Fix xfail for 32-bit hppa*-*-* in gcc.dg/pr84877.c
[official-gcc.git] / gcc / combine.cc
blob812553c091e6f758a0f811395ec98b9f97ef87e2
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
54 REG_DEAD note is lost
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
57 linking
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
63 #include "config.h"
64 #include "system.h"
65 #include "coretypes.h"
66 #include "backend.h"
67 #include "target.h"
68 #include "rtl.h"
69 #include "tree.h"
70 #include "cfghooks.h"
71 #include "predict.h"
72 #include "df.h"
73 #include "memmodel.h"
74 #include "tm_p.h"
75 #include "optabs.h"
76 #include "regs.h"
77 #include "emit-rtl.h"
78 #include "recog.h"
79 #include "cgraph.h"
80 #include "stor-layout.h"
81 #include "cfgrtl.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
84 #include "explow.h"
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
87 #include "expr.h"
88 #include "tree-pass.h"
89 #include "valtrack.h"
90 #include "rtl-iter.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
93 #include "rtlanal.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras;
107 /* Number of instructions combined in this function. */
109 static int combine_successes;
111 /* combine_instructions may try to replace the right hand side of the
112 second instruction with the value of an associated REG_EQUAL note
113 before throwing it at try_combine. That is problematic when there
114 is a REG_DEAD note for a register used in the old right hand side
115 and can cause distribute_notes to do wrong things. This is the
116 second instruction if it has been so modified, null otherwise. */
118 static rtx_insn *i2mod;
120 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
122 static rtx i2mod_old_rhs;
124 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
126 static rtx i2mod_new_rhs;
128 struct reg_stat_type {
129 /* Record last point of death of (hard or pseudo) register n. */
130 rtx_insn *last_death;
132 /* Record last point of modification of (hard or pseudo) register n. */
133 rtx_insn *last_set;
135 /* The next group of fields allows the recording of the last value assigned
136 to (hard or pseudo) register n. We use this information to see if an
137 operation being processed is redundant given a prior operation performed
138 on the register. For example, an `and' with a constant is redundant if
139 all the zero bits are already known to be turned off.
141 We use an approach similar to that used by cse, but change it in the
142 following ways:
144 (1) We do not want to reinitialize at each label.
145 (2) It is useful, but not critical, to know the actual value assigned
146 to a register. Often just its form is helpful.
148 Therefore, we maintain the following fields:
150 last_set_value the last value assigned
151 last_set_label records the value of label_tick when the
152 register was assigned
153 last_set_table_tick records the value of label_tick when a
154 value using the register is assigned
155 last_set_invalid set to true when it is not valid
156 to use the value of this register in some
157 register's value
159 To understand the usage of these tables, it is important to understand
160 the distinction between the value in last_set_value being valid and
161 the register being validly contained in some other expression in the
162 table.
164 (The next two parameters are out of date).
166 reg_stat[i].last_set_value is valid if it is nonzero, and either
167 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
169 Register I may validly appear in any expression returned for the value
170 of another register if reg_n_sets[i] is 1. It may also appear in the
171 value for register J if reg_stat[j].last_set_invalid is zero, or
172 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
174 If an expression is found in the table containing a register which may
175 not validly appear in an expression, the register is replaced by
176 something that won't match, (clobber (const_int 0)). */
178 /* Record last value assigned to (hard or pseudo) register n. */
180 rtx last_set_value;
182 /* Record the value of label_tick when an expression involving register n
183 is placed in last_set_value. */
185 int last_set_table_tick;
187 /* Record the value of label_tick when the value for register n is placed in
188 last_set_value. */
190 int last_set_label;
192 /* These fields are maintained in parallel with last_set_value and are
193 used to store the mode in which the register was last set, the bits
194 that were known to be zero when it was last set, and the number of
195 sign bits copies it was known to have when it was last set. */
197 unsigned HOST_WIDE_INT last_set_nonzero_bits;
198 char last_set_sign_bit_copies;
199 ENUM_BITFIELD(machine_mode) last_set_mode : MACHINE_MODE_BITSIZE;
201 /* Set to true if references to register n in expressions should not be
202 used. last_set_invalid is set nonzero when this register is being
203 assigned to and last_set_table_tick == label_tick. */
205 bool last_set_invalid;
207 /* Some registers that are set more than once and used in more than one
208 basic block are nevertheless always set in similar ways. For example,
209 a QImode register may be loaded from memory in two places on a machine
210 where byte loads zero extend.
212 We record in the following fields if a register has some leading bits
213 that are always equal to the sign bit, and what we know about the
214 nonzero bits of a register, specifically which bits are known to be
215 zero.
217 If an entry is zero, it means that we don't know anything special. */
219 unsigned char sign_bit_copies;
221 unsigned HOST_WIDE_INT nonzero_bits;
223 /* Record the value of the label_tick when the last truncation
224 happened. The field truncated_to_mode is only valid if
225 truncation_label == label_tick. */
227 int truncation_label;
229 /* Record the last truncation seen for this register. If truncation
230 is not a nop to this mode we might be able to save an explicit
231 truncation if we know that value already contains a truncated
232 value. */
234 ENUM_BITFIELD(machine_mode) truncated_to_mode : MACHINE_MODE_BITSIZE;
238 static vec<reg_stat_type> reg_stat;
240 /* One plus the highest pseudo for which we track REG_N_SETS.
241 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
242 but during combine_split_insns new pseudos can be created. As we don't have
243 updated DF information in that case, it is hard to initialize the array
244 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
245 so instead of growing the arrays, just assume all newly created pseudos
246 during combine might be set multiple times. */
248 static unsigned int reg_n_sets_max;
250 /* Record the luid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set;
255 /* Record the luid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_luid;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx_insn *subst_insn;
268 /* This is the lowest LUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this LUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_luid;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
286 static rtx_insn *added_links_insn;
288 /* And similarly, for notes. */
290 static rtx_insn *added_notes_insn;
292 /* Basic block in which we are performing combines. */
293 static basic_block this_basic_block;
294 static bool optimize_this_for_speed_p;
297 /* Length of the currently allocated uid_insn_cost array. */
299 static int max_uid_known;
301 /* The following array records the insn_cost for every insn
302 in the instruction stream. */
304 static int *uid_insn_cost;
306 /* The following array records the LOG_LINKS for every insn in the
307 instruction stream as struct insn_link pointers. */
309 struct insn_link {
310 rtx_insn *insn;
311 unsigned int regno;
312 struct insn_link *next;
315 static struct insn_link **uid_log_links;
317 static inline int
318 insn_uid_check (const_rtx insn)
320 int uid = INSN_UID (insn);
321 gcc_checking_assert (uid <= max_uid_known);
322 return uid;
325 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
326 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
328 #define FOR_EACH_LOG_LINK(L, INSN) \
329 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
331 /* Links for LOG_LINKS are allocated from this obstack. */
333 static struct obstack insn_link_obstack;
335 /* Allocate a link. */
337 static inline struct insn_link *
338 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
340 struct insn_link *l
341 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
342 sizeof (struct insn_link));
343 l->insn = insn;
344 l->regno = regno;
345 l->next = next;
346 return l;
349 /* Incremented for each basic block. */
351 static int label_tick;
353 /* Reset to label_tick for each extended basic block in scanning order. */
355 static int label_tick_ebb_start;
357 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
358 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
360 static scalar_int_mode nonzero_bits_mode;
362 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
363 be safely used. It is zero while computing them and after combine has
364 completed. This former test prevents propagating values based on
365 previously set values, which can be incorrect if a variable is modified
366 in a loop. */
368 static int nonzero_sign_valid;
371 /* Record one modification to rtl structure
372 to be undone by storing old_contents into *where. */
374 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
376 struct undo
378 struct undo *next;
379 enum undo_kind kind;
380 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
381 union { rtx *r; int *i; int regno; struct insn_link **l; } where;
384 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
385 num_undo says how many are currently recorded.
387 other_insn is nonzero if we have modified some other insn in the process
388 of working on subst_insn. It must be verified too. */
390 struct undobuf
392 struct undo *undos;
393 struct undo *frees;
394 rtx_insn *other_insn;
397 static struct undobuf undobuf;
399 /* Number of times the pseudo being substituted for
400 was found and replaced. */
402 static int n_occurrences;
404 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
405 scalar_int_mode,
406 unsigned HOST_WIDE_INT *);
407 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
408 scalar_int_mode,
409 unsigned int *);
410 static void do_SUBST (rtx *, rtx);
411 static void do_SUBST_INT (int *, int);
412 static void init_reg_last (void);
413 static void setup_incoming_promotions (rtx_insn *);
414 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
415 static bool cant_combine_insn_p (rtx_insn *);
416 static bool can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
417 rtx_insn *, rtx_insn *, rtx *, rtx *);
418 static bool combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx,
419 bool, bool, rtx *);
420 static bool contains_muldiv (rtx);
421 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 bool *, rtx_insn *);
423 static void undo_all (void);
424 static void undo_commit (void);
425 static rtx *find_split_point (rtx *, rtx_insn *, bool);
426 static rtx subst (rtx, rtx, rtx, bool, bool, bool);
427 static rtx combine_simplify_rtx (rtx, machine_mode, bool, bool);
428 static rtx simplify_if_then_else (rtx);
429 static rtx simplify_set (rtx);
430 static rtx simplify_logical (rtx);
431 static rtx expand_compound_operation (rtx);
432 static const_rtx expand_field_assignment (const_rtx);
433 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT, rtx,
434 unsigned HOST_WIDE_INT, bool, bool, bool);
435 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
436 unsigned HOST_WIDE_INT *);
437 static rtx canon_reg_for_combine (rtx, rtx);
438 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
439 scalar_int_mode, unsigned HOST_WIDE_INT, bool);
440 static rtx force_to_mode (rtx, machine_mode,
441 unsigned HOST_WIDE_INT, bool);
442 static rtx if_then_else_cond (rtx, rtx *, rtx *);
443 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
444 static bool rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
445 static rtx make_field_assignment (rtx);
446 static rtx apply_distributive_law (rtx);
447 static rtx distribute_and_simplify_rtx (rtx, int);
448 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
449 unsigned HOST_WIDE_INT);
450 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
451 unsigned HOST_WIDE_INT);
452 static bool merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
453 HOST_WIDE_INT, machine_mode, bool *);
454 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
455 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
456 int);
457 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
458 static rtx gen_lowpart_for_combine (machine_mode, rtx);
459 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
460 rtx *, rtx *);
461 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
462 static void update_table_tick (rtx);
463 static void record_value_for_reg (rtx, rtx_insn *, rtx);
464 static void check_promoted_subreg (rtx_insn *, rtx);
465 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
466 static void record_dead_and_set_regs (rtx_insn *);
467 static bool get_last_value_validate (rtx *, rtx_insn *, int, bool);
468 static rtx get_last_value (const_rtx);
469 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
470 static bool reg_dead_at_p (rtx, rtx_insn *);
471 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
472 static bool reg_bitfield_target_p (rtx, rtx);
473 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *,
474 rtx, rtx, rtx);
475 static void distribute_links (struct insn_link *);
476 static void mark_used_regs_combine (rtx);
477 static void record_promoted_value (rtx_insn *, rtx);
478 static bool unmentioned_reg_p (rtx, rtx);
479 static void record_truncated_values (rtx *, void *);
480 static bool reg_truncated_to_mode (machine_mode, const_rtx);
481 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
484 /* It is not safe to use ordinary gen_lowpart in combine.
485 See comments in gen_lowpart_for_combine. */
486 #undef RTL_HOOKS_GEN_LOWPART
487 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
489 /* Our implementation of gen_lowpart never emits a new pseudo. */
490 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
491 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
493 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
494 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
496 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
497 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
499 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
500 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
502 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
505 /* Convenience wrapper for the canonicalize_comparison target hook.
506 Target hooks cannot use enum rtx_code. */
507 static inline void
508 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
509 bool op0_preserve_value)
511 int code_int = (int)*code;
512 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
513 *code = (enum rtx_code)code_int;
516 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
517 PATTERN cannot be split. Otherwise, it returns an insn sequence.
518 This is a wrapper around split_insns which ensures that the
519 reg_stat vector is made larger if the splitter creates a new
520 register. */
522 static rtx_insn *
523 combine_split_insns (rtx pattern, rtx_insn *insn)
525 rtx_insn *ret;
526 unsigned int nregs;
528 ret = split_insns (pattern, insn);
529 nregs = max_reg_num ();
530 if (nregs > reg_stat.length ())
531 reg_stat.safe_grow_cleared (nregs, true);
532 return ret;
535 /* This is used by find_single_use to locate an rtx in LOC that
536 contains exactly one use of DEST, which is typically a REG.
537 It returns a pointer to the innermost rtx expression
538 containing DEST. Appearances of DEST that are being used to
539 totally replace it are not counted. */
541 static rtx *
542 find_single_use_1 (rtx dest, rtx *loc)
544 rtx x = *loc;
545 enum rtx_code code = GET_CODE (x);
546 rtx *result = NULL;
547 rtx *this_result;
548 int i;
549 const char *fmt;
551 switch (code)
553 case CONST:
554 case LABEL_REF:
555 case SYMBOL_REF:
556 CASE_CONST_ANY:
557 case CLOBBER:
558 return 0;
560 case SET:
561 /* If the destination is anything other than PC, a REG or a SUBREG
562 of a REG that occupies all of the REG, the insn uses DEST if
563 it is mentioned in the destination or the source. Otherwise, we
564 need just check the source. */
565 if (GET_CODE (SET_DEST (x)) != PC
566 && !REG_P (SET_DEST (x))
567 && ! (GET_CODE (SET_DEST (x)) == SUBREG
568 && REG_P (SUBREG_REG (SET_DEST (x)))
569 && !read_modify_subreg_p (SET_DEST (x))))
570 break;
572 return find_single_use_1 (dest, &SET_SRC (x));
574 case MEM:
575 case SUBREG:
576 return find_single_use_1 (dest, &XEXP (x, 0));
578 default:
579 break;
582 /* If it wasn't one of the common cases above, check each expression and
583 vector of this code. Look for a unique usage of DEST. */
585 fmt = GET_RTX_FORMAT (code);
586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
588 if (fmt[i] == 'e')
590 if (dest == XEXP (x, i)
591 || (REG_P (dest) && REG_P (XEXP (x, i))
592 && REGNO (dest) == REGNO (XEXP (x, i))))
593 this_result = loc;
594 else
595 this_result = find_single_use_1 (dest, &XEXP (x, i));
597 if (result == NULL)
598 result = this_result;
599 else if (this_result)
600 /* Duplicate usage. */
601 return NULL;
603 else if (fmt[i] == 'E')
605 int j;
607 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
609 if (XVECEXP (x, i, j) == dest
610 || (REG_P (dest)
611 && REG_P (XVECEXP (x, i, j))
612 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
613 this_result = loc;
614 else
615 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
617 if (result == NULL)
618 result = this_result;
619 else if (this_result)
620 return NULL;
625 return result;
629 /* See if DEST, produced in INSN, is used only a single time in the
630 sequel. If so, return a pointer to the innermost rtx expression in which
631 it is used.
633 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
635 Otherwise, we find the single use by finding an insn that has a
636 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
637 only referenced once in that insn, we know that it must be the first
638 and last insn referencing DEST. */
640 static rtx *
641 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
643 basic_block bb;
644 rtx_insn *next;
645 rtx *result;
646 struct insn_link *link;
648 if (!REG_P (dest))
649 return 0;
651 bb = BLOCK_FOR_INSN (insn);
652 for (next = NEXT_INSN (insn);
653 next && BLOCK_FOR_INSN (next) == bb;
654 next = NEXT_INSN (next))
655 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
657 FOR_EACH_LOG_LINK (link, next)
658 if (link->insn == insn && link->regno == REGNO (dest))
659 break;
661 if (link)
663 result = find_single_use_1 (dest, &PATTERN (next));
664 if (ploc)
665 *ploc = next;
666 return result;
670 return 0;
673 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
674 insn. The substitution can be undone by undo_all. If INTO is already
675 set to NEWVAL, do not record this change. Because computing NEWVAL might
676 also call SUBST, we have to compute it before we put anything into
677 the undo table. */
679 static void
680 do_SUBST (rtx *into, rtx newval)
682 struct undo *buf;
683 rtx oldval = *into;
685 if (oldval == newval)
686 return;
688 /* We'd like to catch as many invalid transformations here as
689 possible. Unfortunately, there are way too many mode changes
690 that are perfectly valid, so we'd waste too much effort for
691 little gain doing the checks here. Focus on catching invalid
692 transformations involving integer constants. */
693 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
694 && CONST_INT_P (newval))
696 /* Sanity check that we're replacing oldval with a CONST_INT
697 that is a valid sign-extension for the original mode. */
698 gcc_assert (INTVAL (newval)
699 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
701 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
702 CONST_INT is not valid, because after the replacement, the
703 original mode would be gone. Unfortunately, we can't tell
704 when do_SUBST is called to replace the operand thereof, so we
705 perform this test on oldval instead, checking whether an
706 invalid replacement took place before we got here. */
707 gcc_assert (!(GET_CODE (oldval) == SUBREG
708 && CONST_INT_P (SUBREG_REG (oldval))));
709 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
710 && CONST_INT_P (XEXP (oldval, 0))));
713 if (undobuf.frees)
714 buf = undobuf.frees, undobuf.frees = buf->next;
715 else
716 buf = XNEW (struct undo);
718 buf->kind = UNDO_RTX;
719 buf->where.r = into;
720 buf->old_contents.r = oldval;
721 *into = newval;
723 buf->next = undobuf.undos, undobuf.undos = buf;
726 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
728 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
729 for the value of a HOST_WIDE_INT value (including CONST_INT) is
730 not safe. */
732 static void
733 do_SUBST_INT (int *into, int newval)
735 struct undo *buf;
736 int oldval = *into;
738 if (oldval == newval)
739 return;
741 if (undobuf.frees)
742 buf = undobuf.frees, undobuf.frees = buf->next;
743 else
744 buf = XNEW (struct undo);
746 buf->kind = UNDO_INT;
747 buf->where.i = into;
748 buf->old_contents.i = oldval;
749 *into = newval;
751 buf->next = undobuf.undos, undobuf.undos = buf;
754 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
756 /* Similar to SUBST, but just substitute the mode. This is used when
757 changing the mode of a pseudo-register, so that any other
758 references to the entry in the regno_reg_rtx array will change as
759 well. */
761 static void
762 subst_mode (int regno, machine_mode newval)
764 struct undo *buf;
765 rtx reg = regno_reg_rtx[regno];
766 machine_mode oldval = GET_MODE (reg);
768 if (oldval == newval)
769 return;
771 if (undobuf.frees)
772 buf = undobuf.frees, undobuf.frees = buf->next;
773 else
774 buf = XNEW (struct undo);
776 buf->kind = UNDO_MODE;
777 buf->where.regno = regno;
778 buf->old_contents.m = oldval;
779 adjust_reg_mode (reg, newval);
781 buf->next = undobuf.undos, undobuf.undos = buf;
784 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
786 static void
787 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
789 struct undo *buf;
790 struct insn_link * oldval = *into;
792 if (oldval == newval)
793 return;
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
800 buf->kind = UNDO_LINKS;
801 buf->where.l = into;
802 buf->old_contents.l = oldval;
803 *into = newval;
805 buf->next = undobuf.undos, undobuf.undos = buf;
808 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
810 /* Subroutine of try_combine. Determine whether the replacement patterns
811 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
812 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
813 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
814 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
815 of all the instructions can be estimated and the replacements are more
816 expensive than the original sequence. */
818 static bool
819 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
820 rtx newpat, rtx newi2pat, rtx newotherpat)
822 int i0_cost, i1_cost, i2_cost, i3_cost;
823 int new_i2_cost, new_i3_cost;
824 int old_cost, new_cost;
826 /* Lookup the original insn_costs. */
827 i2_cost = INSN_COST (i2);
828 i3_cost = INSN_COST (i3);
830 if (i1)
832 i1_cost = INSN_COST (i1);
833 if (i0)
835 i0_cost = INSN_COST (i0);
836 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
837 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
839 else
841 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
842 ? i1_cost + i2_cost + i3_cost : 0);
843 i0_cost = 0;
846 else
848 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
849 i1_cost = i0_cost = 0;
852 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
853 correct that. */
854 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
855 old_cost -= i1_cost;
858 /* Calculate the replacement insn_costs. */
859 rtx tmp = PATTERN (i3);
860 PATTERN (i3) = newpat;
861 int tmpi = INSN_CODE (i3);
862 INSN_CODE (i3) = -1;
863 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
864 PATTERN (i3) = tmp;
865 INSN_CODE (i3) = tmpi;
866 if (newi2pat)
868 tmp = PATTERN (i2);
869 PATTERN (i2) = newi2pat;
870 tmpi = INSN_CODE (i2);
871 INSN_CODE (i2) = -1;
872 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
873 PATTERN (i2) = tmp;
874 INSN_CODE (i2) = tmpi;
875 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
876 ? new_i2_cost + new_i3_cost : 0;
878 else
880 new_cost = new_i3_cost;
881 new_i2_cost = 0;
884 if (undobuf.other_insn)
886 int old_other_cost, new_other_cost;
888 old_other_cost = INSN_COST (undobuf.other_insn);
889 tmp = PATTERN (undobuf.other_insn);
890 PATTERN (undobuf.other_insn) = newotherpat;
891 tmpi = INSN_CODE (undobuf.other_insn);
892 INSN_CODE (undobuf.other_insn) = -1;
893 new_other_cost = insn_cost (undobuf.other_insn,
894 optimize_this_for_speed_p);
895 PATTERN (undobuf.other_insn) = tmp;
896 INSN_CODE (undobuf.other_insn) = tmpi;
897 if (old_other_cost > 0 && new_other_cost > 0)
899 old_cost += old_other_cost;
900 new_cost += new_other_cost;
902 else
903 old_cost = 0;
906 /* Disallow this combination if both new_cost and old_cost are greater than
907 zero, and new_cost is greater than old cost. */
908 bool reject = old_cost > 0 && new_cost > old_cost;
910 if (dump_file)
912 fprintf (dump_file, "%s combination of insns ",
913 reject ? "rejecting" : "allowing");
914 if (i0)
915 fprintf (dump_file, "%d, ", INSN_UID (i0));
916 if (i1 && INSN_UID (i1) != INSN_UID (i2))
917 fprintf (dump_file, "%d, ", INSN_UID (i1));
918 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
920 fprintf (dump_file, "original costs ");
921 if (i0)
922 fprintf (dump_file, "%d + ", i0_cost);
923 if (i1 && INSN_UID (i1) != INSN_UID (i2))
924 fprintf (dump_file, "%d + ", i1_cost);
925 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
927 if (newi2pat)
928 fprintf (dump_file, "replacement costs %d + %d = %d\n",
929 new_i2_cost, new_i3_cost, new_cost);
930 else
931 fprintf (dump_file, "replacement cost %d\n", new_cost);
934 if (reject)
935 return false;
937 /* Update the uid_insn_cost array with the replacement costs. */
938 INSN_COST (i2) = new_i2_cost;
939 INSN_COST (i3) = new_i3_cost;
940 if (i1)
942 INSN_COST (i1) = 0;
943 if (i0)
944 INSN_COST (i0) = 0;
947 return true;
951 /* Delete any insns that copy a register to itself.
952 Return true if the CFG was changed. */
954 static bool
955 delete_noop_moves (void)
957 rtx_insn *insn, *next;
958 basic_block bb;
960 bool edges_deleted = false;
962 FOR_EACH_BB_FN (bb, cfun)
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
969 if (dump_file)
970 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
972 edges_deleted |= delete_insn_and_edges (insn);
977 return edges_deleted;
981 /* Return false if we do not want to (or cannot) combine DEF. */
982 static bool
983 can_combine_def_p (df_ref def)
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
989 unsigned int regno = DF_REF_REGNO (def);
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1001 return true;
1004 /* Return false if we do not want to (or cannot) combine USE. */
1005 static bool
1006 can_combine_use_p (df_ref use)
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1012 return true;
1015 /* Fill in log links field for all insns. */
1017 static void
1018 create_log_links (void)
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1036 FOR_EACH_BB_FN (bb, cfun)
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1046 FOR_EACH_INSN_DEF (def, insn)
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1051 if (!next_use[regno])
1052 continue;
1054 if (!can_combine_def_p (def))
1055 continue;
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1060 if (BLOCK_FOR_INSN (use_insn) != bb)
1061 continue;
1063 /* flow.c claimed:
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (use_insn)) >= 0)
1072 continue;
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1091 free (next_use);
1094 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B. */
1099 static bool
1100 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1102 struct insn_link *links;
1103 FOR_EACH_LOG_LINK (links, b)
1104 if (links->insn == a)
1105 return true;
1106 return false;
1109 /* Main entry point for combiner. F is the first insn of the function.
1110 NREGS is the first unused pseudo-reg number.
1112 Return nonzero if the CFG was changed (e.g. if the combiner has
1113 turned an indirect jump instruction into a direct jump). */
1114 static bool
1115 combine_instructions (rtx_insn *f, unsigned int nregs)
1117 rtx_insn *insn, *next;
1118 struct insn_link *links, *nextlinks;
1119 rtx_insn *first;
1120 basic_block last_bb;
1122 bool new_direct_jump_p = false;
1124 for (first = f; first && !NONDEBUG_INSN_P (first); )
1125 first = NEXT_INSN (first);
1126 if (!first)
1127 return false;
1129 combine_attempts = 0;
1130 combine_merges = 0;
1131 combine_extras = 0;
1132 combine_successes = 0;
1134 rtl_hooks = combine_rtl_hooks;
1136 reg_stat.safe_grow_cleared (nregs, true);
1138 init_recog_no_volatile ();
1140 /* Allocate array for insn info. */
1141 max_uid_known = get_max_uid ();
1142 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1143 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1144 gcc_obstack_init (&insn_link_obstack);
1146 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1151 nonzero_sign_valid = 0;
1152 label_tick = label_tick_ebb_start = 1;
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1161 setup_incoming_promotions (first);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block, cfun)
1169 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1170 last_call_luid = 0;
1171 mem_last_set = -1;
1173 label_tick++;
1174 if (!single_pred_p (this_basic_block)
1175 || single_pred (this_basic_block) != last_bb)
1176 label_tick_ebb_start = label_tick;
1177 last_bb = this_basic_block;
1179 FOR_BB_INSNS (this_basic_block, insn)
1180 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1182 rtx links;
1184 subst_low_luid = DF_INSN_LUID (insn);
1185 subst_insn = insn;
1187 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1188 record_dead_and_set_regs (insn);
1190 if (AUTO_INC_DEC)
1191 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1192 if (REG_NOTE_KIND (links) == REG_INC)
1193 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1194 insn);
1196 /* Record the current insn_cost of this instruction. */
1197 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1198 if (dump_file)
1200 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1201 dump_insn_slim (dump_file, insn);
1206 nonzero_sign_valid = 1;
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213 int max_combine = param_max_combine_insns;
1215 FOR_EACH_BB_FN (this_basic_block, cfun)
1217 rtx_insn *last_combined_insn = NULL;
1219 /* Ignore instruction combination in basic blocks that are going to
1220 be removed as unreachable anyway. See PR82386. */
1221 if (EDGE_COUNT (this_basic_block->preds) == 0)
1222 continue;
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1228 label_tick++;
1229 if (!single_pred_p (this_basic_block)
1230 || single_pred (this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1243 while (last_combined_insn
1244 && (!NONDEBUG_INSN_P (last_combined_insn)
1245 || last_combined_insn->deleted ()))
1246 last_combined_insn = PREV_INSN (last_combined_insn);
1247 if (last_combined_insn == NULL_RTX
1248 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1261 /* Try this insn with each insn it links back to. */
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1272 /* Try each sequence of three linked insns ending with this one. */
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1277 rtx_insn *link = links->insn;
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1294 /* Try combining an insn with two different insns whose results it
1295 uses. */
1296 if (max_combine >= 3)
1297 FOR_EACH_LOG_LINK (links, insn)
1298 for (nextlinks = links->next; nextlinks;
1299 nextlinks = nextlinks->next)
1300 if ((next = try_combine (insn, links->insn,
1301 nextlinks->insn, NULL,
1302 &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1306 statistics_counter_event (cfun, "three-insn combine", 1);
1307 goto retry;
1310 /* Try four-instruction combinations. */
1311 if (max_combine >= 4)
1312 FOR_EACH_LOG_LINK (links, insn)
1314 struct insn_link *next1;
1315 rtx_insn *link = links->insn;
1317 /* If the linked insn has been replaced by a note, then there
1318 is no point in pursuing this chain any further. */
1319 if (NOTE_P (link))
1320 continue;
1322 FOR_EACH_LOG_LINK (next1, link)
1324 rtx_insn *link1 = next1->insn;
1325 if (NOTE_P (link1))
1326 continue;
1327 /* I0 -> I1 -> I2 -> I3. */
1328 FOR_EACH_LOG_LINK (nextlinks, link1)
1329 if ((next = try_combine (insn, link, link1,
1330 nextlinks->insn,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1334 statistics_counter_event (cfun, "four-insn combine", 1);
1335 goto retry;
1337 /* I0, I1 -> I2, I2 -> I3. */
1338 for (nextlinks = next1->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, link, link1,
1341 nextlinks->insn,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1345 statistics_counter_event (cfun, "four-insn combine", 1);
1346 goto retry;
1350 for (next1 = links->next; next1; next1 = next1->next)
1352 rtx_insn *link1 = next1->insn;
1353 if (NOTE_P (link1))
1354 continue;
1355 /* I0 -> I2; I1, I2 -> I3. */
1356 FOR_EACH_LOG_LINK (nextlinks, link)
1357 if ((next = try_combine (insn, link, link1,
1358 nextlinks->insn,
1359 &new_direct_jump_p,
1360 last_combined_insn)) != 0)
1362 statistics_counter_event (cfun, "four-insn combine", 1);
1363 goto retry;
1365 /* I0 -> I1; I1, I2 -> I3. */
1366 FOR_EACH_LOG_LINK (nextlinks, link1)
1367 if ((next = try_combine (insn, link, link1,
1368 nextlinks->insn,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1372 statistics_counter_event (cfun, "four-insn combine", 1);
1373 goto retry;
1378 /* Try this insn with each REG_EQUAL note it links back to. */
1379 FOR_EACH_LOG_LINK (links, insn)
1381 rtx set, note;
1382 rtx_insn *temp = links->insn;
1383 if ((set = single_set (temp)) != 0
1384 && (note = find_reg_equal_equiv_note (temp)) != 0
1385 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1386 && ! side_effects_p (SET_SRC (set))
1387 /* Avoid using a register that may already been marked
1388 dead by an earlier instruction. */
1389 && ! unmentioned_reg_p (note, SET_SRC (set))
1390 && (GET_MODE (note) == VOIDmode
1391 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1392 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1393 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1394 || (GET_MODE (XEXP (SET_DEST (set), 0))
1395 == GET_MODE (note))))))
1397 /* Temporarily replace the set's source with the
1398 contents of the REG_EQUAL note. The insn will
1399 be deleted or recognized by try_combine. */
1400 rtx orig_src = SET_SRC (set);
1401 rtx orig_dest = SET_DEST (set);
1402 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1403 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1404 SET_SRC (set) = note;
1405 i2mod = temp;
1406 i2mod_old_rhs = copy_rtx (orig_src);
1407 i2mod_new_rhs = copy_rtx (note);
1408 next = try_combine (insn, i2mod, NULL, NULL,
1409 &new_direct_jump_p,
1410 last_combined_insn);
1411 i2mod = NULL;
1412 if (next)
1414 statistics_counter_event (cfun, "insn-with-note combine", 1);
1415 goto retry;
1417 INSN_CODE (temp) = -1;
1418 SET_SRC (set) = orig_src;
1419 SET_DEST (set) = orig_dest;
1423 if (!NOTE_P (insn))
1424 record_dead_and_set_regs (insn);
1426 retry:
1431 default_rtl_profile ();
1432 clear_bb_flags ();
1434 if (purge_all_dead_edges ())
1435 new_direct_jump_p = true;
1436 if (delete_noop_moves ())
1437 new_direct_jump_p = true;
1439 /* Clean up. */
1440 obstack_free (&insn_link_obstack, NULL);
1441 free (uid_log_links);
1442 free (uid_insn_cost);
1443 reg_stat.release ();
1446 struct undo *undo, *next;
1447 for (undo = undobuf.frees; undo; undo = next)
1449 next = undo->next;
1450 free (undo);
1452 undobuf.frees = 0;
1455 statistics_counter_event (cfun, "attempts", combine_attempts);
1456 statistics_counter_event (cfun, "merges", combine_merges);
1457 statistics_counter_event (cfun, "extras", combine_extras);
1458 statistics_counter_event (cfun, "successes", combine_successes);
1460 nonzero_sign_valid = 0;
1461 rtl_hooks = general_rtl_hooks;
1463 /* Make recognizer allow volatile MEMs again. */
1464 init_recog ();
1466 return new_direct_jump_p;
1469 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1471 static void
1472 init_reg_last (void)
1474 unsigned int i;
1475 reg_stat_type *p;
1477 FOR_EACH_VEC_ELT (reg_stat, i, p)
1478 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1481 /* Set up any promoted values for incoming argument registers. */
1483 static void
1484 setup_incoming_promotions (rtx_insn *first)
1486 tree arg;
1487 bool strictly_local = false;
1489 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1490 arg = DECL_CHAIN (arg))
1492 rtx x, reg = DECL_INCOMING_RTL (arg);
1493 int uns1, uns3;
1494 machine_mode mode1, mode2, mode3, mode4;
1496 /* Only continue if the incoming argument is in a register. */
1497 if (!REG_P (reg))
1498 continue;
1500 /* Determine, if possible, whether all call sites of the current
1501 function lie within the current compilation unit. (This does
1502 take into account the exporting of a function via taking its
1503 address, and so forth.) */
1504 strictly_local
1505 = cgraph_node::local_info_node (current_function_decl)->local;
1507 /* The mode and signedness of the argument before any promotions happen
1508 (equal to the mode of the pseudo holding it at that stage). */
1509 mode1 = TYPE_MODE (TREE_TYPE (arg));
1510 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1512 /* The mode and signedness of the argument after any source language and
1513 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1514 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1515 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1517 /* The mode and signedness of the argument as it is actually passed,
1518 see assign_parm_setup_reg in function.cc. */
1519 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1520 TREE_TYPE (cfun->decl), 0);
1522 /* The mode of the register in which the argument is being passed. */
1523 mode4 = GET_MODE (reg);
1525 /* Eliminate sign extensions in the callee when:
1526 (a) A mode promotion has occurred; */
1527 if (mode1 == mode3)
1528 continue;
1529 /* (b) The mode of the register is the same as the mode of
1530 the argument as it is passed; */
1531 if (mode3 != mode4)
1532 continue;
1533 /* (c) There's no language level extension; */
1534 if (mode1 == mode2)
1536 /* (c.1) All callers are from the current compilation unit. If that's
1537 the case we don't have to rely on an ABI, we only have to know
1538 what we're generating right now, and we know that we will do the
1539 mode1 to mode2 promotion with the given sign. */
1540 else if (!strictly_local)
1541 continue;
1542 /* (c.2) The combination of the two promotions is useful. This is
1543 true when the signs match, or if the first promotion is unsigned.
1544 In the later case, (sign_extend (zero_extend x)) is the same as
1545 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1546 else if (uns1)
1547 uns3 = true;
1548 else if (uns3)
1549 continue;
1551 /* Record that the value was promoted from mode1 to mode3,
1552 so that any sign extension at the head of the current
1553 function may be eliminated. */
1554 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1555 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1556 record_value_for_reg (reg, first, x);
1560 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1561 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1562 because some machines (maybe most) will actually do the sign-extension and
1563 this is the conservative approach.
1565 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1566 kludge. */
1568 static rtx
1569 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1571 scalar_int_mode int_mode;
1572 if (CONST_INT_P (src)
1573 && is_a <scalar_int_mode> (mode, &int_mode)
1574 && GET_MODE_PRECISION (int_mode) < prec
1575 && INTVAL (src) > 0
1576 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1577 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1579 return src;
1582 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1583 and SET. */
1585 static void
1586 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1587 rtx x)
1589 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1590 unsigned HOST_WIDE_INT bits = 0;
1591 rtx reg_equal = NULL, src = SET_SRC (set);
1592 unsigned int num = 0;
1594 if (reg_equal_note)
1595 reg_equal = XEXP (reg_equal_note, 0);
1597 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1599 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1600 if (reg_equal)
1601 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1604 /* Don't call nonzero_bits if it cannot change anything. */
1605 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1607 machine_mode mode = GET_MODE (x);
1608 if (GET_MODE_CLASS (mode) == MODE_INT
1609 && HWI_COMPUTABLE_MODE_P (mode))
1610 mode = nonzero_bits_mode;
1611 bits = nonzero_bits (src, mode);
1612 if (reg_equal && bits)
1613 bits &= nonzero_bits (reg_equal, mode);
1614 rsp->nonzero_bits |= bits;
1617 /* Don't call num_sign_bit_copies if it cannot change anything. */
1618 if (rsp->sign_bit_copies != 1)
1620 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1621 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1623 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1624 if (num == 0 || numeq > num)
1625 num = numeq;
1627 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1628 rsp->sign_bit_copies = num;
1632 /* Called via note_stores. If X is a pseudo that is narrower than
1633 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1635 If we are setting only a portion of X and we can't figure out what
1636 portion, assume all bits will be used since we don't know what will
1637 be happening.
1639 Similarly, set how many bits of X are known to be copies of the sign bit
1640 at all locations in the function. This is the smallest number implied
1641 by any set of X. */
1643 static void
1644 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1646 rtx_insn *insn = (rtx_insn *) data;
1647 scalar_int_mode mode;
1649 if (REG_P (x)
1650 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1651 /* If this register is undefined at the start of the file, we can't
1652 say what its contents were. */
1653 && ! REGNO_REG_SET_P
1654 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1655 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1656 && HWI_COMPUTABLE_MODE_P (mode))
1658 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1660 if (set == 0 || GET_CODE (set) == CLOBBER)
1662 rsp->nonzero_bits = GET_MODE_MASK (mode);
1663 rsp->sign_bit_copies = 1;
1664 return;
1667 /* If this register is being initialized using itself, and the
1668 register is uninitialized in this basic block, and there are
1669 no LOG_LINKS which set the register, then part of the
1670 register is uninitialized. In that case we can't assume
1671 anything about the number of nonzero bits.
1673 ??? We could do better if we checked this in
1674 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1675 could avoid making assumptions about the insn which initially
1676 sets the register, while still using the information in other
1677 insns. We would have to be careful to check every insn
1678 involved in the combination. */
1680 if (insn
1681 && reg_referenced_p (x, PATTERN (insn))
1682 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1683 REGNO (x)))
1685 struct insn_link *link;
1687 FOR_EACH_LOG_LINK (link, insn)
1688 if (dead_or_set_p (link->insn, x))
1689 break;
1690 if (!link)
1692 rsp->nonzero_bits = GET_MODE_MASK (mode);
1693 rsp->sign_bit_copies = 1;
1694 return;
1698 /* If this is a complex assignment, see if we can convert it into a
1699 simple assignment. */
1700 set = expand_field_assignment (set);
1702 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1703 set what we know about X. */
1705 if (SET_DEST (set) == x
1706 || (paradoxical_subreg_p (SET_DEST (set))
1707 && SUBREG_REG (SET_DEST (set)) == x))
1708 update_rsp_from_reg_equal (rsp, insn, set, x);
1709 else
1711 rsp->nonzero_bits = GET_MODE_MASK (mode);
1712 rsp->sign_bit_copies = 1;
1717 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1722 Return false if the combination is not allowed for any reason.
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1726 will return true. */
1728 static bool
1729 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1730 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1731 rtx *pdest, rtx *psrc)
1733 int i;
1734 const_rtx set = 0;
1735 rtx src, dest;
1736 rtx_insn *p;
1737 rtx link;
1738 bool all_adjacent = true;
1739 bool (*is_volatile_p) (const_rtx);
1741 if (succ)
1743 if (succ2)
1745 if (next_active_insn (succ2) != i3)
1746 all_adjacent = false;
1747 if (next_active_insn (succ) != succ2)
1748 all_adjacent = false;
1750 else if (next_active_insn (succ) != i3)
1751 all_adjacent = false;
1752 if (next_active_insn (insn) != succ)
1753 all_adjacent = false;
1755 else if (next_active_insn (insn) != i3)
1756 all_adjacent = false;
1758 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1759 or a PARALLEL consisting of such a SET and CLOBBERs.
1761 If INSN has CLOBBER parallel parts, ignore them for our processing.
1762 By definition, these happen during the execution of the insn. When it
1763 is merged with another insn, all bets are off. If they are, in fact,
1764 needed and aren't also supplied in I3, they may be added by
1765 recog_for_combine. Otherwise, it won't match.
1767 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1768 note.
1770 Get the source and destination of INSN. If more than one, can't
1771 combine. */
1773 if (GET_CODE (PATTERN (insn)) == SET)
1774 set = PATTERN (insn);
1775 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1776 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1778 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1780 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1782 switch (GET_CODE (elt))
1784 /* This is important to combine floating point insns
1785 for the SH4 port. */
1786 case USE:
1787 /* Combining an isolated USE doesn't make sense.
1788 We depend here on combinable_i3pat to reject them. */
1789 /* The code below this loop only verifies that the inputs of
1790 the SET in INSN do not change. We call reg_set_between_p
1791 to verify that the REG in the USE does not change between
1792 I3 and INSN.
1793 If the USE in INSN was for a pseudo register, the matching
1794 insn pattern will likely match any register; combining this
1795 with any other USE would only be safe if we knew that the
1796 used registers have identical values, or if there was
1797 something to tell them apart, e.g. different modes. For
1798 now, we forgo such complicated tests and simply disallow
1799 combining of USES of pseudo registers with any other USE. */
1800 if (REG_P (XEXP (elt, 0))
1801 && GET_CODE (PATTERN (i3)) == PARALLEL)
1803 rtx i3pat = PATTERN (i3);
1804 int i = XVECLEN (i3pat, 0) - 1;
1805 unsigned int regno = REGNO (XEXP (elt, 0));
1809 rtx i3elt = XVECEXP (i3pat, 0, i);
1811 if (GET_CODE (i3elt) == USE
1812 && REG_P (XEXP (i3elt, 0))
1813 && (REGNO (XEXP (i3elt, 0)) == regno
1814 ? reg_set_between_p (XEXP (elt, 0),
1815 PREV_INSN (insn), i3)
1816 : regno >= FIRST_PSEUDO_REGISTER))
1817 return false;
1819 while (--i >= 0);
1821 break;
1823 /* We can ignore CLOBBERs. */
1824 case CLOBBER:
1825 break;
1827 case SET:
1828 /* Ignore SETs whose result isn't used but not those that
1829 have side-effects. */
1830 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1831 && insn_nothrow_p (insn)
1832 && !side_effects_p (elt))
1833 break;
1835 /* If we have already found a SET, this is a second one and
1836 so we cannot combine with this insn. */
1837 if (set)
1838 return false;
1840 set = elt;
1841 break;
1843 default:
1844 /* Anything else means we can't combine. */
1845 return false;
1849 if (set == 0
1850 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1851 so don't do anything with it. */
1852 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1853 return false;
1855 else
1856 return false;
1858 if (set == 0)
1859 return false;
1861 /* The simplification in expand_field_assignment may call back to
1862 get_last_value, so set safe guard here. */
1863 subst_low_luid = DF_INSN_LUID (insn);
1865 set = expand_field_assignment (set);
1866 src = SET_SRC (set), dest = SET_DEST (set);
1868 /* Do not eliminate user-specified register if it is in an
1869 asm input because we may break the register asm usage defined
1870 in GCC manual if allow to do so.
1871 Be aware that this may cover more cases than we expect but this
1872 should be harmless. */
1873 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1874 && extract_asm_operands (PATTERN (i3)))
1875 return false;
1877 /* Don't eliminate a store in the stack pointer. */
1878 if (dest == stack_pointer_rtx
1879 /* Don't combine with an insn that sets a register to itself if it has
1880 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1881 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1882 /* Can't merge an ASM_OPERANDS. */
1883 || GET_CODE (src) == ASM_OPERANDS
1884 /* Can't merge a function call. */
1885 || GET_CODE (src) == CALL
1886 /* Don't eliminate a function call argument. */
1887 || (CALL_P (i3)
1888 && (find_reg_fusage (i3, USE, dest)
1889 || (REG_P (dest)
1890 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1891 && global_regs[REGNO (dest)])))
1892 /* Don't substitute into an incremented register. */
1893 || FIND_REG_INC_NOTE (i3, dest)
1894 || (succ && FIND_REG_INC_NOTE (succ, dest))
1895 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1896 /* Don't substitute into a non-local goto, this confuses CFG. */
1897 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1898 /* Make sure that DEST is not used after INSN but before SUCC, or
1899 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1900 || (!all_adjacent
1901 && ((succ2
1902 && (reg_used_between_p (dest, succ2, i3)
1903 || reg_used_between_p (dest, succ, succ2)))
1904 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1905 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1906 || (succ
1907 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1908 that case SUCC is not in the insn stream, so use SUCC2
1909 instead for this test. */
1910 && reg_used_between_p (dest, insn,
1911 succ2
1912 && INSN_UID (succ) == INSN_UID (succ2)
1913 ? succ2 : succ))))
1914 /* Make sure that the value that is to be substituted for the register
1915 does not use any registers whose values alter in between. However,
1916 If the insns are adjacent, a use can't cross a set even though we
1917 think it might (this can happen for a sequence of insns each setting
1918 the same destination; last_set of that register might point to
1919 a NOTE). If INSN has a REG_EQUIV note, the register is always
1920 equivalent to the memory so the substitution is valid even if there
1921 are intervening stores. Also, don't move a volatile asm or
1922 UNSPEC_VOLATILE across any other insns. */
1923 || (! all_adjacent
1924 && (((!MEM_P (src)
1925 || ! find_reg_note (insn, REG_EQUIV, src))
1926 && modified_between_p (src, insn, i3))
1927 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1928 || GET_CODE (src) == UNSPEC_VOLATILE))
1929 /* Don't combine across a CALL_INSN, because that would possibly
1930 change whether the life span of some REGs crosses calls or not,
1931 and it is a pain to update that information.
1932 Exception: if source is a constant, moving it later can't hurt.
1933 Accept that as a special case. */
1934 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1935 return false;
1937 /* DEST must be a REG. */
1938 if (REG_P (dest))
1940 /* If register alignment is being enforced for multi-word items in all
1941 cases except for parameters, it is possible to have a register copy
1942 insn referencing a hard register that is not allowed to contain the
1943 mode being copied and which would not be valid as an operand of most
1944 insns. Eliminate this problem by not combining with such an insn.
1946 Also, on some machines we don't want to extend the life of a hard
1947 register. */
1949 if (REG_P (src)
1950 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1952 /* Don't extend the life of a hard register unless it is
1953 user variable (if we have few registers) or it can't
1954 fit into the desired register (meaning something special
1955 is going on).
1956 Also avoid substituting a return register into I3, because
1957 reload can't handle a conflict with constraints of other
1958 inputs. */
1959 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1960 && !targetm.hard_regno_mode_ok (REGNO (src),
1961 GET_MODE (src)))))
1962 return false;
1964 else
1965 return false;
1968 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1969 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1970 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1972 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1974 /* If the clobber represents an earlyclobber operand, we must not
1975 substitute an expression containing the clobbered register.
1976 As we do not analyze the constraint strings here, we have to
1977 make the conservative assumption. However, if the register is
1978 a fixed hard reg, the clobber cannot represent any operand;
1979 we leave it up to the machine description to either accept or
1980 reject use-and-clobber patterns. */
1981 if (!REG_P (reg)
1982 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1983 || !fixed_regs[REGNO (reg)])
1984 if (reg_overlap_mentioned_p (reg, src))
1985 return false;
1988 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1989 or not), reject, unless nothing volatile comes between it and I3 */
1991 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1993 /* Make sure neither succ nor succ2 contains a volatile reference. */
1994 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1995 return false;
1996 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1997 return false;
1998 /* We'll check insns between INSN and I3 below. */
2001 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2002 to be an explicit register variable, and was chosen for a reason. */
2004 if (GET_CODE (src) == ASM_OPERANDS
2005 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2006 return false;
2008 /* If INSN contains volatile references (specifically volatile MEMs),
2009 we cannot combine across any other volatile references.
2010 Even if INSN doesn't contain volatile references, any intervening
2011 volatile insn might affect machine state. */
2013 is_volatile_p = volatile_refs_p (PATTERN (insn))
2014 ? volatile_refs_p
2015 : volatile_insn_p;
2017 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2018 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2019 return false;
2021 /* If INSN contains an autoincrement or autodecrement, make sure that
2022 register is not used between there and I3, and not already used in
2023 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2024 Also insist that I3 not be a jump if using LRA; if it were one
2025 and the incremented register were spilled, we would lose.
2026 Reload handles this correctly. */
2028 if (AUTO_INC_DEC)
2029 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2030 if (REG_NOTE_KIND (link) == REG_INC
2031 && ((JUMP_P (i3) && targetm.lra_p ())
2032 || reg_used_between_p (XEXP (link, 0), insn, i3)
2033 || (pred != NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2035 || (pred2 != NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2037 || (succ != NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2039 || (succ2 != NULL_RTX
2040 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2041 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2042 return false;
2044 /* If we get here, we have passed all the tests and the combination is
2045 to be allowed. */
2047 *pdest = dest;
2048 *psrc = src;
2050 return true;
2053 /* LOC is the location within I3 that contains its pattern or the component
2054 of a PARALLEL of the pattern. We validate that it is valid for combining.
2056 One problem is if I3 modifies its output, as opposed to replacing it
2057 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2058 doing so would produce an insn that is not equivalent to the original insns.
2060 Consider:
2062 (set (reg:DI 101) (reg:DI 100))
2063 (set (subreg:SI (reg:DI 101) 0) <foo>)
2065 This is NOT equivalent to:
2067 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2068 (set (reg:DI 101) (reg:DI 100))])
2070 Not only does this modify 100 (in which case it might still be valid
2071 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2073 We can also run into a problem if I2 sets a register that I1
2074 uses and I1 gets directly substituted into I3 (not via I2). In that
2075 case, we would be getting the wrong value of I2DEST into I3, so we
2076 must reject the combination. This case occurs when I2 and I1 both
2077 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2078 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2079 of a SET must prevent combination from occurring. The same situation
2080 can occur for I0, in which case I0_NOT_IN_SRC is set.
2082 Before doing the above check, we first try to expand a field assignment
2083 into a set of logical operations.
2085 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2086 we place a register that is both set and used within I3. If more than one
2087 such register is detected, we fail.
2089 Return true if the combination is valid, false otherwise. */
2091 static bool
2092 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2093 bool i1_not_in_src, bool i0_not_in_src, rtx *pi3dest_killed)
2095 rtx x = *loc;
2097 if (GET_CODE (x) == SET)
2099 rtx set = x ;
2100 rtx dest = SET_DEST (set);
2101 rtx src = SET_SRC (set);
2102 rtx inner_dest = dest;
2103 rtx subdest;
2105 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2106 || GET_CODE (inner_dest) == SUBREG
2107 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2108 inner_dest = XEXP (inner_dest, 0);
2110 /* Check for the case where I3 modifies its output, as discussed
2111 above. We don't want to prevent pseudos from being combined
2112 into the address of a MEM, so only prevent the combination if
2113 i1 or i2 set the same MEM. */
2114 if ((inner_dest != dest &&
2115 (!MEM_P (inner_dest)
2116 || rtx_equal_p (i2dest, inner_dest)
2117 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2118 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2119 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2120 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2121 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2123 /* This is the same test done in can_combine_p except we can't test
2124 all_adjacent; we don't have to, since this instruction will stay
2125 in place, thus we are not considering increasing the lifetime of
2126 INNER_DEST.
2128 Also, if this insn sets a function argument, combining it with
2129 something that might need a spill could clobber a previous
2130 function argument; the all_adjacent test in can_combine_p also
2131 checks this; here, we do a more specific test for this case. */
2133 || (REG_P (inner_dest)
2134 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2135 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2136 GET_MODE (inner_dest)))
2137 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2138 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2139 return false;
2141 /* If DEST is used in I3, it is being killed in this insn, so
2142 record that for later. We have to consider paradoxical
2143 subregs here, since they kill the whole register, but we
2144 ignore partial subregs, STRICT_LOW_PART, etc.
2145 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2146 STACK_POINTER_REGNUM, since these are always considered to be
2147 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 subdest = dest;
2149 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2150 subdest = SUBREG_REG (subdest);
2151 if (pi3dest_killed
2152 && REG_P (subdest)
2153 && reg_referenced_p (subdest, PATTERN (i3))
2154 && REGNO (subdest) != FRAME_POINTER_REGNUM
2155 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2157 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2158 || (REGNO (subdest) != ARG_POINTER_REGNUM
2159 || ! fixed_regs [REGNO (subdest)]))
2160 && REGNO (subdest) != STACK_POINTER_REGNUM)
2162 if (*pi3dest_killed)
2163 return false;
2165 *pi3dest_killed = subdest;
2169 else if (GET_CODE (x) == PARALLEL)
2171 int i;
2173 for (i = 0; i < XVECLEN (x, 0); i++)
2174 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2175 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2176 return false;
2179 return true;
2182 /* Return true if X is an arithmetic expression that contains a multiplication
2183 and division. We don't count multiplications by powers of two here. */
2185 static bool
2186 contains_muldiv (rtx x)
2188 switch (GET_CODE (x))
2190 case MOD: case DIV: case UMOD: case UDIV:
2191 return true;
2193 case MULT:
2194 return ! (CONST_INT_P (XEXP (x, 1))
2195 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2196 default:
2197 if (BINARY_P (x))
2198 return contains_muldiv (XEXP (x, 0))
2199 || contains_muldiv (XEXP (x, 1));
2201 if (UNARY_P (x))
2202 return contains_muldiv (XEXP (x, 0));
2204 return false;
2208 /* Determine whether INSN can be used in a combination. Return true if
2209 not. This is used in try_combine to detect early some cases where we
2210 can't perform combinations. */
2212 static bool
2213 cant_combine_insn_p (rtx_insn *insn)
2215 rtx set;
2216 rtx src, dest;
2218 /* If this isn't really an insn, we can't do anything.
2219 This can occur when flow deletes an insn that it has merged into an
2220 auto-increment address. */
2221 if (!NONDEBUG_INSN_P (insn))
2222 return true;
2224 /* Never combine loads and stores involving hard regs that are likely
2225 to be spilled. The register allocator can usually handle such
2226 reg-reg moves by tying. If we allow the combiner to make
2227 substitutions of likely-spilled regs, reload might die.
2228 As an exception, we allow combinations involving fixed regs; these are
2229 not available to the register allocator so there's no risk involved. */
2231 set = single_set (insn);
2232 if (! set)
2233 return false;
2234 src = SET_SRC (set);
2235 dest = SET_DEST (set);
2236 if (GET_CODE (src) == SUBREG)
2237 src = SUBREG_REG (src);
2238 if (GET_CODE (dest) == SUBREG)
2239 dest = SUBREG_REG (dest);
2240 if (REG_P (src) && REG_P (dest)
2241 && ((HARD_REGISTER_P (src)
2242 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2243 #ifdef LEAF_REGISTERS
2244 && ! LEAF_REGISTERS [REGNO (src)])
2245 #else
2247 #endif
2248 || (HARD_REGISTER_P (dest)
2249 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2250 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2251 return true;
2253 return false;
2256 struct likely_spilled_retval_info
2258 unsigned regno, nregs;
2259 unsigned mask;
2262 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2263 hard registers that are known to be written to / clobbered in full. */
2264 static void
2265 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2267 struct likely_spilled_retval_info *const info =
2268 (struct likely_spilled_retval_info *) data;
2269 unsigned regno, nregs;
2270 unsigned new_mask;
2272 if (!REG_P (XEXP (set, 0)))
2273 return;
2274 regno = REGNO (x);
2275 if (regno >= info->regno + info->nregs)
2276 return;
2277 nregs = REG_NREGS (x);
2278 if (regno + nregs <= info->regno)
2279 return;
2280 new_mask = (2U << (nregs - 1)) - 1;
2281 if (regno < info->regno)
2282 new_mask >>= info->regno - regno;
2283 else
2284 new_mask <<= regno - info->regno;
2285 info->mask &= ~new_mask;
2288 /* Return true iff part of the return value is live during INSN, and
2289 it is likely spilled. This can happen when more than one insn is needed
2290 to copy the return value, e.g. when we consider to combine into the
2291 second copy insn for a complex value. */
2293 static bool
2294 likely_spilled_retval_p (rtx_insn *insn)
2296 rtx_insn *use = BB_END (this_basic_block);
2297 rtx reg;
2298 rtx_insn *p;
2299 unsigned regno, nregs;
2300 /* We assume here that no machine mode needs more than
2301 32 hard registers when the value overlaps with a register
2302 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2303 unsigned mask;
2304 struct likely_spilled_retval_info info;
2306 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2307 return false;
2308 reg = XEXP (PATTERN (use), 0);
2309 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2310 return false;
2311 regno = REGNO (reg);
2312 nregs = REG_NREGS (reg);
2313 if (nregs == 1)
2314 return false;
2315 mask = (2U << (nregs - 1)) - 1;
2317 /* Disregard parts of the return value that are set later. */
2318 info.regno = regno;
2319 info.nregs = nregs;
2320 info.mask = mask;
2321 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2322 if (INSN_P (p))
2323 note_stores (p, likely_spilled_retval_1, &info);
2324 mask = info.mask;
2326 /* Check if any of the (probably) live return value registers is
2327 likely spilled. */
2328 nregs --;
2331 if ((mask & 1 << nregs)
2332 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2333 return true;
2334 } while (nregs--);
2335 return false;
2338 /* Adjust INSN after we made a change to its destination.
2340 Changing the destination can invalidate notes that say something about
2341 the results of the insn and a LOG_LINK pointing to the insn. */
2343 static void
2344 adjust_for_new_dest (rtx_insn *insn)
2346 /* For notes, be conservative and simply remove them. */
2347 remove_reg_equal_equiv_notes (insn, true);
2349 /* The new insn will have a destination that was previously the destination
2350 of an insn just above it. Call distribute_links to make a LOG_LINK from
2351 the next use of that destination. */
2353 rtx set = single_set (insn);
2354 gcc_assert (set);
2356 rtx reg = SET_DEST (set);
2358 while (GET_CODE (reg) == ZERO_EXTRACT
2359 || GET_CODE (reg) == STRICT_LOW_PART
2360 || GET_CODE (reg) == SUBREG)
2361 reg = XEXP (reg, 0);
2362 gcc_assert (REG_P (reg));
2364 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2366 df_insn_rescan (insn);
2369 /* Return TRUE if combine can reuse reg X in mode MODE.
2370 ADDED_SETS is trueif the original set is still required. */
2371 static bool
2372 can_change_dest_mode (rtx x, bool added_sets, machine_mode mode)
2374 unsigned int regno;
2376 if (!REG_P (x))
2377 return false;
2379 /* Don't change between modes with different underlying register sizes,
2380 since this could lead to invalid subregs. */
2381 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2382 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2383 return false;
2385 regno = REGNO (x);
2386 /* Allow hard registers if the new mode is legal, and occupies no more
2387 registers than the old mode. */
2388 if (regno < FIRST_PSEUDO_REGISTER)
2389 return (targetm.hard_regno_mode_ok (regno, mode)
2390 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2392 /* Or a pseudo that is only used once. */
2393 return (regno < reg_n_sets_max
2394 && REG_N_SETS (regno) == 1
2395 && !added_sets
2396 && !REG_USERVAR_P (x));
2400 /* Check whether X, the destination of a set, refers to part of
2401 the register specified by REG. */
2403 static bool
2404 reg_subword_p (rtx x, rtx reg)
2406 /* Check that reg is an integer mode register. */
2407 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2408 return false;
2410 if (GET_CODE (x) == STRICT_LOW_PART
2411 || GET_CODE (x) == ZERO_EXTRACT)
2412 x = XEXP (x, 0);
2414 return GET_CODE (x) == SUBREG
2415 && !paradoxical_subreg_p (x)
2416 && SUBREG_REG (x) == reg
2417 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2420 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2421 by an arbitrary number of CLOBBERs. */
2422 static bool
2423 is_parallel_of_n_reg_sets (rtx pat, int n)
2425 if (GET_CODE (pat) != PARALLEL)
2426 return false;
2428 int len = XVECLEN (pat, 0);
2429 if (len < n)
2430 return false;
2432 int i;
2433 for (i = 0; i < n; i++)
2434 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2435 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2436 return false;
2437 for ( ; i < len; i++)
2438 switch (GET_CODE (XVECEXP (pat, 0, i)))
2440 case CLOBBER:
2441 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2442 return false;
2443 break;
2444 default:
2445 return false;
2447 return true;
2450 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2451 CLOBBERs), can be split into individual SETs in that order, without
2452 changing semantics. */
2453 static bool
2454 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2456 if (!insn_nothrow_p (insn))
2457 return false;
2459 rtx pat = PATTERN (insn);
2461 int i, j;
2462 for (i = 0; i < n; i++)
2464 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2465 return false;
2467 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2469 for (j = i + 1; j < n; j++)
2470 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2471 return false;
2474 return true;
2477 /* Return whether X is just a single_set, with the source
2478 a general_operand. */
2479 static bool
2480 is_just_move (rtx_insn *x)
2482 rtx set = single_set (x);
2483 if (!set)
2484 return false;
2486 return general_operand (SET_SRC (set), VOIDmode);
2489 /* Callback function to count autoincs. */
2491 static int
2492 count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2494 (*((int *) arg))++;
2496 return 0;
2499 /* Try to combine the insns I0, I1 and I2 into I3.
2500 Here I0, I1 and I2 appear earlier than I3.
2501 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2504 If we are combining more than two insns and the resulting insn is not
2505 recognized, try splitting it into two insns. If that happens, I2 and I3
2506 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2507 Otherwise, I0, I1 and I2 are pseudo-deleted.
2509 Return 0 if the combination does not work. Then nothing is changed.
2510 If we did the combination, return the insn at which combine should
2511 resume scanning.
2513 Set NEW_DIRECT_JUMP_P to true if try_combine creates a
2514 new direct jump instruction.
2516 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2517 been I3 passed to an earlier try_combine within the same basic
2518 block. */
2520 static rtx_insn *
2521 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2522 bool *new_direct_jump_p, rtx_insn *last_combined_insn)
2524 /* New patterns for I3 and I2, respectively. */
2525 rtx newpat, newi2pat = 0;
2526 rtvec newpat_vec_with_clobbers = 0;
2527 bool substed_i2 = false, substed_i1 = false, substed_i0 = false;
2528 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2529 dead. */
2530 bool added_sets_0, added_sets_1, added_sets_2;
2531 /* Total number of SETs to put into I3. */
2532 int total_sets;
2533 /* Nonzero if I2's or I1's body now appears in I3. */
2534 int i2_is_used = 0, i1_is_used = 0;
2535 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2536 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2537 /* Contains I3 if the destination of I3 is used in its source, which means
2538 that the old life of I3 is being killed. If that usage is placed into
2539 I2 and not in I3, a REG_DEAD note must be made. */
2540 rtx i3dest_killed = 0;
2541 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2542 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2543 /* Copy of SET_SRC of I1 and I0, if needed. */
2544 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2545 /* Set if I2DEST was reused as a scratch register. */
2546 bool i2scratch = false;
2547 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2548 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2549 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2550 bool i2dest_in_i2src = false, i1dest_in_i1src = false;
2551 bool i2dest_in_i1src = false, i0dest_in_i0src = false;
2552 bool i1dest_in_i0src = false, i2dest_in_i0src = false;;
2553 bool i2dest_killed = false, i1dest_killed = false, i0dest_killed = false;
2554 bool i1_feeds_i2_n = false, i0_feeds_i2_n = false, i0_feeds_i1_n = false;
2555 /* Notes that must be added to REG_NOTES in I3 and I2. */
2556 rtx new_i3_notes, new_i2_notes;
2557 /* Notes that we substituted I3 into I2 instead of the normal case. */
2558 bool i3_subst_into_i2 = false;
2559 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 bool have_mult = false;
2561 bool swap_i2i3 = false;
2562 bool split_i2i3 = false;
2563 bool changed_i3_dest = false;
2564 bool i2_was_move = false, i3_was_move = false;
2565 int n_auto_inc = 0;
2567 int maxreg;
2568 rtx_insn *temp_insn;
2569 rtx temp_expr;
2570 struct insn_link *link;
2571 rtx other_pat = 0;
2572 rtx new_other_notes;
2573 int i;
2574 scalar_int_mode dest_mode, temp_mode;
2575 bool has_non_call_exception = false;
2577 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2578 never be). */
2579 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2580 return 0;
2582 /* Only try four-insn combinations when there's high likelihood of
2583 success. Look for simple insns, such as loads of constants or
2584 binary operations involving a constant. */
2585 if (i0)
2587 int i;
2588 int ngood = 0;
2589 int nshift = 0;
2590 rtx set0, set3;
2592 if (!flag_expensive_optimizations)
2593 return 0;
2595 for (i = 0; i < 4; i++)
2597 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2598 rtx set = single_set (insn);
2599 rtx src;
2600 if (!set)
2601 continue;
2602 src = SET_SRC (set);
2603 if (CONSTANT_P (src))
2605 ngood += 2;
2606 break;
2608 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2609 ngood++;
2610 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2611 || GET_CODE (src) == LSHIFTRT)
2612 nshift++;
2615 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2616 are likely manipulating its value. Ideally we'll be able to combine
2617 all four insns into a bitfield insertion of some kind.
2619 Note the source in I0 might be inside a sign/zero extension and the
2620 memory modes in I0 and I3 might be different. So extract the address
2621 from the destination of I3 and search for it in the source of I0.
2623 In the event that there's a match but the source/dest do not actually
2624 refer to the same memory, the worst that happens is we try some
2625 combinations that we wouldn't have otherwise. */
2626 if ((set0 = single_set (i0))
2627 /* Ensure the source of SET0 is a MEM, possibly buried inside
2628 an extension. */
2629 && (GET_CODE (SET_SRC (set0)) == MEM
2630 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2631 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2632 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2633 && (set3 = single_set (i3))
2634 /* Ensure the destination of SET3 is a MEM. */
2635 && GET_CODE (SET_DEST (set3)) == MEM
2636 /* Would it be better to extract the base address for the MEM
2637 in SET3 and look for that? I don't have cases where it matters
2638 but I could envision such cases. */
2639 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2640 ngood += 2;
2642 if (ngood < 2 && nshift < 2)
2643 return 0;
2646 /* Exit early if one of the insns involved can't be used for
2647 combinations. */
2648 if (CALL_P (i2)
2649 || (i1 && CALL_P (i1))
2650 || (i0 && CALL_P (i0))
2651 || cant_combine_insn_p (i3)
2652 || cant_combine_insn_p (i2)
2653 || (i1 && cant_combine_insn_p (i1))
2654 || (i0 && cant_combine_insn_p (i0))
2655 || likely_spilled_retval_p (i3))
2656 return 0;
2658 combine_attempts++;
2659 undobuf.other_insn = 0;
2661 /* Reset the hard register usage information. */
2662 CLEAR_HARD_REG_SET (newpat_used_regs);
2664 if (dump_file && (dump_flags & TDF_DETAILS))
2666 if (i0)
2667 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2668 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2669 else if (i1)
2670 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2671 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2672 else
2673 fprintf (dump_file, "\nTrying %d -> %d:\n",
2674 INSN_UID (i2), INSN_UID (i3));
2676 if (i0)
2677 dump_insn_slim (dump_file, i0);
2678 if (i1)
2679 dump_insn_slim (dump_file, i1);
2680 dump_insn_slim (dump_file, i2);
2681 dump_insn_slim (dump_file, i3);
2684 /* If multiple insns feed into one of I2 or I3, they can be in any
2685 order. To simplify the code below, reorder them in sequence. */
2686 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2687 std::swap (i0, i2);
2688 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2689 std::swap (i0, i1);
2690 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2691 std::swap (i1, i2);
2693 added_links_insn = 0;
2694 added_notes_insn = 0;
2696 /* First check for one important special case that the code below will
2697 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2698 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2699 we may be able to replace that destination with the destination of I3.
2700 This occurs in the common code where we compute both a quotient and
2701 remainder into a structure, in which case we want to do the computation
2702 directly into the structure to avoid register-register copies.
2704 Note that this case handles both multiple sets in I2 and also cases
2705 where I2 has a number of CLOBBERs inside the PARALLEL.
2707 We make very conservative checks below and only try to handle the
2708 most common cases of this. For example, we only handle the case
2709 where I2 and I3 are adjacent to avoid making difficult register
2710 usage tests. */
2712 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2713 && REG_P (SET_SRC (PATTERN (i3)))
2714 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2715 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2716 && GET_CODE (PATTERN (i2)) == PARALLEL
2717 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2718 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2719 below would need to check what is inside (and reg_overlap_mentioned_p
2720 doesn't support those codes anyway). Don't allow those destinations;
2721 the resulting insn isn't likely to be recognized anyway. */
2722 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2723 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2724 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2725 SET_DEST (PATTERN (i3)))
2726 && next_active_insn (i2) == i3)
2728 rtx p2 = PATTERN (i2);
2730 /* Make sure that the destination of I3,
2731 which we are going to substitute into one output of I2,
2732 is not used within another output of I2. We must avoid making this:
2733 (parallel [(set (mem (reg 69)) ...)
2734 (set (reg 69) ...)])
2735 which is not well-defined as to order of actions.
2736 (Besides, reload can't handle output reloads for this.)
2738 The problem can also happen if the dest of I3 is a memory ref,
2739 if another dest in I2 is an indirect memory ref.
2741 Neither can this PARALLEL be an asm. We do not allow combining
2742 that usually (see can_combine_p), so do not here either. */
2743 bool ok = true;
2744 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2746 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2747 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2748 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2749 SET_DEST (XVECEXP (p2, 0, i))))
2750 ok = false;
2751 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2752 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2753 ok = false;
2756 if (ok)
2757 for (i = 0; i < XVECLEN (p2, 0); i++)
2758 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2759 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2761 combine_merges++;
2763 subst_insn = i3;
2764 subst_low_luid = DF_INSN_LUID (i2);
2766 added_sets_2 = added_sets_1 = added_sets_0 = false;
2767 i2src = SET_SRC (XVECEXP (p2, 0, i));
2768 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2769 i2dest_killed = dead_or_set_p (i2, i2dest);
2771 /* Replace the dest in I2 with our dest and make the resulting
2772 insn the new pattern for I3. Then skip to where we validate
2773 the pattern. Everything was set up above. */
2774 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2775 newpat = p2;
2776 i3_subst_into_i2 = true;
2777 goto validate_replacement;
2781 /* If I2 is setting a pseudo to a constant and I3 is setting some
2782 sub-part of it to another constant, merge them by making a new
2783 constant. */
2784 if (i1 == 0
2785 && (temp_expr = single_set (i2)) != 0
2786 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2787 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2788 && GET_CODE (PATTERN (i3)) == SET
2789 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2790 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2792 rtx dest = SET_DEST (PATTERN (i3));
2793 rtx temp_dest = SET_DEST (temp_expr);
2794 int offset = -1;
2795 int width = 0;
2797 if (GET_CODE (dest) == ZERO_EXTRACT)
2799 if (CONST_INT_P (XEXP (dest, 1))
2800 && CONST_INT_P (XEXP (dest, 2))
2801 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2802 &dest_mode))
2804 width = INTVAL (XEXP (dest, 1));
2805 offset = INTVAL (XEXP (dest, 2));
2806 dest = XEXP (dest, 0);
2807 if (BITS_BIG_ENDIAN)
2808 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2811 else
2813 if (GET_CODE (dest) == STRICT_LOW_PART)
2814 dest = XEXP (dest, 0);
2815 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2817 width = GET_MODE_PRECISION (dest_mode);
2818 offset = 0;
2822 if (offset >= 0)
2824 /* If this is the low part, we're done. */
2825 if (subreg_lowpart_p (dest))
2827 /* Handle the case where inner is twice the size of outer. */
2828 else if (GET_MODE_PRECISION (temp_mode)
2829 == 2 * GET_MODE_PRECISION (dest_mode))
2830 offset += GET_MODE_PRECISION (dest_mode);
2831 /* Otherwise give up for now. */
2832 else
2833 offset = -1;
2836 if (offset >= 0)
2838 rtx inner = SET_SRC (PATTERN (i3));
2839 rtx outer = SET_SRC (temp_expr);
2841 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2842 rtx_mode_t (inner, dest_mode),
2843 offset, width);
2845 combine_merges++;
2846 subst_insn = i3;
2847 subst_low_luid = DF_INSN_LUID (i2);
2848 added_sets_2 = added_sets_1 = added_sets_0 = false;
2849 i2dest = temp_dest;
2850 i2dest_killed = dead_or_set_p (i2, i2dest);
2852 /* Replace the source in I2 with the new constant and make the
2853 resulting insn the new pattern for I3. Then skip to where we
2854 validate the pattern. Everything was set up above. */
2855 SUBST (SET_SRC (temp_expr),
2856 immed_wide_int_const (o, temp_mode));
2858 newpat = PATTERN (i2);
2860 /* The dest of I3 has been replaced with the dest of I2. */
2861 changed_i3_dest = true;
2862 goto validate_replacement;
2866 /* If we have no I1 and I2 looks like:
2867 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2868 (set Y OP)])
2869 make up a dummy I1 that is
2870 (set Y OP)
2871 and change I2 to be
2872 (set (reg:CC X) (compare:CC Y (const_int 0)))
2874 (We can ignore any trailing CLOBBERs.)
2876 This undoes a previous combination and allows us to match a branch-and-
2877 decrement insn. */
2879 if (i1 == 0
2880 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2881 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2882 == MODE_CC)
2883 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2884 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2885 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2886 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2887 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2888 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2890 /* We make I1 with the same INSN_UID as I2. This gives it
2891 the same DF_INSN_LUID for value tracking. Our fake I1 will
2892 never appear in the insn stream so giving it the same INSN_UID
2893 as I2 will not cause a problem. */
2895 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2896 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2897 -1, NULL_RTX);
2898 INSN_UID (i1) = INSN_UID (i2);
2900 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2901 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2902 SET_DEST (PATTERN (i1)));
2903 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2904 SUBST_LINK (LOG_LINKS (i2),
2905 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2908 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2909 make those two SETs separate I1 and I2 insns, and make an I0 that is
2910 the original I1. */
2911 if (i0 == 0
2912 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2913 && can_split_parallel_of_n_reg_sets (i2, 2)
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2916 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2917 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2919 /* If there is no I1, there is no I0 either. */
2920 i0 = i1;
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2928 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2929 -1, NULL_RTX);
2930 INSN_UID (i1) = INSN_UID (i2);
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2935 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2936 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
2938 if (dump_file && (dump_flags & TDF_DETAILS))
2939 fprintf (dump_file, "Can't combine i2 into i3\n");
2940 undo_all ();
2941 return 0;
2943 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
2945 if (dump_file && (dump_flags & TDF_DETAILS))
2946 fprintf (dump_file, "Can't combine i1 into i3\n");
2947 undo_all ();
2948 return 0;
2950 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
2952 if (dump_file && (dump_flags & TDF_DETAILS))
2953 fprintf (dump_file, "Can't combine i0 into i3\n");
2954 undo_all ();
2955 return 0;
2958 /* With non-call exceptions we can end up trying to combine multiple
2959 insns with possible EH side effects. Make sure we can combine
2960 that to a single insn which means there must be at most one insn
2961 in the combination with an EH side effect. */
2962 if (cfun->can_throw_non_call_exceptions)
2964 if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2965 || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2966 || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2967 || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2969 has_non_call_exception = true;
2970 if (insn_could_throw_p (i3)
2971 + insn_could_throw_p (i2)
2972 + (i1 ? insn_could_throw_p (i1) : 0)
2973 + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2975 if (dump_file && (dump_flags & TDF_DETAILS))
2976 fprintf (dump_file, "Can't combine multiple insns with EH "
2977 "side-effects\n");
2978 undo_all ();
2979 return 0;
2984 /* Record whether i2 and i3 are trivial moves. */
2985 i2_was_move = is_just_move (i2);
2986 i3_was_move = is_just_move (i3);
2988 /* Record whether I2DEST is used in I2SRC and similarly for the other
2989 cases. Knowing this will help in register status updating below. */
2990 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2991 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2992 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2993 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2994 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2995 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2997 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2998 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3000 /* For the earlier insns, determine which of the subsequent ones they
3001 feed. */
3002 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3003 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3004 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3005 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3006 && reg_overlap_mentioned_p (i0dest, i2src))));
3008 /* Ensure that I3's pattern can be the destination of combines. */
3009 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3010 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3011 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3012 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3013 &i3dest_killed))
3015 undo_all ();
3016 return 0;
3019 /* See if any of the insns is a MULT operation. Unless one is, we will
3020 reject a combination that is, since it must be slower. Be conservative
3021 here. */
3022 if (GET_CODE (i2src) == MULT
3023 || (i1 != 0 && GET_CODE (i1src) == MULT)
3024 || (i0 != 0 && GET_CODE (i0src) == MULT)
3025 || (GET_CODE (PATTERN (i3)) == SET
3026 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3027 have_mult = true;
3029 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3030 We used to do this EXCEPT in one case: I3 has a post-inc in an
3031 output operand. However, that exception can give rise to insns like
3032 mov r3,(r3)+
3033 which is a famous insn on the PDP-11 where the value of r3 used as the
3034 source was model-dependent. Avoid this sort of thing. */
3036 #if 0
3037 if (!(GET_CODE (PATTERN (i3)) == SET
3038 && REG_P (SET_SRC (PATTERN (i3)))
3039 && MEM_P (SET_DEST (PATTERN (i3)))
3040 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3041 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3042 /* It's not the exception. */
3043 #endif
3044 if (AUTO_INC_DEC)
3046 rtx link;
3047 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3048 if (REG_NOTE_KIND (link) == REG_INC
3049 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3050 || (i1 != 0
3051 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3053 undo_all ();
3054 return 0;
3058 /* See if the SETs in I1 or I2 need to be kept around in the merged
3059 instruction: whenever the value set there is still needed past I3.
3060 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3062 For the SET in I1, we have two cases: if I1 and I2 independently feed
3063 into I3, the set in I1 needs to be kept around unless I1DEST dies
3064 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3065 in I1 needs to be kept around unless I1DEST dies or is set in either
3066 I2 or I3. The same considerations apply to I0. */
3068 added_sets_2 = !dead_or_set_p (i3, i2dest);
3070 if (i1)
3071 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3072 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3073 else
3074 added_sets_1 = false;
3076 if (i0)
3077 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3078 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3079 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3080 && dead_or_set_p (i2, i0dest)));
3081 else
3082 added_sets_0 = false;
3084 /* We are about to copy insns for the case where they need to be kept
3085 around. Check that they can be copied in the merged instruction. */
3087 if (targetm.cannot_copy_insn_p
3088 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3089 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3090 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3092 undo_all ();
3093 return 0;
3096 /* We cannot safely duplicate volatile references in any case. */
3098 if ((added_sets_2 && volatile_refs_p (PATTERN (i2)))
3099 || (added_sets_1 && volatile_refs_p (PATTERN (i1)))
3100 || (added_sets_0 && volatile_refs_p (PATTERN (i0))))
3102 undo_all ();
3103 return 0;
3106 /* Count how many auto_inc expressions there were in the original insns;
3107 we need to have the same number in the resulting patterns. */
3109 if (i0)
3110 for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
3111 if (i1)
3112 for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
3113 for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
3114 for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
3116 /* If the set in I2 needs to be kept around, we must make a copy of
3117 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3118 PATTERN (I2), we are only substituting for the original I1DEST, not into
3119 an already-substituted copy. This also prevents making self-referential
3120 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3121 I2DEST. */
3123 if (added_sets_2)
3125 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3126 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3127 else
3128 i2pat = copy_rtx (PATTERN (i2));
3131 if (added_sets_1)
3133 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3134 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3135 else
3136 i1pat = copy_rtx (PATTERN (i1));
3139 if (added_sets_0)
3141 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3142 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3143 else
3144 i0pat = copy_rtx (PATTERN (i0));
3147 combine_merges++;
3149 /* Substitute in the latest insn for the regs set by the earlier ones. */
3151 maxreg = max_reg_num ();
3153 subst_insn = i3;
3155 /* Many machines have insns that can both perform an
3156 arithmetic operation and set the condition code. These operations will
3157 be represented as a PARALLEL with the first element of the vector
3158 being a COMPARE of an arithmetic operation with the constant zero.
3159 The second element of the vector will set some pseudo to the result
3160 of the same arithmetic operation. If we simplify the COMPARE, we won't
3161 match such a pattern and so will generate an extra insn. Here we test
3162 for this case, where both the comparison and the operation result are
3163 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3164 I2SRC. Later we will make the PARALLEL that contains I2. */
3166 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3167 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3168 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3169 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3171 rtx newpat_dest;
3172 rtx *cc_use_loc = NULL;
3173 rtx_insn *cc_use_insn = NULL;
3174 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3175 machine_mode compare_mode, orig_compare_mode;
3176 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3177 scalar_int_mode mode;
3179 newpat = PATTERN (i3);
3180 newpat_dest = SET_DEST (newpat);
3181 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3183 if (undobuf.other_insn == 0
3184 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3185 &cc_use_insn)))
3187 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3188 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3189 compare_code = simplify_compare_const (compare_code, mode,
3190 &op0, &op1);
3191 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3194 /* Do the rest only if op1 is const0_rtx, which may be the
3195 result of simplification. */
3196 if (op1 == const0_rtx)
3198 /* If a single use of the CC is found, prepare to modify it
3199 when SELECT_CC_MODE returns a new CC-class mode, or when
3200 the above simplify_compare_const() returned a new comparison
3201 operator. undobuf.other_insn is assigned the CC use insn
3202 when modifying it. */
3203 if (cc_use_loc)
3205 #ifdef SELECT_CC_MODE
3206 machine_mode new_mode
3207 = SELECT_CC_MODE (compare_code, op0, op1);
3208 if (new_mode != orig_compare_mode
3209 && can_change_dest_mode (SET_DEST (newpat),
3210 added_sets_2, new_mode))
3212 unsigned int regno = REGNO (newpat_dest);
3213 compare_mode = new_mode;
3214 if (regno < FIRST_PSEUDO_REGISTER)
3215 newpat_dest = gen_rtx_REG (compare_mode, regno);
3216 else
3218 subst_mode (regno, compare_mode);
3219 newpat_dest = regno_reg_rtx[regno];
3222 #endif
3223 /* Cases for modifying the CC-using comparison. */
3224 if (compare_code != orig_compare_code
3225 /* ??? Do we need to verify the zero rtx? */
3226 && XEXP (*cc_use_loc, 1) == const0_rtx)
3228 /* Replace cc_use_loc with entire new RTX. */
3229 SUBST (*cc_use_loc,
3230 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3231 newpat_dest, const0_rtx));
3232 undobuf.other_insn = cc_use_insn;
3234 else if (compare_mode != orig_compare_mode)
3236 /* Just replace the CC reg with a new mode. */
3237 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3238 undobuf.other_insn = cc_use_insn;
3242 /* Now we modify the current newpat:
3243 First, SET_DEST(newpat) is updated if the CC mode has been
3244 altered. For targets without SELECT_CC_MODE, this should be
3245 optimized away. */
3246 if (compare_mode != orig_compare_mode)
3247 SUBST (SET_DEST (newpat), newpat_dest);
3248 /* This is always done to propagate i2src into newpat. */
3249 SUBST (SET_SRC (newpat),
3250 gen_rtx_COMPARE (compare_mode, op0, op1));
3251 /* Create new version of i2pat if needed; the below PARALLEL
3252 creation needs this to work correctly. */
3253 if (! rtx_equal_p (i2src, op0))
3254 i2pat = gen_rtx_SET (i2dest, op0);
3255 i2_is_used = 1;
3259 if (i2_is_used == 0)
3261 /* It is possible that the source of I2 or I1 may be performing
3262 an unneeded operation, such as a ZERO_EXTEND of something
3263 that is known to have the high part zero. Handle that case
3264 by letting subst look at the inner insns.
3266 Another way to do this would be to have a function that tries
3267 to simplify a single insn instead of merging two or more
3268 insns. We don't do this because of the potential of infinite
3269 loops and because of the potential extra memory required.
3270 However, doing it the way we are is a bit of a kludge and
3271 doesn't catch all cases.
3273 But only do this if -fexpensive-optimizations since it slows
3274 things down and doesn't usually win.
3276 This is not done in the COMPARE case above because the
3277 unmodified I2PAT is used in the PARALLEL and so a pattern
3278 with a modified I2SRC would not match. */
3280 if (flag_expensive_optimizations)
3282 /* Pass pc_rtx so no substitutions are done, just
3283 simplifications. */
3284 if (i1)
3286 subst_low_luid = DF_INSN_LUID (i1);
3287 i1src = subst (i1src, pc_rtx, pc_rtx, false, false, false);
3290 subst_low_luid = DF_INSN_LUID (i2);
3291 i2src = subst (i2src, pc_rtx, pc_rtx, false, false, false);
3294 n_occurrences = 0; /* `subst' counts here */
3295 subst_low_luid = DF_INSN_LUID (i2);
3297 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3298 copy of I2SRC each time we substitute it, in order to avoid creating
3299 self-referential RTL when we will be substituting I1SRC for I1DEST
3300 later. Likewise if I0 feeds into I2, either directly or indirectly
3301 through I1, and I0DEST is in I0SRC. */
3302 newpat = subst (PATTERN (i3), i2dest, i2src, false, false,
3303 (i1_feeds_i2_n && i1dest_in_i1src)
3304 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3305 && i0dest_in_i0src));
3306 substed_i2 = true;
3308 /* Record whether I2's body now appears within I3's body. */
3309 i2_is_used = n_occurrences;
3312 /* If we already got a failure, don't try to do more. Otherwise, try to
3313 substitute I1 if we have it. */
3315 if (i1 && GET_CODE (newpat) != CLOBBER)
3317 /* Before we can do this substitution, we must redo the test done
3318 above (see detailed comments there) that ensures I1DEST isn't
3319 mentioned in any SETs in NEWPAT that are field assignments. */
3320 if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3321 false, false, 0))
3323 undo_all ();
3324 return 0;
3327 n_occurrences = 0;
3328 subst_low_luid = DF_INSN_LUID (i1);
3330 /* If the following substitution will modify I1SRC, make a copy of it
3331 for the case where it is substituted for I1DEST in I2PAT later. */
3332 if (added_sets_2 && i1_feeds_i2_n)
3333 i1src_copy = copy_rtx (i1src);
3335 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3336 copy of I1SRC each time we substitute it, in order to avoid creating
3337 self-referential RTL when we will be substituting I0SRC for I0DEST
3338 later. */
3339 newpat = subst (newpat, i1dest, i1src, false, false,
3340 i0_feeds_i1_n && i0dest_in_i0src);
3341 substed_i1 = true;
3343 /* Record whether I1's body now appears within I3's body. */
3344 i1_is_used = n_occurrences;
3347 /* Likewise for I0 if we have it. */
3349 if (i0 && GET_CODE (newpat) != CLOBBER)
3351 if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3352 false, false, 0))
3354 undo_all ();
3355 return 0;
3358 /* If the following substitution will modify I0SRC, make a copy of it
3359 for the case where it is substituted for I0DEST in I1PAT later. */
3360 if (added_sets_1 && i0_feeds_i1_n)
3361 i0src_copy = copy_rtx (i0src);
3362 /* And a copy for I0DEST in I2PAT substitution. */
3363 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3364 || (i0_feeds_i2_n)))
3365 i0src_copy2 = copy_rtx (i0src);
3367 n_occurrences = 0;
3368 subst_low_luid = DF_INSN_LUID (i0);
3369 newpat = subst (newpat, i0dest, i0src, false, false, false);
3370 substed_i0 = true;
3373 if (n_auto_inc)
3375 int new_n_auto_inc = 0;
3376 for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
3378 if (n_auto_inc != new_n_auto_inc)
3380 if (dump_file && (dump_flags & TDF_DETAILS))
3381 fprintf (dump_file, "Number of auto_inc expressions changed\n");
3382 undo_all ();
3383 return 0;
3387 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3388 to count all the ways that I2SRC and I1SRC can be used. */
3389 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3390 && i2_is_used + added_sets_2 > 1)
3391 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3392 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n) > 1))
3393 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3394 && (n_occurrences + added_sets_0
3395 + (added_sets_1 && i0_feeds_i1_n)
3396 + (added_sets_2 && i0_feeds_i2_n) > 1))
3397 /* Fail if we tried to make a new register. */
3398 || max_reg_num () != maxreg
3399 /* Fail if we couldn't do something and have a CLOBBER. */
3400 || GET_CODE (newpat) == CLOBBER
3401 /* Fail if this new pattern is a MULT and we didn't have one before
3402 at the outer level. */
3403 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3404 && ! have_mult))
3406 undo_all ();
3407 return 0;
3410 /* If the actions of the earlier insns must be kept
3411 in addition to substituting them into the latest one,
3412 we must make a new PARALLEL for the latest insn
3413 to hold additional the SETs. */
3415 if (added_sets_0 || added_sets_1 || added_sets_2)
3417 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3418 combine_extras++;
3420 if (GET_CODE (newpat) == PARALLEL)
3422 rtvec old = XVEC (newpat, 0);
3423 total_sets = XVECLEN (newpat, 0) + extra_sets;
3424 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3425 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3426 sizeof (old->elem[0]) * old->num_elem);
3428 else
3430 rtx old = newpat;
3431 total_sets = 1 + extra_sets;
3432 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3433 XVECEXP (newpat, 0, 0) = old;
3436 if (added_sets_0)
3437 XVECEXP (newpat, 0, --total_sets) = i0pat;
3439 if (added_sets_1)
3441 rtx t = i1pat;
3442 if (i0_feeds_i1_n)
3443 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src,
3444 false, false, false);
3446 XVECEXP (newpat, 0, --total_sets) = t;
3448 if (added_sets_2)
3450 rtx t = i2pat;
3451 if (i1_feeds_i2_n)
3452 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, false, false,
3453 i0_feeds_i1_n && i0dest_in_i0src);
3454 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3455 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src,
3456 false, false, false);
3458 XVECEXP (newpat, 0, --total_sets) = t;
3462 validate_replacement:
3464 /* Note which hard regs this insn has as inputs. */
3465 mark_used_regs_combine (newpat);
3467 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3468 consider splitting this pattern, we might need these clobbers. */
3469 if (i1 && GET_CODE (newpat) == PARALLEL
3470 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3472 int len = XVECLEN (newpat, 0);
3474 newpat_vec_with_clobbers = rtvec_alloc (len);
3475 for (i = 0; i < len; i++)
3476 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3479 /* We have recognized nothing yet. */
3480 insn_code_number = -1;
3482 /* See if this is a PARALLEL of two SETs where one SET's destination is
3483 a register that is unused and this isn't marked as an instruction that
3484 might trap in an EH region. In that case, we just need the other SET.
3485 We prefer this over the PARALLEL.
3487 This can occur when simplifying a divmod insn. We *must* test for this
3488 case here because the code below that splits two independent SETs doesn't
3489 handle this case correctly when it updates the register status.
3491 It's pointless doing this if we originally had two sets, one from
3492 i3, and one from i2. Combining then splitting the parallel results
3493 in the original i2 again plus an invalid insn (which we delete).
3494 The net effect is only to move instructions around, which makes
3495 debug info less accurate.
3497 If the remaining SET came from I2 its destination should not be used
3498 between I2 and I3. See PR82024. */
3500 if (!(added_sets_2 && i1 == 0)
3501 && is_parallel_of_n_reg_sets (newpat, 2)
3502 && asm_noperands (newpat) < 0)
3504 rtx set0 = XVECEXP (newpat, 0, 0);
3505 rtx set1 = XVECEXP (newpat, 0, 1);
3506 rtx oldpat = newpat;
3508 if (((REG_P (SET_DEST (set1))
3509 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3510 || (GET_CODE (SET_DEST (set1)) == SUBREG
3511 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3512 && insn_nothrow_p (i3)
3513 && !side_effects_p (SET_SRC (set1)))
3515 newpat = set0;
3516 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3519 else if (((REG_P (SET_DEST (set0))
3520 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3521 || (GET_CODE (SET_DEST (set0)) == SUBREG
3522 && find_reg_note (i3, REG_UNUSED,
3523 SUBREG_REG (SET_DEST (set0)))))
3524 && insn_nothrow_p (i3)
3525 && !side_effects_p (SET_SRC (set0)))
3527 rtx dest = SET_DEST (set1);
3528 if (GET_CODE (dest) == SUBREG)
3529 dest = SUBREG_REG (dest);
3530 if (!reg_used_between_p (dest, i2, i3))
3532 newpat = set1;
3533 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3535 if (insn_code_number >= 0)
3536 changed_i3_dest = true;
3540 if (insn_code_number < 0)
3541 newpat = oldpat;
3544 /* Is the result of combination a valid instruction? */
3545 if (insn_code_number < 0)
3546 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3548 /* If we were combining three insns and the result is a simple SET
3549 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3550 insns. There are two ways to do this. It can be split using a
3551 machine-specific method (like when you have an addition of a large
3552 constant) or by combine in the function find_split_point. */
3554 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3555 && asm_noperands (newpat) < 0)
3557 rtx parallel, *split;
3558 rtx_insn *m_split_insn;
3560 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3561 use I2DEST as a scratch register will help. In the latter case,
3562 convert I2DEST to the mode of the source of NEWPAT if we can. */
3564 m_split_insn = combine_split_insns (newpat, i3);
3566 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3567 inputs of NEWPAT. */
3569 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3570 possible to try that as a scratch reg. This would require adding
3571 more code to make it work though. */
3573 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3575 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3577 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3578 (temporarily, until we are committed to this instruction
3579 combination) does not work: for example, any call to nonzero_bits
3580 on the register (from a splitter in the MD file, for example)
3581 will get the old information, which is invalid.
3583 Since nowadays we can create registers during combine just fine,
3584 we should just create a new one here, not reuse i2dest. */
3586 /* First try to split using the original register as a
3587 scratch register. */
3588 parallel = gen_rtx_PARALLEL (VOIDmode,
3589 gen_rtvec (2, newpat,
3590 gen_rtx_CLOBBER (VOIDmode,
3591 i2dest)));
3592 m_split_insn = combine_split_insns (parallel, i3);
3594 /* If that didn't work, try changing the mode of I2DEST if
3595 we can. */
3596 if (m_split_insn == 0
3597 && new_mode != GET_MODE (i2dest)
3598 && new_mode != VOIDmode
3599 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3601 machine_mode old_mode = GET_MODE (i2dest);
3602 rtx ni2dest;
3604 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3605 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3606 else
3608 subst_mode (REGNO (i2dest), new_mode);
3609 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3612 parallel = (gen_rtx_PARALLEL
3613 (VOIDmode,
3614 gen_rtvec (2, newpat,
3615 gen_rtx_CLOBBER (VOIDmode,
3616 ni2dest))));
3617 m_split_insn = combine_split_insns (parallel, i3);
3619 if (m_split_insn == 0
3620 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3622 struct undo *buf;
3624 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3625 buf = undobuf.undos;
3626 undobuf.undos = buf->next;
3627 buf->next = undobuf.frees;
3628 undobuf.frees = buf;
3632 i2scratch = m_split_insn != 0;
3635 /* If recog_for_combine has discarded clobbers, try to use them
3636 again for the split. */
3637 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3639 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3640 m_split_insn = combine_split_insns (parallel, i3);
3643 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3645 rtx m_split_pat = PATTERN (m_split_insn);
3646 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3647 if (insn_code_number >= 0)
3648 newpat = m_split_pat;
3650 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3651 && (next_nonnote_nondebug_insn (i2) == i3
3652 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3654 rtx i2set, i3set;
3655 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3656 newi2pat = PATTERN (m_split_insn);
3658 i3set = single_set (NEXT_INSN (m_split_insn));
3659 i2set = single_set (m_split_insn);
3661 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3663 /* If I2 or I3 has multiple SETs, we won't know how to track
3664 register status, so don't use these insns. If I2's destination
3665 is used between I2 and I3, we also can't use these insns. */
3667 if (i2_code_number >= 0 && i2set && i3set
3668 && (next_nonnote_nondebug_insn (i2) == i3
3669 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3670 insn_code_number = recog_for_combine (&newi3pat, i3,
3671 &new_i3_notes);
3672 if (insn_code_number >= 0)
3673 newpat = newi3pat;
3675 /* It is possible that both insns now set the destination of I3.
3676 If so, we must show an extra use of it. */
3678 if (insn_code_number >= 0)
3680 rtx new_i3_dest = SET_DEST (i3set);
3681 rtx new_i2_dest = SET_DEST (i2set);
3683 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3684 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3685 || GET_CODE (new_i3_dest) == SUBREG)
3686 new_i3_dest = XEXP (new_i3_dest, 0);
3688 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3689 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3690 || GET_CODE (new_i2_dest) == SUBREG)
3691 new_i2_dest = XEXP (new_i2_dest, 0);
3693 if (REG_P (new_i3_dest)
3694 && REG_P (new_i2_dest)
3695 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3696 && REGNO (new_i2_dest) < reg_n_sets_max)
3697 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3701 /* If we can split it and use I2DEST, go ahead and see if that
3702 helps things be recognized. Verify that none of the registers
3703 are set between I2 and I3. */
3704 if (insn_code_number < 0
3705 && (split = find_split_point (&newpat, i3, false)) != 0
3706 /* We need I2DEST in the proper mode. If it is a hard register
3707 or the only use of a pseudo, we can change its mode.
3708 Make sure we don't change a hard register to have a mode that
3709 isn't valid for it, or change the number of registers. */
3710 && (GET_MODE (*split) == GET_MODE (i2dest)
3711 || GET_MODE (*split) == VOIDmode
3712 || can_change_dest_mode (i2dest, added_sets_2,
3713 GET_MODE (*split)))
3714 && (next_nonnote_nondebug_insn (i2) == i3
3715 || !modified_between_p (*split, i2, i3))
3716 /* We can't overwrite I2DEST if its value is still used by
3717 NEWPAT. */
3718 && ! reg_referenced_p (i2dest, newpat)
3719 /* We should not split a possibly trapping part when we
3720 care about non-call EH and have REG_EH_REGION notes
3721 to distribute. */
3722 && ! (cfun->can_throw_non_call_exceptions
3723 && has_non_call_exception
3724 && may_trap_p (*split)))
3726 rtx newdest = i2dest;
3727 enum rtx_code split_code = GET_CODE (*split);
3728 machine_mode split_mode = GET_MODE (*split);
3729 bool subst_done = false;
3730 newi2pat = NULL_RTX;
3732 i2scratch = true;
3734 /* *SPLIT may be part of I2SRC, so make sure we have the
3735 original expression around for later debug processing.
3736 We should not need I2SRC any more in other cases. */
3737 if (MAY_HAVE_DEBUG_BIND_INSNS)
3738 i2src = copy_rtx (i2src);
3739 else
3740 i2src = NULL;
3742 /* Get NEWDEST as a register in the proper mode. We have already
3743 validated that we can do this. */
3744 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3746 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3747 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3748 else
3750 subst_mode (REGNO (i2dest), split_mode);
3751 newdest = regno_reg_rtx[REGNO (i2dest)];
3755 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3756 an ASHIFT. This can occur if it was inside a PLUS and hence
3757 appeared to be a memory address. This is a kludge. */
3758 if (split_code == MULT
3759 && CONST_INT_P (XEXP (*split, 1))
3760 && INTVAL (XEXP (*split, 1)) > 0
3761 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3763 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3764 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3765 XEXP (*split, 0), i_rtx));
3766 /* Update split_code because we may not have a multiply
3767 anymore. */
3768 split_code = GET_CODE (*split);
3771 /* Similarly for (plus (mult FOO (const_int pow2))). */
3772 if (split_code == PLUS
3773 && GET_CODE (XEXP (*split, 0)) == MULT
3774 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3775 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3776 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3778 rtx nsplit = XEXP (*split, 0);
3779 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3780 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3781 XEXP (nsplit, 0),
3782 i_rtx));
3783 /* Update split_code because we may not have a multiply
3784 anymore. */
3785 split_code = GET_CODE (*split);
3788 #ifdef INSN_SCHEDULING
3789 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3790 be written as a ZERO_EXTEND. */
3791 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3793 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3794 what it really is. */
3795 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3796 == SIGN_EXTEND)
3797 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3798 SUBREG_REG (*split)));
3799 else
3800 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3801 SUBREG_REG (*split)));
3803 #endif
3805 /* Attempt to split binary operators using arithmetic identities. */
3806 if (BINARY_P (SET_SRC (newpat))
3807 && split_mode == GET_MODE (SET_SRC (newpat))
3808 && ! side_effects_p (SET_SRC (newpat)))
3810 rtx setsrc = SET_SRC (newpat);
3811 machine_mode mode = GET_MODE (setsrc);
3812 enum rtx_code code = GET_CODE (setsrc);
3813 rtx src_op0 = XEXP (setsrc, 0);
3814 rtx src_op1 = XEXP (setsrc, 1);
3816 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3817 if (rtx_equal_p (src_op0, src_op1))
3819 newi2pat = gen_rtx_SET (newdest, src_op0);
3820 SUBST (XEXP (setsrc, 0), newdest);
3821 SUBST (XEXP (setsrc, 1), newdest);
3822 subst_done = true;
3824 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3825 else if ((code == PLUS || code == MULT)
3826 && GET_CODE (src_op0) == code
3827 && GET_CODE (XEXP (src_op0, 0)) == code
3828 && (INTEGRAL_MODE_P (mode)
3829 || (FLOAT_MODE_P (mode)
3830 && flag_unsafe_math_optimizations)))
3832 rtx p = XEXP (XEXP (src_op0, 0), 0);
3833 rtx q = XEXP (XEXP (src_op0, 0), 1);
3834 rtx r = XEXP (src_op0, 1);
3835 rtx s = src_op1;
3837 /* Split both "((X op Y) op X) op Y" and
3838 "((X op Y) op Y) op X" as "T op T" where T is
3839 "X op Y". */
3840 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3841 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3843 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3844 SUBST (XEXP (setsrc, 0), newdest);
3845 SUBST (XEXP (setsrc, 1), newdest);
3846 subst_done = true;
3848 /* Split "((X op X) op Y) op Y)" as "T op T" where
3849 T is "X op Y". */
3850 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3852 rtx tmp = simplify_gen_binary (code, mode, p, r);
3853 newi2pat = gen_rtx_SET (newdest, tmp);
3854 SUBST (XEXP (setsrc, 0), newdest);
3855 SUBST (XEXP (setsrc, 1), newdest);
3856 subst_done = true;
3861 if (!subst_done)
3863 newi2pat = gen_rtx_SET (newdest, *split);
3864 SUBST (*split, newdest);
3867 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3869 /* recog_for_combine might have added CLOBBERs to newi2pat.
3870 Make sure NEWPAT does not depend on the clobbered regs. */
3871 if (GET_CODE (newi2pat) == PARALLEL)
3872 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3873 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3875 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3876 if (reg_overlap_mentioned_p (reg, newpat))
3878 undo_all ();
3879 return 0;
3883 /* If the split point was a MULT and we didn't have one before,
3884 don't use one now. */
3885 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3886 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3890 /* Check for a case where we loaded from memory in a narrow mode and
3891 then sign extended it, but we need both registers. In that case,
3892 we have a PARALLEL with both loads from the same memory location.
3893 We can split this into a load from memory followed by a register-register
3894 copy. This saves at least one insn, more if register allocation can
3895 eliminate the copy.
3897 We cannot do this if the destination of the first assignment is a
3898 condition code register. We eliminate this case by making sure
3899 the SET_DEST and SET_SRC have the same mode.
3901 We cannot do this if the destination of the second assignment is
3902 a register that we have already assumed is zero-extended. Similarly
3903 for a SUBREG of such a register. */
3905 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3906 && GET_CODE (newpat) == PARALLEL
3907 && XVECLEN (newpat, 0) == 2
3908 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3909 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3910 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3911 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3912 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3913 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3914 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3915 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3916 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3917 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3918 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3919 (REG_P (temp_expr)
3920 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3921 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3922 BITS_PER_WORD)
3923 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3924 HOST_BITS_PER_INT)
3925 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3926 != GET_MODE_MASK (word_mode))))
3927 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3928 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3929 (REG_P (temp_expr)
3930 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3931 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3932 BITS_PER_WORD)
3933 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3934 HOST_BITS_PER_INT)
3935 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3936 != GET_MODE_MASK (word_mode)))))
3937 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 SET_SRC (XVECEXP (newpat, 0, 1)))
3939 && ! find_reg_note (i3, REG_UNUSED,
3940 SET_DEST (XVECEXP (newpat, 0, 0))))
3942 rtx ni2dest;
3944 newi2pat = XVECEXP (newpat, 0, 0);
3945 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3946 newpat = XVECEXP (newpat, 0, 1);
3947 SUBST (SET_SRC (newpat),
3948 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3949 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3951 if (i2_code_number >= 0)
3952 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3954 if (insn_code_number >= 0)
3955 swap_i2i3 = 1;
3958 /* Similarly, check for a case where we have a PARALLEL of two independent
3959 SETs but we started with three insns. In this case, we can do the sets
3960 as two separate insns. This case occurs when some SET allows two
3961 other insns to combine, but the destination of that SET is still live.
3963 Also do this if we started with two insns and (at least) one of the
3964 resulting sets is a noop; this noop will be deleted later.
3966 Also do this if we started with two insns neither of which was a simple
3967 move. */
3969 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3970 && GET_CODE (newpat) == PARALLEL
3971 && XVECLEN (newpat, 0) == 2
3972 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3973 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3974 && (i1
3975 || set_noop_p (XVECEXP (newpat, 0, 0))
3976 || set_noop_p (XVECEXP (newpat, 0, 1))
3977 || (!i2_was_move && !i3_was_move))
3978 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3979 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3980 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3981 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3982 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3983 XVECEXP (newpat, 0, 0))
3984 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3985 XVECEXP (newpat, 0, 1))
3986 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3987 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3989 rtx set0 = XVECEXP (newpat, 0, 0);
3990 rtx set1 = XVECEXP (newpat, 0, 1);
3992 /* Normally, it doesn't matter which of the two is done first, but
3993 one which uses any regs/memory set in between i2 and i3 can't
3994 be first. The PARALLEL might also have been pre-existing in i3,
3995 so we need to make sure that we won't wrongly hoist a SET to i2
3996 that would conflict with a death note present in there, or would
3997 have its dest modified between i2 and i3. */
3998 if (!modified_between_p (SET_SRC (set1), i2, i3)
3999 && !(REG_P (SET_DEST (set1))
4000 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4001 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4002 && find_reg_note (i2, REG_DEAD,
4003 SUBREG_REG (SET_DEST (set1))))
4004 && !modified_between_p (SET_DEST (set1), i2, i3)
4005 /* If I3 is a jump, ensure that set0 is a jump so that
4006 we do not create invalid RTL. */
4007 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4010 newi2pat = set1;
4011 newpat = set0;
4013 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4014 && !(REG_P (SET_DEST (set0))
4015 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4016 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4017 && find_reg_note (i2, REG_DEAD,
4018 SUBREG_REG (SET_DEST (set0))))
4019 && !modified_between_p (SET_DEST (set0), i2, i3)
4020 /* If I3 is a jump, ensure that set1 is a jump so that
4021 we do not create invalid RTL. */
4022 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4025 newi2pat = set0;
4026 newpat = set1;
4028 else
4030 undo_all ();
4031 return 0;
4034 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4036 if (i2_code_number >= 0)
4038 /* recog_for_combine might have added CLOBBERs to newi2pat.
4039 Make sure NEWPAT does not depend on the clobbered regs. */
4040 if (GET_CODE (newi2pat) == PARALLEL)
4042 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4043 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4045 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4046 if (reg_overlap_mentioned_p (reg, newpat))
4048 undo_all ();
4049 return 0;
4054 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4056 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4057 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4058 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4059 if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4061 for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4062 if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4064 rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4065 if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4066 || reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4068 undo_all ();
4069 return 0;
4074 if (insn_code_number >= 0)
4075 split_i2i3 = true;
4079 /* If it still isn't recognized, fail and change things back the way they
4080 were. */
4081 if ((insn_code_number < 0
4082 /* Is the result a reasonable ASM_OPERANDS? */
4083 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4085 undo_all ();
4086 return 0;
4089 /* If we had to change another insn, make sure it is valid also. */
4090 if (undobuf.other_insn)
4092 CLEAR_HARD_REG_SET (newpat_used_regs);
4094 other_pat = PATTERN (undobuf.other_insn);
4095 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4096 &new_other_notes);
4098 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4100 undo_all ();
4101 return 0;
4105 /* Only allow this combination if insn_cost reports that the
4106 replacement instructions are cheaper than the originals. */
4107 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4109 undo_all ();
4110 return 0;
4113 if (MAY_HAVE_DEBUG_BIND_INSNS)
4115 struct undo *undo;
4117 for (undo = undobuf.undos; undo; undo = undo->next)
4118 if (undo->kind == UNDO_MODE)
4120 rtx reg = regno_reg_rtx[undo->where.regno];
4121 machine_mode new_mode = GET_MODE (reg);
4122 machine_mode old_mode = undo->old_contents.m;
4124 /* Temporarily revert mode back. */
4125 adjust_reg_mode (reg, old_mode);
4127 if (reg == i2dest && i2scratch)
4129 /* If we used i2dest as a scratch register with a
4130 different mode, substitute it for the original
4131 i2src while its original mode is temporarily
4132 restored, and then clear i2scratch so that we don't
4133 do it again later. */
4134 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4135 this_basic_block);
4136 i2scratch = false;
4137 /* Put back the new mode. */
4138 adjust_reg_mode (reg, new_mode);
4140 else
4142 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4143 rtx_insn *first, *last;
4145 if (reg == i2dest)
4147 first = i2;
4148 last = last_combined_insn;
4150 else
4152 first = i3;
4153 last = undobuf.other_insn;
4154 gcc_assert (last);
4155 if (DF_INSN_LUID (last)
4156 < DF_INSN_LUID (last_combined_insn))
4157 last = last_combined_insn;
4160 /* We're dealing with a reg that changed mode but not
4161 meaning, so we want to turn it into a subreg for
4162 the new mode. However, because of REG sharing and
4163 because its mode had already changed, we have to do
4164 it in two steps. First, replace any debug uses of
4165 reg, with its original mode temporarily restored,
4166 with this copy we have created; then, replace the
4167 copy with the SUBREG of the original shared reg,
4168 once again changed to the new mode. */
4169 propagate_for_debug (first, last, reg, tempreg,
4170 this_basic_block);
4171 adjust_reg_mode (reg, new_mode);
4172 propagate_for_debug (first, last, tempreg,
4173 lowpart_subreg (old_mode, reg, new_mode),
4174 this_basic_block);
4179 /* If we will be able to accept this, we have made a
4180 change to the destination of I3. This requires us to
4181 do a few adjustments. */
4183 if (changed_i3_dest)
4185 PATTERN (i3) = newpat;
4186 adjust_for_new_dest (i3);
4189 /* We now know that we can do this combination. Merge the insns and
4190 update the status of registers and LOG_LINKS. */
4192 if (undobuf.other_insn)
4194 rtx note, next;
4196 PATTERN (undobuf.other_insn) = other_pat;
4198 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4199 ensure that they are still valid. Then add any non-duplicate
4200 notes added by recog_for_combine. */
4201 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4203 next = XEXP (note, 1);
4205 if ((REG_NOTE_KIND (note) == REG_DEAD
4206 && !reg_referenced_p (XEXP (note, 0),
4207 PATTERN (undobuf.other_insn)))
4208 ||(REG_NOTE_KIND (note) == REG_UNUSED
4209 && !reg_set_p (XEXP (note, 0),
4210 PATTERN (undobuf.other_insn)))
4211 /* Simply drop equal note since it may be no longer valid
4212 for other_insn. It may be possible to record that CC
4213 register is changed and only discard those notes, but
4214 in practice it's unnecessary complication and doesn't
4215 give any meaningful improvement.
4217 See PR78559. */
4218 || REG_NOTE_KIND (note) == REG_EQUAL
4219 || REG_NOTE_KIND (note) == REG_EQUIV)
4220 remove_note (undobuf.other_insn, note);
4223 distribute_notes (new_other_notes, undobuf.other_insn,
4224 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4225 NULL_RTX);
4228 if (swap_i2i3)
4230 /* I3 now uses what used to be its destination and which is now
4231 I2's destination. This requires us to do a few adjustments. */
4232 PATTERN (i3) = newpat;
4233 adjust_for_new_dest (i3);
4236 if (swap_i2i3 || split_i2i3)
4238 /* We might need a LOG_LINK from I3 to I2. But then we used to
4239 have one, so we still will.
4241 However, some later insn might be using I2's dest and have
4242 a LOG_LINK pointing at I3. We should change it to point at
4243 I2 instead. */
4245 /* newi2pat is usually a SET here; however, recog_for_combine might
4246 have added some clobbers. */
4247 rtx x = newi2pat;
4248 if (GET_CODE (x) == PARALLEL)
4249 x = XVECEXP (newi2pat, 0, 0);
4251 if (REG_P (SET_DEST (x))
4252 || (GET_CODE (SET_DEST (x)) == SUBREG
4253 && REG_P (SUBREG_REG (SET_DEST (x)))))
4255 unsigned int regno = reg_or_subregno (SET_DEST (x));
4257 bool done = false;
4258 for (rtx_insn *insn = NEXT_INSN (i3);
4259 !done
4260 && insn
4261 && INSN_P (insn)
4262 && BLOCK_FOR_INSN (insn) == this_basic_block;
4263 insn = NEXT_INSN (insn))
4265 if (DEBUG_INSN_P (insn))
4266 continue;
4267 struct insn_link *link;
4268 FOR_EACH_LOG_LINK (link, insn)
4269 if (link->insn == i3 && link->regno == regno)
4271 link->insn = i2;
4272 done = true;
4273 break;
4280 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4281 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4282 rtx midnotes = 0;
4283 int from_luid;
4284 /* Compute which registers we expect to eliminate. newi2pat may be setting
4285 either i3dest or i2dest, so we must check it. */
4286 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4287 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4288 || !i2dest_killed
4289 ? 0 : i2dest);
4290 /* For i1, we need to compute both local elimination and global
4291 elimination information with respect to newi2pat because i1dest
4292 may be the same as i3dest, in which case newi2pat may be setting
4293 i1dest. Global information is used when distributing REG_DEAD
4294 note for i2 and i3, in which case it does matter if newi2pat sets
4295 i1dest or not.
4297 Local information is used when distributing REG_DEAD note for i1,
4298 in which case it doesn't matter if newi2pat sets i1dest or not.
4299 See PR62151, if we have four insns combination:
4300 i0: r0 <- i0src
4301 i1: r1 <- i1src (using r0)
4302 REG_DEAD (r0)
4303 i2: r0 <- i2src (using r1)
4304 i3: r3 <- i3src (using r0)
4305 ix: using r0
4306 From i1's point of view, r0 is eliminated, no matter if it is set
4307 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4308 should be discarded.
4310 Note local information only affects cases in forms like "I1->I2->I3",
4311 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4312 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4313 i0dest anyway. */
4314 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4315 || !i1dest_killed
4316 ? 0 : i1dest);
4317 rtx elim_i1 = (local_elim_i1 == 0
4318 || (newi2pat && reg_set_p (i1dest, newi2pat))
4319 ? 0 : i1dest);
4320 /* Same case as i1. */
4321 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4322 ? 0 : i0dest);
4323 rtx elim_i0 = (local_elim_i0 == 0
4324 || (newi2pat && reg_set_p (i0dest, newi2pat))
4325 ? 0 : i0dest);
4327 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4328 clear them. */
4329 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4330 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4331 if (i1)
4332 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4333 if (i0)
4334 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4336 /* Ensure that we do not have something that should not be shared but
4337 occurs multiple times in the new insns. Check this by first
4338 resetting all the `used' flags and then copying anything is shared. */
4340 reset_used_flags (i3notes);
4341 reset_used_flags (i2notes);
4342 reset_used_flags (i1notes);
4343 reset_used_flags (i0notes);
4344 reset_used_flags (newpat);
4345 reset_used_flags (newi2pat);
4346 if (undobuf.other_insn)
4347 reset_used_flags (PATTERN (undobuf.other_insn));
4349 i3notes = copy_rtx_if_shared (i3notes);
4350 i2notes = copy_rtx_if_shared (i2notes);
4351 i1notes = copy_rtx_if_shared (i1notes);
4352 i0notes = copy_rtx_if_shared (i0notes);
4353 newpat = copy_rtx_if_shared (newpat);
4354 newi2pat = copy_rtx_if_shared (newi2pat);
4355 if (undobuf.other_insn)
4356 reset_used_flags (PATTERN (undobuf.other_insn));
4358 INSN_CODE (i3) = insn_code_number;
4359 PATTERN (i3) = newpat;
4361 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4363 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4364 link = XEXP (link, 1))
4366 if (substed_i2)
4368 /* I2SRC must still be meaningful at this point. Some
4369 splitting operations can invalidate I2SRC, but those
4370 operations do not apply to calls. */
4371 gcc_assert (i2src);
4372 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4373 i2dest, i2src);
4375 if (substed_i1)
4376 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4377 i1dest, i1src);
4378 if (substed_i0)
4379 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4380 i0dest, i0src);
4384 if (undobuf.other_insn)
4385 INSN_CODE (undobuf.other_insn) = other_code_number;
4387 /* We had one special case above where I2 had more than one set and
4388 we replaced a destination of one of those sets with the destination
4389 of I3. In that case, we have to update LOG_LINKS of insns later
4390 in this basic block. Note that this (expensive) case is rare.
4392 Also, in this case, we must pretend that all REG_NOTEs for I2
4393 actually came from I3, so that REG_UNUSED notes from I2 will be
4394 properly handled. */
4396 if (i3_subst_into_i2)
4398 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4399 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4400 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4401 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4402 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4403 && ! find_reg_note (i2, REG_UNUSED,
4404 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4405 for (temp_insn = NEXT_INSN (i2);
4406 temp_insn
4407 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4408 || BB_HEAD (this_basic_block) != temp_insn);
4409 temp_insn = NEXT_INSN (temp_insn))
4410 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4411 FOR_EACH_LOG_LINK (link, temp_insn)
4412 if (link->insn == i2)
4413 link->insn = i3;
4415 if (i3notes)
4417 rtx link = i3notes;
4418 while (XEXP (link, 1))
4419 link = XEXP (link, 1);
4420 XEXP (link, 1) = i2notes;
4422 else
4423 i3notes = i2notes;
4424 i2notes = 0;
4427 LOG_LINKS (i3) = NULL;
4428 REG_NOTES (i3) = 0;
4429 LOG_LINKS (i2) = NULL;
4430 REG_NOTES (i2) = 0;
4432 if (newi2pat)
4434 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4435 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4436 this_basic_block);
4437 INSN_CODE (i2) = i2_code_number;
4438 PATTERN (i2) = newi2pat;
4440 else
4442 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4443 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4444 this_basic_block);
4445 SET_INSN_DELETED (i2);
4448 if (i1)
4450 LOG_LINKS (i1) = NULL;
4451 REG_NOTES (i1) = 0;
4452 if (MAY_HAVE_DEBUG_BIND_INSNS)
4453 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4454 this_basic_block);
4455 SET_INSN_DELETED (i1);
4458 if (i0)
4460 LOG_LINKS (i0) = NULL;
4461 REG_NOTES (i0) = 0;
4462 if (MAY_HAVE_DEBUG_BIND_INSNS)
4463 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4464 this_basic_block);
4465 SET_INSN_DELETED (i0);
4468 /* Get death notes for everything that is now used in either I3 or
4469 I2 and used to die in a previous insn. If we built two new
4470 patterns, move from I1 to I2 then I2 to I3 so that we get the
4471 proper movement on registers that I2 modifies. */
4473 if (i0)
4474 from_luid = DF_INSN_LUID (i0);
4475 else if (i1)
4476 from_luid = DF_INSN_LUID (i1);
4477 else
4478 from_luid = DF_INSN_LUID (i2);
4479 if (newi2pat)
4480 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4481 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4483 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4484 if (i3notes)
4485 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4486 elim_i2, elim_i1, elim_i0);
4487 if (i2notes)
4488 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4489 elim_i2, elim_i1, elim_i0);
4490 if (i1notes)
4491 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4492 elim_i2, local_elim_i1, local_elim_i0);
4493 if (i0notes)
4494 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4495 elim_i2, elim_i1, local_elim_i0);
4496 if (midnotes)
4497 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4498 elim_i2, elim_i1, elim_i0);
4500 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4501 know these are REG_UNUSED and want them to go to the desired insn,
4502 so we always pass it as i3. */
4504 if (newi2pat && new_i2_notes)
4505 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4506 NULL_RTX);
4508 if (new_i3_notes)
4509 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4510 NULL_RTX);
4512 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4513 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4514 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4515 in that case, it might delete I2. Similarly for I2 and I1.
4516 Show an additional death due to the REG_DEAD note we make here. If
4517 we discard it in distribute_notes, we will decrement it again. */
4519 if (i3dest_killed)
4521 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4522 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4523 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4524 elim_i1, elim_i0);
4525 else
4526 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4527 elim_i2, elim_i1, elim_i0);
4530 if (i2dest_in_i2src)
4532 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4533 if (newi2pat && reg_set_p (i2dest, newi2pat))
4534 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4535 NULL_RTX, NULL_RTX);
4536 else
4537 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4538 NULL_RTX, NULL_RTX, NULL_RTX);
4541 if (i1dest_in_i1src)
4543 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4544 if (newi2pat && reg_set_p (i1dest, newi2pat))
4545 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4546 NULL_RTX, NULL_RTX);
4547 else
4548 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4549 NULL_RTX, NULL_RTX, NULL_RTX);
4552 if (i0dest_in_i0src)
4554 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4555 if (newi2pat && reg_set_p (i0dest, newi2pat))
4556 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4557 NULL_RTX, NULL_RTX);
4558 else
4559 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4560 NULL_RTX, NULL_RTX, NULL_RTX);
4563 distribute_links (i3links);
4564 distribute_links (i2links);
4565 distribute_links (i1links);
4566 distribute_links (i0links);
4568 if (REG_P (i2dest))
4570 struct insn_link *link;
4571 rtx_insn *i2_insn = 0;
4572 rtx i2_val = 0, set;
4574 /* The insn that used to set this register doesn't exist, and
4575 this life of the register may not exist either. See if one of
4576 I3's links points to an insn that sets I2DEST. If it does,
4577 that is now the last known value for I2DEST. If we don't update
4578 this and I2 set the register to a value that depended on its old
4579 contents, we will get confused. If this insn is used, thing
4580 will be set correctly in combine_instructions. */
4581 FOR_EACH_LOG_LINK (link, i3)
4582 if ((set = single_set (link->insn)) != 0
4583 && rtx_equal_p (i2dest, SET_DEST (set)))
4584 i2_insn = link->insn, i2_val = SET_SRC (set);
4586 record_value_for_reg (i2dest, i2_insn, i2_val);
4588 /* If the reg formerly set in I2 died only once and that was in I3,
4589 zero its use count so it won't make `reload' do any work. */
4590 if (! added_sets_2
4591 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4592 && ! i2dest_in_i2src
4593 && REGNO (i2dest) < reg_n_sets_max)
4594 INC_REG_N_SETS (REGNO (i2dest), -1);
4597 if (i1 && REG_P (i1dest))
4599 struct insn_link *link;
4600 rtx_insn *i1_insn = 0;
4601 rtx i1_val = 0, set;
4603 FOR_EACH_LOG_LINK (link, i3)
4604 if ((set = single_set (link->insn)) != 0
4605 && rtx_equal_p (i1dest, SET_DEST (set)))
4606 i1_insn = link->insn, i1_val = SET_SRC (set);
4608 record_value_for_reg (i1dest, i1_insn, i1_val);
4610 if (! added_sets_1
4611 && ! i1dest_in_i1src
4612 && REGNO (i1dest) < reg_n_sets_max)
4613 INC_REG_N_SETS (REGNO (i1dest), -1);
4616 if (i0 && REG_P (i0dest))
4618 struct insn_link *link;
4619 rtx_insn *i0_insn = 0;
4620 rtx i0_val = 0, set;
4622 FOR_EACH_LOG_LINK (link, i3)
4623 if ((set = single_set (link->insn)) != 0
4624 && rtx_equal_p (i0dest, SET_DEST (set)))
4625 i0_insn = link->insn, i0_val = SET_SRC (set);
4627 record_value_for_reg (i0dest, i0_insn, i0_val);
4629 if (! added_sets_0
4630 && ! i0dest_in_i0src
4631 && REGNO (i0dest) < reg_n_sets_max)
4632 INC_REG_N_SETS (REGNO (i0dest), -1);
4635 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4636 been made to this insn. The order is important, because newi2pat
4637 can affect nonzero_bits of newpat. */
4638 if (newi2pat)
4639 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4640 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4643 if (undobuf.other_insn != NULL_RTX)
4645 if (dump_file)
4647 fprintf (dump_file, "modifying other_insn ");
4648 dump_insn_slim (dump_file, undobuf.other_insn);
4650 df_insn_rescan (undobuf.other_insn);
4653 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4655 if (dump_file)
4657 fprintf (dump_file, "modifying insn i0 ");
4658 dump_insn_slim (dump_file, i0);
4660 df_insn_rescan (i0);
4663 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4665 if (dump_file)
4667 fprintf (dump_file, "modifying insn i1 ");
4668 dump_insn_slim (dump_file, i1);
4670 df_insn_rescan (i1);
4673 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4675 if (dump_file)
4677 fprintf (dump_file, "modifying insn i2 ");
4678 dump_insn_slim (dump_file, i2);
4680 df_insn_rescan (i2);
4683 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4685 if (dump_file)
4687 fprintf (dump_file, "modifying insn i3 ");
4688 dump_insn_slim (dump_file, i3);
4690 df_insn_rescan (i3);
4693 /* Set new_direct_jump_p if a new return or simple jump instruction
4694 has been created. Adjust the CFG accordingly. */
4695 if (returnjump_p (i3) || any_uncondjump_p (i3))
4697 *new_direct_jump_p = 1;
4698 mark_jump_label (PATTERN (i3), i3, 0);
4699 update_cfg_for_uncondjump (i3);
4702 if (undobuf.other_insn != NULL_RTX
4703 && (returnjump_p (undobuf.other_insn)
4704 || any_uncondjump_p (undobuf.other_insn)))
4706 *new_direct_jump_p = 1;
4707 update_cfg_for_uncondjump (undobuf.other_insn);
4710 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4711 && XEXP (PATTERN (i3), 0) == const1_rtx)
4713 basic_block bb = BLOCK_FOR_INSN (i3);
4714 gcc_assert (bb);
4715 remove_edge (split_block (bb, i3));
4716 emit_barrier_after_bb (bb);
4717 *new_direct_jump_p = 1;
4720 if (undobuf.other_insn
4721 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4722 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4724 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4725 gcc_assert (bb);
4726 remove_edge (split_block (bb, undobuf.other_insn));
4727 emit_barrier_after_bb (bb);
4728 *new_direct_jump_p = 1;
4731 /* A noop might also need cleaning up of CFG, if it comes from the
4732 simplification of a jump. */
4733 if (JUMP_P (i3)
4734 && GET_CODE (newpat) == SET
4735 && SET_SRC (newpat) == pc_rtx
4736 && SET_DEST (newpat) == pc_rtx)
4738 *new_direct_jump_p = 1;
4739 update_cfg_for_uncondjump (i3);
4742 if (undobuf.other_insn != NULL_RTX
4743 && JUMP_P (undobuf.other_insn)
4744 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4745 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4746 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4748 *new_direct_jump_p = 1;
4749 update_cfg_for_uncondjump (undobuf.other_insn);
4752 combine_successes++;
4753 undo_commit ();
4755 rtx_insn *ret = newi2pat ? i2 : i3;
4756 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4757 ret = added_links_insn;
4758 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4759 ret = added_notes_insn;
4761 return ret;
4764 /* Get a marker for undoing to the current state. */
4766 static void *
4767 get_undo_marker (void)
4769 return undobuf.undos;
4772 /* Undo the modifications up to the marker. */
4774 static void
4775 undo_to_marker (void *marker)
4777 struct undo *undo, *next;
4779 for (undo = undobuf.undos; undo != marker; undo = next)
4781 gcc_assert (undo);
4783 next = undo->next;
4784 switch (undo->kind)
4786 case UNDO_RTX:
4787 *undo->where.r = undo->old_contents.r;
4788 break;
4789 case UNDO_INT:
4790 *undo->where.i = undo->old_contents.i;
4791 break;
4792 case UNDO_MODE:
4793 adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4794 undo->old_contents.m);
4795 break;
4796 case UNDO_LINKS:
4797 *undo->where.l = undo->old_contents.l;
4798 break;
4799 default:
4800 gcc_unreachable ();
4803 undo->next = undobuf.frees;
4804 undobuf.frees = undo;
4807 undobuf.undos = (struct undo *) marker;
4810 /* Undo all the modifications recorded in undobuf. */
4812 static void
4813 undo_all (void)
4815 undo_to_marker (0);
4818 /* We've committed to accepting the changes we made. Move all
4819 of the undos to the free list. */
4821 static void
4822 undo_commit (void)
4824 struct undo *undo, *next;
4826 for (undo = undobuf.undos; undo; undo = next)
4828 next = undo->next;
4829 undo->next = undobuf.frees;
4830 undobuf.frees = undo;
4832 undobuf.undos = 0;
4835 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4836 where we have an arithmetic expression and return that point. LOC will
4837 be inside INSN.
4839 try_combine will call this function to see if an insn can be split into
4840 two insns. */
4842 static rtx *
4843 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4845 rtx x = *loc;
4846 enum rtx_code code = GET_CODE (x);
4847 rtx *split;
4848 unsigned HOST_WIDE_INT len = 0;
4849 HOST_WIDE_INT pos = 0;
4850 bool unsignedp = false;
4851 rtx inner = NULL_RTX;
4852 scalar_int_mode mode, inner_mode;
4854 /* First special-case some codes. */
4855 switch (code)
4857 case SUBREG:
4858 #ifdef INSN_SCHEDULING
4859 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4860 point. */
4861 if (MEM_P (SUBREG_REG (x)))
4862 return loc;
4863 #endif
4864 return find_split_point (&SUBREG_REG (x), insn, false);
4866 case MEM:
4867 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4868 using LO_SUM and HIGH. */
4869 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4870 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4872 machine_mode address_mode = get_address_mode (x);
4874 SUBST (XEXP (x, 0),
4875 gen_rtx_LO_SUM (address_mode,
4876 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4877 XEXP (x, 0)));
4878 return &XEXP (XEXP (x, 0), 0);
4881 /* If we have a PLUS whose second operand is a constant and the
4882 address is not valid, perhaps we can split it up using
4883 the machine-specific way to split large constants. We use
4884 the first pseudo-reg (one of the virtual regs) as a placeholder;
4885 it will not remain in the result. */
4886 if (GET_CODE (XEXP (x, 0)) == PLUS
4887 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4888 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4889 MEM_ADDR_SPACE (x)))
4891 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4892 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4893 subst_insn);
4895 /* This should have produced two insns, each of which sets our
4896 placeholder. If the source of the second is a valid address,
4897 we can put both sources together and make a split point
4898 in the middle. */
4900 if (seq
4901 && NEXT_INSN (seq) != NULL_RTX
4902 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4903 && NONJUMP_INSN_P (seq)
4904 && GET_CODE (PATTERN (seq)) == SET
4905 && SET_DEST (PATTERN (seq)) == reg
4906 && ! reg_mentioned_p (reg,
4907 SET_SRC (PATTERN (seq)))
4908 && NONJUMP_INSN_P (NEXT_INSN (seq))
4909 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4910 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4911 && memory_address_addr_space_p
4912 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4913 MEM_ADDR_SPACE (x)))
4915 rtx src1 = SET_SRC (PATTERN (seq));
4916 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4918 /* Replace the placeholder in SRC2 with SRC1. If we can
4919 find where in SRC2 it was placed, that can become our
4920 split point and we can replace this address with SRC2.
4921 Just try two obvious places. */
4923 src2 = replace_rtx (src2, reg, src1);
4924 split = 0;
4925 if (XEXP (src2, 0) == src1)
4926 split = &XEXP (src2, 0);
4927 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4928 && XEXP (XEXP (src2, 0), 0) == src1)
4929 split = &XEXP (XEXP (src2, 0), 0);
4931 if (split)
4933 SUBST (XEXP (x, 0), src2);
4934 return split;
4938 /* If that didn't work and we have a nested plus, like:
4939 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4940 is valid address, try to split (REG1 * CONST1). */
4941 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4942 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4943 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4944 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4945 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4946 0), 0)))))
4948 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4949 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4950 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4951 MEM_ADDR_SPACE (x)))
4953 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4954 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4956 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4958 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4959 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4960 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4961 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4962 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4963 0), 1)))))
4965 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4966 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4967 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4968 MEM_ADDR_SPACE (x)))
4970 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4971 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4973 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4976 /* If that didn't work, perhaps the first operand is complex and
4977 needs to be computed separately, so make a split point there.
4978 This will occur on machines that just support REG + CONST
4979 and have a constant moved through some previous computation. */
4980 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4981 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4982 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4983 return &XEXP (XEXP (x, 0), 0);
4986 /* If we have a PLUS whose first operand is complex, try computing it
4987 separately by making a split there. */
4988 if (GET_CODE (XEXP (x, 0)) == PLUS
4989 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4990 MEM_ADDR_SPACE (x))
4991 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4992 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4993 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4994 return &XEXP (XEXP (x, 0), 0);
4995 break;
4997 case SET:
4998 /* See if we can split SET_SRC as it stands. */
4999 split = find_split_point (&SET_SRC (x), insn, true);
5000 if (split && split != &SET_SRC (x))
5001 return split;
5003 /* See if we can split SET_DEST as it stands. */
5004 split = find_split_point (&SET_DEST (x), insn, false);
5005 if (split && split != &SET_DEST (x))
5006 return split;
5008 /* See if this is a bitfield assignment with everything constant. If
5009 so, this is an IOR of an AND, so split it into that. */
5010 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5011 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5012 &inner_mode)
5013 && HWI_COMPUTABLE_MODE_P (inner_mode)
5014 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5015 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5016 && CONST_INT_P (SET_SRC (x))
5017 && ((INTVAL (XEXP (SET_DEST (x), 1))
5018 + INTVAL (XEXP (SET_DEST (x), 2)))
5019 <= GET_MODE_PRECISION (inner_mode))
5020 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5022 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5023 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5024 rtx dest = XEXP (SET_DEST (x), 0);
5025 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5026 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5027 rtx or_mask;
5029 if (BITS_BIG_ENDIAN)
5030 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5032 or_mask = gen_int_mode (src << pos, inner_mode);
5033 if (src == mask)
5034 SUBST (SET_SRC (x),
5035 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5036 else
5038 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5039 SUBST (SET_SRC (x),
5040 simplify_gen_binary (IOR, inner_mode,
5041 simplify_gen_binary (AND, inner_mode,
5042 dest, negmask),
5043 or_mask));
5046 SUBST (SET_DEST (x), dest);
5048 split = find_split_point (&SET_SRC (x), insn, true);
5049 if (split && split != &SET_SRC (x))
5050 return split;
5053 /* Otherwise, see if this is an operation that we can split into two.
5054 If so, try to split that. */
5055 code = GET_CODE (SET_SRC (x));
5057 switch (code)
5059 case AND:
5060 /* If we are AND'ing with a large constant that is only a single
5061 bit and the result is only being used in a context where we
5062 need to know if it is zero or nonzero, replace it with a bit
5063 extraction. This will avoid the large constant, which might
5064 have taken more than one insn to make. If the constant were
5065 not a valid argument to the AND but took only one insn to make,
5066 this is no worse, but if it took more than one insn, it will
5067 be better. */
5069 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5070 && REG_P (XEXP (SET_SRC (x), 0))
5071 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5072 && REG_P (SET_DEST (x))
5073 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5074 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5075 && XEXP (*split, 0) == SET_DEST (x)
5076 && XEXP (*split, 1) == const0_rtx)
5078 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5079 XEXP (SET_SRC (x), 0),
5080 pos, NULL_RTX, 1,
5081 true, false, false);
5082 if (extraction != 0)
5084 SUBST (SET_SRC (x), extraction);
5085 return find_split_point (loc, insn, false);
5088 break;
5090 case NE:
5091 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5092 is known to be on, this can be converted into a NEG of a shift. */
5093 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5094 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5095 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5096 GET_MODE (XEXP (SET_SRC (x),
5097 0))))) >= 1))
5099 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5100 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5101 SUBST (SET_SRC (x),
5102 gen_rtx_NEG (mode,
5103 gen_rtx_LSHIFTRT (mode,
5104 XEXP (SET_SRC (x), 0),
5105 pos_rtx)));
5107 split = find_split_point (&SET_SRC (x), insn, true);
5108 if (split && split != &SET_SRC (x))
5109 return split;
5111 break;
5113 case SIGN_EXTEND:
5114 inner = XEXP (SET_SRC (x), 0);
5116 /* We can't optimize if either mode is a partial integer
5117 mode as we don't know how many bits are significant
5118 in those modes. */
5119 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5120 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5121 break;
5123 pos = 0;
5124 len = GET_MODE_PRECISION (inner_mode);
5125 unsignedp = false;
5126 break;
5128 case SIGN_EXTRACT:
5129 case ZERO_EXTRACT:
5130 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5131 &inner_mode)
5132 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5133 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5135 inner = XEXP (SET_SRC (x), 0);
5136 len = INTVAL (XEXP (SET_SRC (x), 1));
5137 pos = INTVAL (XEXP (SET_SRC (x), 2));
5139 if (BITS_BIG_ENDIAN)
5140 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5141 unsignedp = (code == ZERO_EXTRACT);
5143 break;
5145 default:
5146 break;
5149 if (len
5150 && known_subrange_p (pos, len,
5151 0, GET_MODE_PRECISION (GET_MODE (inner)))
5152 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5154 /* For unsigned, we have a choice of a shift followed by an
5155 AND or two shifts. Use two shifts for field sizes where the
5156 constant might be too large. We assume here that we can
5157 always at least get 8-bit constants in an AND insn, which is
5158 true for every current RISC. */
5160 if (unsignedp && len <= 8)
5162 unsigned HOST_WIDE_INT mask
5163 = (HOST_WIDE_INT_1U << len) - 1;
5164 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5165 SUBST (SET_SRC (x),
5166 gen_rtx_AND (mode,
5167 gen_rtx_LSHIFTRT
5168 (mode, gen_lowpart (mode, inner), pos_rtx),
5169 gen_int_mode (mask, mode)));
5171 split = find_split_point (&SET_SRC (x), insn, true);
5172 if (split && split != &SET_SRC (x))
5173 return split;
5175 else
5177 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5178 int right_bits = GET_MODE_PRECISION (mode) - len;
5179 SUBST (SET_SRC (x),
5180 gen_rtx_fmt_ee
5181 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5182 gen_rtx_ASHIFT (mode,
5183 gen_lowpart (mode, inner),
5184 gen_int_shift_amount (mode, left_bits)),
5185 gen_int_shift_amount (mode, right_bits)));
5187 split = find_split_point (&SET_SRC (x), insn, true);
5188 if (split && split != &SET_SRC (x))
5189 return split;
5193 /* See if this is a simple operation with a constant as the second
5194 operand. It might be that this constant is out of range and hence
5195 could be used as a split point. */
5196 if (BINARY_P (SET_SRC (x))
5197 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5198 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5199 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5200 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5201 return &XEXP (SET_SRC (x), 1);
5203 /* Finally, see if this is a simple operation with its first operand
5204 not in a register. The operation might require this operand in a
5205 register, so return it as a split point. We can always do this
5206 because if the first operand were another operation, we would have
5207 already found it as a split point. */
5208 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5209 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5210 return &XEXP (SET_SRC (x), 0);
5212 return 0;
5214 case AND:
5215 case IOR:
5216 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5217 it is better to write this as (not (ior A B)) so we can split it.
5218 Similarly for IOR. */
5219 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5221 SUBST (*loc,
5222 gen_rtx_NOT (GET_MODE (x),
5223 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5224 GET_MODE (x),
5225 XEXP (XEXP (x, 0), 0),
5226 XEXP (XEXP (x, 1), 0))));
5227 return find_split_point (loc, insn, set_src);
5230 /* Many RISC machines have a large set of logical insns. If the
5231 second operand is a NOT, put it first so we will try to split the
5232 other operand first. */
5233 if (GET_CODE (XEXP (x, 1)) == NOT)
5235 rtx tem = XEXP (x, 0);
5236 SUBST (XEXP (x, 0), XEXP (x, 1));
5237 SUBST (XEXP (x, 1), tem);
5239 break;
5241 case PLUS:
5242 case MINUS:
5243 /* Canonicalization can produce (minus A (mult B C)), where C is a
5244 constant. It may be better to try splitting (plus (mult B -C) A)
5245 instead if this isn't a multiply by a power of two. */
5246 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5247 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5248 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5250 machine_mode mode = GET_MODE (x);
5251 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5252 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5253 SUBST (*loc, gen_rtx_PLUS (mode,
5254 gen_rtx_MULT (mode,
5255 XEXP (XEXP (x, 1), 0),
5256 gen_int_mode (other_int,
5257 mode)),
5258 XEXP (x, 0)));
5259 return find_split_point (loc, insn, set_src);
5262 /* Split at a multiply-accumulate instruction. However if this is
5263 the SET_SRC, we likely do not have such an instruction and it's
5264 worthless to try this split. */
5265 if (!set_src
5266 && (GET_CODE (XEXP (x, 0)) == MULT
5267 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5268 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5269 return loc;
5271 default:
5272 break;
5275 /* Otherwise, select our actions depending on our rtx class. */
5276 switch (GET_RTX_CLASS (code))
5278 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5279 case RTX_TERNARY:
5280 split = find_split_point (&XEXP (x, 2), insn, false);
5281 if (split)
5282 return split;
5283 /* fall through */
5284 case RTX_BIN_ARITH:
5285 case RTX_COMM_ARITH:
5286 case RTX_COMPARE:
5287 case RTX_COMM_COMPARE:
5288 split = find_split_point (&XEXP (x, 1), insn, false);
5289 if (split)
5290 return split;
5291 /* fall through */
5292 case RTX_UNARY:
5293 /* Some machines have (and (shift ...) ...) insns. If X is not
5294 an AND, but XEXP (X, 0) is, use it as our split point. */
5295 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5296 return &XEXP (x, 0);
5298 split = find_split_point (&XEXP (x, 0), insn, false);
5299 if (split)
5300 return split;
5301 return loc;
5303 default:
5304 /* Otherwise, we don't have a split point. */
5305 return 0;
5309 /* Throughout X, replace FROM with TO, and return the result.
5310 The result is TO if X is FROM;
5311 otherwise the result is X, but its contents may have been modified.
5312 If they were modified, a record was made in undobuf so that
5313 undo_all will (among other things) return X to its original state.
5315 If the number of changes necessary is too much to record to undo,
5316 the excess changes are not made, so the result is invalid.
5317 The changes already made can still be undone.
5318 undobuf.num_undo is incremented for such changes, so by testing that
5319 the caller can tell whether the result is valid.
5321 `n_occurrences' is incremented each time FROM is replaced.
5323 IN_DEST is true if we are processing the SET_DEST of a SET.
5325 IN_COND is true if we are at the top level of a condition.
5327 UNIQUE_COPY is true if each substitution must be unique. We do this
5328 by copying if `n_occurrences' is nonzero. */
5330 static rtx
5331 subst (rtx x, rtx from, rtx to, bool in_dest, bool in_cond, bool unique_copy)
5333 enum rtx_code code = GET_CODE (x);
5334 machine_mode op0_mode = VOIDmode;
5335 const char *fmt;
5336 int len, i;
5337 rtx new_rtx;
5339 /* Two expressions are equal if they are identical copies of a shared
5340 RTX or if they are both registers with the same register number
5341 and mode. */
5343 #define COMBINE_RTX_EQUAL_P(X,Y) \
5344 ((X) == (Y) \
5345 || (REG_P (X) && REG_P (Y) \
5346 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5348 /* Do not substitute into clobbers of regs -- this will never result in
5349 valid RTL. */
5350 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5351 return x;
5353 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5355 n_occurrences++;
5356 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5359 /* If X and FROM are the same register but different modes, they
5360 will not have been seen as equal above. However, the log links code
5361 will make a LOG_LINKS entry for that case. If we do nothing, we
5362 will try to rerecognize our original insn and, when it succeeds,
5363 we will delete the feeding insn, which is incorrect.
5365 So force this insn not to match in this (rare) case. */
5366 if (! in_dest && code == REG && REG_P (from)
5367 && reg_overlap_mentioned_p (x, from))
5368 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5370 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5371 of which may contain things that can be combined. */
5372 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5373 return x;
5375 /* It is possible to have a subexpression appear twice in the insn.
5376 Suppose that FROM is a register that appears within TO.
5377 Then, after that subexpression has been scanned once by `subst',
5378 the second time it is scanned, TO may be found. If we were
5379 to scan TO here, we would find FROM within it and create a
5380 self-referent rtl structure which is completely wrong. */
5381 if (COMBINE_RTX_EQUAL_P (x, to))
5382 return to;
5384 /* Parallel asm_operands need special attention because all of the
5385 inputs are shared across the arms. Furthermore, unsharing the
5386 rtl results in recognition failures. Failure to handle this case
5387 specially can result in circular rtl.
5389 Solve this by doing a normal pass across the first entry of the
5390 parallel, and only processing the SET_DESTs of the subsequent
5391 entries. Ug. */
5393 if (code == PARALLEL
5394 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5395 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5397 new_rtx = subst (XVECEXP (x, 0, 0), from, to, false, false, unique_copy);
5399 /* If this substitution failed, this whole thing fails. */
5400 if (GET_CODE (new_rtx) == CLOBBER
5401 && XEXP (new_rtx, 0) == const0_rtx)
5402 return new_rtx;
5404 SUBST (XVECEXP (x, 0, 0), new_rtx);
5406 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5408 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5410 if (!REG_P (dest) && GET_CODE (dest) != PC)
5412 new_rtx = subst (dest, from, to, false, false, unique_copy);
5414 /* If this substitution failed, this whole thing fails. */
5415 if (GET_CODE (new_rtx) == CLOBBER
5416 && XEXP (new_rtx, 0) == const0_rtx)
5417 return new_rtx;
5419 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5423 else
5425 len = GET_RTX_LENGTH (code);
5426 fmt = GET_RTX_FORMAT (code);
5428 /* We don't need to process a SET_DEST that is a register or PC, so
5429 set up to skip this common case. All other cases where we want
5430 to suppress replacing something inside a SET_SRC are handled via
5431 the IN_DEST operand. */
5432 if (code == SET
5433 && (REG_P (SET_DEST (x))
5434 || GET_CODE (SET_DEST (x)) == PC))
5435 fmt = "ie";
5437 /* Trying to simplify the operands of a widening MULT is not likely
5438 to create RTL matching a machine insn. */
5439 if (code == MULT
5440 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5441 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5442 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5443 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5444 && REG_P (XEXP (XEXP (x, 0), 0))
5445 && REG_P (XEXP (XEXP (x, 1), 0))
5446 && from == to)
5447 return x;
5450 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5451 constant. */
5452 if (fmt[0] == 'e')
5453 op0_mode = GET_MODE (XEXP (x, 0));
5455 for (i = 0; i < len; i++)
5457 if (fmt[i] == 'E')
5459 int j;
5460 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5462 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5464 new_rtx = (unique_copy && n_occurrences
5465 ? copy_rtx (to) : to);
5466 n_occurrences++;
5468 else
5470 new_rtx = subst (XVECEXP (x, i, j), from, to,
5471 false, false, unique_copy);
5473 /* If this substitution failed, this whole thing
5474 fails. */
5475 if (GET_CODE (new_rtx) == CLOBBER
5476 && XEXP (new_rtx, 0) == const0_rtx)
5477 return new_rtx;
5480 SUBST (XVECEXP (x, i, j), new_rtx);
5483 else if (fmt[i] == 'e')
5485 /* If this is a register being set, ignore it. */
5486 new_rtx = XEXP (x, i);
5487 if (in_dest
5488 && i == 0
5489 && (((code == SUBREG || code == ZERO_EXTRACT)
5490 && REG_P (new_rtx))
5491 || code == STRICT_LOW_PART))
5494 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5496 /* In general, don't install a subreg involving two
5497 modes not tieable. It can worsen register
5498 allocation, and can even make invalid reload
5499 insns, since the reg inside may need to be copied
5500 from in the outside mode, and that may be invalid
5501 if it is an fp reg copied in integer mode.
5503 We allow an exception to this: It is valid if
5504 it is inside another SUBREG and the mode of that
5505 SUBREG and the mode of the inside of TO is
5506 tieable. */
5508 if (GET_CODE (to) == SUBREG
5509 && !targetm.modes_tieable_p (GET_MODE (to),
5510 GET_MODE (SUBREG_REG (to)))
5511 && ! (code == SUBREG
5512 && (targetm.modes_tieable_p
5513 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5514 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5516 if (code == SUBREG
5517 && REG_P (to)
5518 && REGNO (to) < FIRST_PSEUDO_REGISTER
5519 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5520 SUBREG_BYTE (x),
5521 GET_MODE (x)) < 0)
5522 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5524 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5525 n_occurrences++;
5527 else
5528 /* If we are in a SET_DEST, suppress most cases unless we
5529 have gone inside a MEM, in which case we want to
5530 simplify the address. We assume here that things that
5531 are actually part of the destination have their inner
5532 parts in the first expression. This is true for SUBREG,
5533 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5534 things aside from REG and MEM that should appear in a
5535 SET_DEST. */
5536 new_rtx = subst (XEXP (x, i), from, to,
5537 (((in_dest
5538 && (code == SUBREG || code == STRICT_LOW_PART
5539 || code == ZERO_EXTRACT))
5540 || code == SET)
5541 && i == 0),
5542 code == IF_THEN_ELSE && i == 0,
5543 unique_copy);
5545 /* If we found that we will have to reject this combination,
5546 indicate that by returning the CLOBBER ourselves, rather than
5547 an expression containing it. This will speed things up as
5548 well as prevent accidents where two CLOBBERs are considered
5549 to be equal, thus producing an incorrect simplification. */
5551 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5552 return new_rtx;
5554 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5556 machine_mode mode = GET_MODE (x);
5558 x = simplify_subreg (GET_MODE (x), new_rtx,
5559 GET_MODE (SUBREG_REG (x)),
5560 SUBREG_BYTE (x));
5561 if (! x)
5562 x = gen_rtx_CLOBBER (mode, const0_rtx);
5564 else if (CONST_SCALAR_INT_P (new_rtx)
5565 && (GET_CODE (x) == ZERO_EXTEND
5566 || GET_CODE (x) == SIGN_EXTEND
5567 || GET_CODE (x) == FLOAT
5568 || GET_CODE (x) == UNSIGNED_FLOAT))
5570 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5571 new_rtx,
5572 GET_MODE (XEXP (x, 0)));
5573 if (!x)
5574 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5576 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5577 etc. arguments, otherwise we can ICE before trying to recog
5578 it. See PR104446. */
5579 else if (CONST_SCALAR_INT_P (new_rtx)
5580 && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5581 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5582 else
5583 SUBST (XEXP (x, i), new_rtx);
5588 /* Check if we are loading something from the constant pool via float
5589 extension; in this case we would undo compress_float_constant
5590 optimization and degenerate constant load to an immediate value. */
5591 if (GET_CODE (x) == FLOAT_EXTEND
5592 && MEM_P (XEXP (x, 0))
5593 && MEM_READONLY_P (XEXP (x, 0)))
5595 rtx tmp = avoid_constant_pool_reference (x);
5596 if (x != tmp)
5597 return x;
5600 /* Try to simplify X. If the simplification changed the code, it is likely
5601 that further simplification will help, so loop, but limit the number
5602 of repetitions that will be performed. */
5604 for (i = 0; i < 4; i++)
5606 /* If X is sufficiently simple, don't bother trying to do anything
5607 with it. */
5608 if (code != CONST_INT && code != REG && code != CLOBBER)
5609 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5611 if (GET_CODE (x) == code)
5612 break;
5614 code = GET_CODE (x);
5616 /* We no longer know the original mode of operand 0 since we
5617 have changed the form of X) */
5618 op0_mode = VOIDmode;
5621 return x;
5624 /* If X is a commutative operation whose operands are not in the canonical
5625 order, use substitutions to swap them. */
5627 static void
5628 maybe_swap_commutative_operands (rtx x)
5630 if (COMMUTATIVE_ARITH_P (x)
5631 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5633 rtx temp = XEXP (x, 0);
5634 SUBST (XEXP (x, 0), XEXP (x, 1));
5635 SUBST (XEXP (x, 1), temp);
5638 unsigned n_elts = 0;
5639 if (GET_CODE (x) == VEC_MERGE
5640 && CONST_INT_P (XEXP (x, 2))
5641 && GET_MODE_NUNITS (GET_MODE (x)).is_constant (&n_elts)
5642 && (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))
5643 /* Two operands have same precedence, then
5644 first bit of mask select first operand. */
5645 || (!swap_commutative_operands_p (XEXP (x, 1), XEXP (x, 0))
5646 && !(UINTVAL (XEXP (x, 2)) & 1))))
5648 rtx temp = XEXP (x, 0);
5649 unsigned HOST_WIDE_INT sel = UINTVAL (XEXP (x, 2));
5650 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U;
5651 if (n_elts == HOST_BITS_PER_WIDE_INT)
5652 mask = -1;
5653 else
5654 mask = (HOST_WIDE_INT_1U << n_elts) - 1;
5655 SUBST (XEXP (x, 0), XEXP (x, 1));
5656 SUBST (XEXP (x, 1), temp);
5657 SUBST (XEXP (x, 2), GEN_INT (~sel & mask));
5661 /* Simplify X, a piece of RTL. We just operate on the expression at the
5662 outer level; call `subst' to simplify recursively. Return the new
5663 expression.
5665 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is true
5666 if we are inside a SET_DEST. IN_COND is true if we are at the top level
5667 of a condition. */
5669 static rtx
5670 combine_simplify_rtx (rtx x, machine_mode op0_mode, bool in_dest, bool in_cond)
5672 enum rtx_code code = GET_CODE (x);
5673 machine_mode mode = GET_MODE (x);
5674 scalar_int_mode int_mode;
5675 rtx temp;
5676 int i;
5678 /* If this is a commutative operation, put a constant last and a complex
5679 expression first. We don't need to do this for comparisons here. */
5680 maybe_swap_commutative_operands (x);
5682 /* Try to fold this expression in case we have constants that weren't
5683 present before. */
5684 temp = 0;
5685 switch (GET_RTX_CLASS (code))
5687 case RTX_UNARY:
5688 if (op0_mode == VOIDmode)
5689 op0_mode = GET_MODE (XEXP (x, 0));
5690 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5691 break;
5692 case RTX_COMPARE:
5693 case RTX_COMM_COMPARE:
5695 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5696 if (cmp_mode == VOIDmode)
5698 cmp_mode = GET_MODE (XEXP (x, 1));
5699 if (cmp_mode == VOIDmode)
5700 cmp_mode = op0_mode;
5702 temp = simplify_relational_operation (code, mode, cmp_mode,
5703 XEXP (x, 0), XEXP (x, 1));
5705 break;
5706 case RTX_COMM_ARITH:
5707 case RTX_BIN_ARITH:
5708 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5709 break;
5710 case RTX_BITFIELD_OPS:
5711 case RTX_TERNARY:
5712 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5713 XEXP (x, 1), XEXP (x, 2));
5714 break;
5715 default:
5716 break;
5719 if (temp)
5721 x = temp;
5722 code = GET_CODE (temp);
5723 op0_mode = VOIDmode;
5724 mode = GET_MODE (temp);
5727 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5728 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5729 things. Check for cases where both arms are testing the same
5730 condition.
5732 Don't do anything if all operands are very simple. */
5734 if ((BINARY_P (x)
5735 && ((!OBJECT_P (XEXP (x, 0))
5736 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5737 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5738 || (!OBJECT_P (XEXP (x, 1))
5739 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5740 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5741 || (UNARY_P (x)
5742 && (!OBJECT_P (XEXP (x, 0))
5743 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5744 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5746 rtx cond, true_rtx, false_rtx;
5748 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5749 if (cond != 0
5750 /* If everything is a comparison, what we have is highly unlikely
5751 to be simpler, so don't use it. */
5752 && ! (COMPARISON_P (x)
5753 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5754 /* Similarly, if we end up with one of the expressions the same
5755 as the original, it is certainly not simpler. */
5756 && ! rtx_equal_p (x, true_rtx)
5757 && ! rtx_equal_p (x, false_rtx))
5759 rtx cop1 = const0_rtx;
5760 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5762 if (cond_code == NE && COMPARISON_P (cond))
5763 return x;
5765 /* Simplify the alternative arms; this may collapse the true and
5766 false arms to store-flag values. Be careful to use copy_rtx
5767 here since true_rtx or false_rtx might share RTL with x as a
5768 result of the if_then_else_cond call above. */
5769 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx,
5770 false, false, false);
5771 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx,
5772 false, false, false);
5774 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5775 is unlikely to be simpler. */
5776 if (general_operand (true_rtx, VOIDmode)
5777 && general_operand (false_rtx, VOIDmode))
5779 enum rtx_code reversed;
5781 /* Restarting if we generate a store-flag expression will cause
5782 us to loop. Just drop through in this case. */
5784 /* If the result values are STORE_FLAG_VALUE and zero, we can
5785 just make the comparison operation. */
5786 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5787 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5788 cond, cop1);
5789 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5790 && ((reversed = reversed_comparison_code_parts
5791 (cond_code, cond, cop1, NULL))
5792 != UNKNOWN))
5793 x = simplify_gen_relational (reversed, mode, VOIDmode,
5794 cond, cop1);
5796 /* Likewise, we can make the negate of a comparison operation
5797 if the result values are - STORE_FLAG_VALUE and zero. */
5798 else if (CONST_INT_P (true_rtx)
5799 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5800 && false_rtx == const0_rtx)
5801 x = simplify_gen_unary (NEG, mode,
5802 simplify_gen_relational (cond_code,
5803 mode, VOIDmode,
5804 cond, cop1),
5805 mode);
5806 else if (CONST_INT_P (false_rtx)
5807 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5808 && true_rtx == const0_rtx
5809 && ((reversed = reversed_comparison_code_parts
5810 (cond_code, cond, cop1, NULL))
5811 != UNKNOWN))
5812 x = simplify_gen_unary (NEG, mode,
5813 simplify_gen_relational (reversed,
5814 mode, VOIDmode,
5815 cond, cop1),
5816 mode);
5818 code = GET_CODE (x);
5819 op0_mode = VOIDmode;
5824 /* First see if we can apply the inverse distributive law. */
5825 if (code == PLUS || code == MINUS
5826 || code == AND || code == IOR || code == XOR)
5828 x = apply_distributive_law (x);
5829 code = GET_CODE (x);
5830 op0_mode = VOIDmode;
5833 /* If CODE is an associative operation not otherwise handled, see if we
5834 can associate some operands. This can win if they are constants or
5835 if they are logically related (i.e. (a & b) & a). */
5836 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5837 || code == AND || code == IOR || code == XOR
5838 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5839 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5840 || (flag_associative_math && FLOAT_MODE_P (mode))))
5842 if (GET_CODE (XEXP (x, 0)) == code)
5844 rtx other = XEXP (XEXP (x, 0), 0);
5845 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5846 rtx inner_op1 = XEXP (x, 1);
5847 rtx inner;
5849 /* Make sure we pass the constant operand if any as the second
5850 one if this is a commutative operation. */
5851 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5852 std::swap (inner_op0, inner_op1);
5853 inner = simplify_binary_operation (code == MINUS ? PLUS
5854 : code == DIV ? MULT
5855 : code,
5856 mode, inner_op0, inner_op1);
5858 /* For commutative operations, try the other pair if that one
5859 didn't simplify. */
5860 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5862 other = XEXP (XEXP (x, 0), 1);
5863 inner = simplify_binary_operation (code, mode,
5864 XEXP (XEXP (x, 0), 0),
5865 XEXP (x, 1));
5868 if (inner)
5869 return simplify_gen_binary (code, mode, other, inner);
5873 /* A little bit of algebraic simplification here. */
5874 switch (code)
5876 case MEM:
5877 /* Ensure that our address has any ASHIFTs converted to MULT in case
5878 address-recognizing predicates are called later. */
5879 temp = make_compound_operation (XEXP (x, 0), MEM);
5880 SUBST (XEXP (x, 0), temp);
5881 break;
5883 case SUBREG:
5884 if (op0_mode == VOIDmode)
5885 op0_mode = GET_MODE (SUBREG_REG (x));
5887 /* See if this can be moved to simplify_subreg. */
5888 if (CONSTANT_P (SUBREG_REG (x))
5889 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5890 /* Don't call gen_lowpart if the inner mode
5891 is VOIDmode and we cannot simplify it, as SUBREG without
5892 inner mode is invalid. */
5893 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5894 || gen_lowpart_common (mode, SUBREG_REG (x))))
5895 return gen_lowpart (mode, SUBREG_REG (x));
5897 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5898 break;
5900 rtx temp;
5901 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5902 SUBREG_BYTE (x));
5903 if (temp)
5904 return temp;
5906 /* If op is known to have all lower bits zero, the result is zero. */
5907 scalar_int_mode int_mode, int_op0_mode;
5908 if (!in_dest
5909 && is_a <scalar_int_mode> (mode, &int_mode)
5910 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5911 && (GET_MODE_PRECISION (int_mode)
5912 < GET_MODE_PRECISION (int_op0_mode))
5913 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5914 SUBREG_BYTE (x))
5915 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5916 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5917 & GET_MODE_MASK (int_mode)) == 0)
5918 && !side_effects_p (SUBREG_REG (x)))
5919 return CONST0_RTX (int_mode);
5922 /* Don't change the mode of the MEM if that would change the meaning
5923 of the address. */
5924 if (MEM_P (SUBREG_REG (x))
5925 && (MEM_VOLATILE_P (SUBREG_REG (x))
5926 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5927 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5928 return gen_rtx_CLOBBER (mode, const0_rtx);
5930 /* Note that we cannot do any narrowing for non-constants since
5931 we might have been counting on using the fact that some bits were
5932 zero. We now do this in the SET. */
5934 break;
5936 case NEG:
5937 temp = expand_compound_operation (XEXP (x, 0));
5939 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5940 replaced by (lshiftrt X C). This will convert
5941 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5943 if (GET_CODE (temp) == ASHIFTRT
5944 && CONST_INT_P (XEXP (temp, 1))
5945 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5946 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5947 INTVAL (XEXP (temp, 1)));
5949 /* If X has only a single bit that might be nonzero, say, bit I, convert
5950 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5951 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5952 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5953 or a SUBREG of one since we'd be making the expression more
5954 complex if it was just a register. */
5956 if (!REG_P (temp)
5957 && ! (GET_CODE (temp) == SUBREG
5958 && REG_P (SUBREG_REG (temp)))
5959 && is_a <scalar_int_mode> (mode, &int_mode)
5960 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5962 rtx temp1 = simplify_shift_const
5963 (NULL_RTX, ASHIFTRT, int_mode,
5964 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5965 GET_MODE_PRECISION (int_mode) - 1 - i),
5966 GET_MODE_PRECISION (int_mode) - 1 - i);
5968 /* If all we did was surround TEMP with the two shifts, we
5969 haven't improved anything, so don't use it. Otherwise,
5970 we are better off with TEMP1. */
5971 if (GET_CODE (temp1) != ASHIFTRT
5972 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5973 || XEXP (XEXP (temp1, 0), 0) != temp)
5974 return temp1;
5976 break;
5978 case TRUNCATE:
5979 /* We can't handle truncation to a partial integer mode here
5980 because we don't know the real bitsize of the partial
5981 integer mode. */
5982 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5983 break;
5985 if (HWI_COMPUTABLE_MODE_P (mode))
5986 SUBST (XEXP (x, 0),
5987 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5988 GET_MODE_MASK (mode), false));
5990 /* We can truncate a constant value and return it. */
5992 poly_int64 c;
5993 if (poly_int_rtx_p (XEXP (x, 0), &c))
5994 return gen_int_mode (c, mode);
5997 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
5998 whose value is a comparison can be replaced with a subreg if
5999 STORE_FLAG_VALUE permits. */
6000 if (HWI_COMPUTABLE_MODE_P (mode)
6001 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6002 && (temp = get_last_value (XEXP (x, 0)))
6003 && COMPARISON_P (temp)
6004 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
6005 return gen_lowpart (mode, XEXP (x, 0));
6006 break;
6008 case CONST:
6009 /* (const (const X)) can become (const X). Do it this way rather than
6010 returning the inner CONST since CONST can be shared with a
6011 REG_EQUAL note. */
6012 if (GET_CODE (XEXP (x, 0)) == CONST)
6013 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6014 break;
6016 case LO_SUM:
6017 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6018 can add in an offset. find_split_point will split this address up
6019 again if it doesn't match. */
6020 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6021 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6022 return XEXP (x, 1);
6023 break;
6025 case PLUS:
6026 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6027 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6028 bit-field and can be replaced by either a sign_extend or a
6029 sign_extract. The `and' may be a zero_extend and the two
6030 <c>, -<c> constants may be reversed. */
6031 if (GET_CODE (XEXP (x, 0)) == XOR
6032 && is_a <scalar_int_mode> (mode, &int_mode)
6033 && CONST_INT_P (XEXP (x, 1))
6034 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6035 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6036 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6037 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6038 && HWI_COMPUTABLE_MODE_P (int_mode)
6039 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6040 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6041 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6042 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6043 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6044 && known_eq ((GET_MODE_PRECISION
6045 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6046 (unsigned int) i + 1))))
6047 return simplify_shift_const
6048 (NULL_RTX, ASHIFTRT, int_mode,
6049 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6050 XEXP (XEXP (XEXP (x, 0), 0), 0),
6051 GET_MODE_PRECISION (int_mode) - (i + 1)),
6052 GET_MODE_PRECISION (int_mode) - (i + 1));
6054 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6055 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6056 the bitsize of the mode - 1. This allows simplification of
6057 "a = (b & 8) == 0;" */
6058 if (XEXP (x, 1) == constm1_rtx
6059 && !REG_P (XEXP (x, 0))
6060 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6061 && REG_P (SUBREG_REG (XEXP (x, 0))))
6062 && is_a <scalar_int_mode> (mode, &int_mode)
6063 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6064 return simplify_shift_const
6065 (NULL_RTX, ASHIFTRT, int_mode,
6066 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6067 gen_rtx_XOR (int_mode, XEXP (x, 0),
6068 const1_rtx),
6069 GET_MODE_PRECISION (int_mode) - 1),
6070 GET_MODE_PRECISION (int_mode) - 1);
6072 /* If we are adding two things that have no bits in common, convert
6073 the addition into an IOR. This will often be further simplified,
6074 for example in cases like ((a & 1) + (a & 2)), which can
6075 become a & 3. */
6077 if (HWI_COMPUTABLE_MODE_P (mode)
6078 && (nonzero_bits (XEXP (x, 0), mode)
6079 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6081 /* Try to simplify the expression further. */
6082 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6083 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, false);
6085 /* If we could, great. If not, do not go ahead with the IOR
6086 replacement, since PLUS appears in many special purpose
6087 address arithmetic instructions. */
6088 if (GET_CODE (temp) != CLOBBER
6089 && (GET_CODE (temp) != IOR
6090 || ((XEXP (temp, 0) != XEXP (x, 0)
6091 || XEXP (temp, 1) != XEXP (x, 1))
6092 && (XEXP (temp, 0) != XEXP (x, 1)
6093 || XEXP (temp, 1) != XEXP (x, 0)))))
6094 return temp;
6097 /* Canonicalize x + x into x << 1. */
6098 if (GET_MODE_CLASS (mode) == MODE_INT
6099 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6100 && !side_effects_p (XEXP (x, 0)))
6101 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6103 break;
6105 case MINUS:
6106 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6107 (and <foo> (const_int pow2-1)) */
6108 if (is_a <scalar_int_mode> (mode, &int_mode)
6109 && GET_CODE (XEXP (x, 1)) == AND
6110 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6111 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6112 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6113 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6114 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6115 break;
6117 case MULT:
6118 /* If we have (mult (plus A B) C), apply the distributive law and then
6119 the inverse distributive law to see if things simplify. This
6120 occurs mostly in addresses, often when unrolling loops. */
6122 if (GET_CODE (XEXP (x, 0)) == PLUS)
6124 rtx result = distribute_and_simplify_rtx (x, 0);
6125 if (result)
6126 return result;
6129 /* Try simplify a*(b/c) as (a*b)/c. */
6130 if (FLOAT_MODE_P (mode) && flag_associative_math
6131 && GET_CODE (XEXP (x, 0)) == DIV)
6133 rtx tem = simplify_binary_operation (MULT, mode,
6134 XEXP (XEXP (x, 0), 0),
6135 XEXP (x, 1));
6136 if (tem)
6137 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6139 break;
6141 case UDIV:
6142 /* If this is a divide by a power of two, treat it as a shift if
6143 its first operand is a shift. */
6144 if (is_a <scalar_int_mode> (mode, &int_mode)
6145 && CONST_INT_P (XEXP (x, 1))
6146 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6147 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6148 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6149 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6150 || GET_CODE (XEXP (x, 0)) == ROTATE
6151 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6152 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6153 XEXP (x, 0), i);
6154 break;
6156 case EQ: case NE:
6157 case GT: case GTU: case GE: case GEU:
6158 case LT: case LTU: case LE: case LEU:
6159 case UNEQ: case LTGT:
6160 case UNGT: case UNGE:
6161 case UNLT: case UNLE:
6162 case UNORDERED: case ORDERED:
6163 /* If the first operand is a condition code, we can't do anything
6164 with it. */
6165 if (GET_CODE (XEXP (x, 0)) == COMPARE
6166 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6168 rtx op0 = XEXP (x, 0);
6169 rtx op1 = XEXP (x, 1);
6170 enum rtx_code new_code;
6172 if (GET_CODE (op0) == COMPARE)
6173 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6175 /* Simplify our comparison, if possible. */
6176 new_code = simplify_comparison (code, &op0, &op1);
6178 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6179 if only the low-order bit is possibly nonzero in X (such as when
6180 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6181 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6182 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6183 (plus X 1).
6185 Remove any ZERO_EXTRACT we made when thinking this was a
6186 comparison. It may now be simpler to use, e.g., an AND. If a
6187 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6188 the call to make_compound_operation in the SET case.
6190 Don't apply these optimizations if the caller would
6191 prefer a comparison rather than a value.
6192 E.g., for the condition in an IF_THEN_ELSE most targets need
6193 an explicit comparison. */
6195 if (in_cond)
6198 else if (STORE_FLAG_VALUE == 1
6199 && new_code == NE
6200 && is_int_mode (mode, &int_mode)
6201 && op1 == const0_rtx
6202 && int_mode == GET_MODE (op0)
6203 && nonzero_bits (op0, int_mode) == 1)
6204 return gen_lowpart (int_mode,
6205 expand_compound_operation (op0));
6207 else if (STORE_FLAG_VALUE == 1
6208 && new_code == NE
6209 && is_int_mode (mode, &int_mode)
6210 && op1 == const0_rtx
6211 && int_mode == GET_MODE (op0)
6212 && (num_sign_bit_copies (op0, int_mode)
6213 == GET_MODE_PRECISION (int_mode)))
6215 op0 = expand_compound_operation (op0);
6216 return simplify_gen_unary (NEG, int_mode,
6217 gen_lowpart (int_mode, op0),
6218 int_mode);
6221 else if (STORE_FLAG_VALUE == 1
6222 && new_code == EQ
6223 && is_int_mode (mode, &int_mode)
6224 && op1 == const0_rtx
6225 && int_mode == GET_MODE (op0)
6226 && nonzero_bits (op0, int_mode) == 1)
6228 op0 = expand_compound_operation (op0);
6229 return simplify_gen_binary (XOR, int_mode,
6230 gen_lowpart (int_mode, op0),
6231 const1_rtx);
6234 else if (STORE_FLAG_VALUE == 1
6235 && new_code == EQ
6236 && is_int_mode (mode, &int_mode)
6237 && op1 == const0_rtx
6238 && int_mode == GET_MODE (op0)
6239 && (num_sign_bit_copies (op0, int_mode)
6240 == GET_MODE_PRECISION (int_mode)))
6242 op0 = expand_compound_operation (op0);
6243 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6246 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6247 those above. */
6248 if (in_cond)
6251 else if (STORE_FLAG_VALUE == -1
6252 && new_code == NE
6253 && is_int_mode (mode, &int_mode)
6254 && op1 == const0_rtx
6255 && int_mode == GET_MODE (op0)
6256 && (num_sign_bit_copies (op0, int_mode)
6257 == GET_MODE_PRECISION (int_mode)))
6258 return gen_lowpart (int_mode, expand_compound_operation (op0));
6260 else if (STORE_FLAG_VALUE == -1
6261 && new_code == NE
6262 && is_int_mode (mode, &int_mode)
6263 && op1 == const0_rtx
6264 && int_mode == GET_MODE (op0)
6265 && nonzero_bits (op0, int_mode) == 1)
6267 op0 = expand_compound_operation (op0);
6268 return simplify_gen_unary (NEG, int_mode,
6269 gen_lowpart (int_mode, op0),
6270 int_mode);
6273 else if (STORE_FLAG_VALUE == -1
6274 && new_code == EQ
6275 && is_int_mode (mode, &int_mode)
6276 && op1 == const0_rtx
6277 && int_mode == GET_MODE (op0)
6278 && (num_sign_bit_copies (op0, int_mode)
6279 == GET_MODE_PRECISION (int_mode)))
6281 op0 = expand_compound_operation (op0);
6282 return simplify_gen_unary (NOT, int_mode,
6283 gen_lowpart (int_mode, op0),
6284 int_mode);
6287 /* If X is 0/1, (eq X 0) is X-1. */
6288 else if (STORE_FLAG_VALUE == -1
6289 && new_code == EQ
6290 && is_int_mode (mode, &int_mode)
6291 && op1 == const0_rtx
6292 && int_mode == GET_MODE (op0)
6293 && nonzero_bits (op0, int_mode) == 1)
6295 op0 = expand_compound_operation (op0);
6296 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6299 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6300 one bit that might be nonzero, we can convert (ne x 0) to
6301 (ashift x c) where C puts the bit in the sign bit. Remove any
6302 AND with STORE_FLAG_VALUE when we are done, since we are only
6303 going to test the sign bit. */
6304 if (new_code == NE
6305 && is_int_mode (mode, &int_mode)
6306 && HWI_COMPUTABLE_MODE_P (int_mode)
6307 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6308 && op1 == const0_rtx
6309 && int_mode == GET_MODE (op0)
6310 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6312 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6313 expand_compound_operation (op0),
6314 GET_MODE_PRECISION (int_mode) - 1 - i);
6315 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6316 return XEXP (x, 0);
6317 else
6318 return x;
6321 /* If the code changed, return a whole new comparison.
6322 We also need to avoid using SUBST in cases where
6323 simplify_comparison has widened a comparison with a CONST_INT,
6324 since in that case the wider CONST_INT may fail the sanity
6325 checks in do_SUBST. */
6326 if (new_code != code
6327 || (CONST_INT_P (op1)
6328 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6329 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6330 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6332 /* Otherwise, keep this operation, but maybe change its operands.
6333 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6334 SUBST (XEXP (x, 0), op0);
6335 SUBST (XEXP (x, 1), op1);
6337 break;
6339 case IF_THEN_ELSE:
6340 return simplify_if_then_else (x);
6342 case ZERO_EXTRACT:
6343 case SIGN_EXTRACT:
6344 case ZERO_EXTEND:
6345 case SIGN_EXTEND:
6346 /* If we are processing SET_DEST, we are done. */
6347 if (in_dest)
6348 return x;
6350 return expand_compound_operation (x);
6352 case SET:
6353 return simplify_set (x);
6355 case AND:
6356 case IOR:
6357 return simplify_logical (x);
6359 case ASHIFT:
6360 case LSHIFTRT:
6361 case ASHIFTRT:
6362 case ROTATE:
6363 case ROTATERT:
6364 /* If this is a shift by a constant amount, simplify it. */
6365 if (CONST_INT_P (XEXP (x, 1)))
6366 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6367 INTVAL (XEXP (x, 1)));
6369 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6370 SUBST (XEXP (x, 1),
6371 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6372 (HOST_WIDE_INT_1U
6373 << exact_log2 (GET_MODE_UNIT_BITSIZE
6374 (GET_MODE (x)))) - 1, false));
6375 break;
6376 case VEC_SELECT:
6378 rtx trueop0 = XEXP (x, 0);
6379 mode = GET_MODE (trueop0);
6380 rtx trueop1 = XEXP (x, 1);
6381 /* If we select a low-part subreg, return that. */
6382 if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
6384 rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
6385 if (new_rtx != NULL_RTX)
6386 return new_rtx;
6390 default:
6391 break;
6394 return x;
6397 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6399 static rtx
6400 simplify_if_then_else (rtx x)
6402 machine_mode mode = GET_MODE (x);
6403 rtx cond = XEXP (x, 0);
6404 rtx true_rtx = XEXP (x, 1);
6405 rtx false_rtx = XEXP (x, 2);
6406 enum rtx_code true_code = GET_CODE (cond);
6407 bool comparison_p = COMPARISON_P (cond);
6408 rtx temp;
6409 int i;
6410 enum rtx_code false_code;
6411 rtx reversed;
6412 scalar_int_mode int_mode, inner_mode;
6414 /* Simplify storing of the truth value. */
6415 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6416 return simplify_gen_relational (true_code, mode, VOIDmode,
6417 XEXP (cond, 0), XEXP (cond, 1));
6419 /* Also when the truth value has to be reversed. */
6420 if (comparison_p
6421 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6422 && (reversed = reversed_comparison (cond, mode)))
6423 return reversed;
6425 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6426 in it is being compared against certain values. Get the true and false
6427 comparisons and see if that says anything about the value of each arm. */
6429 if (comparison_p
6430 && ((false_code = reversed_comparison_code (cond, NULL))
6431 != UNKNOWN)
6432 && REG_P (XEXP (cond, 0)))
6434 HOST_WIDE_INT nzb;
6435 rtx from = XEXP (cond, 0);
6436 rtx true_val = XEXP (cond, 1);
6437 rtx false_val = true_val;
6438 bool swapped = false;
6440 /* If FALSE_CODE is EQ, swap the codes and arms. */
6442 if (false_code == EQ)
6444 swapped = true, true_code = EQ, false_code = NE;
6445 std::swap (true_rtx, false_rtx);
6448 scalar_int_mode from_mode;
6449 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6451 /* If we are comparing against zero and the expression being
6452 tested has only a single bit that might be nonzero, that is
6453 its value when it is not equal to zero. Similarly if it is
6454 known to be -1 or 0. */
6455 if (true_code == EQ
6456 && true_val == const0_rtx
6457 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6459 false_code = EQ;
6460 false_val = gen_int_mode (nzb, from_mode);
6462 else if (true_code == EQ
6463 && true_val == const0_rtx
6464 && (num_sign_bit_copies (from, from_mode)
6465 == GET_MODE_PRECISION (from_mode)))
6467 false_code = EQ;
6468 false_val = constm1_rtx;
6472 /* Now simplify an arm if we know the value of the register in the
6473 branch and it is used in the arm. Be careful due to the potential
6474 of locally-shared RTL. */
6476 if (reg_mentioned_p (from, true_rtx))
6477 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6478 from, true_val),
6479 pc_rtx, pc_rtx, false, false, false);
6480 if (reg_mentioned_p (from, false_rtx))
6481 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6482 from, false_val),
6483 pc_rtx, pc_rtx, false, false, false);
6485 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6486 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6488 true_rtx = XEXP (x, 1);
6489 false_rtx = XEXP (x, 2);
6490 true_code = GET_CODE (cond);
6493 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6494 reversed, do so to avoid needing two sets of patterns for
6495 subtract-and-branch insns. Similarly if we have a constant in the true
6496 arm, the false arm is the same as the first operand of the comparison, or
6497 the false arm is more complicated than the true arm. */
6499 if (comparison_p
6500 && reversed_comparison_code (cond, NULL) != UNKNOWN
6501 && (true_rtx == pc_rtx
6502 || (CONSTANT_P (true_rtx)
6503 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6504 || true_rtx == const0_rtx
6505 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6506 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6507 && !OBJECT_P (false_rtx))
6508 || reg_mentioned_p (true_rtx, false_rtx)
6509 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6511 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6512 SUBST (XEXP (x, 1), false_rtx);
6513 SUBST (XEXP (x, 2), true_rtx);
6515 std::swap (true_rtx, false_rtx);
6516 cond = XEXP (x, 0);
6518 /* It is possible that the conditional has been simplified out. */
6519 true_code = GET_CODE (cond);
6520 comparison_p = COMPARISON_P (cond);
6523 /* If the two arms are identical, we don't need the comparison. */
6525 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6526 return true_rtx;
6528 /* Convert a == b ? b : a to "a". */
6529 if (true_code == EQ && ! side_effects_p (cond)
6530 && !HONOR_NANS (mode)
6531 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6532 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6533 return false_rtx;
6534 else if (true_code == NE && ! side_effects_p (cond)
6535 && !HONOR_NANS (mode)
6536 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6537 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6538 return true_rtx;
6540 /* Look for cases where we have (abs x) or (neg (abs X)). */
6542 if (GET_MODE_CLASS (mode) == MODE_INT
6543 && comparison_p
6544 && XEXP (cond, 1) == const0_rtx
6545 && GET_CODE (false_rtx) == NEG
6546 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6547 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6548 && ! side_effects_p (true_rtx))
6549 switch (true_code)
6551 case GT:
6552 case GE:
6553 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6554 case LT:
6555 case LE:
6556 return
6557 simplify_gen_unary (NEG, mode,
6558 simplify_gen_unary (ABS, mode, true_rtx, mode),
6559 mode);
6560 default:
6561 break;
6564 /* Look for MIN or MAX. */
6566 if ((! FLOAT_MODE_P (mode)
6567 || (flag_unsafe_math_optimizations
6568 && !HONOR_NANS (mode)
6569 && !HONOR_SIGNED_ZEROS (mode)))
6570 && comparison_p
6571 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6572 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6573 && ! side_effects_p (cond))
6574 switch (true_code)
6576 case GE:
6577 case GT:
6578 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6579 case LE:
6580 case LT:
6581 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6582 case GEU:
6583 case GTU:
6584 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6585 case LEU:
6586 case LTU:
6587 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6588 default:
6589 break;
6592 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6593 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6594 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6595 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6596 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6597 neither 1 or -1, but it isn't worth checking for. */
6599 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6600 && comparison_p
6601 && is_int_mode (mode, &int_mode)
6602 && ! side_effects_p (x))
6604 rtx t = make_compound_operation (true_rtx, SET);
6605 rtx f = make_compound_operation (false_rtx, SET);
6606 rtx cond_op0 = XEXP (cond, 0);
6607 rtx cond_op1 = XEXP (cond, 1);
6608 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6609 scalar_int_mode m = int_mode;
6610 rtx z = 0, c1 = NULL_RTX;
6612 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6613 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6614 || GET_CODE (t) == ASHIFT
6615 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6616 && rtx_equal_p (XEXP (t, 0), f))
6617 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6619 /* If an identity-zero op is commutative, check whether there
6620 would be a match if we swapped the operands. */
6621 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6622 || GET_CODE (t) == XOR)
6623 && rtx_equal_p (XEXP (t, 1), f))
6624 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6625 else if (GET_CODE (t) == SIGN_EXTEND
6626 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6627 && (GET_CODE (XEXP (t, 0)) == PLUS
6628 || GET_CODE (XEXP (t, 0)) == MINUS
6629 || GET_CODE (XEXP (t, 0)) == IOR
6630 || GET_CODE (XEXP (t, 0)) == XOR
6631 || GET_CODE (XEXP (t, 0)) == ASHIFT
6632 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6633 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6634 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6635 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6636 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6637 && (num_sign_bit_copies (f, GET_MODE (f))
6638 > (unsigned int)
6639 (GET_MODE_PRECISION (int_mode)
6640 - GET_MODE_PRECISION (inner_mode))))
6642 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6643 extend_op = SIGN_EXTEND;
6644 m = inner_mode;
6646 else if (GET_CODE (t) == SIGN_EXTEND
6647 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6648 && (GET_CODE (XEXP (t, 0)) == PLUS
6649 || GET_CODE (XEXP (t, 0)) == IOR
6650 || GET_CODE (XEXP (t, 0)) == XOR)
6651 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6652 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6653 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6654 && (num_sign_bit_copies (f, GET_MODE (f))
6655 > (unsigned int)
6656 (GET_MODE_PRECISION (int_mode)
6657 - GET_MODE_PRECISION (inner_mode))))
6659 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6660 extend_op = SIGN_EXTEND;
6661 m = inner_mode;
6663 else if (GET_CODE (t) == ZERO_EXTEND
6664 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6665 && (GET_CODE (XEXP (t, 0)) == PLUS
6666 || GET_CODE (XEXP (t, 0)) == MINUS
6667 || GET_CODE (XEXP (t, 0)) == IOR
6668 || GET_CODE (XEXP (t, 0)) == XOR
6669 || GET_CODE (XEXP (t, 0)) == ASHIFT
6670 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6671 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6672 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6673 && HWI_COMPUTABLE_MODE_P (int_mode)
6674 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6675 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6676 && ((nonzero_bits (f, GET_MODE (f))
6677 & ~GET_MODE_MASK (inner_mode))
6678 == 0))
6680 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6681 extend_op = ZERO_EXTEND;
6682 m = inner_mode;
6684 else if (GET_CODE (t) == ZERO_EXTEND
6685 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6686 && (GET_CODE (XEXP (t, 0)) == PLUS
6687 || GET_CODE (XEXP (t, 0)) == IOR
6688 || GET_CODE (XEXP (t, 0)) == XOR)
6689 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6690 && HWI_COMPUTABLE_MODE_P (int_mode)
6691 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6692 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6693 && ((nonzero_bits (f, GET_MODE (f))
6694 & ~GET_MODE_MASK (inner_mode))
6695 == 0))
6697 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6698 extend_op = ZERO_EXTEND;
6699 m = inner_mode;
6702 if (z)
6704 machine_mode cm = m;
6705 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6706 && GET_MODE (c1) != VOIDmode)
6707 cm = GET_MODE (c1);
6708 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6709 cond_op0, cond_op1),
6710 pc_rtx, pc_rtx, false, false, false);
6711 temp = simplify_gen_binary (MULT, cm, temp,
6712 simplify_gen_binary (MULT, cm, c1,
6713 const_true_rtx));
6714 temp = subst (temp, pc_rtx, pc_rtx, false, false, false);
6715 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6717 if (extend_op != UNKNOWN)
6718 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6720 return temp;
6724 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6725 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6726 negation of a single bit, we can convert this operation to a shift. We
6727 can actually do this more generally, but it doesn't seem worth it. */
6729 if (true_code == NE
6730 && is_a <scalar_int_mode> (mode, &int_mode)
6731 && XEXP (cond, 1) == const0_rtx
6732 && false_rtx == const0_rtx
6733 && CONST_INT_P (true_rtx)
6734 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6735 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6736 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6737 == GET_MODE_PRECISION (int_mode))
6738 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6739 return
6740 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6741 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6743 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6744 non-zero bit in A is C1. */
6745 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6746 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6747 && is_a <scalar_int_mode> (mode, &int_mode)
6748 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6749 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6750 == nonzero_bits (XEXP (cond, 0), inner_mode)
6751 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6753 rtx val = XEXP (cond, 0);
6754 if (inner_mode == int_mode)
6755 return val;
6756 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6757 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6760 return x;
6763 /* Simplify X, a SET expression. Return the new expression. */
6765 static rtx
6766 simplify_set (rtx x)
6768 rtx src = SET_SRC (x);
6769 rtx dest = SET_DEST (x);
6770 machine_mode mode
6771 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6772 rtx_insn *other_insn;
6773 rtx *cc_use;
6774 scalar_int_mode int_mode;
6776 /* (set (pc) (return)) gets written as (return). */
6777 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6778 return src;
6780 /* Now that we know for sure which bits of SRC we are using, see if we can
6781 simplify the expression for the object knowing that we only need the
6782 low-order bits. */
6784 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6786 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, false);
6787 SUBST (SET_SRC (x), src);
6790 /* If the source is a COMPARE, look for the use of the comparison result
6791 and try to simplify it unless we already have used undobuf.other_insn. */
6792 if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6793 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6794 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6795 && COMPARISON_P (*cc_use)
6796 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6798 enum rtx_code old_code = GET_CODE (*cc_use);
6799 enum rtx_code new_code;
6800 rtx op0, op1, tmp;
6801 bool other_changed = false;
6802 rtx inner_compare = NULL_RTX;
6803 machine_mode compare_mode = GET_MODE (dest);
6805 if (GET_CODE (src) == COMPARE)
6807 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6808 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6810 inner_compare = op0;
6811 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6814 else
6815 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6817 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6818 op0, op1);
6819 if (!tmp)
6820 new_code = old_code;
6821 else if (!CONSTANT_P (tmp))
6823 new_code = GET_CODE (tmp);
6824 op0 = XEXP (tmp, 0);
6825 op1 = XEXP (tmp, 1);
6827 else
6829 rtx pat = PATTERN (other_insn);
6830 undobuf.other_insn = other_insn;
6831 SUBST (*cc_use, tmp);
6833 /* Attempt to simplify CC user. */
6834 if (GET_CODE (pat) == SET)
6836 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6837 if (new_rtx != NULL_RTX)
6838 SUBST (SET_SRC (pat), new_rtx);
6841 /* Convert X into a no-op move. */
6842 SUBST (SET_DEST (x), pc_rtx);
6843 SUBST (SET_SRC (x), pc_rtx);
6844 return x;
6847 /* Simplify our comparison, if possible. */
6848 new_code = simplify_comparison (new_code, &op0, &op1);
6850 #ifdef SELECT_CC_MODE
6851 /* If this machine has CC modes other than CCmode, check to see if we
6852 need to use a different CC mode here. */
6853 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6854 compare_mode = GET_MODE (op0);
6855 else if (inner_compare
6856 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6857 && new_code == old_code
6858 && op0 == XEXP (inner_compare, 0)
6859 && op1 == XEXP (inner_compare, 1))
6860 compare_mode = GET_MODE (inner_compare);
6861 else
6862 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6864 /* If the mode changed, we have to change SET_DEST, the mode in the
6865 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6866 a hard register, just build new versions with the proper mode. If it
6867 is a pseudo, we lose unless it is only time we set the pseudo, in
6868 which case we can safely change its mode. */
6869 if (compare_mode != GET_MODE (dest))
6871 if (can_change_dest_mode (dest, 0, compare_mode))
6873 unsigned int regno = REGNO (dest);
6874 rtx new_dest;
6876 if (regno < FIRST_PSEUDO_REGISTER)
6877 new_dest = gen_rtx_REG (compare_mode, regno);
6878 else
6880 subst_mode (regno, compare_mode);
6881 new_dest = regno_reg_rtx[regno];
6884 SUBST (SET_DEST (x), new_dest);
6885 SUBST (XEXP (*cc_use, 0), new_dest);
6886 other_changed = true;
6888 dest = new_dest;
6891 #endif /* SELECT_CC_MODE */
6893 /* If the code changed, we have to build a new comparison in
6894 undobuf.other_insn. */
6895 if (new_code != old_code)
6897 bool other_changed_previously = other_changed;
6898 unsigned HOST_WIDE_INT mask;
6899 rtx old_cc_use = *cc_use;
6901 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6902 dest, const0_rtx));
6903 other_changed = true;
6905 /* If the only change we made was to change an EQ into an NE or
6906 vice versa, OP0 has only one bit that might be nonzero, and OP1
6907 is zero, check if changing the user of the condition code will
6908 produce a valid insn. If it won't, we can keep the original code
6909 in that insn by surrounding our operation with an XOR. */
6911 if (((old_code == NE && new_code == EQ)
6912 || (old_code == EQ && new_code == NE))
6913 && ! other_changed_previously && op1 == const0_rtx
6914 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6915 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6917 rtx pat = PATTERN (other_insn), note = 0;
6919 if ((recog_for_combine (&pat, other_insn, &note) < 0
6920 && ! check_asm_operands (pat)))
6922 *cc_use = old_cc_use;
6923 other_changed = false;
6925 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6926 gen_int_mode (mask,
6927 GET_MODE (op0)));
6932 if (other_changed)
6933 undobuf.other_insn = other_insn;
6935 /* Don't generate a compare of a CC with 0, just use that CC. */
6936 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6938 SUBST (SET_SRC (x), op0);
6939 src = SET_SRC (x);
6941 /* Otherwise, if we didn't previously have the same COMPARE we
6942 want, create it from scratch. */
6943 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6944 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6946 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6947 src = SET_SRC (x);
6950 else
6952 /* Get SET_SRC in a form where we have placed back any
6953 compound expressions. Then do the checks below. */
6954 src = make_compound_operation (src, SET);
6955 SUBST (SET_SRC (x), src);
6958 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6959 and X being a REG or (subreg (reg)), we may be able to convert this to
6960 (set (subreg:m2 x) (op)).
6962 We can always do this if M1 is narrower than M2 because that means that
6963 we only care about the low bits of the result.
6965 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6966 perform a narrower operation than requested since the high-order bits will
6967 be undefined. On machine where it is defined, this transformation is safe
6968 as long as M1 and M2 have the same number of words. */
6970 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6971 && !OBJECT_P (SUBREG_REG (src))
6972 && (known_equal_after_align_up
6973 (GET_MODE_SIZE (GET_MODE (src)),
6974 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6975 UNITS_PER_WORD))
6976 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6977 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6978 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6979 GET_MODE (SUBREG_REG (src)),
6980 GET_MODE (src)))
6981 && (REG_P (dest)
6982 || (GET_CODE (dest) == SUBREG
6983 && REG_P (SUBREG_REG (dest)))))
6985 SUBST (SET_DEST (x),
6986 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6987 dest));
6988 SUBST (SET_SRC (x), SUBREG_REG (src));
6990 src = SET_SRC (x), dest = SET_DEST (x);
6993 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6994 would require a paradoxical subreg. Replace the subreg with a
6995 zero_extend to avoid the reload that would otherwise be required.
6996 Don't do this unless we have a scalar integer mode, otherwise the
6997 transformation is incorrect. */
6999 enum rtx_code extend_op;
7000 if (paradoxical_subreg_p (src)
7001 && MEM_P (SUBREG_REG (src))
7002 && SCALAR_INT_MODE_P (GET_MODE (src))
7003 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7005 SUBST (SET_SRC (x),
7006 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7008 src = SET_SRC (x);
7011 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7012 are comparing an item known to be 0 or -1 against 0, use a logical
7013 operation instead. Check for one of the arms being an IOR of the other
7014 arm with some value. We compute three terms to be IOR'ed together. In
7015 practice, at most two will be nonzero. Then we do the IOR's. */
7017 if (GET_CODE (dest) != PC
7018 && GET_CODE (src) == IF_THEN_ELSE
7019 && is_int_mode (GET_MODE (src), &int_mode)
7020 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7021 && XEXP (XEXP (src, 0), 1) == const0_rtx
7022 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7023 && (!HAVE_conditional_move
7024 || ! can_conditionally_move_p (int_mode))
7025 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7026 == GET_MODE_PRECISION (int_mode))
7027 && ! side_effects_p (src))
7029 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7030 ? XEXP (src, 1) : XEXP (src, 2));
7031 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7032 ? XEXP (src, 2) : XEXP (src, 1));
7033 rtx term1 = const0_rtx, term2, term3;
7035 if (GET_CODE (true_rtx) == IOR
7036 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7037 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7038 else if (GET_CODE (true_rtx) == IOR
7039 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7040 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7041 else if (GET_CODE (false_rtx) == IOR
7042 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7043 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7044 else if (GET_CODE (false_rtx) == IOR
7045 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7046 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7048 term2 = simplify_gen_binary (AND, int_mode,
7049 XEXP (XEXP (src, 0), 0), true_rtx);
7050 term3 = simplify_gen_binary (AND, int_mode,
7051 simplify_gen_unary (NOT, int_mode,
7052 XEXP (XEXP (src, 0), 0),
7053 int_mode),
7054 false_rtx);
7056 SUBST (SET_SRC (x),
7057 simplify_gen_binary (IOR, int_mode,
7058 simplify_gen_binary (IOR, int_mode,
7059 term1, term2),
7060 term3));
7062 src = SET_SRC (x);
7065 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7066 whole thing fail. */
7067 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7068 return src;
7069 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7070 return dest;
7071 else
7072 /* Convert this into a field assignment operation, if possible. */
7073 return make_field_assignment (x);
7076 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7077 result. */
7079 static rtx
7080 simplify_logical (rtx x)
7082 rtx op0 = XEXP (x, 0);
7083 rtx op1 = XEXP (x, 1);
7084 scalar_int_mode mode;
7086 switch (GET_CODE (x))
7088 case AND:
7089 /* We can call simplify_and_const_int only if we don't lose
7090 any (sign) bits when converting INTVAL (op1) to
7091 "unsigned HOST_WIDE_INT". */
7092 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7093 && CONST_INT_P (op1)
7094 && (HWI_COMPUTABLE_MODE_P (mode)
7095 || INTVAL (op1) > 0))
7097 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7098 if (GET_CODE (x) != AND)
7099 return x;
7101 op0 = XEXP (x, 0);
7102 op1 = XEXP (x, 1);
7105 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7106 apply the distributive law and then the inverse distributive
7107 law to see if things simplify. */
7108 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7110 rtx result = distribute_and_simplify_rtx (x, 0);
7111 if (result)
7112 return result;
7114 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7116 rtx result = distribute_and_simplify_rtx (x, 1);
7117 if (result)
7118 return result;
7120 break;
7122 case IOR:
7123 /* If we have (ior (and A B) C), apply the distributive law and then
7124 the inverse distributive law to see if things simplify. */
7126 if (GET_CODE (op0) == AND)
7128 rtx result = distribute_and_simplify_rtx (x, 0);
7129 if (result)
7130 return result;
7133 if (GET_CODE (op1) == AND)
7135 rtx result = distribute_and_simplify_rtx (x, 1);
7136 if (result)
7137 return result;
7139 break;
7141 default:
7142 gcc_unreachable ();
7145 return x;
7148 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7149 operations" because they can be replaced with two more basic operations.
7150 ZERO_EXTEND is also considered "compound" because it can be replaced with
7151 an AND operation, which is simpler, though only one operation.
7153 The function expand_compound_operation is called with an rtx expression
7154 and will convert it to the appropriate shifts and AND operations,
7155 simplifying at each stage.
7157 The function make_compound_operation is called to convert an expression
7158 consisting of shifts and ANDs into the equivalent compound expression.
7159 It is the inverse of this function, loosely speaking. */
7161 static rtx
7162 expand_compound_operation (rtx x)
7164 unsigned HOST_WIDE_INT pos = 0, len;
7165 bool unsignedp = false;
7166 unsigned int modewidth;
7167 rtx tem;
7168 scalar_int_mode inner_mode;
7170 switch (GET_CODE (x))
7172 case ZERO_EXTEND:
7173 unsignedp = true;
7174 /* FALLTHRU */
7175 case SIGN_EXTEND:
7176 /* We can't necessarily use a const_int for a multiword mode;
7177 it depends on implicitly extending the value.
7178 Since we don't know the right way to extend it,
7179 we can't tell whether the implicit way is right.
7181 Even for a mode that is no wider than a const_int,
7182 we can't win, because we need to sign extend one of its bits through
7183 the rest of it, and we don't know which bit. */
7184 if (CONST_INT_P (XEXP (x, 0)))
7185 return x;
7187 /* Reject modes that aren't scalar integers because turning vector
7188 or complex modes into shifts causes problems. */
7189 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7190 return x;
7192 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7193 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7194 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7195 reloaded. If not for that, MEM's would very rarely be safe.
7197 Reject modes bigger than a word, because we might not be able
7198 to reference a two-register group starting with an arbitrary register
7199 (and currently gen_lowpart might crash for a SUBREG). */
7201 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7202 return x;
7204 len = GET_MODE_PRECISION (inner_mode);
7205 /* If the inner object has VOIDmode (the only way this can happen
7206 is if it is an ASM_OPERANDS), we can't do anything since we don't
7207 know how much masking to do. */
7208 if (len == 0)
7209 return x;
7211 break;
7213 case ZERO_EXTRACT:
7214 unsignedp = true;
7216 /* fall through */
7218 case SIGN_EXTRACT:
7219 /* If the operand is a CLOBBER, just return it. */
7220 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7221 return XEXP (x, 0);
7223 if (!CONST_INT_P (XEXP (x, 1))
7224 || !CONST_INT_P (XEXP (x, 2)))
7225 return x;
7227 /* Reject modes that aren't scalar integers because turning vector
7228 or complex modes into shifts causes problems. */
7229 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7230 return x;
7232 len = INTVAL (XEXP (x, 1));
7233 pos = INTVAL (XEXP (x, 2));
7235 /* This should stay within the object being extracted, fail otherwise. */
7236 if (len + pos > GET_MODE_PRECISION (inner_mode))
7237 return x;
7239 if (BITS_BIG_ENDIAN)
7240 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7242 break;
7244 default:
7245 return x;
7248 /* We've rejected non-scalar operations by now. */
7249 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7251 /* Convert sign extension to zero extension, if we know that the high
7252 bit is not set, as this is easier to optimize. It will be converted
7253 back to cheaper alternative in make_extraction. */
7254 if (GET_CODE (x) == SIGN_EXTEND
7255 && HWI_COMPUTABLE_MODE_P (mode)
7256 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7257 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7258 == 0))
7260 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7261 rtx temp2 = expand_compound_operation (temp);
7263 /* Make sure this is a profitable operation. */
7264 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7265 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7266 return temp2;
7267 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7268 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7269 return temp;
7270 else
7271 return x;
7274 /* We can optimize some special cases of ZERO_EXTEND. */
7275 if (GET_CODE (x) == ZERO_EXTEND)
7277 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7278 know that the last value didn't have any inappropriate bits
7279 set. */
7280 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7281 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7282 && HWI_COMPUTABLE_MODE_P (mode)
7283 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7284 & ~GET_MODE_MASK (inner_mode)) == 0)
7285 return XEXP (XEXP (x, 0), 0);
7287 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7288 if (GET_CODE (XEXP (x, 0)) == SUBREG
7289 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7290 && subreg_lowpart_p (XEXP (x, 0))
7291 && HWI_COMPUTABLE_MODE_P (mode)
7292 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7293 & ~GET_MODE_MASK (inner_mode)) == 0)
7294 return SUBREG_REG (XEXP (x, 0));
7296 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7297 is a comparison and STORE_FLAG_VALUE permits. This is like
7298 the first case, but it works even when MODE is larger
7299 than HOST_WIDE_INT. */
7300 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7301 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7302 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7303 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7304 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7305 return XEXP (XEXP (x, 0), 0);
7307 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7308 if (GET_CODE (XEXP (x, 0)) == SUBREG
7309 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7310 && subreg_lowpart_p (XEXP (x, 0))
7311 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7312 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7313 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7314 return SUBREG_REG (XEXP (x, 0));
7318 /* If we reach here, we want to return a pair of shifts. The inner
7319 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7320 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7321 logical depending on the value of UNSIGNEDP.
7323 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7324 converted into an AND of a shift.
7326 We must check for the case where the left shift would have a negative
7327 count. This can happen in a case like (x >> 31) & 255 on machines
7328 that can't shift by a constant. On those machines, we would first
7329 combine the shift with the AND to produce a variable-position
7330 extraction. Then the constant of 31 would be substituted in
7331 to produce such a position. */
7333 modewidth = GET_MODE_PRECISION (mode);
7334 if (modewidth >= pos + len)
7336 tem = gen_lowpart (mode, XEXP (x, 0));
7337 if (!tem || GET_CODE (tem) == CLOBBER)
7338 return x;
7339 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7340 tem, modewidth - pos - len);
7341 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7342 mode, tem, modewidth - len);
7344 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7346 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7347 XEXP (x, 0), pos);
7348 tem = gen_lowpart (mode, tem);
7349 if (!tem || GET_CODE (tem) == CLOBBER)
7350 return x;
7351 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7352 (HOST_WIDE_INT_1U << len) - 1);
7354 else
7355 /* Any other cases we can't handle. */
7356 return x;
7358 /* If we couldn't do this for some reason, return the original
7359 expression. */
7360 if (GET_CODE (tem) == CLOBBER)
7361 return x;
7363 return tem;
7366 /* X is a SET which contains an assignment of one object into
7367 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7368 or certain SUBREGS). If possible, convert it into a series of
7369 logical operations.
7371 We half-heartedly support variable positions, but do not at all
7372 support variable lengths. */
7374 static const_rtx
7375 expand_field_assignment (const_rtx x)
7377 rtx inner;
7378 rtx pos; /* Always counts from low bit. */
7379 int len, inner_len;
7380 rtx mask, cleared, masked;
7381 scalar_int_mode compute_mode;
7383 /* Loop until we find something we can't simplify. */
7384 while (1)
7386 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7387 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7389 rtx x0 = XEXP (SET_DEST (x), 0);
7390 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7391 break;
7392 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7393 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7394 MAX_MODE_INT);
7396 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7397 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7399 inner = XEXP (SET_DEST (x), 0);
7400 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7401 break;
7403 len = INTVAL (XEXP (SET_DEST (x), 1));
7404 pos = XEXP (SET_DEST (x), 2);
7406 /* A constant position should stay within the width of INNER. */
7407 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7408 break;
7410 if (BITS_BIG_ENDIAN)
7412 if (CONST_INT_P (pos))
7413 pos = GEN_INT (inner_len - len - INTVAL (pos));
7414 else if (GET_CODE (pos) == MINUS
7415 && CONST_INT_P (XEXP (pos, 1))
7416 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7417 /* If position is ADJUST - X, new position is X. */
7418 pos = XEXP (pos, 0);
7419 else
7420 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7421 gen_int_mode (inner_len - len,
7422 GET_MODE (pos)),
7423 pos);
7427 /* If the destination is a subreg that overwrites the whole of the inner
7428 register, we can move the subreg to the source. */
7429 else if (GET_CODE (SET_DEST (x)) == SUBREG
7430 /* We need SUBREGs to compute nonzero_bits properly. */
7431 && nonzero_sign_valid
7432 && !read_modify_subreg_p (SET_DEST (x)))
7434 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7435 gen_lowpart
7436 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7437 SET_SRC (x)));
7438 continue;
7440 else
7441 break;
7443 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7444 inner = SUBREG_REG (inner);
7446 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7447 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7449 /* Don't do anything for vector or complex integral types. */
7450 if (! FLOAT_MODE_P (GET_MODE (inner)))
7451 break;
7453 /* Try to find an integral mode to pun with. */
7454 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7455 .exists (&compute_mode))
7456 break;
7458 inner = gen_lowpart (compute_mode, inner);
7461 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7462 if (len >= HOST_BITS_PER_WIDE_INT)
7463 break;
7465 /* Don't try to compute in too wide unsupported modes. */
7466 if (!targetm.scalar_mode_supported_p (compute_mode))
7467 break;
7469 /* gen_lowpart_for_combine returns CLOBBER on failure. */
7470 rtx lowpart = gen_lowpart (compute_mode, SET_SRC (x));
7471 if (GET_CODE (lowpart) == CLOBBER)
7472 break;
7474 /* Now compute the equivalent expression. Make a copy of INNER
7475 for the SET_DEST in case it is a MEM into which we will substitute;
7476 we don't want shared RTL in that case. */
7477 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7478 compute_mode);
7479 cleared = simplify_gen_binary (AND, compute_mode,
7480 simplify_gen_unary (NOT, compute_mode,
7481 simplify_gen_binary (ASHIFT,
7482 compute_mode,
7483 mask, pos),
7484 compute_mode),
7485 inner);
7486 masked = simplify_gen_binary (ASHIFT, compute_mode,
7487 simplify_gen_binary (
7488 AND, compute_mode, lowpart, mask),
7489 pos);
7491 x = gen_rtx_SET (copy_rtx (inner),
7492 simplify_gen_binary (IOR, compute_mode,
7493 cleared, masked));
7496 return x;
7499 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7500 it is an RTX that represents the (variable) starting position; otherwise,
7501 POS is the (constant) starting bit position. Both are counted from the LSB.
7503 UNSIGNEDP is true for an unsigned reference and zero for a signed one.
7505 IN_DEST is true if this is a reference in the destination of a SET.
7506 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7507 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7508 be used.
7510 IN_COMPARE is true if we are in a COMPARE. This means that a
7511 ZERO_EXTRACT should be built even for bits starting at bit 0.
7513 MODE is the desired mode of the result (if IN_DEST == 0).
7515 The result is an RTX for the extraction or NULL_RTX if the target
7516 can't handle it. */
7518 static rtx
7519 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7520 rtx pos_rtx, unsigned HOST_WIDE_INT len, bool unsignedp,
7521 bool in_dest, bool in_compare)
7523 /* This mode describes the size of the storage area
7524 to fetch the overall value from. Within that, we
7525 ignore the POS lowest bits, etc. */
7526 machine_mode is_mode = GET_MODE (inner);
7527 machine_mode inner_mode;
7528 scalar_int_mode wanted_inner_mode;
7529 scalar_int_mode wanted_inner_reg_mode = word_mode;
7530 scalar_int_mode pos_mode = word_mode;
7531 machine_mode extraction_mode = word_mode;
7532 rtx new_rtx = 0;
7533 rtx orig_pos_rtx = pos_rtx;
7534 HOST_WIDE_INT orig_pos;
7536 if (pos_rtx && CONST_INT_P (pos_rtx))
7537 pos = INTVAL (pos_rtx), pos_rtx = 0;
7539 if (GET_CODE (inner) == SUBREG
7540 && subreg_lowpart_p (inner)
7541 && (paradoxical_subreg_p (inner)
7542 /* If trying or potentionally trying to extract
7543 bits outside of is_mode, don't look through
7544 non-paradoxical SUBREGs. See PR82192. */
7545 || (pos_rtx == NULL_RTX
7546 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7548 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7549 consider just the QI as the memory to extract from.
7550 The subreg adds or removes high bits; its mode is
7551 irrelevant to the meaning of this extraction,
7552 since POS and LEN count from the lsb. */
7553 if (MEM_P (SUBREG_REG (inner)))
7554 is_mode = GET_MODE (SUBREG_REG (inner));
7555 inner = SUBREG_REG (inner);
7557 else if (GET_CODE (inner) == ASHIFT
7558 && CONST_INT_P (XEXP (inner, 1))
7559 && pos_rtx == 0 && pos == 0
7560 && len > UINTVAL (XEXP (inner, 1)))
7562 /* We're extracting the least significant bits of an rtx
7563 (ashift X (const_int C)), where LEN > C. Extract the
7564 least significant (LEN - C) bits of X, giving an rtx
7565 whose mode is MODE, then shift it left C times. */
7566 new_rtx = make_extraction (mode, XEXP (inner, 0),
7567 0, 0, len - INTVAL (XEXP (inner, 1)),
7568 unsignedp, in_dest, in_compare);
7569 if (new_rtx != 0)
7570 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7572 else if (GET_CODE (inner) == MULT
7573 && CONST_INT_P (XEXP (inner, 1))
7574 && pos_rtx == 0 && pos == 0)
7576 /* We're extracting the least significant bits of an rtx
7577 (mult X (const_int 2^C)), where LEN > C. Extract the
7578 least significant (LEN - C) bits of X, giving an rtx
7579 whose mode is MODE, then multiply it by 2^C. */
7580 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7581 if (IN_RANGE (shift_amt, 1, len - 1))
7583 new_rtx = make_extraction (mode, XEXP (inner, 0),
7584 0, 0, len - shift_amt,
7585 unsignedp, in_dest, in_compare);
7586 if (new_rtx)
7587 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7590 else if (GET_CODE (inner) == TRUNCATE
7591 /* If trying or potentionally trying to extract
7592 bits outside of is_mode, don't look through
7593 TRUNCATE. See PR82192. */
7594 && pos_rtx == NULL_RTX
7595 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7596 inner = XEXP (inner, 0);
7598 inner_mode = GET_MODE (inner);
7600 /* See if this can be done without an extraction. We never can if the
7601 width of the field is not the same as that of some integer mode. For
7602 registers, we can only avoid the extraction if the position is at the
7603 low-order bit and this is either not in the destination or we have the
7604 appropriate STRICT_LOW_PART operation available.
7606 For MEM, we can avoid an extract if the field starts on an appropriate
7607 boundary and we can change the mode of the memory reference. */
7609 scalar_int_mode tmode;
7610 if (int_mode_for_size (len, 1).exists (&tmode)
7611 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7612 && !MEM_P (inner)
7613 && (pos == 0 || REG_P (inner))
7614 && (inner_mode == tmode
7615 || !REG_P (inner)
7616 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7617 || reg_truncated_to_mode (tmode, inner))
7618 && (! in_dest
7619 || (REG_P (inner)
7620 && have_insn_for (STRICT_LOW_PART, tmode))))
7621 || (MEM_P (inner) && pos_rtx == 0
7622 && (pos
7623 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7624 : BITS_PER_UNIT)) == 0
7625 /* We can't do this if we are widening INNER_MODE (it
7626 may not be aligned, for one thing). */
7627 && !paradoxical_subreg_p (tmode, inner_mode)
7628 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7629 && (inner_mode == tmode
7630 || (! mode_dependent_address_p (XEXP (inner, 0),
7631 MEM_ADDR_SPACE (inner))
7632 && ! MEM_VOLATILE_P (inner))))))
7634 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7635 field. If the original and current mode are the same, we need not
7636 adjust the offset. Otherwise, we do if bytes big endian.
7638 If INNER is not a MEM, get a piece consisting of just the field
7639 of interest (in this case POS % BITS_PER_WORD must be 0). */
7641 if (MEM_P (inner))
7643 poly_int64 offset;
7645 /* POS counts from lsb, but make OFFSET count in memory order. */
7646 if (BYTES_BIG_ENDIAN)
7647 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7648 - len - pos);
7649 else
7650 offset = pos / BITS_PER_UNIT;
7652 new_rtx = adjust_address_nv (inner, tmode, offset);
7654 else if (REG_P (inner))
7656 if (tmode != inner_mode)
7658 /* We can't call gen_lowpart in a DEST since we
7659 always want a SUBREG (see below) and it would sometimes
7660 return a new hard register. */
7661 if (pos || in_dest)
7663 poly_uint64 offset
7664 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7666 /* Avoid creating invalid subregs, for example when
7667 simplifying (x>>32)&255. */
7668 if (!validate_subreg (tmode, inner_mode, inner, offset))
7669 return NULL_RTX;
7671 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7673 else
7674 new_rtx = gen_lowpart (tmode, inner);
7676 else
7677 new_rtx = inner;
7679 else
7680 new_rtx = force_to_mode (inner, tmode,
7681 len >= HOST_BITS_PER_WIDE_INT
7682 ? HOST_WIDE_INT_M1U
7683 : (HOST_WIDE_INT_1U << len) - 1, false);
7685 /* If this extraction is going into the destination of a SET,
7686 make a STRICT_LOW_PART unless we made a MEM. */
7688 if (in_dest)
7689 return (MEM_P (new_rtx) ? new_rtx
7690 : (GET_CODE (new_rtx) != SUBREG
7691 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7692 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7694 if (mode == tmode)
7695 return new_rtx;
7697 if (CONST_SCALAR_INT_P (new_rtx))
7698 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7699 mode, new_rtx, tmode);
7701 /* If we know that no extraneous bits are set, and that the high
7702 bit is not set, convert the extraction to the cheaper of
7703 sign and zero extension, that are equivalent in these cases. */
7704 if (flag_expensive_optimizations
7705 && (HWI_COMPUTABLE_MODE_P (tmode)
7706 && ((nonzero_bits (new_rtx, tmode)
7707 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7708 == 0)))
7710 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7711 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7713 /* Prefer ZERO_EXTENSION, since it gives more information to
7714 backends. */
7715 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7716 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7717 return temp;
7718 return temp1;
7721 /* Otherwise, sign- or zero-extend unless we already are in the
7722 proper mode. */
7724 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7725 mode, new_rtx));
7728 /* Unless this is a COMPARE or we have a funny memory reference,
7729 don't do anything with zero-extending field extracts starting at
7730 the low-order bit since they are simple AND operations. */
7731 if (pos_rtx == 0 && pos == 0 && ! in_dest
7732 && ! in_compare && unsignedp)
7733 return 0;
7735 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7736 if the position is not a constant and the length is not 1. In all
7737 other cases, we would only be going outside our object in cases when
7738 an original shift would have been undefined. */
7739 if (MEM_P (inner)
7740 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7741 || (pos_rtx != 0 && len != 1)))
7742 return 0;
7744 enum extraction_pattern pattern = (in_dest ? EP_insv
7745 : unsignedp ? EP_extzv : EP_extv);
7747 /* If INNER is not from memory, we want it to have the mode of a register
7748 extraction pattern's structure operand, or word_mode if there is no
7749 such pattern. The same applies to extraction_mode and pos_mode
7750 and their respective operands.
7752 For memory, assume that the desired extraction_mode and pos_mode
7753 are the same as for a register operation, since at present we don't
7754 have named patterns for aligned memory structures. */
7755 class extraction_insn insn;
7756 unsigned int inner_size;
7757 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7758 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7760 wanted_inner_reg_mode = insn.struct_mode.require ();
7761 pos_mode = insn.pos_mode;
7762 extraction_mode = insn.field_mode;
7765 /* Never narrow an object, since that might not be safe. */
7767 if (mode != VOIDmode
7768 && partial_subreg_p (extraction_mode, mode))
7769 extraction_mode = mode;
7771 /* Punt if len is too large for extraction_mode. */
7772 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7773 return NULL_RTX;
7775 if (!MEM_P (inner))
7776 wanted_inner_mode = wanted_inner_reg_mode;
7777 else
7779 /* Be careful not to go beyond the extracted object and maintain the
7780 natural alignment of the memory. */
7781 wanted_inner_mode = smallest_int_mode_for_size (len);
7782 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7783 > GET_MODE_BITSIZE (wanted_inner_mode))
7784 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7787 orig_pos = pos;
7789 if (BITS_BIG_ENDIAN)
7791 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7792 BITS_BIG_ENDIAN style. If position is constant, compute new
7793 position. Otherwise, build subtraction.
7794 Note that POS is relative to the mode of the original argument.
7795 If it's a MEM we need to recompute POS relative to that.
7796 However, if we're extracting from (or inserting into) a register,
7797 we want to recompute POS relative to wanted_inner_mode. */
7798 int width;
7799 if (!MEM_P (inner))
7800 width = GET_MODE_BITSIZE (wanted_inner_mode);
7801 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7802 return NULL_RTX;
7804 if (pos_rtx == 0)
7805 pos = width - len - pos;
7806 else
7807 pos_rtx
7808 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7809 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7810 pos_rtx);
7811 /* POS may be less than 0 now, but we check for that below.
7812 Note that it can only be less than 0 if !MEM_P (inner). */
7815 /* If INNER has a wider mode, and this is a constant extraction, try to
7816 make it smaller and adjust the byte to point to the byte containing
7817 the value. */
7818 if (wanted_inner_mode != VOIDmode
7819 && inner_mode != wanted_inner_mode
7820 && ! pos_rtx
7821 && partial_subreg_p (wanted_inner_mode, is_mode)
7822 && MEM_P (inner)
7823 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7824 && ! MEM_VOLATILE_P (inner))
7826 poly_int64 offset = 0;
7828 /* The computations below will be correct if the machine is big
7829 endian in both bits and bytes or little endian in bits and bytes.
7830 If it is mixed, we must adjust. */
7832 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7833 adjust OFFSET to compensate. */
7834 if (BYTES_BIG_ENDIAN
7835 && paradoxical_subreg_p (is_mode, inner_mode))
7836 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7838 /* We can now move to the desired byte. */
7839 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7840 * GET_MODE_SIZE (wanted_inner_mode);
7841 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7843 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7844 && is_mode != wanted_inner_mode)
7845 offset = (GET_MODE_SIZE (is_mode)
7846 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7848 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7851 /* If INNER is not memory, get it into the proper mode. If we are changing
7852 its mode, POS must be a constant and smaller than the size of the new
7853 mode. */
7854 else if (!MEM_P (inner))
7856 /* On the LHS, don't create paradoxical subregs implicitely truncating
7857 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7858 if (in_dest
7859 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7860 wanted_inner_mode))
7861 return NULL_RTX;
7863 if (GET_MODE (inner) != wanted_inner_mode
7864 && (pos_rtx != 0
7865 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7866 return NULL_RTX;
7868 if (orig_pos < 0)
7869 return NULL_RTX;
7871 inner = force_to_mode (inner, wanted_inner_mode,
7872 pos_rtx
7873 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7874 ? HOST_WIDE_INT_M1U
7875 : (((HOST_WIDE_INT_1U << len) - 1)
7876 << orig_pos), false);
7879 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7880 have to zero extend. Otherwise, we can just use a SUBREG.
7882 We dealt with constant rtxes earlier, so pos_rtx cannot
7883 have VOIDmode at this point. */
7884 if (pos_rtx != 0
7885 && (GET_MODE_SIZE (pos_mode)
7886 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7888 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7889 GET_MODE (pos_rtx));
7891 /* If we know that no extraneous bits are set, and that the high
7892 bit is not set, convert extraction to cheaper one - either
7893 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7894 cases. */
7895 if (flag_expensive_optimizations
7896 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7897 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7898 & ~(((unsigned HOST_WIDE_INT)
7899 GET_MODE_MASK (GET_MODE (pos_rtx)))
7900 >> 1))
7901 == 0)))
7903 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7904 GET_MODE (pos_rtx));
7906 /* Prefer ZERO_EXTENSION, since it gives more information to
7907 backends. */
7908 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7909 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7910 temp = temp1;
7912 pos_rtx = temp;
7915 /* Make POS_RTX unless we already have it and it is correct. If we don't
7916 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7917 be a CONST_INT. */
7918 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7919 pos_rtx = orig_pos_rtx;
7921 else if (pos_rtx == 0)
7922 pos_rtx = GEN_INT (pos);
7924 /* Make the required operation. See if we can use existing rtx. */
7925 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7926 extraction_mode, inner, GEN_INT (len), pos_rtx);
7927 if (! in_dest)
7928 new_rtx = gen_lowpart (mode, new_rtx);
7930 return new_rtx;
7933 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7934 can be commuted with any other operations in X. Return X without
7935 that shift if so. */
7937 static rtx
7938 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7940 enum rtx_code code = GET_CODE (x);
7941 rtx tem;
7943 switch (code)
7945 case ASHIFT:
7946 /* This is the shift itself. If it is wide enough, we will return
7947 either the value being shifted if the shift count is equal to
7948 COUNT or a shift for the difference. */
7949 if (CONST_INT_P (XEXP (x, 1))
7950 && INTVAL (XEXP (x, 1)) >= count)
7951 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7952 INTVAL (XEXP (x, 1)) - count);
7953 break;
7955 case NEG: case NOT:
7956 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7957 return simplify_gen_unary (code, mode, tem, mode);
7959 break;
7961 case PLUS: case IOR: case XOR: case AND:
7962 /* If we can safely shift this constant and we find the inner shift,
7963 make a new operation. */
7964 if (CONST_INT_P (XEXP (x, 1))
7965 && (UINTVAL (XEXP (x, 1))
7966 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7967 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7969 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7970 return simplify_gen_binary (code, mode, tem,
7971 gen_int_mode (val, mode));
7973 break;
7975 default:
7976 break;
7979 return 0;
7982 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7983 level of the expression and MODE is its mode. IN_CODE is as for
7984 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7985 that should be used when recursing on operands of *X_PTR.
7987 There are two possible actions:
7989 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7990 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7992 - Return a new rtx, which the caller returns directly. */
7994 static rtx
7995 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7996 enum rtx_code in_code,
7997 enum rtx_code *next_code_ptr)
7999 rtx x = *x_ptr;
8000 enum rtx_code next_code = *next_code_ptr;
8001 enum rtx_code code = GET_CODE (x);
8002 int mode_width = GET_MODE_PRECISION (mode);
8003 rtx rhs, lhs;
8004 rtx new_rtx = 0;
8005 int i;
8006 rtx tem;
8007 scalar_int_mode inner_mode;
8008 bool equality_comparison = false;
8010 if (in_code == EQ)
8012 equality_comparison = true;
8013 in_code = COMPARE;
8016 /* Process depending on the code of this operation. If NEW is set
8017 nonzero, it will be returned. */
8019 switch (code)
8021 case ASHIFT:
8022 /* Convert shifts by constants into multiplications if inside
8023 an address. */
8024 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8025 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8026 && INTVAL (XEXP (x, 1)) >= 0)
8028 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8029 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8031 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8032 if (GET_CODE (new_rtx) == NEG)
8034 new_rtx = XEXP (new_rtx, 0);
8035 multval = -multval;
8037 multval = trunc_int_for_mode (multval, mode);
8038 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8040 break;
8042 case PLUS:
8043 lhs = XEXP (x, 0);
8044 rhs = XEXP (x, 1);
8045 lhs = make_compound_operation (lhs, next_code);
8046 rhs = make_compound_operation (rhs, next_code);
8047 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8049 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8050 XEXP (lhs, 1));
8051 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8053 else if (GET_CODE (lhs) == MULT
8054 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8056 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8057 simplify_gen_unary (NEG, mode,
8058 XEXP (lhs, 1),
8059 mode));
8060 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8062 else
8064 SUBST (XEXP (x, 0), lhs);
8065 SUBST (XEXP (x, 1), rhs);
8067 maybe_swap_commutative_operands (x);
8068 return x;
8070 case MINUS:
8071 lhs = XEXP (x, 0);
8072 rhs = XEXP (x, 1);
8073 lhs = make_compound_operation (lhs, next_code);
8074 rhs = make_compound_operation (rhs, next_code);
8075 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8077 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8078 XEXP (rhs, 1));
8079 return simplify_gen_binary (PLUS, mode, tem, lhs);
8081 else if (GET_CODE (rhs) == MULT
8082 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8084 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8085 simplify_gen_unary (NEG, mode,
8086 XEXP (rhs, 1),
8087 mode));
8088 return simplify_gen_binary (PLUS, mode, tem, lhs);
8090 else
8092 SUBST (XEXP (x, 0), lhs);
8093 SUBST (XEXP (x, 1), rhs);
8094 return x;
8097 case AND:
8098 /* If the second operand is not a constant, we can't do anything
8099 with it. */
8100 if (!CONST_INT_P (XEXP (x, 1)))
8101 break;
8103 /* If the constant is a power of two minus one and the first operand
8104 is a logical right shift, make an extraction. */
8105 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8106 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8108 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8109 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8110 i, true, false, in_code == COMPARE);
8113 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8114 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8115 && subreg_lowpart_p (XEXP (x, 0))
8116 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8117 &inner_mode)
8118 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8119 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8121 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8122 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8123 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8124 XEXP (inner_x0, 1),
8125 i, true, false, in_code == COMPARE);
8127 /* If we narrowed the mode when dropping the subreg, then we lose. */
8128 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8129 new_rtx = NULL;
8131 /* If that didn't give anything, see if the AND simplifies on
8132 its own. */
8133 if (!new_rtx && i >= 0)
8135 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8136 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i,
8137 true, false, in_code == COMPARE);
8140 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8141 else if ((GET_CODE (XEXP (x, 0)) == XOR
8142 || GET_CODE (XEXP (x, 0)) == IOR)
8143 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8144 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8145 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8147 /* Apply the distributive law, and then try to make extractions. */
8148 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8149 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8150 XEXP (x, 1)),
8151 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8152 XEXP (x, 1)));
8153 new_rtx = make_compound_operation (new_rtx, in_code);
8156 /* If we are have (and (rotate X C) M) and C is larger than the number
8157 of bits in M, this is an extraction. */
8159 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8160 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8161 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8162 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8164 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8165 new_rtx = make_extraction (mode, new_rtx,
8166 (GET_MODE_PRECISION (mode)
8167 - INTVAL (XEXP (XEXP (x, 0), 1))),
8168 NULL_RTX, i, true, false,
8169 in_code == COMPARE);
8172 /* On machines without logical shifts, if the operand of the AND is
8173 a logical shift and our mask turns off all the propagated sign
8174 bits, we can replace the logical shift with an arithmetic shift. */
8175 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8176 && !have_insn_for (LSHIFTRT, mode)
8177 && have_insn_for (ASHIFTRT, mode)
8178 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8179 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8180 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8181 && mode_width <= HOST_BITS_PER_WIDE_INT)
8183 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8185 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8186 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8187 SUBST (XEXP (x, 0),
8188 gen_rtx_ASHIFTRT (mode,
8189 make_compound_operation (XEXP (XEXP (x,
8192 next_code),
8193 XEXP (XEXP (x, 0), 1)));
8196 /* If the constant is one less than a power of two, this might be
8197 representable by an extraction even if no shift is present.
8198 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8199 we are in a COMPARE. */
8200 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8201 new_rtx = make_extraction (mode,
8202 make_compound_operation (XEXP (x, 0),
8203 next_code),
8204 0, NULL_RTX, i,
8205 true, false, in_code == COMPARE);
8207 /* If we are in a comparison and this is an AND with a power of two,
8208 convert this into the appropriate bit extract. */
8209 else if (in_code == COMPARE
8210 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8211 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8212 new_rtx = make_extraction (mode,
8213 make_compound_operation (XEXP (x, 0),
8214 next_code),
8215 i, NULL_RTX, 1, true, false, true);
8217 /* If the one operand is a paradoxical subreg of a register or memory and
8218 the constant (limited to the smaller mode) has only zero bits where
8219 the sub expression has known zero bits, this can be expressed as
8220 a zero_extend. */
8221 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8223 rtx sub;
8225 sub = XEXP (XEXP (x, 0), 0);
8226 machine_mode sub_mode = GET_MODE (sub);
8227 int sub_width;
8228 if ((REG_P (sub) || MEM_P (sub))
8229 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8230 && sub_width < mode_width
8231 && (!WORD_REGISTER_OPERATIONS
8232 || sub_width >= BITS_PER_WORD
8233 /* On WORD_REGISTER_OPERATIONS targets the bits
8234 beyond sub_mode aren't considered undefined,
8235 so optimize only if it is a MEM load when MEM loads
8236 zero extend, because then the upper bits are all zero. */
8237 || (MEM_P (sub)
8238 && load_extend_op (sub_mode) == ZERO_EXTEND)))
8240 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8241 unsigned HOST_WIDE_INT mask;
8243 /* Original AND constant with all the known zero bits set. */
8244 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8245 if ((mask & mode_mask) == mode_mask)
8247 new_rtx = make_compound_operation (sub, next_code);
8248 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8249 true, false, in_code == COMPARE);
8254 break;
8256 case LSHIFTRT:
8257 /* If the sign bit is known to be zero, replace this with an
8258 arithmetic shift. */
8259 if (have_insn_for (ASHIFTRT, mode)
8260 && ! have_insn_for (LSHIFTRT, mode)
8261 && mode_width <= HOST_BITS_PER_WIDE_INT
8262 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8264 new_rtx = gen_rtx_ASHIFTRT (mode,
8265 make_compound_operation (XEXP (x, 0),
8266 next_code),
8267 XEXP (x, 1));
8268 break;
8271 /* fall through */
8273 case ASHIFTRT:
8274 lhs = XEXP (x, 0);
8275 rhs = XEXP (x, 1);
8277 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8278 this is a SIGN_EXTRACT. */
8279 if (CONST_INT_P (rhs)
8280 && GET_CODE (lhs) == ASHIFT
8281 && CONST_INT_P (XEXP (lhs, 1))
8282 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8283 && INTVAL (XEXP (lhs, 1)) >= 0
8284 && INTVAL (rhs) < mode_width)
8286 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8287 new_rtx = make_extraction (mode, new_rtx,
8288 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8289 NULL_RTX, mode_width - INTVAL (rhs),
8290 code == LSHIFTRT, false,
8291 in_code == COMPARE);
8292 break;
8295 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8296 If so, try to merge the shifts into a SIGN_EXTEND. We could
8297 also do this for some cases of SIGN_EXTRACT, but it doesn't
8298 seem worth the effort; the case checked for occurs on Alpha. */
8300 if (!OBJECT_P (lhs)
8301 && ! (GET_CODE (lhs) == SUBREG
8302 && (OBJECT_P (SUBREG_REG (lhs))))
8303 && CONST_INT_P (rhs)
8304 && INTVAL (rhs) >= 0
8305 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8306 && INTVAL (rhs) < mode_width
8307 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8308 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8309 next_code),
8310 0, NULL_RTX, mode_width - INTVAL (rhs),
8311 code == LSHIFTRT, false, in_code == COMPARE);
8313 break;
8315 case SUBREG:
8316 /* Call ourselves recursively on the inner expression. If we are
8317 narrowing the object and it has a different RTL code from
8318 what it originally did, do this SUBREG as a force_to_mode. */
8320 rtx inner = SUBREG_REG (x), simplified;
8321 enum rtx_code subreg_code = in_code;
8323 /* If the SUBREG is masking of a logical right shift,
8324 make an extraction. */
8325 if (GET_CODE (inner) == LSHIFTRT
8326 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8327 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8328 && CONST_INT_P (XEXP (inner, 1))
8329 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8330 && subreg_lowpart_p (x))
8332 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8333 int width = GET_MODE_PRECISION (inner_mode)
8334 - INTVAL (XEXP (inner, 1));
8335 if (width > mode_width)
8336 width = mode_width;
8337 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8338 width, true, false, in_code == COMPARE);
8339 break;
8342 /* If in_code is COMPARE, it isn't always safe to pass it through
8343 to the recursive make_compound_operation call. */
8344 if (subreg_code == COMPARE
8345 && (!subreg_lowpart_p (x)
8346 || GET_CODE (inner) == SUBREG
8347 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8348 is (const_int 0), rather than
8349 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8350 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8351 for non-equality comparisons against 0 is not equivalent
8352 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8353 || (GET_CODE (inner) == AND
8354 && CONST_INT_P (XEXP (inner, 1))
8355 && partial_subreg_p (x)
8356 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8357 >= GET_MODE_BITSIZE (mode) - 1)))
8358 subreg_code = SET;
8360 tem = make_compound_operation (inner, subreg_code);
8362 simplified
8363 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8364 if (simplified)
8365 tem = simplified;
8367 if (GET_CODE (tem) != GET_CODE (inner)
8368 && partial_subreg_p (x)
8369 && subreg_lowpart_p (x))
8371 rtx newer
8372 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, false);
8374 /* If we have something other than a SUBREG, we might have
8375 done an expansion, so rerun ourselves. */
8376 if (GET_CODE (newer) != SUBREG)
8377 newer = make_compound_operation (newer, in_code);
8379 /* force_to_mode can expand compounds. If it just re-expanded
8380 the compound, use gen_lowpart to convert to the desired
8381 mode. */
8382 if (rtx_equal_p (newer, x)
8383 /* Likewise if it re-expanded the compound only partially.
8384 This happens for SUBREG of ZERO_EXTRACT if they extract
8385 the same number of bits. */
8386 || (GET_CODE (newer) == SUBREG
8387 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8388 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8389 && GET_CODE (inner) == AND
8390 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8391 return gen_lowpart (GET_MODE (x), tem);
8393 return newer;
8396 if (simplified)
8397 return tem;
8399 break;
8401 default:
8402 break;
8405 if (new_rtx)
8406 *x_ptr = gen_lowpart (mode, new_rtx);
8407 *next_code_ptr = next_code;
8408 return NULL_RTX;
8411 /* Look at the expression rooted at X. Look for expressions
8412 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8413 Form these expressions.
8415 Return the new rtx, usually just X.
8417 Also, for machines like the VAX that don't have logical shift insns,
8418 try to convert logical to arithmetic shift operations in cases where
8419 they are equivalent. This undoes the canonicalizations to logical
8420 shifts done elsewhere.
8422 We try, as much as possible, to re-use rtl expressions to save memory.
8424 IN_CODE says what kind of expression we are processing. Normally, it is
8425 SET. In a memory address it is MEM. When processing the arguments of
8426 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8427 precisely it is an equality comparison against zero. */
8430 make_compound_operation (rtx x, enum rtx_code in_code)
8432 enum rtx_code code = GET_CODE (x);
8433 const char *fmt;
8434 int i, j;
8435 enum rtx_code next_code;
8436 rtx new_rtx, tem;
8438 /* Select the code to be used in recursive calls. Once we are inside an
8439 address, we stay there. If we have a comparison, set to COMPARE,
8440 but once inside, go back to our default of SET. */
8442 next_code = (code == MEM ? MEM
8443 : ((code == COMPARE || COMPARISON_P (x))
8444 && XEXP (x, 1) == const0_rtx) ? COMPARE
8445 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8447 scalar_int_mode mode;
8448 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8450 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8451 &next_code);
8452 if (new_rtx)
8453 return new_rtx;
8454 code = GET_CODE (x);
8457 /* Now recursively process each operand of this operation. We need to
8458 handle ZERO_EXTEND specially so that we don't lose track of the
8459 inner mode. */
8460 if (code == ZERO_EXTEND)
8462 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8463 tem = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8464 new_rtx, GET_MODE (XEXP (x, 0)));
8465 if (tem)
8466 return tem;
8467 SUBST (XEXP (x, 0), new_rtx);
8468 return x;
8471 fmt = GET_RTX_FORMAT (code);
8472 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8473 if (fmt[i] == 'e')
8475 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8476 SUBST (XEXP (x, i), new_rtx);
8478 else if (fmt[i] == 'E')
8479 for (j = 0; j < XVECLEN (x, i); j++)
8481 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8482 SUBST (XVECEXP (x, i, j), new_rtx);
8485 maybe_swap_commutative_operands (x);
8486 return x;
8489 /* Given M see if it is a value that would select a field of bits
8490 within an item, but not the entire word. Return -1 if not.
8491 Otherwise, return the starting position of the field, where 0 is the
8492 low-order bit.
8494 *PLEN is set to the length of the field. */
8496 static int
8497 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8499 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8500 int pos = m ? ctz_hwi (m) : -1;
8501 int len = 0;
8503 if (pos >= 0)
8504 /* Now shift off the low-order zero bits and see if we have a
8505 power of two minus 1. */
8506 len = exact_log2 ((m >> pos) + 1);
8508 if (len <= 0)
8509 pos = -1;
8511 *plen = len;
8512 return pos;
8515 /* If X refers to a register that equals REG in value, replace these
8516 references with REG. */
8517 static rtx
8518 canon_reg_for_combine (rtx x, rtx reg)
8520 rtx op0, op1, op2;
8521 const char *fmt;
8522 int i;
8523 bool copied;
8525 enum rtx_code code = GET_CODE (x);
8526 switch (GET_RTX_CLASS (code))
8528 case RTX_UNARY:
8529 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8530 if (op0 != XEXP (x, 0))
8531 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8532 GET_MODE (reg));
8533 break;
8535 case RTX_BIN_ARITH:
8536 case RTX_COMM_ARITH:
8537 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8538 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8539 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8540 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8541 break;
8543 case RTX_COMPARE:
8544 case RTX_COMM_COMPARE:
8545 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8546 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8547 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8548 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8549 GET_MODE (op0), op0, op1);
8550 break;
8552 case RTX_TERNARY:
8553 case RTX_BITFIELD_OPS:
8554 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8555 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8556 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8557 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8558 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8559 GET_MODE (op0), op0, op1, op2);
8560 /* FALLTHRU */
8562 case RTX_OBJ:
8563 if (REG_P (x))
8565 if (rtx_equal_p (get_last_value (reg), x)
8566 || rtx_equal_p (reg, get_last_value (x)))
8567 return reg;
8568 else
8569 break;
8572 /* fall through */
8574 default:
8575 fmt = GET_RTX_FORMAT (code);
8576 copied = false;
8577 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8578 if (fmt[i] == 'e')
8580 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8581 if (op != XEXP (x, i))
8583 if (!copied)
8585 copied = true;
8586 x = copy_rtx (x);
8588 XEXP (x, i) = op;
8591 else if (fmt[i] == 'E')
8593 int j;
8594 for (j = 0; j < XVECLEN (x, i); j++)
8596 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8597 if (op != XVECEXP (x, i, j))
8599 if (!copied)
8601 copied = true;
8602 x = copy_rtx (x);
8604 XVECEXP (x, i, j) = op;
8609 break;
8612 return x;
8615 /* Return X converted to MODE. If the value is already truncated to
8616 MODE we can just return a subreg even though in the general case we
8617 would need an explicit truncation. */
8619 static rtx
8620 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8622 if (!CONST_INT_P (x)
8623 && partial_subreg_p (mode, GET_MODE (x))
8624 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8625 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8627 /* Bit-cast X into an integer mode. */
8628 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8629 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8630 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8631 x, GET_MODE (x));
8634 return gen_lowpart (mode, x);
8637 /* See if X can be simplified knowing that we will only refer to it in
8638 MODE and will only refer to those bits that are nonzero in MASK.
8639 If other bits are being computed or if masking operations are done
8640 that select a superset of the bits in MASK, they can sometimes be
8641 ignored.
8643 Return a possibly simplified expression, but always convert X to
8644 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8646 If JUST_SELECT is true, don't optimize by noticing that bits in MASK
8647 are all off in X. This is used when X will be complemented, by either
8648 NOT, NEG, or XOR. */
8650 static rtx
8651 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8652 bool just_select)
8654 enum rtx_code code = GET_CODE (x);
8655 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8656 machine_mode op_mode;
8657 unsigned HOST_WIDE_INT nonzero;
8659 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8660 code below will do the wrong thing since the mode of such an
8661 expression is VOIDmode.
8663 Also do nothing if X is a CLOBBER; this can happen if X was
8664 the return value from a call to gen_lowpart. */
8665 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8666 return x;
8668 /* We want to perform the operation in its present mode unless we know
8669 that the operation is valid in MODE, in which case we do the operation
8670 in MODE. */
8671 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8672 && have_insn_for (code, mode))
8673 ? mode : GET_MODE (x));
8675 /* It is not valid to do a right-shift in a narrower mode
8676 than the one it came in with. */
8677 if ((code == LSHIFTRT || code == ASHIFTRT)
8678 && partial_subreg_p (mode, GET_MODE (x)))
8679 op_mode = GET_MODE (x);
8681 /* Truncate MASK to fit OP_MODE. */
8682 if (op_mode)
8683 mask &= GET_MODE_MASK (op_mode);
8685 /* Determine what bits of X are guaranteed to be (non)zero. */
8686 nonzero = nonzero_bits (x, mode);
8688 /* If none of the bits in X are needed, return a zero. */
8689 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8690 x = const0_rtx;
8692 /* If X is a CONST_INT, return a new one. Do this here since the
8693 test below will fail. */
8694 if (CONST_INT_P (x))
8696 if (SCALAR_INT_MODE_P (mode))
8697 return gen_int_mode (INTVAL (x) & mask, mode);
8698 else
8700 x = GEN_INT (INTVAL (x) & mask);
8701 return gen_lowpart_common (mode, x);
8705 /* If X is narrower than MODE and we want all the bits in X's mode, just
8706 get X in the proper mode. */
8707 if (paradoxical_subreg_p (mode, GET_MODE (x))
8708 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8709 return gen_lowpart (mode, x);
8711 /* We can ignore the effect of a SUBREG if it narrows the mode or
8712 if the constant masks to zero all the bits the mode doesn't have. */
8713 if (GET_CODE (x) == SUBREG
8714 && subreg_lowpart_p (x)
8715 && (partial_subreg_p (x)
8716 || (mask
8717 & GET_MODE_MASK (GET_MODE (x))
8718 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8719 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8721 scalar_int_mode int_mode, xmode;
8722 if (is_a <scalar_int_mode> (mode, &int_mode)
8723 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8724 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8725 integer too. */
8726 return force_int_to_mode (x, int_mode, xmode,
8727 as_a <scalar_int_mode> (op_mode),
8728 mask, just_select);
8730 return gen_lowpart_or_truncate (mode, x);
8733 /* Subroutine of force_to_mode that handles cases in which both X and
8734 the result are scalar integers. MODE is the mode of the result,
8735 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8736 is preferred for simplified versions of X. The other arguments
8737 are as for force_to_mode. */
8739 static rtx
8740 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8741 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8742 bool just_select)
8744 enum rtx_code code = GET_CODE (x);
8745 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8746 unsigned HOST_WIDE_INT fuller_mask;
8747 rtx op0, op1, temp;
8748 poly_int64 const_op0;
8750 /* When we have an arithmetic operation, or a shift whose count we
8751 do not know, we need to assume that all bits up to the highest-order
8752 bit in MASK will be needed. This is how we form such a mask. */
8753 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8754 fuller_mask = HOST_WIDE_INT_M1U;
8755 else
8756 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1)) - 1);
8758 switch (code)
8760 case CLOBBER:
8761 /* If X is a (clobber (const_int)), return it since we know we are
8762 generating something that won't match. */
8763 return x;
8765 case SIGN_EXTEND:
8766 case ZERO_EXTEND:
8767 case ZERO_EXTRACT:
8768 case SIGN_EXTRACT:
8769 x = expand_compound_operation (x);
8770 if (GET_CODE (x) != code)
8771 return force_to_mode (x, mode, mask, next_select);
8772 break;
8774 case TRUNCATE:
8775 /* Similarly for a truncate. */
8776 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8778 case AND:
8779 /* If this is an AND with a constant, convert it into an AND
8780 whose constant is the AND of that constant with MASK. If it
8781 remains an AND of MASK, delete it since it is redundant. */
8783 if (CONST_INT_P (XEXP (x, 1)))
8785 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8786 mask & INTVAL (XEXP (x, 1)));
8787 xmode = op_mode;
8789 /* If X is still an AND, see if it is an AND with a mask that
8790 is just some low-order bits. If so, and it is MASK, we don't
8791 need it. */
8793 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8794 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8795 x = XEXP (x, 0);
8797 /* If it remains an AND, try making another AND with the bits
8798 in the mode mask that aren't in MASK turned on. If the
8799 constant in the AND is wide enough, this might make a
8800 cheaper constant. */
8802 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8803 && GET_MODE_MASK (xmode) != mask
8804 && HWI_COMPUTABLE_MODE_P (xmode))
8806 unsigned HOST_WIDE_INT cval
8807 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8808 rtx y;
8810 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8811 gen_int_mode (cval, xmode));
8812 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8813 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8814 x = y;
8817 break;
8820 goto binop;
8822 case PLUS:
8823 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8824 low-order bits (as in an alignment operation) and FOO is already
8825 aligned to that boundary, mask C1 to that boundary as well.
8826 This may eliminate that PLUS and, later, the AND. */
8829 unsigned int width = GET_MODE_PRECISION (mode);
8830 unsigned HOST_WIDE_INT smask = mask;
8832 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8833 number, sign extend it. */
8835 if (width < HOST_BITS_PER_WIDE_INT
8836 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8837 smask |= HOST_WIDE_INT_M1U << width;
8839 if (CONST_INT_P (XEXP (x, 1))
8840 && pow2p_hwi (- smask)
8841 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8842 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8843 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8844 (INTVAL (XEXP (x, 1)) & smask)),
8845 mode, smask, next_select);
8848 /* fall through */
8850 case MULT:
8851 /* Substituting into the operands of a widening MULT is not likely to
8852 create RTL matching a machine insn. */
8853 if (code == MULT
8854 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8855 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8856 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8857 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8858 && REG_P (XEXP (XEXP (x, 0), 0))
8859 && REG_P (XEXP (XEXP (x, 1), 0)))
8860 return gen_lowpart_or_truncate (mode, x);
8862 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8863 most significant bit in MASK since carries from those bits will
8864 affect the bits we are interested in. */
8865 mask = fuller_mask;
8866 goto binop;
8868 case MINUS:
8869 /* If X is (minus C Y) where C's least set bit is larger than any bit
8870 in the mask, then we may replace with (neg Y). */
8871 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8872 && known_alignment (poly_uint64 (const_op0)) > mask)
8874 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8875 return force_to_mode (x, mode, mask, next_select);
8878 /* Similarly, if C contains every bit in the fuller_mask, then we may
8879 replace with (not Y). */
8880 if (CONST_INT_P (XEXP (x, 0))
8881 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8883 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8884 return force_to_mode (x, mode, mask, next_select);
8887 mask = fuller_mask;
8888 goto binop;
8890 case IOR:
8891 case XOR:
8892 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8893 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8894 operation which may be a bitfield extraction. Ensure that the
8895 constant we form is not wider than the mode of X. */
8897 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8898 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8899 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8900 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8901 && CONST_INT_P (XEXP (x, 1))
8902 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8903 + floor_log2 (INTVAL (XEXP (x, 1))))
8904 < GET_MODE_PRECISION (xmode))
8905 && (UINTVAL (XEXP (x, 1))
8906 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8908 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8909 << INTVAL (XEXP (XEXP (x, 0), 1)),
8910 xmode);
8911 temp = simplify_gen_binary (GET_CODE (x), xmode,
8912 XEXP (XEXP (x, 0), 0), temp);
8913 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8914 XEXP (XEXP (x, 0), 1));
8915 return force_to_mode (x, mode, mask, next_select);
8918 binop:
8919 /* For most binary operations, just propagate into the operation and
8920 change the mode if we have an operation of that mode. */
8922 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8923 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8925 /* If we ended up truncating both operands, truncate the result of the
8926 operation instead. */
8927 if (GET_CODE (op0) == TRUNCATE
8928 && GET_CODE (op1) == TRUNCATE)
8930 op0 = XEXP (op0, 0);
8931 op1 = XEXP (op1, 0);
8934 op0 = gen_lowpart_or_truncate (op_mode, op0);
8935 op1 = gen_lowpart_or_truncate (op_mode, op1);
8937 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8939 x = simplify_gen_binary (code, op_mode, op0, op1);
8940 xmode = op_mode;
8942 break;
8944 case ASHIFT:
8945 /* For left shifts, do the same, but just for the first operand.
8946 However, we cannot do anything with shifts where we cannot
8947 guarantee that the counts are smaller than the size of the mode
8948 because such a count will have a different meaning in a
8949 wider mode. */
8951 if (! (CONST_INT_P (XEXP (x, 1))
8952 && INTVAL (XEXP (x, 1)) >= 0
8953 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8954 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8955 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8956 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8957 break;
8959 /* If the shift count is a constant and we can do arithmetic in
8960 the mode of the shift, refine which bits we need. Otherwise, use the
8961 conservative form of the mask. */
8962 if (CONST_INT_P (XEXP (x, 1))
8963 && INTVAL (XEXP (x, 1)) >= 0
8964 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8965 && HWI_COMPUTABLE_MODE_P (op_mode))
8966 mask >>= INTVAL (XEXP (x, 1));
8967 else
8968 mask = fuller_mask;
8970 op0 = gen_lowpart_or_truncate (op_mode,
8971 force_to_mode (XEXP (x, 0), mode,
8972 mask, next_select));
8974 if (op_mode != xmode || op0 != XEXP (x, 0))
8976 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8977 xmode = op_mode;
8979 break;
8981 case LSHIFTRT:
8982 /* Here we can only do something if the shift count is a constant,
8983 this shift constant is valid for the host, and we can do arithmetic
8984 in OP_MODE. */
8986 if (CONST_INT_P (XEXP (x, 1))
8987 && INTVAL (XEXP (x, 1)) >= 0
8988 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8989 && HWI_COMPUTABLE_MODE_P (op_mode))
8991 rtx inner = XEXP (x, 0);
8992 unsigned HOST_WIDE_INT inner_mask;
8994 /* Select the mask of the bits we need for the shift operand. */
8995 inner_mask = mask << INTVAL (XEXP (x, 1));
8997 /* We can only change the mode of the shift if we can do arithmetic
8998 in the mode of the shift and INNER_MASK is no wider than the
8999 width of X's mode. */
9000 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9001 op_mode = xmode;
9003 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9005 if (xmode != op_mode || inner != XEXP (x, 0))
9007 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9008 xmode = op_mode;
9012 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9013 shift and AND produces only copies of the sign bit (C2 is one less
9014 than a power of two), we can do this with just a shift. */
9016 if (GET_CODE (x) == LSHIFTRT
9017 && CONST_INT_P (XEXP (x, 1))
9018 /* The shift puts one of the sign bit copies in the least significant
9019 bit. */
9020 && ((INTVAL (XEXP (x, 1))
9021 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9022 >= GET_MODE_PRECISION (xmode))
9023 && pow2p_hwi (mask + 1)
9024 /* Number of bits left after the shift must be more than the mask
9025 needs. */
9026 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9027 <= GET_MODE_PRECISION (xmode))
9028 /* Must be more sign bit copies than the mask needs. */
9029 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9030 >= exact_log2 (mask + 1)))
9032 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9033 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9034 gen_int_shift_amount (xmode, nbits));
9036 goto shiftrt;
9038 case ASHIFTRT:
9039 /* If we are just looking for the sign bit, we don't need this shift at
9040 all, even if it has a variable count. */
9041 if (val_signbit_p (xmode, mask))
9042 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9044 /* If this is a shift by a constant, get a mask that contains those bits
9045 that are not copies of the sign bit. We then have two cases: If
9046 MASK only includes those bits, this can be a logical shift, which may
9047 allow simplifications. If MASK is a single-bit field not within
9048 those bits, we are requesting a copy of the sign bit and hence can
9049 shift the sign bit to the appropriate location. */
9051 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9052 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9054 unsigned HOST_WIDE_INT nonzero;
9055 int i;
9057 /* If the considered data is wider than HOST_WIDE_INT, we can't
9058 represent a mask for all its bits in a single scalar.
9059 But we only care about the lower bits, so calculate these. */
9061 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9063 nonzero = HOST_WIDE_INT_M1U;
9065 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9066 is the number of bits a full-width mask would have set.
9067 We need only shift if these are fewer than nonzero can
9068 hold. If not, we must keep all bits set in nonzero. */
9070 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9071 < HOST_BITS_PER_WIDE_INT)
9072 nonzero >>= INTVAL (XEXP (x, 1))
9073 + HOST_BITS_PER_WIDE_INT
9074 - GET_MODE_PRECISION (xmode);
9076 else
9078 nonzero = GET_MODE_MASK (xmode);
9079 nonzero >>= INTVAL (XEXP (x, 1));
9082 if ((mask & ~nonzero) == 0)
9084 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9085 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9086 if (GET_CODE (x) != ASHIFTRT)
9087 return force_to_mode (x, mode, mask, next_select);
9090 else if ((i = exact_log2 (mask)) >= 0)
9092 x = simplify_shift_const
9093 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9094 GET_MODE_PRECISION (xmode) - 1 - i);
9096 if (GET_CODE (x) != ASHIFTRT)
9097 return force_to_mode (x, mode, mask, next_select);
9101 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9102 even if the shift count isn't a constant. */
9103 if (mask == 1)
9104 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9106 shiftrt:
9108 /* If this is a zero- or sign-extension operation that just affects bits
9109 we don't care about, remove it. Be sure the call above returned
9110 something that is still a shift. */
9112 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9113 && CONST_INT_P (XEXP (x, 1))
9114 && INTVAL (XEXP (x, 1)) >= 0
9115 && (INTVAL (XEXP (x, 1))
9116 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9117 && GET_CODE (XEXP (x, 0)) == ASHIFT
9118 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9119 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, next_select);
9121 break;
9123 case ROTATE:
9124 case ROTATERT:
9125 /* If the shift count is constant and we can do computations
9126 in the mode of X, compute where the bits we care about are.
9127 Otherwise, we can't do anything. Don't change the mode of
9128 the shift or propagate MODE into the shift, though. */
9129 if (CONST_INT_P (XEXP (x, 1))
9130 && INTVAL (XEXP (x, 1)) >= 0)
9132 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9133 xmode, gen_int_mode (mask, xmode),
9134 XEXP (x, 1));
9135 if (temp && CONST_INT_P (temp))
9136 x = simplify_gen_binary (code, xmode,
9137 force_to_mode (XEXP (x, 0), xmode,
9138 INTVAL (temp), next_select),
9139 XEXP (x, 1));
9141 break;
9143 case NEG:
9144 /* If we just want the low-order bit, the NEG isn't needed since it
9145 won't change the low-order bit. */
9146 if (mask == 1)
9147 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9149 /* We need any bits less significant than the most significant bit in
9150 MASK since carries from those bits will affect the bits we are
9151 interested in. */
9152 mask = fuller_mask;
9153 goto unop;
9155 case NOT:
9156 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9157 same as the XOR case above. Ensure that the constant we form is not
9158 wider than the mode of X. */
9160 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9161 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9162 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9163 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9164 < GET_MODE_PRECISION (xmode))
9165 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9167 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9168 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9169 x = simplify_gen_binary (LSHIFTRT, xmode,
9170 temp, XEXP (XEXP (x, 0), 1));
9172 return force_to_mode (x, mode, mask, next_select);
9175 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9176 use the full mask inside the NOT. */
9177 mask = fuller_mask;
9179 unop:
9180 op0 = gen_lowpart_or_truncate (op_mode,
9181 force_to_mode (XEXP (x, 0), mode, mask,
9182 next_select));
9183 if (op_mode != xmode || op0 != XEXP (x, 0))
9185 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9186 xmode = op_mode;
9188 break;
9190 case NE:
9191 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9192 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9193 which is equal to STORE_FLAG_VALUE. */
9194 if ((mask & ~STORE_FLAG_VALUE) == 0
9195 && XEXP (x, 1) == const0_rtx
9196 && GET_MODE (XEXP (x, 0)) == mode
9197 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9198 && (nonzero_bits (XEXP (x, 0), mode)
9199 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9200 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9202 break;
9204 case IF_THEN_ELSE:
9205 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9206 written in a narrower mode. We play it safe and do not do so. */
9208 op0 = gen_lowpart_or_truncate (xmode,
9209 force_to_mode (XEXP (x, 1), mode,
9210 mask, next_select));
9211 op1 = gen_lowpart_or_truncate (xmode,
9212 force_to_mode (XEXP (x, 2), mode,
9213 mask, next_select));
9214 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9215 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9216 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9217 op0, op1);
9218 break;
9220 default:
9221 break;
9224 /* Ensure we return a value of the proper mode. */
9225 return gen_lowpart_or_truncate (mode, x);
9228 /* Return nonzero if X is an expression that has one of two values depending on
9229 whether some other value is zero or nonzero. In that case, we return the
9230 value that is being tested, *PTRUE is set to the value if the rtx being
9231 returned has a nonzero value, and *PFALSE is set to the other alternative.
9233 If we return zero, we set *PTRUE and *PFALSE to X. */
9235 static rtx
9236 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9238 machine_mode mode = GET_MODE (x);
9239 enum rtx_code code = GET_CODE (x);
9240 rtx cond0, cond1, true0, true1, false0, false1;
9241 unsigned HOST_WIDE_INT nz;
9242 scalar_int_mode int_mode;
9244 /* If we are comparing a value against zero, we are done. */
9245 if ((code == NE || code == EQ)
9246 && XEXP (x, 1) == const0_rtx)
9248 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9249 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9250 return XEXP (x, 0);
9253 /* If this is a unary operation whose operand has one of two values, apply
9254 our opcode to compute those values. */
9255 else if (UNARY_P (x)
9256 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9258 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9259 *pfalse = simplify_gen_unary (code, mode, false0,
9260 GET_MODE (XEXP (x, 0)));
9261 return cond0;
9264 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9265 make can't possibly match and would suppress other optimizations. */
9266 else if (code == COMPARE)
9269 /* If this is a binary operation, see if either side has only one of two
9270 values. If either one does or if both do and they are conditional on
9271 the same value, compute the new true and false values. */
9272 else if (BINARY_P (x))
9274 rtx op0 = XEXP (x, 0);
9275 rtx op1 = XEXP (x, 1);
9276 cond0 = if_then_else_cond (op0, &true0, &false0);
9277 cond1 = if_then_else_cond (op1, &true1, &false1);
9279 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9280 && (REG_P (op0) || REG_P (op1)))
9282 /* Try to enable a simplification by undoing work done by
9283 if_then_else_cond if it converted a REG into something more
9284 complex. */
9285 if (REG_P (op0))
9287 cond0 = 0;
9288 true0 = false0 = op0;
9290 else
9292 cond1 = 0;
9293 true1 = false1 = op1;
9297 if ((cond0 != 0 || cond1 != 0)
9298 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9300 /* If if_then_else_cond returned zero, then true/false are the
9301 same rtl. We must copy one of them to prevent invalid rtl
9302 sharing. */
9303 if (cond0 == 0)
9304 true0 = copy_rtx (true0);
9305 else if (cond1 == 0)
9306 true1 = copy_rtx (true1);
9308 if (COMPARISON_P (x))
9310 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9311 true0, true1);
9312 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9313 false0, false1);
9315 else
9317 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9318 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9321 return cond0 ? cond0 : cond1;
9324 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9325 operands is zero when the other is nonzero, and vice-versa,
9326 and STORE_FLAG_VALUE is 1 or -1. */
9328 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9329 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9330 || code == UMAX)
9331 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9333 rtx op0 = XEXP (XEXP (x, 0), 1);
9334 rtx op1 = XEXP (XEXP (x, 1), 1);
9336 cond0 = XEXP (XEXP (x, 0), 0);
9337 cond1 = XEXP (XEXP (x, 1), 0);
9339 if (COMPARISON_P (cond0)
9340 && COMPARISON_P (cond1)
9341 && SCALAR_INT_MODE_P (mode)
9342 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9343 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9344 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9345 || ((swap_condition (GET_CODE (cond0))
9346 == reversed_comparison_code (cond1, NULL))
9347 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9348 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9349 && ! side_effects_p (x))
9351 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9352 *pfalse = simplify_gen_binary (MULT, mode,
9353 (code == MINUS
9354 ? simplify_gen_unary (NEG, mode,
9355 op1, mode)
9356 : op1),
9357 const_true_rtx);
9358 return cond0;
9362 /* Similarly for MULT, AND and UMIN, except that for these the result
9363 is always zero. */
9364 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9365 && (code == MULT || code == AND || code == UMIN)
9366 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9368 cond0 = XEXP (XEXP (x, 0), 0);
9369 cond1 = XEXP (XEXP (x, 1), 0);
9371 if (COMPARISON_P (cond0)
9372 && COMPARISON_P (cond1)
9373 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9374 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9375 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9376 || ((swap_condition (GET_CODE (cond0))
9377 == reversed_comparison_code (cond1, NULL))
9378 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9379 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9380 && ! side_effects_p (x))
9382 *ptrue = *pfalse = const0_rtx;
9383 return cond0;
9388 else if (code == IF_THEN_ELSE)
9390 /* If we have IF_THEN_ELSE already, extract the condition and
9391 canonicalize it if it is NE or EQ. */
9392 cond0 = XEXP (x, 0);
9393 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9394 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9395 return XEXP (cond0, 0);
9396 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9398 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9399 return XEXP (cond0, 0);
9401 else
9402 return cond0;
9405 /* If X is a SUBREG, we can narrow both the true and false values
9406 if the inner expression, if there is a condition. */
9407 else if (code == SUBREG
9408 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9409 &false0)) != 0)
9411 true0 = simplify_gen_subreg (mode, true0,
9412 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9413 false0 = simplify_gen_subreg (mode, false0,
9414 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9415 if (true0 && false0)
9417 *ptrue = true0;
9418 *pfalse = false0;
9419 return cond0;
9423 /* If X is a constant, this isn't special and will cause confusions
9424 if we treat it as such. Likewise if it is equivalent to a constant. */
9425 else if (CONSTANT_P (x)
9426 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9429 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9430 will be least confusing to the rest of the compiler. */
9431 else if (mode == BImode)
9433 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9434 return x;
9437 /* If X is known to be either 0 or -1, those are the true and
9438 false values when testing X. */
9439 else if (x == constm1_rtx || x == const0_rtx
9440 || (is_a <scalar_int_mode> (mode, &int_mode)
9441 && (num_sign_bit_copies (x, int_mode)
9442 == GET_MODE_PRECISION (int_mode))))
9444 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9445 return x;
9448 /* Likewise for 0 or a single bit. */
9449 else if (HWI_COMPUTABLE_MODE_P (mode)
9450 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9452 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9453 return x;
9456 /* Otherwise fail; show no condition with true and false values the same. */
9457 *ptrue = *pfalse = x;
9458 return 0;
9461 /* Return the value of expression X given the fact that condition COND
9462 is known to be true when applied to REG as its first operand and VAL
9463 as its second. X is known to not be shared and so can be modified in
9464 place.
9466 We only handle the simplest cases, and specifically those cases that
9467 arise with IF_THEN_ELSE expressions. */
9469 static rtx
9470 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9472 enum rtx_code code = GET_CODE (x);
9473 const char *fmt;
9474 int i, j;
9476 if (side_effects_p (x))
9477 return x;
9479 /* If either operand of the condition is a floating point value,
9480 then we have to avoid collapsing an EQ comparison. */
9481 if (cond == EQ
9482 && rtx_equal_p (x, reg)
9483 && ! FLOAT_MODE_P (GET_MODE (x))
9484 && ! FLOAT_MODE_P (GET_MODE (val)))
9485 return val;
9487 if (cond == UNEQ && rtx_equal_p (x, reg))
9488 return val;
9490 /* If X is (abs REG) and we know something about REG's relationship
9491 with zero, we may be able to simplify this. */
9493 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9494 switch (cond)
9496 case GE: case GT: case EQ:
9497 return XEXP (x, 0);
9498 case LT: case LE:
9499 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9500 XEXP (x, 0),
9501 GET_MODE (XEXP (x, 0)));
9502 default:
9503 break;
9506 /* The only other cases we handle are MIN, MAX, and comparisons if the
9507 operands are the same as REG and VAL. */
9509 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9511 if (rtx_equal_p (XEXP (x, 0), val))
9513 std::swap (val, reg);
9514 cond = swap_condition (cond);
9517 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9519 if (COMPARISON_P (x))
9521 if (comparison_dominates_p (cond, code))
9522 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9524 code = reversed_comparison_code (x, NULL);
9525 if (code != UNKNOWN
9526 && comparison_dominates_p (cond, code))
9527 return CONST0_RTX (GET_MODE (x));
9528 else
9529 return x;
9531 else if (code == SMAX || code == SMIN
9532 || code == UMIN || code == UMAX)
9534 int unsignedp = (code == UMIN || code == UMAX);
9536 /* Do not reverse the condition when it is NE or EQ.
9537 This is because we cannot conclude anything about
9538 the value of 'SMAX (x, y)' when x is not equal to y,
9539 but we can when x equals y. */
9540 if ((code == SMAX || code == UMAX)
9541 && ! (cond == EQ || cond == NE))
9542 cond = reverse_condition (cond);
9544 switch (cond)
9546 case GE: case GT:
9547 return unsignedp ? x : XEXP (x, 1);
9548 case LE: case LT:
9549 return unsignedp ? x : XEXP (x, 0);
9550 case GEU: case GTU:
9551 return unsignedp ? XEXP (x, 1) : x;
9552 case LEU: case LTU:
9553 return unsignedp ? XEXP (x, 0) : x;
9554 default:
9555 break;
9560 else if (code == SUBREG)
9562 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9563 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9565 if (SUBREG_REG (x) != r)
9567 /* We must simplify subreg here, before we lose track of the
9568 original inner_mode. */
9569 new_rtx = simplify_subreg (GET_MODE (x), r,
9570 inner_mode, SUBREG_BYTE (x));
9571 if (new_rtx)
9572 return new_rtx;
9573 else
9574 SUBST (SUBREG_REG (x), r);
9577 return x;
9579 /* We don't have to handle SIGN_EXTEND here, because even in the
9580 case of replacing something with a modeless CONST_INT, a
9581 CONST_INT is already (supposed to be) a valid sign extension for
9582 its narrower mode, which implies it's already properly
9583 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9584 story is different. */
9585 else if (code == ZERO_EXTEND)
9587 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9588 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9590 if (XEXP (x, 0) != r)
9592 /* We must simplify the zero_extend here, before we lose
9593 track of the original inner_mode. */
9594 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9595 r, inner_mode);
9596 if (new_rtx)
9597 return new_rtx;
9598 else
9599 SUBST (XEXP (x, 0), r);
9602 return x;
9605 fmt = GET_RTX_FORMAT (code);
9606 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9608 if (fmt[i] == 'e')
9609 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9610 else if (fmt[i] == 'E')
9611 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9612 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9613 cond, reg, val));
9616 return x;
9619 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9620 assignment as a field assignment. */
9622 static bool
9623 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9625 if (widen_x && GET_MODE (x) != GET_MODE (y))
9627 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9628 return false;
9629 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9630 return false;
9631 x = adjust_address_nv (x, GET_MODE (y),
9632 byte_lowpart_offset (GET_MODE (y),
9633 GET_MODE (x)));
9636 if (x == y || rtx_equal_p (x, y))
9637 return true;
9639 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9640 return false;
9642 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9643 Note that all SUBREGs of MEM are paradoxical; otherwise they
9644 would have been rewritten. */
9645 if (MEM_P (x) && GET_CODE (y) == SUBREG
9646 && MEM_P (SUBREG_REG (y))
9647 && rtx_equal_p (SUBREG_REG (y),
9648 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9649 return true;
9651 if (MEM_P (y) && GET_CODE (x) == SUBREG
9652 && MEM_P (SUBREG_REG (x))
9653 && rtx_equal_p (SUBREG_REG (x),
9654 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9655 return true;
9657 /* We used to see if get_last_value of X and Y were the same but that's
9658 not correct. In one direction, we'll cause the assignment to have
9659 the wrong destination and in the case, we'll import a register into this
9660 insn that might have already have been dead. So fail if none of the
9661 above cases are true. */
9662 return false;
9665 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9666 Return that assignment if so.
9668 We only handle the most common cases. */
9670 static rtx
9671 make_field_assignment (rtx x)
9673 rtx dest = SET_DEST (x);
9674 rtx src = SET_SRC (x);
9675 rtx assign;
9676 rtx rhs, lhs;
9677 HOST_WIDE_INT c1;
9678 HOST_WIDE_INT pos;
9679 unsigned HOST_WIDE_INT len;
9680 rtx other;
9682 /* All the rules in this function are specific to scalar integers. */
9683 scalar_int_mode mode;
9684 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9685 return x;
9687 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9688 a clear of a one-bit field. We will have changed it to
9689 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9690 for a SUBREG. */
9692 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9693 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9694 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9695 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9697 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9698 1, true, true, false);
9699 if (assign != 0)
9700 return gen_rtx_SET (assign, const0_rtx);
9701 return x;
9704 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9705 && subreg_lowpart_p (XEXP (src, 0))
9706 && partial_subreg_p (XEXP (src, 0))
9707 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9708 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9709 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9710 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9712 assign = make_extraction (VOIDmode, dest, 0,
9713 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9714 1, true, true, false);
9715 if (assign != 0)
9716 return gen_rtx_SET (assign, const0_rtx);
9717 return x;
9720 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9721 one-bit field. */
9722 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9723 && XEXP (XEXP (src, 0), 0) == const1_rtx
9724 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9726 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9727 1, true, true, false);
9728 if (assign != 0)
9729 return gen_rtx_SET (assign, const1_rtx);
9730 return x;
9733 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9734 SRC is an AND with all bits of that field set, then we can discard
9735 the AND. */
9736 if (GET_CODE (dest) == ZERO_EXTRACT
9737 && CONST_INT_P (XEXP (dest, 1))
9738 && GET_CODE (src) == AND
9739 && CONST_INT_P (XEXP (src, 1)))
9741 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9742 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9743 unsigned HOST_WIDE_INT ze_mask;
9745 if (width >= HOST_BITS_PER_WIDE_INT)
9746 ze_mask = -1;
9747 else
9748 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9750 /* Complete overlap. We can remove the source AND. */
9751 if ((and_mask & ze_mask) == ze_mask)
9752 return gen_rtx_SET (dest, XEXP (src, 0));
9754 /* Partial overlap. We can reduce the source AND. */
9755 if ((and_mask & ze_mask) != and_mask)
9757 src = gen_rtx_AND (mode, XEXP (src, 0),
9758 gen_int_mode (and_mask & ze_mask, mode));
9759 return gen_rtx_SET (dest, src);
9763 /* The other case we handle is assignments into a constant-position
9764 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9765 a mask that has all one bits except for a group of zero bits and
9766 OTHER is known to have zeros where C1 has ones, this is such an
9767 assignment. Compute the position and length from C1. Shift OTHER
9768 to the appropriate position, force it to the required mode, and
9769 make the extraction. Check for the AND in both operands. */
9771 /* One or more SUBREGs might obscure the constant-position field
9772 assignment. The first one we are likely to encounter is an outer
9773 narrowing SUBREG, which we can just strip for the purposes of
9774 identifying the constant-field assignment. */
9775 scalar_int_mode src_mode = mode;
9776 if (GET_CODE (src) == SUBREG
9777 && subreg_lowpart_p (src)
9778 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9779 src = SUBREG_REG (src);
9781 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9782 return x;
9784 rhs = expand_compound_operation (XEXP (src, 0));
9785 lhs = expand_compound_operation (XEXP (src, 1));
9787 if (GET_CODE (rhs) == AND
9788 && CONST_INT_P (XEXP (rhs, 1))
9789 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9790 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9791 /* The second SUBREG that might get in the way is a paradoxical
9792 SUBREG around the first operand of the AND. We want to
9793 pretend the operand is as wide as the destination here. We
9794 do this by adjusting the MEM to wider mode for the sole
9795 purpose of the call to rtx_equal_for_field_assignment_p. Also
9796 note this trick only works for MEMs. */
9797 else if (GET_CODE (rhs) == AND
9798 && paradoxical_subreg_p (XEXP (rhs, 0))
9799 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9800 && CONST_INT_P (XEXP (rhs, 1))
9801 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9802 dest, true))
9803 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9804 else if (GET_CODE (lhs) == AND
9805 && CONST_INT_P (XEXP (lhs, 1))
9806 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9807 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9808 /* The second SUBREG that might get in the way is a paradoxical
9809 SUBREG around the first operand of the AND. We want to
9810 pretend the operand is as wide as the destination here. We
9811 do this by adjusting the MEM to wider mode for the sole
9812 purpose of the call to rtx_equal_for_field_assignment_p. Also
9813 note this trick only works for MEMs. */
9814 else if (GET_CODE (lhs) == AND
9815 && paradoxical_subreg_p (XEXP (lhs, 0))
9816 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9817 && CONST_INT_P (XEXP (lhs, 1))
9818 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9819 dest, true))
9820 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9821 else
9822 return x;
9824 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9825 if (pos < 0
9826 || pos + len > GET_MODE_PRECISION (mode)
9827 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9828 || (c1 & nonzero_bits (other, mode)) != 0)
9829 return x;
9831 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len,
9832 true, true, false);
9833 if (assign == 0)
9834 return x;
9836 /* The mode to use for the source is the mode of the assignment, or of
9837 what is inside a possible STRICT_LOW_PART. */
9838 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9839 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9841 /* Shift OTHER right POS places and make it the source, restricting it
9842 to the proper length and mode. */
9844 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9845 src_mode, other, pos),
9846 dest);
9847 src = force_to_mode (src, new_mode,
9848 len >= HOST_BITS_PER_WIDE_INT
9849 ? HOST_WIDE_INT_M1U
9850 : (HOST_WIDE_INT_1U << len) - 1, false);
9852 /* If SRC is masked by an AND that does not make a difference in
9853 the value being stored, strip it. */
9854 if (GET_CODE (assign) == ZERO_EXTRACT
9855 && CONST_INT_P (XEXP (assign, 1))
9856 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9857 && GET_CODE (src) == AND
9858 && CONST_INT_P (XEXP (src, 1))
9859 && UINTVAL (XEXP (src, 1))
9860 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9861 src = XEXP (src, 0);
9863 return gen_rtx_SET (assign, src);
9866 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9867 if so. */
9869 static rtx
9870 apply_distributive_law (rtx x)
9872 enum rtx_code code = GET_CODE (x);
9873 enum rtx_code inner_code;
9874 rtx lhs, rhs, other;
9875 rtx tem;
9877 /* Distributivity is not true for floating point as it can change the
9878 value. So we don't do it unless -funsafe-math-optimizations. */
9879 if (FLOAT_MODE_P (GET_MODE (x))
9880 && ! flag_unsafe_math_optimizations)
9881 return x;
9883 /* The outer operation can only be one of the following: */
9884 if (code != IOR && code != AND && code != XOR
9885 && code != PLUS && code != MINUS)
9886 return x;
9888 lhs = XEXP (x, 0);
9889 rhs = XEXP (x, 1);
9891 /* If either operand is a primitive we can't do anything, so get out
9892 fast. */
9893 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9894 return x;
9896 lhs = expand_compound_operation (lhs);
9897 rhs = expand_compound_operation (rhs);
9898 inner_code = GET_CODE (lhs);
9899 if (inner_code != GET_CODE (rhs))
9900 return x;
9902 /* See if the inner and outer operations distribute. */
9903 switch (inner_code)
9905 case LSHIFTRT:
9906 case ASHIFTRT:
9907 case AND:
9908 case IOR:
9909 /* These all distribute except over PLUS. */
9910 if (code == PLUS || code == MINUS)
9911 return x;
9912 break;
9914 case MULT:
9915 if (code != PLUS && code != MINUS)
9916 return x;
9917 break;
9919 case ASHIFT:
9920 /* This is also a multiply, so it distributes over everything. */
9921 break;
9923 /* This used to handle SUBREG, but this turned out to be counter-
9924 productive, since (subreg (op ...)) usually is not handled by
9925 insn patterns, and this "optimization" therefore transformed
9926 recognizable patterns into unrecognizable ones. Therefore the
9927 SUBREG case was removed from here.
9929 It is possible that distributing SUBREG over arithmetic operations
9930 leads to an intermediate result than can then be optimized further,
9931 e.g. by moving the outer SUBREG to the other side of a SET as done
9932 in simplify_set. This seems to have been the original intent of
9933 handling SUBREGs here.
9935 However, with current GCC this does not appear to actually happen,
9936 at least on major platforms. If some case is found where removing
9937 the SUBREG case here prevents follow-on optimizations, distributing
9938 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9940 default:
9941 return x;
9944 /* Set LHS and RHS to the inner operands (A and B in the example
9945 above) and set OTHER to the common operand (C in the example).
9946 There is only one way to do this unless the inner operation is
9947 commutative. */
9948 if (COMMUTATIVE_ARITH_P (lhs)
9949 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9950 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9951 else if (COMMUTATIVE_ARITH_P (lhs)
9952 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9953 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9954 else if (COMMUTATIVE_ARITH_P (lhs)
9955 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9956 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9957 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9958 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9959 else
9960 return x;
9962 /* Form the new inner operation, seeing if it simplifies first. */
9963 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9965 /* There is one exception to the general way of distributing:
9966 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9967 if (code == XOR && inner_code == IOR)
9969 inner_code = AND;
9970 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9973 /* We may be able to continuing distributing the result, so call
9974 ourselves recursively on the inner operation before forming the
9975 outer operation, which we return. */
9976 return simplify_gen_binary (inner_code, GET_MODE (x),
9977 apply_distributive_law (tem), other);
9980 /* See if X is of the form (* (+ A B) C), and if so convert to
9981 (+ (* A C) (* B C)) and try to simplify.
9983 Most of the time, this results in no change. However, if some of
9984 the operands are the same or inverses of each other, simplifications
9985 will result.
9987 For example, (and (ior A B) (not B)) can occur as the result of
9988 expanding a bit field assignment. When we apply the distributive
9989 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9990 which then simplifies to (and (A (not B))).
9992 Note that no checks happen on the validity of applying the inverse
9993 distributive law. This is pointless since we can do it in the
9994 few places where this routine is called.
9996 N is the index of the term that is decomposed (the arithmetic operation,
9997 i.e. (+ A B) in the first example above). !N is the index of the term that
9998 is distributed, i.e. of C in the first example above. */
9999 static rtx
10000 distribute_and_simplify_rtx (rtx x, int n)
10002 machine_mode mode;
10003 enum rtx_code outer_code, inner_code;
10004 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10006 /* Distributivity is not true for floating point as it can change the
10007 value. So we don't do it unless -funsafe-math-optimizations. */
10008 if (FLOAT_MODE_P (GET_MODE (x))
10009 && ! flag_unsafe_math_optimizations)
10010 return NULL_RTX;
10012 decomposed = XEXP (x, n);
10013 if (!ARITHMETIC_P (decomposed))
10014 return NULL_RTX;
10016 mode = GET_MODE (x);
10017 outer_code = GET_CODE (x);
10018 distributed = XEXP (x, !n);
10020 inner_code = GET_CODE (decomposed);
10021 inner_op0 = XEXP (decomposed, 0);
10022 inner_op1 = XEXP (decomposed, 1);
10024 /* Special case (and (xor B C) (not A)), which is equivalent to
10025 (xor (ior A B) (ior A C)) */
10026 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10028 distributed = XEXP (distributed, 0);
10029 outer_code = IOR;
10032 if (n == 0)
10034 /* Distribute the second term. */
10035 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10036 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10038 else
10040 /* Distribute the first term. */
10041 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10042 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10045 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10046 new_op0, new_op1));
10047 if (GET_CODE (tmp) != outer_code
10048 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10049 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10050 return tmp;
10052 return NULL_RTX;
10055 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10056 in MODE. Return an equivalent form, if different from (and VAROP
10057 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10059 static rtx
10060 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10061 unsigned HOST_WIDE_INT constop)
10063 unsigned HOST_WIDE_INT nonzero;
10064 unsigned HOST_WIDE_INT orig_constop;
10065 rtx orig_varop;
10066 int i;
10068 orig_varop = varop;
10069 orig_constop = constop;
10070 if (GET_CODE (varop) == CLOBBER)
10071 return NULL_RTX;
10073 /* Simplify VAROP knowing that we will be only looking at some of the
10074 bits in it.
10076 Note by passing in CONSTOP, we guarantee that the bits not set in
10077 CONSTOP are not significant and will never be examined. We must
10078 ensure that is the case by explicitly masking out those bits
10079 before returning. */
10080 varop = force_to_mode (varop, mode, constop, false);
10082 /* If VAROP is a CLOBBER, we will fail so return it. */
10083 if (GET_CODE (varop) == CLOBBER)
10084 return varop;
10086 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10087 to VAROP and return the new constant. */
10088 if (CONST_INT_P (varop))
10089 return gen_int_mode (INTVAL (varop) & constop, mode);
10091 /* See what bits may be nonzero in VAROP. Unlike the general case of
10092 a call to nonzero_bits, here we don't care about bits outside
10093 MODE unless WORD_REGISTER_OPERATIONS is true. */
10095 scalar_int_mode tmode = mode;
10096 if (WORD_REGISTER_OPERATIONS && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
10097 tmode = word_mode;
10098 nonzero = nonzero_bits (varop, tmode) & GET_MODE_MASK (tmode);
10100 /* Turn off all bits in the constant that are known to already be zero.
10101 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10102 which is tested below. */
10104 constop &= nonzero;
10106 /* If we don't have any bits left, return zero. */
10107 if (constop == 0 && !side_effects_p (varop))
10108 return const0_rtx;
10110 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10111 a power of two, we can replace this with an ASHIFT. */
10112 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), tmode) == 1
10113 && (i = exact_log2 (constop)) >= 0)
10114 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10116 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10117 or XOR, then try to apply the distributive law. This may eliminate
10118 operations if either branch can be simplified because of the AND.
10119 It may also make some cases more complex, but those cases probably
10120 won't match a pattern either with or without this. */
10122 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10124 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10125 return
10126 gen_lowpart
10127 (mode,
10128 apply_distributive_law
10129 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10130 simplify_and_const_int (NULL_RTX, varop_mode,
10131 XEXP (varop, 0),
10132 constop),
10133 simplify_and_const_int (NULL_RTX, varop_mode,
10134 XEXP (varop, 1),
10135 constop))));
10138 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10139 the AND and see if one of the operands simplifies to zero. If so, we
10140 may eliminate it. */
10142 if (GET_CODE (varop) == PLUS
10143 && pow2p_hwi (constop + 1))
10145 rtx o0, o1;
10147 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10148 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10149 if (o0 == const0_rtx)
10150 return o1;
10151 if (o1 == const0_rtx)
10152 return o0;
10155 /* Make a SUBREG if necessary. If we can't make it, fail. */
10156 varop = gen_lowpart (mode, varop);
10157 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10158 return NULL_RTX;
10160 /* If we are only masking insignificant bits, return VAROP. */
10161 if (constop == nonzero)
10162 return varop;
10164 if (varop == orig_varop && constop == orig_constop)
10165 return NULL_RTX;
10167 /* Otherwise, return an AND. */
10168 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10172 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10173 in MODE.
10175 Return an equivalent form, if different from X. Otherwise, return X. If
10176 X is zero, we are to always construct the equivalent form. */
10178 static rtx
10179 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10180 unsigned HOST_WIDE_INT constop)
10182 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10183 if (tem)
10184 return tem;
10186 if (!x)
10187 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10188 gen_int_mode (constop, mode));
10189 if (GET_MODE (x) != mode)
10190 x = gen_lowpart (mode, x);
10191 return x;
10194 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10195 We don't care about bits outside of those defined in MODE.
10196 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10198 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10199 a shift, AND, or zero_extract, we can do better. */
10201 static rtx
10202 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10203 scalar_int_mode mode,
10204 unsigned HOST_WIDE_INT *nonzero)
10206 rtx tem;
10207 reg_stat_type *rsp;
10209 /* If X is a register whose nonzero bits value is current, use it.
10210 Otherwise, if X is a register whose value we can find, use that
10211 value. Otherwise, use the previously-computed global nonzero bits
10212 for this register. */
10214 rsp = &reg_stat[REGNO (x)];
10215 if (rsp->last_set_value != 0
10216 && (rsp->last_set_mode == mode
10217 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10218 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10219 && GET_MODE_CLASS (mode) == MODE_INT))
10220 && ((rsp->last_set_label >= label_tick_ebb_start
10221 && rsp->last_set_label < label_tick)
10222 || (rsp->last_set_label == label_tick
10223 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10224 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10225 && REGNO (x) < reg_n_sets_max
10226 && REG_N_SETS (REGNO (x)) == 1
10227 && !REGNO_REG_SET_P
10228 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10229 REGNO (x)))))
10231 /* Note that, even if the precision of last_set_mode is lower than that
10232 of mode, record_value_for_reg invoked nonzero_bits on the register
10233 with nonzero_bits_mode (because last_set_mode is necessarily integral
10234 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10235 are all valid, hence in mode too since nonzero_bits_mode is defined
10236 to the largest HWI_COMPUTABLE_MODE_P mode. */
10237 *nonzero &= rsp->last_set_nonzero_bits;
10238 return NULL;
10241 tem = get_last_value (x);
10242 if (tem)
10244 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10245 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10247 return tem;
10250 if (nonzero_sign_valid && rsp->nonzero_bits)
10252 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10254 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10255 /* We don't know anything about the upper bits. */
10256 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10258 *nonzero &= mask;
10261 return NULL;
10264 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10265 end of X that are known to be equal to the sign bit. X will be used
10266 in mode MODE; the returned value will always be between 1 and the
10267 number of bits in MODE. */
10269 static rtx
10270 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10271 scalar_int_mode mode,
10272 unsigned int *result)
10274 rtx tem;
10275 reg_stat_type *rsp;
10277 rsp = &reg_stat[REGNO (x)];
10278 if (rsp->last_set_value != 0
10279 && rsp->last_set_mode == mode
10280 && ((rsp->last_set_label >= label_tick_ebb_start
10281 && rsp->last_set_label < label_tick)
10282 || (rsp->last_set_label == label_tick
10283 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10284 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10285 && REGNO (x) < reg_n_sets_max
10286 && REG_N_SETS (REGNO (x)) == 1
10287 && !REGNO_REG_SET_P
10288 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10289 REGNO (x)))))
10291 *result = rsp->last_set_sign_bit_copies;
10292 return NULL;
10295 tem = get_last_value (x);
10296 if (tem != 0)
10297 return tem;
10299 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10300 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10301 *result = rsp->sign_bit_copies;
10303 return NULL;
10306 /* Return the number of "extended" bits there are in X, when interpreted
10307 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10308 unsigned quantities, this is the number of high-order zero bits.
10309 For signed quantities, this is the number of copies of the sign bit
10310 minus 1. In both case, this function returns the number of "spare"
10311 bits. For example, if two quantities for which this function returns
10312 at least 1 are added, the addition is known not to overflow.
10314 This function will always return 0 unless called during combine, which
10315 implies that it must be called from a define_split. */
10317 unsigned int
10318 extended_count (const_rtx x, machine_mode mode, bool unsignedp)
10320 if (nonzero_sign_valid == 0)
10321 return 0;
10323 scalar_int_mode int_mode;
10324 return (unsignedp
10325 ? (is_a <scalar_int_mode> (mode, &int_mode)
10326 && HWI_COMPUTABLE_MODE_P (int_mode)
10327 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10328 - floor_log2 (nonzero_bits (x, int_mode)))
10329 : 0)
10330 : num_sign_bit_copies (x, mode) - 1);
10333 /* This function is called from `simplify_shift_const' to merge two
10334 outer operations. Specifically, we have already found that we need
10335 to perform operation *POP0 with constant *PCONST0 at the outermost
10336 position. We would now like to also perform OP1 with constant CONST1
10337 (with *POP0 being done last).
10339 Return true if we can do the operation and update *POP0 and *PCONST0 with
10340 the resulting operation. *PCOMP_P is set to true if we would need to
10341 complement the innermost operand, otherwise it is unchanged.
10343 MODE is the mode in which the operation will be done. No bits outside
10344 the width of this mode matter. It is assumed that the width of this mode
10345 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10347 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10348 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10349 result is simply *PCONST0.
10351 If the resulting operation cannot be expressed as one operation, we
10352 return false and do not change *POP0, *PCONST0, and *PCOMP_P. */
10354 static bool
10355 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0,
10356 enum rtx_code op1, HOST_WIDE_INT const1,
10357 machine_mode mode, bool *pcomp_p)
10359 enum rtx_code op0 = *pop0;
10360 HOST_WIDE_INT const0 = *pconst0;
10362 const0 &= GET_MODE_MASK (mode);
10363 const1 &= GET_MODE_MASK (mode);
10365 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10366 if (op0 == AND)
10367 const1 &= const0;
10369 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10370 if OP0 is SET. */
10372 if (op1 == UNKNOWN || op0 == SET)
10373 return true;
10375 else if (op0 == UNKNOWN)
10376 op0 = op1, const0 = const1;
10378 else if (op0 == op1)
10380 switch (op0)
10382 case AND:
10383 const0 &= const1;
10384 break;
10385 case IOR:
10386 const0 |= const1;
10387 break;
10388 case XOR:
10389 const0 ^= const1;
10390 break;
10391 case PLUS:
10392 const0 += const1;
10393 break;
10394 case NEG:
10395 op0 = UNKNOWN;
10396 break;
10397 default:
10398 break;
10402 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10403 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10404 return false;
10406 /* If the two constants aren't the same, we can't do anything. The
10407 remaining six cases can all be done. */
10408 else if (const0 != const1)
10409 return false;
10411 else
10412 switch (op0)
10414 case IOR:
10415 if (op1 == AND)
10416 /* (a & b) | b == b */
10417 op0 = SET;
10418 else /* op1 == XOR */
10419 /* (a ^ b) | b == a | b */
10421 break;
10423 case XOR:
10424 if (op1 == AND)
10425 /* (a & b) ^ b == (~a) & b */
10426 op0 = AND, *pcomp_p = true;
10427 else /* op1 == IOR */
10428 /* (a | b) ^ b == a & ~b */
10429 op0 = AND, const0 = ~const0;
10430 break;
10432 case AND:
10433 if (op1 == IOR)
10434 /* (a | b) & b == b */
10435 op0 = SET;
10436 else /* op1 == XOR */
10437 /* (a ^ b) & b) == (~a) & b */
10438 *pcomp_p = true;
10439 break;
10440 default:
10441 break;
10444 /* Check for NO-OP cases. */
10445 const0 &= GET_MODE_MASK (mode);
10446 if (const0 == 0
10447 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10448 op0 = UNKNOWN;
10449 else if (const0 == 0 && op0 == AND)
10450 op0 = SET;
10451 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10452 && op0 == AND)
10453 op0 = UNKNOWN;
10455 *pop0 = op0;
10457 /* ??? Slightly redundant with the above mask, but not entirely.
10458 Moving this above means we'd have to sign-extend the mode mask
10459 for the final test. */
10460 if (op0 != UNKNOWN && op0 != NEG)
10461 *pconst0 = trunc_int_for_mode (const0, mode);
10463 return true;
10466 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10467 the shift in. The original shift operation CODE is performed on OP in
10468 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10469 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10470 result of the shift is subject to operation OUTER_CODE with operand
10471 OUTER_CONST. */
10473 static scalar_int_mode
10474 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10475 scalar_int_mode orig_mode, scalar_int_mode mode,
10476 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10478 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10480 /* In general we can't perform in wider mode for right shift and rotate. */
10481 switch (code)
10483 case ASHIFTRT:
10484 /* We can still widen if the bits brought in from the left are identical
10485 to the sign bit of ORIG_MODE. */
10486 if (num_sign_bit_copies (op, mode)
10487 > (unsigned) (GET_MODE_PRECISION (mode)
10488 - GET_MODE_PRECISION (orig_mode)))
10489 return mode;
10490 return orig_mode;
10492 case LSHIFTRT:
10493 /* Similarly here but with zero bits. */
10494 if (HWI_COMPUTABLE_MODE_P (mode)
10495 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10496 return mode;
10498 /* We can also widen if the bits brought in will be masked off. This
10499 operation is performed in ORIG_MODE. */
10500 if (outer_code == AND)
10502 int care_bits = low_bitmask_len (orig_mode, outer_const);
10504 if (care_bits >= 0
10505 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10506 return mode;
10508 /* fall through */
10510 case ROTATE:
10511 return orig_mode;
10513 case ROTATERT:
10514 gcc_unreachable ();
10516 default:
10517 return mode;
10521 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10522 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10523 if we cannot simplify it. Otherwise, return a simplified value.
10525 The shift is normally computed in the widest mode we find in VAROP, as
10526 long as it isn't a different number of words than RESULT_MODE. Exceptions
10527 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10529 static rtx
10530 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10531 rtx varop, int orig_count)
10533 enum rtx_code orig_code = code;
10534 rtx orig_varop = varop;
10535 int count, log2;
10536 machine_mode mode = result_mode;
10537 machine_mode shift_mode;
10538 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10539 /* We form (outer_op (code varop count) (outer_const)). */
10540 enum rtx_code outer_op = UNKNOWN;
10541 HOST_WIDE_INT outer_const = 0;
10542 bool complement_p = false;
10543 rtx new_rtx, x;
10545 /* Make sure and truncate the "natural" shift on the way in. We don't
10546 want to do this inside the loop as it makes it more difficult to
10547 combine shifts. */
10548 if (SHIFT_COUNT_TRUNCATED)
10549 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10551 /* If we were given an invalid count, don't do anything except exactly
10552 what was requested. */
10554 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10555 return NULL_RTX;
10557 count = orig_count;
10559 /* Unless one of the branches of the `if' in this loop does a `continue',
10560 we will `break' the loop after the `if'. */
10562 while (count != 0)
10564 /* If we have an operand of (clobber (const_int 0)), fail. */
10565 if (GET_CODE (varop) == CLOBBER)
10566 return NULL_RTX;
10568 /* Convert ROTATERT to ROTATE. */
10569 if (code == ROTATERT)
10571 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10572 code = ROTATE;
10573 count = bitsize - count;
10576 shift_mode = result_mode;
10577 if (shift_mode != mode)
10579 /* We only change the modes of scalar shifts. */
10580 int_mode = as_a <scalar_int_mode> (mode);
10581 int_result_mode = as_a <scalar_int_mode> (result_mode);
10582 shift_mode = try_widen_shift_mode (code, varop, count,
10583 int_result_mode, int_mode,
10584 outer_op, outer_const);
10587 scalar_int_mode shift_unit_mode
10588 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10590 /* Handle cases where the count is greater than the size of the mode
10591 minus 1. For ASHIFT, use the size minus one as the count (this can
10592 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10593 take the count modulo the size. For other shifts, the result is
10594 zero.
10596 Since these shifts are being produced by the compiler by combining
10597 multiple operations, each of which are defined, we know what the
10598 result is supposed to be. */
10600 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10602 if (code == ASHIFTRT)
10603 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10604 else if (code == ROTATE || code == ROTATERT)
10605 count %= GET_MODE_PRECISION (shift_unit_mode);
10606 else
10608 /* We can't simply return zero because there may be an
10609 outer op. */
10610 varop = const0_rtx;
10611 count = 0;
10612 break;
10616 /* If we discovered we had to complement VAROP, leave. Making a NOT
10617 here would cause an infinite loop. */
10618 if (complement_p)
10619 break;
10621 if (shift_mode == shift_unit_mode)
10623 /* An arithmetic right shift of a quantity known to be -1 or 0
10624 is a no-op. */
10625 if (code == ASHIFTRT
10626 && (num_sign_bit_copies (varop, shift_unit_mode)
10627 == GET_MODE_PRECISION (shift_unit_mode)))
10629 count = 0;
10630 break;
10633 /* If we are doing an arithmetic right shift and discarding all but
10634 the sign bit copies, this is equivalent to doing a shift by the
10635 bitsize minus one. Convert it into that shift because it will
10636 often allow other simplifications. */
10638 if (code == ASHIFTRT
10639 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10640 >= GET_MODE_PRECISION (shift_unit_mode)))
10641 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10643 /* We simplify the tests below and elsewhere by converting
10644 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10645 `make_compound_operation' will convert it to an ASHIFTRT for
10646 those machines (such as VAX) that don't have an LSHIFTRT. */
10647 if (code == ASHIFTRT
10648 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10649 && val_signbit_known_clear_p (shift_unit_mode,
10650 nonzero_bits (varop,
10651 shift_unit_mode)))
10652 code = LSHIFTRT;
10654 if (((code == LSHIFTRT
10655 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10656 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10657 || (code == ASHIFT
10658 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10659 && !((nonzero_bits (varop, shift_unit_mode) << count)
10660 & GET_MODE_MASK (shift_unit_mode))))
10661 && !side_effects_p (varop))
10662 varop = const0_rtx;
10665 switch (GET_CODE (varop))
10667 case SIGN_EXTEND:
10668 case ZERO_EXTEND:
10669 case SIGN_EXTRACT:
10670 case ZERO_EXTRACT:
10671 new_rtx = expand_compound_operation (varop);
10672 if (new_rtx != varop)
10674 varop = new_rtx;
10675 continue;
10677 break;
10679 case MEM:
10680 /* The following rules apply only to scalars. */
10681 if (shift_mode != shift_unit_mode)
10682 break;
10683 int_mode = as_a <scalar_int_mode> (mode);
10685 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10686 minus the width of a smaller mode, we can do this with a
10687 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10688 if ((code == ASHIFTRT || code == LSHIFTRT)
10689 && ! mode_dependent_address_p (XEXP (varop, 0),
10690 MEM_ADDR_SPACE (varop))
10691 && ! MEM_VOLATILE_P (varop)
10692 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10693 .exists (&tmode)))
10695 new_rtx = adjust_address_nv (varop, tmode,
10696 BYTES_BIG_ENDIAN ? 0
10697 : count / BITS_PER_UNIT);
10699 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10700 : ZERO_EXTEND, int_mode, new_rtx);
10701 count = 0;
10702 continue;
10704 break;
10706 case SUBREG:
10707 /* The following rules apply only to scalars. */
10708 if (shift_mode != shift_unit_mode)
10709 break;
10710 int_mode = as_a <scalar_int_mode> (mode);
10711 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10713 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10714 the same number of words as what we've seen so far. Then store
10715 the widest mode in MODE. */
10716 if (subreg_lowpart_p (varop)
10717 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10718 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10719 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10720 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10721 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10723 varop = SUBREG_REG (varop);
10724 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10725 mode = inner_mode;
10726 continue;
10728 break;
10730 case MULT:
10731 /* Some machines use MULT instead of ASHIFT because MULT
10732 is cheaper. But it is still better on those machines to
10733 merge two shifts into one. */
10734 if (CONST_INT_P (XEXP (varop, 1))
10735 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10737 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10738 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10739 XEXP (varop, 0), log2_rtx);
10740 continue;
10742 break;
10744 case UDIV:
10745 /* Similar, for when divides are cheaper. */
10746 if (CONST_INT_P (XEXP (varop, 1))
10747 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10749 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10750 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10751 XEXP (varop, 0), log2_rtx);
10752 continue;
10754 break;
10756 case ASHIFTRT:
10757 /* If we are extracting just the sign bit of an arithmetic
10758 right shift, that shift is not needed. However, the sign
10759 bit of a wider mode may be different from what would be
10760 interpreted as the sign bit in a narrower mode, so, if
10761 the result is narrower, don't discard the shift. */
10762 if (code == LSHIFTRT
10763 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10764 && (GET_MODE_UNIT_BITSIZE (result_mode)
10765 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10767 varop = XEXP (varop, 0);
10768 continue;
10771 /* fall through */
10773 case LSHIFTRT:
10774 case ASHIFT:
10775 case ROTATE:
10776 /* The following rules apply only to scalars. */
10777 if (shift_mode != shift_unit_mode)
10778 break;
10779 int_mode = as_a <scalar_int_mode> (mode);
10780 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10781 int_result_mode = as_a <scalar_int_mode> (result_mode);
10783 /* Here we have two nested shifts. The result is usually the
10784 AND of a new shift with a mask. We compute the result below. */
10785 if (CONST_INT_P (XEXP (varop, 1))
10786 && INTVAL (XEXP (varop, 1)) >= 0
10787 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10788 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10789 && HWI_COMPUTABLE_MODE_P (int_mode))
10791 enum rtx_code first_code = GET_CODE (varop);
10792 unsigned int first_count = INTVAL (XEXP (varop, 1));
10793 unsigned HOST_WIDE_INT mask;
10794 rtx mask_rtx;
10796 /* We have one common special case. We can't do any merging if
10797 the inner code is an ASHIFTRT of a smaller mode. However, if
10798 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10799 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10800 we can convert it to
10801 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10802 This simplifies certain SIGN_EXTEND operations. */
10803 if (code == ASHIFT && first_code == ASHIFTRT
10804 && count == (GET_MODE_PRECISION (int_result_mode)
10805 - GET_MODE_PRECISION (int_varop_mode)))
10807 /* C3 has the low-order C1 bits zero. */
10809 mask = GET_MODE_MASK (int_mode)
10810 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10812 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10813 XEXP (varop, 0), mask);
10814 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10815 int_result_mode, varop, count);
10816 count = first_count;
10817 code = ASHIFTRT;
10818 continue;
10821 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10822 than C1 high-order bits equal to the sign bit, we can convert
10823 this to either an ASHIFT or an ASHIFTRT depending on the
10824 two counts.
10826 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10828 if (code == ASHIFTRT && first_code == ASHIFT
10829 && int_varop_mode == shift_unit_mode
10830 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10831 > first_count))
10833 varop = XEXP (varop, 0);
10834 count -= first_count;
10835 if (count < 0)
10837 count = -count;
10838 code = ASHIFT;
10841 continue;
10844 /* There are some cases we can't do. If CODE is ASHIFTRT,
10845 we can only do this if FIRST_CODE is also ASHIFTRT.
10847 We can't do the case when CODE is ROTATE and FIRST_CODE is
10848 ASHIFTRT.
10850 If the mode of this shift is not the mode of the outer shift,
10851 we can't do this if either shift is a right shift or ROTATE.
10853 Finally, we can't do any of these if the mode is too wide
10854 unless the codes are the same.
10856 Handle the case where the shift codes are the same
10857 first. */
10859 if (code == first_code)
10861 if (int_varop_mode != int_result_mode
10862 && (code == ASHIFTRT || code == LSHIFTRT
10863 || code == ROTATE))
10864 break;
10866 count += first_count;
10867 varop = XEXP (varop, 0);
10868 continue;
10871 if (code == ASHIFTRT
10872 || (code == ROTATE && first_code == ASHIFTRT)
10873 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10874 || (int_varop_mode != int_result_mode
10875 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10876 || first_code == ROTATE
10877 || code == ROTATE)))
10878 break;
10880 /* To compute the mask to apply after the shift, shift the
10881 nonzero bits of the inner shift the same way the
10882 outer shift will. */
10884 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10885 int_result_mode);
10886 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10887 mask_rtx
10888 = simplify_const_binary_operation (code, int_result_mode,
10889 mask_rtx, count_rtx);
10891 /* Give up if we can't compute an outer operation to use. */
10892 if (mask_rtx == 0
10893 || !CONST_INT_P (mask_rtx)
10894 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10895 INTVAL (mask_rtx),
10896 int_result_mode, &complement_p))
10897 break;
10899 /* If the shifts are in the same direction, we add the
10900 counts. Otherwise, we subtract them. */
10901 if ((code == ASHIFTRT || code == LSHIFTRT)
10902 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10903 count += first_count;
10904 else
10905 count -= first_count;
10907 /* If COUNT is positive, the new shift is usually CODE,
10908 except for the two exceptions below, in which case it is
10909 FIRST_CODE. If the count is negative, FIRST_CODE should
10910 always be used */
10911 if (count > 0
10912 && ((first_code == ROTATE && code == ASHIFT)
10913 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10914 code = first_code;
10915 else if (count < 0)
10916 code = first_code, count = -count;
10918 varop = XEXP (varop, 0);
10919 continue;
10922 /* If we have (A << B << C) for any shift, we can convert this to
10923 (A << C << B). This wins if A is a constant. Only try this if
10924 B is not a constant. */
10926 else if (GET_CODE (varop) == code
10927 && CONST_INT_P (XEXP (varop, 0))
10928 && !CONST_INT_P (XEXP (varop, 1)))
10930 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10931 sure the result will be masked. See PR70222. */
10932 if (code == LSHIFTRT
10933 && int_mode != int_result_mode
10934 && !merge_outer_ops (&outer_op, &outer_const, AND,
10935 GET_MODE_MASK (int_result_mode)
10936 >> orig_count, int_result_mode,
10937 &complement_p))
10938 break;
10939 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10940 up outer sign extension (often left and right shift) is
10941 hardly more efficient than the original. See PR70429.
10942 Similarly punt for rotates with different modes.
10943 See PR97386. */
10944 if ((code == ASHIFTRT || code == ROTATE)
10945 && int_mode != int_result_mode)
10946 break;
10948 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10949 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10950 XEXP (varop, 0),
10951 count_rtx);
10952 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10953 count = 0;
10954 continue;
10956 break;
10958 case NOT:
10959 /* The following rules apply only to scalars. */
10960 if (shift_mode != shift_unit_mode)
10961 break;
10963 /* Make this fit the case below. */
10964 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10965 continue;
10967 case IOR:
10968 case AND:
10969 case XOR:
10970 /* The following rules apply only to scalars. */
10971 if (shift_mode != shift_unit_mode)
10972 break;
10973 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10974 int_result_mode = as_a <scalar_int_mode> (result_mode);
10976 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10977 with C the size of VAROP - 1 and the shift is logical if
10978 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10979 we have an (le X 0) operation. If we have an arithmetic shift
10980 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10981 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10983 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10984 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10985 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10986 && (code == LSHIFTRT || code == ASHIFTRT)
10987 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10988 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10990 count = 0;
10991 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10992 const0_rtx);
10994 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10995 varop = gen_rtx_NEG (int_varop_mode, varop);
10997 continue;
11000 /* If we have (shift (logical)), move the logical to the outside
11001 to allow it to possibly combine with another logical and the
11002 shift to combine with another shift. This also canonicalizes to
11003 what a ZERO_EXTRACT looks like. Also, some machines have
11004 (and (shift)) insns. */
11006 if (CONST_INT_P (XEXP (varop, 1))
11007 /* We can't do this if we have (ashiftrt (xor)) and the
11008 constant has its sign bit set in shift_unit_mode with
11009 shift_unit_mode wider than result_mode. */
11010 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11011 && int_result_mode != shift_unit_mode
11012 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11013 shift_unit_mode) < 0)
11014 && (new_rtx = simplify_const_binary_operation
11015 (code, int_result_mode,
11016 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11017 gen_int_shift_amount (int_result_mode, count))) != 0
11018 && CONST_INT_P (new_rtx)
11019 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11020 INTVAL (new_rtx), int_result_mode,
11021 &complement_p))
11023 varop = XEXP (varop, 0);
11024 continue;
11027 /* If we can't do that, try to simplify the shift in each arm of the
11028 logical expression, make a new logical expression, and apply
11029 the inverse distributive law. This also can't be done for
11030 (ashiftrt (xor)) where we've widened the shift and the constant
11031 changes the sign bit. */
11032 if (CONST_INT_P (XEXP (varop, 1))
11033 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11034 && int_result_mode != shift_unit_mode
11035 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11036 shift_unit_mode) < 0))
11038 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11039 XEXP (varop, 0), count);
11040 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11041 XEXP (varop, 1), count);
11043 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11044 lhs, rhs);
11045 varop = apply_distributive_law (varop);
11047 count = 0;
11048 continue;
11050 break;
11052 case EQ:
11053 /* The following rules apply only to scalars. */
11054 if (shift_mode != shift_unit_mode)
11055 break;
11056 int_result_mode = as_a <scalar_int_mode> (result_mode);
11058 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11059 says that the sign bit can be tested, FOO has mode MODE, C is
11060 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11061 that may be nonzero. */
11062 if (code == LSHIFTRT
11063 && XEXP (varop, 1) == const0_rtx
11064 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11065 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11066 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11067 && STORE_FLAG_VALUE == -1
11068 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11069 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11070 int_result_mode, &complement_p))
11072 varop = XEXP (varop, 0);
11073 count = 0;
11074 continue;
11076 break;
11078 case NEG:
11079 /* The following rules apply only to scalars. */
11080 if (shift_mode != shift_unit_mode)
11081 break;
11082 int_result_mode = as_a <scalar_int_mode> (result_mode);
11084 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11085 than the number of bits in the mode is equivalent to A. */
11086 if (code == LSHIFTRT
11087 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11088 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11090 varop = XEXP (varop, 0);
11091 count = 0;
11092 continue;
11095 /* NEG commutes with ASHIFT since it is multiplication. Move the
11096 NEG outside to allow shifts to combine. */
11097 if (code == ASHIFT
11098 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11099 int_result_mode, &complement_p))
11101 varop = XEXP (varop, 0);
11102 continue;
11104 break;
11106 case PLUS:
11107 /* The following rules apply only to scalars. */
11108 if (shift_mode != shift_unit_mode)
11109 break;
11110 int_result_mode = as_a <scalar_int_mode> (result_mode);
11112 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11113 is one less than the number of bits in the mode is
11114 equivalent to (xor A 1). */
11115 if (code == LSHIFTRT
11116 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11117 && XEXP (varop, 1) == constm1_rtx
11118 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11119 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11120 int_result_mode, &complement_p))
11122 count = 0;
11123 varop = XEXP (varop, 0);
11124 continue;
11127 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11128 that might be nonzero in BAR are those being shifted out and those
11129 bits are known zero in FOO, we can replace the PLUS with FOO.
11130 Similarly in the other operand order. This code occurs when
11131 we are computing the size of a variable-size array. */
11133 if ((code == ASHIFTRT || code == LSHIFTRT)
11134 && count < HOST_BITS_PER_WIDE_INT
11135 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11136 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11137 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11139 varop = XEXP (varop, 0);
11140 continue;
11142 else if ((code == ASHIFTRT || code == LSHIFTRT)
11143 && count < HOST_BITS_PER_WIDE_INT
11144 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11145 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11146 >> count) == 0
11147 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11148 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11150 varop = XEXP (varop, 1);
11151 continue;
11154 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11155 if (code == ASHIFT
11156 && CONST_INT_P (XEXP (varop, 1))
11157 && (new_rtx = simplify_const_binary_operation
11158 (ASHIFT, int_result_mode,
11159 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11160 gen_int_shift_amount (int_result_mode, count))) != 0
11161 && CONST_INT_P (new_rtx)
11162 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11163 INTVAL (new_rtx), int_result_mode,
11164 &complement_p))
11166 varop = XEXP (varop, 0);
11167 continue;
11170 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11171 signbit', and attempt to change the PLUS to an XOR and move it to
11172 the outer operation as is done above in the AND/IOR/XOR case
11173 leg for shift(logical). See details in logical handling above
11174 for reasoning in doing so. */
11175 if (code == LSHIFTRT
11176 && CONST_INT_P (XEXP (varop, 1))
11177 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11178 && (new_rtx = simplify_const_binary_operation
11179 (code, int_result_mode,
11180 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11181 gen_int_shift_amount (int_result_mode, count))) != 0
11182 && CONST_INT_P (new_rtx)
11183 && merge_outer_ops (&outer_op, &outer_const, XOR,
11184 INTVAL (new_rtx), int_result_mode,
11185 &complement_p))
11187 varop = XEXP (varop, 0);
11188 continue;
11191 break;
11193 case MINUS:
11194 /* The following rules apply only to scalars. */
11195 if (shift_mode != shift_unit_mode)
11196 break;
11197 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11199 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11200 with C the size of VAROP - 1 and the shift is logical if
11201 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11202 we have a (gt X 0) operation. If the shift is arithmetic with
11203 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11204 we have a (neg (gt X 0)) operation. */
11206 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11207 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11208 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11209 && (code == LSHIFTRT || code == ASHIFTRT)
11210 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11211 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11212 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11214 count = 0;
11215 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11216 const0_rtx);
11218 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11219 varop = gen_rtx_NEG (int_varop_mode, varop);
11221 continue;
11223 break;
11225 case TRUNCATE:
11226 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11227 if the truncate does not affect the value. */
11228 if (code == LSHIFTRT
11229 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11230 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11231 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11232 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11233 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11235 rtx varop_inner = XEXP (varop, 0);
11236 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11237 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11238 new_count);
11239 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11240 XEXP (varop_inner, 0),
11241 new_count_rtx);
11242 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11243 count = 0;
11244 continue;
11246 break;
11248 default:
11249 break;
11252 break;
11255 shift_mode = result_mode;
11256 if (shift_mode != mode)
11258 /* We only change the modes of scalar shifts. */
11259 int_mode = as_a <scalar_int_mode> (mode);
11260 int_result_mode = as_a <scalar_int_mode> (result_mode);
11261 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11262 int_mode, outer_op, outer_const);
11265 /* We have now finished analyzing the shift. The result should be
11266 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11267 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11268 to the result of the shift. OUTER_CONST is the relevant constant,
11269 but we must turn off all bits turned off in the shift. */
11271 if (outer_op == UNKNOWN
11272 && orig_code == code && orig_count == count
11273 && varop == orig_varop
11274 && shift_mode == GET_MODE (varop))
11275 return NULL_RTX;
11277 /* Make a SUBREG if necessary. If we can't make it, fail. */
11278 varop = gen_lowpart (shift_mode, varop);
11279 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11280 return NULL_RTX;
11282 /* If we have an outer operation and we just made a shift, it is
11283 possible that we could have simplified the shift were it not
11284 for the outer operation. So try to do the simplification
11285 recursively. */
11287 if (outer_op != UNKNOWN)
11288 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11289 else
11290 x = NULL_RTX;
11292 if (x == NULL_RTX)
11293 x = simplify_gen_binary (code, shift_mode, varop,
11294 gen_int_shift_amount (shift_mode, count));
11296 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11297 turn off all the bits that the shift would have turned off. */
11298 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11299 /* We only change the modes of scalar shifts. */
11300 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11301 x, GET_MODE_MASK (result_mode) >> orig_count);
11303 /* Do the remainder of the processing in RESULT_MODE. */
11304 x = gen_lowpart_or_truncate (result_mode, x);
11306 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11307 operation. */
11308 if (complement_p)
11309 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11311 if (outer_op != UNKNOWN)
11313 int_result_mode = as_a <scalar_int_mode> (result_mode);
11315 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11316 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11317 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11319 if (outer_op == AND)
11320 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11321 else if (outer_op == SET)
11323 /* This means that we have determined that the result is
11324 equivalent to a constant. This should be rare. */
11325 if (!side_effects_p (x))
11326 x = GEN_INT (outer_const);
11328 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11329 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11330 else
11331 x = simplify_gen_binary (outer_op, int_result_mode, x,
11332 GEN_INT (outer_const));
11335 return x;
11338 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11339 The result of the shift is RESULT_MODE. If we cannot simplify it,
11340 return X or, if it is NULL, synthesize the expression with
11341 simplify_gen_binary. Otherwise, return a simplified value.
11343 The shift is normally computed in the widest mode we find in VAROP, as
11344 long as it isn't a different number of words than RESULT_MODE. Exceptions
11345 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11347 static rtx
11348 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11349 rtx varop, int count)
11351 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11352 if (tem)
11353 return tem;
11355 if (!x)
11356 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11357 gen_int_shift_amount (GET_MODE (varop), count));
11358 if (GET_MODE (x) != result_mode)
11359 x = gen_lowpart (result_mode, x);
11360 return x;
11364 /* A subroutine of recog_for_combine. See there for arguments and
11365 return value. */
11367 static int
11368 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11370 rtx pat = *pnewpat;
11371 rtx pat_without_clobbers;
11372 int insn_code_number;
11373 int num_clobbers_to_add = 0;
11374 int i;
11375 rtx notes = NULL_RTX;
11376 rtx old_notes, old_pat;
11377 int old_icode;
11379 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11380 we use to indicate that something didn't match. If we find such a
11381 thing, force rejection. */
11382 if (GET_CODE (pat) == PARALLEL)
11383 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11384 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11385 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11386 return -1;
11388 old_pat = PATTERN (insn);
11389 old_notes = REG_NOTES (insn);
11390 PATTERN (insn) = pat;
11391 REG_NOTES (insn) = NULL_RTX;
11393 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11394 if (dump_file && (dump_flags & TDF_DETAILS))
11396 if (insn_code_number < 0)
11397 fputs ("Failed to match this instruction:\n", dump_file);
11398 else
11399 fputs ("Successfully matched this instruction:\n", dump_file);
11400 print_rtl_single (dump_file, pat);
11403 /* If it isn't, there is the possibility that we previously had an insn
11404 that clobbered some register as a side effect, but the combined
11405 insn doesn't need to do that. So try once more without the clobbers
11406 unless this represents an ASM insn. */
11408 if (insn_code_number < 0 && ! check_asm_operands (pat)
11409 && GET_CODE (pat) == PARALLEL)
11411 int pos;
11413 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11414 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11416 if (i != pos)
11417 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11418 pos++;
11421 SUBST_INT (XVECLEN (pat, 0), pos);
11423 if (pos == 1)
11424 pat = XVECEXP (pat, 0, 0);
11426 PATTERN (insn) = pat;
11427 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11428 if (dump_file && (dump_flags & TDF_DETAILS))
11430 if (insn_code_number < 0)
11431 fputs ("Failed to match this instruction:\n", dump_file);
11432 else
11433 fputs ("Successfully matched this instruction:\n", dump_file);
11434 print_rtl_single (dump_file, pat);
11438 pat_without_clobbers = pat;
11440 PATTERN (insn) = old_pat;
11441 REG_NOTES (insn) = old_notes;
11443 /* Recognize all noop sets, these will be killed by followup pass. */
11444 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11445 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11447 /* If we had any clobbers to add, make a new pattern than contains
11448 them. Then check to make sure that all of them are dead. */
11449 if (num_clobbers_to_add)
11451 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11452 rtvec_alloc (GET_CODE (pat) == PARALLEL
11453 ? (XVECLEN (pat, 0)
11454 + num_clobbers_to_add)
11455 : num_clobbers_to_add + 1));
11457 if (GET_CODE (pat) == PARALLEL)
11458 for (i = 0; i < XVECLEN (pat, 0); i++)
11459 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11460 else
11461 XVECEXP (newpat, 0, 0) = pat;
11463 add_clobbers (newpat, insn_code_number);
11465 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11466 i < XVECLEN (newpat, 0); i++)
11468 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11469 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11470 return -1;
11471 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11473 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11474 notes = alloc_reg_note (REG_UNUSED,
11475 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11478 pat = newpat;
11481 if (insn_code_number >= 0
11482 && insn_code_number != NOOP_MOVE_INSN_CODE)
11484 old_pat = PATTERN (insn);
11485 old_notes = REG_NOTES (insn);
11486 old_icode = INSN_CODE (insn);
11487 PATTERN (insn) = pat;
11488 REG_NOTES (insn) = notes;
11489 INSN_CODE (insn) = insn_code_number;
11491 /* Allow targets to reject combined insn. */
11492 if (!targetm.legitimate_combined_insn (insn))
11494 if (dump_file && (dump_flags & TDF_DETAILS))
11495 fputs ("Instruction not appropriate for target.",
11496 dump_file);
11498 /* Callers expect recog_for_combine to strip
11499 clobbers from the pattern on failure. */
11500 pat = pat_without_clobbers;
11501 notes = NULL_RTX;
11503 insn_code_number = -1;
11506 PATTERN (insn) = old_pat;
11507 REG_NOTES (insn) = old_notes;
11508 INSN_CODE (insn) = old_icode;
11511 *pnewpat = pat;
11512 *pnotes = notes;
11514 return insn_code_number;
11517 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11518 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11519 Return whether anything was so changed. */
11521 static bool
11522 change_zero_ext (rtx pat)
11524 bool changed = false;
11525 rtx *src = &SET_SRC (pat);
11527 subrtx_ptr_iterator::array_type array;
11528 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11530 rtx x = **iter;
11531 scalar_int_mode mode, inner_mode;
11532 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11533 continue;
11534 int size;
11536 if (GET_CODE (x) == ZERO_EXTRACT
11537 && CONST_INT_P (XEXP (x, 1))
11538 && CONST_INT_P (XEXP (x, 2))
11539 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11540 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11542 size = INTVAL (XEXP (x, 1));
11544 int start = INTVAL (XEXP (x, 2));
11545 if (BITS_BIG_ENDIAN)
11546 start = GET_MODE_PRECISION (inner_mode) - size - start;
11548 if (start != 0)
11549 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11550 gen_int_shift_amount (inner_mode, start));
11551 else
11552 x = XEXP (x, 0);
11554 if (mode != inner_mode)
11556 if (REG_P (x) && HARD_REGISTER_P (x)
11557 && !can_change_dest_mode (x, 0, mode))
11558 continue;
11560 x = gen_lowpart_SUBREG (mode, x);
11563 else if (GET_CODE (x) == ZERO_EXTEND
11564 && GET_CODE (XEXP (x, 0)) == SUBREG
11565 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11566 && !paradoxical_subreg_p (XEXP (x, 0))
11567 && subreg_lowpart_p (XEXP (x, 0)))
11569 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11570 size = GET_MODE_PRECISION (inner_mode);
11571 x = SUBREG_REG (XEXP (x, 0));
11572 if (GET_MODE (x) != mode)
11574 if (REG_P (x) && HARD_REGISTER_P (x)
11575 && !can_change_dest_mode (x, 0, mode))
11576 continue;
11578 x = gen_lowpart_SUBREG (mode, x);
11581 else if (GET_CODE (x) == ZERO_EXTEND
11582 && REG_P (XEXP (x, 0))
11583 && HARD_REGISTER_P (XEXP (x, 0))
11584 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11586 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11587 size = GET_MODE_PRECISION (inner_mode);
11588 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11590 else
11591 continue;
11593 if (!(GET_CODE (x) == LSHIFTRT
11594 && CONST_INT_P (XEXP (x, 1))
11595 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11597 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11598 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11601 SUBST (**iter, x);
11602 changed = true;
11605 if (changed)
11606 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11607 maybe_swap_commutative_operands (**iter);
11609 rtx *dst = &SET_DEST (pat);
11610 scalar_int_mode mode;
11611 if (GET_CODE (*dst) == ZERO_EXTRACT
11612 && REG_P (XEXP (*dst, 0))
11613 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11614 && CONST_INT_P (XEXP (*dst, 1))
11615 && CONST_INT_P (XEXP (*dst, 2)))
11617 rtx reg = XEXP (*dst, 0);
11618 int width = INTVAL (XEXP (*dst, 1));
11619 int offset = INTVAL (XEXP (*dst, 2));
11620 int reg_width = GET_MODE_PRECISION (mode);
11621 if (BITS_BIG_ENDIAN)
11622 offset = reg_width - width - offset;
11624 rtx x, y, z, w;
11625 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11626 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11627 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11628 if (offset)
11629 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11630 else
11631 y = SET_SRC (pat);
11632 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11633 w = gen_rtx_IOR (mode, x, z);
11634 SUBST (SET_DEST (pat), reg);
11635 SUBST (SET_SRC (pat), w);
11637 changed = true;
11640 return changed;
11643 /* Like recog, but we receive the address of a pointer to a new pattern.
11644 We try to match the rtx that the pointer points to.
11645 If that fails, we may try to modify or replace the pattern,
11646 storing the replacement into the same pointer object.
11648 Modifications include deletion or addition of CLOBBERs. If the
11649 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11650 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11651 (and undo if that fails).
11653 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11654 the CLOBBERs are placed.
11656 The value is the final insn code from the pattern ultimately matched,
11657 or -1. */
11659 static int
11660 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11662 rtx pat = *pnewpat;
11663 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11664 if (insn_code_number >= 0 || check_asm_operands (pat))
11665 return insn_code_number;
11667 void *marker = get_undo_marker ();
11668 bool changed = false;
11670 if (GET_CODE (pat) == SET)
11672 /* For an unrecognized single set of a constant, try placing it in
11673 the constant pool, if this function already uses one. */
11674 rtx src = SET_SRC (pat);
11675 if (CONSTANT_P (src)
11676 && !CONST_INT_P (src)
11677 && crtl->uses_const_pool)
11679 machine_mode mode = GET_MODE (src);
11680 if (mode == VOIDmode)
11681 mode = GET_MODE (SET_DEST (pat));
11682 src = force_const_mem (mode, src);
11683 if (src)
11685 SUBST (SET_SRC (pat), src);
11686 changed = true;
11689 else
11690 changed = change_zero_ext (pat);
11692 else if (GET_CODE (pat) == PARALLEL)
11694 int i;
11695 for (i = 0; i < XVECLEN (pat, 0); i++)
11697 rtx set = XVECEXP (pat, 0, i);
11698 if (GET_CODE (set) == SET)
11699 changed |= change_zero_ext (set);
11703 if (changed)
11705 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11707 if (insn_code_number < 0)
11708 undo_to_marker (marker);
11711 return insn_code_number;
11714 /* Like gen_lowpart_general but for use by combine. In combine it
11715 is not possible to create any new pseudoregs. However, it is
11716 safe to create invalid memory addresses, because combine will
11717 try to recognize them and all they will do is make the combine
11718 attempt fail.
11720 If for some reason this cannot do its job, an rtx
11721 (clobber (const_int 0)) is returned.
11722 An insn containing that will not be recognized. */
11724 static rtx
11725 gen_lowpart_for_combine (machine_mode omode, rtx x)
11727 machine_mode imode = GET_MODE (x);
11728 rtx result;
11730 if (omode == imode)
11731 return x;
11733 /* We can only support MODE being wider than a word if X is a
11734 constant integer or has a mode the same size. */
11735 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11736 && ! (CONST_SCALAR_INT_P (x)
11737 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11738 goto fail;
11740 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11741 won't know what to do. So we will strip off the SUBREG here and
11742 process normally. */
11743 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11745 x = SUBREG_REG (x);
11747 /* For use in case we fall down into the address adjustments
11748 further below, we need to adjust the known mode and size of
11749 x; imode and isize, since we just adjusted x. */
11750 imode = GET_MODE (x);
11752 if (imode == omode)
11753 return x;
11756 result = gen_lowpart_common (omode, x);
11758 if (result)
11759 return result;
11761 if (MEM_P (x))
11763 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11764 address. */
11765 if (MEM_VOLATILE_P (x)
11766 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11767 goto fail;
11769 /* If we want to refer to something bigger than the original memref,
11770 generate a paradoxical subreg instead. That will force a reload
11771 of the original memref X. */
11772 if (paradoxical_subreg_p (omode, imode))
11773 return gen_rtx_SUBREG (omode, x, 0);
11775 poly_int64 offset = byte_lowpart_offset (omode, imode);
11776 return adjust_address_nv (x, omode, offset);
11779 /* If X is a comparison operator, rewrite it in a new mode. This
11780 probably won't match, but may allow further simplifications. */
11781 else if (COMPARISON_P (x)
11782 && SCALAR_INT_MODE_P (imode)
11783 && SCALAR_INT_MODE_P (omode))
11784 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11786 /* If we couldn't simplify X any other way, just enclose it in a
11787 SUBREG. Normally, this SUBREG won't match, but some patterns may
11788 include an explicit SUBREG or we may simplify it further in combine. */
11789 else
11791 rtx res;
11793 if (imode == VOIDmode)
11795 imode = int_mode_for_mode (omode).require ();
11796 x = gen_lowpart_common (imode, x);
11797 if (x == NULL)
11798 goto fail;
11800 res = lowpart_subreg (omode, x, imode);
11801 if (res)
11802 return res;
11805 fail:
11806 return gen_rtx_CLOBBER (omode, const0_rtx);
11809 /* Try to simplify a comparison between OP0 and a constant OP1,
11810 where CODE is the comparison code that will be tested, into a
11811 (CODE OP0 const0_rtx) form.
11813 The result is a possibly different comparison code to use.
11814 *POP0 and *POP1 may be updated. */
11816 static enum rtx_code
11817 simplify_compare_const (enum rtx_code code, machine_mode mode,
11818 rtx *pop0, rtx *pop1)
11820 scalar_int_mode int_mode;
11821 rtx op0 = *pop0;
11822 HOST_WIDE_INT const_op = INTVAL (*pop1);
11824 /* Get the constant we are comparing against and turn off all bits
11825 not on in our mode. */
11826 if (mode != VOIDmode)
11827 const_op = trunc_int_for_mode (const_op, mode);
11829 /* If we are comparing against a constant power of two and the value
11830 being compared can only have that single bit nonzero (e.g., it was
11831 `and'ed with that bit), we can replace this with a comparison
11832 with zero. */
11833 if (const_op
11834 && (code == EQ || code == NE || code == GE || code == GEU
11835 || code == LT || code == LTU)
11836 && is_a <scalar_int_mode> (mode, &int_mode)
11837 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11838 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11839 && (nonzero_bits (op0, int_mode)
11840 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11842 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11843 const_op = 0;
11846 /* Similarly, if we are comparing a value known to be either -1 or
11847 0 with -1, change it to the opposite comparison against zero. */
11848 if (const_op == -1
11849 && (code == EQ || code == NE || code == GT || code == LE
11850 || code == GEU || code == LTU)
11851 && is_a <scalar_int_mode> (mode, &int_mode)
11852 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11854 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11855 const_op = 0;
11858 /* Do some canonicalizations based on the comparison code. We prefer
11859 comparisons against zero and then prefer equality comparisons.
11860 If we can reduce the size of a constant, we will do that too. */
11861 switch (code)
11863 case LT:
11864 /* < C is equivalent to <= (C - 1) */
11865 if (const_op > 0)
11867 const_op -= 1;
11868 code = LE;
11869 /* ... fall through to LE case below. */
11870 gcc_fallthrough ();
11872 else
11873 break;
11875 case LE:
11876 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11877 if (const_op < 0)
11879 const_op += 1;
11880 code = LT;
11883 /* If we are doing a <= 0 comparison on a value known to have
11884 a zero sign bit, we can replace this with == 0. */
11885 else if (const_op == 0
11886 && is_a <scalar_int_mode> (mode, &int_mode)
11887 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11888 && (nonzero_bits (op0, int_mode)
11889 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11890 == 0)
11891 code = EQ;
11892 break;
11894 case GE:
11895 /* >= C is equivalent to > (C - 1). */
11896 if (const_op > 0)
11898 const_op -= 1;
11899 code = GT;
11900 /* ... fall through to GT below. */
11901 gcc_fallthrough ();
11903 else
11904 break;
11906 case GT:
11907 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11908 if (const_op < 0)
11910 const_op += 1;
11911 code = GE;
11914 /* If we are doing a > 0 comparison on a value known to have
11915 a zero sign bit, we can replace this with != 0. */
11916 else if (const_op == 0
11917 && is_a <scalar_int_mode> (mode, &int_mode)
11918 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11919 && (nonzero_bits (op0, int_mode)
11920 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11921 == 0)
11922 code = NE;
11923 break;
11925 case LTU:
11926 /* < C is equivalent to <= (C - 1). */
11927 if (const_op > 0)
11929 const_op -= 1;
11930 code = LEU;
11931 /* ... fall through ... */
11932 gcc_fallthrough ();
11934 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11935 else if (is_a <scalar_int_mode> (mode, &int_mode)
11936 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11937 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11938 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11940 const_op = 0;
11941 code = GE;
11942 break;
11944 else
11945 break;
11947 case LEU:
11948 /* unsigned <= 0 is equivalent to == 0 */
11949 if (const_op == 0)
11950 code = EQ;
11951 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11952 else if (is_a <scalar_int_mode> (mode, &int_mode)
11953 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11954 && ((unsigned HOST_WIDE_INT) const_op
11955 == ((HOST_WIDE_INT_1U
11956 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11958 const_op = 0;
11959 code = GE;
11961 break;
11963 case GEU:
11964 /* >= C is equivalent to > (C - 1). */
11965 if (const_op > 1)
11967 const_op -= 1;
11968 code = GTU;
11969 /* ... fall through ... */
11970 gcc_fallthrough ();
11973 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11974 else if (is_a <scalar_int_mode> (mode, &int_mode)
11975 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11976 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11977 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11979 const_op = 0;
11980 code = LT;
11981 break;
11983 else
11984 break;
11986 case GTU:
11987 /* unsigned > 0 is equivalent to != 0 */
11988 if (const_op == 0)
11989 code = NE;
11990 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11991 else if (is_a <scalar_int_mode> (mode, &int_mode)
11992 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11993 && ((unsigned HOST_WIDE_INT) const_op
11994 == (HOST_WIDE_INT_1U
11995 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11997 const_op = 0;
11998 code = LT;
12000 break;
12002 default:
12003 break;
12006 /* Narrow non-symmetric comparison of memory and constant as e.g.
12007 x0...x7 <= 0x3fffffffffffffff into x0 <= 0x3f where x0 is the most
12008 significant byte. Likewise, transform x0...x7 >= 0x4000000000000000 into
12009 x0 >= 0x40. */
12010 if ((code == LEU || code == LTU || code == GEU || code == GTU)
12011 && is_a <scalar_int_mode> (GET_MODE (op0), &int_mode)
12012 && HWI_COMPUTABLE_MODE_P (int_mode)
12013 && MEM_P (op0)
12014 && !MEM_VOLATILE_P (op0)
12015 /* The optimization makes only sense for constants which are big enough
12016 so that we have a chance to chop off something at all. */
12017 && ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode)) > 0xff
12018 /* Ensure that we do not overflow during normalization. */
12019 && (code != GTU
12020 || ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
12021 < HOST_WIDE_INT_M1U)
12022 && trunc_int_for_mode (const_op, int_mode) == const_op)
12024 unsigned HOST_WIDE_INT n
12025 = (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode);
12026 enum rtx_code adjusted_code;
12028 /* Normalize code to either LEU or GEU. */
12029 if (code == LTU)
12031 --n;
12032 adjusted_code = LEU;
12034 else if (code == GTU)
12036 ++n;
12037 adjusted_code = GEU;
12039 else
12040 adjusted_code = code;
12042 scalar_int_mode narrow_mode_iter;
12043 FOR_EACH_MODE_UNTIL (narrow_mode_iter, int_mode)
12045 unsigned nbits = GET_MODE_PRECISION (int_mode)
12046 - GET_MODE_PRECISION (narrow_mode_iter);
12047 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << nbits) - 1;
12048 unsigned HOST_WIDE_INT lower_bits = n & mask;
12049 if ((adjusted_code == LEU && lower_bits == mask)
12050 || (adjusted_code == GEU && lower_bits == 0))
12052 n >>= nbits;
12053 break;
12057 if (narrow_mode_iter < int_mode)
12059 if (dump_file && (dump_flags & TDF_DETAILS))
12061 fprintf (
12062 dump_file, "narrow comparison from mode %s to %s: (MEM %s "
12063 HOST_WIDE_INT_PRINT_HEX ") to (MEM %s "
12064 HOST_WIDE_INT_PRINT_HEX ").\n", GET_MODE_NAME (int_mode),
12065 GET_MODE_NAME (narrow_mode_iter), GET_RTX_NAME (code),
12066 (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode),
12067 GET_RTX_NAME (adjusted_code), n);
12069 poly_int64 offset = (BYTES_BIG_ENDIAN
12071 : (GET_MODE_SIZE (int_mode)
12072 - GET_MODE_SIZE (narrow_mode_iter)));
12073 *pop0 = adjust_address_nv (op0, narrow_mode_iter, offset);
12074 *pop1 = gen_int_mode (n, narrow_mode_iter);
12075 return adjusted_code;
12079 *pop1 = GEN_INT (const_op);
12080 return code;
12083 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12084 comparison code that will be tested.
12086 The result is a possibly different comparison code to use. *POP0 and
12087 *POP1 may be updated.
12089 It is possible that we might detect that a comparison is either always
12090 true or always false. However, we do not perform general constant
12091 folding in combine, so this knowledge isn't useful. Such tautologies
12092 should have been detected earlier. Hence we ignore all such cases. */
12094 static enum rtx_code
12095 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12097 rtx op0 = *pop0;
12098 rtx op1 = *pop1;
12099 rtx tem, tem1;
12100 int i;
12101 scalar_int_mode mode, inner_mode, tmode;
12102 opt_scalar_int_mode tmode_iter;
12104 /* Try a few ways of applying the same transformation to both operands. */
12105 while (1)
12107 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12108 so check specially. */
12109 if (!WORD_REGISTER_OPERATIONS
12110 && code != GTU && code != GEU && code != LTU && code != LEU
12111 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12112 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12113 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12114 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12115 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12116 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12117 && (is_a <scalar_int_mode>
12118 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12119 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12120 && CONST_INT_P (XEXP (op0, 1))
12121 && XEXP (op0, 1) == XEXP (op1, 1)
12122 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12123 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12124 && (INTVAL (XEXP (op0, 1))
12125 == (GET_MODE_PRECISION (mode)
12126 - GET_MODE_PRECISION (inner_mode))))
12128 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12129 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12132 /* If both operands are the same constant shift, see if we can ignore the
12133 shift. We can if the shift is a rotate or if the bits shifted out of
12134 this shift are known to be zero for both inputs and if the type of
12135 comparison is compatible with the shift. */
12136 if (GET_CODE (op0) == GET_CODE (op1)
12137 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12138 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12139 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12140 && (code != GT && code != LT && code != GE && code != LE))
12141 || (GET_CODE (op0) == ASHIFTRT
12142 && (code != GTU && code != LTU
12143 && code != GEU && code != LEU)))
12144 && CONST_INT_P (XEXP (op0, 1))
12145 && INTVAL (XEXP (op0, 1)) >= 0
12146 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12147 && XEXP (op0, 1) == XEXP (op1, 1))
12149 machine_mode mode = GET_MODE (op0);
12150 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12151 int shift_count = INTVAL (XEXP (op0, 1));
12153 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12154 mask &= (mask >> shift_count) << shift_count;
12155 else if (GET_CODE (op0) == ASHIFT)
12156 mask = (mask & (mask << shift_count)) >> shift_count;
12158 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12159 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12160 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12161 else
12162 break;
12165 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12166 SUBREGs are of the same mode, and, in both cases, the AND would
12167 be redundant if the comparison was done in the narrower mode,
12168 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12169 and the operand's possibly nonzero bits are 0xffffff01; in that case
12170 if we only care about QImode, we don't need the AND). This case
12171 occurs if the output mode of an scc insn is not SImode and
12172 STORE_FLAG_VALUE == 1 (e.g., the 386).
12174 Similarly, check for a case where the AND's are ZERO_EXTEND
12175 operations from some narrower mode even though a SUBREG is not
12176 present. */
12178 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12179 && CONST_INT_P (XEXP (op0, 1))
12180 && CONST_INT_P (XEXP (op1, 1)))
12182 rtx inner_op0 = XEXP (op0, 0);
12183 rtx inner_op1 = XEXP (op1, 0);
12184 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12185 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12186 bool changed = false;
12188 if (paradoxical_subreg_p (inner_op0)
12189 && GET_CODE (inner_op1) == SUBREG
12190 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12191 && (GET_MODE (SUBREG_REG (inner_op0))
12192 == GET_MODE (SUBREG_REG (inner_op1)))
12193 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12194 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12195 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12196 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12198 op0 = SUBREG_REG (inner_op0);
12199 op1 = SUBREG_REG (inner_op1);
12201 /* The resulting comparison is always unsigned since we masked
12202 off the original sign bit. */
12203 code = unsigned_condition (code);
12205 changed = true;
12208 else if (c0 == c1)
12209 FOR_EACH_MODE_UNTIL (tmode,
12210 as_a <scalar_int_mode> (GET_MODE (op0)))
12211 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12213 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12214 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12215 code = unsigned_condition (code);
12216 changed = true;
12217 break;
12220 if (! changed)
12221 break;
12224 /* If both operands are NOT, we can strip off the outer operation
12225 and adjust the comparison code for swapped operands; similarly for
12226 NEG, except that this must be an equality comparison. */
12227 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12228 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12229 && (code == EQ || code == NE)))
12230 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12232 else
12233 break;
12236 /* If the first operand is a constant, swap the operands and adjust the
12237 comparison code appropriately, but don't do this if the second operand
12238 is already a constant integer. */
12239 if (swap_commutative_operands_p (op0, op1))
12241 std::swap (op0, op1);
12242 code = swap_condition (code);
12245 /* We now enter a loop during which we will try to simplify the comparison.
12246 For the most part, we only are concerned with comparisons with zero,
12247 but some things may really be comparisons with zero but not start
12248 out looking that way. */
12250 while (CONST_INT_P (op1))
12252 machine_mode raw_mode = GET_MODE (op0);
12253 scalar_int_mode int_mode;
12254 int equality_comparison_p;
12255 int sign_bit_comparison_p;
12256 int unsigned_comparison_p;
12257 HOST_WIDE_INT const_op;
12259 /* We only want to handle integral modes. This catches VOIDmode,
12260 CCmode, and the floating-point modes. An exception is that we
12261 can handle VOIDmode if OP0 is a COMPARE or a comparison
12262 operation. */
12264 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12265 && ! (raw_mode == VOIDmode
12266 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12267 break;
12269 /* Try to simplify the compare to constant, possibly changing the
12270 comparison op, and/or changing op1 to zero. */
12271 code = simplify_compare_const (code, raw_mode, &op0, &op1);
12272 const_op = INTVAL (op1);
12274 /* Compute some predicates to simplify code below. */
12276 equality_comparison_p = (code == EQ || code == NE);
12277 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12278 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12279 || code == GEU);
12281 /* If this is a sign bit comparison and we can do arithmetic in
12282 MODE, say that we will only be needing the sign bit of OP0. */
12283 if (sign_bit_comparison_p
12284 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12285 && HWI_COMPUTABLE_MODE_P (int_mode))
12286 op0 = force_to_mode (op0, int_mode,
12287 HOST_WIDE_INT_1U
12288 << (GET_MODE_PRECISION (int_mode) - 1), false);
12290 if (COMPARISON_P (op0))
12292 /* We can't do anything if OP0 is a condition code value, rather
12293 than an actual data value. */
12294 if (const_op != 0
12295 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12296 break;
12298 /* Get the two operands being compared. */
12299 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12300 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12301 else
12302 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12304 /* Check for the cases where we simply want the result of the
12305 earlier test or the opposite of that result. */
12306 if (code == NE || code == EQ
12307 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12308 && (code == LT || code == GE)))
12310 enum rtx_code new_code;
12311 if (code == LT || code == NE)
12312 new_code = GET_CODE (op0);
12313 else
12314 new_code = reversed_comparison_code (op0, NULL);
12316 if (new_code != UNKNOWN)
12318 code = new_code;
12319 op0 = tem;
12320 op1 = tem1;
12321 continue;
12324 break;
12327 if (raw_mode == VOIDmode)
12328 break;
12329 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12331 /* Now try cases based on the opcode of OP0. If none of the cases
12332 does a "continue", we exit this loop immediately after the
12333 switch. */
12335 unsigned int mode_width = GET_MODE_PRECISION (mode);
12336 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12337 switch (GET_CODE (op0))
12339 case ZERO_EXTRACT:
12340 /* If we are extracting a single bit from a variable position in
12341 a constant that has only a single bit set and are comparing it
12342 with zero, we can convert this into an equality comparison
12343 between the position and the location of the single bit. */
12344 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12345 have already reduced the shift count modulo the word size. */
12346 if (!SHIFT_COUNT_TRUNCATED
12347 && CONST_INT_P (XEXP (op0, 0))
12348 && XEXP (op0, 1) == const1_rtx
12349 && equality_comparison_p && const_op == 0
12350 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12352 if (BITS_BIG_ENDIAN)
12353 i = BITS_PER_WORD - 1 - i;
12355 op0 = XEXP (op0, 2);
12356 op1 = GEN_INT (i);
12357 const_op = i;
12359 /* Result is nonzero iff shift count is equal to I. */
12360 code = reverse_condition (code);
12361 continue;
12364 /* fall through */
12366 case SIGN_EXTRACT:
12367 tem = expand_compound_operation (op0);
12368 if (tem != op0)
12370 op0 = tem;
12371 continue;
12373 break;
12375 case NOT:
12376 /* If testing for equality, we can take the NOT of the constant. */
12377 if (equality_comparison_p
12378 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12380 op0 = XEXP (op0, 0);
12381 op1 = tem;
12382 continue;
12385 /* If just looking at the sign bit, reverse the sense of the
12386 comparison. */
12387 if (sign_bit_comparison_p)
12389 op0 = XEXP (op0, 0);
12390 code = (code == GE ? LT : GE);
12391 continue;
12393 break;
12395 case NEG:
12396 /* If testing for equality, we can take the NEG of the constant. */
12397 if (equality_comparison_p
12398 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12400 op0 = XEXP (op0, 0);
12401 op1 = tem;
12402 continue;
12405 /* The remaining cases only apply to comparisons with zero. */
12406 if (const_op != 0)
12407 break;
12409 /* When X is ABS or is known positive,
12410 (neg X) is < 0 if and only if X != 0. */
12412 if (sign_bit_comparison_p
12413 && (GET_CODE (XEXP (op0, 0)) == ABS
12414 || (mode_width <= HOST_BITS_PER_WIDE_INT
12415 && (nonzero_bits (XEXP (op0, 0), mode)
12416 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12417 == 0)))
12419 op0 = XEXP (op0, 0);
12420 code = (code == LT ? NE : EQ);
12421 continue;
12424 /* If we have NEG of something whose two high-order bits are the
12425 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12426 if (num_sign_bit_copies (op0, mode) >= 2)
12428 op0 = XEXP (op0, 0);
12429 code = swap_condition (code);
12430 continue;
12432 break;
12434 case ROTATE:
12435 /* If we are testing equality and our count is a constant, we
12436 can perform the inverse operation on our RHS. */
12437 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12438 && (tem = simplify_binary_operation (ROTATERT, mode,
12439 op1, XEXP (op0, 1))) != 0)
12441 op0 = XEXP (op0, 0);
12442 op1 = tem;
12443 continue;
12446 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12447 a particular bit. Convert it to an AND of a constant of that
12448 bit. This will be converted into a ZERO_EXTRACT. */
12449 if (const_op == 0 && sign_bit_comparison_p
12450 && CONST_INT_P (XEXP (op0, 1))
12451 && mode_width <= HOST_BITS_PER_WIDE_INT
12452 && UINTVAL (XEXP (op0, 1)) < mode_width)
12454 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12455 (HOST_WIDE_INT_1U
12456 << (mode_width - 1
12457 - INTVAL (XEXP (op0, 1)))));
12458 code = (code == LT ? NE : EQ);
12459 continue;
12462 /* Fall through. */
12464 case ABS:
12465 /* ABS is ignorable inside an equality comparison with zero. */
12466 if (const_op == 0 && equality_comparison_p)
12468 op0 = XEXP (op0, 0);
12469 continue;
12471 break;
12473 case SIGN_EXTEND:
12474 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12475 (compare FOO CONST) if CONST fits in FOO's mode and we
12476 are either testing inequality or have an unsigned
12477 comparison with ZERO_EXTEND or a signed comparison with
12478 SIGN_EXTEND. But don't do it if we don't have a compare
12479 insn of the given mode, since we'd have to revert it
12480 later on, and then we wouldn't know whether to sign- or
12481 zero-extend. */
12482 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12483 && ! unsigned_comparison_p
12484 && HWI_COMPUTABLE_MODE_P (mode)
12485 && trunc_int_for_mode (const_op, mode) == const_op
12486 && have_insn_for (COMPARE, mode))
12488 op0 = XEXP (op0, 0);
12489 continue;
12491 break;
12493 case SUBREG:
12494 /* Check for the case where we are comparing A - C1 with C2, that is
12496 (subreg:MODE (plus (A) (-C1))) op (C2)
12498 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12499 comparison in the wider mode. One of the following two conditions
12500 must be true in order for this to be valid:
12502 1. The mode extension results in the same bit pattern being added
12503 on both sides and the comparison is equality or unsigned. As
12504 C2 has been truncated to fit in MODE, the pattern can only be
12505 all 0s or all 1s.
12507 2. The mode extension results in the sign bit being copied on
12508 each side.
12510 The difficulty here is that we have predicates for A but not for
12511 (A - C1) so we need to check that C1 is within proper bounds so
12512 as to perturbate A as little as possible. */
12514 if (mode_width <= HOST_BITS_PER_WIDE_INT
12515 && subreg_lowpart_p (op0)
12516 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12517 &inner_mode)
12518 && GET_MODE_PRECISION (inner_mode) > mode_width
12519 && GET_CODE (SUBREG_REG (op0)) == PLUS
12520 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12522 rtx a = XEXP (SUBREG_REG (op0), 0);
12523 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12525 if ((c1 > 0
12526 && (unsigned HOST_WIDE_INT) c1
12527 < HOST_WIDE_INT_1U << (mode_width - 1)
12528 && (equality_comparison_p || unsigned_comparison_p)
12529 /* (A - C1) zero-extends if it is positive and sign-extends
12530 if it is negative, C2 both zero- and sign-extends. */
12531 && (((nonzero_bits (a, inner_mode)
12532 & ~GET_MODE_MASK (mode)) == 0
12533 && const_op >= 0)
12534 /* (A - C1) sign-extends if it is positive and 1-extends
12535 if it is negative, C2 both sign- and 1-extends. */
12536 || (num_sign_bit_copies (a, inner_mode)
12537 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12538 - mode_width)
12539 && const_op < 0)))
12540 || ((unsigned HOST_WIDE_INT) c1
12541 < HOST_WIDE_INT_1U << (mode_width - 2)
12542 /* (A - C1) always sign-extends, like C2. */
12543 && num_sign_bit_copies (a, inner_mode)
12544 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12545 - (mode_width - 1))))
12547 op0 = SUBREG_REG (op0);
12548 continue;
12552 /* If the inner mode is narrower and we are extracting the low part,
12553 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12554 if (paradoxical_subreg_p (op0))
12556 else if (subreg_lowpart_p (op0)
12557 && GET_MODE_CLASS (mode) == MODE_INT
12558 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12559 && (code == NE || code == EQ)
12560 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12561 && !paradoxical_subreg_p (op0)
12562 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12563 & ~GET_MODE_MASK (mode)) == 0)
12565 /* Remove outer subregs that don't do anything. */
12566 tem = gen_lowpart (inner_mode, op1);
12568 if ((nonzero_bits (tem, inner_mode)
12569 & ~GET_MODE_MASK (mode)) == 0)
12571 op0 = SUBREG_REG (op0);
12572 op1 = tem;
12573 continue;
12575 break;
12577 else
12578 break;
12580 /* FALLTHROUGH */
12582 case ZERO_EXTEND:
12583 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12584 && (unsigned_comparison_p || equality_comparison_p)
12585 && HWI_COMPUTABLE_MODE_P (mode)
12586 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12587 && const_op >= 0
12588 && have_insn_for (COMPARE, mode))
12590 op0 = XEXP (op0, 0);
12591 continue;
12593 break;
12595 case PLUS:
12596 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12597 this for equality comparisons due to pathological cases involving
12598 overflows. */
12599 if (equality_comparison_p
12600 && (tem = simplify_binary_operation (MINUS, mode,
12601 op1, XEXP (op0, 1))) != 0)
12603 op0 = XEXP (op0, 0);
12604 op1 = tem;
12605 continue;
12608 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12609 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12610 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12612 op0 = XEXP (XEXP (op0, 0), 0);
12613 code = (code == LT ? EQ : NE);
12614 continue;
12616 break;
12618 case MINUS:
12619 /* We used to optimize signed comparisons against zero, but that
12620 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12621 arrive here as equality comparisons, or (GEU, LTU) are
12622 optimized away. No need to special-case them. */
12624 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12625 (eq B (minus A C)), whichever simplifies. We can only do
12626 this for equality comparisons due to pathological cases involving
12627 overflows. */
12628 if (equality_comparison_p
12629 && (tem = simplify_binary_operation (PLUS, mode,
12630 XEXP (op0, 1), op1)) != 0)
12632 op0 = XEXP (op0, 0);
12633 op1 = tem;
12634 continue;
12637 if (equality_comparison_p
12638 && (tem = simplify_binary_operation (MINUS, mode,
12639 XEXP (op0, 0), op1)) != 0)
12641 op0 = XEXP (op0, 1);
12642 op1 = tem;
12643 continue;
12646 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12647 of bits in X minus 1, is one iff X > 0. */
12648 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12649 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12650 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12651 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12653 op0 = XEXP (op0, 1);
12654 code = (code == GE ? LE : GT);
12655 continue;
12657 break;
12659 case XOR:
12660 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12661 if C is zero or B is a constant. */
12662 if (equality_comparison_p
12663 && (tem = simplify_binary_operation (XOR, mode,
12664 XEXP (op0, 1), op1)) != 0)
12666 op0 = XEXP (op0, 0);
12667 op1 = tem;
12668 continue;
12670 break;
12673 case IOR:
12674 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12675 iff X <= 0. */
12676 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12677 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12678 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12680 op0 = XEXP (op0, 1);
12681 code = (code == GE ? GT : LE);
12682 continue;
12684 break;
12686 case AND:
12687 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12688 will be converted to a ZERO_EXTRACT later. */
12689 if (const_op == 0 && equality_comparison_p
12690 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12691 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12693 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12694 XEXP (XEXP (op0, 0), 1));
12695 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12696 continue;
12699 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12700 zero and X is a comparison and C1 and C2 describe only bits set
12701 in STORE_FLAG_VALUE, we can compare with X. */
12702 if (const_op == 0 && equality_comparison_p
12703 && mode_width <= HOST_BITS_PER_WIDE_INT
12704 && CONST_INT_P (XEXP (op0, 1))
12705 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12706 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12707 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12708 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12710 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12711 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12712 if ((~STORE_FLAG_VALUE & mask) == 0
12713 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12714 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12715 && COMPARISON_P (tem))))
12717 op0 = XEXP (XEXP (op0, 0), 0);
12718 continue;
12722 /* If we are doing an equality comparison of an AND of a bit equal
12723 to the sign bit, replace this with a LT or GE comparison of
12724 the underlying value. */
12725 if (equality_comparison_p
12726 && const_op == 0
12727 && CONST_INT_P (XEXP (op0, 1))
12728 && mode_width <= HOST_BITS_PER_WIDE_INT
12729 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12730 == HOST_WIDE_INT_1U << (mode_width - 1)))
12732 op0 = XEXP (op0, 0);
12733 code = (code == EQ ? GE : LT);
12734 continue;
12737 /* If this AND operation is really a ZERO_EXTEND from a narrower
12738 mode, the constant fits within that mode, and this is either an
12739 equality or unsigned comparison, try to do this comparison in
12740 the narrower mode.
12742 Note that in:
12744 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12745 -> (ne:DI (reg:SI 4) (const_int 0))
12747 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12748 known to hold a value of the required mode the
12749 transformation is invalid. */
12750 if ((equality_comparison_p || unsigned_comparison_p)
12751 && CONST_INT_P (XEXP (op0, 1))
12752 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12753 & GET_MODE_MASK (mode))
12754 + 1)) >= 0
12755 && const_op >> i == 0
12756 && int_mode_for_size (i, 1).exists (&tmode))
12758 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12759 continue;
12762 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12763 fits in both M1 and M2 and the SUBREG is either paradoxical
12764 or represents the low part, permute the SUBREG and the AND
12765 and try again. */
12766 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12767 && CONST_INT_P (XEXP (op0, 1)))
12769 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12770 /* Require an integral mode, to avoid creating something like
12771 (AND:SF ...). */
12772 if ((is_a <scalar_int_mode>
12773 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12774 /* It is unsafe to commute the AND into the SUBREG if the
12775 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12776 not defined. As originally written the upper bits
12777 have a defined value due to the AND operation.
12778 However, if we commute the AND inside the SUBREG then
12779 they no longer have defined values and the meaning of
12780 the code has been changed.
12781 Also C1 should not change value in the smaller mode,
12782 see PR67028 (a positive C1 can become negative in the
12783 smaller mode, so that the AND does no longer mask the
12784 upper bits). */
12785 && ((WORD_REGISTER_OPERATIONS
12786 && mode_width > GET_MODE_PRECISION (tmode)
12787 && mode_width <= BITS_PER_WORD
12788 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12789 || (mode_width <= GET_MODE_PRECISION (tmode)
12790 && subreg_lowpart_p (XEXP (op0, 0))))
12791 && mode_width <= HOST_BITS_PER_WIDE_INT
12792 && HWI_COMPUTABLE_MODE_P (tmode)
12793 && (c1 & ~mask) == 0
12794 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12795 && c1 != mask
12796 && c1 != GET_MODE_MASK (tmode))
12798 op0 = simplify_gen_binary (AND, tmode,
12799 SUBREG_REG (XEXP (op0, 0)),
12800 gen_int_mode (c1, tmode));
12801 op0 = gen_lowpart (mode, op0);
12802 continue;
12806 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12807 if (const_op == 0 && equality_comparison_p
12808 && XEXP (op0, 1) == const1_rtx
12809 && GET_CODE (XEXP (op0, 0)) == NOT)
12811 op0 = simplify_and_const_int (NULL_RTX, mode,
12812 XEXP (XEXP (op0, 0), 0), 1);
12813 code = (code == NE ? EQ : NE);
12814 continue;
12817 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12818 (eq (and (lshiftrt X) 1) 0).
12819 Also handle the case where (not X) is expressed using xor. */
12820 if (const_op == 0 && equality_comparison_p
12821 && XEXP (op0, 1) == const1_rtx
12822 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12824 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12825 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12827 if (GET_CODE (shift_op) == NOT
12828 || (GET_CODE (shift_op) == XOR
12829 && CONST_INT_P (XEXP (shift_op, 1))
12830 && CONST_INT_P (shift_count)
12831 && HWI_COMPUTABLE_MODE_P (mode)
12832 && (UINTVAL (XEXP (shift_op, 1))
12833 == HOST_WIDE_INT_1U
12834 << INTVAL (shift_count))))
12837 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12838 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12839 code = (code == NE ? EQ : NE);
12840 continue;
12843 break;
12845 case ASHIFT:
12846 /* If we have (compare (ashift FOO N) (const_int C)) and
12847 the high order N bits of FOO (N+1 if an inequality comparison)
12848 are known to be zero, we can do this by comparing FOO with C
12849 shifted right N bits so long as the low-order N bits of C are
12850 zero. */
12851 if (CONST_INT_P (XEXP (op0, 1))
12852 && INTVAL (XEXP (op0, 1)) >= 0
12853 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12854 < HOST_BITS_PER_WIDE_INT)
12855 && (((unsigned HOST_WIDE_INT) const_op
12856 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12857 - 1)) == 0)
12858 && mode_width <= HOST_BITS_PER_WIDE_INT
12859 && (nonzero_bits (XEXP (op0, 0), mode)
12860 & ~(mask >> (INTVAL (XEXP (op0, 1))
12861 + ! equality_comparison_p))) == 0)
12863 /* We must perform a logical shift, not an arithmetic one,
12864 as we want the top N bits of C to be zero. */
12865 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12867 temp >>= INTVAL (XEXP (op0, 1));
12868 op1 = gen_int_mode (temp, mode);
12869 op0 = XEXP (op0, 0);
12870 continue;
12873 /* If we are doing a sign bit comparison, it means we are testing
12874 a particular bit. Convert it to the appropriate AND. */
12875 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12876 && mode_width <= HOST_BITS_PER_WIDE_INT)
12878 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12879 (HOST_WIDE_INT_1U
12880 << (mode_width - 1
12881 - INTVAL (XEXP (op0, 1)))));
12882 code = (code == LT ? NE : EQ);
12883 continue;
12886 /* If this an equality comparison with zero and we are shifting
12887 the low bit to the sign bit, we can convert this to an AND of the
12888 low-order bit. */
12889 if (const_op == 0 && equality_comparison_p
12890 && CONST_INT_P (XEXP (op0, 1))
12891 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12893 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12894 continue;
12896 break;
12898 case ASHIFTRT:
12899 /* If this is an equality comparison with zero, we can do this
12900 as a logical shift, which might be much simpler. */
12901 if (equality_comparison_p && const_op == 0
12902 && CONST_INT_P (XEXP (op0, 1)))
12904 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12905 XEXP (op0, 0),
12906 INTVAL (XEXP (op0, 1)));
12907 continue;
12910 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12911 do the comparison in a narrower mode. */
12912 if (! unsigned_comparison_p
12913 && CONST_INT_P (XEXP (op0, 1))
12914 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12915 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12916 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12917 .exists (&tmode))
12918 && (((unsigned HOST_WIDE_INT) const_op
12919 + (GET_MODE_MASK (tmode) >> 1) + 1)
12920 <= GET_MODE_MASK (tmode)))
12922 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12923 continue;
12926 /* Likewise if OP0 is a PLUS of a sign extension with a
12927 constant, which is usually represented with the PLUS
12928 between the shifts. */
12929 if (! unsigned_comparison_p
12930 && CONST_INT_P (XEXP (op0, 1))
12931 && GET_CODE (XEXP (op0, 0)) == PLUS
12932 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12933 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12934 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12935 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12936 .exists (&tmode))
12937 && (((unsigned HOST_WIDE_INT) const_op
12938 + (GET_MODE_MASK (tmode) >> 1) + 1)
12939 <= GET_MODE_MASK (tmode)))
12941 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12942 rtx add_const = XEXP (XEXP (op0, 0), 1);
12943 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12944 add_const, XEXP (op0, 1));
12946 op0 = simplify_gen_binary (PLUS, tmode,
12947 gen_lowpart (tmode, inner),
12948 new_const);
12949 continue;
12952 /* FALLTHROUGH */
12953 case LSHIFTRT:
12954 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12955 the low order N bits of FOO are known to be zero, we can do this
12956 by comparing FOO with C shifted left N bits so long as no
12957 overflow occurs. Even if the low order N bits of FOO aren't known
12958 to be zero, if the comparison is >= or < we can use the same
12959 optimization and for > or <= by setting all the low
12960 order N bits in the comparison constant. */
12961 if (CONST_INT_P (XEXP (op0, 1))
12962 && INTVAL (XEXP (op0, 1)) > 0
12963 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12964 && mode_width <= HOST_BITS_PER_WIDE_INT
12965 && (((unsigned HOST_WIDE_INT) const_op
12966 + (GET_CODE (op0) != LSHIFTRT
12967 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12968 + 1)
12969 : 0))
12970 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12972 unsigned HOST_WIDE_INT low_bits
12973 = (nonzero_bits (XEXP (op0, 0), mode)
12974 & ((HOST_WIDE_INT_1U
12975 << INTVAL (XEXP (op0, 1))) - 1));
12976 if (low_bits == 0 || !equality_comparison_p)
12978 /* If the shift was logical, then we must make the condition
12979 unsigned. */
12980 if (GET_CODE (op0) == LSHIFTRT)
12981 code = unsigned_condition (code);
12983 const_op = (unsigned HOST_WIDE_INT) const_op
12984 << INTVAL (XEXP (op0, 1));
12985 if (low_bits != 0
12986 && (code == GT || code == GTU
12987 || code == LE || code == LEU))
12988 const_op
12989 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12990 op1 = GEN_INT (const_op);
12991 op0 = XEXP (op0, 0);
12992 continue;
12996 /* If we are using this shift to extract just the sign bit, we
12997 can replace this with an LT or GE comparison. */
12998 if (const_op == 0
12999 && (equality_comparison_p || sign_bit_comparison_p)
13000 && CONST_INT_P (XEXP (op0, 1))
13001 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
13003 op0 = XEXP (op0, 0);
13004 code = (code == NE || code == GT ? LT : GE);
13005 continue;
13007 break;
13009 default:
13010 break;
13013 break;
13016 /* Now make any compound operations involved in this comparison. Then,
13017 check for an outmost SUBREG on OP0 that is not doing anything or is
13018 paradoxical. The latter transformation must only be performed when
13019 it is known that the "extra" bits will be the same in op0 and op1 or
13020 that they don't matter. There are three cases to consider:
13022 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13023 care bits and we can assume they have any convenient value. So
13024 making the transformation is safe.
13026 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13027 In this case the upper bits of op0 are undefined. We should not make
13028 the simplification in that case as we do not know the contents of
13029 those bits.
13031 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13032 In that case we know those bits are zeros or ones. We must also be
13033 sure that they are the same as the upper bits of op1.
13035 We can never remove a SUBREG for a non-equality comparison because
13036 the sign bit is in a different place in the underlying object. */
13038 rtx_code op0_mco_code = SET;
13039 if (op1 == const0_rtx)
13040 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13042 op0 = make_compound_operation (op0, op0_mco_code);
13043 op1 = make_compound_operation (op1, SET);
13045 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13046 && is_int_mode (GET_MODE (op0), &mode)
13047 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
13048 && (code == NE || code == EQ))
13050 if (paradoxical_subreg_p (op0))
13052 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13053 implemented. */
13054 if (REG_P (SUBREG_REG (op0)))
13056 op0 = SUBREG_REG (op0);
13057 op1 = gen_lowpart (inner_mode, op1);
13060 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13061 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13062 & ~GET_MODE_MASK (mode)) == 0)
13064 tem = gen_lowpart (inner_mode, op1);
13066 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13067 op0 = SUBREG_REG (op0), op1 = tem;
13071 /* We now do the opposite procedure: Some machines don't have compare
13072 insns in all modes. If OP0's mode is an integer mode smaller than a
13073 word and we can't do a compare in that mode, see if there is a larger
13074 mode for which we can do the compare. There are a number of cases in
13075 which we can use the wider mode. */
13077 if (is_int_mode (GET_MODE (op0), &mode)
13078 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13079 && ! have_insn_for (COMPARE, mode))
13080 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13082 tmode = tmode_iter.require ();
13083 if (!HWI_COMPUTABLE_MODE_P (tmode))
13084 break;
13085 if (have_insn_for (COMPARE, tmode))
13087 int zero_extended;
13089 /* If this is a test for negative, we can make an explicit
13090 test of the sign bit. Test this first so we can use
13091 a paradoxical subreg to extend OP0. */
13093 if (op1 == const0_rtx && (code == LT || code == GE)
13094 && HWI_COMPUTABLE_MODE_P (mode))
13096 unsigned HOST_WIDE_INT sign
13097 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13098 op0 = simplify_gen_binary (AND, tmode,
13099 gen_lowpart (tmode, op0),
13100 gen_int_mode (sign, tmode));
13101 code = (code == LT) ? NE : EQ;
13102 break;
13105 /* If the only nonzero bits in OP0 and OP1 are those in the
13106 narrower mode and this is an equality or unsigned comparison,
13107 we can use the wider mode. Similarly for sign-extended
13108 values, in which case it is true for all comparisons. */
13109 zero_extended = ((code == EQ || code == NE
13110 || code == GEU || code == GTU
13111 || code == LEU || code == LTU)
13112 && (nonzero_bits (op0, tmode)
13113 & ~GET_MODE_MASK (mode)) == 0
13114 && ((CONST_INT_P (op1)
13115 || (nonzero_bits (op1, tmode)
13116 & ~GET_MODE_MASK (mode)) == 0)));
13118 if (zero_extended
13119 || ((num_sign_bit_copies (op0, tmode)
13120 > (unsigned int) (GET_MODE_PRECISION (tmode)
13121 - GET_MODE_PRECISION (mode)))
13122 && (num_sign_bit_copies (op1, tmode)
13123 > (unsigned int) (GET_MODE_PRECISION (tmode)
13124 - GET_MODE_PRECISION (mode)))))
13126 /* If OP0 is an AND and we don't have an AND in MODE either,
13127 make a new AND in the proper mode. */
13128 if (GET_CODE (op0) == AND
13129 && !have_insn_for (AND, mode))
13130 op0 = simplify_gen_binary (AND, tmode,
13131 gen_lowpart (tmode,
13132 XEXP (op0, 0)),
13133 gen_lowpart (tmode,
13134 XEXP (op0, 1)));
13135 else
13137 if (zero_extended)
13139 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13140 op0, mode);
13141 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13142 op1, mode);
13144 else
13146 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13147 op0, mode);
13148 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13149 op1, mode);
13151 break;
13157 /* We may have changed the comparison operands. Re-canonicalize. */
13158 if (swap_commutative_operands_p (op0, op1))
13160 std::swap (op0, op1);
13161 code = swap_condition (code);
13164 /* If this machine only supports a subset of valid comparisons, see if we
13165 can convert an unsupported one into a supported one. */
13166 target_canonicalize_comparison (&code, &op0, &op1, 0);
13168 *pop0 = op0;
13169 *pop1 = op1;
13171 return code;
13174 /* Utility function for record_value_for_reg. Count number of
13175 rtxs in X. */
13176 static int
13177 count_rtxs (rtx x)
13179 enum rtx_code code = GET_CODE (x);
13180 const char *fmt;
13181 int i, j, ret = 1;
13183 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13184 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13186 rtx x0 = XEXP (x, 0);
13187 rtx x1 = XEXP (x, 1);
13189 if (x0 == x1)
13190 return 1 + 2 * count_rtxs (x0);
13192 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13193 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13194 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13195 return 2 + 2 * count_rtxs (x0)
13196 + count_rtxs (x == XEXP (x1, 0)
13197 ? XEXP (x1, 1) : XEXP (x1, 0));
13199 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13200 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13201 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13202 return 2 + 2 * count_rtxs (x1)
13203 + count_rtxs (x == XEXP (x0, 0)
13204 ? XEXP (x0, 1) : XEXP (x0, 0));
13207 fmt = GET_RTX_FORMAT (code);
13208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13209 if (fmt[i] == 'e')
13210 ret += count_rtxs (XEXP (x, i));
13211 else if (fmt[i] == 'E')
13212 for (j = 0; j < XVECLEN (x, i); j++)
13213 ret += count_rtxs (XVECEXP (x, i, j));
13215 return ret;
13218 /* Utility function for following routine. Called when X is part of a value
13219 being stored into last_set_value. Sets last_set_table_tick
13220 for each register mentioned. Similar to mention_regs in cse.cc */
13222 static void
13223 update_table_tick (rtx x)
13225 enum rtx_code code = GET_CODE (x);
13226 const char *fmt = GET_RTX_FORMAT (code);
13227 int i, j;
13229 if (code == REG)
13231 unsigned int regno = REGNO (x);
13232 unsigned int endregno = END_REGNO (x);
13233 unsigned int r;
13235 for (r = regno; r < endregno; r++)
13237 reg_stat_type *rsp = &reg_stat[r];
13238 rsp->last_set_table_tick = label_tick;
13241 return;
13244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13245 if (fmt[i] == 'e')
13247 /* Check for identical subexpressions. If x contains
13248 identical subexpression we only have to traverse one of
13249 them. */
13250 if (i == 0 && ARITHMETIC_P (x))
13252 /* Note that at this point x1 has already been
13253 processed. */
13254 rtx x0 = XEXP (x, 0);
13255 rtx x1 = XEXP (x, 1);
13257 /* If x0 and x1 are identical then there is no need to
13258 process x0. */
13259 if (x0 == x1)
13260 break;
13262 /* If x0 is identical to a subexpression of x1 then while
13263 processing x1, x0 has already been processed. Thus we
13264 are done with x. */
13265 if (ARITHMETIC_P (x1)
13266 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13267 break;
13269 /* If x1 is identical to a subexpression of x0 then we
13270 still have to process the rest of x0. */
13271 if (ARITHMETIC_P (x0)
13272 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13274 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13275 break;
13279 update_table_tick (XEXP (x, i));
13281 else if (fmt[i] == 'E')
13282 for (j = 0; j < XVECLEN (x, i); j++)
13283 update_table_tick (XVECEXP (x, i, j));
13286 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13287 are saying that the register is clobbered and we no longer know its
13288 value. If INSN is zero, don't update reg_stat[].last_set; this is
13289 only permitted with VALUE also zero and is used to invalidate the
13290 register. */
13292 static void
13293 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13295 unsigned int regno = REGNO (reg);
13296 unsigned int endregno = END_REGNO (reg);
13297 unsigned int i;
13298 reg_stat_type *rsp;
13300 /* If VALUE contains REG and we have a previous value for REG, substitute
13301 the previous value. */
13302 if (value && insn && reg_overlap_mentioned_p (reg, value))
13304 rtx tem;
13306 /* Set things up so get_last_value is allowed to see anything set up to
13307 our insn. */
13308 subst_low_luid = DF_INSN_LUID (insn);
13309 tem = get_last_value (reg);
13311 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13312 it isn't going to be useful and will take a lot of time to process,
13313 so just use the CLOBBER. */
13315 if (tem)
13317 if (ARITHMETIC_P (tem)
13318 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13319 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13320 tem = XEXP (tem, 0);
13321 else if (count_occurrences (value, reg, 1) >= 2)
13323 /* If there are two or more occurrences of REG in VALUE,
13324 prevent the value from growing too much. */
13325 if (count_rtxs (tem) > param_max_last_value_rtl)
13326 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13329 value = replace_rtx (copy_rtx (value), reg, tem);
13333 /* For each register modified, show we don't know its value, that
13334 we don't know about its bitwise content, that its value has been
13335 updated, and that we don't know the location of the death of the
13336 register. */
13337 for (i = regno; i < endregno; i++)
13339 rsp = &reg_stat[i];
13341 if (insn)
13342 rsp->last_set = insn;
13344 rsp->last_set_value = 0;
13345 rsp->last_set_mode = VOIDmode;
13346 rsp->last_set_nonzero_bits = 0;
13347 rsp->last_set_sign_bit_copies = 0;
13348 rsp->last_death = 0;
13349 rsp->truncated_to_mode = VOIDmode;
13352 /* Mark registers that are being referenced in this value. */
13353 if (value)
13354 update_table_tick (value);
13356 /* Now update the status of each register being set.
13357 If someone is using this register in this block, set this register
13358 to invalid since we will get confused between the two lives in this
13359 basic block. This makes using this register always invalid. In cse, we
13360 scan the table to invalidate all entries using this register, but this
13361 is too much work for us. */
13363 for (i = regno; i < endregno; i++)
13365 rsp = &reg_stat[i];
13366 rsp->last_set_label = label_tick;
13367 if (!insn
13368 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13369 rsp->last_set_invalid = true;
13370 else
13371 rsp->last_set_invalid = false;
13374 /* The value being assigned might refer to X (like in "x++;"). In that
13375 case, we must replace it with (clobber (const_int 0)) to prevent
13376 infinite loops. */
13377 rsp = &reg_stat[regno];
13378 if (value && !get_last_value_validate (&value, insn, label_tick, false))
13380 value = copy_rtx (value);
13381 if (!get_last_value_validate (&value, insn, label_tick, true))
13382 value = 0;
13385 /* For the main register being modified, update the value, the mode, the
13386 nonzero bits, and the number of sign bit copies. */
13388 rsp->last_set_value = value;
13390 if (value)
13392 machine_mode mode = GET_MODE (reg);
13393 subst_low_luid = DF_INSN_LUID (insn);
13394 rsp->last_set_mode = mode;
13395 if (GET_MODE_CLASS (mode) == MODE_INT
13396 && HWI_COMPUTABLE_MODE_P (mode))
13397 mode = nonzero_bits_mode;
13398 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13399 rsp->last_set_sign_bit_copies
13400 = num_sign_bit_copies (value, GET_MODE (reg));
13404 /* Called via note_stores from record_dead_and_set_regs to handle one
13405 SET or CLOBBER in an insn. DATA is the instruction in which the
13406 set is occurring. */
13408 static void
13409 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13411 rtx_insn *record_dead_insn = (rtx_insn *) data;
13413 if (GET_CODE (dest) == SUBREG)
13414 dest = SUBREG_REG (dest);
13416 if (!record_dead_insn)
13418 if (REG_P (dest))
13419 record_value_for_reg (dest, NULL, NULL_RTX);
13420 return;
13423 if (REG_P (dest))
13425 /* If we are setting the whole register, we know its value. */
13426 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13427 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13428 /* We can handle a SUBREG if it's the low part, but we must be
13429 careful with paradoxical SUBREGs on RISC architectures because
13430 we cannot strip e.g. an extension around a load and record the
13431 naked load since the RTL middle-end considers that the upper bits
13432 are defined according to LOAD_EXTEND_OP. */
13433 else if (GET_CODE (setter) == SET
13434 && GET_CODE (SET_DEST (setter)) == SUBREG
13435 && SUBREG_REG (SET_DEST (setter)) == dest
13436 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13437 BITS_PER_WORD)
13438 && subreg_lowpart_p (SET_DEST (setter)))
13440 if (WORD_REGISTER_OPERATIONS
13441 && word_register_operation_p (SET_SRC (setter))
13442 && paradoxical_subreg_p (SET_DEST (setter)))
13443 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13444 else if (!partial_subreg_p (SET_DEST (setter)))
13445 record_value_for_reg (dest, record_dead_insn,
13446 gen_lowpart (GET_MODE (dest),
13447 SET_SRC (setter)));
13448 else
13450 record_value_for_reg (dest, record_dead_insn,
13451 gen_lowpart (GET_MODE (dest),
13452 SET_SRC (setter)));
13454 unsigned HOST_WIDE_INT mask;
13455 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13456 mask = GET_MODE_MASK (GET_MODE (SET_DEST (setter)));
13457 rsp->last_set_nonzero_bits |= ~mask;
13458 rsp->last_set_sign_bit_copies = 1;
13461 /* Otherwise show that we don't know the value. */
13462 else
13463 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13465 else if (MEM_P (dest)
13466 /* Ignore pushes, they clobber nothing. */
13467 && ! push_operand (dest, GET_MODE (dest)))
13468 mem_last_set = DF_INSN_LUID (record_dead_insn);
13471 /* Update the records of when each REG was most recently set or killed
13472 for the things done by INSN. This is the last thing done in processing
13473 INSN in the combiner loop.
13475 We update reg_stat[], in particular fields last_set, last_set_value,
13476 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13477 last_death, and also the similar information mem_last_set (which insn
13478 most recently modified memory) and last_call_luid (which insn was the
13479 most recent subroutine call). */
13481 static void
13482 record_dead_and_set_regs (rtx_insn *insn)
13484 rtx link;
13485 unsigned int i;
13487 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13489 if (REG_NOTE_KIND (link) == REG_DEAD
13490 && REG_P (XEXP (link, 0)))
13492 unsigned int regno = REGNO (XEXP (link, 0));
13493 unsigned int endregno = END_REGNO (XEXP (link, 0));
13495 for (i = regno; i < endregno; i++)
13497 reg_stat_type *rsp;
13499 rsp = &reg_stat[i];
13500 rsp->last_death = insn;
13503 else if (REG_NOTE_KIND (link) == REG_INC)
13504 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13507 if (CALL_P (insn))
13509 HARD_REG_SET callee_clobbers
13510 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13511 hard_reg_set_iterator hrsi;
13512 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13514 reg_stat_type *rsp;
13516 /* ??? We could try to preserve some information from the last
13517 set of register I if the call doesn't actually clobber
13518 (reg:last_set_mode I), which might be true for ABIs with
13519 partial clobbers. However, it would be difficult to
13520 update last_set_nonzero_bits and last_sign_bit_copies
13521 to account for the part of I that actually was clobbered.
13522 It wouldn't help much anyway, since we rarely see this
13523 situation before RA. */
13524 rsp = &reg_stat[i];
13525 rsp->last_set_invalid = true;
13526 rsp->last_set = insn;
13527 rsp->last_set_value = 0;
13528 rsp->last_set_mode = VOIDmode;
13529 rsp->last_set_nonzero_bits = 0;
13530 rsp->last_set_sign_bit_copies = 0;
13531 rsp->last_death = 0;
13532 rsp->truncated_to_mode = VOIDmode;
13535 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13537 /* We can't combine into a call pattern. Remember, though, that
13538 the return value register is set at this LUID. We could
13539 still replace a register with the return value from the
13540 wrong subroutine call! */
13541 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13543 else
13544 note_stores (insn, record_dead_and_set_regs_1, insn);
13547 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13548 register present in the SUBREG, so for each such SUBREG go back and
13549 adjust nonzero and sign bit information of the registers that are
13550 known to have some zero/sign bits set.
13552 This is needed because when combine blows the SUBREGs away, the
13553 information on zero/sign bits is lost and further combines can be
13554 missed because of that. */
13556 static void
13557 record_promoted_value (rtx_insn *insn, rtx subreg)
13559 struct insn_link *links;
13560 rtx set;
13561 unsigned int regno = REGNO (SUBREG_REG (subreg));
13562 machine_mode mode = GET_MODE (subreg);
13564 if (!HWI_COMPUTABLE_MODE_P (mode))
13565 return;
13567 for (links = LOG_LINKS (insn); links;)
13569 reg_stat_type *rsp;
13571 insn = links->insn;
13572 set = single_set (insn);
13574 if (! set || !REG_P (SET_DEST (set))
13575 || REGNO (SET_DEST (set)) != regno
13576 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13578 links = links->next;
13579 continue;
13582 rsp = &reg_stat[regno];
13583 if (rsp->last_set == insn)
13585 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13586 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13589 if (REG_P (SET_SRC (set)))
13591 regno = REGNO (SET_SRC (set));
13592 links = LOG_LINKS (insn);
13594 else
13595 break;
13599 /* Check if X, a register, is known to contain a value already
13600 truncated to MODE. In this case we can use a subreg to refer to
13601 the truncated value even though in the generic case we would need
13602 an explicit truncation. */
13604 static bool
13605 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13607 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13608 machine_mode truncated = rsp->truncated_to_mode;
13610 if (truncated == 0
13611 || rsp->truncation_label < label_tick_ebb_start)
13612 return false;
13613 if (!partial_subreg_p (mode, truncated))
13614 return true;
13615 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13616 return true;
13617 return false;
13620 /* If X is a hard reg or a subreg record the mode that the register is
13621 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13622 able to turn a truncate into a subreg using this information. Return true
13623 if traversing X is complete. */
13625 static bool
13626 record_truncated_value (rtx x)
13628 machine_mode truncated_mode;
13629 reg_stat_type *rsp;
13631 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13633 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13634 truncated_mode = GET_MODE (x);
13636 if (!partial_subreg_p (truncated_mode, original_mode))
13637 return true;
13639 truncated_mode = GET_MODE (x);
13640 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13641 return true;
13643 x = SUBREG_REG (x);
13645 /* ??? For hard-regs we now record everything. We might be able to
13646 optimize this using last_set_mode. */
13647 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13648 truncated_mode = GET_MODE (x);
13649 else
13650 return false;
13652 rsp = &reg_stat[REGNO (x)];
13653 if (rsp->truncated_to_mode == 0
13654 || rsp->truncation_label < label_tick_ebb_start
13655 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13657 rsp->truncated_to_mode = truncated_mode;
13658 rsp->truncation_label = label_tick;
13661 return true;
13664 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13665 the modes they are used in. This can help truning TRUNCATEs into
13666 SUBREGs. */
13668 static void
13669 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13671 subrtx_var_iterator::array_type array;
13672 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13673 if (record_truncated_value (*iter))
13674 iter.skip_subrtxes ();
13677 /* Scan X for promoted SUBREGs. For each one found,
13678 note what it implies to the registers used in it. */
13680 static void
13681 check_promoted_subreg (rtx_insn *insn, rtx x)
13683 if (GET_CODE (x) == SUBREG
13684 && SUBREG_PROMOTED_VAR_P (x)
13685 && REG_P (SUBREG_REG (x)))
13686 record_promoted_value (insn, x);
13687 else
13689 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13690 int i, j;
13692 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13693 switch (format[i])
13695 case 'e':
13696 check_promoted_subreg (insn, XEXP (x, i));
13697 break;
13698 case 'V':
13699 case 'E':
13700 if (XVEC (x, i) != 0)
13701 for (j = 0; j < XVECLEN (x, i); j++)
13702 check_promoted_subreg (insn, XVECEXP (x, i, j));
13703 break;
13708 /* Verify that all the registers and memory references mentioned in *LOC are
13709 still valid. *LOC was part of a value set in INSN when label_tick was
13710 equal to TICK. Return false if some are not. If REPLACE is true, replace
13711 the invalid references with (clobber (const_int 0)) and return true. This
13712 replacement is useful because we often can get useful information about
13713 the form of a value (e.g., if it was produced by a shift that always
13714 produces -1 or 0) even though we don't know exactly what registers it
13715 was produced from. */
13717 static bool
13718 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, bool replace)
13720 rtx x = *loc;
13721 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13722 int len = GET_RTX_LENGTH (GET_CODE (x));
13723 int i, j;
13725 if (REG_P (x))
13727 unsigned int regno = REGNO (x);
13728 unsigned int endregno = END_REGNO (x);
13729 unsigned int j;
13731 for (j = regno; j < endregno; j++)
13733 reg_stat_type *rsp = &reg_stat[j];
13734 if (rsp->last_set_invalid
13735 /* If this is a pseudo-register that was only set once and not
13736 live at the beginning of the function, it is always valid. */
13737 || (! (regno >= FIRST_PSEUDO_REGISTER
13738 && regno < reg_n_sets_max
13739 && REG_N_SETS (regno) == 1
13740 && (!REGNO_REG_SET_P
13741 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13742 regno)))
13743 && rsp->last_set_label > tick))
13745 if (replace)
13746 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13747 return replace;
13751 return true;
13753 /* If this is a memory reference, make sure that there were no stores after
13754 it that might have clobbered the value. We don't have alias info, so we
13755 assume any store invalidates it. Moreover, we only have local UIDs, so
13756 we also assume that there were stores in the intervening basic blocks. */
13757 else if (MEM_P (x) && !MEM_READONLY_P (x)
13758 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13760 if (replace)
13761 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13762 return replace;
13765 for (i = 0; i < len; i++)
13767 if (fmt[i] == 'e')
13769 /* Check for identical subexpressions. If x contains
13770 identical subexpression we only have to traverse one of
13771 them. */
13772 if (i == 1 && ARITHMETIC_P (x))
13774 /* Note that at this point x0 has already been checked
13775 and found valid. */
13776 rtx x0 = XEXP (x, 0);
13777 rtx x1 = XEXP (x, 1);
13779 /* If x0 and x1 are identical then x is also valid. */
13780 if (x0 == x1)
13781 return true;
13783 /* If x1 is identical to a subexpression of x0 then
13784 while checking x0, x1 has already been checked. Thus
13785 it is valid and so as x. */
13786 if (ARITHMETIC_P (x0)
13787 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13788 return true;
13790 /* If x0 is identical to a subexpression of x1 then x is
13791 valid iff the rest of x1 is valid. */
13792 if (ARITHMETIC_P (x1)
13793 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13794 return
13795 get_last_value_validate (&XEXP (x1,
13796 x0 == XEXP (x1, 0) ? 1 : 0),
13797 insn, tick, replace);
13800 if (!get_last_value_validate (&XEXP (x, i), insn, tick, replace))
13801 return false;
13803 else if (fmt[i] == 'E')
13804 for (j = 0; j < XVECLEN (x, i); j++)
13805 if (!get_last_value_validate (&XVECEXP (x, i, j),
13806 insn, tick, replace))
13807 return false;
13810 /* If we haven't found a reason for it to be invalid, it is valid. */
13811 return true;
13814 /* Get the last value assigned to X, if known. Some registers
13815 in the value may be replaced with (clobber (const_int 0)) if their value
13816 is known longer known reliably. */
13818 static rtx
13819 get_last_value (const_rtx x)
13821 unsigned int regno;
13822 rtx value;
13823 reg_stat_type *rsp;
13825 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13826 then convert it to the desired mode. If this is a paradoxical SUBREG,
13827 we cannot predict what values the "extra" bits might have. */
13828 if (GET_CODE (x) == SUBREG
13829 && subreg_lowpart_p (x)
13830 && !paradoxical_subreg_p (x)
13831 && (value = get_last_value (SUBREG_REG (x))) != 0)
13832 return gen_lowpart (GET_MODE (x), value);
13834 if (!REG_P (x))
13835 return 0;
13837 regno = REGNO (x);
13838 rsp = &reg_stat[regno];
13839 value = rsp->last_set_value;
13841 /* If we don't have a value, or if it isn't for this basic block and
13842 it's either a hard register, set more than once, or it's a live
13843 at the beginning of the function, return 0.
13845 Because if it's not live at the beginning of the function then the reg
13846 is always set before being used (is never used without being set).
13847 And, if it's set only once, and it's always set before use, then all
13848 uses must have the same last value, even if it's not from this basic
13849 block. */
13851 if (value == 0
13852 || (rsp->last_set_label < label_tick_ebb_start
13853 && (regno < FIRST_PSEUDO_REGISTER
13854 || regno >= reg_n_sets_max
13855 || REG_N_SETS (regno) != 1
13856 || REGNO_REG_SET_P
13857 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13858 return 0;
13860 /* If the value was set in a later insn than the ones we are processing,
13861 we can't use it even if the register was only set once. */
13862 if (rsp->last_set_label == label_tick
13863 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13864 return 0;
13866 /* If fewer bits were set than what we are asked for now, we cannot use
13867 the value. */
13868 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13869 GET_MODE_PRECISION (GET_MODE (x))))
13870 return 0;
13872 /* If the value has all its registers valid, return it. */
13873 if (get_last_value_validate (&value, rsp->last_set,
13874 rsp->last_set_label, false))
13875 return value;
13877 /* Otherwise, make a copy and replace any invalid register with
13878 (clobber (const_int 0)). If that fails for some reason, return 0. */
13880 value = copy_rtx (value);
13881 if (get_last_value_validate (&value, rsp->last_set,
13882 rsp->last_set_label, true))
13883 return value;
13885 return 0;
13888 /* Define three variables used for communication between the following
13889 routines. */
13891 static unsigned int reg_dead_regno, reg_dead_endregno;
13892 static int reg_dead_flag;
13893 rtx reg_dead_reg;
13895 /* Function called via note_stores from reg_dead_at_p.
13897 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13898 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13900 static void
13901 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13903 unsigned int regno, endregno;
13905 if (!REG_P (dest))
13906 return;
13908 regno = REGNO (dest);
13909 endregno = END_REGNO (dest);
13910 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13911 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13914 /* Return true if REG is known to be dead at INSN.
13916 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13917 referencing REG, it is dead. If we hit a SET referencing REG, it is
13918 live. Otherwise, see if it is live or dead at the start of the basic
13919 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13920 must be assumed to be always live. */
13922 static bool
13923 reg_dead_at_p (rtx reg, rtx_insn *insn)
13925 basic_block block;
13926 unsigned int i;
13928 /* Set variables for reg_dead_at_p_1. */
13929 reg_dead_regno = REGNO (reg);
13930 reg_dead_endregno = END_REGNO (reg);
13931 reg_dead_reg = reg;
13933 reg_dead_flag = 0;
13935 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13936 we allow the machine description to decide whether use-and-clobber
13937 patterns are OK. */
13938 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13940 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13941 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13942 return false;
13945 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13946 beginning of basic block. */
13947 block = BLOCK_FOR_INSN (insn);
13948 for (;;)
13950 if (INSN_P (insn))
13952 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13953 return true;
13955 note_stores (insn, reg_dead_at_p_1, NULL);
13956 if (reg_dead_flag)
13957 return reg_dead_flag == 1 ? 1 : 0;
13959 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13960 return true;
13963 if (insn == BB_HEAD (block))
13964 break;
13966 insn = PREV_INSN (insn);
13969 /* Look at live-in sets for the basic block that we were in. */
13970 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13971 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13972 return false;
13974 return true;
13977 /* Note hard registers in X that are used. */
13979 static void
13980 mark_used_regs_combine (rtx x)
13982 RTX_CODE code = GET_CODE (x);
13983 unsigned int regno;
13984 int i;
13986 switch (code)
13988 case LABEL_REF:
13989 case SYMBOL_REF:
13990 case CONST:
13991 CASE_CONST_ANY:
13992 case PC:
13993 case ADDR_VEC:
13994 case ADDR_DIFF_VEC:
13995 case ASM_INPUT:
13996 return;
13998 case CLOBBER:
13999 /* If we are clobbering a MEM, mark any hard registers inside the
14000 address as used. */
14001 if (MEM_P (XEXP (x, 0)))
14002 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
14003 return;
14005 case REG:
14006 regno = REGNO (x);
14007 /* A hard reg in a wide mode may really be multiple registers.
14008 If so, mark all of them just like the first. */
14009 if (regno < FIRST_PSEUDO_REGISTER)
14011 /* None of this applies to the stack, frame or arg pointers. */
14012 if (regno == STACK_POINTER_REGNUM
14013 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
14014 && regno == HARD_FRAME_POINTER_REGNUM)
14015 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14016 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
14017 || regno == FRAME_POINTER_REGNUM)
14018 return;
14020 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
14022 return;
14024 case SET:
14026 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14027 the address. */
14028 rtx testreg = SET_DEST (x);
14030 while (GET_CODE (testreg) == SUBREG
14031 || GET_CODE (testreg) == ZERO_EXTRACT
14032 || GET_CODE (testreg) == STRICT_LOW_PART)
14033 testreg = XEXP (testreg, 0);
14035 if (MEM_P (testreg))
14036 mark_used_regs_combine (XEXP (testreg, 0));
14038 mark_used_regs_combine (SET_SRC (x));
14040 return;
14042 default:
14043 break;
14046 /* Recursively scan the operands of this expression. */
14049 const char *fmt = GET_RTX_FORMAT (code);
14051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14053 if (fmt[i] == 'e')
14054 mark_used_regs_combine (XEXP (x, i));
14055 else if (fmt[i] == 'E')
14057 int j;
14059 for (j = 0; j < XVECLEN (x, i); j++)
14060 mark_used_regs_combine (XVECEXP (x, i, j));
14066 /* Remove register number REGNO from the dead registers list of INSN.
14068 Return the note used to record the death, if there was one. */
14071 remove_death (unsigned int regno, rtx_insn *insn)
14073 rtx note = find_regno_note (insn, REG_DEAD, regno);
14075 if (note)
14076 remove_note (insn, note);
14078 return note;
14081 /* For each register (hardware or pseudo) used within expression X, if its
14082 death is in an instruction with luid between FROM_LUID (inclusive) and
14083 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14084 list headed by PNOTES.
14086 That said, don't move registers killed by maybe_kill_insn.
14088 This is done when X is being merged by combination into TO_INSN. These
14089 notes will then be distributed as needed. */
14091 static void
14092 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14093 rtx *pnotes)
14095 const char *fmt;
14096 int len, i;
14097 enum rtx_code code = GET_CODE (x);
14099 if (code == REG)
14101 unsigned int regno = REGNO (x);
14102 rtx_insn *where_dead = reg_stat[regno].last_death;
14104 /* If we do not know where the register died, it may still die between
14105 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14106 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14108 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14109 while (insn
14110 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14111 && DF_INSN_LUID (insn) >= from_luid)
14113 if (dead_or_set_regno_p (insn, regno))
14115 if (find_regno_note (insn, REG_DEAD, regno))
14116 where_dead = insn;
14117 break;
14120 insn = prev_real_nondebug_insn (insn);
14124 /* Don't move the register if it gets killed in between from and to. */
14125 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14126 && ! reg_referenced_p (x, maybe_kill_insn))
14127 return;
14129 if (where_dead
14130 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14131 && DF_INSN_LUID (where_dead) >= from_luid
14132 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14134 rtx note = remove_death (regno, where_dead);
14136 /* It is possible for the call above to return 0. This can occur
14137 when last_death points to I2 or I1 that we combined with.
14138 In that case make a new note.
14140 We must also check for the case where X is a hard register
14141 and NOTE is a death note for a range of hard registers
14142 including X. In that case, we must put REG_DEAD notes for
14143 the remaining registers in place of NOTE. */
14145 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14146 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14148 unsigned int deadregno = REGNO (XEXP (note, 0));
14149 unsigned int deadend = END_REGNO (XEXP (note, 0));
14150 unsigned int ourend = END_REGNO (x);
14151 unsigned int i;
14153 for (i = deadregno; i < deadend; i++)
14154 if (i < regno || i >= ourend)
14155 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14158 /* If we didn't find any note, or if we found a REG_DEAD note that
14159 covers only part of the given reg, and we have a multi-reg hard
14160 register, then to be safe we must check for REG_DEAD notes
14161 for each register other than the first. They could have
14162 their own REG_DEAD notes lying around. */
14163 else if ((note == 0
14164 || (note != 0
14165 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14166 GET_MODE (x))))
14167 && regno < FIRST_PSEUDO_REGISTER
14168 && REG_NREGS (x) > 1)
14170 unsigned int ourend = END_REGNO (x);
14171 unsigned int i, offset;
14172 rtx oldnotes = 0;
14174 if (note)
14175 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14176 else
14177 offset = 1;
14179 for (i = regno + offset; i < ourend; i++)
14180 move_deaths (regno_reg_rtx[i],
14181 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14184 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14186 XEXP (note, 1) = *pnotes;
14187 *pnotes = note;
14189 else
14190 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14193 return;
14196 else if (GET_CODE (x) == SET)
14198 rtx dest = SET_DEST (x);
14200 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14202 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14203 that accesses one word of a multi-word item, some
14204 piece of everything register in the expression is used by
14205 this insn, so remove any old death. */
14206 /* ??? So why do we test for equality of the sizes? */
14208 if (GET_CODE (dest) == ZERO_EXTRACT
14209 || GET_CODE (dest) == STRICT_LOW_PART
14210 || (GET_CODE (dest) == SUBREG
14211 && !read_modify_subreg_p (dest)))
14213 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14214 return;
14217 /* If this is some other SUBREG, we know it replaces the entire
14218 value, so use that as the destination. */
14219 if (GET_CODE (dest) == SUBREG)
14220 dest = SUBREG_REG (dest);
14222 /* If this is a MEM, adjust deaths of anything used in the address.
14223 For a REG (the only other possibility), the entire value is
14224 being replaced so the old value is not used in this insn. */
14226 if (MEM_P (dest))
14227 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14228 to_insn, pnotes);
14229 return;
14232 else if (GET_CODE (x) == CLOBBER)
14233 return;
14235 len = GET_RTX_LENGTH (code);
14236 fmt = GET_RTX_FORMAT (code);
14238 for (i = 0; i < len; i++)
14240 if (fmt[i] == 'E')
14242 int j;
14243 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14244 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14245 to_insn, pnotes);
14247 else if (fmt[i] == 'e')
14248 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14252 /* Return true if X is the target of a bit-field assignment in BODY, the
14253 pattern of an insn. X must be a REG. */
14255 static bool
14256 reg_bitfield_target_p (rtx x, rtx body)
14258 int i;
14260 if (GET_CODE (body) == SET)
14262 rtx dest = SET_DEST (body);
14263 rtx target;
14264 unsigned int regno, tregno, endregno, endtregno;
14266 if (GET_CODE (dest) == ZERO_EXTRACT)
14267 target = XEXP (dest, 0);
14268 else if (GET_CODE (dest) == STRICT_LOW_PART)
14269 target = SUBREG_REG (XEXP (dest, 0));
14270 else
14271 return false;
14273 if (GET_CODE (target) == SUBREG)
14274 target = SUBREG_REG (target);
14276 if (!REG_P (target))
14277 return false;
14279 tregno = REGNO (target), regno = REGNO (x);
14280 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14281 return target == x;
14283 endtregno = end_hard_regno (GET_MODE (target), tregno);
14284 endregno = end_hard_regno (GET_MODE (x), regno);
14286 return endregno > tregno && regno < endtregno;
14289 else if (GET_CODE (body) == PARALLEL)
14290 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14291 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14292 return true;
14294 return false;
14297 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14298 as appropriate. I3 and I2 are the insns resulting from the combination
14299 insns including FROM (I2 may be zero).
14301 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14302 not need REG_DEAD notes because they are being substituted for. This
14303 saves searching in the most common cases.
14305 Each note in the list is either ignored or placed on some insns, depending
14306 on the type of note. */
14308 static void
14309 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14310 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14312 rtx note, next_note;
14313 rtx tem_note;
14314 rtx_insn *tem_insn;
14316 for (note = notes; note; note = next_note)
14318 rtx_insn *place = 0, *place2 = 0;
14320 next_note = XEXP (note, 1);
14321 switch (REG_NOTE_KIND (note))
14323 case REG_BR_PROB:
14324 case REG_BR_PRED:
14325 /* Doesn't matter much where we put this, as long as it's somewhere.
14326 It is preferable to keep these notes on branches, which is most
14327 likely to be i3. */
14328 place = i3;
14329 break;
14331 case REG_NON_LOCAL_GOTO:
14332 if (JUMP_P (i3))
14333 place = i3;
14334 else
14336 gcc_assert (i2 && JUMP_P (i2));
14337 place = i2;
14339 break;
14341 case REG_EH_REGION:
14343 /* The landing pad handling needs to be kept in sync with the
14344 prerequisite checking in try_combine. */
14345 int lp_nr = INTVAL (XEXP (note, 0));
14346 /* A REG_EH_REGION note transfering control can only ever come
14347 from i3. */
14348 if (lp_nr > 0)
14349 gcc_assert (from_insn == i3);
14350 /* We are making sure there is a single effective REG_EH_REGION
14351 note and it's valid to put it on i3. */
14352 if (!insn_could_throw_p (from_insn)
14353 && !(lp_nr == INT_MIN && can_nonlocal_goto (from_insn)))
14354 /* Throw away stray notes on insns that can never throw or
14355 make a nonlocal goto. */
14357 else
14359 if (CALL_P (i3))
14360 place = i3;
14361 else
14363 gcc_assert (cfun->can_throw_non_call_exceptions);
14364 /* If i3 can still trap preserve the note, otherwise we've
14365 combined things such that we can now prove that the
14366 instructions can't trap. Drop the note in this case. */
14367 if (may_trap_p (i3))
14368 place = i3;
14371 break;
14374 case REG_ARGS_SIZE:
14375 /* ??? How to distribute between i3-i1. Assume i3 contains the
14376 entire adjustment. Assert i3 contains at least some adjust. */
14377 if (!noop_move_p (i3))
14379 poly_int64 old_size, args_size = get_args_size (note);
14380 /* fixup_args_size_notes looks at REG_NORETURN note,
14381 so ensure the note is placed there first. */
14382 if (CALL_P (i3))
14384 rtx *np;
14385 for (np = &next_note; *np; np = &XEXP (*np, 1))
14386 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14388 rtx n = *np;
14389 *np = XEXP (n, 1);
14390 XEXP (n, 1) = REG_NOTES (i3);
14391 REG_NOTES (i3) = n;
14392 break;
14395 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14396 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14397 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14398 gcc_assert (maybe_ne (old_size, args_size)
14399 || (CALL_P (i3)
14400 && !ACCUMULATE_OUTGOING_ARGS
14401 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14403 break;
14405 case REG_NORETURN:
14406 case REG_SETJMP:
14407 case REG_TM:
14408 case REG_CALL_DECL:
14409 case REG_UNTYPED_CALL:
14410 case REG_CALL_NOCF_CHECK:
14411 /* These notes must remain with the call. It should not be
14412 possible for both I2 and I3 to be a call. */
14413 if (CALL_P (i3))
14414 place = i3;
14415 else
14417 gcc_assert (i2 && CALL_P (i2));
14418 place = i2;
14420 break;
14422 case REG_UNUSED:
14423 /* Any clobbers for i3 may still exist, and so we must process
14424 REG_UNUSED notes from that insn.
14426 Any clobbers from i2 or i1 can only exist if they were added by
14427 recog_for_combine. In that case, recog_for_combine created the
14428 necessary REG_UNUSED notes. Trying to keep any original
14429 REG_UNUSED notes from these insns can cause incorrect output
14430 if it is for the same register as the original i3 dest.
14431 In that case, we will notice that the register is set in i3,
14432 and then add a REG_UNUSED note for the destination of i3, which
14433 is wrong. However, it is possible to have REG_UNUSED notes from
14434 i2 or i1 for register which were both used and clobbered, so
14435 we keep notes from i2 or i1 if they will turn into REG_DEAD
14436 notes. */
14438 /* If this register is set or clobbered between FROM_INSN and I3,
14439 we should not create a note for it. */
14440 if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14441 break;
14443 /* If this register is set or clobbered in I3, put the note there
14444 unless there is one already. */
14445 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14447 if (from_insn != i3)
14448 break;
14450 if (! (REG_P (XEXP (note, 0))
14451 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14452 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14453 place = i3;
14455 /* Otherwise, if this register is used by I3, then this register
14456 now dies here, so we must put a REG_DEAD note here unless there
14457 is one already. */
14458 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14459 && ! (REG_P (XEXP (note, 0))
14460 ? find_regno_note (i3, REG_DEAD,
14461 REGNO (XEXP (note, 0)))
14462 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14464 PUT_REG_NOTE_KIND (note, REG_DEAD);
14465 place = i3;
14468 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14469 but we can't tell which at this point. We must reset any
14470 expectations we had about the value that was previously
14471 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14472 and, if appropriate, restore its previous value, but we
14473 don't have enough information for that at this point. */
14474 else
14476 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14478 /* Otherwise, if this register is now referenced in i2
14479 then the register used to be modified in one of the
14480 original insns. If it was i3 (say, in an unused
14481 parallel), it's now completely gone, so the note can
14482 be discarded. But if it was modified in i2, i1 or i0
14483 and we still reference it in i2, then we're
14484 referencing the previous value, and since the
14485 register was modified and REG_UNUSED, we know that
14486 the previous value is now dead. So, if we only
14487 reference the register in i2, we change the note to
14488 REG_DEAD, to reflect the previous value. However, if
14489 we're also setting or clobbering the register as
14490 scratch, we know (because the register was not
14491 referenced in i3) that it's unused, just as it was
14492 unused before, and we place the note in i2. */
14493 if (from_insn != i3 && i2 && INSN_P (i2)
14494 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14496 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14497 PUT_REG_NOTE_KIND (note, REG_DEAD);
14498 if (! (REG_P (XEXP (note, 0))
14499 ? find_regno_note (i2, REG_NOTE_KIND (note),
14500 REGNO (XEXP (note, 0)))
14501 : find_reg_note (i2, REG_NOTE_KIND (note),
14502 XEXP (note, 0))))
14503 place = i2;
14507 break;
14509 case REG_EQUAL:
14510 case REG_EQUIV:
14511 case REG_NOALIAS:
14512 /* These notes say something about results of an insn. We can
14513 only support them if they used to be on I3 in which case they
14514 remain on I3. Otherwise they are ignored.
14516 If the note refers to an expression that is not a constant, we
14517 must also ignore the note since we cannot tell whether the
14518 equivalence is still true. It might be possible to do
14519 slightly better than this (we only have a problem if I2DEST
14520 or I1DEST is present in the expression), but it doesn't
14521 seem worth the trouble. */
14523 if (from_insn == i3
14524 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14525 place = i3;
14526 break;
14528 case REG_INC:
14529 /* These notes say something about how a register is used. They must
14530 be present on any use of the register in I2 or I3. */
14531 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14532 place = i3;
14534 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14536 if (place)
14537 place2 = i2;
14538 else
14539 place = i2;
14541 break;
14543 case REG_LABEL_TARGET:
14544 case REG_LABEL_OPERAND:
14545 /* This can show up in several ways -- either directly in the
14546 pattern, or hidden off in the constant pool with (or without?)
14547 a REG_EQUAL note. */
14548 /* ??? Ignore the without-reg_equal-note problem for now. */
14549 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14550 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14551 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14552 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14553 place = i3;
14555 if (i2
14556 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14557 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14558 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14559 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14561 if (place)
14562 place2 = i2;
14563 else
14564 place = i2;
14567 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14568 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14569 there. */
14570 if (place && JUMP_P (place)
14571 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14572 && (JUMP_LABEL (place) == NULL
14573 || JUMP_LABEL (place) == XEXP (note, 0)))
14575 rtx label = JUMP_LABEL (place);
14577 if (!label)
14578 JUMP_LABEL (place) = XEXP (note, 0);
14579 else if (LABEL_P (label))
14580 LABEL_NUSES (label)--;
14583 if (place2 && JUMP_P (place2)
14584 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14585 && (JUMP_LABEL (place2) == NULL
14586 || JUMP_LABEL (place2) == XEXP (note, 0)))
14588 rtx label = JUMP_LABEL (place2);
14590 if (!label)
14591 JUMP_LABEL (place2) = XEXP (note, 0);
14592 else if (LABEL_P (label))
14593 LABEL_NUSES (label)--;
14594 place2 = 0;
14596 break;
14598 case REG_NONNEG:
14599 /* This note says something about the value of a register prior
14600 to the execution of an insn. It is too much trouble to see
14601 if the note is still correct in all situations. It is better
14602 to simply delete it. */
14603 break;
14605 case REG_DEAD:
14606 /* If we replaced the right hand side of FROM_INSN with a
14607 REG_EQUAL note, the original use of the dying register
14608 will not have been combined into I3 and I2. In such cases,
14609 FROM_INSN is guaranteed to be the first of the combined
14610 instructions, so we simply need to search back before
14611 FROM_INSN for the previous use or set of this register,
14612 then alter the notes there appropriately.
14614 If the register is used as an input in I3, it dies there.
14615 Similarly for I2, if it is nonzero and adjacent to I3.
14617 If the register is not used as an input in either I3 or I2
14618 and it is not one of the registers we were supposed to eliminate,
14619 there are two possibilities. We might have a non-adjacent I2
14620 or we might have somehow eliminated an additional register
14621 from a computation. For example, we might have had A & B where
14622 we discover that B will always be zero. In this case we will
14623 eliminate the reference to A.
14625 In both cases, we must search to see if we can find a previous
14626 use of A and put the death note there. */
14628 if (from_insn
14629 && from_insn == i2mod
14630 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14631 tem_insn = from_insn;
14632 else
14634 if (from_insn
14635 && CALL_P (from_insn)
14636 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14637 place = from_insn;
14638 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14640 /* If the new I2 sets the same register that is marked
14641 dead in the note, we do not in general know where to
14642 put the note. One important case we _can_ handle is
14643 when the note comes from I3. */
14644 if (from_insn == i3)
14645 place = i3;
14646 else
14647 break;
14649 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14650 place = i3;
14651 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14652 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14653 place = i2;
14654 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14655 && !(i2mod
14656 && reg_overlap_mentioned_p (XEXP (note, 0),
14657 i2mod_old_rhs)))
14658 || rtx_equal_p (XEXP (note, 0), elim_i1)
14659 || rtx_equal_p (XEXP (note, 0), elim_i0))
14660 break;
14661 tem_insn = i3;
14664 if (place == 0)
14666 basic_block bb = this_basic_block;
14668 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14670 if (!NONDEBUG_INSN_P (tem_insn))
14672 if (tem_insn == BB_HEAD (bb))
14673 break;
14674 continue;
14677 /* If the register is being set at TEM_INSN, see if that is all
14678 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14679 into a REG_UNUSED note instead. Don't delete sets to
14680 global register vars. */
14681 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14682 || !global_regs[REGNO (XEXP (note, 0))])
14683 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14685 rtx set = single_set (tem_insn);
14686 rtx inner_dest = 0;
14688 if (set != 0)
14689 for (inner_dest = SET_DEST (set);
14690 (GET_CODE (inner_dest) == STRICT_LOW_PART
14691 || GET_CODE (inner_dest) == SUBREG
14692 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14693 inner_dest = XEXP (inner_dest, 0))
14696 /* Verify that it was the set, and not a clobber that
14697 modified the register.
14699 If we cannot delete the setter due to side
14700 effects, mark the user with an UNUSED note instead
14701 of deleting it. */
14703 if (set != 0 && ! side_effects_p (SET_SRC (set))
14704 && rtx_equal_p (XEXP (note, 0), inner_dest))
14706 /* Move the notes and links of TEM_INSN elsewhere.
14707 This might delete other dead insns recursively.
14708 First set the pattern to something that won't use
14709 any register. */
14710 rtx old_notes = REG_NOTES (tem_insn);
14712 PATTERN (tem_insn) = pc_rtx;
14713 REG_NOTES (tem_insn) = NULL;
14715 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14716 NULL_RTX, NULL_RTX, NULL_RTX);
14717 distribute_links (LOG_LINKS (tem_insn));
14719 unsigned int regno = REGNO (XEXP (note, 0));
14720 reg_stat_type *rsp = &reg_stat[regno];
14721 if (rsp->last_set == tem_insn)
14722 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14724 SET_INSN_DELETED (tem_insn);
14725 if (tem_insn == i2)
14726 i2 = NULL;
14728 else
14730 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14732 /* If there isn't already a REG_UNUSED note, put one
14733 here. Do not place a REG_DEAD note, even if
14734 the register is also used here; that would not
14735 match the algorithm used in lifetime analysis
14736 and can cause the consistency check in the
14737 scheduler to fail. */
14738 if (! find_regno_note (tem_insn, REG_UNUSED,
14739 REGNO (XEXP (note, 0))))
14740 place = tem_insn;
14741 break;
14744 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14745 || (CALL_P (tem_insn)
14746 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14748 place = tem_insn;
14750 /* If we are doing a 3->2 combination, and we have a
14751 register which formerly died in i3 and was not used
14752 by i2, which now no longer dies in i3 and is used in
14753 i2 but does not die in i2, and place is between i2
14754 and i3, then we may need to move a link from place to
14755 i2. */
14756 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14757 && from_insn
14758 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14759 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14761 struct insn_link *links = LOG_LINKS (place);
14762 LOG_LINKS (place) = NULL;
14763 distribute_links (links);
14765 break;
14768 if (tem_insn == BB_HEAD (bb))
14769 break;
14774 /* If the register is set or already dead at PLACE, we needn't do
14775 anything with this note if it is still a REG_DEAD note.
14776 We check here if it is set at all, not if is it totally replaced,
14777 which is what `dead_or_set_p' checks, so also check for it being
14778 set partially. */
14780 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14782 unsigned int regno = REGNO (XEXP (note, 0));
14783 reg_stat_type *rsp = &reg_stat[regno];
14785 if (dead_or_set_p (place, XEXP (note, 0))
14786 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14788 /* Unless the register previously died in PLACE, clear
14789 last_death. [I no longer understand why this is
14790 being done.] */
14791 if (rsp->last_death != place)
14792 rsp->last_death = 0;
14793 place = 0;
14795 else
14796 rsp->last_death = place;
14798 /* If this is a death note for a hard reg that is occupying
14799 multiple registers, ensure that we are still using all
14800 parts of the object. If we find a piece of the object
14801 that is unused, we must arrange for an appropriate REG_DEAD
14802 note to be added for it. However, we can't just emit a USE
14803 and tag the note to it, since the register might actually
14804 be dead; so we recourse, and the recursive call then finds
14805 the previous insn that used this register. */
14807 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14809 unsigned int endregno = END_REGNO (XEXP (note, 0));
14810 bool all_used = true;
14811 unsigned int i;
14813 for (i = regno; i < endregno; i++)
14814 if ((! refers_to_regno_p (i, PATTERN (place))
14815 && ! find_regno_fusage (place, USE, i))
14816 || dead_or_set_regno_p (place, i))
14818 all_used = false;
14819 break;
14822 if (! all_used)
14824 /* Put only REG_DEAD notes for pieces that are
14825 not already dead or set. */
14827 for (i = regno; i < endregno;
14828 i += hard_regno_nregs (i, reg_raw_mode[i]))
14830 rtx piece = regno_reg_rtx[i];
14831 basic_block bb = this_basic_block;
14833 if (! dead_or_set_p (place, piece)
14834 && ! reg_bitfield_target_p (piece,
14835 PATTERN (place)))
14837 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14838 NULL_RTX);
14840 distribute_notes (new_note, place, place,
14841 NULL, NULL_RTX, NULL_RTX,
14842 NULL_RTX);
14844 else if (! refers_to_regno_p (i, PATTERN (place))
14845 && ! find_regno_fusage (place, USE, i))
14846 for (tem_insn = PREV_INSN (place); ;
14847 tem_insn = PREV_INSN (tem_insn))
14849 if (!NONDEBUG_INSN_P (tem_insn))
14851 if (tem_insn == BB_HEAD (bb))
14852 break;
14853 continue;
14855 if (dead_or_set_p (tem_insn, piece)
14856 || reg_bitfield_target_p (piece,
14857 PATTERN (tem_insn)))
14859 add_reg_note (tem_insn, REG_UNUSED, piece);
14860 break;
14865 place = 0;
14869 break;
14871 default:
14872 /* Any other notes should not be present at this point in the
14873 compilation. */
14874 gcc_unreachable ();
14877 if (place)
14879 XEXP (note, 1) = REG_NOTES (place);
14880 REG_NOTES (place) = note;
14882 /* Set added_notes_insn to the earliest insn we added a note to. */
14883 if (added_notes_insn == 0
14884 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14885 added_notes_insn = place;
14888 if (place2)
14890 add_shallow_copy_of_reg_note (place2, note);
14892 /* Set added_notes_insn to the earliest insn we added a note to. */
14893 if (added_notes_insn == 0
14894 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14895 added_notes_insn = place2;
14900 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14901 I3, I2, and I1 to new locations. This is also called to add a link
14902 pointing at I3 when I3's destination is changed. */
14904 static void
14905 distribute_links (struct insn_link *links)
14907 struct insn_link *link, *next_link;
14909 for (link = links; link; link = next_link)
14911 rtx_insn *place = 0;
14912 rtx_insn *insn;
14913 rtx set, reg;
14915 next_link = link->next;
14917 /* If the insn that this link points to is a NOTE, ignore it. */
14918 if (NOTE_P (link->insn))
14919 continue;
14921 set = 0;
14922 rtx pat = PATTERN (link->insn);
14923 if (GET_CODE (pat) == SET)
14924 set = pat;
14925 else if (GET_CODE (pat) == PARALLEL)
14927 int i;
14928 for (i = 0; i < XVECLEN (pat, 0); i++)
14930 set = XVECEXP (pat, 0, i);
14931 if (GET_CODE (set) != SET)
14932 continue;
14934 reg = SET_DEST (set);
14935 while (GET_CODE (reg) == ZERO_EXTRACT
14936 || GET_CODE (reg) == STRICT_LOW_PART
14937 || GET_CODE (reg) == SUBREG)
14938 reg = XEXP (reg, 0);
14940 if (!REG_P (reg))
14941 continue;
14943 if (REGNO (reg) == link->regno)
14944 break;
14946 if (i == XVECLEN (pat, 0))
14947 continue;
14949 else
14950 continue;
14952 reg = SET_DEST (set);
14954 while (GET_CODE (reg) == ZERO_EXTRACT
14955 || GET_CODE (reg) == STRICT_LOW_PART
14956 || GET_CODE (reg) == SUBREG)
14957 reg = XEXP (reg, 0);
14959 if (reg == pc_rtx)
14960 continue;
14962 /* A LOG_LINK is defined as being placed on the first insn that uses
14963 a register and points to the insn that sets the register. Start
14964 searching at the next insn after the target of the link and stop
14965 when we reach a set of the register or the end of the basic block.
14967 Note that this correctly handles the link that used to point from
14968 I3 to I2. Also note that not much searching is typically done here
14969 since most links don't point very far away. */
14971 for (insn = NEXT_INSN (link->insn);
14972 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14973 || BB_HEAD (this_basic_block->next_bb) != insn));
14974 insn = NEXT_INSN (insn))
14975 if (DEBUG_INSN_P (insn))
14976 continue;
14977 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14979 if (reg_referenced_p (reg, PATTERN (insn)))
14980 place = insn;
14981 break;
14983 else if (CALL_P (insn)
14984 && find_reg_fusage (insn, USE, reg))
14986 place = insn;
14987 break;
14989 else if (INSN_P (insn) && reg_set_p (reg, insn))
14990 break;
14992 /* If we found a place to put the link, place it there unless there
14993 is already a link to the same insn as LINK at that point. */
14995 if (place)
14997 struct insn_link *link2;
14999 FOR_EACH_LOG_LINK (link2, place)
15000 if (link2->insn == link->insn && link2->regno == link->regno)
15001 break;
15003 if (link2 == NULL)
15005 link->next = LOG_LINKS (place);
15006 LOG_LINKS (place) = link;
15008 /* Set added_links_insn to the earliest insn we added a
15009 link to. */
15010 if (added_links_insn == 0
15011 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
15012 added_links_insn = place;
15018 /* Check for any register or memory mentioned in EQUIV that is not
15019 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15020 of EXPR where some registers may have been replaced by constants. */
15022 static bool
15023 unmentioned_reg_p (rtx equiv, rtx expr)
15025 subrtx_iterator::array_type array;
15026 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
15028 const_rtx x = *iter;
15029 if ((REG_P (x) || MEM_P (x))
15030 && !reg_mentioned_p (x, expr))
15031 return true;
15033 return false;
15036 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15037 the reg-to-reg copy can usefully combine with later instructions, but we
15038 do not want to combine the hard reg into later instructions, for that
15039 restricts register allocation. */
15040 static void
15041 make_more_copies (void)
15043 basic_block bb;
15045 FOR_EACH_BB_FN (bb, cfun)
15047 rtx_insn *insn;
15049 FOR_BB_INSNS (bb, insn)
15051 if (!NONDEBUG_INSN_P (insn))
15052 continue;
15054 rtx set = single_set (insn);
15055 if (!set)
15056 continue;
15058 rtx dest = SET_DEST (set);
15059 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15060 continue;
15062 rtx src = SET_SRC (set);
15063 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15064 continue;
15065 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15066 continue;
15068 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15069 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15070 SET_SRC (set) = new_reg;
15071 emit_insn_before (new_insn, insn);
15072 df_insn_rescan (insn);
15077 /* Try combining insns through substitution. */
15078 static void
15079 rest_of_handle_combine (void)
15081 make_more_copies ();
15083 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15084 df_note_add_problem ();
15085 df_analyze ();
15087 regstat_init_n_sets_and_refs ();
15088 reg_n_sets_max = max_reg_num ();
15090 bool rebuild_jump_labels_after_combine
15091 = combine_instructions (get_insns (), max_reg_num ());
15093 /* Combining insns may have turned an indirect jump into a
15094 direct jump. Rebuild the JUMP_LABEL fields of jumping
15095 instructions. */
15096 if (rebuild_jump_labels_after_combine)
15098 if (dom_info_available_p (CDI_DOMINATORS))
15099 free_dominance_info (CDI_DOMINATORS);
15100 timevar_push (TV_JUMP);
15101 rebuild_jump_labels (get_insns ());
15102 cleanup_cfg (0);
15103 timevar_pop (TV_JUMP);
15106 regstat_free_n_sets_and_refs ();
15109 namespace {
15111 const pass_data pass_data_combine =
15113 RTL_PASS, /* type */
15114 "combine", /* name */
15115 OPTGROUP_NONE, /* optinfo_flags */
15116 TV_COMBINE, /* tv_id */
15117 PROP_cfglayout, /* properties_required */
15118 0, /* properties_provided */
15119 0, /* properties_destroyed */
15120 0, /* todo_flags_start */
15121 TODO_df_finish, /* todo_flags_finish */
15124 class pass_combine : public rtl_opt_pass
15126 public:
15127 pass_combine (gcc::context *ctxt)
15128 : rtl_opt_pass (pass_data_combine, ctxt)
15131 /* opt_pass methods: */
15132 bool gate (function *) final override { return (optimize > 0); }
15133 unsigned int execute (function *) final override
15135 rest_of_handle_combine ();
15136 return 0;
15139 }; // class pass_combine
15141 } // anon namespace
15143 rtl_opt_pass *
15144 make_pass_combine (gcc::context *ctxt)
15146 return new pass_combine (ctxt);