_get_scev = 0;
286 /* The following trees are unique elements. Thus the comparison of
287 another element to these elements should be done on the pointer to
288 these trees, and not on their value. */
290 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
291 tree chrec_not_analyzed_yet;
293 /* Reserved to the cases where the analyzer has detected an
294 undecidable property at compile time. */
295 tree chrec_dont_know;
297 /* When the analyzer has detected that a property will never
298 happen, then it qualifies it with chrec_known. */
299 tree chrec_known;
301 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
304 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
306 static inline struct scev_info_str *
307 new_scev_info_str (basic_block instantiated_below, tree var)
309 struct scev_info_str *res;
311 res = ggc_alloc_scev_info_str ();
312 res->var = var;
313 res->chrec = chrec_not_analyzed_yet;
314 res->instantiated_below = instantiated_below;
316 return res;
319 /* Computes a hash function for database element ELT. */
321 static hashval_t
322 hash_scev_info (const void *elt)
324 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
327 /* Compares database elements E1 and E2. */
329 static int
330 eq_scev_info (const void *e1, const void *e2)
332 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
333 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
335 return (elt1->var == elt2->var
336 && elt1->instantiated_below == elt2->instantiated_below);
339 /* Deletes database element E. */
341 static void
342 del_scev_info (void *e)
344 ggc_free (e);
347 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
348 A first query on VAR returns chrec_not_analyzed_yet. */
350 static tree *
351 find_var_scev_info (basic_block instantiated_below, tree var)
353 struct scev_info_str *res;
354 struct scev_info_str tmp;
355 PTR *slot;
357 tmp.var = var;
358 tmp.instantiated_below = instantiated_below;
359 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
361 if (!*slot)
362 *slot = new_scev_info_str (instantiated_below, var);
363 res = (struct scev_info_str *) *slot;
365 return &res->chrec;
368 /* Return true when CHREC contains symbolic names defined in
369 LOOP_NB. */
371 bool
372 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
374 int i, n;
376 if (chrec == NULL_TREE)
377 return false;
379 if (is_gimple_min_invariant (chrec))
380 return false;
382 if (TREE_CODE (chrec) == SSA_NAME)
384 gimple def;
385 loop_p def_loop, loop;
387 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
388 return false;
390 def = SSA_NAME_DEF_STMT (chrec);
391 def_loop = loop_containing_stmt (def);
392 loop = get_loop (loop_nb);
394 if (def_loop == NULL)
395 return false;
397 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
398 return true;
400 return false;
403 n = TREE_OPERAND_LENGTH (chrec);
404 for (i = 0; i < n; i++)
405 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
406 loop_nb))
407 return true;
408 return false;
411 /* Return true when PHI is a loop-phi-node. */
413 static bool
414 loop_phi_node_p (gimple phi)
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
420 return loop_containing_stmt (phi)->header == gimple_bb (phi);
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
428 Example:
430 | for (j = 0; j < 100; j++)
432 | for (k = 0; k < 100; k++)
434 | i = k + j; - Here the value of i is a function of j, k.
436 | ... = i - Here the value of i is a function of j.
438 | ... = i - Here the value of i is a scalar.
440 Example:
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
451 | i_1 = i_0 + 20
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
458 tree
459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
461 bool val = false;
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
468 struct loop *inner_loop = get_chrec_loop (evolution_fn);
470 if (inner_loop == loop
471 || flow_loop_nested_p (loop, inner_loop))
473 tree nb_iter = number_of_latch_executions (inner_loop);
475 if (nb_iter == chrec_dont_know)
476 return chrec_dont_know;
477 else
479 tree res;
481 /* evolution_fn is the evolution function in LOOP. Get
482 its value in the nb_iter-th iteration. */
483 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
485 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
486 res = instantiate_parameters (loop, res);
488 /* Continue the computation until ending on a parent of LOOP. */
489 return compute_overall_effect_of_inner_loop (loop, res);
492 else
493 return evolution_fn;
496 /* If the evolution function is an invariant, there is nothing to do. */
497 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
498 return evolution_fn;
500 else
501 return chrec_dont_know;
504 /* Associate CHREC to SCALAR. */
506 static void
507 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
509 tree *scalar_info;
511 if (TREE_CODE (scalar) != SSA_NAME)
512 return;
514 scalar_info = find_var_scev_info (instantiated_below, scalar);
516 if (dump_file)
518 if (dump_flags & TDF_SCEV)
520 fprintf (dump_file, "(set_scalar_evolution \n");
521 fprintf (dump_file, " instantiated_below = %d \n",
522 instantiated_below->index);
523 fprintf (dump_file, " (scalar = ");
524 print_generic_expr (dump_file, scalar, 0);
525 fprintf (dump_file, ")\n (scalar_evolution = ");
526 print_generic_expr (dump_file, chrec, 0);
527 fprintf (dump_file, "))\n");
529 if (dump_flags & TDF_STATS)
530 nb_set_scev++;
533 *scalar_info = chrec;
536 /* Retrieve the chrec associated to SCALAR instantiated below
537 INSTANTIATED_BELOW block. */
539 static tree
540 get_scalar_evolution (basic_block instantiated_below, tree scalar)
542 tree res;
544 if (dump_file)
546 if (dump_flags & TDF_SCEV)
548 fprintf (dump_file, "(get_scalar_evolution \n");
549 fprintf (dump_file, " (scalar = ");
550 print_generic_expr (dump_file, scalar, 0);
551 fprintf (dump_file, ")\n");
553 if (dump_flags & TDF_STATS)
554 nb_get_scev++;
557 switch (TREE_CODE (scalar))
559 case SSA_NAME:
560 res = *find_var_scev_info (instantiated_below, scalar);
561 break;
563 case REAL_CST:
564 case FIXED_CST:
565 case INTEGER_CST:
566 res = scalar;
567 break;
569 default:
570 res = chrec_not_analyzed_yet;
571 break;
574 if (dump_file && (dump_flags & TDF_SCEV))
576 fprintf (dump_file, " (scalar_evolution = ");
577 print_generic_expr (dump_file, res, 0);
578 fprintf (dump_file, "))\n");
581 return res;
584 /* Helper function for add_to_evolution. Returns the evolution
585 function for an assignment of the form "a = b + c", where "a" and
586 "b" are on the strongly connected component. CHREC_BEFORE is the
587 information that we already have collected up to this point.
588 TO_ADD is the evolution of "c".
590 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
591 evolution the expression TO_ADD, otherwise construct an evolution
592 part for this loop. */
594 static tree
595 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
596 gimple at_stmt)
598 tree type, left, right;
599 struct loop *loop = get_loop (loop_nb), *chloop;
601 switch (TREE_CODE (chrec_before))
603 case POLYNOMIAL_CHREC:
604 chloop = get_chrec_loop (chrec_before);
605 if (chloop == loop
606 || flow_loop_nested_p (chloop, loop))
608 unsigned var;
610 type = chrec_type (chrec_before);
612 /* When there is no evolution part in this loop, build it. */
613 if (chloop != loop)
615 var = loop_nb;
616 left = chrec_before;
617 right = SCALAR_FLOAT_TYPE_P (type)
618 ? build_real (type, dconst0)
619 : build_int_cst (type, 0);
621 else
623 var = CHREC_VARIABLE (chrec_before);
624 left = CHREC_LEFT (chrec_before);
625 right = CHREC_RIGHT (chrec_before);
628 to_add = chrec_convert (type, to_add, at_stmt);
629 right = chrec_convert_rhs (type, right, at_stmt);
630 right = chrec_fold_plus (chrec_type (right), right, to_add);
631 return build_polynomial_chrec (var, left, right);
633 else
635 gcc_assert (flow_loop_nested_p (loop, chloop));
637 /* Search the evolution in LOOP_NB. */
638 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
639 to_add, at_stmt);
640 right = CHREC_RIGHT (chrec_before);
641 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
642 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
643 left, right);
646 default:
647 /* These nodes do not depend on a loop. */
648 if (chrec_before == chrec_dont_know)
649 return chrec_dont_know;
651 left = chrec_before;
652 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
653 return build_polynomial_chrec (loop_nb, left, right);
657 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
658 of LOOP_NB.
660 Description (provided for completeness, for those who read code in
661 a plane, and for my poor 62 bytes brain that would have forgotten
662 all this in the next two or three months):
664 The algorithm of translation of programs from the SSA representation
665 into the chrecs syntax is based on a pattern matching. After having
666 reconstructed the overall tree expression for a loop, there are only
667 two cases that can arise:
669 1. a = loop-phi (init, a + expr)
670 2. a = loop-phi (init, expr)
672 where EXPR is either a scalar constant with respect to the analyzed
673 loop (this is a degree 0 polynomial), or an expression containing
674 other loop-phi definitions (these are higher degree polynomials).
676 Examples:
679 | init = ...
680 | loop_1
681 | a = phi (init, a + 5)
682 | endloop
685 | inita = ...
686 | initb = ...
687 | loop_1
688 | a = phi (inita, 2 * b + 3)
689 | b = phi (initb, b + 1)
690 | endloop
692 For the first case, the semantics of the SSA representation is:
694 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
696 that is, there is a loop index "x" that determines the scalar value
697 of the variable during the loop execution. During the first
698 iteration, the value is that of the initial condition INIT, while
699 during the subsequent iterations, it is the sum of the initial
700 condition with the sum of all the values of EXPR from the initial
701 iteration to the before last considered iteration.
703 For the second case, the semantics of the SSA program is:
705 | a (x) = init, if x = 0;
706 | expr (x - 1), otherwise.
708 The second case corresponds to the PEELED_CHREC, whose syntax is
709 close to the syntax of a loop-phi-node:
711 | phi (init, expr) vs. (init, expr)_x
713 The proof of the translation algorithm for the first case is a
714 proof by structural induction based on the degree of EXPR.
716 Degree 0:
717 When EXPR is a constant with respect to the analyzed loop, or in
718 other words when EXPR is a polynomial of degree 0, the evolution of
719 the variable A in the loop is an affine function with an initial
720 condition INIT, and a step EXPR. In order to show this, we start
721 from the semantics of the SSA representation:
723 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
725 and since "expr (j)" is a constant with respect to "j",
727 f (x) = init + x * expr
729 Finally, based on the semantics of the pure sum chrecs, by
730 identification we get the corresponding chrecs syntax:
732 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
733 f (x) -> {init, +, expr}_x
735 Higher degree:
736 Suppose that EXPR is a polynomial of degree N with respect to the
737 analyzed loop_x for which we have already determined that it is
738 written under the chrecs syntax:
740 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
742 We start from the semantics of the SSA program:
744 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
746 | f (x) = init + \sum_{j = 0}^{x - 1}
747 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
749 | f (x) = init + \sum_{j = 0}^{x - 1}
750 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
752 | f (x) = init + \sum_{k = 0}^{n - 1}
753 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
755 | f (x) = init + \sum_{k = 0}^{n - 1}
756 | (b_k * \binom{x}{k + 1})
758 | f (x) = init + b_0 * \binom{x}{1} + ...
759 | + b_{n-1} * \binom{x}{n}
761 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
762 | + b_{n-1} * \binom{x}{n}
765 And finally from the definition of the chrecs syntax, we identify:
766 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
768 This shows the mechanism that stands behind the add_to_evolution
769 function. An important point is that the use of symbolic
770 parameters avoids the need of an analysis schedule.
772 Example:
774 | inita = ...
775 | initb = ...
776 | loop_1
777 | a = phi (inita, a + 2 + b)
778 | b = phi (initb, b + 1)
779 | endloop
781 When analyzing "a", the algorithm keeps "b" symbolically:
783 | a -> {inita, +, 2 + b}_1
785 Then, after instantiation, the analyzer ends on the evolution:
787 | a -> {inita, +, 2 + initb, +, 1}_1
791 static tree
792 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
793 tree to_add, gimple at_stmt)
795 tree type = chrec_type (to_add);
796 tree res = NULL_TREE;
798 if (to_add == NULL_TREE)
799 return chrec_before;
801 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
802 instantiated at this point. */
803 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
804 /* This should not happen. */
805 return chrec_dont_know;
807 if (dump_file && (dump_flags & TDF_SCEV))
809 fprintf (dump_file, "(add_to_evolution \n");
810 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
811 fprintf (dump_file, " (chrec_before = ");
812 print_generic_expr (dump_file, chrec_before, 0);
813 fprintf (dump_file, ")\n (to_add = ");
814 print_generic_expr (dump_file, to_add, 0);
815 fprintf (dump_file, ")\n");
818 if (code == MINUS_EXPR)
819 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
820 ? build_real (type, dconstm1)
821 : build_int_cst_type (type, -1));
823 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
825 if (dump_file && (dump_flags & TDF_SCEV))
827 fprintf (dump_file, " (res = ");
828 print_generic_expr (dump_file, res, 0);
829 fprintf (dump_file, "))\n");
832 return res;
837 /* This section selects the loops that will be good candidates for the
838 scalar evolution analysis. For the moment, greedily select all the
839 loop nests we could analyze. */
841 /* For a loop with a single exit edge, return the COND_EXPR that
842 guards the exit edge. If the expression is too difficult to
843 analyze, then give up. */
845 gimple
846 get_loop_exit_condition (const struct loop *loop)
848 gimple res = NULL;
849 edge exit_edge = single_exit (loop);
851 if (dump_file && (dump_flags & TDF_SCEV))
852 fprintf (dump_file, "(get_loop_exit_condition \n ");
854 if (exit_edge)
856 gimple stmt;
858 stmt = last_stmt (exit_edge->src);
859 if (gimple_code (stmt) == GIMPLE_COND)
860 res = stmt;
863 if (dump_file && (dump_flags & TDF_SCEV))
865 print_gimple_stmt (dump_file, res, 0, 0);
866 fprintf (dump_file, ")\n");
869 return res;
872 /* Recursively determine and enqueue the exit conditions for a loop. */
874 static void
875 get_exit_conditions_rec (struct loop *loop,
876 vec<gimple> *exit_conditions)
878 if (!loop)
879 return;
881 /* Recurse on the inner loops, then on the next (sibling) loops. */
882 get_exit_conditions_rec (loop->inner, exit_conditions);
883 get_exit_conditions_rec (loop->next, exit_conditions);
885 if (single_exit (loop))
887 gimple loop_condition = get_loop_exit_condition (loop);
889 if (loop_condition)
890 exit_conditions->safe_push (loop_condition);
894 /* Select the candidate loop nests for the analysis. This function
895 initializes the EXIT_CONDITIONS array. */
897 static void
898 select_loops_exit_conditions (vec<gimple> *exit_conditions)
900 struct loop *function_body = current_loops->tree_root;
902 get_exit_conditions_rec (function_body->inner, exit_conditions);
906 /* Depth first search algorithm. */
908 typedef enum t_bool {
909 t_false,
910 t_true,
911 t_dont_know
912 } t_bool;
915 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
917 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
918 Return true if the strongly connected component has been found. */
920 static t_bool
921 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
922 tree type, tree rhs0, enum tree_code code, tree rhs1,
923 gimple halting_phi, tree *evolution_of_loop, int limit)
925 t_bool res = t_false;
926 tree evol;
928 switch (code)
930 case POINTER_PLUS_EXPR:
931 case PLUS_EXPR:
932 if (TREE_CODE (rhs0) == SSA_NAME)
934 if (TREE_CODE (rhs1) == SSA_NAME)
936 /* Match an assignment under the form:
937 "a = b + c". */
939 /* We want only assignments of form "name + name" contribute to
940 LIMIT, as the other cases do not necessarily contribute to
941 the complexity of the expression. */
942 limit++;
944 evol = *evolution_of_loop;
945 res = follow_ssa_edge
946 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
948 if (res == t_true)
949 *evolution_of_loop = add_to_evolution
950 (loop->num,
951 chrec_convert (type, evol, at_stmt),
952 code, rhs1, at_stmt);
954 else if (res == t_false)
956 res = follow_ssa_edge
957 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
958 evolution_of_loop, limit);
960 if (res == t_true)
961 *evolution_of_loop = add_to_evolution
962 (loop->num,
963 chrec_convert (type, *evolution_of_loop, at_stmt),
964 code, rhs0, at_stmt);
966 else if (res == t_dont_know)
967 *evolution_of_loop = chrec_dont_know;
970 else if (res == t_dont_know)
971 *evolution_of_loop = chrec_dont_know;
974 else
976 /* Match an assignment under the form:
977 "a = b + ...". */
978 res = follow_ssa_edge
979 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
980 evolution_of_loop, limit);
981 if (res == t_true)
982 *evolution_of_loop = add_to_evolution
983 (loop->num, chrec_convert (type, *evolution_of_loop,
984 at_stmt),
985 code, rhs1, at_stmt);
987 else if (res == t_dont_know)
988 *evolution_of_loop = chrec_dont_know;
992 else if (TREE_CODE (rhs1) == SSA_NAME)
994 /* Match an assignment under the form:
995 "a = ... + c". */
996 res = follow_ssa_edge
997 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
998 evolution_of_loop, limit);
999 if (res == t_true)
1000 *evolution_of_loop = add_to_evolution
1001 (loop->num, chrec_convert (type, *evolution_of_loop,
1002 at_stmt),
1003 code, rhs0, at_stmt);
1005 else if (res == t_dont_know)
1006 *evolution_of_loop = chrec_dont_know;
1009 else
1010 /* Otherwise, match an assignment under the form:
1011 "a = ... + ...". */
1012 /* And there is nothing to do. */
1013 res = t_false;
1014 break;
1016 case MINUS_EXPR:
1017 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1018 if (TREE_CODE (rhs0) == SSA_NAME)
1020 /* Match an assignment under the form:
1021 "a = b - ...". */
1023 /* We want only assignments of form "name - name" contribute to
1024 LIMIT, as the other cases do not necessarily contribute to
1025 the complexity of the expression. */
1026 if (TREE_CODE (rhs1) == SSA_NAME)
1027 limit++;
1029 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1030 evolution_of_loop, limit);
1031 if (res == t_true)
1032 *evolution_of_loop = add_to_evolution
1033 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1034 MINUS_EXPR, rhs1, at_stmt);
1036 else if (res == t_dont_know)
1037 *evolution_of_loop = chrec_dont_know;
1039 else
1040 /* Otherwise, match an assignment under the form:
1041 "a = ... - ...". */
1042 /* And there is nothing to do. */
1043 res = t_false;
1044 break;
1046 default:
1047 res = t_false;
1050 return res;
1053 /* Follow the ssa edge into the expression EXPR.
1054 Return true if the strongly connected component has been found. */
1056 static t_bool
1057 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1058 gimple halting_phi, tree *evolution_of_loop, int limit)
1060 enum tree_code code = TREE_CODE (expr);
1061 tree type = TREE_TYPE (expr), rhs0, rhs1;
1062 t_bool res;
1064 /* The EXPR is one of the following cases:
1065 - an SSA_NAME,
1066 - an INTEGER_CST,
1067 - a PLUS_EXPR,
1068 - a POINTER_PLUS_EXPR,
1069 - a MINUS_EXPR,
1070 - an ASSERT_EXPR,
1071 - other cases are not yet handled. */
1073 switch (code)
1075 CASE_CONVERT:
1076 /* This assignment is under the form "a_1 = (cast) rhs. */
1077 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1078 halting_phi, evolution_of_loop, limit);
1079 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1080 break;
1082 case INTEGER_CST:
1083 /* This assignment is under the form "a_1 = 7". */
1084 res = t_false;
1085 break;
1087 case SSA_NAME:
1088 /* This assignment is under the form: "a_1 = b_2". */
1089 res = follow_ssa_edge
1090 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1091 break;
1093 case POINTER_PLUS_EXPR:
1094 case PLUS_EXPR:
1095 case MINUS_EXPR:
1096 /* This case is under the form "rhs0 +- rhs1". */
1097 rhs0 = TREE_OPERAND (expr, 0);
1098 rhs1 = TREE_OPERAND (expr, 1);
1099 type = TREE_TYPE (rhs0);
1100 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1101 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1102 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1103 halting_phi, evolution_of_loop, limit);
1104 break;
1106 case ADDR_EXPR:
1107 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1108 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1110 expr = TREE_OPERAND (expr, 0);
1111 rhs0 = TREE_OPERAND (expr, 0);
1112 rhs1 = TREE_OPERAND (expr, 1);
1113 type = TREE_TYPE (rhs0);
1114 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1115 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1116 res = follow_ssa_edge_binary (loop, at_stmt, type,
1117 rhs0, POINTER_PLUS_EXPR, rhs1,
1118 halting_phi, evolution_of_loop, limit);
1120 else
1121 res = t_false;
1122 break;
1124 case ASSERT_EXPR:
1125 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1126 It must be handled as a copy assignment of the form a_1 = a_2. */
1127 rhs0 = ASSERT_EXPR_VAR (expr);
1128 if (TREE_CODE (rhs0) == SSA_NAME)
1129 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1130 halting_phi, evolution_of_loop, limit);
1131 else
1132 res = t_false;
1133 break;
1135 default:
1136 res = t_false;
1137 break;
1140 return res;
1143 /* Follow the ssa edge into the right hand side of an assignment STMT.
1144 Return true if the strongly connected component has been found. */
1146 static t_bool
1147 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1148 gimple halting_phi, tree *evolution_of_loop, int limit)
1150 enum tree_code code = gimple_assign_rhs_code (stmt);
1151 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1152 t_bool res;
1154 switch (code)
1156 CASE_CONVERT:
1157 /* This assignment is under the form "a_1 = (cast) rhs. */
1158 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1159 halting_phi, evolution_of_loop, limit);
1160 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1161 break;
1163 case POINTER_PLUS_EXPR:
1164 case PLUS_EXPR:
1165 case MINUS_EXPR:
1166 rhs1 = gimple_assign_rhs1 (stmt);
1167 rhs2 = gimple_assign_rhs2 (stmt);
1168 type = TREE_TYPE (rhs1);
1169 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
1170 halting_phi, evolution_of_loop, limit);
1171 break;
1173 default:
1174 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1175 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1176 halting_phi, evolution_of_loop, limit);
1177 else
1178 res = t_false;
1179 break;
1182 return res;
1185 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1187 static bool
1188 backedge_phi_arg_p (gimple phi, int i)
1190 const_edge e = gimple_phi_arg_edge (phi, i);
1192 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1193 about updating it anywhere, and this should work as well most of the
1194 time. */
1195 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1196 return true;
1198 return false;
1201 /* Helper function for one branch of the condition-phi-node. Return
1202 true if the strongly connected component has been found following
1203 this path. */
1205 static inline t_bool
1206 follow_ssa_edge_in_condition_phi_branch (int i,
1207 struct loop *loop,
1208 gimple condition_phi,
1209 gimple halting_phi,
1210 tree *evolution_of_branch,
1211 tree init_cond, int limit)
1213 tree branch = PHI_ARG_DEF (condition_phi, i);
1214 *evolution_of_branch = chrec_dont_know;
1216 /* Do not follow back edges (they must belong to an irreducible loop, which
1217 we really do not want to worry about). */
1218 if (backedge_phi_arg_p (condition_phi, i))
1219 return t_false;
1221 if (TREE_CODE (branch) == SSA_NAME)
1223 *evolution_of_branch = init_cond;
1224 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1225 evolution_of_branch, limit);
1228 /* This case occurs when one of the condition branches sets
1229 the variable to a constant: i.e. a phi-node like
1230 "a_2 = PHI <a_7(5), 2(6)>;".
1232 FIXME: This case have to be refined correctly:
1233 in some cases it is possible to say something better than
1234 chrec_dont_know, for example using a wrap-around notation. */
1235 return t_false;
1238 /* This function merges the branches of a condition-phi-node in a
1239 loop. */
1241 static t_bool
1242 follow_ssa_edge_in_condition_phi (struct loop *loop,
1243 gimple condition_phi,
1244 gimple halting_phi,
1245 tree *evolution_of_loop, int limit)
1247 int i, n;
1248 tree init = *evolution_of_loop;
1249 tree evolution_of_branch;
1250 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1251 halting_phi,
1252 &evolution_of_branch,
1253 init, limit);
1254 if (res == t_false || res == t_dont_know)
1255 return res;
1257 *evolution_of_loop = evolution_of_branch;
1259 n = gimple_phi_num_args (condition_phi);
1260 for (i = 1; i < n; i++)
1262 /* Quickly give up when the evolution of one of the branches is
1263 not known. */
1264 if (*evolution_of_loop == chrec_dont_know)
1265 return t_true;
1267 /* Increase the limit by the PHI argument number to avoid exponential
1268 time and memory complexity. */
1269 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1270 halting_phi,
1271 &evolution_of_branch,
1272 init, limit + i);
1273 if (res == t_false || res == t_dont_know)
1274 return res;
1276 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1277 evolution_of_branch);
1280 return t_true;
1283 /* Follow an SSA edge in an inner loop. It computes the overall
1284 effect of the loop, and following the symbolic initial conditions,
1285 it follows the edges in the parent loop. The inner loop is
1286 considered as a single statement. */
1288 static t_bool
1289 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1290 gimple loop_phi_node,
1291 gimple halting_phi,
1292 tree *evolution_of_loop, int limit)
1294 struct loop *loop = loop_containing_stmt (loop_phi_node);
1295 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1297 /* Sometimes, the inner loop is too difficult to analyze, and the
1298 result of the analysis is a symbolic parameter. */
1299 if (ev == PHI_RESULT (loop_phi_node))
1301 t_bool res = t_false;
1302 int i, n = gimple_phi_num_args (loop_phi_node);
1304 for (i = 0; i < n; i++)
1306 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1307 basic_block bb;
1309 /* Follow the edges that exit the inner loop. */
1310 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1311 if (!flow_bb_inside_loop_p (loop, bb))
1312 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1313 arg, halting_phi,
1314 evolution_of_loop, limit);
1315 if (res == t_true)
1316 break;
1319 /* If the path crosses this loop-phi, give up. */
1320 if (res == t_true)
1321 *evolution_of_loop = chrec_dont_know;
1323 return res;
1326 /* Otherwise, compute the overall effect of the inner loop. */
1327 ev = compute_overall_effect_of_inner_loop (loop, ev);
1328 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1329 evolution_of_loop, limit);
1332 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1333 path that is analyzed on the return walk. */
1335 static t_bool
1336 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1337 tree *evolution_of_loop, int limit)
1339 struct loop *def_loop;
1341 if (gimple_nop_p (def))
1342 return t_false;
1344 /* Give up if the path is longer than the MAX that we allow. */
1345 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
1346 return t_dont_know;
1348 def_loop = loop_containing_stmt (def);
1350 switch (gimple_code (def))
1352 case GIMPLE_PHI:
1353 if (!loop_phi_node_p (def))
1354 /* DEF is a condition-phi-node. Follow the branches, and
1355 record their evolutions. Finally, merge the collected
1356 information and set the approximation to the main
1357 variable. */
1358 return follow_ssa_edge_in_condition_phi
1359 (loop, def, halting_phi, evolution_of_loop, limit);
1361 /* When the analyzed phi is the halting_phi, the
1362 depth-first search is over: we have found a path from
1363 the halting_phi to itself in the loop. */
1364 if (def == halting_phi)
1365 return t_true;
1367 /* Otherwise, the evolution of the HALTING_PHI depends
1368 on the evolution of another loop-phi-node, i.e. the
1369 evolution function is a higher degree polynomial. */
1370 if (def_loop == loop)
1371 return t_false;
1373 /* Inner loop. */
1374 if (flow_loop_nested_p (loop, def_loop))
1375 return follow_ssa_edge_inner_loop_phi
1376 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1378 /* Outer loop. */
1379 return t_false;
1381 case GIMPLE_ASSIGN:
1382 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1383 evolution_of_loop, limit);
1385 default:
1386 /* At this level of abstraction, the program is just a set
1387 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1388 other node to be handled. */
1389 return t_false;
1395 /* Given a LOOP_PHI_NODE, this function determines the evolution
1396 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1398 static tree
1399 analyze_evolution_in_loop (gimple loop_phi_node,
1400 tree init_cond)
1402 int i, n = gimple_phi_num_args (loop_phi_node);
1403 tree evolution_function = chrec_not_analyzed_yet;
1404 struct loop *loop = loop_containing_stmt (loop_phi_node);
1405 basic_block bb;
1407 if (dump_file && (dump_flags & TDF_SCEV))
1409 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1410 fprintf (dump_file, " (loop_phi_node = ");
1411 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1412 fprintf (dump_file, ")\n");
1415 for (i = 0; i < n; i++)
1417 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1418 gimple ssa_chain;
1419 tree ev_fn;
1420 t_bool res;
1422 /* Select the edges that enter the loop body. */
1423 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1424 if (!flow_bb_inside_loop_p (loop, bb))
1425 continue;
1427 if (TREE_CODE (arg) == SSA_NAME)
1429 bool val = false;
1431 ssa_chain = SSA_NAME_DEF_STMT (arg);
1433 /* Pass in the initial condition to the follow edge function. */
1434 ev_fn = init_cond;
1435 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1437 /* If ev_fn has no evolution in the inner loop, and the
1438 init_cond is not equal to ev_fn, then we have an
1439 ambiguity between two possible values, as we cannot know
1440 the number of iterations at this point. */
1441 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1442 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1443 && !operand_equal_p (init_cond, ev_fn, 0))
1444 ev_fn = chrec_dont_know;
1446 else
1447 res = t_false;
1449 /* When it is impossible to go back on the same
1450 loop_phi_node by following the ssa edges, the
1451 evolution is represented by a peeled chrec, i.e. the
1452 first iteration, EV_FN has the value INIT_COND, then
1453 all the other iterations it has the value of ARG.
1454 For the moment, PEELED_CHREC nodes are not built. */
1455 if (res != t_true)
1456 ev_fn = chrec_dont_know;
1458 /* When there are multiple back edges of the loop (which in fact never
1459 happens currently, but nevertheless), merge their evolutions. */
1460 evolution_function = chrec_merge (evolution_function, ev_fn);
1463 if (dump_file && (dump_flags & TDF_SCEV))
1465 fprintf (dump_file, " (evolution_function = ");
1466 print_generic_expr (dump_file, evolution_function, 0);
1467 fprintf (dump_file, "))\n");
1470 return evolution_function;
1473 /* Given a loop-phi-node, return the initial conditions of the
1474 variable on entry of the loop. When the CCP has propagated
1475 constants into the loop-phi-node, the initial condition is
1476 instantiated, otherwise the initial condition is kept symbolic.
1477 This analyzer does not analyze the evolution outside the current
1478 loop, and leaves this task to the on-demand tree reconstructor. */
1480 static tree
1481 analyze_initial_condition (gimple loop_phi_node)
1483 int i, n;
1484 tree init_cond = chrec_not_analyzed_yet;
1485 struct loop *loop = loop_containing_stmt (loop_phi_node);
1487 if (dump_file && (dump_flags & TDF_SCEV))
1489 fprintf (dump_file, "(analyze_initial_condition \n");
1490 fprintf (dump_file, " (loop_phi_node = \n");
1491 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1492 fprintf (dump_file, ")\n");
1495 n = gimple_phi_num_args (loop_phi_node);
1496 for (i = 0; i < n; i++)
1498 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1499 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1501 /* When the branch is oriented to the loop's body, it does
1502 not contribute to the initial condition. */
1503 if (flow_bb_inside_loop_p (loop, bb))
1504 continue;
1506 if (init_cond == chrec_not_analyzed_yet)
1508 init_cond = branch;
1509 continue;
1512 if (TREE_CODE (branch) == SSA_NAME)
1514 init_cond = chrec_dont_know;
1515 break;
1518 init_cond = chrec_merge (init_cond, branch);
1521 /* Ooops -- a loop without an entry??? */
1522 if (init_cond == chrec_not_analyzed_yet)
1523 init_cond = chrec_dont_know;
1525 /* During early loop unrolling we do not have fully constant propagated IL.
1526 Handle degenerate PHIs here to not miss important unrollings. */
1527 if (TREE_CODE (init_cond) == SSA_NAME)
1529 gimple def = SSA_NAME_DEF_STMT (init_cond);
1530 tree res;
1531 if (gimple_code (def) == GIMPLE_PHI
1532 && (res = degenerate_phi_result (def)) != NULL_TREE
1533 /* Only allow invariants here, otherwise we may break
1534 loop-closed SSA form. */
1535 && is_gimple_min_invariant (res))
1536 init_cond = res;
1539 if (dump_file && (dump_flags & TDF_SCEV))
1541 fprintf (dump_file, " (init_cond = ");
1542 print_generic_expr (dump_file, init_cond, 0);
1543 fprintf (dump_file, "))\n");
1546 return init_cond;
1549 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1551 static tree
1552 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1554 tree res;
1555 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1556 tree init_cond;
1558 if (phi_loop != loop)
1560 struct loop *subloop;
1561 tree evolution_fn = analyze_scalar_evolution
1562 (phi_loop, PHI_RESULT (loop_phi_node));
1564 /* Dive one level deeper. */
1565 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1567 /* Interpret the subloop. */
1568 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1569 return res;
1572 /* Otherwise really interpret the loop phi. */
1573 init_cond = analyze_initial_condition (loop_phi_node);
1574 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1576 /* Verify we maintained the correct initial condition throughout
1577 possible conversions in the SSA chain. */
1578 if (res != chrec_dont_know)
1580 tree new_init = res;
1581 if (CONVERT_EXPR_P (res)
1582 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1583 new_init = fold_convert (TREE_TYPE (res),
1584 CHREC_LEFT (TREE_OPERAND (res, 0)));
1585 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1586 new_init = CHREC_LEFT (res);
1587 STRIP_USELESS_TYPE_CONVERSION (new_init);
1588 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1589 || !operand_equal_p (init_cond, new_init, 0))
1590 return chrec_dont_know;
1593 return res;
1596 /* This function merges the branches of a condition-phi-node,
1597 contained in the outermost loop, and whose arguments are already
1598 analyzed. */
1600 static tree
1601 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1603 int i, n = gimple_phi_num_args (condition_phi);
1604 tree res = chrec_not_analyzed_yet;
1606 for (i = 0; i < n; i++)
1608 tree branch_chrec;
1610 if (backedge_phi_arg_p (condition_phi, i))
1612 res = chrec_dont_know;
1613 break;
1616 branch_chrec = analyze_scalar_evolution
1617 (loop, PHI_ARG_DEF (condition_phi, i));
1619 res = chrec_merge (res, branch_chrec);
1622 return res;
1625 /* Interpret the operation RHS1 OP RHS2. If we didn't
1626 analyze this node before, follow the definitions until ending
1627 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1628 return path, this function propagates evolutions (ala constant copy
1629 propagation). OPND1 is not a GIMPLE expression because we could
1630 analyze the effect of an inner loop: see interpret_loop_phi. */
1632 static tree
1633 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1634 tree type, tree rhs1, enum tree_code code, tree rhs2)
1636 tree res, chrec1, chrec2;
1637 gimple def;
1639 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1641 if (is_gimple_min_invariant (rhs1))
1642 return chrec_convert (type, rhs1, at_stmt);
1644 if (code == SSA_NAME)
1645 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1646 at_stmt);
1648 if (code == ASSERT_EXPR)
1650 rhs1 = ASSERT_EXPR_VAR (rhs1);
1651 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1652 at_stmt);
1656 switch (code)
1658 case ADDR_EXPR:
1659 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1660 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1662 enum machine_mode mode;
1663 HOST_WIDE_INT bitsize, bitpos;
1664 int unsignedp;
1665 int volatilep = 0;
1666 tree base, offset;
1667 tree chrec3;
1668 tree unitpos;
1670 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
1671 &bitsize, &bitpos, &offset,
1672 &mode, &unsignedp, &volatilep, false);
1674 if (TREE_CODE (base) == MEM_REF)
1676 rhs2 = TREE_OPERAND (base, 1);
1677 rhs1 = TREE_OPERAND (base, 0);
1679 chrec1 = analyze_scalar_evolution (loop, rhs1);
1680 chrec2 = analyze_scalar_evolution (loop, rhs2);
1681 chrec1 = chrec_convert (type, chrec1, at_stmt);
1682 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1683 res = chrec_fold_plus (type, chrec1, chrec2);
1685 else
1687 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1688 chrec1 = chrec_convert (type, chrec1, at_stmt);
1689 res = chrec1;
1692 if (offset != NULL_TREE)
1694 chrec2 = analyze_scalar_evolution (loop, offset);
1695 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
1696 res = chrec_fold_plus (type, res, chrec2);
1699 if (bitpos != 0)
1701 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1703 unitpos = size_int (bitpos / BITS_PER_UNIT);
1704 chrec3 = analyze_scalar_evolution (loop, unitpos);
1705 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
1706 res = chrec_fold_plus (type, res, chrec3);
1709 else
1710 res = chrec_dont_know;
1711 break;
1713 case POINTER_PLUS_EXPR:
1714 chrec1 = analyze_scalar_evolution (loop, rhs1);
1715 chrec2 = analyze_scalar_evolution (loop, rhs2);
1716 chrec1 = chrec_convert (type, chrec1, at_stmt);
1717 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1718 res = chrec_fold_plus (type, chrec1, chrec2);
1719 break;
1721 case PLUS_EXPR:
1722 chrec1 = analyze_scalar_evolution (loop, rhs1);
1723 chrec2 = analyze_scalar_evolution (loop, rhs2);
1724 chrec1 = chrec_convert (type, chrec1, at_stmt);
1725 chrec2 = chrec_convert (type, chrec2, at_stmt);
1726 res = chrec_fold_plus (type, chrec1, chrec2);
1727 break;
1729 case MINUS_EXPR:
1730 chrec1 = analyze_scalar_evolution (loop, rhs1);
1731 chrec2 = analyze_scalar_evolution (loop, rhs2);
1732 chrec1 = chrec_convert (type, chrec1, at_stmt);
1733 chrec2 = chrec_convert (type, chrec2, at_stmt);
1734 res = chrec_fold_minus (type, chrec1, chrec2);
1735 break;
1737 case NEGATE_EXPR:
1738 chrec1 = analyze_scalar_evolution (loop, rhs1);
1739 chrec1 = chrec_convert (type, chrec1, at_stmt);
1740 /* TYPE may be integer, real or complex, so use fold_convert. */
1741 res = chrec_fold_multiply (type, chrec1,
1742 fold_convert (type, integer_minus_one_node));
1743 break;
1745 case BIT_NOT_EXPR:
1746 /* Handle ~X as -1 - X. */
1747 chrec1 = analyze_scalar_evolution (loop, rhs1);
1748 chrec1 = chrec_convert (type, chrec1, at_stmt);
1749 res = chrec_fold_minus (type,
1750 fold_convert (type, integer_minus_one_node),
1751 chrec1);
1752 break;
1754 case MULT_EXPR:
1755 chrec1 = analyze_scalar_evolution (loop, rhs1);
1756 chrec2 = analyze_scalar_evolution (loop, rhs2);
1757 chrec1 = chrec_convert (type, chrec1, at_stmt);
1758 chrec2 = chrec_convert (type, chrec2, at_stmt);
1759 res = chrec_fold_multiply (type, chrec1, chrec2);
1760 break;
1762 CASE_CONVERT:
1763 /* In case we have a truncation of a widened operation that in
1764 the truncated type has undefined overflow behavior analyze
1765 the operation done in an unsigned type of the same precision
1766 as the final truncation. We cannot derive a scalar evolution
1767 for the widened operation but for the truncated result. */
1768 if (TREE_CODE (type) == INTEGER_TYPE
1769 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1770 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1771 && TYPE_OVERFLOW_UNDEFINED (type)
1772 && TREE_CODE (rhs1) == SSA_NAME
1773 && (def = SSA_NAME_DEF_STMT (rhs1))
1774 && is_gimple_assign (def)
1775 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1776 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1778 tree utype = unsigned_type_for (type);
1779 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1780 gimple_assign_rhs1 (def),
1781 gimple_assign_rhs_code (def),
1782 gimple_assign_rhs2 (def));
1784 else
1785 chrec1 = analyze_scalar_evolution (loop, rhs1);
1786 res = chrec_convert (type, chrec1, at_stmt);
1787 break;
1789 default:
1790 res = chrec_dont_know;
1791 break;
1794 return res;
1797 /* Interpret the expression EXPR. */
1799 static tree
1800 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1802 enum tree_code code;
1803 tree type = TREE_TYPE (expr), op0, op1;
1805 if (automatically_generated_chrec_p (expr))
1806 return expr;
1808 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1809 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
1810 return chrec_dont_know;
1812 extract_ops_from_tree (expr, &code, &op0, &op1);
1814 return interpret_rhs_expr (loop, at_stmt, type,
1815 op0, code, op1);
1818 /* Interpret the rhs of the assignment STMT. */
1820 static tree
1821 interpret_gimple_assign (struct loop *loop, gimple stmt)
1823 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1824 enum tree_code code = gimple_assign_rhs_code (stmt);
1826 return interpret_rhs_expr (loop, stmt, type,
1827 gimple_assign_rhs1 (stmt), code,
1828 gimple_assign_rhs2 (stmt));
1833 /* This section contains all the entry points:
1834 - number_of_iterations_in_loop,
1835 - analyze_scalar_evolution,
1836 - instantiate_parameters.
1839 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1840 common ancestor of DEF_LOOP and USE_LOOP. */
1842 static tree
1843 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1844 struct loop *def_loop,
1845 tree ev)
1847 bool val;
1848 tree res;
1850 if (def_loop == wrto_loop)
1851 return ev;
1853 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1854 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1856 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
1857 return res;
1859 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1862 /* Helper recursive function. */
1864 static tree
1865 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1867 tree type = TREE_TYPE (var);
1868 gimple def;
1869 basic_block bb;
1870 struct loop *def_loop;
1872 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1873 return chrec_dont_know;
1875 if (TREE_CODE (var) != SSA_NAME)
1876 return interpret_expr (loop, NULL, var);
1878 def = SSA_NAME_DEF_STMT (var);
1879 bb = gimple_bb (def);
1880 def_loop = bb ? bb->loop_father : NULL;
1882 if (bb == NULL
1883 || !flow_bb_inside_loop_p (loop, bb))
1885 /* Keep the symbolic form. */
1886 res = var;
1887 goto set_and_end;
1890 if (res != chrec_not_analyzed_yet)
1892 if (loop != bb->loop_father)
1893 res = compute_scalar_evolution_in_loop
1894 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1896 goto set_and_end;
1899 if (loop != def_loop)
1901 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1902 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1904 goto set_and_end;
1907 switch (gimple_code (def))
1909 case GIMPLE_ASSIGN:
1910 res = interpret_gimple_assign (loop, def);
1911 break;
1913 case GIMPLE_PHI:
1914 if (loop_phi_node_p (def))
1915 res = interpret_loop_phi (loop, def);
1916 else
1917 res = interpret_condition_phi (loop, def);
1918 break;
1920 default:
1921 res = chrec_dont_know;
1922 break;
1925 set_and_end:
1927 /* Keep the symbolic form. */
1928 if (res == chrec_dont_know)
1929 res = var;
1931 if (loop == def_loop)
1932 set_scalar_evolution (block_before_loop (loop), var, res);
1934 return res;
1937 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1938 LOOP. LOOP is the loop in which the variable is used.
1940 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1941 pointer to the statement that uses this variable, in order to
1942 determine the evolution function of the variable, use the following
1943 calls:
1945 loop_p loop = loop_containing_stmt (stmt);
1946 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
1947 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1950 tree
1951 analyze_scalar_evolution (struct loop *loop, tree var)
1953 tree res;
1955 if (dump_file && (dump_flags & TDF_SCEV))
1957 fprintf (dump_file, "(analyze_scalar_evolution \n");
1958 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1959 fprintf (dump_file, " (scalar = ");
1960 print_generic_expr (dump_file, var, 0);
1961 fprintf (dump_file, ")\n");
1964 res = get_scalar_evolution (block_before_loop (loop), var);
1965 res = analyze_scalar_evolution_1 (loop, var, res);
1967 if (dump_file && (dump_flags & TDF_SCEV))
1968 fprintf (dump_file, ")\n");
1970 return res;
1973 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
1975 static tree
1976 analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
1978 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
1981 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1982 WRTO_LOOP (which should be a superloop of USE_LOOP)
1984 FOLDED_CASTS is set to true if resolve_mixers used
1985 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1986 at the moment in order to keep things simple).
1988 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1989 example:
1991 for (i = 0; i < 100; i++) -- loop 1
1993 for (j = 0; j < 100; j++) -- loop 2
1995 k1 = i;
1996 k2 = j;
1998 use2 (k1, k2);
2000 for (t = 0; t < 100; t++) -- loop 3
2001 use3 (k1, k2);
2004 use1 (k1, k2);
2007 Both k1 and k2 are invariants in loop3, thus
2008 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2009 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2011 As they are invariant, it does not matter whether we consider their
2012 usage in loop 3 or loop 2, hence
2013 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2014 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2015 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2016 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2018 Similarly for their evolutions with respect to loop 1. The values of K2
2019 in the use in loop 2 vary independently on loop 1, thus we cannot express
2020 the evolution with respect to loop 1:
2021 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2022 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2023 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2024 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2026 The value of k2 in the use in loop 1 is known, though:
2027 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2028 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2031 static tree
2032 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2033 tree version, bool *folded_casts)
2035 bool val = false;
2036 tree ev = version, tmp;
2038 /* We cannot just do
2040 tmp = analyze_scalar_evolution (use_loop, version);
2041 ev = resolve_mixers (wrto_loop, tmp);
2043 as resolve_mixers would query the scalar evolution with respect to
2044 wrto_loop. For example, in the situation described in the function
2045 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2046 version = k2. Then
2048 analyze_scalar_evolution (use_loop, version) = k2
2050 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2051 is 100, which is a wrong result, since we are interested in the
2052 value in loop 3.
2054 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2055 each time checking that there is no evolution in the inner loop. */
2057 if (folded_casts)
2058 *folded_casts = false;
2059 while (1)
2061 tmp = analyze_scalar_evolution (use_loop, ev);
2062 ev = resolve_mixers (use_loop, tmp);
2064 if (folded_casts && tmp != ev)
2065 *folded_casts = true;
2067 if (use_loop == wrto_loop)
2068 return ev;
2070 /* If the value of the use changes in the inner loop, we cannot express
2071 its value in the outer loop (we might try to return interval chrec,
2072 but we do not have a user for it anyway) */
2073 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2074 || !val)
2075 return chrec_dont_know;
2077 use_loop = loop_outer (use_loop);
2081 /* Returns from CACHE the value for VERSION instantiated below
2082 INSTANTIATED_BELOW block. */
2084 static tree
2085 get_instantiated_value (htab_t cache, basic_block instantiated_below,
2086 tree version)
2088 struct scev_info_str *info, pattern;
2090 pattern.var = version;
2091 pattern.instantiated_below = instantiated_below;
2092 info = (struct scev_info_str *) htab_find (cache, &pattern);
2094 if (info)
2095 return info->chrec;
2096 else
2097 return NULL_TREE;
2100 /* Sets in CACHE the value of VERSION instantiated below basic block
2101 INSTANTIATED_BELOW to VAL. */
2103 static void
2104 set_instantiated_value (htab_t cache, basic_block instantiated_below,
2105 tree version, tree val)
2107 struct scev_info_str *info, pattern;
2108 PTR *slot;
2110 pattern.var = version;
2111 pattern.instantiated_below = instantiated_below;
2112 slot = htab_find_slot (cache, &pattern, INSERT);
2114 if (!*slot)
2115 *slot = new_scev_info_str (instantiated_below, version);
2116 info = (struct scev_info_str *) *slot;
2117 info->chrec = val;
2120 /* Return the closed_loop_phi node for VAR. If there is none, return
2121 NULL_TREE. */
2123 static tree
2124 loop_closed_phi_def (tree var)
2126 struct loop *loop;
2127 edge exit;
2128 gimple phi;
2129 gimple_stmt_iterator psi;
2131 if (var == NULL_TREE
2132 || TREE_CODE (var) != SSA_NAME)
2133 return NULL_TREE;
2135 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2136 exit = single_exit (loop);
2137 if (!exit)
2138 return NULL_TREE;
2140 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2142 phi = gsi_stmt (psi);
2143 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2144 return PHI_RESULT (phi);
2147 return NULL_TREE;
2150 static tree instantiate_scev_r (basic_block, struct loop *, tree, bool,
2151 htab_t, int);
2153 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2154 and EVOLUTION_LOOP, that were left under a symbolic form.
2156 CHREC is an SSA_NAME to be instantiated.
2158 CACHE is the cache of already instantiated values.
2160 FOLD_CONVERSIONS should be set to true when the conversions that
2161 may wrap in signed/pointer type are folded, as long as the value of
2162 the chrec is preserved.
2164 SIZE_EXPR is used for computing the size of the expression to be
2165 instantiated, and to stop if it exceeds some limit. */
2167 static tree
2168 instantiate_scev_name (basic_block instantiate_below,
2169 struct loop *evolution_loop, tree chrec,
2170 bool fold_conversions, htab_t cache, int size_expr)
2172 tree res;
2173 struct loop *def_loop;
2174 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2176 /* A parameter (or loop invariant and we do not want to include
2177 evolutions in outer loops), nothing to do. */
2178 if (!def_bb
2179 || loop_depth (def_bb->loop_father) == 0
2180 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2181 return chrec;
2183 /* We cache the value of instantiated variable to avoid exponential
2184 time complexity due to reevaluations. We also store the convenient
2185 value in the cache in order to prevent infinite recursion -- we do
2186 not want to instantiate the SSA_NAME if it is in a mixer
2187 structure. This is used for avoiding the instantiation of
2188 recursively defined functions, such as:
2190 | a_2 -> {0, +, 1, +, a_2}_1 */
2192 res = get_instantiated_value (cache, instantiate_below, chrec);
2193 if (res)
2194 return res;
2196 res = chrec_dont_know;
2197 set_instantiated_value (cache, instantiate_below, chrec, res);
2199 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2201 /* If the analysis yields a parametric chrec, instantiate the
2202 result again. */
2203 res = analyze_scalar_evolution (def_loop, chrec);
2205 /* Don't instantiate default definitions. */
2206 if (TREE_CODE (res) == SSA_NAME
2207 && SSA_NAME_IS_DEFAULT_DEF (res))
2210 /* Don't instantiate loop-closed-ssa phi nodes. */
2211 else if (TREE_CODE (res) == SSA_NAME
2212 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2213 > loop_depth (def_loop))
2215 if (res == chrec)
2216 res = loop_closed_phi_def (chrec);
2217 else
2218 res = chrec;
2220 /* When there is no loop_closed_phi_def, it means that the
2221 variable is not used after the loop: try to still compute the
2222 value of the variable when exiting the loop. */
2223 if (res == NULL_TREE)
2225 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2226 res = analyze_scalar_evolution (loop, chrec);
2227 res = compute_overall_effect_of_inner_loop (loop, res);
2228 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2229 fold_conversions, cache, size_expr);
2231 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2232 gimple_bb (SSA_NAME_DEF_STMT (res))))
2233 res = chrec_dont_know;
2236 else if (res != chrec_dont_know)
2237 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2238 fold_conversions, cache, size_expr);
2240 /* Store the correct value to the cache. */
2241 set_instantiated_value (cache, instantiate_below, chrec, res);
2242 return res;
2245 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2246 and EVOLUTION_LOOP, that were left under a symbolic form.
2248 CHREC is a polynomial chain of recurrence to be instantiated.
2250 CACHE is the cache of already instantiated values.
2252 FOLD_CONVERSIONS should be set to true when the conversions that
2253 may wrap in signed/pointer type are folded, as long as the value of
2254 the chrec is preserved.
2256 SIZE_EXPR is used for computing the size of the expression to be
2257 instantiated, and to stop if it exceeds some limit. */
2259 static tree
2260 instantiate_scev_poly (basic_block instantiate_below,
2261 struct loop *evolution_loop, tree chrec,
2262 bool fold_conversions, htab_t cache, int size_expr)
2264 tree op1;
2265 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2266 CHREC_LEFT (chrec), fold_conversions, cache,
2267 size_expr);
2268 if (op0 == chrec_dont_know)
2269 return chrec_dont_know;
2271 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2272 CHREC_RIGHT (chrec), fold_conversions, cache,
2273 size_expr);
2274 if (op1 == chrec_dont_know)
2275 return chrec_dont_know;
2277 if (CHREC_LEFT (chrec) != op0
2278 || CHREC_RIGHT (chrec) != op1)
2280 unsigned var = CHREC_VARIABLE (chrec);
2282 /* When the instantiated stride or base has an evolution in an
2283 innermost loop, return chrec_dont_know, as this is not a
2284 valid SCEV representation. In the reduced testcase for
2285 PR40281 we would have {0, +, {1, +, 1}_2}_1 that has no
2286 meaning. */
2287 if ((tree_is_chrec (op0) && CHREC_VARIABLE (op0) > var)
2288 || (tree_is_chrec (op1) && CHREC_VARIABLE (op1) > var))
2289 return chrec_dont_know;
2291 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2292 chrec = build_polynomial_chrec (var, op0, op1);
2295 return chrec;
2298 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2299 and EVOLUTION_LOOP, that were left under a symbolic form.
2301 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2303 CACHE is the cache of already instantiated values.
2305 FOLD_CONVERSIONS should be set to true when the conversions that
2306 may wrap in signed/pointer type are folded, as long as the value of
2307 the chrec is preserved.
2309 SIZE_EXPR is used for computing the size of the expression to be
2310 instantiated, and to stop if it exceeds some limit. */
2312 static tree
2313 instantiate_scev_binary (basic_block instantiate_below,
2314 struct loop *evolution_loop, tree chrec, enum tree_code code,
2315 tree type, tree c0, tree c1,
2316 bool fold_conversions, htab_t cache, int size_expr)
2318 tree op1;
2319 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2320 c0, fold_conversions, cache,
2321 size_expr);
2322 if (op0 == chrec_dont_know)
2323 return chrec_dont_know;
2325 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2326 c1, fold_conversions, cache,
2327 size_expr);
2328 if (op1 == chrec_dont_know)
2329 return chrec_dont_know;
2331 if (c0 != op0
2332 || c1 != op1)
2334 op0 = chrec_convert (type, op0, NULL);
2335 op1 = chrec_convert_rhs (type, op1, NULL);
2337 switch (code)
2339 case POINTER_PLUS_EXPR:
2340 case PLUS_EXPR:
2341 return chrec_fold_plus (type, op0, op1);
2343 case MINUS_EXPR:
2344 return chrec_fold_minus (type, op0, op1);
2346 case MULT_EXPR:
2347 return chrec_fold_multiply (type, op0, op1);
2349 default:
2350 gcc_unreachable ();
2354 return chrec ? chrec : fold_build2 (code, type, c0, c1);
2357 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2358 and EVOLUTION_LOOP, that were left under a symbolic form.
2360 "CHREC" is an array reference to be instantiated.
2362 CACHE is the cache of already instantiated values.
2364 FOLD_CONVERSIONS should be set to true when the conversions that
2365 may wrap in signed/pointer type are folded, as long as the value of
2366 the chrec is preserved.
2368 SIZE_EXPR is used for computing the size of the expression to be
2369 instantiated, and to stop if it exceeds some limit. */
2371 static tree
2372 instantiate_array_ref (basic_block instantiate_below,
2373 struct loop *evolution_loop, tree chrec,
2374 bool fold_conversions, htab_t cache, int size_expr)
2376 tree res;
2377 tree index = TREE_OPERAND (chrec, 1);
2378 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop, index,
2379 fold_conversions, cache, size_expr);
2381 if (op1 == chrec_dont_know)
2382 return chrec_dont_know;
2384 if (chrec && op1 == index)
2385 return chrec;
2387 res = unshare_expr (chrec);
2388 TREE_OPERAND (res, 1) = op1;
2389 return res;
2392 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2393 and EVOLUTION_LOOP, that were left under a symbolic form.
2395 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2396 instantiated.
2398 CACHE is the cache of already instantiated values.
2400 FOLD_CONVERSIONS should be set to true when the conversions that
2401 may wrap in signed/pointer type are folded, as long as the value of
2402 the chrec is preserved.
2404 SIZE_EXPR is used for computing the size of the expression to be
2405 instantiated, and to stop if it exceeds some limit. */
2407 static tree
2408 instantiate_scev_convert (basic_block instantiate_below,
2409 struct loop *evolution_loop, tree chrec,
2410 tree type, tree op,
2411 bool fold_conversions, htab_t cache, int size_expr)
2413 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2414 fold_conversions, cache, size_expr);
2416 if (op0 == chrec_dont_know)
2417 return chrec_dont_know;
2419 if (fold_conversions)
2421 tree tmp = chrec_convert_aggressive (type, op0);
2422 if (tmp)
2423 return tmp;
2426 if (chrec && op0 == op)
2427 return chrec;
2429 /* If we used chrec_convert_aggressive, we can no longer assume that
2430 signed chrecs do not overflow, as chrec_convert does, so avoid
2431 calling it in that case. */
2432 if (fold_conversions)
2433 return fold_convert (type, op0);
2435 return chrec_convert (type, op0, NULL);
2438 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2439 and EVOLUTION_LOOP, that were left under a symbolic form.
2441 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2442 Handle ~X as -1 - X.
2443 Handle -X as -1 * X.
2445 CACHE is the cache of already instantiated values.
2447 FOLD_CONVERSIONS should be set to true when the conversions that
2448 may wrap in signed/pointer type are folded, as long as the value of
2449 the chrec is preserved.
2451 SIZE_EXPR is used for computing the size of the expression to be
2452 instantiated, and to stop if it exceeds some limit. */
2454 static tree
2455 instantiate_scev_not (basic_block instantiate_below,
2456 struct loop *evolution_loop, tree chrec,
2457 enum tree_code code, tree type, tree op,
2458 bool fold_conversions, htab_t cache, int size_expr)
2460 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2461 fold_conversions, cache, size_expr);
2463 if (op0 == chrec_dont_know)
2464 return chrec_dont_know;
2466 if (op != op0)
2468 op0 = chrec_convert (type, op0, NULL);
2470 switch (code)
2472 case BIT_NOT_EXPR:
2473 return chrec_fold_minus
2474 (type, fold_convert (type, integer_minus_one_node), op0);
2476 case NEGATE_EXPR:
2477 return chrec_fold_multiply
2478 (type, fold_convert (type, integer_minus_one_node), op0);
2480 default:
2481 gcc_unreachable ();
2485 return chrec ? chrec : fold_build1 (code, type, op0);
2488 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2489 and EVOLUTION_LOOP, that were left under a symbolic form.
2491 CHREC is an expression with 3 operands to be instantiated.
2493 CACHE is the cache of already instantiated values.
2495 FOLD_CONVERSIONS should be set to true when the conversions that
2496 may wrap in signed/pointer type are folded, as long as the value of
2497 the chrec is preserved.
2499 SIZE_EXPR is used for computing the size of the expression to be
2500 instantiated, and to stop if it exceeds some limit. */
2502 static tree
2503 instantiate_scev_3 (basic_block instantiate_below,
2504 struct loop *evolution_loop, tree chrec,
2505 bool fold_conversions, htab_t cache, int size_expr)
2507 tree op1, op2;
2508 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2509 TREE_OPERAND (chrec, 0),
2510 fold_conversions, cache, size_expr);
2511 if (op0 == chrec_dont_know)
2512 return chrec_dont_know;
2514 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2515 TREE_OPERAND (chrec, 1),
2516 fold_conversions, cache, size_expr);
2517 if (op1 == chrec_dont_know)
2518 return chrec_dont_know;
2520 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
2521 TREE_OPERAND (chrec, 2),
2522 fold_conversions, cache, size_expr);
2523 if (op2 == chrec_dont_know)
2524 return chrec_dont_know;
2526 if (op0 == TREE_OPERAND (chrec, 0)
2527 && op1 == TREE_OPERAND (chrec, 1)
2528 && op2 == TREE_OPERAND (chrec, 2))
2529 return chrec;
2531 return fold_build3 (TREE_CODE (chrec),
2532 TREE_TYPE (chrec), op0, op1, op2);
2535 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2536 and EVOLUTION_LOOP, that were left under a symbolic form.
2538 CHREC is an expression with 2 operands to be instantiated.
2540 CACHE is the cache of already instantiated values.
2542 FOLD_CONVERSIONS should be set to true when the conversions that
2543 may wrap in signed/pointer type are folded, as long as the value of
2544 the chrec is preserved.
2546 SIZE_EXPR is used for computing the size of the expression to be
2547 instantiated, and to stop if it exceeds some limit. */
2549 static tree
2550 instantiate_scev_2 (basic_block instantiate_below,
2551 struct loop *evolution_loop, tree chrec,
2552 bool fold_conversions, htab_t cache, int size_expr)
2554 tree op1;
2555 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2556 TREE_OPERAND (chrec, 0),
2557 fold_conversions, cache, size_expr);
2558 if (op0 == chrec_dont_know)
2559 return chrec_dont_know;
2561 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2562 TREE_OPERAND (chrec, 1),
2563 fold_conversions, cache, size_expr);
2564 if (op1 == chrec_dont_know)
2565 return chrec_dont_know;
2567 if (op0 == TREE_OPERAND (chrec, 0)
2568 && op1 == TREE_OPERAND (chrec, 1))
2569 return chrec;
2571 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2574 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2575 and EVOLUTION_LOOP, that were left under a symbolic form.
2577 CHREC is an expression with 2 operands to be instantiated.
2579 CACHE is the cache of already instantiated values.
2581 FOLD_CONVERSIONS should be set to true when the conversions that
2582 may wrap in signed/pointer type are folded, as long as the value of
2583 the chrec is preserved.
2585 SIZE_EXPR is used for computing the size of the expression to be
2586 instantiated, and to stop if it exceeds some limit. */
2588 static tree
2589 instantiate_scev_1 (basic_block instantiate_below,
2590 struct loop *evolution_loop, tree chrec,
2591 bool fold_conversions, htab_t cache, int size_expr)
2593 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2594 TREE_OPERAND (chrec, 0),
2595 fold_conversions, cache, size_expr);
2597 if (op0 == chrec_dont_know)
2598 return chrec_dont_know;
2600 if (op0 == TREE_OPERAND (chrec, 0))
2601 return chrec;
2603 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2606 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2607 and EVOLUTION_LOOP, that were left under a symbolic form.
2609 CHREC is the scalar evolution to instantiate.
2611 CACHE is the cache of already instantiated values.
2613 FOLD_CONVERSIONS should be set to true when the conversions that
2614 may wrap in signed/pointer type are folded, as long as the value of
2615 the chrec is preserved.
2617 SIZE_EXPR is used for computing the size of the expression to be
2618 instantiated, and to stop if it exceeds some limit. */
2620 static tree
2621 instantiate_scev_r (basic_block instantiate_below,
2622 struct loop *evolution_loop, tree chrec,
2623 bool fold_conversions, htab_t cache, int size_expr)
2625 /* Give up if the expression is larger than the MAX that we allow. */
2626 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2627 return chrec_dont_know;
2629 if (chrec == NULL_TREE
2630 || automatically_generated_chrec_p (chrec)
2631 || is_gimple_min_invariant (chrec))
2632 return chrec;
2634 switch (TREE_CODE (chrec))
2636 case SSA_NAME:
2637 return instantiate_scev_name (instantiate_below, evolution_loop, chrec,
2638 fold_conversions, cache, size_expr);
2640 case POLYNOMIAL_CHREC:
2641 return instantiate_scev_poly (instantiate_below, evolution_loop, chrec,
2642 fold_conversions, cache, size_expr);
2644 case POINTER_PLUS_EXPR:
2645 case PLUS_EXPR:
2646 case MINUS_EXPR:
2647 case MULT_EXPR:
2648 return instantiate_scev_binary (instantiate_below, evolution_loop, chrec,
2649 TREE_CODE (chrec), chrec_type (chrec),
2650 TREE_OPERAND (chrec, 0),
2651 TREE_OPERAND (chrec, 1),
2652 fold_conversions, cache, size_expr);
2654 CASE_CONVERT:
2655 return instantiate_scev_convert (instantiate_below, evolution_loop, chrec,
2656 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2657 fold_conversions, cache, size_expr);
2659 case NEGATE_EXPR:
2660 case BIT_NOT_EXPR:
2661 return instantiate_scev_not (instantiate_below, evolution_loop, chrec,
2662 TREE_CODE (chrec), TREE_TYPE (chrec),
2663 TREE_OPERAND (chrec, 0),
2664 fold_conversions, cache, size_expr);
2666 case ADDR_EXPR:
2667 case SCEV_NOT_KNOWN:
2668 return chrec_dont_know;
2670 case SCEV_KNOWN:
2671 return chrec_known;
2673 case ARRAY_REF:
2674 return instantiate_array_ref (instantiate_below, evolution_loop, chrec,
2675 fold_conversions, cache, size_expr);
2677 default:
2678 break;
2681 if (VL_EXP_CLASS_P (chrec))
2682 return chrec_dont_know;
2684 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2686 case 3:
2687 return instantiate_scev_3 (instantiate_below, evolution_loop, chrec,
2688 fold_conversions, cache, size_expr);
2690 case 2:
2691 return instantiate_scev_2 (instantiate_below, evolution_loop, chrec,
2692 fold_conversions, cache, size_expr);
2694 case 1:
2695 return instantiate_scev_1 (instantiate_below, evolution_loop, chrec,
2696 fold_conversions, cache, size_expr);
2698 case 0:
2699 return chrec;
2701 default:
2702 break;
2705 /* Too complicated to handle. */
2706 return chrec_dont_know;
2709 /* Analyze all the parameters of the chrec that were left under a
2710 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2711 recursive instantiation of parameters: a parameter is a variable
2712 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2713 a function parameter. */
2715 tree
2716 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2717 tree chrec)
2719 tree res;
2720 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2722 if (dump_file && (dump_flags & TDF_SCEV))
2724 fprintf (dump_file, "(instantiate_scev \n");
2725 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2726 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2727 fprintf (dump_file, " (chrec = ");
2728 print_generic_expr (dump_file, chrec, 0);
2729 fprintf (dump_file, ")\n");
2732 res = instantiate_scev_r (instantiate_below, evolution_loop, chrec, false,
2733 cache, 0);
2735 if (dump_file && (dump_flags & TDF_SCEV))
2737 fprintf (dump_file, " (res = ");
2738 print_generic_expr (dump_file, res, 0);
2739 fprintf (dump_file, "))\n");
2742 htab_delete (cache);
2744 return res;
2747 /* Similar to instantiate_parameters, but does not introduce the
2748 evolutions in outer loops for LOOP invariants in CHREC, and does not
2749 care about causing overflows, as long as they do not affect value
2750 of an expression. */
2752 tree
2753 resolve_mixers (struct loop *loop, tree chrec)
2755 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2756 tree ret = instantiate_scev_r (block_before_loop (loop), loop, chrec, true,
2757 cache, 0);
2758 htab_delete (cache);
2759 return ret;
2762 /* Entry point for the analysis of the number of iterations pass.
2763 This function tries to safely approximate the number of iterations
2764 the loop will run. When this property is not decidable at compile
2765 time, the result is chrec_dont_know. Otherwise the result is a
2766 scalar or a symbolic parameter. When the number of iterations may
2767 be equal to zero and the property cannot be determined at compile
2768 time, the result is a COND_EXPR that represents in a symbolic form
2769 the conditions under which the number of iterations is not zero.
2771 Example of analysis: suppose that the loop has an exit condition:
2773 "if (b > 49) goto end_loop;"
2775 and that in a previous analysis we have determined that the
2776 variable 'b' has an evolution function:
2778 "EF = {23, +, 5}_2".
2780 When we evaluate the function at the point 5, i.e. the value of the
2781 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2782 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2783 the loop body has been executed 6 times. */
2785 tree
2786 number_of_latch_executions (struct loop *loop)
2788 edge exit;
2789 struct tree_niter_desc niter_desc;
2790 tree may_be_zero;
2791 tree res;
2793 /* Determine whether the number of iterations in loop has already
2794 been computed. */
2795 res = loop->nb_iterations;
2796 if (res)
2797 return res;
2799 may_be_zero = NULL_TREE;
2801 if (dump_file && (dump_flags & TDF_SCEV))
2802 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
2804 res = chrec_dont_know;
2805 exit = single_exit (loop);
2807 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2809 may_be_zero = niter_desc.may_be_zero;
2810 res = niter_desc.niter;
2813 if (res == chrec_dont_know
2814 || !may_be_zero
2815 || integer_zerop (may_be_zero))
2817 else if (integer_nonzerop (may_be_zero))
2818 res = build_int_cst (TREE_TYPE (res), 0);
2820 else if (COMPARISON_CLASS_P (may_be_zero))
2821 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2822 build_int_cst (TREE_TYPE (res), 0), res);
2823 else
2824 res = chrec_dont_know;
2826 if (dump_file && (dump_flags & TDF_SCEV))
2828 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
2829 print_generic_expr (dump_file, res, 0);
2830 fprintf (dump_file, "))\n");
2833 loop->nb_iterations = res;
2834 return res;
2837 /* Returns the number of executions of the exit condition of LOOP,
2838 i.e., the number by one higher than number_of_latch_executions.
2839 Note that unlike number_of_latch_executions, this number does
2840 not necessarily fit in the unsigned variant of the type of
2841 the control variable -- if the number of iterations is a constant,
2842 we return chrec_dont_know if adding one to number_of_latch_executions
2843 overflows; however, in case the number of iterations is symbolic
2844 expression, the caller is responsible for dealing with this
2845 the possible overflow. */
2847 tree
2848 number_of_exit_cond_executions (struct loop *loop)
2850 tree ret = number_of_latch_executions (loop);
2851 tree type = chrec_type (ret);
2853 if (chrec_contains_undetermined (ret))
2854 return ret;
2856 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2857 if (TREE_CODE (ret) == INTEGER_CST
2858 && TREE_OVERFLOW (ret))
2859 return chrec_dont_know;
2861 return ret;
2864 /* One of the drivers for testing the scalar evolutions analysis.
2865 This function computes the number of iterations for all the loops
2866 from the EXIT_CONDITIONS array. */
2868 static void
2869 number_of_iterations_for_all_loops (vec<gimple> *exit_conditions)
2871 unsigned int i;
2872 unsigned nb_chrec_dont_know_loops = 0;
2873 unsigned nb_static_loops = 0;
2874 gimple cond;
2876 FOR_EACH_VEC_ELT (*exit_conditions, i, cond)
2878 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2879 if (chrec_contains_undetermined (res))
2880 nb_chrec_dont_know_loops++;
2881 else
2882 nb_static_loops++;
2885 if (dump_file)
2887 fprintf (dump_file, "\n(\n");
2888 fprintf (dump_file, "-----------------------------------------\n");
2889 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2890 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2891 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2892 fprintf (dump_file, "-----------------------------------------\n");
2893 fprintf (dump_file, ")\n\n");
2895 print_loops (dump_file, 3);
2901 /* Counters for the stats. */
2903 struct chrec_stats
2905 unsigned nb_chrecs;
2906 unsigned nb_affine;
2907 unsigned nb_affine_multivar;
2908 unsigned nb_higher_poly;
2909 unsigned nb_chrec_dont_know;
2910 unsigned nb_undetermined;
2913 /* Reset the counters. */
2915 static inline void
2916 reset_chrecs_counters (struct chrec_stats *stats)
2918 stats->nb_chrecs = 0;
2919 stats->nb_affine = 0;
2920 stats->nb_affine_multivar = 0;
2921 stats->nb_higher_poly = 0;
2922 stats->nb_chrec_dont_know = 0;
2923 stats->nb_undetermined = 0;
2926 /* Dump the contents of a CHREC_STATS structure. */
2928 static void
2929 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2931 fprintf (file, "\n(\n");
2932 fprintf (file, "-----------------------------------------\n");
2933 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2934 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2935 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2936 stats->nb_higher_poly);
2937 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2938 fprintf (file, "-----------------------------------------\n");
2939 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2940 fprintf (file, "%d\twith undetermined coefficients\n",
2941 stats->nb_undetermined);
2942 fprintf (file, "-----------------------------------------\n");
2943 fprintf (file, "%d\tchrecs in the scev database\n",
2944 (int) htab_elements (scalar_evolution_info));
2945 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2946 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2947 fprintf (file, "-----------------------------------------\n");
2948 fprintf (file, ")\n\n");
2951 /* Gather statistics about CHREC. */
2953 static void
2954 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2956 if (dump_file && (dump_flags & TDF_STATS))
2958 fprintf (dump_file, "(classify_chrec ");
2959 print_generic_expr (dump_file, chrec, 0);
2960 fprintf (dump_file, "\n");
2963 stats->nb_chrecs++;
2965 if (chrec == NULL_TREE)
2967 stats->nb_undetermined++;
2968 return;
2971 switch (TREE_CODE (chrec))
2973 case POLYNOMIAL_CHREC:
2974 if (evolution_function_is_affine_p (chrec))
2976 if (dump_file && (dump_flags & TDF_STATS))
2977 fprintf (dump_file, " affine_univariate\n");
2978 stats->nb_affine++;
2980 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2982 if (dump_file && (dump_flags & TDF_STATS))
2983 fprintf (dump_file, " affine_multivariate\n");
2984 stats->nb_affine_multivar++;
2986 else
2988 if (dump_file && (dump_flags & TDF_STATS))
2989 fprintf (dump_file, " higher_degree_polynomial\n");
2990 stats->nb_higher_poly++;
2993 break;
2995 default:
2996 break;
2999 if (chrec_contains_undetermined (chrec))
3001 if (dump_file && (dump_flags & TDF_STATS))
3002 fprintf (dump_file, " undetermined\n");
3003 stats->nb_undetermined++;
3006 if (dump_file && (dump_flags & TDF_STATS))
3007 fprintf (dump_file, ")\n");
3010 /* One of the drivers for testing the scalar evolutions analysis.
3011 This function analyzes the scalar evolution of all the scalars
3012 defined as loop phi nodes in one of the loops from the
3013 EXIT_CONDITIONS array.
3015 TODO Optimization: A loop is in canonical form if it contains only
3016 a single scalar loop phi node. All the other scalars that have an
3017 evolution in the loop are rewritten in function of this single
3018 index. This allows the parallelization of the loop. */
3020 static void
3021 analyze_scalar_evolution_for_all_loop_phi_nodes (vec<gimple> *exit_conditions)
3023 unsigned int i;
3024 struct chrec_stats stats;
3025 gimple cond, phi;
3026 gimple_stmt_iterator psi;
3028 reset_chrecs_counters (&stats);
3030 FOR_EACH_VEC_ELT (*exit_conditions, i, cond)
3032 struct loop *loop;
3033 basic_block bb;
3034 tree chrec;
3036 loop = loop_containing_stmt (cond);
3037 bb = loop->header;
3039 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3041 phi = gsi_stmt (psi);
3042 if (!virtual_operand_p (PHI_RESULT (phi)))
3044 chrec = instantiate_parameters
3045 (loop,
3046 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
3048 if (dump_file && (dump_flags & TDF_STATS))
3049 gather_chrec_stats (chrec, &stats);
3054 if (dump_file && (dump_flags & TDF_STATS))
3055 dump_chrecs_stats (dump_file, &stats);
3058 /* Callback for htab_traverse, gathers information on chrecs in the
3059 hashtable. */
3061 static int
3062 gather_stats_on_scev_database_1 (void **slot, void *stats)
3064 struct scev_info_str *entry = (struct scev_info_str *) *slot;
3066 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
3068 return 1;
3071 /* Classify the chrecs of the whole database. */
3073 void
3074 gather_stats_on_scev_database (void)
3076 struct chrec_stats stats;
3078 if (!dump_file)
3079 return;
3081 reset_chrecs_counters (&stats);
3083 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
3084 &stats);
3086 dump_chrecs_stats (dump_file, &stats);
3091 /* Initializer. */
3093 static void
3094 initialize_scalar_evolutions_analyzer (void)
3096 /* The elements below are unique. */
3097 if (chrec_dont_know == NULL_TREE)
3099 chrec_not_analyzed_yet = NULL_TREE;
3100 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3101 chrec_known = make_node (SCEV_KNOWN);
3102 TREE_TYPE (chrec_dont_know) = void_type_node;
3103 TREE_TYPE (chrec_known) = void_type_node;
3107 /* Initialize the analysis of scalar evolutions for LOOPS. */
3109 void
3110 scev_initialize (void)
3112 loop_iterator li;
3113 struct loop *loop;
3116 scalar_evolution_info = htab_create_ggc (100, hash_scev_info, eq_scev_info,
3117 del_scev_info);
3119 initialize_scalar_evolutions_analyzer ();
3121 FOR_EACH_LOOP (li, loop, 0)
3123 loop->nb_iterations = NULL_TREE;
3127 /* Return true if SCEV is initialized. */
3129 bool
3130 scev_initialized_p (void)
3132 return scalar_evolution_info != NULL;
3135 /* Cleans up the information cached by the scalar evolutions analysis
3136 in the hash table. */
3138 void
3139 scev_reset_htab (void)
3141 if (!scalar_evolution_info)
3142 return;
3144 htab_empty (scalar_evolution_info);
3147 /* Cleans up the information cached by the scalar evolutions analysis
3148 in the hash table and in the loop->nb_iterations. */
3150 void
3151 scev_reset (void)
3153 loop_iterator li;
3154 struct loop *loop;
3156 scev_reset_htab ();
3158 if (!current_loops)
3159 return;
3161 FOR_EACH_LOOP (li, loop, 0)
3163 loop->nb_iterations = NULL_TREE;
3167 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3168 respect to WRTO_LOOP and returns its base and step in IV if possible
3169 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3170 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3171 invariant in LOOP. Otherwise we require it to be an integer constant.
3173 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3174 because it is computed in signed arithmetics). Consequently, adding an
3175 induction variable
3177 for (i = IV->base; ; i += IV->step)
3179 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3180 false for the type of the induction variable, or you can prove that i does
3181 not wrap by some other argument. Otherwise, this might introduce undefined
3182 behavior, and
3184 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3186 must be used instead. */
3188 bool
3189 simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3190 affine_iv *iv, bool allow_nonconstant_step)
3192 tree type, ev;
3193 bool folded_casts;
3195 iv->base = NULL_TREE;
3196 iv->step = NULL_TREE;
3197 iv->no_overflow = false;
3199 type = TREE_TYPE (op);
3200 if (!POINTER_TYPE_P (type)
3201 && !INTEGRAL_TYPE_P (type))
3202 return false;
3204 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
3205 &folded_casts);
3206 if (chrec_contains_undetermined (ev)
3207 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
3208 return false;
3210 if (tree_does_not_contain_chrecs (ev))
3212 iv->base = ev;
3213 iv->step = build_int_cst (TREE_TYPE (ev), 0);
3214 iv->no_overflow = true;
3215 return true;
3218 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
3219 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
3220 return false;
3222 iv->step = CHREC_RIGHT (ev);
3223 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3224 || tree_contains_chrecs (iv->step, NULL))
3225 return false;
3227 iv->base = CHREC_LEFT (ev);
3228 if (tree_contains_chrecs (iv->base, NULL))
3229 return false;
3231 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
3233 return true;
3236 /* Runs the analysis of scalar evolutions. */
3238 void
3239 scev_analysis (void)
3241 vec<gimple> exit_conditions;
3243 exit_conditions.create (37);
3244 select_loops_exit_conditions (&exit_conditions);
3246 if (dump_file && (dump_flags & TDF_STATS))
3247 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
3249 number_of_iterations_for_all_loops (&exit_conditions);
3250 exit_conditions.release ();
3253 /* Finalize the scalar evolution analysis. */
3255 void
3256 scev_finalize (void)
3258 if (!scalar_evolution_info)
3259 return;
3260 htab_delete (scalar_evolution_info);
3261 scalar_evolution_info = NULL;
3264 /* Returns true if the expression EXPR is considered to be too expensive
3265 for scev_const_prop. */
3267 bool
3268 expression_expensive_p (tree expr)
3270 enum tree_code code;
3272 if (is_gimple_val (expr))
3273 return false;
3275 code = TREE_CODE (expr);
3276 if (code == TRUNC_DIV_EXPR
3277 || code == CEIL_DIV_EXPR
3278 || code == FLOOR_DIV_EXPR
3279 || code == ROUND_DIV_EXPR
3280 || code == TRUNC_MOD_EXPR
3281 || code == CEIL_MOD_EXPR
3282 || code == FLOOR_MOD_EXPR
3283 || code == ROUND_MOD_EXPR
3284 || code == EXACT_DIV_EXPR)
3286 /* Division by power of two is usually cheap, so we allow it.
3287 Forbid anything else. */
3288 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3289 return true;
3292 switch (TREE_CODE_CLASS (code))
3294 case tcc_binary:
3295 case tcc_comparison:
3296 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3297 return true;
3299 /* Fallthru. */
3300 case tcc_unary:
3301 return expression_expensive_p (TREE_OPERAND (expr, 0));
3303 default:
3304 return true;
3308 /* Replace ssa names for that scev can prove they are constant by the
3309 appropriate constants. Also perform final value replacement in loops,
3310 in case the replacement expressions are cheap.
3312 We only consider SSA names defined by phi nodes; rest is left to the
3313 ordinary constant propagation pass. */
3315 unsigned int
3316 scev_const_prop (void)
3318 basic_block bb;
3319 tree name, type, ev;
3320 gimple phi, ass;
3321 struct loop *loop, *ex_loop;
3322 bitmap ssa_names_to_remove = NULL;
3323 unsigned i;
3324 loop_iterator li;
3325 gimple_stmt_iterator psi;
3327 if (number_of_loops () <= 1)
3328 return 0;
3330 FOR_EACH_BB (bb)
3332 loop = bb->loop_father;
3334 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3336 phi = gsi_stmt (psi);
3337 name = PHI_RESULT (phi);
3339 if (virtual_operand_p (name))
3340 continue;
3342 type = TREE_TYPE (name);
3344 if (!POINTER_TYPE_P (type)
3345 && !INTEGRAL_TYPE_P (type))
3346 continue;
3348 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3349 if (!is_gimple_min_invariant (ev)
3350 || !may_propagate_copy (name, ev))
3351 continue;
3353 /* Replace the uses of the name. */
3354 if (name != ev)
3355 replace_uses_by (name, ev);
3357 if (!ssa_names_to_remove)
3358 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3359 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3363 /* Remove the ssa names that were replaced by constants. We do not
3364 remove them directly in the previous cycle, since this
3365 invalidates scev cache. */
3366 if (ssa_names_to_remove)
3368 bitmap_iterator bi;
3370 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3372 gimple_stmt_iterator psi;
3373 name = ssa_name (i);
3374 phi = SSA_NAME_DEF_STMT (name);
3376 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3377 psi = gsi_for_stmt (phi);
3378 remove_phi_node (&psi, true);
3381 BITMAP_FREE (ssa_names_to_remove);
3382 scev_reset ();
3385 /* Now the regular final value replacement. */
3386 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3388 edge exit;
3389 tree def, rslt, niter;
3390 gimple_stmt_iterator bsi;
3392 /* If we do not know exact number of iterations of the loop, we cannot
3393 replace the final value. */
3394 exit = single_exit (loop);
3395 if (!exit)
3396 continue;
3398 niter = number_of_latch_executions (loop);
3399 if (niter == chrec_dont_know)
3400 continue;
3402 /* Ensure that it is possible to insert new statements somewhere. */
3403 if (!single_pred_p (exit->dest))
3404 split_loop_exit_edge (exit);
3405 bsi = gsi_after_labels (exit->dest);
3407 ex_loop = superloop_at_depth (loop,
3408 loop_depth (exit->dest->loop_father) + 1);
3410 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3412 phi = gsi_stmt (psi);
3413 rslt = PHI_RESULT (phi);
3414 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3415 if (virtual_operand_p (def))
3417 gsi_next (&psi);
3418 continue;
3421 if (!POINTER_TYPE_P (TREE_TYPE (def))
3422 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3424 gsi_next (&psi);
3425 continue;
3428 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
3429 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3430 if (!tree_does_not_contain_chrecs (def)
3431 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3432 /* Moving the computation from the loop may prolong life range
3433 of some ssa names, which may cause problems if they appear
3434 on abnormal edges. */
3435 || contains_abnormal_ssa_name_p (def)
3436 /* Do not emit expensive expressions. The rationale is that
3437 when someone writes a code like
3439 while (n > 45) n -= 45;
3441 he probably knows that n is not large, and does not want it
3442 to be turned into n %= 45. */
3443 || expression_expensive_p (def))
3445 gsi_next (&psi);
3446 continue;
3449 /* Eliminate the PHI node and replace it by a computation outside
3450 the loop. */
3451 def = unshare_expr (def);
3452 remove_phi_node (&psi, false);
3454 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3455 true, GSI_SAME_STMT);
3456 ass = gimple_build_assign (rslt, def);
3457 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3460 return 0;
3463 #include "gt-tree-scalar-evolution.h"