missing Changelog
[official-gcc.git] / gcc / tree-data-ref.h
blob83929f402cd01042697802380d90db372786fe48
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
25 #include "graphds.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
50 struct innermost_loop_behavior
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs, indexes in artificial dimensions
64 added for member selection of records and the operands of MEM_REFs.
65 BASE_OBJECT is the part of the reference that is loop-invariant
66 (note that this reference does not have to cover the whole object
67 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68 not recommended to use BASE_OBJECT in any code generation).
69 For the examples above,
71 base_object: a *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
78 struct indices
80 /* The object. */
81 tree base_object;
83 /* A list of chrecs. Access functions of the indices. */
84 vec<tree> access_fns;
86 /* Whether BASE_OBJECT is an access representing the whole object
87 or whether the access could not be constrained. */
88 bool unconstrained_base;
91 struct dr_alias
93 /* The alias information that should be used for new pointers to this
94 location. */
95 struct ptr_info_def *ptr_info;
98 /* An integer vector. A vector formally consists of an element of a vector
99 space. A vector space is a set that is closed under vector addition
100 and scalar multiplication. In this vector space, an element is a list of
101 integers. */
102 typedef int *lambda_vector;
104 /* An integer matrix. A matrix consists of m vectors of length n (IE
105 all vectors are the same length). */
106 typedef lambda_vector *lambda_matrix;
108 /* Each vector of the access matrix represents a linear access
109 function for a subscript. First elements correspond to the
110 leftmost indices, ie. for a[i][j] the first vector corresponds to
111 the subscript in "i". The elements of a vector are relative to
112 the loop nests in which the data reference is considered,
113 i.e. the vector is relative to the SCoP that provides the context
114 in which this data reference occurs.
116 For example, in
118 | loop_1
119 | loop_2
120 | a[i+3][2*j+n-1]
122 if "i" varies in loop_1 and "j" varies in loop_2, the access
123 matrix with respect to the loop nest {loop_1, loop_2} is:
125 | loop_1 loop_2 param_n cst
126 | 1 0 0 3
127 | 0 2 1 -1
129 whereas the access matrix with respect to loop_2 considers "i" as
130 a parameter:
132 | loop_2 param_i param_n cst
133 | 0 1 0 3
134 | 2 0 1 -1
136 struct access_matrix
138 vec<loop_p> loop_nest;
139 int nb_induction_vars;
140 vec<tree> parameters;
141 vec<lambda_vector, va_gc> *matrix;
144 #define AM_LOOP_NEST(M) (M)->loop_nest
145 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
146 #define AM_PARAMETERS(M) (M)->parameters
147 #define AM_MATRIX(M) (M)->matrix
148 #define AM_NB_PARAMETERS(M) (AM_PARAMETERS(M)).length ()
149 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
150 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
151 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
152 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
154 /* Return the column in the access matrix of LOOP_NUM. */
156 static inline int
157 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
159 int i;
160 loop_p l;
162 for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
163 if (l->num == loop_num)
164 return i;
166 gcc_unreachable();
169 struct data_reference
171 /* A pointer to the statement that contains this DR. */
172 gimple stmt;
174 /* A pointer to the memory reference. */
175 tree ref;
177 /* Auxiliary info specific to a pass. */
178 void *aux;
180 /* True when the data reference is in RHS of a stmt. */
181 bool is_read;
183 /* Behavior of the memory reference in the innermost loop. */
184 struct innermost_loop_behavior innermost;
186 /* Subscripts of this data reference. */
187 struct indices indices;
189 /* Alias information for the data reference. */
190 struct dr_alias alias;
192 /* Matrix representation for the data access functions. */
193 struct access_matrix *access_matrix;
196 #define DR_STMT(DR) (DR)->stmt
197 #define DR_REF(DR) (DR)->ref
198 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
199 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
200 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
201 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
202 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
203 #define DR_IS_READ(DR) (DR)->is_read
204 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
205 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
206 #define DR_OFFSET(DR) (DR)->innermost.offset
207 #define DR_INIT(DR) (DR)->innermost.init
208 #define DR_STEP(DR) (DR)->innermost.step
209 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
210 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
211 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
213 typedef struct data_reference *data_reference_p;
215 enum data_dependence_direction {
216 dir_positive,
217 dir_negative,
218 dir_equal,
219 dir_positive_or_negative,
220 dir_positive_or_equal,
221 dir_negative_or_equal,
222 dir_star,
223 dir_independent
226 /* The description of the grid of iterations that overlap. At most
227 two loops are considered at the same time just now, hence at most
228 two functions are needed. For each of the functions, we store
229 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
230 where x, y, ... are variables. */
232 #define MAX_DIM 2
234 /* Special values of N. */
235 #define NO_DEPENDENCE 0
236 #define NOT_KNOWN (MAX_DIM + 1)
237 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
238 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
239 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
241 typedef vec<tree> affine_fn;
243 typedef struct
245 unsigned n;
246 affine_fn fns[MAX_DIM];
247 } conflict_function;
249 /* What is a subscript? Given two array accesses a subscript is the
250 tuple composed of the access functions for a given dimension.
251 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
252 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
253 are stored in the data_dependence_relation structure under the form
254 of an array of subscripts. */
256 struct subscript
258 /* A description of the iterations for which the elements are
259 accessed twice. */
260 conflict_function *conflicting_iterations_in_a;
261 conflict_function *conflicting_iterations_in_b;
263 /* This field stores the information about the iteration domain
264 validity of the dependence relation. */
265 tree last_conflict;
267 /* Distance from the iteration that access a conflicting element in
268 A to the iteration that access this same conflicting element in
269 B. The distance is a tree scalar expression, i.e. a constant or a
270 symbolic expression, but certainly not a chrec function. */
271 tree distance;
274 typedef struct subscript *subscript_p;
276 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
277 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
278 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
279 #define SUB_DISTANCE(SUB) SUB->distance
281 /* A data_dependence_relation represents a relation between two
282 data_references A and B. */
284 struct data_dependence_relation
287 struct data_reference *a;
288 struct data_reference *b;
290 /* A "yes/no/maybe" field for the dependence relation:
292 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
293 relation between A and B, and the description of this relation
294 is given in the SUBSCRIPTS array,
296 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
297 SUBSCRIPTS is empty,
299 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
300 but the analyzer cannot be more specific. */
301 tree are_dependent;
303 /* For each subscript in the dependence test, there is an element in
304 this array. This is the attribute that labels the edge A->B of
305 the data_dependence_relation. */
306 vec<subscript_p> subscripts;
308 /* The analyzed loop nest. */
309 vec<loop_p> loop_nest;
311 /* The classic direction vector. */
312 vec<lambda_vector> dir_vects;
314 /* The classic distance vector. */
315 vec<lambda_vector> dist_vects;
317 /* An index in loop_nest for the innermost loop that varies for
318 this data dependence relation. */
319 unsigned inner_loop;
321 /* Is the dependence reversed with respect to the lexicographic order? */
322 bool reversed_p;
324 /* When the dependence relation is affine, it can be represented by
325 a distance vector. */
326 bool affine_p;
328 /* Set to true when the dependence relation is on the same data
329 access. */
330 bool self_reference_p;
333 typedef struct data_dependence_relation *ddr_p;
335 #define DDR_A(DDR) DDR->a
336 #define DDR_B(DDR) DDR->b
337 #define DDR_AFFINE_P(DDR) DDR->affine_p
338 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
339 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
340 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
341 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
343 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
344 /* The size of the direction/distance vectors: the number of loops in
345 the loop nest. */
346 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
347 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
348 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
350 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
351 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
352 #define DDR_NUM_DIST_VECTS(DDR) \
353 (DDR_DIST_VECTS (DDR).length ())
354 #define DDR_NUM_DIR_VECTS(DDR) \
355 (DDR_DIR_VECTS (DDR).length ())
356 #define DDR_DIR_VECT(DDR, I) \
357 DDR_DIR_VECTS (DDR)[I]
358 #define DDR_DIST_VECT(DDR, I) \
359 DDR_DIST_VECTS (DDR)[I]
360 #define DDR_REVERSED_P(DDR) DDR->reversed_p
363 bool dr_analyze_innermost (struct data_reference *, struct loop *);
364 extern bool compute_data_dependences_for_loop (struct loop *, bool,
365 vec<loop_p> *,
366 vec<data_reference_p> *,
367 vec<ddr_p> *);
368 extern bool compute_data_dependences_for_bb (basic_block, bool,
369 vec<data_reference_p> *,
370 vec<ddr_p> *);
371 extern void debug_ddrs (vec<ddr_p> );
372 extern void dump_data_reference (FILE *, struct data_reference *);
373 extern void debug_data_reference (struct data_reference *);
374 extern void debug_data_references (vec<data_reference_p> );
375 extern void debug_data_dependence_relation (struct data_dependence_relation *);
376 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
377 extern void debug_data_dependence_relations (vec<ddr_p> );
378 extern void free_dependence_relation (struct data_dependence_relation *);
379 extern void free_dependence_relations (vec<ddr_p> );
380 extern void free_data_ref (data_reference_p);
381 extern void free_data_refs (vec<data_reference_p> );
382 extern bool find_data_references_in_stmt (struct loop *, gimple,
383 vec<data_reference_p> *);
384 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
385 vec<data_reference_p> *);
386 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
387 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
388 extern struct data_dependence_relation *initialize_data_dependence_relation
389 (struct data_reference *, struct data_reference *, vec<loop_p>);
390 extern void compute_affine_dependence (struct data_dependence_relation *,
391 loop_p);
392 extern void compute_self_dependence (struct data_dependence_relation *);
393 extern bool compute_all_dependences (vec<data_reference_p> ,
394 vec<ddr_p> *,
395 vec<loop_p>, bool);
396 extern tree find_data_references_in_bb (struct loop *, basic_block,
397 vec<data_reference_p> *);
399 extern bool dr_may_alias_p (const struct data_reference *,
400 const struct data_reference *, bool);
401 extern bool dr_equal_offsets_p (struct data_reference *,
402 struct data_reference *);
405 /* Return true when the base objects of data references A and B are
406 the same memory object. */
408 static inline bool
409 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
411 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
412 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
415 /* Return true when the data references A and B are accessing the same
416 memory object with the same access functions. */
418 static inline bool
419 same_data_refs (data_reference_p a, data_reference_p b)
421 unsigned int i;
423 /* The references are exactly the same. */
424 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
425 return true;
427 if (!same_data_refs_base_objects (a, b))
428 return false;
430 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
431 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
432 return false;
434 return true;
437 /* Return true when the DDR contains two data references that have the
438 same access functions. */
440 static inline bool
441 same_access_functions (const struct data_dependence_relation *ddr)
443 unsigned i;
445 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
446 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
447 DR_ACCESS_FN (DDR_B (ddr), i)))
448 return false;
450 return true;
453 /* Return true when DDR is an anti-dependence relation. */
455 static inline bool
456 ddr_is_anti_dependent (ddr_p ddr)
458 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
459 && DR_IS_READ (DDR_A (ddr))
460 && DR_IS_WRITE (DDR_B (ddr))
461 && !same_access_functions (ddr));
464 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
466 static inline bool
467 ddrs_have_anti_deps (vec<ddr_p> dependence_relations)
469 unsigned i;
470 ddr_p ddr;
472 for (i = 0; dependence_relations.iterate (i, &ddr); i++)
473 if (ddr_is_anti_dependent (ddr))
474 return true;
476 return false;
479 /* Returns the dependence level for a vector DIST of size LENGTH.
480 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
481 to the sequence of statements, not carried by any loop. */
483 static inline unsigned
484 dependence_level (lambda_vector dist_vect, int length)
486 int i;
488 for (i = 0; i < length; i++)
489 if (dist_vect[i] != 0)
490 return i + 1;
492 return 0;
495 /* Return the dependence level for the DDR relation. */
497 static inline unsigned
498 ddr_dependence_level (ddr_p ddr)
500 unsigned vector;
501 unsigned level = 0;
503 if (DDR_DIST_VECTS (ddr).exists ())
504 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
506 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
507 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
508 DDR_NB_LOOPS (ddr)));
509 return level;
514 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
515 typedef struct rdg_vertex
517 /* The statement represented by this vertex. */
518 gimple stmt;
520 /* Vector of data-references in this statement. */
521 vec<data_reference_p> datarefs;
523 /* True when the statement contains a write to memory. */
524 bool has_mem_write;
526 /* True when the statement contains a read from memory. */
527 bool has_mem_reads;
528 } *rdg_vertex_p;
530 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
531 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
532 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
533 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
534 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
535 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
536 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
537 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
539 void debug_rdg_vertex (struct graph *, int);
540 void debug_rdg_component (struct graph *, int);
541 void dump_rdg (FILE *, struct graph *);
542 void debug_rdg (struct graph *);
543 int rdg_vertex_for_stmt (struct graph *, gimple);
545 /* Data dependence type. */
547 enum rdg_dep_type
549 /* Read After Write (RAW). */
550 flow_dd = 'f',
552 /* Write After Read (WAR). */
553 anti_dd = 'a',
555 /* Write After Write (WAW). */
556 output_dd = 'o',
558 /* Read After Read (RAR). */
559 input_dd = 'i'
562 /* Dependence information attached to an edge of the RDG. */
564 typedef struct rdg_edge
566 /* Type of the dependence. */
567 enum rdg_dep_type type;
569 /* Levels of the dependence: the depth of the loops that carry the
570 dependence. */
571 unsigned level;
573 /* Dependence relation between data dependences, NULL when one of
574 the vertices is a scalar. */
575 ddr_p relation;
576 } *rdg_edge_p;
578 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
579 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
580 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
582 struct graph *build_rdg (struct loop *,
583 vec<loop_p> *,
584 vec<ddr_p> *,
585 vec<data_reference_p> *);
586 struct graph *build_empty_rdg (int);
587 void free_rdg (struct graph *);
589 /* Return the index of the variable VAR in the LOOP_NEST array. */
591 static inline int
592 index_in_loop_nest (int var, vec<loop_p> loop_nest)
594 struct loop *loopi;
595 int var_index;
597 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
598 var_index++)
599 if (loopi->num == var)
600 break;
602 return var_index;
605 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
607 /* Returns true when the data reference DR the form "A[i] = ..."
608 with a stride equal to its unit type size. */
610 static inline bool
611 adjacent_dr_p (struct data_reference *dr)
613 /* If this is a bitfield store bail out. */
614 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
615 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
616 return false;
618 if (!DR_STEP (dr)
619 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
620 return false;
622 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
623 DR_STEP (dr)),
624 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
627 /* In tree-data-ref.c */
628 void split_constant_offset (tree , tree *, tree *);
630 /* Strongly connected components of the reduced data dependence graph. */
632 typedef struct rdg_component
634 int num;
635 vec<int> vertices;
636 } *rdgc;
640 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
642 static inline int
643 lambda_vector_gcd (lambda_vector vector, int size)
645 int i;
646 int gcd1 = 0;
648 if (size > 0)
650 gcd1 = vector[0];
651 for (i = 1; i < size; i++)
652 gcd1 = gcd (gcd1, vector[i]);
654 return gcd1;
657 /* Allocate a new vector of given SIZE. */
659 static inline lambda_vector
660 lambda_vector_new (int size)
662 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
665 /* Clear out vector VEC1 of length SIZE. */
667 static inline void
668 lambda_vector_clear (lambda_vector vec1, int size)
670 memset (vec1, 0, size * sizeof (*vec1));
673 /* Returns true when the vector V is lexicographically positive, in
674 other words, when the first nonzero element is positive. */
676 static inline bool
677 lambda_vector_lexico_pos (lambda_vector v,
678 unsigned n)
680 unsigned i;
681 for (i = 0; i < n; i++)
683 if (v[i] == 0)
684 continue;
685 if (v[i] < 0)
686 return false;
687 if (v[i] > 0)
688 return true;
690 return true;
693 /* Return true if vector VEC1 of length SIZE is the zero vector. */
695 static inline bool
696 lambda_vector_zerop (lambda_vector vec1, int size)
698 int i;
699 for (i = 0; i < size; i++)
700 if (vec1[i] != 0)
701 return false;
702 return true;
705 /* Allocate a matrix of M rows x N cols. */
707 static inline lambda_matrix
708 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
710 lambda_matrix mat;
711 int i;
713 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
714 sizeof (lambda_vector *) * m);
716 for (i = 0; i < m; i++)
717 mat[i] = lambda_vector_new (n);
719 return mat;
722 #endif /* GCC_TREE_DATA_REF_H */