* Makefile.in (cse.o): Depend on TARGET_H.
[official-gcc.git] / gcc / config / pa / pa.h
blob8be8d88e3a0d3f74b163bee88f0b928ab39c4d5a
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 enum cmp_type /* comparison type */
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
36 /* Which processor to schedule for. */
38 enum processor_type
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
54 /* Which architecture to generate code for. */
56 enum architecture_type
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
63 struct rtx_def;
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
69 /* Print subsidiary information on the compiler version in use. */
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
73 /* Run-time compilation parameters selecting different hardware subsets. */
75 extern int target_flags;
77 /* compile code for HP-PA 1.1 ("Snake"). */
79 #define MASK_PA_11 1
81 /* Disable all FP registers (they all become fixed). This may be necessary
82 for compiling kernels which perform lazy context switching of FP regs.
83 Note if you use this option and try to perform floating point operations
84 the compiler will abort! */
86 #define MASK_DISABLE_FPREGS 2
87 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
89 /* Generate code which assumes that all space register are equivalent.
90 Triggers aggressive unscaled index addressing and faster
91 builtin_return_address. */
92 #define MASK_NO_SPACE_REGS 4
93 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
95 /* Allow unconditional jumps in the delay slots of call instructions. */
96 #define MASK_JUMP_IN_DELAY 8
97 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
99 /* Disable indexed addressing modes. */
100 #define MASK_DISABLE_INDEXING 32
101 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
103 /* Emit code which follows the new portable runtime calling conventions
104 HP wants everyone to use for ELF objects. If at all possible you want
105 to avoid this since it's a performance loss for non-prototyped code.
107 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108 long-call stubs which is quite expensive. */
109 #define MASK_PORTABLE_RUNTIME 64
110 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
112 /* Emit directives only understood by GAS. This allows parameter
113 relocations to work for static functions. There is no way
114 to make them work the HP assembler at this time. */
115 #define MASK_GAS 128
116 #define TARGET_GAS (target_flags & MASK_GAS)
118 /* Emit code for processors which do not have an FPU. */
119 #define MASK_SOFT_FLOAT 256
120 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
122 /* Use 3-insn load/store sequences for access to large data segments
123 in shared libraries on hpux10. */
124 #define MASK_LONG_LOAD_STORE 512
125 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
127 /* Use a faster sequence for indirect calls. This assumes that calls
128 through function pointers will never cross a space boundary, and
129 that the executable is not dynamically linked. Such assumptions
130 are generally safe for building kernels and statically linked
131 executables. Code compiled with this option will fail miserably if
132 the executable is dynamically linked or uses nested functions! */
133 #define MASK_FAST_INDIRECT_CALLS 1024
134 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
136 /* Generate code with big switch statements to avoid out of range branches
137 occurring within the switch table. */
138 #define MASK_BIG_SWITCH 2048
139 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
141 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
142 true when this is true. */
143 #define MASK_PA_20 4096
145 /* Generate cpp defines for server I/O. */
146 #define MASK_SIO 8192
147 #define TARGET_SIO (target_flags & MASK_SIO)
149 /* Assume GNU linker by default. */
150 #define MASK_GNU_LD 16384
151 #ifndef TARGET_GNU_LD
152 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153 #endif
155 /* Force generation of long calls. */
156 #define MASK_LONG_CALLS 32768
157 #ifndef TARGET_LONG_CALLS
158 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159 #endif
161 #ifndef TARGET_PA_10
162 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163 #endif
165 #ifndef TARGET_PA_11
166 #define TARGET_PA_11 (target_flags & MASK_PA_11)
167 #endif
169 #ifndef TARGET_PA_20
170 #define TARGET_PA_20 (target_flags & MASK_PA_20)
171 #endif
173 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
174 #ifndef TARGET_64BIT
175 #define TARGET_64BIT 0
176 #endif
178 /* Generate code for ELF32 ABI. */
179 #ifndef TARGET_ELF32
180 #define TARGET_ELF32 0
181 #endif
183 /* Generate code for SOM 32bit ABI. */
184 #ifndef TARGET_SOM
185 #define TARGET_SOM 0
186 #endif
188 /* The following three defines are potential target switches. The current
189 defines are optimal given the current capabilities of GAS and GNU ld. */
191 /* Define to a C expression evaluating to true to use long absolute calls.
192 Currently, only the HP assembler and SOM linker support long absolute
193 calls. They are used only in non-pic code. */
194 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
196 /* Define to a C expression evaluating to true to use long pic symbol
197 difference calls. This is a call variant similar to the long pic
198 pc-relative call. Long pic symbol difference calls are only used with
199 the HP SOM linker. Currently, only the HP assembler supports these
200 calls. GAS doesn't allow an arbritrary difference of two symbols. */
201 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
203 /* Define to a C expression evaluating to true to use long pic
204 pc-relative calls. Long pic pc-relative calls are only used with
205 GAS. Currently, they are usable for calls within a module but
206 not for external calls. */
207 #define TARGET_LONG_PIC_PCREL_CALL 0
209 /* Define to a C expression evaluating to true to use SOM secondary
210 definition symbols for weak support. Linker support for secondary
211 definition symbols is buggy prior to HP-UX 11.X. */
212 #define TARGET_SOM_SDEF 0
214 /* Macro to define tables used to set the flags. This is a
215 list in braces of target switches with each switch being
216 { "NAME", VALUE, "HELP_STRING" }. VALUE is the bits to set,
217 or minus the bits to clear. An empty string NAME is used to
218 identify the default VALUE. Do not mark empty strings for
219 translation. */
221 #define TARGET_SWITCHES \
222 {{ "snake", MASK_PA_11, \
223 N_("Generate PA1.1 code") }, \
224 { "nosnake", -(MASK_PA_11 | MASK_PA_20), \
225 N_("Generate PA1.0 code") }, \
226 { "pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), \
227 N_("Generate PA1.0 code") }, \
228 { "pa-risc-1-1", MASK_PA_11, \
229 N_("Generate PA1.1 code") }, \
230 { "pa-risc-2-0", MASK_PA_20, \
231 N_("Generate PA2.0 code (requires binutils 2.10 or later)") }, \
232 { "disable-fpregs", MASK_DISABLE_FPREGS, \
233 N_("Disable FP regs") }, \
234 { "no-disable-fpregs", -MASK_DISABLE_FPREGS, \
235 N_("Do not disable FP regs") }, \
236 { "no-space-regs", MASK_NO_SPACE_REGS, \
237 N_("Disable space regs") }, \
238 { "space-regs", -MASK_NO_SPACE_REGS, \
239 N_("Do not disable space regs") }, \
240 { "jump-in-delay", MASK_JUMP_IN_DELAY, \
241 N_("Put jumps in call delay slots") }, \
242 { "no-jump-in-delay", -MASK_JUMP_IN_DELAY, \
243 N_("Do not put jumps in call delay slots") }, \
244 { "disable-indexing", MASK_DISABLE_INDEXING, \
245 N_("Disable indexed addressing") }, \
246 { "no-disable-indexing", -MASK_DISABLE_INDEXING, \
247 N_("Do not disable indexed addressing") }, \
248 { "portable-runtime", MASK_PORTABLE_RUNTIME, \
249 N_("Use portable calling conventions") }, \
250 { "no-portable-runtime", -MASK_PORTABLE_RUNTIME, \
251 N_("Do not use portable calling conventions") }, \
252 { "gas", MASK_GAS, \
253 N_("Assume code will be assembled by GAS") }, \
254 { "no-gas", -MASK_GAS, \
255 N_("Do not assume code will be assembled by GAS") }, \
256 { "soft-float", MASK_SOFT_FLOAT, \
257 N_("Use software floating point") }, \
258 { "no-soft-float", -MASK_SOFT_FLOAT, \
259 N_("Do not use software floating point") }, \
260 { "long-load-store", MASK_LONG_LOAD_STORE, \
261 N_("Emit long load/store sequences") }, \
262 { "no-long-load-store", -MASK_LONG_LOAD_STORE, \
263 N_("Do not emit long load/store sequences") }, \
264 { "fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, \
265 N_("Generate fast indirect calls") }, \
266 { "no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, \
267 N_("Do not generate fast indirect calls") }, \
268 { "big-switch", MASK_BIG_SWITCH, \
269 N_("Generate code for huge switch statements") }, \
270 { "no-big-switch", -MASK_BIG_SWITCH, \
271 N_("Do not generate code for huge switch statements") }, \
272 { "long-calls", MASK_LONG_CALLS, \
273 N_("Always generate long calls") }, \
274 { "no-long-calls", -MASK_LONG_CALLS, \
275 N_("Generate long calls only when needed") }, \
276 { "linker-opt", 0, \
277 N_("Enable linker optimizations") }, \
278 SUBTARGET_SWITCHES \
279 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
280 NULL }}
282 #ifndef TARGET_DEFAULT
283 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
284 #endif
286 #ifndef TARGET_CPU_DEFAULT
287 #define TARGET_CPU_DEFAULT 0
288 #endif
290 #ifndef SUBTARGET_SWITCHES
291 #define SUBTARGET_SWITCHES
292 #endif
294 #ifndef TARGET_SCHED_DEFAULT
295 #define TARGET_SCHED_DEFAULT "8000"
296 #endif
298 #define TARGET_OPTIONS \
300 { "schedule=", &pa_cpu_string, \
301 N_("Specify CPU for scheduling purposes") }, \
302 { "arch=", &pa_arch_string, \
303 N_("Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later.") }\
306 /* Specify the dialect of assembler to use. New mnemonics is dialect one
307 and the old mnemonics are dialect zero. */
308 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
310 #define OVERRIDE_OPTIONS override_options ()
312 /* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
313 code duplication we simply include this file and override as needed. */
314 #include "dbxelf.h"
316 /* We do not have to be compatible with dbx, so we enable gdb extensions
317 by default. */
318 #define DEFAULT_GDB_EXTENSIONS 1
320 /* This used to be zero (no max length), but big enums and such can
321 cause huge strings which killed gas.
323 We also have to avoid lossage in dbxout.c -- it does not compute the
324 string size accurately, so we are real conservative here. */
325 #undef DBX_CONTIN_LENGTH
326 #define DBX_CONTIN_LENGTH 3000
328 /* Only labels should ever begin in column zero. */
329 #define ASM_STABS_OP "\t.stabs\t"
330 #define ASM_STABN_OP "\t.stabn\t"
332 /* GDB always assumes the current function's frame begins at the value
333 of the stack pointer upon entry to the current function. Accessing
334 local variables and parameters passed on the stack is done using the
335 base of the frame + an offset provided by GCC.
337 For functions which have frame pointers this method works fine;
338 the (frame pointer) == (stack pointer at function entry) and GCC provides
339 an offset relative to the frame pointer.
341 This loses for functions without a frame pointer; GCC provides an offset
342 which is relative to the stack pointer after adjusting for the function's
343 frame size. GDB would prefer the offset to be relative to the value of
344 the stack pointer at the function's entry. Yuk! */
345 #define DEBUGGER_AUTO_OFFSET(X) \
346 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
347 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
349 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
350 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
351 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
353 #define TARGET_CPU_CPP_BUILTINS() \
354 do { \
355 builtin_assert("cpu=hppa"); \
356 builtin_assert("machine=hppa"); \
357 builtin_define("__hppa"); \
358 builtin_define("__hppa__"); \
359 if (TARGET_64BIT) \
361 builtin_define("_LP64"); \
362 builtin_define("__LP64__"); \
364 if (TARGET_PA_20) \
365 builtin_define("_PA_RISC2_0"); \
366 else if (TARGET_PA_11) \
367 builtin_define("_PA_RISC1_1"); \
368 else \
369 builtin_define("_PA_RISC1_0"); \
370 } while (0)
372 /* An old set of OS defines for various BSD-like systems. */
373 #define TARGET_OS_CPP_BUILTINS() \
374 do \
376 builtin_define_std ("REVARGV"); \
377 builtin_define_std ("hp800"); \
378 builtin_define_std ("hp9000"); \
379 builtin_define_std ("hp9k8"); \
380 if (c_language != clk_cplusplus \
381 && !flag_iso) \
382 builtin_define ("hppa"); \
383 builtin_define_std ("spectrum"); \
384 builtin_define_std ("unix"); \
385 builtin_assert ("system=bsd"); \
386 builtin_assert ("system=unix"); \
388 while (0)
390 #define CC1_SPEC "%{pg:} %{p:}"
392 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
394 /* We don't want -lg. */
395 #ifndef LIB_SPEC
396 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
397 #endif
399 /* This macro defines command-line switches that modify the default
400 target name.
402 The definition is be an initializer for an array of structures. Each
403 array element has have three elements: the switch name, one of the
404 enumeration codes ADD or DELETE to indicate whether the string should be
405 inserted or deleted, and the string to be inserted or deleted. */
406 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
408 /* Make gcc agree with <machine/ansi.h> */
410 #define SIZE_TYPE "unsigned int"
411 #define PTRDIFF_TYPE "int"
412 #define WCHAR_TYPE "unsigned int"
413 #define WCHAR_TYPE_SIZE 32
415 /* Show we can debug even without a frame pointer. */
416 #define CAN_DEBUG_WITHOUT_FP
418 /* Machine dependent reorg pass. */
419 #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
422 /* target machine storage layout */
424 /* Define this macro if it is advisable to hold scalars in registers
425 in a wider mode than that declared by the program. In such cases,
426 the value is constrained to be within the bounds of the declared
427 type, but kept valid in the wider mode. The signedness of the
428 extension may differ from that of the type. */
430 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
431 if (GET_MODE_CLASS (MODE) == MODE_INT \
432 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
433 (MODE) = word_mode;
435 /* Define this if most significant bit is lowest numbered
436 in instructions that operate on numbered bit-fields. */
437 #define BITS_BIG_ENDIAN 1
439 /* Define this if most significant byte of a word is the lowest numbered. */
440 /* That is true on the HP-PA. */
441 #define BYTES_BIG_ENDIAN 1
443 /* Define this if most significant word of a multiword number is lowest
444 numbered. */
445 #define WORDS_BIG_ENDIAN 1
447 #define MAX_BITS_PER_WORD 64
448 #define MAX_LONG_TYPE_SIZE 32
450 /* Width of a word, in units (bytes). */
451 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
452 #define MIN_UNITS_PER_WORD 4
454 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
455 #define PARM_BOUNDARY BITS_PER_WORD
457 /* Largest alignment required for any stack parameter, in bits.
458 Don't define this if it is equal to PARM_BOUNDARY */
459 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
461 /* Boundary (in *bits*) on which stack pointer is always aligned;
462 certain optimizations in combine depend on this.
464 GCC for the PA always rounds its stacks to a 8 * STACK_BOUNDARY
465 boundary, but that happens late in the compilation process. */
466 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
468 #define PREFERRED_STACK_BOUNDARY (8 * STACK_BOUNDARY)
470 /* Allocation boundary (in *bits*) for the code of a function. */
471 #define FUNCTION_BOUNDARY BITS_PER_WORD
473 /* Alignment of field after `int : 0' in a structure. */
474 #define EMPTY_FIELD_BOUNDARY 32
476 /* Every structure's size must be a multiple of this. */
477 #define STRUCTURE_SIZE_BOUNDARY 8
479 /* A bit-field declared as `int' forces `int' alignment for the struct. */
480 #define PCC_BITFIELD_TYPE_MATTERS 1
482 /* No data type wants to be aligned rounder than this. */
483 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
485 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
486 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
487 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
489 /* Make arrays of chars word-aligned for the same reasons. */
490 #define DATA_ALIGNMENT(TYPE, ALIGN) \
491 (TREE_CODE (TYPE) == ARRAY_TYPE \
492 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
493 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
495 /* Set this nonzero if move instructions will actually fail to work
496 when given unaligned data. */
497 #define STRICT_ALIGNMENT 1
499 /* Generate calls to memcpy, memcmp and memset. */
500 #define TARGET_MEM_FUNCTIONS
502 /* Value is 1 if it is a good idea to tie two pseudo registers
503 when one has mode MODE1 and one has mode MODE2.
504 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
505 for any hard reg, then this must be 0 for correct output. */
506 #define MODES_TIEABLE_P(MODE1, MODE2) \
507 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
509 /* Specify the registers used for certain standard purposes.
510 The values of these macros are register numbers. */
512 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
513 /* #define PC_REGNUM */
515 /* Register to use for pushing function arguments. */
516 #define STACK_POINTER_REGNUM 30
518 /* Base register for access to local variables of the function. */
519 #define FRAME_POINTER_REGNUM 3
521 /* Value should be nonzero if functions must have frame pointers. */
522 #define FRAME_POINTER_REQUIRED \
523 (current_function_calls_alloca)
525 /* C statement to store the difference between the frame pointer
526 and the stack pointer values immediately after the function prologue.
528 Note, we always pretend that this is a leaf function because if
529 it's not, there's no point in trying to eliminate the
530 frame pointer. If it is a leaf function, we guessed right! */
531 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
532 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
534 /* Base register for access to arguments of the function. */
535 #define ARG_POINTER_REGNUM 3
537 /* Register in which static-chain is passed to a function. */
538 #define STATIC_CHAIN_REGNUM 29
540 /* Register which holds offset table for position-independent
541 data references. */
543 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
544 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
546 /* Function to return the rtx used to save the pic offset table register
547 across function calls. */
548 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
550 #define DEFAULT_PCC_STRUCT_RETURN 0
552 /* SOM ABI says that objects larger than 64 bits are returned in memory.
553 PA64 ABI says that objects larger than 128 bits are returned in memory.
554 Note, int_size_in_bytes can return -1 if the size of the object is
555 variable or larger than the maximum value that can be expressed as
556 a HOST_WIDE_INT. It can also return zero for an empty type. The
557 simplest way to handle variable and empty types is to pass them in
558 memory. This avoids problems in defining the boundaries of argument
559 slots, allocating registers, etc. */
560 #define RETURN_IN_MEMORY(TYPE) \
561 (int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8) \
562 || int_size_in_bytes (TYPE) <= 0)
564 /* Register in which address to store a structure value
565 is passed to a function. */
566 #define STRUCT_VALUE_REGNUM 28
568 /* Describe how we implement __builtin_eh_return. */
569 #define EH_RETURN_DATA_REGNO(N) \
570 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
571 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
572 #define EH_RETURN_HANDLER_RTX \
573 gen_rtx_MEM (word_mode, \
574 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
575 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
578 /* Offset from the argument pointer register value to the top of
579 stack. This is different from FIRST_PARM_OFFSET because of the
580 frame marker. */
581 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
583 /* The letters I, J, K, L and M in a register constraint string
584 can be used to stand for particular ranges of immediate operands.
585 This macro defines what the ranges are.
586 C is the letter, and VALUE is a constant value.
587 Return 1 if VALUE is in the range specified by C.
589 `I' is used for the 11 bit constants.
590 `J' is used for the 14 bit constants.
591 `K' is used for values that can be moved with a zdepi insn.
592 `L' is used for the 5 bit constants.
593 `M' is used for 0.
594 `N' is used for values with the least significant 11 bits equal to zero
595 and when sign extended from 32 to 64 bits the
596 value does not change.
597 `O' is used for numbers n such that n+1 is a power of 2.
600 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
601 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
602 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
603 : (C) == 'K' ? zdepi_cint_p (VALUE) \
604 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
605 : (C) == 'M' ? (VALUE) == 0 \
606 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
607 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
608 == (HOST_WIDE_INT) -1 << 31)) \
609 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
610 : (C) == 'P' ? and_mask_p (VALUE) \
611 : 0)
613 /* Similar, but for floating or large integer constants, and defining letters
614 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
616 For PA, `G' is the floating-point constant zero. `H' is undefined. */
618 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
619 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
620 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
621 : 0)
623 /* The class value for index registers, and the one for base regs. */
624 #define INDEX_REG_CLASS GENERAL_REGS
625 #define BASE_REG_CLASS GENERAL_REGS
627 #define FP_REG_CLASS_P(CLASS) \
628 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
630 /* True if register is floating-point. */
631 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
633 /* Given an rtx X being reloaded into a reg required to be
634 in class CLASS, return the class of reg to actually use.
635 In general this is just CLASS; but on some machines
636 in some cases it is preferable to use a more restrictive class. */
637 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
639 /* Return the register class of a scratch register needed to copy IN into
640 or out of a register in CLASS in MODE. If it can be done directly
641 NO_REGS is returned.
643 Avoid doing any work for the common case calls. */
645 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
646 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
647 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
648 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
650 /* On the PA it is not possible to directly move data between
651 GENERAL_REGS and FP_REGS. */
652 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
653 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
655 /* Return the stack location to use for secondary memory needed reloads. */
656 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
657 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
660 /* Stack layout; function entry, exit and calling. */
662 /* Define this if pushing a word on the stack
663 makes the stack pointer a smaller address. */
664 /* #define STACK_GROWS_DOWNWARD */
666 /* Believe it or not. */
667 #define ARGS_GROW_DOWNWARD
669 /* Define this if the nominal address of the stack frame
670 is at the high-address end of the local variables;
671 that is, each additional local variable allocated
672 goes at a more negative offset in the frame. */
673 /* #define FRAME_GROWS_DOWNWARD */
675 /* Offset within stack frame to start allocating local variables at.
676 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
677 first local allocated. Otherwise, it is the offset to the BEGINNING
678 of the first local allocated. The start of the locals must lie on
679 a STACK_BOUNDARY or else the frame size of leaf functions will not
680 be zero. */
681 #define STARTING_FRAME_OFFSET (TARGET_64BIT ? 16 : 8)
683 /* If we generate an insn to push BYTES bytes,
684 this says how many the stack pointer really advances by.
685 On the HP-PA, don't define this because there are no push insns. */
686 /* #define PUSH_ROUNDING(BYTES) */
688 /* Offset of first parameter from the argument pointer register value.
689 This value will be negated because the arguments grow down.
690 Also note that on STACK_GROWS_UPWARD machines (such as this one)
691 this is the distance from the frame pointer to the end of the first
692 argument, not it's beginning. To get the real offset of the first
693 argument, the size of the argument must be added. */
695 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
697 /* When a parameter is passed in a register, stack space is still
698 allocated for it. */
699 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
701 /* Define this if the above stack space is to be considered part of the
702 space allocated by the caller. */
703 #define OUTGOING_REG_PARM_STACK_SPACE
705 /* Keep the stack pointer constant throughout the function.
706 This is both an optimization and a necessity: longjmp
707 doesn't behave itself when the stack pointer moves within
708 the function! */
709 #define ACCUMULATE_OUTGOING_ARGS 1
711 /* The weird HPPA calling conventions require a minimum of 48 bytes on
712 the stack: 16 bytes for register saves, and 32 bytes for magic.
713 This is the difference between the logical top of stack and the
714 actual sp. */
715 #define STACK_POINTER_OFFSET \
716 (TARGET_64BIT ? -(current_function_outgoing_args_size + 16): -32)
718 #define STACK_DYNAMIC_OFFSET(FNDECL) \
719 (TARGET_64BIT \
720 ? (STACK_POINTER_OFFSET) \
721 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
723 /* Value is 1 if returning from a function call automatically
724 pops the arguments described by the number-of-args field in the call.
725 FUNDECL is the declaration node of the function (as a tree),
726 FUNTYPE is the data type of the function (as a tree),
727 or for a library call it is an identifier node for the subroutine name. */
729 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
731 /* Define how to find the value returned by a function.
732 VALTYPE is the data type of the value (as a tree).
733 If the precise function being called is known, FUNC is its FUNCTION_DECL;
734 otherwise, FUNC is 0. */
736 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
738 /* Define how to find the value returned by a library function
739 assuming the value has mode MODE. */
741 #define LIBCALL_VALUE(MODE) \
742 gen_rtx_REG (MODE, \
743 (! TARGET_SOFT_FLOAT \
744 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
746 /* 1 if N is a possible register number for a function value
747 as seen by the caller. */
749 #define FUNCTION_VALUE_REGNO_P(N) \
750 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
753 /* Define a data type for recording info about an argument list
754 during the scan of that argument list. This data type should
755 hold all necessary information about the function itself
756 and about the args processed so far, enough to enable macros
757 such as FUNCTION_ARG to determine where the next arg should go.
759 On the HP-PA, this is a single integer, which is a number of words
760 of arguments scanned so far (including the invisible argument,
761 if any, which holds the structure-value-address).
762 Thus 4 or more means all following args should go on the stack. */
764 struct hppa_args {int words, nargs_prototype, indirect; };
766 #define CUMULATIVE_ARGS struct hppa_args
768 /* Initialize a variable CUM of type CUMULATIVE_ARGS
769 for a call to a function whose data type is FNTYPE.
770 For a library call, FNTYPE is 0. */
772 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
773 (CUM).words = 0, \
774 (CUM).indirect = INDIRECT, \
775 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
776 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
777 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
778 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
779 : 0)
783 /* Similar, but when scanning the definition of a procedure. We always
784 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
786 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
787 (CUM).words = 0, \
788 (CUM).indirect = 0, \
789 (CUM).nargs_prototype = 1000
791 /* Figure out the size in words of the function argument. The size
792 returned by this macro should always be greater than zero because
793 we pass variable and zero sized objects by reference. */
795 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
796 ((((MODE) != BLKmode \
797 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
798 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
800 /* Update the data in CUM to advance over an argument
801 of mode MODE and data type TYPE.
802 (TYPE is null for libcalls where that information may not be available.) */
804 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
805 { (CUM).nargs_prototype--; \
806 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
807 + (((CUM).words & 01) && (TYPE) != 0 \
808 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
811 /* Determine where to put an argument to a function.
812 Value is zero to push the argument on the stack,
813 or a hard register in which to store the argument.
815 MODE is the argument's machine mode.
816 TYPE is the data type of the argument (as a tree).
817 This is null for libcalls where that information may
818 not be available.
819 CUM is a variable of type CUMULATIVE_ARGS which gives info about
820 the preceding args and about the function being called.
821 NAMED is nonzero if this argument is a named parameter
822 (otherwise it is an extra parameter matching an ellipsis).
824 On the HP-PA the first four words of args are normally in registers
825 and the rest are pushed. But any arg that won't entirely fit in regs
826 is pushed.
828 Arguments passed in registers are either 1 or 2 words long.
830 The caller must make a distinction between calls to explicitly named
831 functions and calls through pointers to functions -- the conventions
832 are different! Calls through pointers to functions only use general
833 registers for the first four argument words.
835 Of course all this is different for the portable runtime model
836 HP wants everyone to use for ELF. Ugh. Here's a quick description
837 of how it's supposed to work.
839 1) callee side remains unchanged. It expects integer args to be
840 in the integer registers, float args in the float registers and
841 unnamed args in integer registers.
843 2) caller side now depends on if the function being called has
844 a prototype in scope (rather than if it's being called indirectly).
846 2a) If there is a prototype in scope, then arguments are passed
847 according to their type (ints in integer registers, floats in float
848 registers, unnamed args in integer registers.
850 2b) If there is no prototype in scope, then floating point arguments
851 are passed in both integer and float registers. egad.
853 FYI: The portable parameter passing conventions are almost exactly like
854 the standard parameter passing conventions on the RS6000. That's why
855 you'll see lots of similar code in rs6000.h. */
857 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
859 /* Do not expect to understand this without reading it several times. I'm
860 tempted to try and simply it, but I worry about breaking something. */
862 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
863 function_arg (&CUM, MODE, TYPE, NAMED, 0)
865 /* Nonzero if we do not know how to pass TYPE solely in registers. */
866 #define MUST_PASS_IN_STACK(MODE,TYPE) \
867 ((TYPE) != 0 \
868 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
869 || TREE_ADDRESSABLE (TYPE)))
871 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
872 function_arg (&CUM, MODE, TYPE, NAMED, 1)
874 /* For an arg passed partly in registers and partly in memory,
875 this is the number of registers used.
876 For args passed entirely in registers or entirely in memory, zero. */
878 /* For PA32 there are never split arguments. PA64, on the other hand, can
879 pass arguments partially in registers and partially in memory. */
880 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
881 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
883 /* If defined, a C expression that gives the alignment boundary, in
884 bits, of an argument with the specified mode and type. If it is
885 not defined, `PARM_BOUNDARY' is used for all arguments. */
887 /* Arguments larger than one word are double word aligned. */
889 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
890 (((TYPE) \
891 ? (integer_zerop (TYPE_SIZE (TYPE)) \
892 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
893 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
894 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
895 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
897 /* In the 32-bit runtime, arguments larger than eight bytes are passed
898 by invisible reference. As a GCC extension, we also pass anything
899 with a zero or variable size by reference.
901 The 64-bit runtime does not describe passing any types by invisible
902 reference. The internals of GCC can't currently handle passing
903 empty structures, and zero or variable length arrays when they are
904 not passed entirely on the stack or by reference. Thus, as a GCC
905 extension, we pass these types by reference. The HP compiler doesn't
906 support these types, so hopefully there shouldn't be any compatibility
907 issues. This may have to be revisited when HP releases a C99 compiler
908 or updates the ABI. */
909 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
910 (TARGET_64BIT \
911 ? ((TYPE) && int_size_in_bytes (TYPE) <= 0) \
912 : (((TYPE) && (int_size_in_bytes (TYPE) > 8 \
913 || int_size_in_bytes (TYPE) <= 0)) \
914 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
916 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
917 FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
920 extern GTY(()) rtx hppa_compare_op0;
921 extern GTY(()) rtx hppa_compare_op1;
922 extern enum cmp_type hppa_branch_type;
924 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
925 as assembly via FUNCTION_PROFILER. Just output a local label.
926 We can't use the function label because the GAS SOM target can't
927 handle the difference of a global symbol and a local symbol. */
929 #ifndef FUNC_BEGIN_PROLOG_LABEL
930 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
931 #endif
933 #define FUNCTION_PROFILER(FILE, LABEL) \
934 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
936 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
937 void hppa_profile_hook PARAMS ((int label_no));
939 /* The profile counter if emitted must come before the prologue. */
940 #define PROFILE_BEFORE_PROLOGUE 1
942 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
943 the stack pointer does not matter. The value is tested only in
944 functions that have frame pointers.
945 No definition is equivalent to always zero. */
947 extern int may_call_alloca;
949 #define EXIT_IGNORE_STACK \
950 (get_frame_size () != 0 \
951 || current_function_calls_alloca || current_function_outgoing_args_size)
953 /* Output assembler code for a block containing the constant parts
954 of a trampoline, leaving space for the variable parts.\
956 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
957 and then branches to the specified routine.
959 This code template is copied from text segment to stack location
960 and then patched with INITIALIZE_TRAMPOLINE to contain
961 valid values, and then entered as a subroutine.
963 It is best to keep this as small as possible to avoid having to
964 flush multiple lines in the cache. */
966 #define TRAMPOLINE_TEMPLATE(FILE) \
968 if (! TARGET_64BIT) \
970 fputs ("\tldw 36(%r22),%r21\n", FILE); \
971 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
972 if (ASSEMBLER_DIALECT == 0) \
973 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
974 else \
975 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
976 fputs ("\tldw 4(%r21),%r19\n", FILE); \
977 fputs ("\tldw 0(%r21),%r21\n", FILE); \
978 fputs ("\tldsid (%r21),%r1\n", FILE); \
979 fputs ("\tmtsp %r1,%sr0\n", FILE); \
980 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
981 fputs ("\tldw 40(%r22),%r29\n", FILE); \
982 fputs ("\t.word 0\n", FILE); \
983 fputs ("\t.word 0\n", FILE); \
984 fputs ("\t.word 0\n", FILE); \
985 fputs ("\t.word 0\n", FILE); \
987 else \
989 fputs ("\t.dword 0\n", FILE); \
990 fputs ("\t.dword 0\n", FILE); \
991 fputs ("\t.dword 0\n", FILE); \
992 fputs ("\t.dword 0\n", FILE); \
993 fputs ("\tmfia %r31\n", FILE); \
994 fputs ("\tldd 24(%r31),%r1\n", FILE); \
995 fputs ("\tldd 24(%r1),%r27\n", FILE); \
996 fputs ("\tldd 16(%r1),%r1\n", FILE); \
997 fputs ("\tbve (%r1)\n", FILE); \
998 fputs ("\tldd 32(%r31),%r31\n", FILE); \
999 fputs ("\t.dword 0 ; fptr\n", FILE); \
1000 fputs ("\t.dword 0 ; static link\n", FILE); \
1004 /* Length in units of the trampoline for entering a nested function.
1006 Flush the cache entries corresponding to the first and last addresses
1007 of the trampoline. This is necessary as the trampoline may cross two
1008 cache lines.
1010 If the code part of the trampoline ever grows to > 32 bytes, then it
1011 will become necessary to hack on the cacheflush pattern in pa.md. */
1013 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1015 /* Emit RTL insns to initialize the variable parts of a trampoline.
1016 FNADDR is an RTX for the address of the function's pure code.
1017 CXT is an RTX for the static chain value for the function.
1019 Move the function address to the trampoline template at offset 36.
1020 Move the static chain value to trampoline template at offset 40.
1021 Move the trampoline address to trampoline template at offset 44.
1022 Move r19 to trampoline template at offset 48. The latter two
1023 words create a plabel for the indirect call to the trampoline. */
1025 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1027 if (! TARGET_64BIT) \
1029 rtx start_addr, end_addr; \
1031 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1032 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1033 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1034 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1035 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1036 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
1037 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1038 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
1039 gen_rtx_REG (Pmode, 19)); \
1040 /* fdc and fic only use registers for the address to flush, \
1041 they do not accept integer displacements. */ \
1042 start_addr = force_reg (Pmode, (TRAMP)); \
1043 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1044 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1045 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1046 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1047 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1049 else \
1051 rtx start_addr, end_addr; \
1053 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1054 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1055 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1056 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1057 /* Create a fat pointer for the trampoline. */ \
1058 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1059 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1060 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1061 end_addr = gen_rtx_REG (Pmode, 27); \
1062 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1063 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1064 /* fdc and fic only use registers for the address to flush, \
1065 they do not accept integer displacements. */ \
1066 start_addr = force_reg (Pmode, (TRAMP)); \
1067 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1068 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1069 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1070 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1071 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1075 /* Perform any machine-specific adjustment in the address of the trampoline.
1076 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1077 Adjust the trampoline address to point to the plabel at offset 44. */
1079 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1080 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1082 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1083 reference the 4 integer arg registers and 4 fp arg registers.
1084 Ordinarily they are not call used registers, but they are for
1085 _builtin_saveregs, so we must make this explicit. */
1087 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1089 /* Implement `va_start' for varargs and stdarg. */
1091 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1092 hppa_va_start (valist, nextarg)
1094 /* Implement `va_arg'. */
1096 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1097 hppa_va_arg (valist, type)
1099 /* Addressing modes, and classification of registers for them.
1101 Using autoincrement addressing modes on PA8000 class machines is
1102 not profitable. */
1104 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1105 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1107 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1108 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1110 /* Macros to check register numbers against specific register classes. */
1112 /* These assume that REGNO is a hard or pseudo reg number.
1113 They give nonzero only if REGNO is a hard reg of the suitable class
1114 or a pseudo reg currently allocated to a suitable hard reg.
1115 Since they use reg_renumber, they are safe only once reg_renumber
1116 has been allocated, which happens in local-alloc.c. */
1118 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1119 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1120 #define REGNO_OK_FOR_BASE_P(REGNO) \
1121 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1122 #define REGNO_OK_FOR_FP_P(REGNO) \
1123 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1125 /* Now macros that check whether X is a register and also,
1126 strictly, whether it is in a specified class.
1128 These macros are specific to the HP-PA, and may be used only
1129 in code for printing assembler insns and in conditions for
1130 define_optimization. */
1132 /* 1 if X is an fp register. */
1134 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1136 /* Maximum number of registers that can appear in a valid memory address. */
1138 #define MAX_REGS_PER_ADDRESS 2
1140 /* Recognize any constant value that is a valid address except
1141 for symbolic addresses. We get better CSE by rejecting them
1142 here and allowing hppa_legitimize_address to break them up. We
1143 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1145 #define CONSTANT_ADDRESS_P(X) \
1146 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1147 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1148 || GET_CODE (X) == HIGH) \
1149 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1151 /* Include all constant integers and constant doubles, but not
1152 floating-point, except for floating-point zero.
1154 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1156 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1157 further work. */
1158 #ifndef NEW_HP_ASSEMBLER
1159 #define NEW_HP_ASSEMBLER 0
1160 #endif
1161 #define LEGITIMATE_CONSTANT_P(X) \
1162 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1163 || (X) == CONST0_RTX (GET_MODE (X))) \
1164 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1165 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1166 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1167 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1168 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1169 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
1170 || cint_ok_for_move (INTVAL (X)))) \
1171 && !function_label_operand (X, VOIDmode))
1173 /* Subroutine for EXTRA_CONSTRAINT.
1175 Return 1 iff OP is a pseudo which did not get a hard register and
1176 we are running the reload pass. */
1178 #define IS_RELOADING_PSEUDO_P(OP) \
1179 ((reload_in_progress \
1180 && GET_CODE (OP) == REG \
1181 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1182 && reg_renumber [REGNO (OP)] < 0))
1184 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1186 For the HPPA, `Q' means that this is a memory operand but not a
1187 symbolic memory operand. Note that an unassigned pseudo register
1188 is such a memory operand. Needed because reload will generate
1189 these things in insns and then not re-recognize the insns, causing
1190 constrain_operands to fail.
1192 `R' is used for scaled indexed addresses.
1194 `S' is the constant 31.
1196 `T' is for fp loads and stores. */
1197 #define EXTRA_CONSTRAINT(OP, C) \
1198 ((C) == 'Q' ? \
1199 (IS_RELOADING_PSEUDO_P (OP) \
1200 || (GET_CODE (OP) == MEM \
1201 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1202 || reload_in_progress) \
1203 && ! symbolic_memory_operand (OP, VOIDmode) \
1204 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1205 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1206 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1207 : ((C) == 'R' ? \
1208 (GET_CODE (OP) == MEM \
1209 && GET_CODE (XEXP (OP, 0)) == PLUS \
1210 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1211 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1212 && (move_operand (OP, GET_MODE (OP)) \
1213 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1214 || reload_in_progress)) \
1215 : ((C) == 'T' ? \
1216 (GET_CODE (OP) == MEM \
1217 /* Using DFmode forces only short displacements \
1218 to be recognized as valid in reg+d addresses. \
1219 However, this is not necessary for PA2.0 since\
1220 it has long FP loads/stores. \
1222 FIXME: the ELF32 linker clobbers the LSB of \
1223 the FP register number in {fldw,fstw} insns. \
1224 Thus, we only allow long FP loads/stores on \
1225 TARGET_64BIT. */ \
1226 && memory_address_p ((TARGET_PA_20 \
1227 && !TARGET_ELF32 \
1228 ? GET_MODE (OP) \
1229 : DFmode), \
1230 XEXP (OP, 0)) \
1231 && !(GET_CODE (XEXP (OP, 0)) == LO_SUM \
1232 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1233 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1234 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1235 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1236 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1237 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1238 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1239 : ((C) == 'U' ? \
1240 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
1241 : ((C) == 'A' ? \
1242 (GET_CODE (OP) == MEM \
1243 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1244 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1245 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1246 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1247 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1248 : ((C) == 'S' ? \
1249 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1252 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1253 and check its validity for a certain class.
1254 We have two alternate definitions for each of them.
1255 The usual definition accepts all pseudo regs; the other rejects
1256 them unless they have been allocated suitable hard regs.
1257 The symbol REG_OK_STRICT causes the latter definition to be used.
1259 Most source files want to accept pseudo regs in the hope that
1260 they will get allocated to the class that the insn wants them to be in.
1261 Source files for reload pass need to be strict.
1262 After reload, it makes no difference, since pseudo regs have
1263 been eliminated by then. */
1265 #ifndef REG_OK_STRICT
1267 /* Nonzero if X is a hard reg that can be used as an index
1268 or if it is a pseudo reg. */
1269 #define REG_OK_FOR_INDEX_P(X) \
1270 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1271 /* Nonzero if X is a hard reg that can be used as a base reg
1272 or if it is a pseudo reg. */
1273 #define REG_OK_FOR_BASE_P(X) \
1274 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1276 #else
1278 /* Nonzero if X is a hard reg that can be used as an index. */
1279 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1280 /* Nonzero if X is a hard reg that can be used as a base reg. */
1281 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1283 #endif
1285 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1286 that is a valid memory address for an instruction.
1287 The MODE argument is the machine mode for the MEM expression
1288 that wants to use this address.
1290 On the HP-PA, the actual legitimate addresses must be
1291 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1292 But we can treat a SYMBOL_REF as legitimate if it is part of this
1293 function's constant-pool, because such addresses can actually
1294 be output as REG+SMALLINT.
1296 Note we only allow 5 bit immediates for access to a constant address;
1297 doing so avoids losing for loading/storing a FP register at an address
1298 which will not fit in 5 bits. */
1300 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1301 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1303 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1304 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1306 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1307 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1309 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1310 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1312 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1314 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1315 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1316 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1317 && REG_P (XEXP (X, 0)) \
1318 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1319 goto ADDR; \
1320 else if (GET_CODE (X) == PLUS) \
1322 rtx base = 0, index = 0; \
1323 if (REG_P (XEXP (X, 0)) \
1324 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1325 base = XEXP (X, 0), index = XEXP (X, 1); \
1326 else if (REG_P (XEXP (X, 1)) \
1327 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1328 base = XEXP (X, 1), index = XEXP (X, 0); \
1329 if (base != 0) \
1330 if (GET_CODE (index) == CONST_INT \
1331 && ((INT_14_BITS (index) \
1332 && (TARGET_SOFT_FLOAT \
1333 || (TARGET_PA_20 \
1334 && ((MODE == SFmode \
1335 && (INTVAL (index) % 4) == 0)\
1336 || (MODE == DFmode \
1337 && (INTVAL (index) % 8) == 0)))\
1338 || ((MODE) != SFmode && (MODE) != DFmode))) \
1339 || INT_5_BITS (index))) \
1340 goto ADDR; \
1341 if (! TARGET_SOFT_FLOAT \
1342 && ! TARGET_DISABLE_INDEXING \
1343 && base \
1344 && ((MODE) == SFmode || (MODE) == DFmode) \
1345 && GET_CODE (index) == MULT \
1346 && GET_CODE (XEXP (index, 0)) == REG \
1347 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1348 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1349 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1350 goto ADDR; \
1352 else if (GET_CODE (X) == LO_SUM \
1353 && GET_CODE (XEXP (X, 0)) == REG \
1354 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1355 && CONSTANT_P (XEXP (X, 1)) \
1356 && (TARGET_SOFT_FLOAT \
1357 /* We can allow symbolic LO_SUM addresses\
1358 for PA2.0. */ \
1359 || (TARGET_PA_20 \
1360 && !TARGET_ELF32 \
1361 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1362 || ((MODE) != SFmode \
1363 && (MODE) != DFmode))) \
1364 goto ADDR; \
1365 else if (GET_CODE (X) == LO_SUM \
1366 && GET_CODE (XEXP (X, 0)) == SUBREG \
1367 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1368 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1369 && CONSTANT_P (XEXP (X, 1)) \
1370 && (TARGET_SOFT_FLOAT \
1371 /* We can allow symbolic LO_SUM addresses\
1372 for PA2.0. */ \
1373 || (TARGET_PA_20 \
1374 && !TARGET_ELF32 \
1375 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1376 || ((MODE) != SFmode \
1377 && (MODE) != DFmode))) \
1378 goto ADDR; \
1379 else if (GET_CODE (X) == LABEL_REF \
1380 || (GET_CODE (X) == CONST_INT \
1381 && INT_5_BITS (X))) \
1382 goto ADDR; \
1383 /* Needed for -fPIC */ \
1384 else if (GET_CODE (X) == LO_SUM \
1385 && GET_CODE (XEXP (X, 0)) == REG \
1386 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1387 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1388 && (TARGET_SOFT_FLOAT \
1389 || (TARGET_PA_20 && !TARGET_ELF32) \
1390 || ((MODE) != SFmode \
1391 && (MODE) != DFmode))) \
1392 goto ADDR; \
1395 /* Look for machine dependent ways to make the invalid address AD a
1396 valid address.
1398 For the PA, transform:
1400 memory(X + <large int>)
1402 into:
1404 if (<large int> & mask) >= 16
1405 Y = (<large int> & ~mask) + mask + 1 Round up.
1406 else
1407 Y = (<large int> & ~mask) Round down.
1408 Z = X + Y
1409 memory (Z + (<large int> - Y));
1411 This makes reload inheritance and reload_cse work better since Z
1412 can be reused.
1414 There may be more opportunities to improve code with this hook. */
1415 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1416 do { \
1417 int offset, newoffset, mask; \
1418 rtx new, temp = NULL_RTX; \
1420 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1421 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1423 if (optimize \
1424 && GET_CODE (AD) == PLUS) \
1425 temp = simplify_binary_operation (PLUS, Pmode, \
1426 XEXP (AD, 0), XEXP (AD, 1)); \
1428 new = temp ? temp : AD; \
1430 if (optimize \
1431 && GET_CODE (new) == PLUS \
1432 && GET_CODE (XEXP (new, 0)) == REG \
1433 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1435 offset = INTVAL (XEXP ((new), 1)); \
1437 /* Choose rounding direction. Round up if we are >= halfway. */ \
1438 if ((offset & mask) >= ((mask + 1) / 2)) \
1439 newoffset = (offset & ~mask) + mask + 1; \
1440 else \
1441 newoffset = offset & ~mask; \
1443 if (newoffset != 0 \
1444 && VAL_14_BITS_P (newoffset)) \
1447 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1448 GEN_INT (newoffset)); \
1449 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1450 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1451 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1452 (OPNUM), (TYPE)); \
1453 goto WIN; \
1456 } while (0)
1461 /* Try machine-dependent ways of modifying an illegitimate address
1462 to be legitimate. If we find one, return the new, valid address.
1463 This macro is used in only one place: `memory_address' in explow.c.
1465 OLDX is the address as it was before break_out_memory_refs was called.
1466 In some cases it is useful to look at this to decide what needs to be done.
1468 MODE and WIN are passed so that this macro can use
1469 GO_IF_LEGITIMATE_ADDRESS.
1471 It is always safe for this macro to do nothing. It exists to recognize
1472 opportunities to optimize the output. */
1474 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1475 { rtx orig_x = (X); \
1476 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1477 if ((X) != orig_x && memory_address_p (MODE, X)) \
1478 goto WIN; }
1480 /* Go to LABEL if ADDR (a legitimate address expression)
1481 has an effect that depends on the machine mode it is used for. */
1483 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1484 if (GET_CODE (ADDR) == PRE_DEC \
1485 || GET_CODE (ADDR) == POST_DEC \
1486 || GET_CODE (ADDR) == PRE_INC \
1487 || GET_CODE (ADDR) == POST_INC) \
1488 goto LABEL
1490 #define TARGET_ASM_SELECT_SECTION pa_select_section
1492 /* Define this macro if references to a symbol must be treated
1493 differently depending on something about the variable or
1494 function named by the symbol (such as what section it is in).
1496 The macro definition, if any, is executed immediately after the
1497 rtl for DECL or other node is created.
1498 The value of the rtl will be a `mem' whose address is a
1499 `symbol_ref'.
1501 The usual thing for this macro to do is to a flag in the
1502 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1503 name string in the `symbol_ref' (if one bit is not enough
1504 information).
1506 On the HP-PA we use this to indicate if a symbol is in text or
1507 data space. Also, function labels need special treatment. */
1509 #define TEXT_SPACE_P(DECL)\
1510 (TREE_CODE (DECL) == FUNCTION_DECL \
1511 || (TREE_CODE (DECL) == VAR_DECL \
1512 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1513 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1514 && !flag_pic) \
1515 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1516 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1518 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1520 /* Specify the machine mode that this machine uses
1521 for the index in the tablejump instruction. */
1522 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1524 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1525 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1527 /* Define this as 1 if `char' should by default be signed; else as 0. */
1528 #define DEFAULT_SIGNED_CHAR 1
1530 /* Max number of bytes we can move from memory to memory
1531 in one reasonably fast instruction. */
1532 #define MOVE_MAX 8
1534 /* Higher than the default as we prefer to use simple move insns
1535 (better scheduling and delay slot filling) and because our
1536 built-in block move is really a 2X unrolled loop.
1538 Believe it or not, this has to be big enough to allow for copying all
1539 arguments passed in registers to avoid infinite recursion during argument
1540 setup for a function call. Why? Consider how we copy the stack slots
1541 reserved for parameters when they may be trashed by a call. */
1542 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1544 /* Define if operations between registers always perform the operation
1545 on the full register even if a narrower mode is specified. */
1546 #define WORD_REGISTER_OPERATIONS
1548 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1549 will either zero-extend or sign-extend. The value of this macro should
1550 be the code that says which one of the two operations is implicitly
1551 done, NIL if none. */
1552 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1554 /* Nonzero if access to memory by bytes is slow and undesirable. */
1555 #define SLOW_BYTE_ACCESS 1
1557 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1558 is done just by pretending it is already truncated. */
1559 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1561 /* We assume that the store-condition-codes instructions store 0 for false
1562 and some other value for true. This is the value stored for true. */
1564 #define STORE_FLAG_VALUE 1
1566 /* When a prototype says `char' or `short', really pass an `int'. */
1567 #define PROMOTE_PROTOTYPES 1
1568 #define PROMOTE_FUNCTION_RETURN 1
1570 /* Specify the machine mode that pointers have.
1571 After generation of rtl, the compiler makes no further distinction
1572 between pointers and any other objects of this machine mode. */
1573 #define Pmode word_mode
1575 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1576 return the mode to be used for the comparison. For floating-point, CCFPmode
1577 should be used. CC_NOOVmode should be used when the first operand is a
1578 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1579 needed. */
1580 #define SELECT_CC_MODE(OP,X,Y) \
1581 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1583 /* A function address in a call instruction
1584 is a byte address (for indexing purposes)
1585 so give the MEM rtx a byte's mode. */
1586 #define FUNCTION_MODE SImode
1588 /* Define this if addresses of constant functions
1589 shouldn't be put through pseudo regs where they can be cse'd.
1590 Desirable on machines where ordinary constants are expensive
1591 but a CALL with constant address is cheap. */
1592 #define NO_FUNCTION_CSE
1594 /* Define this to be nonzero if shift instructions ignore all but the low-order
1595 few bits. */
1596 #define SHIFT_COUNT_TRUNCATED 1
1598 #define ADDRESS_COST(RTX) \
1599 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1601 /* Compute extra cost of moving data between one register class
1602 and another.
1604 Make moves from SAR so expensive they should never happen. We used to
1605 have 0xffff here, but that generates overflow in rare cases.
1607 Copies involving a FP register and a non-FP register are relatively
1608 expensive because they must go through memory.
1610 Other copies are reasonably cheap. */
1611 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1612 (CLASS1 == SHIFT_REGS ? 0x100 \
1613 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1614 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1615 : 2)
1617 /* Adjust the cost of branches. */
1618 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1620 /* Handling the special cases is going to get too complicated for a macro,
1621 just call `pa_adjust_insn_length' to do the real work. */
1622 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1623 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1625 /* Millicode insns are actually function calls with some special
1626 constraints on arguments and register usage.
1628 Millicode calls always expect their arguments in the integer argument
1629 registers, and always return their result in %r29 (ret1). They
1630 are expected to clobber their arguments, %r1, %r29, and the return
1631 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1633 This macro tells reorg that the references to arguments and
1634 millicode calls do not appear to happen until after the millicode call.
1635 This allows reorg to put insns which set the argument registers into the
1636 delay slot of the millicode call -- thus they act more like traditional
1637 CALL_INSNs.
1639 Note we can not consider side effects of the insn to be delayed because
1640 the branch and link insn will clobber the return pointer. If we happened
1641 to use the return pointer in the delay slot of the call, then we lose.
1643 get_attr_type will try to recognize the given insn, so make sure to
1644 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1645 in particular. */
1646 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1649 /* Control the assembler format that we output. */
1651 /* Output to assembler file text saying following lines
1652 may contain character constants, extra white space, comments, etc. */
1654 #define ASM_APP_ON ""
1656 /* Output to assembler file text saying following lines
1657 no longer contain unusual constructs. */
1659 #define ASM_APP_OFF ""
1661 /* Output deferred plabels at the end of the file. */
1663 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1665 /* This is how to output the definition of a user-level label named NAME,
1666 such as the label on a static function or variable NAME. */
1668 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1669 do { assemble_name (FILE, NAME); \
1670 fputc ('\n', FILE); } while (0)
1672 /* This is how to output a reference to a user-level label named NAME.
1673 `assemble_name' uses this. */
1675 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1676 do { \
1677 const char *xname = (NAME); \
1678 if (FUNCTION_NAME_P (NAME)) \
1679 xname += 1; \
1680 if (xname[0] == '*') \
1681 xname += 1; \
1682 else \
1683 fputs (user_label_prefix, FILE); \
1684 fputs (xname, FILE); \
1685 } while (0)
1687 /* This is how to store into the string LABEL
1688 the symbol_ref name of an internal numbered label where
1689 PREFIX is the class of label and NUM is the number within the class.
1690 This is suitable for output with `assemble_name'. */
1692 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1693 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1695 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1697 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1698 output_ascii ((FILE), (P), (SIZE))
1700 /* This is how to output an element of a case-vector that is absolute.
1701 Note that this method makes filling these branch delay slots
1702 impossible. */
1704 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1705 if (TARGET_BIG_SWITCH) \
1706 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1707 else \
1708 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1710 /* Jump tables are executable code and live in the TEXT section on the PA. */
1711 #define JUMP_TABLES_IN_TEXT_SECTION 1
1713 /* This is how to output an element of a case-vector that is relative.
1714 This must be defined correctly as it is used when generating PIC code.
1716 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1717 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1718 rather than a table of absolute addresses. */
1720 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1721 if (TARGET_BIG_SWITCH) \
1722 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
1723 else \
1724 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1726 /* This is how to output an assembler line
1727 that says to advance the location counter
1728 to a multiple of 2**LOG bytes. */
1730 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1731 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1733 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1734 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1736 /* This says how to output an assembler line to define a global common symbol
1737 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1739 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1740 { bss_section (); \
1741 assemble_name ((FILE), (NAME)); \
1742 fputs ("\t.comm ", (FILE)); \
1743 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1745 /* This says how to output an assembler line to define a local common symbol
1746 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1748 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1749 { bss_section (); \
1750 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1751 assemble_name ((FILE), (NAME)); \
1752 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1754 #define ASM_PN_FORMAT "%s___%lu"
1756 /* All HP assemblers use "!" to separate logical lines. */
1757 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1759 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1760 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1762 /* Print operand X (an rtx) in assembler syntax to file FILE.
1763 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1764 For `%' followed by punctuation, CODE is the punctuation and X is null.
1766 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1767 and an immediate zero should be represented as `r0'.
1769 Several % codes are defined:
1770 O an operation
1771 C compare conditions
1772 N extract conditions
1773 M modifier to handle preincrement addressing for memory refs.
1774 F modifier to handle preincrement addressing for fp memory refs */
1776 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1779 /* Print a memory address as an operand to reference that memory location. */
1781 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1782 { register rtx addr = ADDR; \
1783 register rtx base; \
1784 int offset; \
1785 switch (GET_CODE (addr)) \
1787 case REG: \
1788 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1789 break; \
1790 case PLUS: \
1791 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1792 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1793 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1794 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1795 else \
1796 abort (); \
1797 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1798 break; \
1799 case LO_SUM: \
1800 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1801 fputs ("R'", FILE); \
1802 else if (flag_pic == 0) \
1803 fputs ("RR'", FILE); \
1804 else \
1805 fputs ("RT'", FILE); \
1806 output_global_address (FILE, XEXP (addr, 1), 0); \
1807 fputs ("(", FILE); \
1808 output_operand (XEXP (addr, 0), 0); \
1809 fputs (")", FILE); \
1810 break; \
1811 case CONST_INT: \
1812 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); \
1813 fprintf (FILE, "(%%r0)"); \
1814 break; \
1815 default: \
1816 output_addr_const (FILE, addr); \
1820 /* Find the return address associated with the frame given by
1821 FRAMEADDR. */
1822 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1823 (return_addr_rtx (COUNT, FRAMEADDR))
1825 /* Used to mask out junk bits from the return address, such as
1826 processor state, interrupt status, condition codes and the like. */
1827 #define MASK_RETURN_ADDR \
1828 /* The privilege level is in the two low order bits, mask em out \
1829 of the return address. */ \
1830 (GEN_INT (-4))
1832 /* The number of Pmode words for the setjmp buffer. */
1833 #define JMP_BUF_SIZE 50
1835 #define PREDICATE_CODES \
1836 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1837 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1838 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1839 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1840 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1841 {"reg_before_reload_operand", {REG, MEM}}, \
1842 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1843 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1844 CONST_DOUBLE}}, \
1845 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1846 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1847 {"pic_label_operand", {LABEL_REF, CONST}}, \
1848 {"fp_reg_operand", {REG}}, \
1849 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1850 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1851 {"pre_cint_operand", {CONST_INT}}, \
1852 {"post_cint_operand", {CONST_INT}}, \
1853 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1854 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1855 {"int5_operand", {CONST_INT}}, \
1856 {"uint5_operand", {CONST_INT}}, \
1857 {"int11_operand", {CONST_INT}}, \
1858 {"uint32_operand", {CONST_INT, \
1859 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1860 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1861 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1862 {"ior_operand", {CONST_INT}}, \
1863 {"lhs_lshift_cint_operand", {CONST_INT}}, \
1864 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
1865 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1866 {"pc_or_label_operand", {PC, LABEL_REF}}, \
1867 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
1868 {"shadd_operand", {CONST_INT}}, \
1869 {"basereg_operand", {REG}}, \
1870 {"div_operand", {REG, CONST_INT}}, \
1871 {"ireg_operand", {REG}}, \
1872 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
1873 GT, GTU, GE}}, \
1874 {"movb_comparison_operator", {EQ, NE, LT, GE}},
1876 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1877 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1878 "__canonicalize_funcptr_for_compare"