missing Changelog
[official-gcc.git] / gcc / fwprop.c
blob0f2ee49ac144772cba9a7b933feed63c43249d50
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "df.h"
37 #include "target.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "emit-rtl.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
123 /* The MD bitmaps are trimmed to include only live registers to cut
124 memory usage on testcases like insn-recog.c. Track live registers
125 in the basic block and do not perform forward propagation if the
126 destination is a dead pseudo occurring in a note. */
127 static bitmap local_md;
128 static bitmap local_lr;
130 /* Return the only def in USE's use-def chain, or NULL if there is
131 more than one def in the chain. */
133 static inline df_ref
134 get_def_for_use (df_ref use)
136 return use_def_ref[DF_REF_ID (use)];
140 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
141 TOP_FLAG says which artificials uses should be used, when DEF_REC
142 is an artificial def vector. LOCAL_MD is modified as after a
143 df_md_simulate_* function; we do more or less the same processing
144 done there, so we do not use those functions. */
146 #define DF_MD_GEN_FLAGS \
147 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
149 static void
150 process_defs (df_ref *def_rec, int top_flag)
152 df_ref def;
153 while ((def = *def_rec++) != NULL)
155 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
156 unsigned int dregno;
158 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
159 continue;
161 dregno = DF_REF_REGNO (def);
162 if (curr_def)
163 reg_defs_stack.safe_push (curr_def);
164 else
166 /* Do not store anything if "transitioning" from NULL to NULL. But
167 otherwise, push a special entry on the stack to tell the
168 leave_block callback that the entry in reg_defs was NULL. */
169 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
171 else
172 reg_defs_stack.safe_push (def);
175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
177 bitmap_set_bit (local_md, dregno);
178 reg_defs[dregno] = NULL;
180 else
182 bitmap_clear_bit (local_md, dregno);
183 reg_defs[dregno] = def;
189 /* Fill the use_def_ref vector with values for the uses in USE_REC,
190 taking reaching definitions info from LOCAL_MD and REG_DEFS.
191 TOP_FLAG says which artificials uses should be used, when USE_REC
192 is an artificial use vector. */
194 static void
195 process_uses (df_ref *use_rec, int top_flag)
197 df_ref use;
198 while ((use = *use_rec++) != NULL)
199 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
201 unsigned int uregno = DF_REF_REGNO (use);
202 if (reg_defs[uregno]
203 && !bitmap_bit_p (local_md, uregno)
204 && bitmap_bit_p (local_lr, uregno))
205 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
210 static void
211 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
212 basic_block bb)
214 int bb_index = bb->index;
215 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
216 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
217 rtx insn;
219 bitmap_copy (local_md, &md_bb_info->in);
220 bitmap_copy (local_lr, &lr_bb_info->in);
222 /* Push a marker for the leave_block callback. */
223 reg_defs_stack.safe_push (NULL);
225 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
226 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
228 /* We don't call df_simulate_initialize_forwards, as it may overestimate
229 the live registers if there are unused artificial defs. We prefer
230 liveness to be underestimated. */
232 FOR_BB_INSNS (bb, insn)
233 if (INSN_P (insn))
235 unsigned int uid = INSN_UID (insn);
236 process_uses (DF_INSN_UID_USES (uid), 0);
237 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
238 process_defs (DF_INSN_UID_DEFS (uid), 0);
239 df_simulate_one_insn_forwards (bb, insn, local_lr);
242 process_uses (df_get_artificial_uses (bb_index), 0);
243 process_defs (df_get_artificial_defs (bb_index), 0);
246 /* Pop the definitions created in this basic block when leaving its
247 dominated parts. */
249 static void
250 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
251 basic_block bb ATTRIBUTE_UNUSED)
253 df_ref saved_def;
254 while ((saved_def = reg_defs_stack.pop ()) != NULL)
256 unsigned int dregno = DF_REF_REGNO (saved_def);
258 /* See also process_defs. */
259 if (saved_def == reg_defs[dregno])
260 reg_defs[dregno] = NULL;
261 else
262 reg_defs[dregno] = saved_def;
267 /* Build a vector holding the reaching definitions of uses reached by a
268 single dominating definition. */
270 static void
271 build_single_def_use_links (void)
273 struct dom_walk_data walk_data;
275 /* We use the multiple definitions problem to compute our restricted
276 use-def chains. */
277 df_set_flags (DF_EQ_NOTES);
278 df_md_add_problem ();
279 df_note_add_problem ();
280 df_analyze ();
281 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
283 use_def_ref.create (DF_USES_TABLE_SIZE ());
284 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
286 reg_defs.create (max_reg_num ());
287 reg_defs.safe_grow_cleared (max_reg_num ());
289 reg_defs_stack.create (n_basic_blocks * 10);
290 local_md = BITMAP_ALLOC (NULL);
291 local_lr = BITMAP_ALLOC (NULL);
293 /* Walk the dominator tree looking for single reaching definitions
294 dominating the uses. This is similar to how SSA form is built. */
295 walk_data.dom_direction = CDI_DOMINATORS;
296 walk_data.initialize_block_local_data = NULL;
297 walk_data.before_dom_children = single_def_use_enter_block;
298 walk_data.after_dom_children = single_def_use_leave_block;
300 init_walk_dominator_tree (&walk_data);
301 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
302 fini_walk_dominator_tree (&walk_data);
304 BITMAP_FREE (local_lr);
305 BITMAP_FREE (local_md);
306 reg_defs.release ();
307 reg_defs_stack.release ();
311 /* Do not try to replace constant addresses or addresses of local and
312 argument slots. These MEM expressions are made only once and inserted
313 in many instructions, as well as being used to control symbol table
314 output. It is not safe to clobber them.
316 There are some uncommon cases where the address is already in a register
317 for some reason, but we cannot take advantage of that because we have
318 no easy way to unshare the MEM. In addition, looking up all stack
319 addresses is costly. */
321 static bool
322 can_simplify_addr (rtx addr)
324 rtx reg;
326 if (CONSTANT_ADDRESS_P (addr))
327 return false;
329 if (GET_CODE (addr) == PLUS)
330 reg = XEXP (addr, 0);
331 else
332 reg = addr;
334 return (!REG_P (reg)
335 || (REGNO (reg) != FRAME_POINTER_REGNUM
336 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
337 && REGNO (reg) != ARG_POINTER_REGNUM));
340 /* Returns a canonical version of X for the address, from the point of view,
341 that all multiplications are represented as MULT instead of the multiply
342 by a power of 2 being represented as ASHIFT.
344 Every ASHIFT we find has been made by simplify_gen_binary and was not
345 there before, so it is not shared. So we can do this in place. */
347 static void
348 canonicalize_address (rtx x)
350 for (;;)
351 switch (GET_CODE (x))
353 case ASHIFT:
354 if (CONST_INT_P (XEXP (x, 1))
355 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
356 && INTVAL (XEXP (x, 1)) >= 0)
358 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
359 PUT_CODE (x, MULT);
360 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
361 GET_MODE (x));
364 x = XEXP (x, 0);
365 break;
367 case PLUS:
368 if (GET_CODE (XEXP (x, 0)) == PLUS
369 || GET_CODE (XEXP (x, 0)) == ASHIFT
370 || GET_CODE (XEXP (x, 0)) == CONST)
371 canonicalize_address (XEXP (x, 0));
373 x = XEXP (x, 1);
374 break;
376 case CONST:
377 x = XEXP (x, 0);
378 break;
380 default:
381 return;
385 /* OLD is a memory address. Return whether it is good to use NEW instead,
386 for a memory access in the given MODE. */
388 static bool
389 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
390 addr_space_t as, bool speed)
392 int gain;
394 if (rtx_equal_p (old_rtx, new_rtx)
395 || !memory_address_addr_space_p (mode, new_rtx, as))
396 return false;
398 /* Copy propagation is always ok. */
399 if (REG_P (old_rtx) && REG_P (new_rtx))
400 return true;
402 /* Prefer the new address if it is less expensive. */
403 gain = (address_cost (old_rtx, mode, as, speed)
404 - address_cost (new_rtx, mode, as, speed));
406 /* If the addresses have equivalent cost, prefer the new address
407 if it has the highest `set_src_cost'. That has the potential of
408 eliminating the most insns without additional costs, and it
409 is the same that cse.c used to do. */
410 if (gain == 0)
411 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
413 return (gain > 0);
417 /* Flags for the last parameter of propagate_rtx_1. */
419 enum {
420 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
421 if it is false, propagate_rtx_1 returns false if, for at least
422 one occurrence OLD, it failed to collapse the result to a constant.
423 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
424 collapse to zero if replacing (reg:M B) with (reg:M A).
426 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
427 propagate_rtx_1 just tries to make cheaper and valid memory
428 addresses. */
429 PR_CAN_APPEAR = 1,
431 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
432 outside memory addresses. This is needed because propagate_rtx_1 does
433 not do any analysis on memory; thus it is very conservative and in general
434 it will fail if non-read-only MEMs are found in the source expression.
436 PR_HANDLE_MEM is set when the source of the propagation was not
437 another MEM. Then, it is safe not to treat non-read-only MEMs as
438 ``opaque'' objects. */
439 PR_HANDLE_MEM = 2,
441 /* Set when costs should be optimized for speed. */
442 PR_OPTIMIZE_FOR_SPEED = 4
446 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
447 resulting expression. Replace *PX with a new RTL expression if an
448 occurrence of OLD was found.
450 This is only a wrapper around simplify-rtx.c: do not add any pattern
451 matching code here. (The sole exception is the handling of LO_SUM, but
452 that is because there is no simplify_gen_* function for LO_SUM). */
454 static bool
455 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
457 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
458 enum rtx_code code = GET_CODE (x);
459 enum machine_mode mode = GET_MODE (x);
460 enum machine_mode op_mode;
461 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
462 bool valid_ops = true;
464 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
466 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
467 they have side effects or not). */
468 *px = (side_effects_p (x)
469 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
470 : gen_rtx_SCRATCH (GET_MODE (x)));
471 return false;
474 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
475 address, and we are *not* inside one. */
476 if (x == old_rtx)
478 *px = new_rtx;
479 return can_appear;
482 /* If this is an expression, try recursive substitution. */
483 switch (GET_RTX_CLASS (code))
485 case RTX_UNARY:
486 op0 = XEXP (x, 0);
487 op_mode = GET_MODE (op0);
488 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
489 if (op0 == XEXP (x, 0))
490 return true;
491 tem = simplify_gen_unary (code, mode, op0, op_mode);
492 break;
494 case RTX_BIN_ARITH:
495 case RTX_COMM_ARITH:
496 op0 = XEXP (x, 0);
497 op1 = XEXP (x, 1);
498 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
499 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
500 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
501 return true;
502 tem = simplify_gen_binary (code, mode, op0, op1);
503 break;
505 case RTX_COMPARE:
506 case RTX_COMM_COMPARE:
507 op0 = XEXP (x, 0);
508 op1 = XEXP (x, 1);
509 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
510 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
511 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
512 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
513 return true;
514 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
515 break;
517 case RTX_TERNARY:
518 case RTX_BITFIELD_OPS:
519 op0 = XEXP (x, 0);
520 op1 = XEXP (x, 1);
521 op2 = XEXP (x, 2);
522 op_mode = GET_MODE (op0);
523 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
524 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
525 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
526 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
527 return true;
528 if (op_mode == VOIDmode)
529 op_mode = GET_MODE (op0);
530 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
531 break;
533 case RTX_EXTRA:
534 /* The only case we try to handle is a SUBREG. */
535 if (code == SUBREG)
537 op0 = XEXP (x, 0);
538 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
539 if (op0 == XEXP (x, 0))
540 return true;
541 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
542 SUBREG_BYTE (x));
544 break;
546 case RTX_OBJ:
547 if (code == MEM && x != new_rtx)
549 rtx new_op0;
550 op0 = XEXP (x, 0);
552 /* There are some addresses that we cannot work on. */
553 if (!can_simplify_addr (op0))
554 return true;
556 op0 = new_op0 = targetm.delegitimize_address (op0);
557 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
558 flags | PR_CAN_APPEAR);
560 /* Dismiss transformation that we do not want to carry on. */
561 if (!valid_ops
562 || new_op0 == op0
563 || !(GET_MODE (new_op0) == GET_MODE (op0)
564 || GET_MODE (new_op0) == VOIDmode))
565 return true;
567 canonicalize_address (new_op0);
569 /* Copy propagations are always ok. Otherwise check the costs. */
570 if (!(REG_P (old_rtx) && REG_P (new_rtx))
571 && !should_replace_address (op0, new_op0, GET_MODE (x),
572 MEM_ADDR_SPACE (x),
573 flags & PR_OPTIMIZE_FOR_SPEED))
574 return true;
576 tem = replace_equiv_address_nv (x, new_op0);
579 else if (code == LO_SUM)
581 op0 = XEXP (x, 0);
582 op1 = XEXP (x, 1);
584 /* The only simplification we do attempts to remove references to op0
585 or make it constant -- in both cases, op0's invalidity will not
586 make the result invalid. */
587 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
588 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
589 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
590 return true;
592 /* (lo_sum (high x) x) -> x */
593 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
594 tem = op1;
595 else
596 tem = gen_rtx_LO_SUM (mode, op0, op1);
598 /* OP1 is likely not a legitimate address, otherwise there would have
599 been no LO_SUM. We want it to disappear if it is invalid, return
600 false in that case. */
601 return memory_address_p (mode, tem);
604 else if (code == REG)
606 if (rtx_equal_p (x, old_rtx))
608 *px = new_rtx;
609 return can_appear;
612 break;
614 default:
615 break;
618 /* No change, no trouble. */
619 if (tem == NULL_RTX)
620 return true;
622 *px = tem;
624 /* The replacement we made so far is valid, if all of the recursive
625 replacements were valid, or we could simplify everything to
626 a constant. */
627 return valid_ops || can_appear || CONSTANT_P (tem);
631 /* for_each_rtx traversal function that returns 1 if BODY points to
632 a non-constant mem. */
634 static int
635 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
637 rtx x = *body;
638 return MEM_P (x) && !MEM_READONLY_P (x);
642 /* Replace all occurrences of OLD in X with NEW and try to simplify the
643 resulting expression (in mode MODE). Return a new expression if it is
644 a constant, otherwise X.
646 Simplifications where occurrences of NEW collapse to a constant are always
647 accepted. All simplifications are accepted if NEW is a pseudo too.
648 Otherwise, we accept simplifications that have a lower or equal cost. */
650 static rtx
651 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
652 bool speed)
654 rtx tem;
655 bool collapsed;
656 int flags;
658 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
659 return NULL_RTX;
661 flags = 0;
662 if (REG_P (new_rtx)
663 || CONSTANT_P (new_rtx)
664 || (GET_CODE (new_rtx) == SUBREG
665 && REG_P (SUBREG_REG (new_rtx))
666 && (GET_MODE_SIZE (mode)
667 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
668 flags |= PR_CAN_APPEAR;
669 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
670 flags |= PR_HANDLE_MEM;
672 if (speed)
673 flags |= PR_OPTIMIZE_FOR_SPEED;
675 tem = x;
676 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
677 if (tem == x || !collapsed)
678 return NULL_RTX;
680 /* gen_lowpart_common will not be able to process VOIDmode entities other
681 than CONST_INTs. */
682 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
683 return NULL_RTX;
685 if (GET_MODE (tem) == VOIDmode)
686 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
687 else
688 gcc_assert (GET_MODE (tem) == mode);
690 return tem;
696 /* Return true if the register from reference REF is killed
697 between FROM to (but not including) TO. */
699 static bool
700 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
702 rtx insn;
704 for (insn = from; insn != to; insn = NEXT_INSN (insn))
706 df_ref *def_rec;
707 if (!INSN_P (insn))
708 continue;
710 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
712 df_ref def = *def_rec;
713 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
714 return true;
717 return false;
721 /* Check if the given DEF is available in INSN. This would require full
722 computation of available expressions; we check only restricted conditions:
723 - if DEF is the sole definition of its register, go ahead;
724 - in the same basic block, we check for no definitions killing the
725 definition of DEF_INSN;
726 - if USE's basic block has DEF's basic block as the sole predecessor,
727 we check if the definition is killed after DEF_INSN or before
728 TARGET_INSN insn, in their respective basic blocks. */
729 static bool
730 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
732 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
733 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
734 int regno;
735 df_ref def;
737 /* We used to have a def reaching a use that is _before_ the def,
738 with the def not dominating the use even though the use and def
739 are in the same basic block, when a register may be used
740 uninitialized in a loop. This should not happen anymore since
741 we do not use reaching definitions, but still we test for such
742 cases and assume that DEF is not available. */
743 if (def_bb == target_bb
744 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
745 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
746 return true;
748 /* Check if the reg in USE has only one definition. We already
749 know that this definition reaches use, or we wouldn't be here.
750 However, this is invalid for hard registers because if they are
751 live at the beginning of the function it does not mean that we
752 have an uninitialized access. */
753 regno = DF_REF_REGNO (use);
754 def = DF_REG_DEF_CHAIN (regno);
755 if (def
756 && DF_REF_NEXT_REG (def) == NULL
757 && regno >= FIRST_PSEUDO_REGISTER)
758 return false;
760 /* Check locally if we are in the same basic block. */
761 if (def_bb == target_bb)
762 return local_ref_killed_between_p (use, def_insn, target_insn);
764 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
765 if (single_pred_p (target_bb)
766 && single_pred (target_bb) == def_bb)
768 df_ref x;
770 /* See if USE is killed between DEF_INSN and the last insn in the
771 basic block containing DEF_INSN. */
772 x = df_bb_regno_last_def_find (def_bb, regno);
773 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
774 return true;
776 /* See if USE is killed between TARGET_INSN and the first insn in the
777 basic block containing TARGET_INSN. */
778 x = df_bb_regno_first_def_find (target_bb, regno);
779 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
780 return true;
782 return false;
785 /* Otherwise assume the worst case. */
786 return true;
790 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
791 would require full computation of available expressions;
792 we check only restricted conditions, see use_killed_between. */
793 static bool
794 all_uses_available_at (rtx def_insn, rtx target_insn)
796 df_ref *use_rec;
797 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
798 rtx def_set = single_set (def_insn);
799 rtx next;
801 gcc_assert (def_set);
803 /* If target_insn comes right after def_insn, which is very common
804 for addresses, we can use a quicker test. Ignore debug insns
805 other than target insns for this. */
806 next = NEXT_INSN (def_insn);
807 while (next && next != target_insn && DEBUG_INSN_P (next))
808 next = NEXT_INSN (next);
809 if (next == target_insn && REG_P (SET_DEST (def_set)))
811 rtx def_reg = SET_DEST (def_set);
813 /* If the insn uses the reg that it defines, the substitution is
814 invalid. */
815 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
817 df_ref use = *use_rec;
818 if (rtx_equal_p (DF_REF_REG (use), def_reg))
819 return false;
821 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
823 df_ref use = *use_rec;
824 if (rtx_equal_p (DF_REF_REG (use), def_reg))
825 return false;
828 else
830 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
832 /* Look at all the uses of DEF_INSN, and see if they are not
833 killed between DEF_INSN and TARGET_INSN. */
834 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
836 df_ref use = *use_rec;
837 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
838 return false;
839 if (use_killed_between (use, def_insn, target_insn))
840 return false;
842 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
844 df_ref use = *use_rec;
845 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
846 return false;
847 if (use_killed_between (use, def_insn, target_insn))
848 return false;
852 return true;
856 static df_ref *active_defs;
857 #ifdef ENABLE_CHECKING
858 static sparseset active_defs_check;
859 #endif
861 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
862 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
863 too, for checking purposes. */
865 static void
866 register_active_defs (df_ref *use_rec)
868 while (*use_rec)
870 df_ref use = *use_rec++;
871 df_ref def = get_def_for_use (use);
872 int regno = DF_REF_REGNO (use);
874 #ifdef ENABLE_CHECKING
875 sparseset_set_bit (active_defs_check, regno);
876 #endif
877 active_defs[regno] = def;
882 /* Build the use->def links that we use to update the dataflow info
883 for new uses. Note that building the links is very cheap and if
884 it were done earlier, they could be used to rule out invalid
885 propagations (in addition to what is done in all_uses_available_at).
886 I'm not doing this yet, though. */
888 static void
889 update_df_init (rtx def_insn, rtx insn)
891 #ifdef ENABLE_CHECKING
892 sparseset_clear (active_defs_check);
893 #endif
894 register_active_defs (DF_INSN_USES (def_insn));
895 register_active_defs (DF_INSN_USES (insn));
896 register_active_defs (DF_INSN_EQ_USES (insn));
900 /* Update the USE_DEF_REF array for the given use, using the active definitions
901 in the ACTIVE_DEFS array to match pseudos to their def. */
903 static inline void
904 update_uses (df_ref *use_rec)
906 while (*use_rec)
908 df_ref use = *use_rec++;
909 int regno = DF_REF_REGNO (use);
911 /* Set up the use-def chain. */
912 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
913 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
915 #ifdef ENABLE_CHECKING
916 gcc_assert (sparseset_bit_p (active_defs_check, regno));
917 #endif
918 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
923 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
924 uses if NOTES_ONLY is true. */
926 static void
927 update_df (rtx insn, rtx note)
929 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
931 if (note)
933 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
934 df_notes_rescan (insn);
936 else
938 df_uses_create (&PATTERN (insn), insn, 0);
939 df_insn_rescan (insn);
940 update_uses (DF_INSN_INFO_USES (insn_info));
943 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
947 /* Try substituting NEW into LOC, which originated from forward propagation
948 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
949 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
950 new insn is not recognized. Return whether the substitution was
951 performed. */
953 static bool
954 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
956 rtx insn = DF_REF_INSN (use);
957 rtx set = single_set (insn);
958 rtx note = NULL_RTX;
959 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
960 int old_cost = 0;
961 bool ok;
963 update_df_init (def_insn, insn);
965 /* forward_propagate_subreg may be operating on an instruction with
966 multiple sets. If so, assume the cost of the new instruction is
967 not greater than the old one. */
968 if (set)
969 old_cost = set_src_cost (SET_SRC (set), speed);
970 if (dump_file)
972 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
973 print_inline_rtx (dump_file, *loc, 2);
974 fprintf (dump_file, "\n with ");
975 print_inline_rtx (dump_file, new_rtx, 2);
976 fprintf (dump_file, "\n");
979 validate_unshare_change (insn, loc, new_rtx, true);
980 if (!verify_changes (0))
982 if (dump_file)
983 fprintf (dump_file, "Changes to insn %d not recognized\n",
984 INSN_UID (insn));
985 ok = false;
988 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
989 && set
990 && set_src_cost (SET_SRC (set), speed) > old_cost)
992 if (dump_file)
993 fprintf (dump_file, "Changes to insn %d not profitable\n",
994 INSN_UID (insn));
995 ok = false;
998 else
1000 if (dump_file)
1001 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1002 ok = true;
1005 if (ok)
1007 confirm_change_group ();
1008 num_changes++;
1010 else
1012 cancel_changes (0);
1014 /* Can also record a simplified value in a REG_EQUAL note,
1015 making a new one if one does not already exist. */
1016 if (set_reg_equal)
1018 if (dump_file)
1019 fprintf (dump_file, " Setting REG_EQUAL note\n");
1021 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1025 if ((ok || note) && !CONSTANT_P (new_rtx))
1026 update_df (insn, note);
1028 return ok;
1031 /* For the given single_set INSN, containing SRC known to be a
1032 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1033 is redundant due to the register being set by a LOAD_EXTEND_OP
1034 load from memory. */
1036 static bool
1037 free_load_extend (rtx src, rtx insn)
1039 rtx reg;
1040 df_ref *use_vec;
1041 df_ref use = 0, def;
1043 reg = XEXP (src, 0);
1044 #ifdef LOAD_EXTEND_OP
1045 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1046 #endif
1047 return false;
1049 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1051 use = *use_vec;
1053 if (!DF_REF_IS_ARTIFICIAL (use)
1054 && DF_REF_TYPE (use) == DF_REF_REG_USE
1055 && DF_REF_REG (use) == reg)
1056 break;
1058 if (!use)
1059 return false;
1061 def = get_def_for_use (use);
1062 if (!def)
1063 return false;
1065 if (DF_REF_IS_ARTIFICIAL (def))
1066 return false;
1068 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1070 rtx patt = PATTERN (DF_REF_INSN (def));
1072 if (GET_CODE (patt) == SET
1073 && GET_CODE (SET_SRC (patt)) == MEM
1074 && rtx_equal_p (SET_DEST (patt), reg))
1075 return true;
1077 return false;
1080 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1082 static bool
1083 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1085 rtx use_reg = DF_REF_REG (use);
1086 rtx use_insn, src;
1088 /* Only consider subregs... */
1089 enum machine_mode use_mode = GET_MODE (use_reg);
1090 if (GET_CODE (use_reg) != SUBREG
1091 || !REG_P (SET_DEST (def_set)))
1092 return false;
1094 /* If this is a paradoxical SUBREG... */
1095 if (GET_MODE_SIZE (use_mode)
1096 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1098 /* If this is a paradoxical SUBREG, we have no idea what value the
1099 extra bits would have. However, if the operand is equivalent to
1100 a SUBREG whose operand is the same as our mode, and all the modes
1101 are within a word, we can just use the inner operand because
1102 these SUBREGs just say how to treat the register. */
1103 use_insn = DF_REF_INSN (use);
1104 src = SET_SRC (def_set);
1105 if (GET_CODE (src) == SUBREG
1106 && REG_P (SUBREG_REG (src))
1107 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1108 && GET_MODE (SUBREG_REG (src)) == use_mode
1109 && subreg_lowpart_p (src)
1110 && all_uses_available_at (def_insn, use_insn))
1111 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1112 def_insn, false);
1115 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1116 is the low part of the reg being extended then just use the inner
1117 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1118 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1119 or due to the operation being a no-op when applied to registers.
1120 For example, if we have:
1122 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1123 B: (... (subreg:SI (reg:DI X)) ...)
1125 and mode_rep_extended says that Y is already sign-extended,
1126 the backend will typically allow A to be combined with the
1127 definition of Y or, failing that, allow A to be deleted after
1128 reload through register tying. Introducing more uses of Y
1129 prevents both optimisations. */
1130 else if (subreg_lowpart_p (use_reg))
1132 use_insn = DF_REF_INSN (use);
1133 src = SET_SRC (def_set);
1134 if ((GET_CODE (src) == ZERO_EXTEND
1135 || GET_CODE (src) == SIGN_EXTEND)
1136 && REG_P (XEXP (src, 0))
1137 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1138 && GET_MODE (XEXP (src, 0)) == use_mode
1139 && !free_load_extend (src, def_insn)
1140 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1141 != (int) GET_CODE (src))
1142 && all_uses_available_at (def_insn, use_insn))
1143 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1144 def_insn, false);
1147 return false;
1150 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1152 static bool
1153 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1155 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1156 int speed_p, i;
1157 df_ref *use_vec;
1159 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1161 src = SET_SRC (def_set);
1162 use_pat = PATTERN (use_insn);
1164 /* In __asm don't replace if src might need more registers than
1165 reg, as that could increase register pressure on the __asm. */
1166 use_vec = DF_INSN_USES (def_insn);
1167 if (use_vec[0] && use_vec[1])
1168 return false;
1170 update_df_init (def_insn, use_insn);
1171 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1172 asm_operands = NULL_RTX;
1173 switch (GET_CODE (use_pat))
1175 case ASM_OPERANDS:
1176 asm_operands = use_pat;
1177 break;
1178 case SET:
1179 if (MEM_P (SET_DEST (use_pat)))
1181 loc = &SET_DEST (use_pat);
1182 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1183 if (new_rtx)
1184 validate_unshare_change (use_insn, loc, new_rtx, true);
1186 asm_operands = SET_SRC (use_pat);
1187 break;
1188 case PARALLEL:
1189 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1190 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1192 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1194 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1195 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1196 src, speed_p);
1197 if (new_rtx)
1198 validate_unshare_change (use_insn, loc, new_rtx, true);
1200 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1202 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1203 asm_operands = XVECEXP (use_pat, 0, i);
1204 break;
1205 default:
1206 gcc_unreachable ();
1209 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1210 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1212 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1213 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1214 if (new_rtx)
1215 validate_unshare_change (use_insn, loc, new_rtx, true);
1218 if (num_changes_pending () == 0 || !apply_change_group ())
1219 return false;
1221 update_df (use_insn, NULL);
1222 num_changes++;
1223 return true;
1226 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1227 result. */
1229 static bool
1230 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1232 rtx use_insn = DF_REF_INSN (use);
1233 rtx use_set = single_set (use_insn);
1234 rtx src, reg, new_rtx, *loc;
1235 bool set_reg_equal;
1236 enum machine_mode mode;
1237 int asm_use = -1;
1239 if (INSN_CODE (use_insn) < 0)
1240 asm_use = asm_noperands (PATTERN (use_insn));
1242 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1243 return false;
1245 /* Do not propagate into PC, CC0, etc. */
1246 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1247 return false;
1249 /* If def and use are subreg, check if they match. */
1250 reg = DF_REF_REG (use);
1251 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1253 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1254 return false;
1256 /* Check if the def had a subreg, but the use has the whole reg. */
1257 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1258 return false;
1259 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1260 previous case, the optimization is possible and often useful indeed. */
1261 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1262 reg = SUBREG_REG (reg);
1264 /* Make sure that we can treat REG as having the same mode as the
1265 source of DEF_SET. */
1266 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1267 return false;
1269 /* Check if the substitution is valid (last, because it's the most
1270 expensive check!). */
1271 src = SET_SRC (def_set);
1272 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1273 return false;
1275 /* Check if the def is loading something from the constant pool; in this
1276 case we would undo optimization such as compress_float_constant.
1277 Still, we can set a REG_EQUAL note. */
1278 if (MEM_P (src) && MEM_READONLY_P (src))
1280 rtx x = avoid_constant_pool_reference (src);
1281 if (x != src && use_set)
1283 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1284 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1285 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1286 if (old_rtx != new_rtx)
1287 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1289 return false;
1292 if (asm_use >= 0)
1293 return forward_propagate_asm (use, def_insn, def_set, reg);
1295 /* Else try simplifying. */
1297 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1299 loc = &SET_DEST (use_set);
1300 set_reg_equal = false;
1302 else if (!use_set)
1304 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1305 set_reg_equal = false;
1307 else
1309 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1310 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1311 loc = &XEXP (note, 0);
1312 else
1313 loc = &SET_SRC (use_set);
1315 /* Do not replace an existing REG_EQUAL note if the insn is not
1316 recognized. Either we're already replacing in the note, or we'll
1317 separately try plugging the definition in the note and simplifying.
1318 And only install a REQ_EQUAL note when the destination is a REG,
1319 as the note would be invalid otherwise. */
1320 set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
1323 if (GET_MODE (*loc) == VOIDmode)
1324 mode = GET_MODE (SET_DEST (use_set));
1325 else
1326 mode = GET_MODE (*loc);
1328 new_rtx = propagate_rtx (*loc, mode, reg, src,
1329 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1331 if (!new_rtx)
1332 return false;
1334 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1338 /* Given a use USE of an insn, if it has a single reaching
1339 definition, try to forward propagate it into that insn.
1340 Return true if cfg cleanup will be needed. */
1342 static bool
1343 forward_propagate_into (df_ref use)
1345 df_ref def;
1346 rtx def_insn, def_set, use_insn;
1347 rtx parent;
1349 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1350 return false;
1351 if (DF_REF_IS_ARTIFICIAL (use))
1352 return false;
1354 /* Only consider uses that have a single definition. */
1355 def = get_def_for_use (use);
1356 if (!def)
1357 return false;
1358 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1359 return false;
1360 if (DF_REF_IS_ARTIFICIAL (def))
1361 return false;
1363 /* Do not propagate loop invariant definitions inside the loop. */
1364 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1365 return false;
1367 /* Check if the use is still present in the insn! */
1368 use_insn = DF_REF_INSN (use);
1369 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1370 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1371 else
1372 parent = PATTERN (use_insn);
1374 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1375 return false;
1377 def_insn = DF_REF_INSN (def);
1378 if (multiple_sets (def_insn))
1379 return false;
1380 def_set = single_set (def_insn);
1381 if (!def_set)
1382 return false;
1384 /* Only try one kind of propagation. If two are possible, we'll
1385 do it on the following iterations. */
1386 if (forward_propagate_and_simplify (use, def_insn, def_set)
1387 || forward_propagate_subreg (use, def_insn, def_set))
1389 if (cfun->can_throw_non_call_exceptions
1390 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1391 && purge_dead_edges (DF_REF_BB (use)))
1392 return true;
1394 return false;
1398 static void
1399 fwprop_init (void)
1401 num_changes = 0;
1402 calculate_dominance_info (CDI_DOMINATORS);
1404 /* We do not always want to propagate into loops, so we have to find
1405 loops and be careful about them. But we have to call flow_loops_find
1406 before df_analyze, because flow_loops_find may introduce new jump
1407 insns (sadly) if we are not working in cfglayout mode. */
1408 loop_optimizer_init (0);
1410 build_single_def_use_links ();
1411 df_set_flags (DF_DEFER_INSN_RESCAN);
1413 active_defs = XNEWVEC (df_ref, max_reg_num ());
1414 #ifdef ENABLE_CHECKING
1415 active_defs_check = sparseset_alloc (max_reg_num ());
1416 #endif
1419 static void
1420 fwprop_done (void)
1422 loop_optimizer_finalize ();
1424 use_def_ref.release ();
1425 free (active_defs);
1426 #ifdef ENABLE_CHECKING
1427 sparseset_free (active_defs_check);
1428 #endif
1430 free_dominance_info (CDI_DOMINATORS);
1431 cleanup_cfg (0);
1432 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1434 if (dump_file)
1435 fprintf (dump_file,
1436 "\nNumber of successful forward propagations: %d\n\n",
1437 num_changes);
1441 /* Main entry point. */
1443 static bool
1444 gate_fwprop (void)
1446 return optimize > 0 && flag_forward_propagate;
1449 static unsigned int
1450 fwprop (void)
1452 unsigned i;
1453 bool need_cleanup = false;
1455 fwprop_init ();
1457 /* Go through all the uses. df_uses_create will create new ones at the
1458 end, and we'll go through them as well.
1460 Do not forward propagate addresses into loops until after unrolling.
1461 CSE did so because it was able to fix its own mess, but we are not. */
1463 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1465 df_ref use = DF_USES_GET (i);
1466 if (use)
1467 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1468 || DF_REF_BB (use)->loop_father == NULL
1469 /* The outer most loop is not really a loop. */
1470 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1471 need_cleanup |= forward_propagate_into (use);
1474 fwprop_done ();
1475 if (need_cleanup)
1476 cleanup_cfg (0);
1477 return 0;
1480 struct rtl_opt_pass pass_rtl_fwprop =
1483 RTL_PASS,
1484 "fwprop1", /* name */
1485 OPTGROUP_NONE, /* optinfo_flags */
1486 gate_fwprop, /* gate */
1487 fwprop, /* execute */
1488 NULL, /* sub */
1489 NULL, /* next */
1490 0, /* static_pass_number */
1491 TV_FWPROP, /* tv_id */
1492 0, /* properties_required */
1493 0, /* properties_provided */
1494 0, /* properties_destroyed */
1495 0, /* todo_flags_start */
1496 TODO_df_finish
1497 | TODO_verify_flow
1498 | TODO_verify_rtl_sharing /* todo_flags_finish */
1502 static unsigned int
1503 fwprop_addr (void)
1505 unsigned i;
1506 bool need_cleanup = false;
1508 fwprop_init ();
1510 /* Go through all the uses. df_uses_create will create new ones at the
1511 end, and we'll go through them as well. */
1512 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1514 df_ref use = DF_USES_GET (i);
1515 if (use)
1516 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1517 && DF_REF_BB (use)->loop_father != NULL
1518 /* The outer most loop is not really a loop. */
1519 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1520 need_cleanup |= forward_propagate_into (use);
1523 fwprop_done ();
1525 if (need_cleanup)
1526 cleanup_cfg (0);
1527 return 0;
1530 struct rtl_opt_pass pass_rtl_fwprop_addr =
1533 RTL_PASS,
1534 "fwprop2", /* name */
1535 OPTGROUP_NONE, /* optinfo_flags */
1536 gate_fwprop, /* gate */
1537 fwprop_addr, /* execute */
1538 NULL, /* sub */
1539 NULL, /* next */
1540 0, /* static_pass_number */
1541 TV_FWPROP, /* tv_id */
1542 0, /* properties_required */
1543 0, /* properties_provided */
1544 0, /* properties_destroyed */
1545 0, /* todo_flags_start */
1546 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */