2014-04-14 Martin Jambor <mjambor@suse.cz>
[official-gcc.git] / gcc / tree-vrp.c
blob14f1526fa985e5abb55a6a6ee8f2207d30c64bd0
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "tree.h"
27 #include "stor-layout.h"
28 #include "calls.h"
29 #include "basic-block.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-fold.h"
33 #include "tree-eh.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "tree-pass.h"
51 #include "tree-dump.h"
52 #include "gimple-pretty-print.h"
53 #include "diagnostic-core.h"
54 #include "intl.h"
55 #include "cfgloop.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-chrec.h"
59 #include "tree-ssa-threadupdate.h"
60 #include "expr.h"
61 #include "optabs.h"
62 #include "tree-ssa-threadedge.h"
66 /* Range of values that can be associated with an SSA_NAME after VRP
67 has executed. */
68 struct value_range_d
70 /* Lattice value represented by this range. */
71 enum value_range_type type;
73 /* Minimum and maximum values represented by this range. These
74 values should be interpreted as follows:
76 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
77 be NULL.
79 - If TYPE == VR_RANGE then MIN holds the minimum value and
80 MAX holds the maximum value of the range [MIN, MAX].
82 - If TYPE == ANTI_RANGE the variable is known to NOT
83 take any values in the range [MIN, MAX]. */
84 tree min;
85 tree max;
87 /* Set of SSA names whose value ranges are equivalent to this one.
88 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
89 bitmap equiv;
92 typedef struct value_range_d value_range_t;
94 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
96 /* Set of SSA names found live during the RPO traversal of the function
97 for still active basic-blocks. */
98 static sbitmap *live;
100 /* Return true if the SSA name NAME is live on the edge E. */
102 static bool
103 live_on_edge (edge e, tree name)
105 return (live[e->dest->index]
106 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
109 /* Local functions. */
110 static int compare_values (tree val1, tree val2);
111 static int compare_values_warnv (tree val1, tree val2, bool *);
112 static void vrp_meet (value_range_t *, value_range_t *);
113 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
114 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
115 tree, tree, bool, bool *,
116 bool *);
118 /* Location information for ASSERT_EXPRs. Each instance of this
119 structure describes an ASSERT_EXPR for an SSA name. Since a single
120 SSA name may have more than one assertion associated with it, these
121 locations are kept in a linked list attached to the corresponding
122 SSA name. */
123 struct assert_locus_d
125 /* Basic block where the assertion would be inserted. */
126 basic_block bb;
128 /* Some assertions need to be inserted on an edge (e.g., assertions
129 generated by COND_EXPRs). In those cases, BB will be NULL. */
130 edge e;
132 /* Pointer to the statement that generated this assertion. */
133 gimple_stmt_iterator si;
135 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
136 enum tree_code comp_code;
138 /* Value being compared against. */
139 tree val;
141 /* Expression to compare. */
142 tree expr;
144 /* Next node in the linked list. */
145 struct assert_locus_d *next;
148 typedef struct assert_locus_d *assert_locus_t;
150 /* If bit I is present, it means that SSA name N_i has a list of
151 assertions that should be inserted in the IL. */
152 static bitmap need_assert_for;
154 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
155 holds a list of ASSERT_LOCUS_T nodes that describe where
156 ASSERT_EXPRs for SSA name N_I should be inserted. */
157 static assert_locus_t *asserts_for;
159 /* Value range array. After propagation, VR_VALUE[I] holds the range
160 of values that SSA name N_I may take. */
161 static unsigned num_vr_values;
162 static value_range_t **vr_value;
163 static bool values_propagated;
165 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
166 number of executable edges we saw the last time we visited the
167 node. */
168 static int *vr_phi_edge_counts;
170 typedef struct {
171 gimple stmt;
172 tree vec;
173 } switch_update;
175 static vec<edge> to_remove_edges;
176 static vec<switch_update> to_update_switch_stmts;
179 /* Return the maximum value for TYPE. */
181 static inline tree
182 vrp_val_max (const_tree type)
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
187 return TYPE_MAX_VALUE (type);
190 /* Return the minimum value for TYPE. */
192 static inline tree
193 vrp_val_min (const_tree type)
195 if (!INTEGRAL_TYPE_P (type))
196 return NULL_TREE;
198 return TYPE_MIN_VALUE (type);
201 /* Return whether VAL is equal to the maximum value of its type. This
202 will be true for a positive overflow infinity. We can't do a
203 simple equality comparison with TYPE_MAX_VALUE because C typedefs
204 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
205 to the integer constant with the same value in the type. */
207 static inline bool
208 vrp_val_is_max (const_tree val)
210 tree type_max = vrp_val_max (TREE_TYPE (val));
211 return (val == type_max
212 || (type_max != NULL_TREE
213 && operand_equal_p (val, type_max, 0)));
216 /* Return whether VAL is equal to the minimum value of its type. This
217 will be true for a negative overflow infinity. */
219 static inline bool
220 vrp_val_is_min (const_tree val)
222 tree type_min = vrp_val_min (TREE_TYPE (val));
223 return (val == type_min
224 || (type_min != NULL_TREE
225 && operand_equal_p (val, type_min, 0)));
229 /* Return whether TYPE should use an overflow infinity distinct from
230 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
231 represent a signed overflow during VRP computations. An infinity
232 is distinct from a half-range, which will go from some number to
233 TYPE_{MIN,MAX}_VALUE. */
235 static inline bool
236 needs_overflow_infinity (const_tree type)
238 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
241 /* Return whether TYPE can support our overflow infinity
242 representation: we use the TREE_OVERFLOW flag, which only exists
243 for constants. If TYPE doesn't support this, we don't optimize
244 cases which would require signed overflow--we drop them to
245 VARYING. */
247 static inline bool
248 supports_overflow_infinity (const_tree type)
250 tree min = vrp_val_min (type), max = vrp_val_max (type);
251 #ifdef ENABLE_CHECKING
252 gcc_assert (needs_overflow_infinity (type));
253 #endif
254 return (min != NULL_TREE
255 && CONSTANT_CLASS_P (min)
256 && max != NULL_TREE
257 && CONSTANT_CLASS_P (max));
260 /* VAL is the maximum or minimum value of a type. Return a
261 corresponding overflow infinity. */
263 static inline tree
264 make_overflow_infinity (tree val)
266 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
267 val = copy_node (val);
268 TREE_OVERFLOW (val) = 1;
269 return val;
272 /* Return a negative overflow infinity for TYPE. */
274 static inline tree
275 negative_overflow_infinity (tree type)
277 gcc_checking_assert (supports_overflow_infinity (type));
278 return make_overflow_infinity (vrp_val_min (type));
281 /* Return a positive overflow infinity for TYPE. */
283 static inline tree
284 positive_overflow_infinity (tree type)
286 gcc_checking_assert (supports_overflow_infinity (type));
287 return make_overflow_infinity (vrp_val_max (type));
290 /* Return whether VAL is a negative overflow infinity. */
292 static inline bool
293 is_negative_overflow_infinity (const_tree val)
295 return (needs_overflow_infinity (TREE_TYPE (val))
296 && CONSTANT_CLASS_P (val)
297 && TREE_OVERFLOW (val)
298 && vrp_val_is_min (val));
301 /* Return whether VAL is a positive overflow infinity. */
303 static inline bool
304 is_positive_overflow_infinity (const_tree val)
306 return (needs_overflow_infinity (TREE_TYPE (val))
307 && CONSTANT_CLASS_P (val)
308 && TREE_OVERFLOW (val)
309 && vrp_val_is_max (val));
312 /* Return whether VAL is a positive or negative overflow infinity. */
314 static inline bool
315 is_overflow_infinity (const_tree val)
317 return (needs_overflow_infinity (TREE_TYPE (val))
318 && CONSTANT_CLASS_P (val)
319 && TREE_OVERFLOW (val)
320 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
323 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
325 static inline bool
326 stmt_overflow_infinity (gimple stmt)
328 if (is_gimple_assign (stmt)
329 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
330 GIMPLE_SINGLE_RHS)
331 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
332 return false;
335 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
336 the same value with TREE_OVERFLOW clear. This can be used to avoid
337 confusing a regular value with an overflow value. */
339 static inline tree
340 avoid_overflow_infinity (tree val)
342 if (!is_overflow_infinity (val))
343 return val;
345 if (vrp_val_is_max (val))
346 return vrp_val_max (TREE_TYPE (val));
347 else
349 gcc_checking_assert (vrp_val_is_min (val));
350 return vrp_val_min (TREE_TYPE (val));
355 /* Return true if ARG is marked with the nonnull attribute in the
356 current function signature. */
358 static bool
359 nonnull_arg_p (const_tree arg)
361 tree t, attrs, fntype;
362 unsigned HOST_WIDE_INT arg_num;
364 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
366 /* The static chain decl is always non null. */
367 if (arg == cfun->static_chain_decl)
368 return true;
370 fntype = TREE_TYPE (current_function_decl);
371 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
373 attrs = lookup_attribute ("nonnull", attrs);
375 /* If "nonnull" wasn't specified, we know nothing about the argument. */
376 if (attrs == NULL_TREE)
377 return false;
379 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
380 if (TREE_VALUE (attrs) == NULL_TREE)
381 return true;
383 /* Get the position number for ARG in the function signature. */
384 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
386 t = DECL_CHAIN (t), arg_num++)
388 if (t == arg)
389 break;
392 gcc_assert (t == arg);
394 /* Now see if ARG_NUM is mentioned in the nonnull list. */
395 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
397 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
398 return true;
402 return false;
406 /* Set value range VR to VR_UNDEFINED. */
408 static inline void
409 set_value_range_to_undefined (value_range_t *vr)
411 vr->type = VR_UNDEFINED;
412 vr->min = vr->max = NULL_TREE;
413 if (vr->equiv)
414 bitmap_clear (vr->equiv);
418 /* Set value range VR to VR_VARYING. */
420 static inline void
421 set_value_range_to_varying (value_range_t *vr)
423 vr->type = VR_VARYING;
424 vr->min = vr->max = NULL_TREE;
425 if (vr->equiv)
426 bitmap_clear (vr->equiv);
430 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
432 static void
433 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
434 tree max, bitmap equiv)
436 #if defined ENABLE_CHECKING
437 /* Check the validity of the range. */
438 if (t == VR_RANGE || t == VR_ANTI_RANGE)
440 int cmp;
442 gcc_assert (min && max);
444 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
445 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
447 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
448 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
450 cmp = compare_values (min, max);
451 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
453 if (needs_overflow_infinity (TREE_TYPE (min)))
454 gcc_assert (!is_overflow_infinity (min)
455 || !is_overflow_infinity (max));
458 if (t == VR_UNDEFINED || t == VR_VARYING)
459 gcc_assert (min == NULL_TREE && max == NULL_TREE);
461 if (t == VR_UNDEFINED || t == VR_VARYING)
462 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
463 #endif
465 vr->type = t;
466 vr->min = min;
467 vr->max = max;
469 /* Since updating the equivalence set involves deep copying the
470 bitmaps, only do it if absolutely necessary. */
471 if (vr->equiv == NULL
472 && equiv != NULL)
473 vr->equiv = BITMAP_ALLOC (NULL);
475 if (equiv != vr->equiv)
477 if (equiv && !bitmap_empty_p (equiv))
478 bitmap_copy (vr->equiv, equiv);
479 else
480 bitmap_clear (vr->equiv);
485 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
486 This means adjusting T, MIN and MAX representing the case of a
487 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
488 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
489 In corner cases where MAX+1 or MIN-1 wraps this will fall back
490 to varying.
491 This routine exists to ease canonicalization in the case where we
492 extract ranges from var + CST op limit. */
494 static void
495 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
496 tree min, tree max, bitmap equiv)
498 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
499 if (t == VR_UNDEFINED)
501 set_value_range_to_undefined (vr);
502 return;
504 else if (t == VR_VARYING)
506 set_value_range_to_varying (vr);
507 return;
510 /* Nothing to canonicalize for symbolic ranges. */
511 if (TREE_CODE (min) != INTEGER_CST
512 || TREE_CODE (max) != INTEGER_CST)
514 set_value_range (vr, t, min, max, equiv);
515 return;
518 /* Wrong order for min and max, to swap them and the VR type we need
519 to adjust them. */
520 if (tree_int_cst_lt (max, min))
522 tree one, tmp;
524 /* For one bit precision if max < min, then the swapped
525 range covers all values, so for VR_RANGE it is varying and
526 for VR_ANTI_RANGE empty range, so drop to varying as well. */
527 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
529 set_value_range_to_varying (vr);
530 return;
533 one = build_int_cst (TREE_TYPE (min), 1);
534 tmp = int_const_binop (PLUS_EXPR, max, one);
535 max = int_const_binop (MINUS_EXPR, min, one);
536 min = tmp;
538 /* There's one corner case, if we had [C+1, C] before we now have
539 that again. But this represents an empty value range, so drop
540 to varying in this case. */
541 if (tree_int_cst_lt (max, min))
543 set_value_range_to_varying (vr);
544 return;
547 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
550 /* Anti-ranges that can be represented as ranges should be so. */
551 if (t == VR_ANTI_RANGE)
553 bool is_min = vrp_val_is_min (min);
554 bool is_max = vrp_val_is_max (max);
556 if (is_min && is_max)
558 /* We cannot deal with empty ranges, drop to varying.
559 ??? This could be VR_UNDEFINED instead. */
560 set_value_range_to_varying (vr);
561 return;
563 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
564 && (is_min || is_max))
566 /* Non-empty boolean ranges can always be represented
567 as a singleton range. */
568 if (is_min)
569 min = max = vrp_val_max (TREE_TYPE (min));
570 else
571 min = max = vrp_val_min (TREE_TYPE (min));
572 t = VR_RANGE;
574 else if (is_min
575 /* As a special exception preserve non-null ranges. */
576 && !(TYPE_UNSIGNED (TREE_TYPE (min))
577 && integer_zerop (max)))
579 tree one = build_int_cst (TREE_TYPE (max), 1);
580 min = int_const_binop (PLUS_EXPR, max, one);
581 max = vrp_val_max (TREE_TYPE (max));
582 t = VR_RANGE;
584 else if (is_max)
586 tree one = build_int_cst (TREE_TYPE (min), 1);
587 max = int_const_binop (MINUS_EXPR, min, one);
588 min = vrp_val_min (TREE_TYPE (min));
589 t = VR_RANGE;
593 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
594 if (needs_overflow_infinity (TREE_TYPE (min))
595 && is_overflow_infinity (min)
596 && is_overflow_infinity (max))
598 set_value_range_to_varying (vr);
599 return;
602 set_value_range (vr, t, min, max, equiv);
605 /* Copy value range FROM into value range TO. */
607 static inline void
608 copy_value_range (value_range_t *to, value_range_t *from)
610 set_value_range (to, from->type, from->min, from->max, from->equiv);
613 /* Set value range VR to a single value. This function is only called
614 with values we get from statements, and exists to clear the
615 TREE_OVERFLOW flag so that we don't think we have an overflow
616 infinity when we shouldn't. */
618 static inline void
619 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
621 gcc_assert (is_gimple_min_invariant (val));
622 if (TREE_OVERFLOW_P (val))
623 val = drop_tree_overflow (val);
624 set_value_range (vr, VR_RANGE, val, val, equiv);
627 /* Set value range VR to a non-negative range of type TYPE.
628 OVERFLOW_INFINITY indicates whether to use an overflow infinity
629 rather than TYPE_MAX_VALUE; this should be true if we determine
630 that the range is nonnegative based on the assumption that signed
631 overflow does not occur. */
633 static inline void
634 set_value_range_to_nonnegative (value_range_t *vr, tree type,
635 bool overflow_infinity)
637 tree zero;
639 if (overflow_infinity && !supports_overflow_infinity (type))
641 set_value_range_to_varying (vr);
642 return;
645 zero = build_int_cst (type, 0);
646 set_value_range (vr, VR_RANGE, zero,
647 (overflow_infinity
648 ? positive_overflow_infinity (type)
649 : TYPE_MAX_VALUE (type)),
650 vr->equiv);
653 /* Set value range VR to a non-NULL range of type TYPE. */
655 static inline void
656 set_value_range_to_nonnull (value_range_t *vr, tree type)
658 tree zero = build_int_cst (type, 0);
659 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
663 /* Set value range VR to a NULL range of type TYPE. */
665 static inline void
666 set_value_range_to_null (value_range_t *vr, tree type)
668 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
672 /* Set value range VR to a range of a truthvalue of type TYPE. */
674 static inline void
675 set_value_range_to_truthvalue (value_range_t *vr, tree type)
677 if (TYPE_PRECISION (type) == 1)
678 set_value_range_to_varying (vr);
679 else
680 set_value_range (vr, VR_RANGE,
681 build_int_cst (type, 0), build_int_cst (type, 1),
682 vr->equiv);
686 /* If abs (min) < abs (max), set VR to [-max, max], if
687 abs (min) >= abs (max), set VR to [-min, min]. */
689 static void
690 abs_extent_range (value_range_t *vr, tree min, tree max)
692 int cmp;
694 gcc_assert (TREE_CODE (min) == INTEGER_CST);
695 gcc_assert (TREE_CODE (max) == INTEGER_CST);
696 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
697 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
698 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
699 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
700 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
702 set_value_range_to_varying (vr);
703 return;
705 cmp = compare_values (min, max);
706 if (cmp == -1)
707 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
708 else if (cmp == 0 || cmp == 1)
710 max = min;
711 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
713 else
715 set_value_range_to_varying (vr);
716 return;
718 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
722 /* Return value range information for VAR.
724 If we have no values ranges recorded (ie, VRP is not running), then
725 return NULL. Otherwise create an empty range if none existed for VAR. */
727 static value_range_t *
728 get_value_range (const_tree var)
730 static const struct value_range_d vr_const_varying
731 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
732 value_range_t *vr;
733 tree sym;
734 unsigned ver = SSA_NAME_VERSION (var);
736 /* If we have no recorded ranges, then return NULL. */
737 if (! vr_value)
738 return NULL;
740 /* If we query the range for a new SSA name return an unmodifiable VARYING.
741 We should get here at most from the substitute-and-fold stage which
742 will never try to change values. */
743 if (ver >= num_vr_values)
744 return CONST_CAST (value_range_t *, &vr_const_varying);
746 vr = vr_value[ver];
747 if (vr)
748 return vr;
750 /* After propagation finished do not allocate new value-ranges. */
751 if (values_propagated)
752 return CONST_CAST (value_range_t *, &vr_const_varying);
754 /* Create a default value range. */
755 vr_value[ver] = vr = XCNEW (value_range_t);
757 /* Defer allocating the equivalence set. */
758 vr->equiv = NULL;
760 /* If VAR is a default definition of a parameter, the variable can
761 take any value in VAR's type. */
762 if (SSA_NAME_IS_DEFAULT_DEF (var))
764 sym = SSA_NAME_VAR (var);
765 if (TREE_CODE (sym) == PARM_DECL)
767 /* Try to use the "nonnull" attribute to create ~[0, 0]
768 anti-ranges for pointers. Note that this is only valid with
769 default definitions of PARM_DECLs. */
770 if (POINTER_TYPE_P (TREE_TYPE (sym))
771 && nonnull_arg_p (sym))
772 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
773 else
774 set_value_range_to_varying (vr);
776 else if (TREE_CODE (sym) == RESULT_DECL
777 && DECL_BY_REFERENCE (sym))
778 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
781 return vr;
784 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
786 static inline bool
787 vrp_operand_equal_p (const_tree val1, const_tree val2)
789 if (val1 == val2)
790 return true;
791 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
792 return false;
793 if (is_overflow_infinity (val1))
794 return is_overflow_infinity (val2);
795 return true;
798 /* Return true, if the bitmaps B1 and B2 are equal. */
800 static inline bool
801 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
803 return (b1 == b2
804 || ((!b1 || bitmap_empty_p (b1))
805 && (!b2 || bitmap_empty_p (b2)))
806 || (b1 && b2
807 && bitmap_equal_p (b1, b2)));
810 /* Update the value range and equivalence set for variable VAR to
811 NEW_VR. Return true if NEW_VR is different from VAR's previous
812 value.
814 NOTE: This function assumes that NEW_VR is a temporary value range
815 object created for the sole purpose of updating VAR's range. The
816 storage used by the equivalence set from NEW_VR will be freed by
817 this function. Do not call update_value_range when NEW_VR
818 is the range object associated with another SSA name. */
820 static inline bool
821 update_value_range (const_tree var, value_range_t *new_vr)
823 value_range_t *old_vr;
824 bool is_new;
826 /* Update the value range, if necessary. */
827 old_vr = get_value_range (var);
828 is_new = old_vr->type != new_vr->type
829 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
830 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
831 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
833 if (is_new)
835 /* Do not allow transitions up the lattice. The following
836 is slightly more awkward than just new_vr->type < old_vr->type
837 because VR_RANGE and VR_ANTI_RANGE need to be considered
838 the same. We may not have is_new when transitioning to
839 UNDEFINED or from VARYING. */
840 if (new_vr->type == VR_UNDEFINED
841 || old_vr->type == VR_VARYING)
842 set_value_range_to_varying (old_vr);
843 else
844 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
845 new_vr->equiv);
848 BITMAP_FREE (new_vr->equiv);
850 return is_new;
854 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
855 point where equivalence processing can be turned on/off. */
857 static void
858 add_equivalence (bitmap *equiv, const_tree var)
860 unsigned ver = SSA_NAME_VERSION (var);
861 value_range_t *vr = vr_value[ver];
863 if (*equiv == NULL)
864 *equiv = BITMAP_ALLOC (NULL);
865 bitmap_set_bit (*equiv, ver);
866 if (vr && vr->equiv)
867 bitmap_ior_into (*equiv, vr->equiv);
871 /* Return true if VR is ~[0, 0]. */
873 static inline bool
874 range_is_nonnull (value_range_t *vr)
876 return vr->type == VR_ANTI_RANGE
877 && integer_zerop (vr->min)
878 && integer_zerop (vr->max);
882 /* Return true if VR is [0, 0]. */
884 static inline bool
885 range_is_null (value_range_t *vr)
887 return vr->type == VR_RANGE
888 && integer_zerop (vr->min)
889 && integer_zerop (vr->max);
892 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
893 a singleton. */
895 static inline bool
896 range_int_cst_p (value_range_t *vr)
898 return (vr->type == VR_RANGE
899 && TREE_CODE (vr->max) == INTEGER_CST
900 && TREE_CODE (vr->min) == INTEGER_CST);
903 /* Return true if VR is a INTEGER_CST singleton. */
905 static inline bool
906 range_int_cst_singleton_p (value_range_t *vr)
908 return (range_int_cst_p (vr)
909 && !is_overflow_infinity (vr->min)
910 && !is_overflow_infinity (vr->max)
911 && tree_int_cst_equal (vr->min, vr->max));
914 /* Return true if value range VR involves at least one symbol. */
916 static inline bool
917 symbolic_range_p (value_range_t *vr)
919 return (!is_gimple_min_invariant (vr->min)
920 || !is_gimple_min_invariant (vr->max));
923 /* Return true if value range VR uses an overflow infinity. */
925 static inline bool
926 overflow_infinity_range_p (value_range_t *vr)
928 return (vr->type == VR_RANGE
929 && (is_overflow_infinity (vr->min)
930 || is_overflow_infinity (vr->max)));
933 /* Return false if we can not make a valid comparison based on VR;
934 this will be the case if it uses an overflow infinity and overflow
935 is not undefined (i.e., -fno-strict-overflow is in effect).
936 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
937 uses an overflow infinity. */
939 static bool
940 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
942 gcc_assert (vr->type == VR_RANGE);
943 if (is_overflow_infinity (vr->min))
945 *strict_overflow_p = true;
946 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
947 return false;
949 if (is_overflow_infinity (vr->max))
951 *strict_overflow_p = true;
952 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
953 return false;
955 return true;
959 /* Return true if the result of assignment STMT is know to be non-negative.
960 If the return value is based on the assumption that signed overflow is
961 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
962 *STRICT_OVERFLOW_P.*/
964 static bool
965 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
967 enum tree_code code = gimple_assign_rhs_code (stmt);
968 switch (get_gimple_rhs_class (code))
970 case GIMPLE_UNARY_RHS:
971 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
972 gimple_expr_type (stmt),
973 gimple_assign_rhs1 (stmt),
974 strict_overflow_p);
975 case GIMPLE_BINARY_RHS:
976 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
977 gimple_expr_type (stmt),
978 gimple_assign_rhs1 (stmt),
979 gimple_assign_rhs2 (stmt),
980 strict_overflow_p);
981 case GIMPLE_TERNARY_RHS:
982 return false;
983 case GIMPLE_SINGLE_RHS:
984 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
985 strict_overflow_p);
986 case GIMPLE_INVALID_RHS:
987 gcc_unreachable ();
988 default:
989 gcc_unreachable ();
993 /* Return true if return value of call STMT is know to be non-negative.
994 If the return value is based on the assumption that signed overflow is
995 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
996 *STRICT_OVERFLOW_P.*/
998 static bool
999 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1001 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1002 gimple_call_arg (stmt, 0) : NULL_TREE;
1003 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1004 gimple_call_arg (stmt, 1) : NULL_TREE;
1006 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1007 gimple_call_fndecl (stmt),
1008 arg0,
1009 arg1,
1010 strict_overflow_p);
1013 /* Return true if STMT is know to to compute a non-negative value.
1014 If the return value is based on the assumption that signed overflow is
1015 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1016 *STRICT_OVERFLOW_P.*/
1018 static bool
1019 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1021 switch (gimple_code (stmt))
1023 case GIMPLE_ASSIGN:
1024 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1025 case GIMPLE_CALL:
1026 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1027 default:
1028 gcc_unreachable ();
1032 /* Return true if the result of assignment STMT is know to be non-zero.
1033 If the return value is based on the assumption that signed overflow is
1034 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1035 *STRICT_OVERFLOW_P.*/
1037 static bool
1038 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1040 enum tree_code code = gimple_assign_rhs_code (stmt);
1041 switch (get_gimple_rhs_class (code))
1043 case GIMPLE_UNARY_RHS:
1044 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1045 gimple_expr_type (stmt),
1046 gimple_assign_rhs1 (stmt),
1047 strict_overflow_p);
1048 case GIMPLE_BINARY_RHS:
1049 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1050 gimple_expr_type (stmt),
1051 gimple_assign_rhs1 (stmt),
1052 gimple_assign_rhs2 (stmt),
1053 strict_overflow_p);
1054 case GIMPLE_TERNARY_RHS:
1055 return false;
1056 case GIMPLE_SINGLE_RHS:
1057 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1058 strict_overflow_p);
1059 case GIMPLE_INVALID_RHS:
1060 gcc_unreachable ();
1061 default:
1062 gcc_unreachable ();
1066 /* Return true if STMT is known to compute a non-zero value.
1067 If the return value is based on the assumption that signed overflow is
1068 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1069 *STRICT_OVERFLOW_P.*/
1071 static bool
1072 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1074 switch (gimple_code (stmt))
1076 case GIMPLE_ASSIGN:
1077 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1078 case GIMPLE_CALL:
1080 tree fndecl = gimple_call_fndecl (stmt);
1081 if (!fndecl) return false;
1082 if (flag_delete_null_pointer_checks && !flag_check_new
1083 && DECL_IS_OPERATOR_NEW (fndecl)
1084 && !TREE_NOTHROW (fndecl))
1085 return true;
1086 if (flag_delete_null_pointer_checks &&
1087 lookup_attribute ("returns_nonnull",
1088 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1089 return true;
1090 return gimple_alloca_call_p (stmt);
1092 default:
1093 gcc_unreachable ();
1097 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1098 obtained so far. */
1100 static bool
1101 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1103 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1104 return true;
1106 /* If we have an expression of the form &X->a, then the expression
1107 is nonnull if X is nonnull. */
1108 if (is_gimple_assign (stmt)
1109 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1111 tree expr = gimple_assign_rhs1 (stmt);
1112 tree base = get_base_address (TREE_OPERAND (expr, 0));
1114 if (base != NULL_TREE
1115 && TREE_CODE (base) == MEM_REF
1116 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1118 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1119 if (range_is_nonnull (vr))
1120 return true;
1124 return false;
1127 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1128 a gimple invariant, or SSA_NAME +- CST. */
1130 static bool
1131 valid_value_p (tree expr)
1133 if (TREE_CODE (expr) == SSA_NAME)
1134 return true;
1136 if (TREE_CODE (expr) == PLUS_EXPR
1137 || TREE_CODE (expr) == MINUS_EXPR)
1138 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1139 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1141 return is_gimple_min_invariant (expr);
1144 /* Return
1145 1 if VAL < VAL2
1146 0 if !(VAL < VAL2)
1147 -2 if those are incomparable. */
1148 static inline int
1149 operand_less_p (tree val, tree val2)
1151 /* LT is folded faster than GE and others. Inline the common case. */
1152 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1154 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1155 return INT_CST_LT_UNSIGNED (val, val2);
1156 else
1158 if (INT_CST_LT (val, val2))
1159 return 1;
1162 else
1164 tree tcmp;
1166 fold_defer_overflow_warnings ();
1168 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1170 fold_undefer_and_ignore_overflow_warnings ();
1172 if (!tcmp
1173 || TREE_CODE (tcmp) != INTEGER_CST)
1174 return -2;
1176 if (!integer_zerop (tcmp))
1177 return 1;
1180 /* val >= val2, not considering overflow infinity. */
1181 if (is_negative_overflow_infinity (val))
1182 return is_negative_overflow_infinity (val2) ? 0 : 1;
1183 else if (is_positive_overflow_infinity (val2))
1184 return is_positive_overflow_infinity (val) ? 0 : 1;
1186 return 0;
1189 /* Compare two values VAL1 and VAL2. Return
1191 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1192 -1 if VAL1 < VAL2,
1193 0 if VAL1 == VAL2,
1194 +1 if VAL1 > VAL2, and
1195 +2 if VAL1 != VAL2
1197 This is similar to tree_int_cst_compare but supports pointer values
1198 and values that cannot be compared at compile time.
1200 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1201 true if the return value is only valid if we assume that signed
1202 overflow is undefined. */
1204 static int
1205 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1207 if (val1 == val2)
1208 return 0;
1210 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1211 both integers. */
1212 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1213 == POINTER_TYPE_P (TREE_TYPE (val2)));
1214 /* Convert the two values into the same type. This is needed because
1215 sizetype causes sign extension even for unsigned types. */
1216 val2 = fold_convert (TREE_TYPE (val1), val2);
1217 STRIP_USELESS_TYPE_CONVERSION (val2);
1219 if ((TREE_CODE (val1) == SSA_NAME
1220 || TREE_CODE (val1) == PLUS_EXPR
1221 || TREE_CODE (val1) == MINUS_EXPR)
1222 && (TREE_CODE (val2) == SSA_NAME
1223 || TREE_CODE (val2) == PLUS_EXPR
1224 || TREE_CODE (val2) == MINUS_EXPR))
1226 tree n1, c1, n2, c2;
1227 enum tree_code code1, code2;
1229 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1230 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1231 same name, return -2. */
1232 if (TREE_CODE (val1) == SSA_NAME)
1234 code1 = SSA_NAME;
1235 n1 = val1;
1236 c1 = NULL_TREE;
1238 else
1240 code1 = TREE_CODE (val1);
1241 n1 = TREE_OPERAND (val1, 0);
1242 c1 = TREE_OPERAND (val1, 1);
1243 if (tree_int_cst_sgn (c1) == -1)
1245 if (is_negative_overflow_infinity (c1))
1246 return -2;
1247 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1248 if (!c1)
1249 return -2;
1250 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1254 if (TREE_CODE (val2) == SSA_NAME)
1256 code2 = SSA_NAME;
1257 n2 = val2;
1258 c2 = NULL_TREE;
1260 else
1262 code2 = TREE_CODE (val2);
1263 n2 = TREE_OPERAND (val2, 0);
1264 c2 = TREE_OPERAND (val2, 1);
1265 if (tree_int_cst_sgn (c2) == -1)
1267 if (is_negative_overflow_infinity (c2))
1268 return -2;
1269 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1270 if (!c2)
1271 return -2;
1272 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1276 /* Both values must use the same name. */
1277 if (n1 != n2)
1278 return -2;
1280 if (code1 == SSA_NAME
1281 && code2 == SSA_NAME)
1282 /* NAME == NAME */
1283 return 0;
1285 /* If overflow is defined we cannot simplify more. */
1286 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1287 return -2;
1289 if (strict_overflow_p != NULL
1290 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1291 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1292 *strict_overflow_p = true;
1294 if (code1 == SSA_NAME)
1296 if (code2 == PLUS_EXPR)
1297 /* NAME < NAME + CST */
1298 return -1;
1299 else if (code2 == MINUS_EXPR)
1300 /* NAME > NAME - CST */
1301 return 1;
1303 else if (code1 == PLUS_EXPR)
1305 if (code2 == SSA_NAME)
1306 /* NAME + CST > NAME */
1307 return 1;
1308 else if (code2 == PLUS_EXPR)
1309 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1310 return compare_values_warnv (c1, c2, strict_overflow_p);
1311 else if (code2 == MINUS_EXPR)
1312 /* NAME + CST1 > NAME - CST2 */
1313 return 1;
1315 else if (code1 == MINUS_EXPR)
1317 if (code2 == SSA_NAME)
1318 /* NAME - CST < NAME */
1319 return -1;
1320 else if (code2 == PLUS_EXPR)
1321 /* NAME - CST1 < NAME + CST2 */
1322 return -1;
1323 else if (code2 == MINUS_EXPR)
1324 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1325 C1 and C2 are swapped in the call to compare_values. */
1326 return compare_values_warnv (c2, c1, strict_overflow_p);
1329 gcc_unreachable ();
1332 /* We cannot compare non-constants. */
1333 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1334 return -2;
1336 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1338 /* We cannot compare overflowed values, except for overflow
1339 infinities. */
1340 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1342 if (strict_overflow_p != NULL)
1343 *strict_overflow_p = true;
1344 if (is_negative_overflow_infinity (val1))
1345 return is_negative_overflow_infinity (val2) ? 0 : -1;
1346 else if (is_negative_overflow_infinity (val2))
1347 return 1;
1348 else if (is_positive_overflow_infinity (val1))
1349 return is_positive_overflow_infinity (val2) ? 0 : 1;
1350 else if (is_positive_overflow_infinity (val2))
1351 return -1;
1352 return -2;
1355 return tree_int_cst_compare (val1, val2);
1357 else
1359 tree t;
1361 /* First see if VAL1 and VAL2 are not the same. */
1362 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1363 return 0;
1365 /* If VAL1 is a lower address than VAL2, return -1. */
1366 if (operand_less_p (val1, val2) == 1)
1367 return -1;
1369 /* If VAL1 is a higher address than VAL2, return +1. */
1370 if (operand_less_p (val2, val1) == 1)
1371 return 1;
1373 /* If VAL1 is different than VAL2, return +2.
1374 For integer constants we either have already returned -1 or 1
1375 or they are equivalent. We still might succeed in proving
1376 something about non-trivial operands. */
1377 if (TREE_CODE (val1) != INTEGER_CST
1378 || TREE_CODE (val2) != INTEGER_CST)
1380 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1381 if (t && integer_onep (t))
1382 return 2;
1385 return -2;
1389 /* Compare values like compare_values_warnv, but treat comparisons of
1390 nonconstants which rely on undefined overflow as incomparable. */
1392 static int
1393 compare_values (tree val1, tree val2)
1395 bool sop;
1396 int ret;
1398 sop = false;
1399 ret = compare_values_warnv (val1, val2, &sop);
1400 if (sop
1401 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1402 ret = -2;
1403 return ret;
1407 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1408 0 if VAL is not inside [MIN, MAX],
1409 -2 if we cannot tell either way.
1411 Benchmark compile/20001226-1.c compilation time after changing this
1412 function. */
1414 static inline int
1415 value_inside_range (tree val, tree min, tree max)
1417 int cmp1, cmp2;
1419 cmp1 = operand_less_p (val, min);
1420 if (cmp1 == -2)
1421 return -2;
1422 if (cmp1 == 1)
1423 return 0;
1425 cmp2 = operand_less_p (max, val);
1426 if (cmp2 == -2)
1427 return -2;
1429 return !cmp2;
1433 /* Return true if value ranges VR0 and VR1 have a non-empty
1434 intersection.
1436 Benchmark compile/20001226-1.c compilation time after changing this
1437 function.
1440 static inline bool
1441 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1443 /* The value ranges do not intersect if the maximum of the first range is
1444 less than the minimum of the second range or vice versa.
1445 When those relations are unknown, we can't do any better. */
1446 if (operand_less_p (vr0->max, vr1->min) != 0)
1447 return false;
1448 if (operand_less_p (vr1->max, vr0->min) != 0)
1449 return false;
1450 return true;
1454 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1455 include the value zero, -2 if we cannot tell. */
1457 static inline int
1458 range_includes_zero_p (tree min, tree max)
1460 tree zero = build_int_cst (TREE_TYPE (min), 0);
1461 return value_inside_range (zero, min, max);
1464 /* Return true if *VR is know to only contain nonnegative values. */
1466 static inline bool
1467 value_range_nonnegative_p (value_range_t *vr)
1469 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1470 which would return a useful value should be encoded as a
1471 VR_RANGE. */
1472 if (vr->type == VR_RANGE)
1474 int result = compare_values (vr->min, integer_zero_node);
1475 return (result == 0 || result == 1);
1478 return false;
1481 /* If *VR has a value rante that is a single constant value return that,
1482 otherwise return NULL_TREE. */
1484 static tree
1485 value_range_constant_singleton (value_range_t *vr)
1487 if (vr->type == VR_RANGE
1488 && operand_equal_p (vr->min, vr->max, 0)
1489 && is_gimple_min_invariant (vr->min))
1490 return vr->min;
1492 return NULL_TREE;
1495 /* If OP has a value range with a single constant value return that,
1496 otherwise return NULL_TREE. This returns OP itself if OP is a
1497 constant. */
1499 static tree
1500 op_with_constant_singleton_value_range (tree op)
1502 if (is_gimple_min_invariant (op))
1503 return op;
1505 if (TREE_CODE (op) != SSA_NAME)
1506 return NULL_TREE;
1508 return value_range_constant_singleton (get_value_range (op));
1511 /* Return true if op is in a boolean [0, 1] value-range. */
1513 static bool
1514 op_with_boolean_value_range_p (tree op)
1516 value_range_t *vr;
1518 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1519 return true;
1521 if (integer_zerop (op)
1522 || integer_onep (op))
1523 return true;
1525 if (TREE_CODE (op) != SSA_NAME)
1526 return false;
1528 vr = get_value_range (op);
1529 return (vr->type == VR_RANGE
1530 && integer_zerop (vr->min)
1531 && integer_onep (vr->max));
1534 /* Extract value range information from an ASSERT_EXPR EXPR and store
1535 it in *VR_P. */
1537 static void
1538 extract_range_from_assert (value_range_t *vr_p, tree expr)
1540 tree var, cond, limit, min, max, type;
1541 value_range_t *limit_vr;
1542 enum tree_code cond_code;
1544 var = ASSERT_EXPR_VAR (expr);
1545 cond = ASSERT_EXPR_COND (expr);
1547 gcc_assert (COMPARISON_CLASS_P (cond));
1549 /* Find VAR in the ASSERT_EXPR conditional. */
1550 if (var == TREE_OPERAND (cond, 0)
1551 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1552 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1554 /* If the predicate is of the form VAR COMP LIMIT, then we just
1555 take LIMIT from the RHS and use the same comparison code. */
1556 cond_code = TREE_CODE (cond);
1557 limit = TREE_OPERAND (cond, 1);
1558 cond = TREE_OPERAND (cond, 0);
1560 else
1562 /* If the predicate is of the form LIMIT COMP VAR, then we need
1563 to flip around the comparison code to create the proper range
1564 for VAR. */
1565 cond_code = swap_tree_comparison (TREE_CODE (cond));
1566 limit = TREE_OPERAND (cond, 0);
1567 cond = TREE_OPERAND (cond, 1);
1570 limit = avoid_overflow_infinity (limit);
1572 type = TREE_TYPE (var);
1573 gcc_assert (limit != var);
1575 /* For pointer arithmetic, we only keep track of pointer equality
1576 and inequality. */
1577 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1579 set_value_range_to_varying (vr_p);
1580 return;
1583 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1584 try to use LIMIT's range to avoid creating symbolic ranges
1585 unnecessarily. */
1586 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1588 /* LIMIT's range is only interesting if it has any useful information. */
1589 if (limit_vr
1590 && (limit_vr->type == VR_UNDEFINED
1591 || limit_vr->type == VR_VARYING
1592 || symbolic_range_p (limit_vr)))
1593 limit_vr = NULL;
1595 /* Initially, the new range has the same set of equivalences of
1596 VAR's range. This will be revised before returning the final
1597 value. Since assertions may be chained via mutually exclusive
1598 predicates, we will need to trim the set of equivalences before
1599 we are done. */
1600 gcc_assert (vr_p->equiv == NULL);
1601 add_equivalence (&vr_p->equiv, var);
1603 /* Extract a new range based on the asserted comparison for VAR and
1604 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1605 will only use it for equality comparisons (EQ_EXPR). For any
1606 other kind of assertion, we cannot derive a range from LIMIT's
1607 anti-range that can be used to describe the new range. For
1608 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1609 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1610 no single range for x_2 that could describe LE_EXPR, so we might
1611 as well build the range [b_4, +INF] for it.
1612 One special case we handle is extracting a range from a
1613 range test encoded as (unsigned)var + CST <= limit. */
1614 if (TREE_CODE (cond) == NOP_EXPR
1615 || TREE_CODE (cond) == PLUS_EXPR)
1617 if (TREE_CODE (cond) == PLUS_EXPR)
1619 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1620 TREE_OPERAND (cond, 1));
1621 max = int_const_binop (PLUS_EXPR, limit, min);
1622 cond = TREE_OPERAND (cond, 0);
1624 else
1626 min = build_int_cst (TREE_TYPE (var), 0);
1627 max = limit;
1630 /* Make sure to not set TREE_OVERFLOW on the final type
1631 conversion. We are willingly interpreting large positive
1632 unsigned values as negative singed values here. */
1633 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1634 0, false);
1635 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1636 0, false);
1638 /* We can transform a max, min range to an anti-range or
1639 vice-versa. Use set_and_canonicalize_value_range which does
1640 this for us. */
1641 if (cond_code == LE_EXPR)
1642 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1643 min, max, vr_p->equiv);
1644 else if (cond_code == GT_EXPR)
1645 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1646 min, max, vr_p->equiv);
1647 else
1648 gcc_unreachable ();
1650 else if (cond_code == EQ_EXPR)
1652 enum value_range_type range_type;
1654 if (limit_vr)
1656 range_type = limit_vr->type;
1657 min = limit_vr->min;
1658 max = limit_vr->max;
1660 else
1662 range_type = VR_RANGE;
1663 min = limit;
1664 max = limit;
1667 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1669 /* When asserting the equality VAR == LIMIT and LIMIT is another
1670 SSA name, the new range will also inherit the equivalence set
1671 from LIMIT. */
1672 if (TREE_CODE (limit) == SSA_NAME)
1673 add_equivalence (&vr_p->equiv, limit);
1675 else if (cond_code == NE_EXPR)
1677 /* As described above, when LIMIT's range is an anti-range and
1678 this assertion is an inequality (NE_EXPR), then we cannot
1679 derive anything from the anti-range. For instance, if
1680 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1681 not imply that VAR's range is [0, 0]. So, in the case of
1682 anti-ranges, we just assert the inequality using LIMIT and
1683 not its anti-range.
1685 If LIMIT_VR is a range, we can only use it to build a new
1686 anti-range if LIMIT_VR is a single-valued range. For
1687 instance, if LIMIT_VR is [0, 1], the predicate
1688 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1689 Rather, it means that for value 0 VAR should be ~[0, 0]
1690 and for value 1, VAR should be ~[1, 1]. We cannot
1691 represent these ranges.
1693 The only situation in which we can build a valid
1694 anti-range is when LIMIT_VR is a single-valued range
1695 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1696 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1697 if (limit_vr
1698 && limit_vr->type == VR_RANGE
1699 && compare_values (limit_vr->min, limit_vr->max) == 0)
1701 min = limit_vr->min;
1702 max = limit_vr->max;
1704 else
1706 /* In any other case, we cannot use LIMIT's range to build a
1707 valid anti-range. */
1708 min = max = limit;
1711 /* If MIN and MAX cover the whole range for their type, then
1712 just use the original LIMIT. */
1713 if (INTEGRAL_TYPE_P (type)
1714 && vrp_val_is_min (min)
1715 && vrp_val_is_max (max))
1716 min = max = limit;
1718 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1719 min, max, vr_p->equiv);
1721 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1723 min = TYPE_MIN_VALUE (type);
1725 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1726 max = limit;
1727 else
1729 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1730 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1731 LT_EXPR. */
1732 max = limit_vr->max;
1735 /* If the maximum value forces us to be out of bounds, simply punt.
1736 It would be pointless to try and do anything more since this
1737 all should be optimized away above us. */
1738 if ((cond_code == LT_EXPR
1739 && compare_values (max, min) == 0)
1740 || is_overflow_infinity (max))
1741 set_value_range_to_varying (vr_p);
1742 else
1744 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1745 if (cond_code == LT_EXPR)
1747 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1748 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1749 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1750 build_int_cst (TREE_TYPE (max), -1));
1751 else
1752 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1753 build_int_cst (TREE_TYPE (max), 1));
1754 if (EXPR_P (max))
1755 TREE_NO_WARNING (max) = 1;
1758 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1761 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1763 max = TYPE_MAX_VALUE (type);
1765 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1766 min = limit;
1767 else
1769 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1770 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1771 GT_EXPR. */
1772 min = limit_vr->min;
1775 /* If the minimum value forces us to be out of bounds, simply punt.
1776 It would be pointless to try and do anything more since this
1777 all should be optimized away above us. */
1778 if ((cond_code == GT_EXPR
1779 && compare_values (min, max) == 0)
1780 || is_overflow_infinity (min))
1781 set_value_range_to_varying (vr_p);
1782 else
1784 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1785 if (cond_code == GT_EXPR)
1787 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1788 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1789 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1790 build_int_cst (TREE_TYPE (min), -1));
1791 else
1792 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1793 build_int_cst (TREE_TYPE (min), 1));
1794 if (EXPR_P (min))
1795 TREE_NO_WARNING (min) = 1;
1798 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1801 else
1802 gcc_unreachable ();
1804 /* Finally intersect the new range with what we already know about var. */
1805 vrp_intersect_ranges (vr_p, get_value_range (var));
1809 /* Extract range information from SSA name VAR and store it in VR. If
1810 VAR has an interesting range, use it. Otherwise, create the
1811 range [VAR, VAR] and return it. This is useful in situations where
1812 we may have conditionals testing values of VARYING names. For
1813 instance,
1815 x_3 = y_5;
1816 if (x_3 > y_5)
1819 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1820 always false. */
1822 static void
1823 extract_range_from_ssa_name (value_range_t *vr, tree var)
1825 value_range_t *var_vr = get_value_range (var);
1827 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1828 copy_value_range (vr, var_vr);
1829 else
1830 set_value_range (vr, VR_RANGE, var, var, NULL);
1832 add_equivalence (&vr->equiv, var);
1836 /* Wrapper around int_const_binop. If the operation overflows and we
1837 are not using wrapping arithmetic, then adjust the result to be
1838 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1839 NULL_TREE if we need to use an overflow infinity representation but
1840 the type does not support it. */
1842 static tree
1843 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1845 tree res;
1847 res = int_const_binop (code, val1, val2);
1849 /* If we are using unsigned arithmetic, operate symbolically
1850 on -INF and +INF as int_const_binop only handles signed overflow. */
1851 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1853 int checkz = compare_values (res, val1);
1854 bool overflow = false;
1856 /* Ensure that res = val1 [+*] val2 >= val1
1857 or that res = val1 - val2 <= val1. */
1858 if ((code == PLUS_EXPR
1859 && !(checkz == 1 || checkz == 0))
1860 || (code == MINUS_EXPR
1861 && !(checkz == 0 || checkz == -1)))
1863 overflow = true;
1865 /* Checking for multiplication overflow is done by dividing the
1866 output of the multiplication by the first input of the
1867 multiplication. If the result of that division operation is
1868 not equal to the second input of the multiplication, then the
1869 multiplication overflowed. */
1870 else if (code == MULT_EXPR && !integer_zerop (val1))
1872 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1873 res,
1874 val1);
1875 int check = compare_values (tmp, val2);
1877 if (check != 0)
1878 overflow = true;
1881 if (overflow)
1883 res = copy_node (res);
1884 TREE_OVERFLOW (res) = 1;
1888 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1889 /* If the singed operation wraps then int_const_binop has done
1890 everything we want. */
1892 else if ((TREE_OVERFLOW (res)
1893 && !TREE_OVERFLOW (val1)
1894 && !TREE_OVERFLOW (val2))
1895 || is_overflow_infinity (val1)
1896 || is_overflow_infinity (val2))
1898 /* If the operation overflowed but neither VAL1 nor VAL2 are
1899 overflown, return -INF or +INF depending on the operation
1900 and the combination of signs of the operands. */
1901 int sgn1 = tree_int_cst_sgn (val1);
1902 int sgn2 = tree_int_cst_sgn (val2);
1904 if (needs_overflow_infinity (TREE_TYPE (res))
1905 && !supports_overflow_infinity (TREE_TYPE (res)))
1906 return NULL_TREE;
1908 /* We have to punt on adding infinities of different signs,
1909 since we can't tell what the sign of the result should be.
1910 Likewise for subtracting infinities of the same sign. */
1911 if (((code == PLUS_EXPR && sgn1 != sgn2)
1912 || (code == MINUS_EXPR && sgn1 == sgn2))
1913 && is_overflow_infinity (val1)
1914 && is_overflow_infinity (val2))
1915 return NULL_TREE;
1917 /* Don't try to handle division or shifting of infinities. */
1918 if ((code == TRUNC_DIV_EXPR
1919 || code == FLOOR_DIV_EXPR
1920 || code == CEIL_DIV_EXPR
1921 || code == EXACT_DIV_EXPR
1922 || code == ROUND_DIV_EXPR
1923 || code == RSHIFT_EXPR)
1924 && (is_overflow_infinity (val1)
1925 || is_overflow_infinity (val2)))
1926 return NULL_TREE;
1928 /* Notice that we only need to handle the restricted set of
1929 operations handled by extract_range_from_binary_expr.
1930 Among them, only multiplication, addition and subtraction
1931 can yield overflow without overflown operands because we
1932 are working with integral types only... except in the
1933 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1934 for division too. */
1936 /* For multiplication, the sign of the overflow is given
1937 by the comparison of the signs of the operands. */
1938 if ((code == MULT_EXPR && sgn1 == sgn2)
1939 /* For addition, the operands must be of the same sign
1940 to yield an overflow. Its sign is therefore that
1941 of one of the operands, for example the first. For
1942 infinite operands X + -INF is negative, not positive. */
1943 || (code == PLUS_EXPR
1944 && (sgn1 >= 0
1945 ? !is_negative_overflow_infinity (val2)
1946 : is_positive_overflow_infinity (val2)))
1947 /* For subtraction, non-infinite operands must be of
1948 different signs to yield an overflow. Its sign is
1949 therefore that of the first operand or the opposite of
1950 that of the second operand. A first operand of 0 counts
1951 as positive here, for the corner case 0 - (-INF), which
1952 overflows, but must yield +INF. For infinite operands 0
1953 - INF is negative, not positive. */
1954 || (code == MINUS_EXPR
1955 && (sgn1 >= 0
1956 ? !is_positive_overflow_infinity (val2)
1957 : is_negative_overflow_infinity (val2)))
1958 /* We only get in here with positive shift count, so the
1959 overflow direction is the same as the sign of val1.
1960 Actually rshift does not overflow at all, but we only
1961 handle the case of shifting overflowed -INF and +INF. */
1962 || (code == RSHIFT_EXPR
1963 && sgn1 >= 0)
1964 /* For division, the only case is -INF / -1 = +INF. */
1965 || code == TRUNC_DIV_EXPR
1966 || code == FLOOR_DIV_EXPR
1967 || code == CEIL_DIV_EXPR
1968 || code == EXACT_DIV_EXPR
1969 || code == ROUND_DIV_EXPR)
1970 return (needs_overflow_infinity (TREE_TYPE (res))
1971 ? positive_overflow_infinity (TREE_TYPE (res))
1972 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1973 else
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? negative_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1979 return res;
1983 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1984 bitmask if some bit is unset, it means for all numbers in the range
1985 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1986 bitmask if some bit is set, it means for all numbers in the range
1987 the bit is 1, otherwise it might be 0 or 1. */
1989 static bool
1990 zero_nonzero_bits_from_vr (value_range_t *vr,
1991 double_int *may_be_nonzero,
1992 double_int *must_be_nonzero)
1994 *may_be_nonzero = double_int_minus_one;
1995 *must_be_nonzero = double_int_zero;
1996 if (!range_int_cst_p (vr)
1997 || is_overflow_infinity (vr->min)
1998 || is_overflow_infinity (vr->max))
1999 return false;
2001 if (range_int_cst_singleton_p (vr))
2003 *may_be_nonzero = tree_to_double_int (vr->min);
2004 *must_be_nonzero = *may_be_nonzero;
2006 else if (tree_int_cst_sgn (vr->min) >= 0
2007 || tree_int_cst_sgn (vr->max) < 0)
2009 double_int dmin = tree_to_double_int (vr->min);
2010 double_int dmax = tree_to_double_int (vr->max);
2011 double_int xor_mask = dmin ^ dmax;
2012 *may_be_nonzero = dmin | dmax;
2013 *must_be_nonzero = dmin & dmax;
2014 if (xor_mask.high != 0)
2016 unsigned HOST_WIDE_INT mask
2017 = ((unsigned HOST_WIDE_INT) 1
2018 << floor_log2 (xor_mask.high)) - 1;
2019 may_be_nonzero->low = ALL_ONES;
2020 may_be_nonzero->high |= mask;
2021 must_be_nonzero->low = 0;
2022 must_be_nonzero->high &= ~mask;
2024 else if (xor_mask.low != 0)
2026 unsigned HOST_WIDE_INT mask
2027 = ((unsigned HOST_WIDE_INT) 1
2028 << floor_log2 (xor_mask.low)) - 1;
2029 may_be_nonzero->low |= mask;
2030 must_be_nonzero->low &= ~mask;
2034 return true;
2037 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2038 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2039 false otherwise. If *AR can be represented with a single range
2040 *VR1 will be VR_UNDEFINED. */
2042 static bool
2043 ranges_from_anti_range (value_range_t *ar,
2044 value_range_t *vr0, value_range_t *vr1)
2046 tree type = TREE_TYPE (ar->min);
2048 vr0->type = VR_UNDEFINED;
2049 vr1->type = VR_UNDEFINED;
2051 if (ar->type != VR_ANTI_RANGE
2052 || TREE_CODE (ar->min) != INTEGER_CST
2053 || TREE_CODE (ar->max) != INTEGER_CST
2054 || !vrp_val_min (type)
2055 || !vrp_val_max (type))
2056 return false;
2058 if (!vrp_val_is_min (ar->min))
2060 vr0->type = VR_RANGE;
2061 vr0->min = vrp_val_min (type);
2062 vr0->max
2063 = double_int_to_tree (type,
2064 tree_to_double_int (ar->min) - double_int_one);
2066 if (!vrp_val_is_max (ar->max))
2068 vr1->type = VR_RANGE;
2069 vr1->min
2070 = double_int_to_tree (type,
2071 tree_to_double_int (ar->max) + double_int_one);
2072 vr1->max = vrp_val_max (type);
2074 if (vr0->type == VR_UNDEFINED)
2076 *vr0 = *vr1;
2077 vr1->type = VR_UNDEFINED;
2080 return vr0->type != VR_UNDEFINED;
2083 /* Helper to extract a value-range *VR for a multiplicative operation
2084 *VR0 CODE *VR1. */
2086 static void
2087 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2088 enum tree_code code,
2089 value_range_t *vr0, value_range_t *vr1)
2091 enum value_range_type type;
2092 tree val[4];
2093 size_t i;
2094 tree min, max;
2095 bool sop;
2096 int cmp;
2098 /* Multiplications, divisions and shifts are a bit tricky to handle,
2099 depending on the mix of signs we have in the two ranges, we
2100 need to operate on different values to get the minimum and
2101 maximum values for the new range. One approach is to figure
2102 out all the variations of range combinations and do the
2103 operations.
2105 However, this involves several calls to compare_values and it
2106 is pretty convoluted. It's simpler to do the 4 operations
2107 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2108 MAX1) and then figure the smallest and largest values to form
2109 the new range. */
2110 gcc_assert (code == MULT_EXPR
2111 || code == TRUNC_DIV_EXPR
2112 || code == FLOOR_DIV_EXPR
2113 || code == CEIL_DIV_EXPR
2114 || code == EXACT_DIV_EXPR
2115 || code == ROUND_DIV_EXPR
2116 || code == RSHIFT_EXPR
2117 || code == LSHIFT_EXPR);
2118 gcc_assert ((vr0->type == VR_RANGE
2119 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2120 && vr0->type == vr1->type);
2122 type = vr0->type;
2124 /* Compute the 4 cross operations. */
2125 sop = false;
2126 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2127 if (val[0] == NULL_TREE)
2128 sop = true;
2130 if (vr1->max == vr1->min)
2131 val[1] = NULL_TREE;
2132 else
2134 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2135 if (val[1] == NULL_TREE)
2136 sop = true;
2139 if (vr0->max == vr0->min)
2140 val[2] = NULL_TREE;
2141 else
2143 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2144 if (val[2] == NULL_TREE)
2145 sop = true;
2148 if (vr0->min == vr0->max || vr1->min == vr1->max)
2149 val[3] = NULL_TREE;
2150 else
2152 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2153 if (val[3] == NULL_TREE)
2154 sop = true;
2157 if (sop)
2159 set_value_range_to_varying (vr);
2160 return;
2163 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2164 of VAL[i]. */
2165 min = val[0];
2166 max = val[0];
2167 for (i = 1; i < 4; i++)
2169 if (!is_gimple_min_invariant (min)
2170 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2171 || !is_gimple_min_invariant (max)
2172 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2173 break;
2175 if (val[i])
2177 if (!is_gimple_min_invariant (val[i])
2178 || (TREE_OVERFLOW (val[i])
2179 && !is_overflow_infinity (val[i])))
2181 /* If we found an overflowed value, set MIN and MAX
2182 to it so that we set the resulting range to
2183 VARYING. */
2184 min = max = val[i];
2185 break;
2188 if (compare_values (val[i], min) == -1)
2189 min = val[i];
2191 if (compare_values (val[i], max) == 1)
2192 max = val[i];
2196 /* If either MIN or MAX overflowed, then set the resulting range to
2197 VARYING. But we do accept an overflow infinity
2198 representation. */
2199 if (min == NULL_TREE
2200 || !is_gimple_min_invariant (min)
2201 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2202 || max == NULL_TREE
2203 || !is_gimple_min_invariant (max)
2204 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2206 set_value_range_to_varying (vr);
2207 return;
2210 /* We punt if:
2211 1) [-INF, +INF]
2212 2) [-INF, +-INF(OVF)]
2213 3) [+-INF(OVF), +INF]
2214 4) [+-INF(OVF), +-INF(OVF)]
2215 We learn nothing when we have INF and INF(OVF) on both sides.
2216 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2217 overflow. */
2218 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2219 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2221 set_value_range_to_varying (vr);
2222 return;
2225 cmp = compare_values (min, max);
2226 if (cmp == -2 || cmp == 1)
2228 /* If the new range has its limits swapped around (MIN > MAX),
2229 then the operation caused one of them to wrap around, mark
2230 the new range VARYING. */
2231 set_value_range_to_varying (vr);
2233 else
2234 set_value_range (vr, type, min, max, NULL);
2237 /* Some quadruple precision helpers. */
2238 static int
2239 quad_int_cmp (double_int l0, double_int h0,
2240 double_int l1, double_int h1, bool uns)
2242 int c = h0.cmp (h1, uns);
2243 if (c != 0) return c;
2244 return l0.ucmp (l1);
2247 static void
2248 quad_int_pair_sort (double_int *l0, double_int *h0,
2249 double_int *l1, double_int *h1, bool uns)
2251 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2253 double_int tmp;
2254 tmp = *l0; *l0 = *l1; *l1 = tmp;
2255 tmp = *h0; *h0 = *h1; *h1 = tmp;
2259 /* Extract range information from a binary operation CODE based on
2260 the ranges of each of its operands, *VR0 and *VR1 with resulting
2261 type EXPR_TYPE. The resulting range is stored in *VR. */
2263 static void
2264 extract_range_from_binary_expr_1 (value_range_t *vr,
2265 enum tree_code code, tree expr_type,
2266 value_range_t *vr0_, value_range_t *vr1_)
2268 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2269 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2270 enum value_range_type type;
2271 tree min = NULL_TREE, max = NULL_TREE;
2272 int cmp;
2274 if (!INTEGRAL_TYPE_P (expr_type)
2275 && !POINTER_TYPE_P (expr_type))
2277 set_value_range_to_varying (vr);
2278 return;
2281 /* Not all binary expressions can be applied to ranges in a
2282 meaningful way. Handle only arithmetic operations. */
2283 if (code != PLUS_EXPR
2284 && code != MINUS_EXPR
2285 && code != POINTER_PLUS_EXPR
2286 && code != MULT_EXPR
2287 && code != TRUNC_DIV_EXPR
2288 && code != FLOOR_DIV_EXPR
2289 && code != CEIL_DIV_EXPR
2290 && code != EXACT_DIV_EXPR
2291 && code != ROUND_DIV_EXPR
2292 && code != TRUNC_MOD_EXPR
2293 && code != RSHIFT_EXPR
2294 && code != LSHIFT_EXPR
2295 && code != MIN_EXPR
2296 && code != MAX_EXPR
2297 && code != BIT_AND_EXPR
2298 && code != BIT_IOR_EXPR
2299 && code != BIT_XOR_EXPR)
2301 set_value_range_to_varying (vr);
2302 return;
2305 /* If both ranges are UNDEFINED, so is the result. */
2306 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2308 set_value_range_to_undefined (vr);
2309 return;
2311 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2312 code. At some point we may want to special-case operations that
2313 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2314 operand. */
2315 else if (vr0.type == VR_UNDEFINED)
2316 set_value_range_to_varying (&vr0);
2317 else if (vr1.type == VR_UNDEFINED)
2318 set_value_range_to_varying (&vr1);
2320 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2321 and express ~[] op X as ([]' op X) U ([]'' op X). */
2322 if (vr0.type == VR_ANTI_RANGE
2323 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2325 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2326 if (vrtem1.type != VR_UNDEFINED)
2328 value_range_t vrres = VR_INITIALIZER;
2329 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2330 &vrtem1, vr1_);
2331 vrp_meet (vr, &vrres);
2333 return;
2335 /* Likewise for X op ~[]. */
2336 if (vr1.type == VR_ANTI_RANGE
2337 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2339 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2340 if (vrtem1.type != VR_UNDEFINED)
2342 value_range_t vrres = VR_INITIALIZER;
2343 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2344 vr0_, &vrtem1);
2345 vrp_meet (vr, &vrres);
2347 return;
2350 /* The type of the resulting value range defaults to VR0.TYPE. */
2351 type = vr0.type;
2353 /* Refuse to operate on VARYING ranges, ranges of different kinds
2354 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2355 because we may be able to derive a useful range even if one of
2356 the operands is VR_VARYING or symbolic range. Similarly for
2357 divisions. TODO, we may be able to derive anti-ranges in
2358 some cases. */
2359 if (code != BIT_AND_EXPR
2360 && code != BIT_IOR_EXPR
2361 && code != TRUNC_DIV_EXPR
2362 && code != FLOOR_DIV_EXPR
2363 && code != CEIL_DIV_EXPR
2364 && code != EXACT_DIV_EXPR
2365 && code != ROUND_DIV_EXPR
2366 && code != TRUNC_MOD_EXPR
2367 && code != MIN_EXPR
2368 && code != MAX_EXPR
2369 && (vr0.type == VR_VARYING
2370 || vr1.type == VR_VARYING
2371 || vr0.type != vr1.type
2372 || symbolic_range_p (&vr0)
2373 || symbolic_range_p (&vr1)))
2375 set_value_range_to_varying (vr);
2376 return;
2379 /* Now evaluate the expression to determine the new range. */
2380 if (POINTER_TYPE_P (expr_type))
2382 if (code == MIN_EXPR || code == MAX_EXPR)
2384 /* For MIN/MAX expressions with pointers, we only care about
2385 nullness, if both are non null, then the result is nonnull.
2386 If both are null, then the result is null. Otherwise they
2387 are varying. */
2388 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2389 set_value_range_to_nonnull (vr, expr_type);
2390 else if (range_is_null (&vr0) && range_is_null (&vr1))
2391 set_value_range_to_null (vr, expr_type);
2392 else
2393 set_value_range_to_varying (vr);
2395 else if (code == POINTER_PLUS_EXPR)
2397 /* For pointer types, we are really only interested in asserting
2398 whether the expression evaluates to non-NULL. */
2399 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2400 set_value_range_to_nonnull (vr, expr_type);
2401 else if (range_is_null (&vr0) && range_is_null (&vr1))
2402 set_value_range_to_null (vr, expr_type);
2403 else
2404 set_value_range_to_varying (vr);
2406 else if (code == BIT_AND_EXPR)
2408 /* For pointer types, we are really only interested in asserting
2409 whether the expression evaluates to non-NULL. */
2410 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2411 set_value_range_to_nonnull (vr, expr_type);
2412 else if (range_is_null (&vr0) || range_is_null (&vr1))
2413 set_value_range_to_null (vr, expr_type);
2414 else
2415 set_value_range_to_varying (vr);
2417 else
2418 set_value_range_to_varying (vr);
2420 return;
2423 /* For integer ranges, apply the operation to each end of the
2424 range and see what we end up with. */
2425 if (code == PLUS_EXPR || code == MINUS_EXPR)
2427 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2428 ranges compute the precise range for such case if possible. */
2429 if (range_int_cst_p (&vr0)
2430 && range_int_cst_p (&vr1)
2431 /* We need as many bits as the possibly unsigned inputs. */
2432 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2434 double_int min0 = tree_to_double_int (vr0.min);
2435 double_int max0 = tree_to_double_int (vr0.max);
2436 double_int min1 = tree_to_double_int (vr1.min);
2437 double_int max1 = tree_to_double_int (vr1.max);
2438 bool uns = TYPE_UNSIGNED (expr_type);
2439 double_int type_min
2440 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2441 double_int type_max
2442 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2443 double_int dmin, dmax;
2444 int min_ovf = 0;
2445 int max_ovf = 0;
2447 if (code == PLUS_EXPR)
2449 dmin = min0 + min1;
2450 dmax = max0 + max1;
2452 /* Check for overflow in double_int. */
2453 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2454 min_ovf = min0.cmp (dmin, uns);
2455 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2456 max_ovf = max0.cmp (dmax, uns);
2458 else /* if (code == MINUS_EXPR) */
2460 dmin = min0 - max1;
2461 dmax = max0 - min1;
2463 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2464 min_ovf = min0.cmp (max1, uns);
2465 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2466 max_ovf = max0.cmp (min1, uns);
2469 /* For non-wrapping arithmetic look at possibly smaller
2470 value-ranges of the type. */
2471 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2473 if (vrp_val_min (expr_type))
2474 type_min = tree_to_double_int (vrp_val_min (expr_type));
2475 if (vrp_val_max (expr_type))
2476 type_max = tree_to_double_int (vrp_val_max (expr_type));
2479 /* Check for type overflow. */
2480 if (min_ovf == 0)
2482 if (dmin.cmp (type_min, uns) == -1)
2483 min_ovf = -1;
2484 else if (dmin.cmp (type_max, uns) == 1)
2485 min_ovf = 1;
2487 if (max_ovf == 0)
2489 if (dmax.cmp (type_min, uns) == -1)
2490 max_ovf = -1;
2491 else if (dmax.cmp (type_max, uns) == 1)
2492 max_ovf = 1;
2495 if (TYPE_OVERFLOW_WRAPS (expr_type))
2497 /* If overflow wraps, truncate the values and adjust the
2498 range kind and bounds appropriately. */
2499 double_int tmin
2500 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2501 double_int tmax
2502 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2503 if (min_ovf == max_ovf)
2505 /* No overflow or both overflow or underflow. The
2506 range kind stays VR_RANGE. */
2507 min = double_int_to_tree (expr_type, tmin);
2508 max = double_int_to_tree (expr_type, tmax);
2510 else if (min_ovf == -1
2511 && max_ovf == 1)
2513 /* Underflow and overflow, drop to VR_VARYING. */
2514 set_value_range_to_varying (vr);
2515 return;
2517 else
2519 /* Min underflow or max overflow. The range kind
2520 changes to VR_ANTI_RANGE. */
2521 bool covers = false;
2522 double_int tem = tmin;
2523 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2524 || (max_ovf == 1 && min_ovf == 0));
2525 type = VR_ANTI_RANGE;
2526 tmin = tmax + double_int_one;
2527 if (tmin.cmp (tmax, uns) < 0)
2528 covers = true;
2529 tmax = tem + double_int_minus_one;
2530 if (tmax.cmp (tem, uns) > 0)
2531 covers = true;
2532 /* If the anti-range would cover nothing, drop to varying.
2533 Likewise if the anti-range bounds are outside of the
2534 types values. */
2535 if (covers || tmin.cmp (tmax, uns) > 0)
2537 set_value_range_to_varying (vr);
2538 return;
2540 min = double_int_to_tree (expr_type, tmin);
2541 max = double_int_to_tree (expr_type, tmax);
2544 else
2546 /* If overflow does not wrap, saturate to the types min/max
2547 value. */
2548 if (min_ovf == -1)
2550 if (needs_overflow_infinity (expr_type)
2551 && supports_overflow_infinity (expr_type))
2552 min = negative_overflow_infinity (expr_type);
2553 else
2554 min = double_int_to_tree (expr_type, type_min);
2556 else if (min_ovf == 1)
2558 if (needs_overflow_infinity (expr_type)
2559 && supports_overflow_infinity (expr_type))
2560 min = positive_overflow_infinity (expr_type);
2561 else
2562 min = double_int_to_tree (expr_type, type_max);
2564 else
2565 min = double_int_to_tree (expr_type, dmin);
2567 if (max_ovf == -1)
2569 if (needs_overflow_infinity (expr_type)
2570 && supports_overflow_infinity (expr_type))
2571 max = negative_overflow_infinity (expr_type);
2572 else
2573 max = double_int_to_tree (expr_type, type_min);
2575 else if (max_ovf == 1)
2577 if (needs_overflow_infinity (expr_type)
2578 && supports_overflow_infinity (expr_type))
2579 max = positive_overflow_infinity (expr_type);
2580 else
2581 max = double_int_to_tree (expr_type, type_max);
2583 else
2584 max = double_int_to_tree (expr_type, dmax);
2586 if (needs_overflow_infinity (expr_type)
2587 && supports_overflow_infinity (expr_type))
2589 if (is_negative_overflow_infinity (vr0.min)
2590 || (code == PLUS_EXPR
2591 ? is_negative_overflow_infinity (vr1.min)
2592 : is_positive_overflow_infinity (vr1.max)))
2593 min = negative_overflow_infinity (expr_type);
2594 if (is_positive_overflow_infinity (vr0.max)
2595 || (code == PLUS_EXPR
2596 ? is_positive_overflow_infinity (vr1.max)
2597 : is_negative_overflow_infinity (vr1.min)))
2598 max = positive_overflow_infinity (expr_type);
2601 else
2603 /* For other cases, for example if we have a PLUS_EXPR with two
2604 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2605 to compute a precise range for such a case.
2606 ??? General even mixed range kind operations can be expressed
2607 by for example transforming ~[3, 5] + [1, 2] to range-only
2608 operations and a union primitive:
2609 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2610 [-INF+1, 4] U [6, +INF(OVF)]
2611 though usually the union is not exactly representable with
2612 a single range or anti-range as the above is
2613 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2614 but one could use a scheme similar to equivalences for this. */
2615 set_value_range_to_varying (vr);
2616 return;
2619 else if (code == MIN_EXPR
2620 || code == MAX_EXPR)
2622 if (vr0.type == VR_RANGE
2623 && !symbolic_range_p (&vr0))
2625 type = VR_RANGE;
2626 if (vr1.type == VR_RANGE
2627 && !symbolic_range_p (&vr1))
2629 /* For operations that make the resulting range directly
2630 proportional to the original ranges, apply the operation to
2631 the same end of each range. */
2632 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2633 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2635 else if (code == MIN_EXPR)
2637 min = vrp_val_min (expr_type);
2638 max = vr0.max;
2640 else if (code == MAX_EXPR)
2642 min = vr0.min;
2643 max = vrp_val_max (expr_type);
2646 else if (vr1.type == VR_RANGE
2647 && !symbolic_range_p (&vr1))
2649 type = VR_RANGE;
2650 if (code == MIN_EXPR)
2652 min = vrp_val_min (expr_type);
2653 max = vr1.max;
2655 else if (code == MAX_EXPR)
2657 min = vr1.min;
2658 max = vrp_val_max (expr_type);
2661 else
2663 set_value_range_to_varying (vr);
2664 return;
2667 else if (code == MULT_EXPR)
2669 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2670 drop to varying. */
2671 if (range_int_cst_p (&vr0)
2672 && range_int_cst_p (&vr1)
2673 && TYPE_OVERFLOW_WRAPS (expr_type))
2675 double_int min0, max0, min1, max1, sizem1, size;
2676 double_int prod0l, prod0h, prod1l, prod1h,
2677 prod2l, prod2h, prod3l, prod3h;
2678 bool uns0, uns1, uns;
2680 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2681 size = sizem1 + double_int_one;
2683 min0 = tree_to_double_int (vr0.min);
2684 max0 = tree_to_double_int (vr0.max);
2685 min1 = tree_to_double_int (vr1.min);
2686 max1 = tree_to_double_int (vr1.max);
2688 uns0 = TYPE_UNSIGNED (expr_type);
2689 uns1 = uns0;
2691 /* Canonicalize the intervals. */
2692 if (TYPE_UNSIGNED (expr_type))
2694 double_int min2 = size - min0;
2695 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2697 min0 = -min2;
2698 max0 -= size;
2699 uns0 = false;
2702 min2 = size - min1;
2703 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2705 min1 = -min2;
2706 max1 -= size;
2707 uns1 = false;
2710 uns = uns0 & uns1;
2712 bool overflow;
2713 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2714 if (!uns0 && min0.is_negative ())
2715 prod0h -= min1;
2716 if (!uns1 && min1.is_negative ())
2717 prod0h -= min0;
2719 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2720 if (!uns0 && min0.is_negative ())
2721 prod1h -= max1;
2722 if (!uns1 && max1.is_negative ())
2723 prod1h -= min0;
2725 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2726 if (!uns0 && max0.is_negative ())
2727 prod2h -= min1;
2728 if (!uns1 && min1.is_negative ())
2729 prod2h -= max0;
2731 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2732 if (!uns0 && max0.is_negative ())
2733 prod3h -= max1;
2734 if (!uns1 && max1.is_negative ())
2735 prod3h -= max0;
2737 /* Sort the 4 products. */
2738 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2739 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2740 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2741 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2743 /* Max - min. */
2744 if (prod0l.is_zero ())
2746 prod1l = double_int_zero;
2747 prod1h = -prod0h;
2749 else
2751 prod1l = -prod0l;
2752 prod1h = ~prod0h;
2754 prod2l = prod3l + prod1l;
2755 prod2h = prod3h + prod1h;
2756 if (prod2l.ult (prod3l))
2757 prod2h += double_int_one; /* carry */
2759 if (!prod2h.is_zero ()
2760 || prod2l.cmp (sizem1, true) >= 0)
2762 /* the range covers all values. */
2763 set_value_range_to_varying (vr);
2764 return;
2767 /* The following should handle the wrapping and selecting
2768 VR_ANTI_RANGE for us. */
2769 min = double_int_to_tree (expr_type, prod0l);
2770 max = double_int_to_tree (expr_type, prod3l);
2771 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2772 return;
2775 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2776 drop to VR_VARYING. It would take more effort to compute a
2777 precise range for such a case. For example, if we have
2778 op0 == 65536 and op1 == 65536 with their ranges both being
2779 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2780 we cannot claim that the product is in ~[0,0]. Note that we
2781 are guaranteed to have vr0.type == vr1.type at this
2782 point. */
2783 if (vr0.type == VR_ANTI_RANGE
2784 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2786 set_value_range_to_varying (vr);
2787 return;
2790 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2791 return;
2793 else if (code == RSHIFT_EXPR
2794 || code == LSHIFT_EXPR)
2796 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2797 then drop to VR_VARYING. Outside of this range we get undefined
2798 behavior from the shift operation. We cannot even trust
2799 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2800 shifts, and the operation at the tree level may be widened. */
2801 if (range_int_cst_p (&vr1)
2802 && compare_tree_int (vr1.min, 0) >= 0
2803 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2805 if (code == RSHIFT_EXPR)
2807 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2808 return;
2810 /* We can map lshifts by constants to MULT_EXPR handling. */
2811 else if (code == LSHIFT_EXPR
2812 && range_int_cst_singleton_p (&vr1))
2814 bool saved_flag_wrapv;
2815 value_range_t vr1p = VR_INITIALIZER;
2816 vr1p.type = VR_RANGE;
2817 vr1p.min
2818 = double_int_to_tree (expr_type,
2819 double_int_one
2820 .llshift (TREE_INT_CST_LOW (vr1.min),
2821 TYPE_PRECISION (expr_type)));
2822 vr1p.max = vr1p.min;
2823 /* We have to use a wrapping multiply though as signed overflow
2824 on lshifts is implementation defined in C89. */
2825 saved_flag_wrapv = flag_wrapv;
2826 flag_wrapv = 1;
2827 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2828 &vr0, &vr1p);
2829 flag_wrapv = saved_flag_wrapv;
2830 return;
2832 else if (code == LSHIFT_EXPR
2833 && range_int_cst_p (&vr0))
2835 int prec = TYPE_PRECISION (expr_type);
2836 int overflow_pos = prec;
2837 int bound_shift;
2838 double_int bound, complement, low_bound, high_bound;
2839 bool uns = TYPE_UNSIGNED (expr_type);
2840 bool in_bounds = false;
2842 if (!uns)
2843 overflow_pos -= 1;
2845 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2846 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2847 overflow. However, for that to happen, vr1.max needs to be
2848 zero, which means vr1 is a singleton range of zero, which
2849 means it should be handled by the previous LSHIFT_EXPR
2850 if-clause. */
2851 bound = double_int_one.llshift (bound_shift, prec);
2852 complement = ~(bound - double_int_one);
2854 if (uns)
2856 low_bound = bound.zext (prec);
2857 high_bound = complement.zext (prec);
2858 if (tree_to_double_int (vr0.max).ult (low_bound))
2860 /* [5, 6] << [1, 2] == [10, 24]. */
2861 /* We're shifting out only zeroes, the value increases
2862 monotonically. */
2863 in_bounds = true;
2865 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2867 /* [0xffffff00, 0xffffffff] << [1, 2]
2868 == [0xfffffc00, 0xfffffffe]. */
2869 /* We're shifting out only ones, the value decreases
2870 monotonically. */
2871 in_bounds = true;
2874 else
2876 /* [-1, 1] << [1, 2] == [-4, 4]. */
2877 low_bound = complement.sext (prec);
2878 high_bound = bound;
2879 if (tree_to_double_int (vr0.max).slt (high_bound)
2880 && low_bound.slt (tree_to_double_int (vr0.min)))
2882 /* For non-negative numbers, we're shifting out only
2883 zeroes, the value increases monotonically.
2884 For negative numbers, we're shifting out only ones, the
2885 value decreases monotomically. */
2886 in_bounds = true;
2890 if (in_bounds)
2892 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2893 return;
2897 set_value_range_to_varying (vr);
2898 return;
2900 else if (code == TRUNC_DIV_EXPR
2901 || code == FLOOR_DIV_EXPR
2902 || code == CEIL_DIV_EXPR
2903 || code == EXACT_DIV_EXPR
2904 || code == ROUND_DIV_EXPR)
2906 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2908 /* For division, if op1 has VR_RANGE but op0 does not, something
2909 can be deduced just from that range. Say [min, max] / [4, max]
2910 gives [min / 4, max / 4] range. */
2911 if (vr1.type == VR_RANGE
2912 && !symbolic_range_p (&vr1)
2913 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2915 vr0.type = type = VR_RANGE;
2916 vr0.min = vrp_val_min (expr_type);
2917 vr0.max = vrp_val_max (expr_type);
2919 else
2921 set_value_range_to_varying (vr);
2922 return;
2926 /* For divisions, if flag_non_call_exceptions is true, we must
2927 not eliminate a division by zero. */
2928 if (cfun->can_throw_non_call_exceptions
2929 && (vr1.type != VR_RANGE
2930 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2932 set_value_range_to_varying (vr);
2933 return;
2936 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2937 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2938 include 0. */
2939 if (vr0.type == VR_RANGE
2940 && (vr1.type != VR_RANGE
2941 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2943 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2944 int cmp;
2946 min = NULL_TREE;
2947 max = NULL_TREE;
2948 if (TYPE_UNSIGNED (expr_type)
2949 || value_range_nonnegative_p (&vr1))
2951 /* For unsigned division or when divisor is known
2952 to be non-negative, the range has to cover
2953 all numbers from 0 to max for positive max
2954 and all numbers from min to 0 for negative min. */
2955 cmp = compare_values (vr0.max, zero);
2956 if (cmp == -1)
2957 max = zero;
2958 else if (cmp == 0 || cmp == 1)
2959 max = vr0.max;
2960 else
2961 type = VR_VARYING;
2962 cmp = compare_values (vr0.min, zero);
2963 if (cmp == 1)
2964 min = zero;
2965 else if (cmp == 0 || cmp == -1)
2966 min = vr0.min;
2967 else
2968 type = VR_VARYING;
2970 else
2972 /* Otherwise the range is -max .. max or min .. -min
2973 depending on which bound is bigger in absolute value,
2974 as the division can change the sign. */
2975 abs_extent_range (vr, vr0.min, vr0.max);
2976 return;
2978 if (type == VR_VARYING)
2980 set_value_range_to_varying (vr);
2981 return;
2984 else
2986 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2987 return;
2990 else if (code == TRUNC_MOD_EXPR)
2992 if (vr1.type != VR_RANGE
2993 || range_includes_zero_p (vr1.min, vr1.max) != 0
2994 || vrp_val_is_min (vr1.min))
2996 set_value_range_to_varying (vr);
2997 return;
2999 type = VR_RANGE;
3000 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3001 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3002 if (tree_int_cst_lt (max, vr1.max))
3003 max = vr1.max;
3004 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3005 /* If the dividend is non-negative the modulus will be
3006 non-negative as well. */
3007 if (TYPE_UNSIGNED (expr_type)
3008 || value_range_nonnegative_p (&vr0))
3009 min = build_int_cst (TREE_TYPE (max), 0);
3010 else
3011 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3013 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3015 bool int_cst_range0, int_cst_range1;
3016 double_int may_be_nonzero0, may_be_nonzero1;
3017 double_int must_be_nonzero0, must_be_nonzero1;
3019 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3020 &must_be_nonzero0);
3021 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3022 &must_be_nonzero1);
3024 type = VR_RANGE;
3025 if (code == BIT_AND_EXPR)
3027 double_int dmax;
3028 min = double_int_to_tree (expr_type,
3029 must_be_nonzero0 & must_be_nonzero1);
3030 dmax = may_be_nonzero0 & may_be_nonzero1;
3031 /* If both input ranges contain only negative values we can
3032 truncate the result range maximum to the minimum of the
3033 input range maxima. */
3034 if (int_cst_range0 && int_cst_range1
3035 && tree_int_cst_sgn (vr0.max) < 0
3036 && tree_int_cst_sgn (vr1.max) < 0)
3038 dmax = dmax.min (tree_to_double_int (vr0.max),
3039 TYPE_UNSIGNED (expr_type));
3040 dmax = dmax.min (tree_to_double_int (vr1.max),
3041 TYPE_UNSIGNED (expr_type));
3043 /* If either input range contains only non-negative values
3044 we can truncate the result range maximum to the respective
3045 maximum of the input range. */
3046 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3047 dmax = dmax.min (tree_to_double_int (vr0.max),
3048 TYPE_UNSIGNED (expr_type));
3049 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3050 dmax = dmax.min (tree_to_double_int (vr1.max),
3051 TYPE_UNSIGNED (expr_type));
3052 max = double_int_to_tree (expr_type, dmax);
3054 else if (code == BIT_IOR_EXPR)
3056 double_int dmin;
3057 max = double_int_to_tree (expr_type,
3058 may_be_nonzero0 | may_be_nonzero1);
3059 dmin = must_be_nonzero0 | must_be_nonzero1;
3060 /* If the input ranges contain only positive values we can
3061 truncate the minimum of the result range to the maximum
3062 of the input range minima. */
3063 if (int_cst_range0 && int_cst_range1
3064 && tree_int_cst_sgn (vr0.min) >= 0
3065 && tree_int_cst_sgn (vr1.min) >= 0)
3067 dmin = dmin.max (tree_to_double_int (vr0.min),
3068 TYPE_UNSIGNED (expr_type));
3069 dmin = dmin.max (tree_to_double_int (vr1.min),
3070 TYPE_UNSIGNED (expr_type));
3072 /* If either input range contains only negative values
3073 we can truncate the minimum of the result range to the
3074 respective minimum range. */
3075 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3076 dmin = dmin.max (tree_to_double_int (vr0.min),
3077 TYPE_UNSIGNED (expr_type));
3078 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3079 dmin = dmin.max (tree_to_double_int (vr1.min),
3080 TYPE_UNSIGNED (expr_type));
3081 min = double_int_to_tree (expr_type, dmin);
3083 else if (code == BIT_XOR_EXPR)
3085 double_int result_zero_bits, result_one_bits;
3086 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3087 | ~(may_be_nonzero0 | may_be_nonzero1);
3088 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3089 | must_be_nonzero1.and_not (may_be_nonzero0);
3090 max = double_int_to_tree (expr_type, ~result_zero_bits);
3091 min = double_int_to_tree (expr_type, result_one_bits);
3092 /* If the range has all positive or all negative values the
3093 result is better than VARYING. */
3094 if (tree_int_cst_sgn (min) < 0
3095 || tree_int_cst_sgn (max) >= 0)
3097 else
3098 max = min = NULL_TREE;
3101 else
3102 gcc_unreachable ();
3104 /* If either MIN or MAX overflowed, then set the resulting range to
3105 VARYING. But we do accept an overflow infinity
3106 representation. */
3107 if (min == NULL_TREE
3108 || !is_gimple_min_invariant (min)
3109 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3110 || max == NULL_TREE
3111 || !is_gimple_min_invariant (max)
3112 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3114 set_value_range_to_varying (vr);
3115 return;
3118 /* We punt if:
3119 1) [-INF, +INF]
3120 2) [-INF, +-INF(OVF)]
3121 3) [+-INF(OVF), +INF]
3122 4) [+-INF(OVF), +-INF(OVF)]
3123 We learn nothing when we have INF and INF(OVF) on both sides.
3124 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3125 overflow. */
3126 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3127 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3129 set_value_range_to_varying (vr);
3130 return;
3133 cmp = compare_values (min, max);
3134 if (cmp == -2 || cmp == 1)
3136 /* If the new range has its limits swapped around (MIN > MAX),
3137 then the operation caused one of them to wrap around, mark
3138 the new range VARYING. */
3139 set_value_range_to_varying (vr);
3141 else
3142 set_value_range (vr, type, min, max, NULL);
3145 /* Extract range information from a binary expression OP0 CODE OP1 based on
3146 the ranges of each of its operands with resulting type EXPR_TYPE.
3147 The resulting range is stored in *VR. */
3149 static void
3150 extract_range_from_binary_expr (value_range_t *vr,
3151 enum tree_code code,
3152 tree expr_type, tree op0, tree op1)
3154 value_range_t vr0 = VR_INITIALIZER;
3155 value_range_t vr1 = VR_INITIALIZER;
3157 /* Get value ranges for each operand. For constant operands, create
3158 a new value range with the operand to simplify processing. */
3159 if (TREE_CODE (op0) == SSA_NAME)
3160 vr0 = *(get_value_range (op0));
3161 else if (is_gimple_min_invariant (op0))
3162 set_value_range_to_value (&vr0, op0, NULL);
3163 else
3164 set_value_range_to_varying (&vr0);
3166 if (TREE_CODE (op1) == SSA_NAME)
3167 vr1 = *(get_value_range (op1));
3168 else if (is_gimple_min_invariant (op1))
3169 set_value_range_to_value (&vr1, op1, NULL);
3170 else
3171 set_value_range_to_varying (&vr1);
3173 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3176 /* Extract range information from a unary operation CODE based on
3177 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3178 The The resulting range is stored in *VR. */
3180 static void
3181 extract_range_from_unary_expr_1 (value_range_t *vr,
3182 enum tree_code code, tree type,
3183 value_range_t *vr0_, tree op0_type)
3185 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3187 /* VRP only operates on integral and pointer types. */
3188 if (!(INTEGRAL_TYPE_P (op0_type)
3189 || POINTER_TYPE_P (op0_type))
3190 || !(INTEGRAL_TYPE_P (type)
3191 || POINTER_TYPE_P (type)))
3193 set_value_range_to_varying (vr);
3194 return;
3197 /* If VR0 is UNDEFINED, so is the result. */
3198 if (vr0.type == VR_UNDEFINED)
3200 set_value_range_to_undefined (vr);
3201 return;
3204 /* Handle operations that we express in terms of others. */
3205 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3207 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3208 copy_value_range (vr, &vr0);
3209 return;
3211 else if (code == NEGATE_EXPR)
3213 /* -X is simply 0 - X, so re-use existing code that also handles
3214 anti-ranges fine. */
3215 value_range_t zero = VR_INITIALIZER;
3216 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3217 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3218 return;
3220 else if (code == BIT_NOT_EXPR)
3222 /* ~X is simply -1 - X, so re-use existing code that also handles
3223 anti-ranges fine. */
3224 value_range_t minusone = VR_INITIALIZER;
3225 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3226 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3227 type, &minusone, &vr0);
3228 return;
3231 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3232 and express op ~[] as (op []') U (op []''). */
3233 if (vr0.type == VR_ANTI_RANGE
3234 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3236 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3237 if (vrtem1.type != VR_UNDEFINED)
3239 value_range_t vrres = VR_INITIALIZER;
3240 extract_range_from_unary_expr_1 (&vrres, code, type,
3241 &vrtem1, op0_type);
3242 vrp_meet (vr, &vrres);
3244 return;
3247 if (CONVERT_EXPR_CODE_P (code))
3249 tree inner_type = op0_type;
3250 tree outer_type = type;
3252 /* If the expression evaluates to a pointer, we are only interested in
3253 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3254 if (POINTER_TYPE_P (type))
3256 if (range_is_nonnull (&vr0))
3257 set_value_range_to_nonnull (vr, type);
3258 else if (range_is_null (&vr0))
3259 set_value_range_to_null (vr, type);
3260 else
3261 set_value_range_to_varying (vr);
3262 return;
3265 /* If VR0 is varying and we increase the type precision, assume
3266 a full range for the following transformation. */
3267 if (vr0.type == VR_VARYING
3268 && INTEGRAL_TYPE_P (inner_type)
3269 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3271 vr0.type = VR_RANGE;
3272 vr0.min = TYPE_MIN_VALUE (inner_type);
3273 vr0.max = TYPE_MAX_VALUE (inner_type);
3276 /* If VR0 is a constant range or anti-range and the conversion is
3277 not truncating we can convert the min and max values and
3278 canonicalize the resulting range. Otherwise we can do the
3279 conversion if the size of the range is less than what the
3280 precision of the target type can represent and the range is
3281 not an anti-range. */
3282 if ((vr0.type == VR_RANGE
3283 || vr0.type == VR_ANTI_RANGE)
3284 && TREE_CODE (vr0.min) == INTEGER_CST
3285 && TREE_CODE (vr0.max) == INTEGER_CST
3286 && (!is_overflow_infinity (vr0.min)
3287 || (vr0.type == VR_RANGE
3288 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3289 && needs_overflow_infinity (outer_type)
3290 && supports_overflow_infinity (outer_type)))
3291 && (!is_overflow_infinity (vr0.max)
3292 || (vr0.type == VR_RANGE
3293 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3294 && needs_overflow_infinity (outer_type)
3295 && supports_overflow_infinity (outer_type)))
3296 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3297 || (vr0.type == VR_RANGE
3298 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3299 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3300 size_int (TYPE_PRECISION (outer_type)))))))
3302 tree new_min, new_max;
3303 if (is_overflow_infinity (vr0.min))
3304 new_min = negative_overflow_infinity (outer_type);
3305 else
3306 new_min = force_fit_type_double (outer_type,
3307 tree_to_double_int (vr0.min),
3308 0, false);
3309 if (is_overflow_infinity (vr0.max))
3310 new_max = positive_overflow_infinity (outer_type);
3311 else
3312 new_max = force_fit_type_double (outer_type,
3313 tree_to_double_int (vr0.max),
3314 0, false);
3315 set_and_canonicalize_value_range (vr, vr0.type,
3316 new_min, new_max, NULL);
3317 return;
3320 set_value_range_to_varying (vr);
3321 return;
3323 else if (code == ABS_EXPR)
3325 tree min, max;
3326 int cmp;
3328 /* Pass through vr0 in the easy cases. */
3329 if (TYPE_UNSIGNED (type)
3330 || value_range_nonnegative_p (&vr0))
3332 copy_value_range (vr, &vr0);
3333 return;
3336 /* For the remaining varying or symbolic ranges we can't do anything
3337 useful. */
3338 if (vr0.type == VR_VARYING
3339 || symbolic_range_p (&vr0))
3341 set_value_range_to_varying (vr);
3342 return;
3345 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3346 useful range. */
3347 if (!TYPE_OVERFLOW_UNDEFINED (type)
3348 && ((vr0.type == VR_RANGE
3349 && vrp_val_is_min (vr0.min))
3350 || (vr0.type == VR_ANTI_RANGE
3351 && !vrp_val_is_min (vr0.min))))
3353 set_value_range_to_varying (vr);
3354 return;
3357 /* ABS_EXPR may flip the range around, if the original range
3358 included negative values. */
3359 if (is_overflow_infinity (vr0.min))
3360 min = positive_overflow_infinity (type);
3361 else if (!vrp_val_is_min (vr0.min))
3362 min = fold_unary_to_constant (code, type, vr0.min);
3363 else if (!needs_overflow_infinity (type))
3364 min = TYPE_MAX_VALUE (type);
3365 else if (supports_overflow_infinity (type))
3366 min = positive_overflow_infinity (type);
3367 else
3369 set_value_range_to_varying (vr);
3370 return;
3373 if (is_overflow_infinity (vr0.max))
3374 max = positive_overflow_infinity (type);
3375 else if (!vrp_val_is_min (vr0.max))
3376 max = fold_unary_to_constant (code, type, vr0.max);
3377 else if (!needs_overflow_infinity (type))
3378 max = TYPE_MAX_VALUE (type);
3379 else if (supports_overflow_infinity (type)
3380 /* We shouldn't generate [+INF, +INF] as set_value_range
3381 doesn't like this and ICEs. */
3382 && !is_positive_overflow_infinity (min))
3383 max = positive_overflow_infinity (type);
3384 else
3386 set_value_range_to_varying (vr);
3387 return;
3390 cmp = compare_values (min, max);
3392 /* If a VR_ANTI_RANGEs contains zero, then we have
3393 ~[-INF, min(MIN, MAX)]. */
3394 if (vr0.type == VR_ANTI_RANGE)
3396 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3398 /* Take the lower of the two values. */
3399 if (cmp != 1)
3400 max = min;
3402 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3403 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3404 flag_wrapv is set and the original anti-range doesn't include
3405 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3406 if (TYPE_OVERFLOW_WRAPS (type))
3408 tree type_min_value = TYPE_MIN_VALUE (type);
3410 min = (vr0.min != type_min_value
3411 ? int_const_binop (PLUS_EXPR, type_min_value,
3412 integer_one_node)
3413 : type_min_value);
3415 else
3417 if (overflow_infinity_range_p (&vr0))
3418 min = negative_overflow_infinity (type);
3419 else
3420 min = TYPE_MIN_VALUE (type);
3423 else
3425 /* All else has failed, so create the range [0, INF], even for
3426 flag_wrapv since TYPE_MIN_VALUE is in the original
3427 anti-range. */
3428 vr0.type = VR_RANGE;
3429 min = build_int_cst (type, 0);
3430 if (needs_overflow_infinity (type))
3432 if (supports_overflow_infinity (type))
3433 max = positive_overflow_infinity (type);
3434 else
3436 set_value_range_to_varying (vr);
3437 return;
3440 else
3441 max = TYPE_MAX_VALUE (type);
3445 /* If the range contains zero then we know that the minimum value in the
3446 range will be zero. */
3447 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3449 if (cmp == 1)
3450 max = min;
3451 min = build_int_cst (type, 0);
3453 else
3455 /* If the range was reversed, swap MIN and MAX. */
3456 if (cmp == 1)
3458 tree t = min;
3459 min = max;
3460 max = t;
3464 cmp = compare_values (min, max);
3465 if (cmp == -2 || cmp == 1)
3467 /* If the new range has its limits swapped around (MIN > MAX),
3468 then the operation caused one of them to wrap around, mark
3469 the new range VARYING. */
3470 set_value_range_to_varying (vr);
3472 else
3473 set_value_range (vr, vr0.type, min, max, NULL);
3474 return;
3477 /* For unhandled operations fall back to varying. */
3478 set_value_range_to_varying (vr);
3479 return;
3483 /* Extract range information from a unary expression CODE OP0 based on
3484 the range of its operand with resulting type TYPE.
3485 The resulting range is stored in *VR. */
3487 static void
3488 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3489 tree type, tree op0)
3491 value_range_t vr0 = VR_INITIALIZER;
3493 /* Get value ranges for the operand. For constant operands, create
3494 a new value range with the operand to simplify processing. */
3495 if (TREE_CODE (op0) == SSA_NAME)
3496 vr0 = *(get_value_range (op0));
3497 else if (is_gimple_min_invariant (op0))
3498 set_value_range_to_value (&vr0, op0, NULL);
3499 else
3500 set_value_range_to_varying (&vr0);
3502 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3506 /* Extract range information from a conditional expression STMT based on
3507 the ranges of each of its operands and the expression code. */
3509 static void
3510 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3512 tree op0, op1;
3513 value_range_t vr0 = VR_INITIALIZER;
3514 value_range_t vr1 = VR_INITIALIZER;
3516 /* Get value ranges for each operand. For constant operands, create
3517 a new value range with the operand to simplify processing. */
3518 op0 = gimple_assign_rhs2 (stmt);
3519 if (TREE_CODE (op0) == SSA_NAME)
3520 vr0 = *(get_value_range (op0));
3521 else if (is_gimple_min_invariant (op0))
3522 set_value_range_to_value (&vr0, op0, NULL);
3523 else
3524 set_value_range_to_varying (&vr0);
3526 op1 = gimple_assign_rhs3 (stmt);
3527 if (TREE_CODE (op1) == SSA_NAME)
3528 vr1 = *(get_value_range (op1));
3529 else if (is_gimple_min_invariant (op1))
3530 set_value_range_to_value (&vr1, op1, NULL);
3531 else
3532 set_value_range_to_varying (&vr1);
3534 /* The resulting value range is the union of the operand ranges */
3535 copy_value_range (vr, &vr0);
3536 vrp_meet (vr, &vr1);
3540 /* Extract range information from a comparison expression EXPR based
3541 on the range of its operand and the expression code. */
3543 static void
3544 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3545 tree type, tree op0, tree op1)
3547 bool sop = false;
3548 tree val;
3550 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3551 NULL);
3553 /* A disadvantage of using a special infinity as an overflow
3554 representation is that we lose the ability to record overflow
3555 when we don't have an infinity. So we have to ignore a result
3556 which relies on overflow. */
3558 if (val && !is_overflow_infinity (val) && !sop)
3560 /* Since this expression was found on the RHS of an assignment,
3561 its type may be different from _Bool. Convert VAL to EXPR's
3562 type. */
3563 val = fold_convert (type, val);
3564 if (is_gimple_min_invariant (val))
3565 set_value_range_to_value (vr, val, vr->equiv);
3566 else
3567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3569 else
3570 /* The result of a comparison is always true or false. */
3571 set_value_range_to_truthvalue (vr, type);
3574 /* Try to derive a nonnegative or nonzero range out of STMT relying
3575 primarily on generic routines in fold in conjunction with range data.
3576 Store the result in *VR */
3578 static void
3579 extract_range_basic (value_range_t *vr, gimple stmt)
3581 bool sop = false;
3582 tree type = gimple_expr_type (stmt);
3584 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3586 tree fndecl = gimple_call_fndecl (stmt), arg;
3587 int mini, maxi, zerov = 0, prec;
3589 switch (DECL_FUNCTION_CODE (fndecl))
3591 case BUILT_IN_CONSTANT_P:
3592 /* If the call is __builtin_constant_p and the argument is a
3593 function parameter resolve it to false. This avoids bogus
3594 array bound warnings.
3595 ??? We could do this as early as inlining is finished. */
3596 arg = gimple_call_arg (stmt, 0);
3597 if (TREE_CODE (arg) == SSA_NAME
3598 && SSA_NAME_IS_DEFAULT_DEF (arg)
3599 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3601 set_value_range_to_null (vr, type);
3602 return;
3604 break;
3605 /* Both __builtin_ffs* and __builtin_popcount return
3606 [0, prec]. */
3607 CASE_INT_FN (BUILT_IN_FFS):
3608 CASE_INT_FN (BUILT_IN_POPCOUNT):
3609 arg = gimple_call_arg (stmt, 0);
3610 prec = TYPE_PRECISION (TREE_TYPE (arg));
3611 mini = 0;
3612 maxi = prec;
3613 if (TREE_CODE (arg) == SSA_NAME)
3615 value_range_t *vr0 = get_value_range (arg);
3616 /* If arg is non-zero, then ffs or popcount
3617 are non-zero. */
3618 if (((vr0->type == VR_RANGE
3619 && integer_nonzerop (vr0->min))
3620 || (vr0->type == VR_ANTI_RANGE
3621 && integer_zerop (vr0->min)))
3622 && !is_overflow_infinity (vr0->min))
3623 mini = 1;
3624 /* If some high bits are known to be zero,
3625 we can decrease the maximum. */
3626 if (vr0->type == VR_RANGE
3627 && TREE_CODE (vr0->max) == INTEGER_CST
3628 && !is_overflow_infinity (vr0->max))
3629 maxi = tree_floor_log2 (vr0->max) + 1;
3631 goto bitop_builtin;
3632 /* __builtin_parity* returns [0, 1]. */
3633 CASE_INT_FN (BUILT_IN_PARITY):
3634 mini = 0;
3635 maxi = 1;
3636 goto bitop_builtin;
3637 /* __builtin_c[lt]z* return [0, prec-1], except for
3638 when the argument is 0, but that is undefined behavior.
3639 On many targets where the CLZ RTL or optab value is defined
3640 for 0 the value is prec, so include that in the range
3641 by default. */
3642 CASE_INT_FN (BUILT_IN_CLZ):
3643 arg = gimple_call_arg (stmt, 0);
3644 prec = TYPE_PRECISION (TREE_TYPE (arg));
3645 mini = 0;
3646 maxi = prec;
3647 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3648 != CODE_FOR_nothing
3649 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3650 zerov)
3651 /* Handle only the single common value. */
3652 && zerov != prec)
3653 /* Magic value to give up, unless vr0 proves
3654 arg is non-zero. */
3655 mini = -2;
3656 if (TREE_CODE (arg) == SSA_NAME)
3658 value_range_t *vr0 = get_value_range (arg);
3659 /* From clz of VR_RANGE minimum we can compute
3660 result maximum. */
3661 if (vr0->type == VR_RANGE
3662 && TREE_CODE (vr0->min) == INTEGER_CST
3663 && !is_overflow_infinity (vr0->min))
3665 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3666 if (maxi != prec)
3667 mini = 0;
3669 else if (vr0->type == VR_ANTI_RANGE
3670 && integer_zerop (vr0->min)
3671 && !is_overflow_infinity (vr0->min))
3673 maxi = prec - 1;
3674 mini = 0;
3676 if (mini == -2)
3677 break;
3678 /* From clz of VR_RANGE maximum we can compute
3679 result minimum. */
3680 if (vr0->type == VR_RANGE
3681 && TREE_CODE (vr0->max) == INTEGER_CST
3682 && !is_overflow_infinity (vr0->max))
3684 mini = prec - 1 - tree_floor_log2 (vr0->max);
3685 if (mini == prec)
3686 break;
3689 if (mini == -2)
3690 break;
3691 goto bitop_builtin;
3692 /* __builtin_ctz* return [0, prec-1], except for
3693 when the argument is 0, but that is undefined behavior.
3694 If there is a ctz optab for this mode and
3695 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3696 otherwise just assume 0 won't be seen. */
3697 CASE_INT_FN (BUILT_IN_CTZ):
3698 arg = gimple_call_arg (stmt, 0);
3699 prec = TYPE_PRECISION (TREE_TYPE (arg));
3700 mini = 0;
3701 maxi = prec - 1;
3702 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3703 != CODE_FOR_nothing
3704 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3705 zerov))
3707 /* Handle only the two common values. */
3708 if (zerov == -1)
3709 mini = -1;
3710 else if (zerov == prec)
3711 maxi = prec;
3712 else
3713 /* Magic value to give up, unless vr0 proves
3714 arg is non-zero. */
3715 mini = -2;
3717 if (TREE_CODE (arg) == SSA_NAME)
3719 value_range_t *vr0 = get_value_range (arg);
3720 /* If arg is non-zero, then use [0, prec - 1]. */
3721 if (((vr0->type == VR_RANGE
3722 && integer_nonzerop (vr0->min))
3723 || (vr0->type == VR_ANTI_RANGE
3724 && integer_zerop (vr0->min)))
3725 && !is_overflow_infinity (vr0->min))
3727 mini = 0;
3728 maxi = prec - 1;
3730 /* If some high bits are known to be zero,
3731 we can decrease the result maximum. */
3732 if (vr0->type == VR_RANGE
3733 && TREE_CODE (vr0->max) == INTEGER_CST
3734 && !is_overflow_infinity (vr0->max))
3736 maxi = tree_floor_log2 (vr0->max);
3737 /* For vr0 [0, 0] give up. */
3738 if (maxi == -1)
3739 break;
3742 if (mini == -2)
3743 break;
3744 goto bitop_builtin;
3745 /* __builtin_clrsb* returns [0, prec-1]. */
3746 CASE_INT_FN (BUILT_IN_CLRSB):
3747 arg = gimple_call_arg (stmt, 0);
3748 prec = TYPE_PRECISION (TREE_TYPE (arg));
3749 mini = 0;
3750 maxi = prec - 1;
3751 goto bitop_builtin;
3752 bitop_builtin:
3753 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3754 build_int_cst (type, maxi), NULL);
3755 return;
3756 default:
3757 break;
3760 else if (is_gimple_call (stmt)
3761 && gimple_call_internal_p (stmt))
3763 enum tree_code subcode = ERROR_MARK;
3764 switch (gimple_call_internal_fn (stmt))
3766 case IFN_UBSAN_CHECK_ADD:
3767 subcode = PLUS_EXPR;
3768 break;
3769 case IFN_UBSAN_CHECK_SUB:
3770 subcode = MINUS_EXPR;
3771 break;
3772 case IFN_UBSAN_CHECK_MUL:
3773 subcode = MULT_EXPR;
3774 break;
3775 default:
3776 break;
3778 if (subcode != ERROR_MARK)
3780 bool saved_flag_wrapv = flag_wrapv;
3781 /* Pretend the arithmetics is wrapping. If there is
3782 any overflow, we'll complain, but will actually do
3783 wrapping operation. */
3784 flag_wrapv = 1;
3785 extract_range_from_binary_expr (vr, subcode, type,
3786 gimple_call_arg (stmt, 0),
3787 gimple_call_arg (stmt, 1));
3788 flag_wrapv = saved_flag_wrapv;
3790 /* If for both arguments vrp_valueize returned non-NULL,
3791 this should have been already folded and if not, it
3792 wasn't folded because of overflow. Avoid removing the
3793 UBSAN_CHECK_* calls in that case. */
3794 if (vr->type == VR_RANGE
3795 && (vr->min == vr->max
3796 || operand_equal_p (vr->min, vr->max, 0)))
3797 set_value_range_to_varying (vr);
3798 return;
3801 if (INTEGRAL_TYPE_P (type)
3802 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3803 set_value_range_to_nonnegative (vr, type,
3804 sop || stmt_overflow_infinity (stmt));
3805 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3806 && !sop)
3807 set_value_range_to_nonnull (vr, type);
3808 else
3809 set_value_range_to_varying (vr);
3813 /* Try to compute a useful range out of assignment STMT and store it
3814 in *VR. */
3816 static void
3817 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3819 enum tree_code code = gimple_assign_rhs_code (stmt);
3821 if (code == ASSERT_EXPR)
3822 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3823 else if (code == SSA_NAME)
3824 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3825 else if (TREE_CODE_CLASS (code) == tcc_binary)
3826 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3827 gimple_expr_type (stmt),
3828 gimple_assign_rhs1 (stmt),
3829 gimple_assign_rhs2 (stmt));
3830 else if (TREE_CODE_CLASS (code) == tcc_unary)
3831 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3832 gimple_expr_type (stmt),
3833 gimple_assign_rhs1 (stmt));
3834 else if (code == COND_EXPR)
3835 extract_range_from_cond_expr (vr, stmt);
3836 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3837 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3838 gimple_expr_type (stmt),
3839 gimple_assign_rhs1 (stmt),
3840 gimple_assign_rhs2 (stmt));
3841 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3842 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3843 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3844 else
3845 set_value_range_to_varying (vr);
3847 if (vr->type == VR_VARYING)
3848 extract_range_basic (vr, stmt);
3851 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3852 would be profitable to adjust VR using scalar evolution information
3853 for VAR. If so, update VR with the new limits. */
3855 static void
3856 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3857 gimple stmt, tree var)
3859 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3860 enum ev_direction dir;
3862 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3863 better opportunities than a regular range, but I'm not sure. */
3864 if (vr->type == VR_ANTI_RANGE)
3865 return;
3867 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3869 /* Like in PR19590, scev can return a constant function. */
3870 if (is_gimple_min_invariant (chrec))
3872 set_value_range_to_value (vr, chrec, vr->equiv);
3873 return;
3876 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3877 return;
3879 init = initial_condition_in_loop_num (chrec, loop->num);
3880 tem = op_with_constant_singleton_value_range (init);
3881 if (tem)
3882 init = tem;
3883 step = evolution_part_in_loop_num (chrec, loop->num);
3884 tem = op_with_constant_singleton_value_range (step);
3885 if (tem)
3886 step = tem;
3888 /* If STEP is symbolic, we can't know whether INIT will be the
3889 minimum or maximum value in the range. Also, unless INIT is
3890 a simple expression, compare_values and possibly other functions
3891 in tree-vrp won't be able to handle it. */
3892 if (step == NULL_TREE
3893 || !is_gimple_min_invariant (step)
3894 || !valid_value_p (init))
3895 return;
3897 dir = scev_direction (chrec);
3898 if (/* Do not adjust ranges if we do not know whether the iv increases
3899 or decreases, ... */
3900 dir == EV_DIR_UNKNOWN
3901 /* ... or if it may wrap. */
3902 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3903 true))
3904 return;
3906 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3907 negative_overflow_infinity and positive_overflow_infinity,
3908 because we have concluded that the loop probably does not
3909 wrap. */
3911 type = TREE_TYPE (var);
3912 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3913 tmin = lower_bound_in_type (type, type);
3914 else
3915 tmin = TYPE_MIN_VALUE (type);
3916 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3917 tmax = upper_bound_in_type (type, type);
3918 else
3919 tmax = TYPE_MAX_VALUE (type);
3921 /* Try to use estimated number of iterations for the loop to constrain the
3922 final value in the evolution. */
3923 if (TREE_CODE (step) == INTEGER_CST
3924 && is_gimple_val (init)
3925 && (TREE_CODE (init) != SSA_NAME
3926 || get_value_range (init)->type == VR_RANGE))
3928 double_int nit;
3930 /* We are only entering here for loop header PHI nodes, so using
3931 the number of latch executions is the correct thing to use. */
3932 if (max_loop_iterations (loop, &nit))
3934 value_range_t maxvr = VR_INITIALIZER;
3935 double_int dtmp;
3936 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3937 bool overflow = false;
3939 dtmp = tree_to_double_int (step)
3940 .mul_with_sign (nit, unsigned_p, &overflow);
3941 /* If the multiplication overflowed we can't do a meaningful
3942 adjustment. Likewise if the result doesn't fit in the type
3943 of the induction variable. For a signed type we have to
3944 check whether the result has the expected signedness which
3945 is that of the step as number of iterations is unsigned. */
3946 if (!overflow
3947 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3948 && (unsigned_p
3949 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3951 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3952 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3953 TREE_TYPE (init), init, tem);
3954 /* Likewise if the addition did. */
3955 if (maxvr.type == VR_RANGE)
3957 tmin = maxvr.min;
3958 tmax = maxvr.max;
3964 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3966 min = tmin;
3967 max = tmax;
3969 /* For VARYING or UNDEFINED ranges, just about anything we get
3970 from scalar evolutions should be better. */
3972 if (dir == EV_DIR_DECREASES)
3973 max = init;
3974 else
3975 min = init;
3977 /* If we would create an invalid range, then just assume we
3978 know absolutely nothing. This may be over-conservative,
3979 but it's clearly safe, and should happen only in unreachable
3980 parts of code, or for invalid programs. */
3981 if (compare_values (min, max) == 1)
3982 return;
3984 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3986 else if (vr->type == VR_RANGE)
3988 min = vr->min;
3989 max = vr->max;
3991 if (dir == EV_DIR_DECREASES)
3993 /* INIT is the maximum value. If INIT is lower than VR->MAX
3994 but no smaller than VR->MIN, set VR->MAX to INIT. */
3995 if (compare_values (init, max) == -1)
3996 max = init;
3998 /* According to the loop information, the variable does not
3999 overflow. If we think it does, probably because of an
4000 overflow due to arithmetic on a different INF value,
4001 reset now. */
4002 if (is_negative_overflow_infinity (min)
4003 || compare_values (min, tmin) == -1)
4004 min = tmin;
4007 else
4009 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4010 if (compare_values (init, min) == 1)
4011 min = init;
4013 if (is_positive_overflow_infinity (max)
4014 || compare_values (tmax, max) == -1)
4015 max = tmax;
4018 /* If we just created an invalid range with the minimum
4019 greater than the maximum, we fail conservatively.
4020 This should happen only in unreachable
4021 parts of code, or for invalid programs. */
4022 if (compare_values (min, max) == 1)
4023 return;
4025 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4029 /* Return true if VAR may overflow at STMT. This checks any available
4030 loop information to see if we can determine that VAR does not
4031 overflow. */
4033 static bool
4034 vrp_var_may_overflow (tree var, gimple stmt)
4036 struct loop *l;
4037 tree chrec, init, step;
4039 if (current_loops == NULL)
4040 return true;
4042 l = loop_containing_stmt (stmt);
4043 if (l == NULL
4044 || !loop_outer (l))
4045 return true;
4047 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
4048 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4049 return true;
4051 init = initial_condition_in_loop_num (chrec, l->num);
4052 step = evolution_part_in_loop_num (chrec, l->num);
4054 if (step == NULL_TREE
4055 || !is_gimple_min_invariant (step)
4056 || !valid_value_p (init))
4057 return true;
4059 /* If we get here, we know something useful about VAR based on the
4060 loop information. If it wraps, it may overflow. */
4062 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4063 true))
4064 return true;
4066 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4068 print_generic_expr (dump_file, var, 0);
4069 fprintf (dump_file, ": loop information indicates does not overflow\n");
4072 return false;
4076 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4078 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4079 all the values in the ranges.
4081 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4083 - Return NULL_TREE if it is not always possible to determine the
4084 value of the comparison.
4086 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4087 overflow infinity was used in the test. */
4090 static tree
4091 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4092 bool *strict_overflow_p)
4094 /* VARYING or UNDEFINED ranges cannot be compared. */
4095 if (vr0->type == VR_VARYING
4096 || vr0->type == VR_UNDEFINED
4097 || vr1->type == VR_VARYING
4098 || vr1->type == VR_UNDEFINED)
4099 return NULL_TREE;
4101 /* Anti-ranges need to be handled separately. */
4102 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4104 /* If both are anti-ranges, then we cannot compute any
4105 comparison. */
4106 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4107 return NULL_TREE;
4109 /* These comparisons are never statically computable. */
4110 if (comp == GT_EXPR
4111 || comp == GE_EXPR
4112 || comp == LT_EXPR
4113 || comp == LE_EXPR)
4114 return NULL_TREE;
4116 /* Equality can be computed only between a range and an
4117 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4118 if (vr0->type == VR_RANGE)
4120 /* To simplify processing, make VR0 the anti-range. */
4121 value_range_t *tmp = vr0;
4122 vr0 = vr1;
4123 vr1 = tmp;
4126 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4128 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4129 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4130 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4132 return NULL_TREE;
4135 if (!usable_range_p (vr0, strict_overflow_p)
4136 || !usable_range_p (vr1, strict_overflow_p))
4137 return NULL_TREE;
4139 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4140 operands around and change the comparison code. */
4141 if (comp == GT_EXPR || comp == GE_EXPR)
4143 value_range_t *tmp;
4144 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4145 tmp = vr0;
4146 vr0 = vr1;
4147 vr1 = tmp;
4150 if (comp == EQ_EXPR)
4152 /* Equality may only be computed if both ranges represent
4153 exactly one value. */
4154 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4155 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4157 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4158 strict_overflow_p);
4159 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4160 strict_overflow_p);
4161 if (cmp_min == 0 && cmp_max == 0)
4162 return boolean_true_node;
4163 else if (cmp_min != -2 && cmp_max != -2)
4164 return boolean_false_node;
4166 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4167 else if (compare_values_warnv (vr0->min, vr1->max,
4168 strict_overflow_p) == 1
4169 || compare_values_warnv (vr1->min, vr0->max,
4170 strict_overflow_p) == 1)
4171 return boolean_false_node;
4173 return NULL_TREE;
4175 else if (comp == NE_EXPR)
4177 int cmp1, cmp2;
4179 /* If VR0 is completely to the left or completely to the right
4180 of VR1, they are always different. Notice that we need to
4181 make sure that both comparisons yield similar results to
4182 avoid comparing values that cannot be compared at
4183 compile-time. */
4184 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4185 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4186 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4187 return boolean_true_node;
4189 /* If VR0 and VR1 represent a single value and are identical,
4190 return false. */
4191 else if (compare_values_warnv (vr0->min, vr0->max,
4192 strict_overflow_p) == 0
4193 && compare_values_warnv (vr1->min, vr1->max,
4194 strict_overflow_p) == 0
4195 && compare_values_warnv (vr0->min, vr1->min,
4196 strict_overflow_p) == 0
4197 && compare_values_warnv (vr0->max, vr1->max,
4198 strict_overflow_p) == 0)
4199 return boolean_false_node;
4201 /* Otherwise, they may or may not be different. */
4202 else
4203 return NULL_TREE;
4205 else if (comp == LT_EXPR || comp == LE_EXPR)
4207 int tst;
4209 /* If VR0 is to the left of VR1, return true. */
4210 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4211 if ((comp == LT_EXPR && tst == -1)
4212 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4214 if (overflow_infinity_range_p (vr0)
4215 || overflow_infinity_range_p (vr1))
4216 *strict_overflow_p = true;
4217 return boolean_true_node;
4220 /* If VR0 is to the right of VR1, return false. */
4221 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4222 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4223 || (comp == LE_EXPR && tst == 1))
4225 if (overflow_infinity_range_p (vr0)
4226 || overflow_infinity_range_p (vr1))
4227 *strict_overflow_p = true;
4228 return boolean_false_node;
4231 /* Otherwise, we don't know. */
4232 return NULL_TREE;
4235 gcc_unreachable ();
4239 /* Given a value range VR, a value VAL and a comparison code COMP, return
4240 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4241 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4242 always returns false. Return NULL_TREE if it is not always
4243 possible to determine the value of the comparison. Also set
4244 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4245 infinity was used in the test. */
4247 static tree
4248 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4249 bool *strict_overflow_p)
4251 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4252 return NULL_TREE;
4254 /* Anti-ranges need to be handled separately. */
4255 if (vr->type == VR_ANTI_RANGE)
4257 /* For anti-ranges, the only predicates that we can compute at
4258 compile time are equality and inequality. */
4259 if (comp == GT_EXPR
4260 || comp == GE_EXPR
4261 || comp == LT_EXPR
4262 || comp == LE_EXPR)
4263 return NULL_TREE;
4265 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4266 if (value_inside_range (val, vr->min, vr->max) == 1)
4267 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4269 return NULL_TREE;
4272 if (!usable_range_p (vr, strict_overflow_p))
4273 return NULL_TREE;
4275 if (comp == EQ_EXPR)
4277 /* EQ_EXPR may only be computed if VR represents exactly
4278 one value. */
4279 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4281 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4282 if (cmp == 0)
4283 return boolean_true_node;
4284 else if (cmp == -1 || cmp == 1 || cmp == 2)
4285 return boolean_false_node;
4287 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4288 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4289 return boolean_false_node;
4291 return NULL_TREE;
4293 else if (comp == NE_EXPR)
4295 /* If VAL is not inside VR, then they are always different. */
4296 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4297 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4298 return boolean_true_node;
4300 /* If VR represents exactly one value equal to VAL, then return
4301 false. */
4302 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4303 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4304 return boolean_false_node;
4306 /* Otherwise, they may or may not be different. */
4307 return NULL_TREE;
4309 else if (comp == LT_EXPR || comp == LE_EXPR)
4311 int tst;
4313 /* If VR is to the left of VAL, return true. */
4314 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4315 if ((comp == LT_EXPR && tst == -1)
4316 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4318 if (overflow_infinity_range_p (vr))
4319 *strict_overflow_p = true;
4320 return boolean_true_node;
4323 /* If VR is to the right of VAL, return false. */
4324 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4325 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4326 || (comp == LE_EXPR && tst == 1))
4328 if (overflow_infinity_range_p (vr))
4329 *strict_overflow_p = true;
4330 return boolean_false_node;
4333 /* Otherwise, we don't know. */
4334 return NULL_TREE;
4336 else if (comp == GT_EXPR || comp == GE_EXPR)
4338 int tst;
4340 /* If VR is to the right of VAL, return true. */
4341 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4342 if ((comp == GT_EXPR && tst == 1)
4343 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4345 if (overflow_infinity_range_p (vr))
4346 *strict_overflow_p = true;
4347 return boolean_true_node;
4350 /* If VR is to the left of VAL, return false. */
4351 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4352 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4353 || (comp == GE_EXPR && tst == -1))
4355 if (overflow_infinity_range_p (vr))
4356 *strict_overflow_p = true;
4357 return boolean_false_node;
4360 /* Otherwise, we don't know. */
4361 return NULL_TREE;
4364 gcc_unreachable ();
4368 /* Debugging dumps. */
4370 void dump_value_range (FILE *, value_range_t *);
4371 void debug_value_range (value_range_t *);
4372 void dump_all_value_ranges (FILE *);
4373 void debug_all_value_ranges (void);
4374 void dump_vr_equiv (FILE *, bitmap);
4375 void debug_vr_equiv (bitmap);
4378 /* Dump value range VR to FILE. */
4380 void
4381 dump_value_range (FILE *file, value_range_t *vr)
4383 if (vr == NULL)
4384 fprintf (file, "[]");
4385 else if (vr->type == VR_UNDEFINED)
4386 fprintf (file, "UNDEFINED");
4387 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4389 tree type = TREE_TYPE (vr->min);
4391 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4393 if (is_negative_overflow_infinity (vr->min))
4394 fprintf (file, "-INF(OVF)");
4395 else if (INTEGRAL_TYPE_P (type)
4396 && !TYPE_UNSIGNED (type)
4397 && vrp_val_is_min (vr->min))
4398 fprintf (file, "-INF");
4399 else
4400 print_generic_expr (file, vr->min, 0);
4402 fprintf (file, ", ");
4404 if (is_positive_overflow_infinity (vr->max))
4405 fprintf (file, "+INF(OVF)");
4406 else if (INTEGRAL_TYPE_P (type)
4407 && vrp_val_is_max (vr->max))
4408 fprintf (file, "+INF");
4409 else
4410 print_generic_expr (file, vr->max, 0);
4412 fprintf (file, "]");
4414 if (vr->equiv)
4416 bitmap_iterator bi;
4417 unsigned i, c = 0;
4419 fprintf (file, " EQUIVALENCES: { ");
4421 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4423 print_generic_expr (file, ssa_name (i), 0);
4424 fprintf (file, " ");
4425 c++;
4428 fprintf (file, "} (%u elements)", c);
4431 else if (vr->type == VR_VARYING)
4432 fprintf (file, "VARYING");
4433 else
4434 fprintf (file, "INVALID RANGE");
4438 /* Dump value range VR to stderr. */
4440 DEBUG_FUNCTION void
4441 debug_value_range (value_range_t *vr)
4443 dump_value_range (stderr, vr);
4444 fprintf (stderr, "\n");
4448 /* Dump value ranges of all SSA_NAMEs to FILE. */
4450 void
4451 dump_all_value_ranges (FILE *file)
4453 size_t i;
4455 for (i = 0; i < num_vr_values; i++)
4457 if (vr_value[i])
4459 print_generic_expr (file, ssa_name (i), 0);
4460 fprintf (file, ": ");
4461 dump_value_range (file, vr_value[i]);
4462 fprintf (file, "\n");
4466 fprintf (file, "\n");
4470 /* Dump all value ranges to stderr. */
4472 DEBUG_FUNCTION void
4473 debug_all_value_ranges (void)
4475 dump_all_value_ranges (stderr);
4479 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4480 create a new SSA name N and return the assertion assignment
4481 'V = ASSERT_EXPR <V, V OP W>'. */
4483 static gimple
4484 build_assert_expr_for (tree cond, tree v)
4486 tree a;
4487 gimple assertion;
4489 gcc_assert (TREE_CODE (v) == SSA_NAME
4490 && COMPARISON_CLASS_P (cond));
4492 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4493 assertion = gimple_build_assign (NULL_TREE, a);
4495 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4496 operand of the ASSERT_EXPR. Create it so the new name and the old one
4497 are registered in the replacement table so that we can fix the SSA web
4498 after adding all the ASSERT_EXPRs. */
4499 create_new_def_for (v, assertion, NULL);
4501 return assertion;
4505 /* Return false if EXPR is a predicate expression involving floating
4506 point values. */
4508 static inline bool
4509 fp_predicate (gimple stmt)
4511 GIMPLE_CHECK (stmt, GIMPLE_COND);
4513 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4516 /* If the range of values taken by OP can be inferred after STMT executes,
4517 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4518 describes the inferred range. Return true if a range could be
4519 inferred. */
4521 static bool
4522 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4524 *val_p = NULL_TREE;
4525 *comp_code_p = ERROR_MARK;
4527 /* Do not attempt to infer anything in names that flow through
4528 abnormal edges. */
4529 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4530 return false;
4532 /* Similarly, don't infer anything from statements that may throw
4533 exceptions. ??? Relax this requirement? */
4534 if (stmt_could_throw_p (stmt))
4535 return false;
4537 /* If STMT is the last statement of a basic block with no normal
4538 successors, there is no point inferring anything about any of its
4539 operands. We would not be able to find a proper insertion point
4540 for the assertion, anyway. */
4541 if (stmt_ends_bb_p (stmt))
4543 edge_iterator ei;
4544 edge e;
4546 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4547 if (!(e->flags & EDGE_ABNORMAL))
4548 break;
4549 if (e == NULL)
4550 return false;
4553 if (infer_nonnull_range (stmt, op, true, true))
4555 *val_p = build_int_cst (TREE_TYPE (op), 0);
4556 *comp_code_p = NE_EXPR;
4557 return true;
4560 return false;
4564 void dump_asserts_for (FILE *, tree);
4565 void debug_asserts_for (tree);
4566 void dump_all_asserts (FILE *);
4567 void debug_all_asserts (void);
4569 /* Dump all the registered assertions for NAME to FILE. */
4571 void
4572 dump_asserts_for (FILE *file, tree name)
4574 assert_locus_t loc;
4576 fprintf (file, "Assertions to be inserted for ");
4577 print_generic_expr (file, name, 0);
4578 fprintf (file, "\n");
4580 loc = asserts_for[SSA_NAME_VERSION (name)];
4581 while (loc)
4583 fprintf (file, "\t");
4584 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4585 fprintf (file, "\n\tBB #%d", loc->bb->index);
4586 if (loc->e)
4588 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4589 loc->e->dest->index);
4590 dump_edge_info (file, loc->e, dump_flags, 0);
4592 fprintf (file, "\n\tPREDICATE: ");
4593 print_generic_expr (file, name, 0);
4594 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4595 print_generic_expr (file, loc->val, 0);
4596 fprintf (file, "\n\n");
4597 loc = loc->next;
4600 fprintf (file, "\n");
4604 /* Dump all the registered assertions for NAME to stderr. */
4606 DEBUG_FUNCTION void
4607 debug_asserts_for (tree name)
4609 dump_asserts_for (stderr, name);
4613 /* Dump all the registered assertions for all the names to FILE. */
4615 void
4616 dump_all_asserts (FILE *file)
4618 unsigned i;
4619 bitmap_iterator bi;
4621 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4622 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4623 dump_asserts_for (file, ssa_name (i));
4624 fprintf (file, "\n");
4628 /* Dump all the registered assertions for all the names to stderr. */
4630 DEBUG_FUNCTION void
4631 debug_all_asserts (void)
4633 dump_all_asserts (stderr);
4637 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4638 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4639 E->DEST, then register this location as a possible insertion point
4640 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4642 BB, E and SI provide the exact insertion point for the new
4643 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4644 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4645 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4646 must not be NULL. */
4648 static void
4649 register_new_assert_for (tree name, tree expr,
4650 enum tree_code comp_code,
4651 tree val,
4652 basic_block bb,
4653 edge e,
4654 gimple_stmt_iterator si)
4656 assert_locus_t n, loc, last_loc;
4657 basic_block dest_bb;
4659 gcc_checking_assert (bb == NULL || e == NULL);
4661 if (e == NULL)
4662 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4663 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4665 /* Never build an assert comparing against an integer constant with
4666 TREE_OVERFLOW set. This confuses our undefined overflow warning
4667 machinery. */
4668 if (TREE_OVERFLOW_P (val))
4669 val = drop_tree_overflow (val);
4671 /* The new assertion A will be inserted at BB or E. We need to
4672 determine if the new location is dominated by a previously
4673 registered location for A. If we are doing an edge insertion,
4674 assume that A will be inserted at E->DEST. Note that this is not
4675 necessarily true.
4677 If E is a critical edge, it will be split. But even if E is
4678 split, the new block will dominate the same set of blocks that
4679 E->DEST dominates.
4681 The reverse, however, is not true, blocks dominated by E->DEST
4682 will not be dominated by the new block created to split E. So,
4683 if the insertion location is on a critical edge, we will not use
4684 the new location to move another assertion previously registered
4685 at a block dominated by E->DEST. */
4686 dest_bb = (bb) ? bb : e->dest;
4688 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4689 VAL at a block dominating DEST_BB, then we don't need to insert a new
4690 one. Similarly, if the same assertion already exists at a block
4691 dominated by DEST_BB and the new location is not on a critical
4692 edge, then update the existing location for the assertion (i.e.,
4693 move the assertion up in the dominance tree).
4695 Note, this is implemented as a simple linked list because there
4696 should not be more than a handful of assertions registered per
4697 name. If this becomes a performance problem, a table hashed by
4698 COMP_CODE and VAL could be implemented. */
4699 loc = asserts_for[SSA_NAME_VERSION (name)];
4700 last_loc = loc;
4701 while (loc)
4703 if (loc->comp_code == comp_code
4704 && (loc->val == val
4705 || operand_equal_p (loc->val, val, 0))
4706 && (loc->expr == expr
4707 || operand_equal_p (loc->expr, expr, 0)))
4709 /* If E is not a critical edge and DEST_BB
4710 dominates the existing location for the assertion, move
4711 the assertion up in the dominance tree by updating its
4712 location information. */
4713 if ((e == NULL || !EDGE_CRITICAL_P (e))
4714 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4716 loc->bb = dest_bb;
4717 loc->e = e;
4718 loc->si = si;
4719 return;
4723 /* Update the last node of the list and move to the next one. */
4724 last_loc = loc;
4725 loc = loc->next;
4728 /* If we didn't find an assertion already registered for
4729 NAME COMP_CODE VAL, add a new one at the end of the list of
4730 assertions associated with NAME. */
4731 n = XNEW (struct assert_locus_d);
4732 n->bb = dest_bb;
4733 n->e = e;
4734 n->si = si;
4735 n->comp_code = comp_code;
4736 n->val = val;
4737 n->expr = expr;
4738 n->next = NULL;
4740 if (last_loc)
4741 last_loc->next = n;
4742 else
4743 asserts_for[SSA_NAME_VERSION (name)] = n;
4745 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4748 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4749 Extract a suitable test code and value and store them into *CODE_P and
4750 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4752 If no extraction was possible, return FALSE, otherwise return TRUE.
4754 If INVERT is true, then we invert the result stored into *CODE_P. */
4756 static bool
4757 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4758 tree cond_op0, tree cond_op1,
4759 bool invert, enum tree_code *code_p,
4760 tree *val_p)
4762 enum tree_code comp_code;
4763 tree val;
4765 /* Otherwise, we have a comparison of the form NAME COMP VAL
4766 or VAL COMP NAME. */
4767 if (name == cond_op1)
4769 /* If the predicate is of the form VAL COMP NAME, flip
4770 COMP around because we need to register NAME as the
4771 first operand in the predicate. */
4772 comp_code = swap_tree_comparison (cond_code);
4773 val = cond_op0;
4775 else
4777 /* The comparison is of the form NAME COMP VAL, so the
4778 comparison code remains unchanged. */
4779 comp_code = cond_code;
4780 val = cond_op1;
4783 /* Invert the comparison code as necessary. */
4784 if (invert)
4785 comp_code = invert_tree_comparison (comp_code, 0);
4787 /* VRP does not handle float types. */
4788 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4789 return false;
4791 /* Do not register always-false predicates.
4792 FIXME: this works around a limitation in fold() when dealing with
4793 enumerations. Given 'enum { N1, N2 } x;', fold will not
4794 fold 'if (x > N2)' to 'if (0)'. */
4795 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4796 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4798 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4799 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4801 if (comp_code == GT_EXPR
4802 && (!max
4803 || compare_values (val, max) == 0))
4804 return false;
4806 if (comp_code == LT_EXPR
4807 && (!min
4808 || compare_values (val, min) == 0))
4809 return false;
4811 *code_p = comp_code;
4812 *val_p = val;
4813 return true;
4816 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4817 (otherwise return VAL). VAL and MASK must be zero-extended for
4818 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4819 (to transform signed values into unsigned) and at the end xor
4820 SGNBIT back. */
4822 static double_int
4823 masked_increment (double_int val, double_int mask, double_int sgnbit,
4824 unsigned int prec)
4826 double_int bit = double_int_one, res;
4827 unsigned int i;
4829 val ^= sgnbit;
4830 for (i = 0; i < prec; i++, bit += bit)
4832 res = mask;
4833 if ((res & bit).is_zero ())
4834 continue;
4835 res = bit - double_int_one;
4836 res = (val + bit).and_not (res);
4837 res &= mask;
4838 if (res.ugt (val))
4839 return res ^ sgnbit;
4841 return val ^ sgnbit;
4844 /* Try to register an edge assertion for SSA name NAME on edge E for
4845 the condition COND contributing to the conditional jump pointed to by BSI.
4846 Invert the condition COND if INVERT is true.
4847 Return true if an assertion for NAME could be registered. */
4849 static bool
4850 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4851 enum tree_code cond_code,
4852 tree cond_op0, tree cond_op1, bool invert)
4854 tree val;
4855 enum tree_code comp_code;
4856 bool retval = false;
4858 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4859 cond_op0,
4860 cond_op1,
4861 invert, &comp_code, &val))
4862 return false;
4864 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4865 reachable from E. */
4866 if (live_on_edge (e, name)
4867 && !has_single_use (name))
4869 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4870 retval = true;
4873 /* In the case of NAME <= CST and NAME being defined as
4874 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4875 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4876 This catches range and anti-range tests. */
4877 if ((comp_code == LE_EXPR
4878 || comp_code == GT_EXPR)
4879 && TREE_CODE (val) == INTEGER_CST
4880 && TYPE_UNSIGNED (TREE_TYPE (val)))
4882 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4883 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4885 /* Extract CST2 from the (optional) addition. */
4886 if (is_gimple_assign (def_stmt)
4887 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4889 name2 = gimple_assign_rhs1 (def_stmt);
4890 cst2 = gimple_assign_rhs2 (def_stmt);
4891 if (TREE_CODE (name2) == SSA_NAME
4892 && TREE_CODE (cst2) == INTEGER_CST)
4893 def_stmt = SSA_NAME_DEF_STMT (name2);
4896 /* Extract NAME2 from the (optional) sign-changing cast. */
4897 if (gimple_assign_cast_p (def_stmt))
4899 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4900 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4901 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4902 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4903 name3 = gimple_assign_rhs1 (def_stmt);
4906 /* If name3 is used later, create an ASSERT_EXPR for it. */
4907 if (name3 != NULL_TREE
4908 && TREE_CODE (name3) == SSA_NAME
4909 && (cst2 == NULL_TREE
4910 || TREE_CODE (cst2) == INTEGER_CST)
4911 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4912 && live_on_edge (e, name3)
4913 && !has_single_use (name3))
4915 tree tmp;
4917 /* Build an expression for the range test. */
4918 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4919 if (cst2 != NULL_TREE)
4920 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4922 if (dump_file)
4924 fprintf (dump_file, "Adding assert for ");
4925 print_generic_expr (dump_file, name3, 0);
4926 fprintf (dump_file, " from ");
4927 print_generic_expr (dump_file, tmp, 0);
4928 fprintf (dump_file, "\n");
4931 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4933 retval = true;
4936 /* If name2 is used later, create an ASSERT_EXPR for it. */
4937 if (name2 != NULL_TREE
4938 && TREE_CODE (name2) == SSA_NAME
4939 && TREE_CODE (cst2) == INTEGER_CST
4940 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4941 && live_on_edge (e, name2)
4942 && !has_single_use (name2))
4944 tree tmp;
4946 /* Build an expression for the range test. */
4947 tmp = name2;
4948 if (TREE_TYPE (name) != TREE_TYPE (name2))
4949 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4950 if (cst2 != NULL_TREE)
4951 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4953 if (dump_file)
4955 fprintf (dump_file, "Adding assert for ");
4956 print_generic_expr (dump_file, name2, 0);
4957 fprintf (dump_file, " from ");
4958 print_generic_expr (dump_file, tmp, 0);
4959 fprintf (dump_file, "\n");
4962 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4964 retval = true;
4968 /* In the case of post-in/decrement tests like if (i++) ... and uses
4969 of the in/decremented value on the edge the extra name we want to
4970 assert for is not on the def chain of the name compared. Instead
4971 it is in the set of use stmts. */
4972 if ((comp_code == NE_EXPR
4973 || comp_code == EQ_EXPR)
4974 && TREE_CODE (val) == INTEGER_CST)
4976 imm_use_iterator ui;
4977 gimple use_stmt;
4978 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4980 /* Cut off to use-stmts that are in the predecessor. */
4981 if (gimple_bb (use_stmt) != e->src)
4982 continue;
4984 if (!is_gimple_assign (use_stmt))
4985 continue;
4987 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4988 if (code != PLUS_EXPR
4989 && code != MINUS_EXPR)
4990 continue;
4992 tree cst = gimple_assign_rhs2 (use_stmt);
4993 if (TREE_CODE (cst) != INTEGER_CST)
4994 continue;
4996 tree name2 = gimple_assign_lhs (use_stmt);
4997 if (live_on_edge (e, name2))
4999 cst = int_const_binop (code, val, cst);
5000 register_new_assert_for (name2, name2, comp_code, cst,
5001 NULL, e, bsi);
5002 retval = true;
5007 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5008 && TREE_CODE (val) == INTEGER_CST)
5010 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5011 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5012 tree val2 = NULL_TREE;
5013 double_int mask = double_int_zero;
5014 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5015 unsigned int nprec = prec;
5016 enum tree_code rhs_code = ERROR_MARK;
5018 if (is_gimple_assign (def_stmt))
5019 rhs_code = gimple_assign_rhs_code (def_stmt);
5021 /* Add asserts for NAME cmp CST and NAME being defined
5022 as NAME = (int) NAME2. */
5023 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5024 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5025 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5026 && gimple_assign_cast_p (def_stmt))
5028 name2 = gimple_assign_rhs1 (def_stmt);
5029 if (CONVERT_EXPR_CODE_P (rhs_code)
5030 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5031 && TYPE_UNSIGNED (TREE_TYPE (name2))
5032 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5033 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5034 || !tree_int_cst_equal (val,
5035 TYPE_MIN_VALUE (TREE_TYPE (val))))
5036 && live_on_edge (e, name2)
5037 && !has_single_use (name2))
5039 tree tmp, cst;
5040 enum tree_code new_comp_code = comp_code;
5042 cst = fold_convert (TREE_TYPE (name2),
5043 TYPE_MIN_VALUE (TREE_TYPE (val)));
5044 /* Build an expression for the range test. */
5045 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5046 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5047 fold_convert (TREE_TYPE (name2), val));
5048 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5050 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5051 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5052 build_int_cst (TREE_TYPE (name2), 1));
5055 if (dump_file)
5057 fprintf (dump_file, "Adding assert for ");
5058 print_generic_expr (dump_file, name2, 0);
5059 fprintf (dump_file, " from ");
5060 print_generic_expr (dump_file, tmp, 0);
5061 fprintf (dump_file, "\n");
5064 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5065 e, bsi);
5067 retval = true;
5071 /* Add asserts for NAME cmp CST and NAME being defined as
5072 NAME = NAME2 >> CST2.
5074 Extract CST2 from the right shift. */
5075 if (rhs_code == RSHIFT_EXPR)
5077 name2 = gimple_assign_rhs1 (def_stmt);
5078 cst2 = gimple_assign_rhs2 (def_stmt);
5079 if (TREE_CODE (name2) == SSA_NAME
5080 && tree_fits_uhwi_p (cst2)
5081 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5082 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5083 && prec <= HOST_BITS_PER_DOUBLE_INT
5084 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5085 && live_on_edge (e, name2)
5086 && !has_single_use (name2))
5088 mask = double_int::mask (tree_to_uhwi (cst2));
5089 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5092 if (val2 != NULL_TREE
5093 && TREE_CODE (val2) == INTEGER_CST
5094 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5095 TREE_TYPE (val),
5096 val2, cst2), val))
5098 enum tree_code new_comp_code = comp_code;
5099 tree tmp, new_val;
5101 tmp = name2;
5102 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5104 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5106 tree type = build_nonstandard_integer_type (prec, 1);
5107 tmp = build1 (NOP_EXPR, type, name2);
5108 val2 = fold_convert (type, val2);
5110 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5111 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5112 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5114 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5116 double_int minval
5117 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5118 new_val = val2;
5119 if (minval == tree_to_double_int (new_val))
5120 new_val = NULL_TREE;
5122 else
5124 double_int maxval
5125 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5126 mask |= tree_to_double_int (val2);
5127 if (mask == maxval)
5128 new_val = NULL_TREE;
5129 else
5130 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5133 if (new_val)
5135 if (dump_file)
5137 fprintf (dump_file, "Adding assert for ");
5138 print_generic_expr (dump_file, name2, 0);
5139 fprintf (dump_file, " from ");
5140 print_generic_expr (dump_file, tmp, 0);
5141 fprintf (dump_file, "\n");
5144 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5145 NULL, e, bsi);
5146 retval = true;
5150 /* Add asserts for NAME cmp CST and NAME being defined as
5151 NAME = NAME2 & CST2.
5153 Extract CST2 from the and.
5155 Also handle
5156 NAME = (unsigned) NAME2;
5157 casts where NAME's type is unsigned and has smaller precision
5158 than NAME2's type as if it was NAME = NAME2 & MASK. */
5159 names[0] = NULL_TREE;
5160 names[1] = NULL_TREE;
5161 cst2 = NULL_TREE;
5162 if (rhs_code == BIT_AND_EXPR
5163 || (CONVERT_EXPR_CODE_P (rhs_code)
5164 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5165 && TYPE_UNSIGNED (TREE_TYPE (val))
5166 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5167 > prec
5168 && !retval))
5170 name2 = gimple_assign_rhs1 (def_stmt);
5171 if (rhs_code == BIT_AND_EXPR)
5172 cst2 = gimple_assign_rhs2 (def_stmt);
5173 else
5175 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5176 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5178 if (TREE_CODE (name2) == SSA_NAME
5179 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5180 && TREE_CODE (cst2) == INTEGER_CST
5181 && !integer_zerop (cst2)
5182 && nprec <= HOST_BITS_PER_DOUBLE_INT
5183 && (nprec > 1
5184 || TYPE_UNSIGNED (TREE_TYPE (val))))
5186 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5187 if (gimple_assign_cast_p (def_stmt2))
5189 names[1] = gimple_assign_rhs1 (def_stmt2);
5190 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5191 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5192 || (TYPE_PRECISION (TREE_TYPE (name2))
5193 != TYPE_PRECISION (TREE_TYPE (names[1])))
5194 || !live_on_edge (e, names[1])
5195 || has_single_use (names[1]))
5196 names[1] = NULL_TREE;
5198 if (live_on_edge (e, name2)
5199 && !has_single_use (name2))
5200 names[0] = name2;
5203 if (names[0] || names[1])
5205 double_int minv, maxv = double_int_zero, valv, cst2v;
5206 double_int tem, sgnbit;
5207 bool valid_p = false, valn = false, cst2n = false;
5208 enum tree_code ccode = comp_code;
5210 valv = tree_to_double_int (val).zext (nprec);
5211 cst2v = tree_to_double_int (cst2).zext (nprec);
5212 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5214 valn = valv.sext (nprec).is_negative ();
5215 cst2n = cst2v.sext (nprec).is_negative ();
5217 /* If CST2 doesn't have most significant bit set,
5218 but VAL is negative, we have comparison like
5219 if ((x & 0x123) > -4) (always true). Just give up. */
5220 if (!cst2n && valn)
5221 ccode = ERROR_MARK;
5222 if (cst2n)
5223 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5224 else
5225 sgnbit = double_int_zero;
5226 minv = valv & cst2v;
5227 switch (ccode)
5229 case EQ_EXPR:
5230 /* Minimum unsigned value for equality is VAL & CST2
5231 (should be equal to VAL, otherwise we probably should
5232 have folded the comparison into false) and
5233 maximum unsigned value is VAL | ~CST2. */
5234 maxv = valv | ~cst2v;
5235 maxv = maxv.zext (nprec);
5236 valid_p = true;
5237 break;
5238 case NE_EXPR:
5239 tem = valv | ~cst2v;
5240 tem = tem.zext (nprec);
5241 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5242 if (valv.is_zero ())
5244 cst2n = false;
5245 sgnbit = double_int_zero;
5246 goto gt_expr;
5248 /* If (VAL | ~CST2) is all ones, handle it as
5249 (X & CST2) < VAL. */
5250 if (tem == double_int::mask (nprec))
5252 cst2n = false;
5253 valn = false;
5254 sgnbit = double_int_zero;
5255 goto lt_expr;
5257 if (!cst2n
5258 && cst2v.sext (nprec).is_negative ())
5259 sgnbit
5260 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5261 if (!sgnbit.is_zero ())
5263 if (valv == sgnbit)
5265 cst2n = true;
5266 valn = true;
5267 goto gt_expr;
5269 if (tem == double_int::mask (nprec - 1))
5271 cst2n = true;
5272 goto lt_expr;
5274 if (!cst2n)
5275 sgnbit = double_int_zero;
5277 break;
5278 case GE_EXPR:
5279 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5280 is VAL and maximum unsigned value is ~0. For signed
5281 comparison, if CST2 doesn't have most significant bit
5282 set, handle it similarly. If CST2 has MSB set,
5283 the minimum is the same, and maximum is ~0U/2. */
5284 if (minv != valv)
5286 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5287 VAL. */
5288 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5289 if (minv == valv)
5290 break;
5292 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5293 valid_p = true;
5294 break;
5295 case GT_EXPR:
5296 gt_expr:
5297 /* Find out smallest MINV where MINV > VAL
5298 && (MINV & CST2) == MINV, if any. If VAL is signed and
5299 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5300 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5301 if (minv == valv)
5302 break;
5303 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5304 valid_p = true;
5305 break;
5306 case LE_EXPR:
5307 /* Minimum unsigned value for <= is 0 and maximum
5308 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5309 Otherwise, find smallest VAL2 where VAL2 > VAL
5310 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5311 as maximum.
5312 For signed comparison, if CST2 doesn't have most
5313 significant bit set, handle it similarly. If CST2 has
5314 MSB set, the maximum is the same and minimum is INT_MIN. */
5315 if (minv == valv)
5316 maxv = valv;
5317 else
5319 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5320 if (maxv == valv)
5321 break;
5322 maxv -= double_int_one;
5324 maxv |= ~cst2v;
5325 maxv = maxv.zext (nprec);
5326 minv = sgnbit;
5327 valid_p = true;
5328 break;
5329 case LT_EXPR:
5330 lt_expr:
5331 /* Minimum unsigned value for < is 0 and maximum
5332 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5333 Otherwise, find smallest VAL2 where VAL2 > VAL
5334 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5335 as maximum.
5336 For signed comparison, if CST2 doesn't have most
5337 significant bit set, handle it similarly. If CST2 has
5338 MSB set, the maximum is the same and minimum is INT_MIN. */
5339 if (minv == valv)
5341 if (valv == sgnbit)
5342 break;
5343 maxv = valv;
5345 else
5347 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5348 if (maxv == valv)
5349 break;
5351 maxv -= double_int_one;
5352 maxv |= ~cst2v;
5353 maxv = maxv.zext (nprec);
5354 minv = sgnbit;
5355 valid_p = true;
5356 break;
5357 default:
5358 break;
5360 if (valid_p
5361 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5363 tree tmp, new_val, type;
5364 int i;
5366 for (i = 0; i < 2; i++)
5367 if (names[i])
5369 double_int maxv2 = maxv;
5370 tmp = names[i];
5371 type = TREE_TYPE (names[i]);
5372 if (!TYPE_UNSIGNED (type))
5374 type = build_nonstandard_integer_type (nprec, 1);
5375 tmp = build1 (NOP_EXPR, type, names[i]);
5377 if (!minv.is_zero ())
5379 tmp = build2 (PLUS_EXPR, type, tmp,
5380 double_int_to_tree (type, -minv));
5381 maxv2 = maxv - minv;
5383 new_val = double_int_to_tree (type, maxv2);
5385 if (dump_file)
5387 fprintf (dump_file, "Adding assert for ");
5388 print_generic_expr (dump_file, names[i], 0);
5389 fprintf (dump_file, " from ");
5390 print_generic_expr (dump_file, tmp, 0);
5391 fprintf (dump_file, "\n");
5394 register_new_assert_for (names[i], tmp, LE_EXPR,
5395 new_val, NULL, e, bsi);
5396 retval = true;
5402 return retval;
5405 /* OP is an operand of a truth value expression which is known to have
5406 a particular value. Register any asserts for OP and for any
5407 operands in OP's defining statement.
5409 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5410 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5412 static bool
5413 register_edge_assert_for_1 (tree op, enum tree_code code,
5414 edge e, gimple_stmt_iterator bsi)
5416 bool retval = false;
5417 gimple op_def;
5418 tree val;
5419 enum tree_code rhs_code;
5421 /* We only care about SSA_NAMEs. */
5422 if (TREE_CODE (op) != SSA_NAME)
5423 return false;
5425 /* We know that OP will have a zero or nonzero value. If OP is used
5426 more than once go ahead and register an assert for OP. */
5427 if (live_on_edge (e, op)
5428 && !has_single_use (op))
5430 val = build_int_cst (TREE_TYPE (op), 0);
5431 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5432 retval = true;
5435 /* Now look at how OP is set. If it's set from a comparison,
5436 a truth operation or some bit operations, then we may be able
5437 to register information about the operands of that assignment. */
5438 op_def = SSA_NAME_DEF_STMT (op);
5439 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5440 return retval;
5442 rhs_code = gimple_assign_rhs_code (op_def);
5444 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5446 bool invert = (code == EQ_EXPR ? true : false);
5447 tree op0 = gimple_assign_rhs1 (op_def);
5448 tree op1 = gimple_assign_rhs2 (op_def);
5450 if (TREE_CODE (op0) == SSA_NAME)
5451 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5452 invert);
5453 if (TREE_CODE (op1) == SSA_NAME)
5454 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5455 invert);
5457 else if ((code == NE_EXPR
5458 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5459 || (code == EQ_EXPR
5460 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5462 /* Recurse on each operand. */
5463 tree op0 = gimple_assign_rhs1 (op_def);
5464 tree op1 = gimple_assign_rhs2 (op_def);
5465 if (TREE_CODE (op0) == SSA_NAME
5466 && has_single_use (op0))
5467 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5468 if (TREE_CODE (op1) == SSA_NAME
5469 && has_single_use (op1))
5470 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5472 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5473 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5475 /* Recurse, flipping CODE. */
5476 code = invert_tree_comparison (code, false);
5477 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5478 code, e, bsi);
5480 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5482 /* Recurse through the copy. */
5483 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5484 code, e, bsi);
5486 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5488 /* Recurse through the type conversion, unless it is a narrowing
5489 conversion or conversion from non-integral type. */
5490 tree rhs = gimple_assign_rhs1 (op_def);
5491 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5492 && (TYPE_PRECISION (TREE_TYPE (rhs))
5493 <= TYPE_PRECISION (TREE_TYPE (op))))
5494 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
5497 return retval;
5500 /* Try to register an edge assertion for SSA name NAME on edge E for
5501 the condition COND contributing to the conditional jump pointed to by SI.
5502 Return true if an assertion for NAME could be registered. */
5504 static bool
5505 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5506 enum tree_code cond_code, tree cond_op0,
5507 tree cond_op1)
5509 tree val;
5510 enum tree_code comp_code;
5511 bool retval = false;
5512 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5514 /* Do not attempt to infer anything in names that flow through
5515 abnormal edges. */
5516 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5517 return false;
5519 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5520 cond_op0, cond_op1,
5521 is_else_edge,
5522 &comp_code, &val))
5523 return false;
5525 /* Register ASSERT_EXPRs for name. */
5526 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5527 cond_op1, is_else_edge);
5530 /* If COND is effectively an equality test of an SSA_NAME against
5531 the value zero or one, then we may be able to assert values
5532 for SSA_NAMEs which flow into COND. */
5534 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5535 statement of NAME we can assert both operands of the BIT_AND_EXPR
5536 have nonzero value. */
5537 if (((comp_code == EQ_EXPR && integer_onep (val))
5538 || (comp_code == NE_EXPR && integer_zerop (val))))
5540 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5542 if (is_gimple_assign (def_stmt)
5543 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5545 tree op0 = gimple_assign_rhs1 (def_stmt);
5546 tree op1 = gimple_assign_rhs2 (def_stmt);
5547 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5548 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5552 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5553 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5554 have zero value. */
5555 if (((comp_code == EQ_EXPR && integer_zerop (val))
5556 || (comp_code == NE_EXPR && integer_onep (val))))
5558 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5560 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5561 necessarily zero value, or if type-precision is one. */
5562 if (is_gimple_assign (def_stmt)
5563 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5564 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5565 || comp_code == EQ_EXPR)))
5567 tree op0 = gimple_assign_rhs1 (def_stmt);
5568 tree op1 = gimple_assign_rhs2 (def_stmt);
5569 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5570 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5574 return retval;
5578 /* Determine whether the outgoing edges of BB should receive an
5579 ASSERT_EXPR for each of the operands of BB's LAST statement.
5580 The last statement of BB must be a COND_EXPR.
5582 If any of the sub-graphs rooted at BB have an interesting use of
5583 the predicate operands, an assert location node is added to the
5584 list of assertions for the corresponding operands. */
5586 static bool
5587 find_conditional_asserts (basic_block bb, gimple last)
5589 bool need_assert;
5590 gimple_stmt_iterator bsi;
5591 tree op;
5592 edge_iterator ei;
5593 edge e;
5594 ssa_op_iter iter;
5596 need_assert = false;
5597 bsi = gsi_for_stmt (last);
5599 /* Look for uses of the operands in each of the sub-graphs
5600 rooted at BB. We need to check each of the outgoing edges
5601 separately, so that we know what kind of ASSERT_EXPR to
5602 insert. */
5603 FOR_EACH_EDGE (e, ei, bb->succs)
5605 if (e->dest == bb)
5606 continue;
5608 /* Register the necessary assertions for each operand in the
5609 conditional predicate. */
5610 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5612 need_assert |= register_edge_assert_for (op, e, bsi,
5613 gimple_cond_code (last),
5614 gimple_cond_lhs (last),
5615 gimple_cond_rhs (last));
5619 return need_assert;
5622 struct case_info
5624 tree expr;
5625 basic_block bb;
5628 /* Compare two case labels sorting first by the destination bb index
5629 and then by the case value. */
5631 static int
5632 compare_case_labels (const void *p1, const void *p2)
5634 const struct case_info *ci1 = (const struct case_info *) p1;
5635 const struct case_info *ci2 = (const struct case_info *) p2;
5636 int idx1 = ci1->bb->index;
5637 int idx2 = ci2->bb->index;
5639 if (idx1 < idx2)
5640 return -1;
5641 else if (idx1 == idx2)
5643 /* Make sure the default label is first in a group. */
5644 if (!CASE_LOW (ci1->expr))
5645 return -1;
5646 else if (!CASE_LOW (ci2->expr))
5647 return 1;
5648 else
5649 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5650 CASE_LOW (ci2->expr));
5652 else
5653 return 1;
5656 /* Determine whether the outgoing edges of BB should receive an
5657 ASSERT_EXPR for each of the operands of BB's LAST statement.
5658 The last statement of BB must be a SWITCH_EXPR.
5660 If any of the sub-graphs rooted at BB have an interesting use of
5661 the predicate operands, an assert location node is added to the
5662 list of assertions for the corresponding operands. */
5664 static bool
5665 find_switch_asserts (basic_block bb, gimple last)
5667 bool need_assert;
5668 gimple_stmt_iterator bsi;
5669 tree op;
5670 edge e;
5671 struct case_info *ci;
5672 size_t n = gimple_switch_num_labels (last);
5673 #if GCC_VERSION >= 4000
5674 unsigned int idx;
5675 #else
5676 /* Work around GCC 3.4 bug (PR 37086). */
5677 volatile unsigned int idx;
5678 #endif
5680 need_assert = false;
5681 bsi = gsi_for_stmt (last);
5682 op = gimple_switch_index (last);
5683 if (TREE_CODE (op) != SSA_NAME)
5684 return false;
5686 /* Build a vector of case labels sorted by destination label. */
5687 ci = XNEWVEC (struct case_info, n);
5688 for (idx = 0; idx < n; ++idx)
5690 ci[idx].expr = gimple_switch_label (last, idx);
5691 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5693 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5695 for (idx = 0; idx < n; ++idx)
5697 tree min, max;
5698 tree cl = ci[idx].expr;
5699 basic_block cbb = ci[idx].bb;
5701 min = CASE_LOW (cl);
5702 max = CASE_HIGH (cl);
5704 /* If there are multiple case labels with the same destination
5705 we need to combine them to a single value range for the edge. */
5706 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5708 /* Skip labels until the last of the group. */
5709 do {
5710 ++idx;
5711 } while (idx < n && cbb == ci[idx].bb);
5712 --idx;
5714 /* Pick up the maximum of the case label range. */
5715 if (CASE_HIGH (ci[idx].expr))
5716 max = CASE_HIGH (ci[idx].expr);
5717 else
5718 max = CASE_LOW (ci[idx].expr);
5721 /* Nothing to do if the range includes the default label until we
5722 can register anti-ranges. */
5723 if (min == NULL_TREE)
5724 continue;
5726 /* Find the edge to register the assert expr on. */
5727 e = find_edge (bb, cbb);
5729 /* Register the necessary assertions for the operand in the
5730 SWITCH_EXPR. */
5731 need_assert |= register_edge_assert_for (op, e, bsi,
5732 max ? GE_EXPR : EQ_EXPR,
5734 fold_convert (TREE_TYPE (op),
5735 min));
5736 if (max)
5738 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5740 fold_convert (TREE_TYPE (op),
5741 max));
5745 XDELETEVEC (ci);
5746 return need_assert;
5750 /* Traverse all the statements in block BB looking for statements that
5751 may generate useful assertions for the SSA names in their operand.
5752 If a statement produces a useful assertion A for name N_i, then the
5753 list of assertions already generated for N_i is scanned to
5754 determine if A is actually needed.
5756 If N_i already had the assertion A at a location dominating the
5757 current location, then nothing needs to be done. Otherwise, the
5758 new location for A is recorded instead.
5760 1- For every statement S in BB, all the variables used by S are
5761 added to bitmap FOUND_IN_SUBGRAPH.
5763 2- If statement S uses an operand N in a way that exposes a known
5764 value range for N, then if N was not already generated by an
5765 ASSERT_EXPR, create a new assert location for N. For instance,
5766 if N is a pointer and the statement dereferences it, we can
5767 assume that N is not NULL.
5769 3- COND_EXPRs are a special case of #2. We can derive range
5770 information from the predicate but need to insert different
5771 ASSERT_EXPRs for each of the sub-graphs rooted at the
5772 conditional block. If the last statement of BB is a conditional
5773 expression of the form 'X op Y', then
5775 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5777 b) If the conditional is the only entry point to the sub-graph
5778 corresponding to the THEN_CLAUSE, recurse into it. On
5779 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5780 an ASSERT_EXPR is added for the corresponding variable.
5782 c) Repeat step (b) on the ELSE_CLAUSE.
5784 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5786 For instance,
5788 if (a == 9)
5789 b = a;
5790 else
5791 b = c + 1;
5793 In this case, an assertion on the THEN clause is useful to
5794 determine that 'a' is always 9 on that edge. However, an assertion
5795 on the ELSE clause would be unnecessary.
5797 4- If BB does not end in a conditional expression, then we recurse
5798 into BB's dominator children.
5800 At the end of the recursive traversal, every SSA name will have a
5801 list of locations where ASSERT_EXPRs should be added. When a new
5802 location for name N is found, it is registered by calling
5803 register_new_assert_for. That function keeps track of all the
5804 registered assertions to prevent adding unnecessary assertions.
5805 For instance, if a pointer P_4 is dereferenced more than once in a
5806 dominator tree, only the location dominating all the dereference of
5807 P_4 will receive an ASSERT_EXPR.
5809 If this function returns true, then it means that there are names
5810 for which we need to generate ASSERT_EXPRs. Those assertions are
5811 inserted by process_assert_insertions. */
5813 static bool
5814 find_assert_locations_1 (basic_block bb, sbitmap live)
5816 gimple_stmt_iterator si;
5817 gimple last;
5818 bool need_assert;
5820 need_assert = false;
5821 last = last_stmt (bb);
5823 /* If BB's last statement is a conditional statement involving integer
5824 operands, determine if we need to add ASSERT_EXPRs. */
5825 if (last
5826 && gimple_code (last) == GIMPLE_COND
5827 && !fp_predicate (last)
5828 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5829 need_assert |= find_conditional_asserts (bb, last);
5831 /* If BB's last statement is a switch statement involving integer
5832 operands, determine if we need to add ASSERT_EXPRs. */
5833 if (last
5834 && gimple_code (last) == GIMPLE_SWITCH
5835 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5836 need_assert |= find_switch_asserts (bb, last);
5838 /* Traverse all the statements in BB marking used names and looking
5839 for statements that may infer assertions for their used operands. */
5840 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5842 gimple stmt;
5843 tree op;
5844 ssa_op_iter i;
5846 stmt = gsi_stmt (si);
5848 if (is_gimple_debug (stmt))
5849 continue;
5851 /* See if we can derive an assertion for any of STMT's operands. */
5852 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5854 tree value;
5855 enum tree_code comp_code;
5857 /* If op is not live beyond this stmt, do not bother to insert
5858 asserts for it. */
5859 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5860 continue;
5862 /* If OP is used in such a way that we can infer a value
5863 range for it, and we don't find a previous assertion for
5864 it, create a new assertion location node for OP. */
5865 if (infer_value_range (stmt, op, &comp_code, &value))
5867 /* If we are able to infer a nonzero value range for OP,
5868 then walk backwards through the use-def chain to see if OP
5869 was set via a typecast.
5871 If so, then we can also infer a nonzero value range
5872 for the operand of the NOP_EXPR. */
5873 if (comp_code == NE_EXPR && integer_zerop (value))
5875 tree t = op;
5876 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5878 while (is_gimple_assign (def_stmt)
5879 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5880 && TREE_CODE
5881 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5882 && POINTER_TYPE_P
5883 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5885 t = gimple_assign_rhs1 (def_stmt);
5886 def_stmt = SSA_NAME_DEF_STMT (t);
5888 /* Note we want to register the assert for the
5889 operand of the NOP_EXPR after SI, not after the
5890 conversion. */
5891 if (! has_single_use (t))
5893 register_new_assert_for (t, t, comp_code, value,
5894 bb, NULL, si);
5895 need_assert = true;
5900 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5901 need_assert = true;
5905 /* Update live. */
5906 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5907 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5908 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5909 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5912 /* Traverse all PHI nodes in BB, updating live. */
5913 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5915 use_operand_p arg_p;
5916 ssa_op_iter i;
5917 gimple phi = gsi_stmt (si);
5918 tree res = gimple_phi_result (phi);
5920 if (virtual_operand_p (res))
5921 continue;
5923 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5925 tree arg = USE_FROM_PTR (arg_p);
5926 if (TREE_CODE (arg) == SSA_NAME)
5927 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5930 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5933 return need_assert;
5936 /* Do an RPO walk over the function computing SSA name liveness
5937 on-the-fly and deciding on assert expressions to insert.
5938 Returns true if there are assert expressions to be inserted. */
5940 static bool
5941 find_assert_locations (void)
5943 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5944 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
5945 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
5946 int rpo_cnt, i;
5947 bool need_asserts;
5949 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
5950 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5951 for (i = 0; i < rpo_cnt; ++i)
5952 bb_rpo[rpo[i]] = i;
5954 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5955 the order we compute liveness and insert asserts we otherwise
5956 fail to insert asserts into the loop latch. */
5957 loop_p loop;
5958 FOR_EACH_LOOP (loop, 0)
5960 i = loop->latch->index;
5961 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
5962 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
5963 !gsi_end_p (gsi); gsi_next (&gsi))
5965 gimple phi = gsi_stmt (gsi);
5966 if (virtual_operand_p (gimple_phi_result (phi)))
5967 continue;
5968 tree arg = gimple_phi_arg_def (phi, j);
5969 if (TREE_CODE (arg) == SSA_NAME)
5971 if (live[i] == NULL)
5973 live[i] = sbitmap_alloc (num_ssa_names);
5974 bitmap_clear (live[i]);
5976 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
5981 need_asserts = false;
5982 for (i = rpo_cnt - 1; i >= 0; --i)
5984 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
5985 edge e;
5986 edge_iterator ei;
5988 if (!live[rpo[i]])
5990 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5991 bitmap_clear (live[rpo[i]]);
5994 /* Process BB and update the live information with uses in
5995 this block. */
5996 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5998 /* Merge liveness into the predecessor blocks and free it. */
5999 if (!bitmap_empty_p (live[rpo[i]]))
6001 int pred_rpo = i;
6002 FOR_EACH_EDGE (e, ei, bb->preds)
6004 int pred = e->src->index;
6005 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6006 continue;
6008 if (!live[pred])
6010 live[pred] = sbitmap_alloc (num_ssa_names);
6011 bitmap_clear (live[pred]);
6013 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6015 if (bb_rpo[pred] < pred_rpo)
6016 pred_rpo = bb_rpo[pred];
6019 /* Record the RPO number of the last visited block that needs
6020 live information from this block. */
6021 last_rpo[rpo[i]] = pred_rpo;
6023 else
6025 sbitmap_free (live[rpo[i]]);
6026 live[rpo[i]] = NULL;
6029 /* We can free all successors live bitmaps if all their
6030 predecessors have been visited already. */
6031 FOR_EACH_EDGE (e, ei, bb->succs)
6032 if (last_rpo[e->dest->index] == i
6033 && live[e->dest->index])
6035 sbitmap_free (live[e->dest->index]);
6036 live[e->dest->index] = NULL;
6040 XDELETEVEC (rpo);
6041 XDELETEVEC (bb_rpo);
6042 XDELETEVEC (last_rpo);
6043 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6044 if (live[i])
6045 sbitmap_free (live[i]);
6046 XDELETEVEC (live);
6048 return need_asserts;
6051 /* Create an ASSERT_EXPR for NAME and insert it in the location
6052 indicated by LOC. Return true if we made any edge insertions. */
6054 static bool
6055 process_assert_insertions_for (tree name, assert_locus_t loc)
6057 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6058 gimple stmt;
6059 tree cond;
6060 gimple assert_stmt;
6061 edge_iterator ei;
6062 edge e;
6064 /* If we have X <=> X do not insert an assert expr for that. */
6065 if (loc->expr == loc->val)
6066 return false;
6068 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6069 assert_stmt = build_assert_expr_for (cond, name);
6070 if (loc->e)
6072 /* We have been asked to insert the assertion on an edge. This
6073 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6074 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6075 || (gimple_code (gsi_stmt (loc->si))
6076 == GIMPLE_SWITCH));
6078 gsi_insert_on_edge (loc->e, assert_stmt);
6079 return true;
6082 /* Otherwise, we can insert right after LOC->SI iff the
6083 statement must not be the last statement in the block. */
6084 stmt = gsi_stmt (loc->si);
6085 if (!stmt_ends_bb_p (stmt))
6087 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6088 return false;
6091 /* If STMT must be the last statement in BB, we can only insert new
6092 assertions on the non-abnormal edge out of BB. Note that since
6093 STMT is not control flow, there may only be one non-abnormal edge
6094 out of BB. */
6095 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6096 if (!(e->flags & EDGE_ABNORMAL))
6098 gsi_insert_on_edge (e, assert_stmt);
6099 return true;
6102 gcc_unreachable ();
6106 /* Process all the insertions registered for every name N_i registered
6107 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6108 found in ASSERTS_FOR[i]. */
6110 static void
6111 process_assert_insertions (void)
6113 unsigned i;
6114 bitmap_iterator bi;
6115 bool update_edges_p = false;
6116 int num_asserts = 0;
6118 if (dump_file && (dump_flags & TDF_DETAILS))
6119 dump_all_asserts (dump_file);
6121 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6123 assert_locus_t loc = asserts_for[i];
6124 gcc_assert (loc);
6126 while (loc)
6128 assert_locus_t next = loc->next;
6129 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6130 free (loc);
6131 loc = next;
6132 num_asserts++;
6136 if (update_edges_p)
6137 gsi_commit_edge_inserts ();
6139 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6140 num_asserts);
6144 /* Traverse the flowgraph looking for conditional jumps to insert range
6145 expressions. These range expressions are meant to provide information
6146 to optimizations that need to reason in terms of value ranges. They
6147 will not be expanded into RTL. For instance, given:
6149 x = ...
6150 y = ...
6151 if (x < y)
6152 y = x - 2;
6153 else
6154 x = y + 3;
6156 this pass will transform the code into:
6158 x = ...
6159 y = ...
6160 if (x < y)
6162 x = ASSERT_EXPR <x, x < y>
6163 y = x - 2
6165 else
6167 y = ASSERT_EXPR <y, x <= y>
6168 x = y + 3
6171 The idea is that once copy and constant propagation have run, other
6172 optimizations will be able to determine what ranges of values can 'x'
6173 take in different paths of the code, simply by checking the reaching
6174 definition of 'x'. */
6176 static void
6177 insert_range_assertions (void)
6179 need_assert_for = BITMAP_ALLOC (NULL);
6180 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6182 calculate_dominance_info (CDI_DOMINATORS);
6184 if (find_assert_locations ())
6186 process_assert_insertions ();
6187 update_ssa (TODO_update_ssa_no_phi);
6190 if (dump_file && (dump_flags & TDF_DETAILS))
6192 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6193 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6196 free (asserts_for);
6197 BITMAP_FREE (need_assert_for);
6200 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6201 and "struct" hacks. If VRP can determine that the
6202 array subscript is a constant, check if it is outside valid
6203 range. If the array subscript is a RANGE, warn if it is
6204 non-overlapping with valid range.
6205 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6207 static void
6208 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6210 value_range_t* vr = NULL;
6211 tree low_sub, up_sub;
6212 tree low_bound, up_bound, up_bound_p1;
6213 tree base;
6215 if (TREE_NO_WARNING (ref))
6216 return;
6218 low_sub = up_sub = TREE_OPERAND (ref, 1);
6219 up_bound = array_ref_up_bound (ref);
6221 /* Can not check flexible arrays. */
6222 if (!up_bound
6223 || TREE_CODE (up_bound) != INTEGER_CST)
6224 return;
6226 /* Accesses to trailing arrays via pointers may access storage
6227 beyond the types array bounds. */
6228 base = get_base_address (ref);
6229 if (base && TREE_CODE (base) == MEM_REF)
6231 tree cref, next = NULL_TREE;
6233 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6234 return;
6236 cref = TREE_OPERAND (ref, 0);
6237 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6238 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6239 next && TREE_CODE (next) != FIELD_DECL;
6240 next = DECL_CHAIN (next))
6243 /* If this is the last field in a struct type or a field in a
6244 union type do not warn. */
6245 if (!next)
6246 return;
6249 low_bound = array_ref_low_bound (ref);
6250 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6252 if (TREE_CODE (low_sub) == SSA_NAME)
6254 vr = get_value_range (low_sub);
6255 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6257 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6258 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6262 if (vr && vr->type == VR_ANTI_RANGE)
6264 if (TREE_CODE (up_sub) == INTEGER_CST
6265 && tree_int_cst_lt (up_bound, up_sub)
6266 && TREE_CODE (low_sub) == INTEGER_CST
6267 && tree_int_cst_lt (low_sub, low_bound))
6269 warning_at (location, OPT_Warray_bounds,
6270 "array subscript is outside array bounds");
6271 TREE_NO_WARNING (ref) = 1;
6274 else if (TREE_CODE (up_sub) == INTEGER_CST
6275 && (ignore_off_by_one
6276 ? (tree_int_cst_lt (up_bound, up_sub)
6277 && !tree_int_cst_equal (up_bound_p1, up_sub))
6278 : (tree_int_cst_lt (up_bound, up_sub)
6279 || tree_int_cst_equal (up_bound_p1, up_sub))))
6281 if (dump_file && (dump_flags & TDF_DETAILS))
6283 fprintf (dump_file, "Array bound warning for ");
6284 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6285 fprintf (dump_file, "\n");
6287 warning_at (location, OPT_Warray_bounds,
6288 "array subscript is above array bounds");
6289 TREE_NO_WARNING (ref) = 1;
6291 else if (TREE_CODE (low_sub) == INTEGER_CST
6292 && tree_int_cst_lt (low_sub, low_bound))
6294 if (dump_file && (dump_flags & TDF_DETAILS))
6296 fprintf (dump_file, "Array bound warning for ");
6297 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6298 fprintf (dump_file, "\n");
6300 warning_at (location, OPT_Warray_bounds,
6301 "array subscript is below array bounds");
6302 TREE_NO_WARNING (ref) = 1;
6306 /* Searches if the expr T, located at LOCATION computes
6307 address of an ARRAY_REF, and call check_array_ref on it. */
6309 static void
6310 search_for_addr_array (tree t, location_t location)
6312 while (TREE_CODE (t) == SSA_NAME)
6314 gimple g = SSA_NAME_DEF_STMT (t);
6316 if (gimple_code (g) != GIMPLE_ASSIGN)
6317 return;
6319 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6320 != GIMPLE_SINGLE_RHS)
6321 return;
6323 t = gimple_assign_rhs1 (g);
6327 /* We are only interested in addresses of ARRAY_REF's. */
6328 if (TREE_CODE (t) != ADDR_EXPR)
6329 return;
6331 /* Check each ARRAY_REFs in the reference chain. */
6334 if (TREE_CODE (t) == ARRAY_REF)
6335 check_array_ref (location, t, true /*ignore_off_by_one*/);
6337 t = TREE_OPERAND (t, 0);
6339 while (handled_component_p (t));
6341 if (TREE_CODE (t) == MEM_REF
6342 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6343 && !TREE_NO_WARNING (t))
6345 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6346 tree low_bound, up_bound, el_sz;
6347 double_int idx;
6348 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6349 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6350 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6351 return;
6353 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6354 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6355 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6356 if (!low_bound
6357 || TREE_CODE (low_bound) != INTEGER_CST
6358 || !up_bound
6359 || TREE_CODE (up_bound) != INTEGER_CST
6360 || !el_sz
6361 || TREE_CODE (el_sz) != INTEGER_CST)
6362 return;
6364 idx = mem_ref_offset (t);
6365 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6366 if (idx.slt (double_int_zero))
6368 if (dump_file && (dump_flags & TDF_DETAILS))
6370 fprintf (dump_file, "Array bound warning for ");
6371 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6372 fprintf (dump_file, "\n");
6374 warning_at (location, OPT_Warray_bounds,
6375 "array subscript is below array bounds");
6376 TREE_NO_WARNING (t) = 1;
6378 else if (idx.sgt (tree_to_double_int (up_bound)
6379 - tree_to_double_int (low_bound)
6380 + double_int_one))
6382 if (dump_file && (dump_flags & TDF_DETAILS))
6384 fprintf (dump_file, "Array bound warning for ");
6385 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6386 fprintf (dump_file, "\n");
6388 warning_at (location, OPT_Warray_bounds,
6389 "array subscript is above array bounds");
6390 TREE_NO_WARNING (t) = 1;
6395 /* walk_tree() callback that checks if *TP is
6396 an ARRAY_REF inside an ADDR_EXPR (in which an array
6397 subscript one outside the valid range is allowed). Call
6398 check_array_ref for each ARRAY_REF found. The location is
6399 passed in DATA. */
6401 static tree
6402 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6404 tree t = *tp;
6405 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6406 location_t location;
6408 if (EXPR_HAS_LOCATION (t))
6409 location = EXPR_LOCATION (t);
6410 else
6412 location_t *locp = (location_t *) wi->info;
6413 location = *locp;
6416 *walk_subtree = TRUE;
6418 if (TREE_CODE (t) == ARRAY_REF)
6419 check_array_ref (location, t, false /*ignore_off_by_one*/);
6421 if (TREE_CODE (t) == MEM_REF
6422 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6423 search_for_addr_array (TREE_OPERAND (t, 0), location);
6425 if (TREE_CODE (t) == ADDR_EXPR)
6426 *walk_subtree = FALSE;
6428 return NULL_TREE;
6431 /* Walk over all statements of all reachable BBs and call check_array_bounds
6432 on them. */
6434 static void
6435 check_all_array_refs (void)
6437 basic_block bb;
6438 gimple_stmt_iterator si;
6440 FOR_EACH_BB_FN (bb, cfun)
6442 edge_iterator ei;
6443 edge e;
6444 bool executable = false;
6446 /* Skip blocks that were found to be unreachable. */
6447 FOR_EACH_EDGE (e, ei, bb->preds)
6448 executable |= !!(e->flags & EDGE_EXECUTABLE);
6449 if (!executable)
6450 continue;
6452 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6454 gimple stmt = gsi_stmt (si);
6455 struct walk_stmt_info wi;
6456 if (!gimple_has_location (stmt))
6457 continue;
6459 if (is_gimple_call (stmt))
6461 size_t i;
6462 size_t n = gimple_call_num_args (stmt);
6463 for (i = 0; i < n; i++)
6465 tree arg = gimple_call_arg (stmt, i);
6466 search_for_addr_array (arg, gimple_location (stmt));
6469 else
6471 memset (&wi, 0, sizeof (wi));
6472 wi.info = CONST_CAST (void *, (const void *)
6473 gimple_location_ptr (stmt));
6475 walk_gimple_op (gsi_stmt (si),
6476 check_array_bounds,
6477 &wi);
6483 /* Return true if all imm uses of VAR are either in STMT, or
6484 feed (optionally through a chain of single imm uses) GIMPLE_COND
6485 in basic block COND_BB. */
6487 static bool
6488 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6490 use_operand_p use_p, use2_p;
6491 imm_use_iterator iter;
6493 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6494 if (USE_STMT (use_p) != stmt)
6496 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6497 if (is_gimple_debug (use_stmt))
6498 continue;
6499 while (is_gimple_assign (use_stmt)
6500 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6501 && single_imm_use (gimple_assign_lhs (use_stmt),
6502 &use2_p, &use_stmt2))
6503 use_stmt = use_stmt2;
6504 if (gimple_code (use_stmt) != GIMPLE_COND
6505 || gimple_bb (use_stmt) != cond_bb)
6506 return false;
6508 return true;
6511 /* Handle
6512 _4 = x_3 & 31;
6513 if (_4 != 0)
6514 goto <bb 6>;
6515 else
6516 goto <bb 7>;
6517 <bb 6>:
6518 __builtin_unreachable ();
6519 <bb 7>:
6520 x_5 = ASSERT_EXPR <x_3, ...>;
6521 If x_3 has no other immediate uses (checked by caller),
6522 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6523 from the non-zero bitmask. */
6525 static void
6526 maybe_set_nonzero_bits (basic_block bb, tree var)
6528 edge e = single_pred_edge (bb);
6529 basic_block cond_bb = e->src;
6530 gimple stmt = last_stmt (cond_bb);
6531 tree cst;
6533 if (stmt == NULL
6534 || gimple_code (stmt) != GIMPLE_COND
6535 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6536 ? EQ_EXPR : NE_EXPR)
6537 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6538 || !integer_zerop (gimple_cond_rhs (stmt)))
6539 return;
6541 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6542 if (!is_gimple_assign (stmt)
6543 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6544 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6545 return;
6546 if (gimple_assign_rhs1 (stmt) != var)
6548 gimple stmt2;
6550 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6551 return;
6552 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6553 if (!gimple_assign_cast_p (stmt2)
6554 || gimple_assign_rhs1 (stmt2) != var
6555 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6556 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6557 != TYPE_PRECISION (TREE_TYPE (var))))
6558 return;
6560 cst = gimple_assign_rhs2 (stmt);
6561 set_nonzero_bits (var, (get_nonzero_bits (var)
6562 & ~tree_to_double_int (cst)));
6565 /* Convert range assertion expressions into the implied copies and
6566 copy propagate away the copies. Doing the trivial copy propagation
6567 here avoids the need to run the full copy propagation pass after
6568 VRP.
6570 FIXME, this will eventually lead to copy propagation removing the
6571 names that had useful range information attached to them. For
6572 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6573 then N_i will have the range [3, +INF].
6575 However, by converting the assertion into the implied copy
6576 operation N_i = N_j, we will then copy-propagate N_j into the uses
6577 of N_i and lose the range information. We may want to hold on to
6578 ASSERT_EXPRs a little while longer as the ranges could be used in
6579 things like jump threading.
6581 The problem with keeping ASSERT_EXPRs around is that passes after
6582 VRP need to handle them appropriately.
6584 Another approach would be to make the range information a first
6585 class property of the SSA_NAME so that it can be queried from
6586 any pass. This is made somewhat more complex by the need for
6587 multiple ranges to be associated with one SSA_NAME. */
6589 static void
6590 remove_range_assertions (void)
6592 basic_block bb;
6593 gimple_stmt_iterator si;
6594 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6595 a basic block preceeded by GIMPLE_COND branching to it and
6596 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6597 int is_unreachable;
6599 /* Note that the BSI iterator bump happens at the bottom of the
6600 loop and no bump is necessary if we're removing the statement
6601 referenced by the current BSI. */
6602 FOR_EACH_BB_FN (bb, cfun)
6603 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6605 gimple stmt = gsi_stmt (si);
6606 gimple use_stmt;
6608 if (is_gimple_assign (stmt)
6609 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6611 tree lhs = gimple_assign_lhs (stmt);
6612 tree rhs = gimple_assign_rhs1 (stmt);
6613 tree var;
6614 tree cond = fold (ASSERT_EXPR_COND (rhs));
6615 use_operand_p use_p;
6616 imm_use_iterator iter;
6618 gcc_assert (cond != boolean_false_node);
6620 var = ASSERT_EXPR_VAR (rhs);
6621 gcc_assert (TREE_CODE (var) == SSA_NAME);
6623 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6624 && SSA_NAME_RANGE_INFO (lhs))
6626 if (is_unreachable == -1)
6628 is_unreachable = 0;
6629 if (single_pred_p (bb)
6630 && assert_unreachable_fallthru_edge_p
6631 (single_pred_edge (bb)))
6632 is_unreachable = 1;
6634 /* Handle
6635 if (x_7 >= 10 && x_7 < 20)
6636 __builtin_unreachable ();
6637 x_8 = ASSERT_EXPR <x_7, ...>;
6638 if the only uses of x_7 are in the ASSERT_EXPR and
6639 in the condition. In that case, we can copy the
6640 range info from x_8 computed in this pass also
6641 for x_7. */
6642 if (is_unreachable
6643 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6644 single_pred (bb)))
6646 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6647 SSA_NAME_RANGE_INFO (lhs)->min,
6648 SSA_NAME_RANGE_INFO (lhs)->max);
6649 maybe_set_nonzero_bits (bb, var);
6653 /* Propagate the RHS into every use of the LHS. */
6654 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6655 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6656 SET_USE (use_p, var);
6658 /* And finally, remove the copy, it is not needed. */
6659 gsi_remove (&si, true);
6660 release_defs (stmt);
6662 else
6664 gsi_next (&si);
6665 is_unreachable = 0;
6671 /* Return true if STMT is interesting for VRP. */
6673 static bool
6674 stmt_interesting_for_vrp (gimple stmt)
6676 if (gimple_code (stmt) == GIMPLE_PHI)
6678 tree res = gimple_phi_result (stmt);
6679 return (!virtual_operand_p (res)
6680 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6681 || POINTER_TYPE_P (TREE_TYPE (res))));
6683 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6685 tree lhs = gimple_get_lhs (stmt);
6687 /* In general, assignments with virtual operands are not useful
6688 for deriving ranges, with the obvious exception of calls to
6689 builtin functions. */
6690 if (lhs && TREE_CODE (lhs) == SSA_NAME
6691 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6692 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6693 && (is_gimple_call (stmt)
6694 || !gimple_vuse (stmt)))
6695 return true;
6697 else if (gimple_code (stmt) == GIMPLE_COND
6698 || gimple_code (stmt) == GIMPLE_SWITCH)
6699 return true;
6701 return false;
6705 /* Initialize local data structures for VRP. */
6707 static void
6708 vrp_initialize (void)
6710 basic_block bb;
6712 values_propagated = false;
6713 num_vr_values = num_ssa_names;
6714 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6715 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6717 FOR_EACH_BB_FN (bb, cfun)
6719 gimple_stmt_iterator si;
6721 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6723 gimple phi = gsi_stmt (si);
6724 if (!stmt_interesting_for_vrp (phi))
6726 tree lhs = PHI_RESULT (phi);
6727 set_value_range_to_varying (get_value_range (lhs));
6728 prop_set_simulate_again (phi, false);
6730 else
6731 prop_set_simulate_again (phi, true);
6734 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6736 gimple stmt = gsi_stmt (si);
6738 /* If the statement is a control insn, then we do not
6739 want to avoid simulating the statement once. Failure
6740 to do so means that those edges will never get added. */
6741 if (stmt_ends_bb_p (stmt))
6742 prop_set_simulate_again (stmt, true);
6743 else if (!stmt_interesting_for_vrp (stmt))
6745 ssa_op_iter i;
6746 tree def;
6747 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6748 set_value_range_to_varying (get_value_range (def));
6749 prop_set_simulate_again (stmt, false);
6751 else
6752 prop_set_simulate_again (stmt, true);
6757 /* Return the singleton value-range for NAME or NAME. */
6759 static inline tree
6760 vrp_valueize (tree name)
6762 if (TREE_CODE (name) == SSA_NAME)
6764 value_range_t *vr = get_value_range (name);
6765 if (vr->type == VR_RANGE
6766 && (vr->min == vr->max
6767 || operand_equal_p (vr->min, vr->max, 0)))
6768 return vr->min;
6770 return name;
6773 /* Visit assignment STMT. If it produces an interesting range, record
6774 the SSA name in *OUTPUT_P. */
6776 static enum ssa_prop_result
6777 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6779 tree def, lhs;
6780 ssa_op_iter iter;
6781 enum gimple_code code = gimple_code (stmt);
6782 lhs = gimple_get_lhs (stmt);
6784 /* We only keep track of ranges in integral and pointer types. */
6785 if (TREE_CODE (lhs) == SSA_NAME
6786 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6787 /* It is valid to have NULL MIN/MAX values on a type. See
6788 build_range_type. */
6789 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6790 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6791 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6793 value_range_t new_vr = VR_INITIALIZER;
6795 /* Try folding the statement to a constant first. */
6796 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6797 if (tem)
6798 set_value_range_to_value (&new_vr, tem, NULL);
6799 /* Then dispatch to value-range extracting functions. */
6800 else if (code == GIMPLE_CALL)
6801 extract_range_basic (&new_vr, stmt);
6802 else
6803 extract_range_from_assignment (&new_vr, stmt);
6805 if (update_value_range (lhs, &new_vr))
6807 *output_p = lhs;
6809 if (dump_file && (dump_flags & TDF_DETAILS))
6811 fprintf (dump_file, "Found new range for ");
6812 print_generic_expr (dump_file, lhs, 0);
6813 fprintf (dump_file, ": ");
6814 dump_value_range (dump_file, &new_vr);
6815 fprintf (dump_file, "\n\n");
6818 if (new_vr.type == VR_VARYING)
6819 return SSA_PROP_VARYING;
6821 return SSA_PROP_INTERESTING;
6824 return SSA_PROP_NOT_INTERESTING;
6827 /* Every other statement produces no useful ranges. */
6828 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6829 set_value_range_to_varying (get_value_range (def));
6831 return SSA_PROP_VARYING;
6834 /* Helper that gets the value range of the SSA_NAME with version I
6835 or a symbolic range containing the SSA_NAME only if the value range
6836 is varying or undefined. */
6838 static inline value_range_t
6839 get_vr_for_comparison (int i)
6841 value_range_t vr = *get_value_range (ssa_name (i));
6843 /* If name N_i does not have a valid range, use N_i as its own
6844 range. This allows us to compare against names that may
6845 have N_i in their ranges. */
6846 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6848 vr.type = VR_RANGE;
6849 vr.min = ssa_name (i);
6850 vr.max = ssa_name (i);
6853 return vr;
6856 /* Compare all the value ranges for names equivalent to VAR with VAL
6857 using comparison code COMP. Return the same value returned by
6858 compare_range_with_value, including the setting of
6859 *STRICT_OVERFLOW_P. */
6861 static tree
6862 compare_name_with_value (enum tree_code comp, tree var, tree val,
6863 bool *strict_overflow_p)
6865 bitmap_iterator bi;
6866 unsigned i;
6867 bitmap e;
6868 tree retval, t;
6869 int used_strict_overflow;
6870 bool sop;
6871 value_range_t equiv_vr;
6873 /* Get the set of equivalences for VAR. */
6874 e = get_value_range (var)->equiv;
6876 /* Start at -1. Set it to 0 if we do a comparison without relying
6877 on overflow, or 1 if all comparisons rely on overflow. */
6878 used_strict_overflow = -1;
6880 /* Compare vars' value range with val. */
6881 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6882 sop = false;
6883 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6884 if (retval)
6885 used_strict_overflow = sop ? 1 : 0;
6887 /* If the equiv set is empty we have done all work we need to do. */
6888 if (e == NULL)
6890 if (retval
6891 && used_strict_overflow > 0)
6892 *strict_overflow_p = true;
6893 return retval;
6896 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6898 equiv_vr = get_vr_for_comparison (i);
6899 sop = false;
6900 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6901 if (t)
6903 /* If we get different answers from different members
6904 of the equivalence set this check must be in a dead
6905 code region. Folding it to a trap representation
6906 would be correct here. For now just return don't-know. */
6907 if (retval != NULL
6908 && t != retval)
6910 retval = NULL_TREE;
6911 break;
6913 retval = t;
6915 if (!sop)
6916 used_strict_overflow = 0;
6917 else if (used_strict_overflow < 0)
6918 used_strict_overflow = 1;
6922 if (retval
6923 && used_strict_overflow > 0)
6924 *strict_overflow_p = true;
6926 return retval;
6930 /* Given a comparison code COMP and names N1 and N2, compare all the
6931 ranges equivalent to N1 against all the ranges equivalent to N2
6932 to determine the value of N1 COMP N2. Return the same value
6933 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6934 whether we relied on an overflow infinity in the comparison. */
6937 static tree
6938 compare_names (enum tree_code comp, tree n1, tree n2,
6939 bool *strict_overflow_p)
6941 tree t, retval;
6942 bitmap e1, e2;
6943 bitmap_iterator bi1, bi2;
6944 unsigned i1, i2;
6945 int used_strict_overflow;
6946 static bitmap_obstack *s_obstack = NULL;
6947 static bitmap s_e1 = NULL, s_e2 = NULL;
6949 /* Compare the ranges of every name equivalent to N1 against the
6950 ranges of every name equivalent to N2. */
6951 e1 = get_value_range (n1)->equiv;
6952 e2 = get_value_range (n2)->equiv;
6954 /* Use the fake bitmaps if e1 or e2 are not available. */
6955 if (s_obstack == NULL)
6957 s_obstack = XNEW (bitmap_obstack);
6958 bitmap_obstack_initialize (s_obstack);
6959 s_e1 = BITMAP_ALLOC (s_obstack);
6960 s_e2 = BITMAP_ALLOC (s_obstack);
6962 if (e1 == NULL)
6963 e1 = s_e1;
6964 if (e2 == NULL)
6965 e2 = s_e2;
6967 /* Add N1 and N2 to their own set of equivalences to avoid
6968 duplicating the body of the loop just to check N1 and N2
6969 ranges. */
6970 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6971 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6973 /* If the equivalence sets have a common intersection, then the two
6974 names can be compared without checking their ranges. */
6975 if (bitmap_intersect_p (e1, e2))
6977 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6978 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6980 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6981 ? boolean_true_node
6982 : boolean_false_node;
6985 /* Start at -1. Set it to 0 if we do a comparison without relying
6986 on overflow, or 1 if all comparisons rely on overflow. */
6987 used_strict_overflow = -1;
6989 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6990 N2 to their own set of equivalences to avoid duplicating the body
6991 of the loop just to check N1 and N2 ranges. */
6992 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6994 value_range_t vr1 = get_vr_for_comparison (i1);
6996 t = retval = NULL_TREE;
6997 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6999 bool sop = false;
7001 value_range_t vr2 = get_vr_for_comparison (i2);
7003 t = compare_ranges (comp, &vr1, &vr2, &sop);
7004 if (t)
7006 /* If we get different answers from different members
7007 of the equivalence set this check must be in a dead
7008 code region. Folding it to a trap representation
7009 would be correct here. For now just return don't-know. */
7010 if (retval != NULL
7011 && t != retval)
7013 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7014 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7015 return NULL_TREE;
7017 retval = t;
7019 if (!sop)
7020 used_strict_overflow = 0;
7021 else if (used_strict_overflow < 0)
7022 used_strict_overflow = 1;
7026 if (retval)
7028 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7029 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7030 if (used_strict_overflow > 0)
7031 *strict_overflow_p = true;
7032 return retval;
7036 /* None of the equivalent ranges are useful in computing this
7037 comparison. */
7038 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7039 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7040 return NULL_TREE;
7043 /* Helper function for vrp_evaluate_conditional_warnv. */
7045 static tree
7046 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7047 tree op0, tree op1,
7048 bool * strict_overflow_p)
7050 value_range_t *vr0, *vr1;
7052 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7053 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7055 if (vr0 && vr1)
7056 return compare_ranges (code, vr0, vr1, strict_overflow_p);
7057 else if (vr0 && vr1 == NULL)
7058 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
7059 else if (vr0 == NULL && vr1)
7060 return (compare_range_with_value
7061 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7062 return NULL;
7065 /* Helper function for vrp_evaluate_conditional_warnv. */
7067 static tree
7068 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7069 tree op1, bool use_equiv_p,
7070 bool *strict_overflow_p, bool *only_ranges)
7072 tree ret;
7073 if (only_ranges)
7074 *only_ranges = true;
7076 /* We only deal with integral and pointer types. */
7077 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7078 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7079 return NULL_TREE;
7081 if (use_equiv_p)
7083 if (only_ranges
7084 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7085 (code, op0, op1, strict_overflow_p)))
7086 return ret;
7087 *only_ranges = false;
7088 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7089 return compare_names (code, op0, op1, strict_overflow_p);
7090 else if (TREE_CODE (op0) == SSA_NAME)
7091 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7092 else if (TREE_CODE (op1) == SSA_NAME)
7093 return (compare_name_with_value
7094 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7096 else
7097 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7098 strict_overflow_p);
7099 return NULL_TREE;
7102 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7103 information. Return NULL if the conditional can not be evaluated.
7104 The ranges of all the names equivalent with the operands in COND
7105 will be used when trying to compute the value. If the result is
7106 based on undefined signed overflow, issue a warning if
7107 appropriate. */
7109 static tree
7110 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7112 bool sop;
7113 tree ret;
7114 bool only_ranges;
7116 /* Some passes and foldings leak constants with overflow flag set
7117 into the IL. Avoid doing wrong things with these and bail out. */
7118 if ((TREE_CODE (op0) == INTEGER_CST
7119 && TREE_OVERFLOW (op0))
7120 || (TREE_CODE (op1) == INTEGER_CST
7121 && TREE_OVERFLOW (op1)))
7122 return NULL_TREE;
7124 sop = false;
7125 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7126 &only_ranges);
7128 if (ret && sop)
7130 enum warn_strict_overflow_code wc;
7131 const char* warnmsg;
7133 if (is_gimple_min_invariant (ret))
7135 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7136 warnmsg = G_("assuming signed overflow does not occur when "
7137 "simplifying conditional to constant");
7139 else
7141 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7142 warnmsg = G_("assuming signed overflow does not occur when "
7143 "simplifying conditional");
7146 if (issue_strict_overflow_warning (wc))
7148 location_t location;
7150 if (!gimple_has_location (stmt))
7151 location = input_location;
7152 else
7153 location = gimple_location (stmt);
7154 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7158 if (warn_type_limits
7159 && ret && only_ranges
7160 && TREE_CODE_CLASS (code) == tcc_comparison
7161 && TREE_CODE (op0) == SSA_NAME)
7163 /* If the comparison is being folded and the operand on the LHS
7164 is being compared against a constant value that is outside of
7165 the natural range of OP0's type, then the predicate will
7166 always fold regardless of the value of OP0. If -Wtype-limits
7167 was specified, emit a warning. */
7168 tree type = TREE_TYPE (op0);
7169 value_range_t *vr0 = get_value_range (op0);
7171 if (vr0->type != VR_VARYING
7172 && INTEGRAL_TYPE_P (type)
7173 && vrp_val_is_min (vr0->min)
7174 && vrp_val_is_max (vr0->max)
7175 && is_gimple_min_invariant (op1))
7177 location_t location;
7179 if (!gimple_has_location (stmt))
7180 location = input_location;
7181 else
7182 location = gimple_location (stmt);
7184 warning_at (location, OPT_Wtype_limits,
7185 integer_zerop (ret)
7186 ? G_("comparison always false "
7187 "due to limited range of data type")
7188 : G_("comparison always true "
7189 "due to limited range of data type"));
7193 return ret;
7197 /* Visit conditional statement STMT. If we can determine which edge
7198 will be taken out of STMT's basic block, record it in
7199 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7200 SSA_PROP_VARYING. */
7202 static enum ssa_prop_result
7203 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7205 tree val;
7206 bool sop;
7208 *taken_edge_p = NULL;
7210 if (dump_file && (dump_flags & TDF_DETAILS))
7212 tree use;
7213 ssa_op_iter i;
7215 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7216 print_gimple_stmt (dump_file, stmt, 0, 0);
7217 fprintf (dump_file, "\nWith known ranges\n");
7219 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7221 fprintf (dump_file, "\t");
7222 print_generic_expr (dump_file, use, 0);
7223 fprintf (dump_file, ": ");
7224 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7227 fprintf (dump_file, "\n");
7230 /* Compute the value of the predicate COND by checking the known
7231 ranges of each of its operands.
7233 Note that we cannot evaluate all the equivalent ranges here
7234 because those ranges may not yet be final and with the current
7235 propagation strategy, we cannot determine when the value ranges
7236 of the names in the equivalence set have changed.
7238 For instance, given the following code fragment
7240 i_5 = PHI <8, i_13>
7242 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7243 if (i_14 == 1)
7246 Assume that on the first visit to i_14, i_5 has the temporary
7247 range [8, 8] because the second argument to the PHI function is
7248 not yet executable. We derive the range ~[0, 0] for i_14 and the
7249 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7250 the first time, since i_14 is equivalent to the range [8, 8], we
7251 determine that the predicate is always false.
7253 On the next round of propagation, i_13 is determined to be
7254 VARYING, which causes i_5 to drop down to VARYING. So, another
7255 visit to i_14 is scheduled. In this second visit, we compute the
7256 exact same range and equivalence set for i_14, namely ~[0, 0] and
7257 { i_5 }. But we did not have the previous range for i_5
7258 registered, so vrp_visit_assignment thinks that the range for
7259 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7260 is not visited again, which stops propagation from visiting
7261 statements in the THEN clause of that if().
7263 To properly fix this we would need to keep the previous range
7264 value for the names in the equivalence set. This way we would've
7265 discovered that from one visit to the other i_5 changed from
7266 range [8, 8] to VR_VARYING.
7268 However, fixing this apparent limitation may not be worth the
7269 additional checking. Testing on several code bases (GCC, DLV,
7270 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7271 4 more predicates folded in SPEC. */
7272 sop = false;
7274 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7275 gimple_cond_lhs (stmt),
7276 gimple_cond_rhs (stmt),
7277 false, &sop, NULL);
7278 if (val)
7280 if (!sop)
7281 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7282 else
7284 if (dump_file && (dump_flags & TDF_DETAILS))
7285 fprintf (dump_file,
7286 "\nIgnoring predicate evaluation because "
7287 "it assumes that signed overflow is undefined");
7288 val = NULL_TREE;
7292 if (dump_file && (dump_flags & TDF_DETAILS))
7294 fprintf (dump_file, "\nPredicate evaluates to: ");
7295 if (val == NULL_TREE)
7296 fprintf (dump_file, "DON'T KNOW\n");
7297 else
7298 print_generic_stmt (dump_file, val, 0);
7301 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7304 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7305 that includes the value VAL. The search is restricted to the range
7306 [START_IDX, n - 1] where n is the size of VEC.
7308 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7309 returned.
7311 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7312 it is placed in IDX and false is returned.
7314 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7315 returned. */
7317 static bool
7318 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7320 size_t n = gimple_switch_num_labels (stmt);
7321 size_t low, high;
7323 /* Find case label for minimum of the value range or the next one.
7324 At each iteration we are searching in [low, high - 1]. */
7326 for (low = start_idx, high = n; high != low; )
7328 tree t;
7329 int cmp;
7330 /* Note that i != high, so we never ask for n. */
7331 size_t i = (high + low) / 2;
7332 t = gimple_switch_label (stmt, i);
7334 /* Cache the result of comparing CASE_LOW and val. */
7335 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7337 if (cmp == 0)
7339 /* Ranges cannot be empty. */
7340 *idx = i;
7341 return true;
7343 else if (cmp > 0)
7344 high = i;
7345 else
7347 low = i + 1;
7348 if (CASE_HIGH (t) != NULL
7349 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7351 *idx = i;
7352 return true;
7357 *idx = high;
7358 return false;
7361 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7362 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7363 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7364 then MAX_IDX < MIN_IDX.
7365 Returns true if the default label is not needed. */
7367 static bool
7368 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7369 size_t *max_idx)
7371 size_t i, j;
7372 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7373 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7375 if (i == j
7376 && min_take_default
7377 && max_take_default)
7379 /* Only the default case label reached.
7380 Return an empty range. */
7381 *min_idx = 1;
7382 *max_idx = 0;
7383 return false;
7385 else
7387 bool take_default = min_take_default || max_take_default;
7388 tree low, high;
7389 size_t k;
7391 if (max_take_default)
7392 j--;
7394 /* If the case label range is continuous, we do not need
7395 the default case label. Verify that. */
7396 high = CASE_LOW (gimple_switch_label (stmt, i));
7397 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7398 high = CASE_HIGH (gimple_switch_label (stmt, i));
7399 for (k = i + 1; k <= j; ++k)
7401 low = CASE_LOW (gimple_switch_label (stmt, k));
7402 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7404 take_default = true;
7405 break;
7407 high = low;
7408 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7409 high = CASE_HIGH (gimple_switch_label (stmt, k));
7412 *min_idx = i;
7413 *max_idx = j;
7414 return !take_default;
7418 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7419 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7420 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7421 Returns true if the default label is not needed. */
7423 static bool
7424 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7425 size_t *max_idx1, size_t *min_idx2,
7426 size_t *max_idx2)
7428 size_t i, j, k, l;
7429 unsigned int n = gimple_switch_num_labels (stmt);
7430 bool take_default;
7431 tree case_low, case_high;
7432 tree min = vr->min, max = vr->max;
7434 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7436 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7438 /* Set second range to emtpy. */
7439 *min_idx2 = 1;
7440 *max_idx2 = 0;
7442 if (vr->type == VR_RANGE)
7444 *min_idx1 = i;
7445 *max_idx1 = j;
7446 return !take_default;
7449 /* Set first range to all case labels. */
7450 *min_idx1 = 1;
7451 *max_idx1 = n - 1;
7453 if (i > j)
7454 return false;
7456 /* Make sure all the values of case labels [i , j] are contained in
7457 range [MIN, MAX]. */
7458 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7459 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7460 if (tree_int_cst_compare (case_low, min) < 0)
7461 i += 1;
7462 if (case_high != NULL_TREE
7463 && tree_int_cst_compare (max, case_high) < 0)
7464 j -= 1;
7466 if (i > j)
7467 return false;
7469 /* If the range spans case labels [i, j], the corresponding anti-range spans
7470 the labels [1, i - 1] and [j + 1, n - 1]. */
7471 k = j + 1;
7472 l = n - 1;
7473 if (k > l)
7475 k = 1;
7476 l = 0;
7479 j = i - 1;
7480 i = 1;
7481 if (i > j)
7483 i = k;
7484 j = l;
7485 k = 1;
7486 l = 0;
7489 *min_idx1 = i;
7490 *max_idx1 = j;
7491 *min_idx2 = k;
7492 *max_idx2 = l;
7493 return false;
7496 /* Visit switch statement STMT. If we can determine which edge
7497 will be taken out of STMT's basic block, record it in
7498 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7499 SSA_PROP_VARYING. */
7501 static enum ssa_prop_result
7502 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7504 tree op, val;
7505 value_range_t *vr;
7506 size_t i = 0, j = 0, k, l;
7507 bool take_default;
7509 *taken_edge_p = NULL;
7510 op = gimple_switch_index (stmt);
7511 if (TREE_CODE (op) != SSA_NAME)
7512 return SSA_PROP_VARYING;
7514 vr = get_value_range (op);
7515 if (dump_file && (dump_flags & TDF_DETAILS))
7517 fprintf (dump_file, "\nVisiting switch expression with operand ");
7518 print_generic_expr (dump_file, op, 0);
7519 fprintf (dump_file, " with known range ");
7520 dump_value_range (dump_file, vr);
7521 fprintf (dump_file, "\n");
7524 if ((vr->type != VR_RANGE
7525 && vr->type != VR_ANTI_RANGE)
7526 || symbolic_range_p (vr))
7527 return SSA_PROP_VARYING;
7529 /* Find the single edge that is taken from the switch expression. */
7530 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7532 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7533 label */
7534 if (j < i)
7536 gcc_assert (take_default);
7537 val = gimple_switch_default_label (stmt);
7539 else
7541 /* Check if labels with index i to j and maybe the default label
7542 are all reaching the same label. */
7544 val = gimple_switch_label (stmt, i);
7545 if (take_default
7546 && CASE_LABEL (gimple_switch_default_label (stmt))
7547 != CASE_LABEL (val))
7549 if (dump_file && (dump_flags & TDF_DETAILS))
7550 fprintf (dump_file, " not a single destination for this "
7551 "range\n");
7552 return SSA_PROP_VARYING;
7554 for (++i; i <= j; ++i)
7556 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7558 if (dump_file && (dump_flags & TDF_DETAILS))
7559 fprintf (dump_file, " not a single destination for this "
7560 "range\n");
7561 return SSA_PROP_VARYING;
7564 for (; k <= l; ++k)
7566 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7568 if (dump_file && (dump_flags & TDF_DETAILS))
7569 fprintf (dump_file, " not a single destination for this "
7570 "range\n");
7571 return SSA_PROP_VARYING;
7576 *taken_edge_p = find_edge (gimple_bb (stmt),
7577 label_to_block (CASE_LABEL (val)));
7579 if (dump_file && (dump_flags & TDF_DETAILS))
7581 fprintf (dump_file, " will take edge to ");
7582 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7585 return SSA_PROP_INTERESTING;
7589 /* Evaluate statement STMT. If the statement produces a useful range,
7590 return SSA_PROP_INTERESTING and record the SSA name with the
7591 interesting range into *OUTPUT_P.
7593 If STMT is a conditional branch and we can determine its truth
7594 value, the taken edge is recorded in *TAKEN_EDGE_P.
7596 If STMT produces a varying value, return SSA_PROP_VARYING. */
7598 static enum ssa_prop_result
7599 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7601 tree def;
7602 ssa_op_iter iter;
7604 if (dump_file && (dump_flags & TDF_DETAILS))
7606 fprintf (dump_file, "\nVisiting statement:\n");
7607 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7608 fprintf (dump_file, "\n");
7611 if (!stmt_interesting_for_vrp (stmt))
7612 gcc_assert (stmt_ends_bb_p (stmt));
7613 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7614 return vrp_visit_assignment_or_call (stmt, output_p);
7615 else if (gimple_code (stmt) == GIMPLE_COND)
7616 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7617 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7618 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7620 /* All other statements produce nothing of interest for VRP, so mark
7621 their outputs varying and prevent further simulation. */
7622 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7623 set_value_range_to_varying (get_value_range (def));
7625 return SSA_PROP_VARYING;
7628 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7629 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7630 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7631 possible such range. The resulting range is not canonicalized. */
7633 static void
7634 union_ranges (enum value_range_type *vr0type,
7635 tree *vr0min, tree *vr0max,
7636 enum value_range_type vr1type,
7637 tree vr1min, tree vr1max)
7639 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7640 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7642 /* [] is vr0, () is vr1 in the following classification comments. */
7643 if (mineq && maxeq)
7645 /* [( )] */
7646 if (*vr0type == vr1type)
7647 /* Nothing to do for equal ranges. */
7649 else if ((*vr0type == VR_RANGE
7650 && vr1type == VR_ANTI_RANGE)
7651 || (*vr0type == VR_ANTI_RANGE
7652 && vr1type == VR_RANGE))
7654 /* For anti-range with range union the result is varying. */
7655 goto give_up;
7657 else
7658 gcc_unreachable ();
7660 else if (operand_less_p (*vr0max, vr1min) == 1
7661 || operand_less_p (vr1max, *vr0min) == 1)
7663 /* [ ] ( ) or ( ) [ ]
7664 If the ranges have an empty intersection, result of the union
7665 operation is the anti-range or if both are anti-ranges
7666 it covers all. */
7667 if (*vr0type == VR_ANTI_RANGE
7668 && vr1type == VR_ANTI_RANGE)
7669 goto give_up;
7670 else if (*vr0type == VR_ANTI_RANGE
7671 && vr1type == VR_RANGE)
7673 else if (*vr0type == VR_RANGE
7674 && vr1type == VR_ANTI_RANGE)
7676 *vr0type = vr1type;
7677 *vr0min = vr1min;
7678 *vr0max = vr1max;
7680 else if (*vr0type == VR_RANGE
7681 && vr1type == VR_RANGE)
7683 /* The result is the convex hull of both ranges. */
7684 if (operand_less_p (*vr0max, vr1min) == 1)
7686 /* If the result can be an anti-range, create one. */
7687 if (TREE_CODE (*vr0max) == INTEGER_CST
7688 && TREE_CODE (vr1min) == INTEGER_CST
7689 && vrp_val_is_min (*vr0min)
7690 && vrp_val_is_max (vr1max))
7692 tree min = int_const_binop (PLUS_EXPR,
7693 *vr0max, integer_one_node);
7694 tree max = int_const_binop (MINUS_EXPR,
7695 vr1min, integer_one_node);
7696 if (!operand_less_p (max, min))
7698 *vr0type = VR_ANTI_RANGE;
7699 *vr0min = min;
7700 *vr0max = max;
7702 else
7703 *vr0max = vr1max;
7705 else
7706 *vr0max = vr1max;
7708 else
7710 /* If the result can be an anti-range, create one. */
7711 if (TREE_CODE (vr1max) == INTEGER_CST
7712 && TREE_CODE (*vr0min) == INTEGER_CST
7713 && vrp_val_is_min (vr1min)
7714 && vrp_val_is_max (*vr0max))
7716 tree min = int_const_binop (PLUS_EXPR,
7717 vr1max, integer_one_node);
7718 tree max = int_const_binop (MINUS_EXPR,
7719 *vr0min, integer_one_node);
7720 if (!operand_less_p (max, min))
7722 *vr0type = VR_ANTI_RANGE;
7723 *vr0min = min;
7724 *vr0max = max;
7726 else
7727 *vr0min = vr1min;
7729 else
7730 *vr0min = vr1min;
7733 else
7734 gcc_unreachable ();
7736 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7737 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7739 /* [ ( ) ] or [( ) ] or [ ( )] */
7740 if (*vr0type == VR_RANGE
7741 && vr1type == VR_RANGE)
7743 else if (*vr0type == VR_ANTI_RANGE
7744 && vr1type == VR_ANTI_RANGE)
7746 *vr0type = vr1type;
7747 *vr0min = vr1min;
7748 *vr0max = vr1max;
7750 else if (*vr0type == VR_ANTI_RANGE
7751 && vr1type == VR_RANGE)
7753 /* Arbitrarily choose the right or left gap. */
7754 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7755 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7756 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7757 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7758 else
7759 goto give_up;
7761 else if (*vr0type == VR_RANGE
7762 && vr1type == VR_ANTI_RANGE)
7763 /* The result covers everything. */
7764 goto give_up;
7765 else
7766 gcc_unreachable ();
7768 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7769 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7771 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7772 if (*vr0type == VR_RANGE
7773 && vr1type == VR_RANGE)
7775 *vr0type = vr1type;
7776 *vr0min = vr1min;
7777 *vr0max = vr1max;
7779 else if (*vr0type == VR_ANTI_RANGE
7780 && vr1type == VR_ANTI_RANGE)
7782 else if (*vr0type == VR_RANGE
7783 && vr1type == VR_ANTI_RANGE)
7785 *vr0type = VR_ANTI_RANGE;
7786 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7788 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7789 *vr0min = vr1min;
7791 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7793 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7794 *vr0max = vr1max;
7796 else
7797 goto give_up;
7799 else if (*vr0type == VR_ANTI_RANGE
7800 && vr1type == VR_RANGE)
7801 /* The result covers everything. */
7802 goto give_up;
7803 else
7804 gcc_unreachable ();
7806 else if ((operand_less_p (vr1min, *vr0max) == 1
7807 || operand_equal_p (vr1min, *vr0max, 0))
7808 && operand_less_p (*vr0min, vr1min) == 1
7809 && operand_less_p (*vr0max, vr1max) == 1)
7811 /* [ ( ] ) or [ ]( ) */
7812 if (*vr0type == VR_RANGE
7813 && vr1type == VR_RANGE)
7814 *vr0max = vr1max;
7815 else if (*vr0type == VR_ANTI_RANGE
7816 && vr1type == VR_ANTI_RANGE)
7817 *vr0min = vr1min;
7818 else if (*vr0type == VR_ANTI_RANGE
7819 && vr1type == VR_RANGE)
7821 if (TREE_CODE (vr1min) == INTEGER_CST)
7822 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7823 else
7824 goto give_up;
7826 else if (*vr0type == VR_RANGE
7827 && vr1type == VR_ANTI_RANGE)
7829 if (TREE_CODE (*vr0max) == INTEGER_CST)
7831 *vr0type = vr1type;
7832 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7833 *vr0max = vr1max;
7835 else
7836 goto give_up;
7838 else
7839 gcc_unreachable ();
7841 else if ((operand_less_p (*vr0min, vr1max) == 1
7842 || operand_equal_p (*vr0min, vr1max, 0))
7843 && operand_less_p (vr1min, *vr0min) == 1
7844 && operand_less_p (vr1max, *vr0max) == 1)
7846 /* ( [ ) ] or ( )[ ] */
7847 if (*vr0type == VR_RANGE
7848 && vr1type == VR_RANGE)
7849 *vr0min = vr1min;
7850 else if (*vr0type == VR_ANTI_RANGE
7851 && vr1type == VR_ANTI_RANGE)
7852 *vr0max = vr1max;
7853 else if (*vr0type == VR_ANTI_RANGE
7854 && vr1type == VR_RANGE)
7856 if (TREE_CODE (vr1max) == INTEGER_CST)
7857 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7858 else
7859 goto give_up;
7861 else if (*vr0type == VR_RANGE
7862 && vr1type == VR_ANTI_RANGE)
7864 if (TREE_CODE (*vr0min) == INTEGER_CST)
7866 *vr0type = vr1type;
7867 *vr0min = vr1min;
7868 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7870 else
7871 goto give_up;
7873 else
7874 gcc_unreachable ();
7876 else
7877 goto give_up;
7879 return;
7881 give_up:
7882 *vr0type = VR_VARYING;
7883 *vr0min = NULL_TREE;
7884 *vr0max = NULL_TREE;
7887 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7888 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7889 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7890 possible such range. The resulting range is not canonicalized. */
7892 static void
7893 intersect_ranges (enum value_range_type *vr0type,
7894 tree *vr0min, tree *vr0max,
7895 enum value_range_type vr1type,
7896 tree vr1min, tree vr1max)
7898 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7899 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7901 /* [] is vr0, () is vr1 in the following classification comments. */
7902 if (mineq && maxeq)
7904 /* [( )] */
7905 if (*vr0type == vr1type)
7906 /* Nothing to do for equal ranges. */
7908 else if ((*vr0type == VR_RANGE
7909 && vr1type == VR_ANTI_RANGE)
7910 || (*vr0type == VR_ANTI_RANGE
7911 && vr1type == VR_RANGE))
7913 /* For anti-range with range intersection the result is empty. */
7914 *vr0type = VR_UNDEFINED;
7915 *vr0min = NULL_TREE;
7916 *vr0max = NULL_TREE;
7918 else
7919 gcc_unreachable ();
7921 else if (operand_less_p (*vr0max, vr1min) == 1
7922 || operand_less_p (vr1max, *vr0min) == 1)
7924 /* [ ] ( ) or ( ) [ ]
7925 If the ranges have an empty intersection, the result of the
7926 intersect operation is the range for intersecting an
7927 anti-range with a range or empty when intersecting two ranges. */
7928 if (*vr0type == VR_RANGE
7929 && vr1type == VR_ANTI_RANGE)
7931 else if (*vr0type == VR_ANTI_RANGE
7932 && vr1type == VR_RANGE)
7934 *vr0type = vr1type;
7935 *vr0min = vr1min;
7936 *vr0max = vr1max;
7938 else if (*vr0type == VR_RANGE
7939 && vr1type == VR_RANGE)
7941 *vr0type = VR_UNDEFINED;
7942 *vr0min = NULL_TREE;
7943 *vr0max = NULL_TREE;
7945 else if (*vr0type == VR_ANTI_RANGE
7946 && vr1type == VR_ANTI_RANGE)
7948 /* If the anti-ranges are adjacent to each other merge them. */
7949 if (TREE_CODE (*vr0max) == INTEGER_CST
7950 && TREE_CODE (vr1min) == INTEGER_CST
7951 && operand_less_p (*vr0max, vr1min) == 1
7952 && integer_onep (int_const_binop (MINUS_EXPR,
7953 vr1min, *vr0max)))
7954 *vr0max = vr1max;
7955 else if (TREE_CODE (vr1max) == INTEGER_CST
7956 && TREE_CODE (*vr0min) == INTEGER_CST
7957 && operand_less_p (vr1max, *vr0min) == 1
7958 && integer_onep (int_const_binop (MINUS_EXPR,
7959 *vr0min, vr1max)))
7960 *vr0min = vr1min;
7961 /* Else arbitrarily take VR0. */
7964 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7965 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7967 /* [ ( ) ] or [( ) ] or [ ( )] */
7968 if (*vr0type == VR_RANGE
7969 && vr1type == VR_RANGE)
7971 /* If both are ranges the result is the inner one. */
7972 *vr0type = vr1type;
7973 *vr0min = vr1min;
7974 *vr0max = vr1max;
7976 else if (*vr0type == VR_RANGE
7977 && vr1type == VR_ANTI_RANGE)
7979 /* Choose the right gap if the left one is empty. */
7980 if (mineq)
7982 if (TREE_CODE (vr1max) == INTEGER_CST)
7983 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7984 else
7985 *vr0min = vr1max;
7987 /* Choose the left gap if the right one is empty. */
7988 else if (maxeq)
7990 if (TREE_CODE (vr1min) == INTEGER_CST)
7991 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7992 integer_one_node);
7993 else
7994 *vr0max = vr1min;
7996 /* Choose the anti-range if the range is effectively varying. */
7997 else if (vrp_val_is_min (*vr0min)
7998 && vrp_val_is_max (*vr0max))
8000 *vr0type = vr1type;
8001 *vr0min = vr1min;
8002 *vr0max = vr1max;
8004 /* Else choose the range. */
8006 else if (*vr0type == VR_ANTI_RANGE
8007 && vr1type == VR_ANTI_RANGE)
8008 /* If both are anti-ranges the result is the outer one. */
8010 else if (*vr0type == VR_ANTI_RANGE
8011 && vr1type == VR_RANGE)
8013 /* The intersection is empty. */
8014 *vr0type = VR_UNDEFINED;
8015 *vr0min = NULL_TREE;
8016 *vr0max = NULL_TREE;
8018 else
8019 gcc_unreachable ();
8021 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8022 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8024 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8025 if (*vr0type == VR_RANGE
8026 && vr1type == VR_RANGE)
8027 /* Choose the inner range. */
8029 else if (*vr0type == VR_ANTI_RANGE
8030 && vr1type == VR_RANGE)
8032 /* Choose the right gap if the left is empty. */
8033 if (mineq)
8035 *vr0type = VR_RANGE;
8036 if (TREE_CODE (*vr0max) == INTEGER_CST)
8037 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8038 integer_one_node);
8039 else
8040 *vr0min = *vr0max;
8041 *vr0max = vr1max;
8043 /* Choose the left gap if the right is empty. */
8044 else if (maxeq)
8046 *vr0type = VR_RANGE;
8047 if (TREE_CODE (*vr0min) == INTEGER_CST)
8048 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8049 integer_one_node);
8050 else
8051 *vr0max = *vr0min;
8052 *vr0min = vr1min;
8054 /* Choose the anti-range if the range is effectively varying. */
8055 else if (vrp_val_is_min (vr1min)
8056 && vrp_val_is_max (vr1max))
8058 /* Else choose the range. */
8059 else
8061 *vr0type = vr1type;
8062 *vr0min = vr1min;
8063 *vr0max = vr1max;
8066 else if (*vr0type == VR_ANTI_RANGE
8067 && vr1type == VR_ANTI_RANGE)
8069 /* If both are anti-ranges the result is the outer one. */
8070 *vr0type = vr1type;
8071 *vr0min = vr1min;
8072 *vr0max = vr1max;
8074 else if (vr1type == VR_ANTI_RANGE
8075 && *vr0type == VR_RANGE)
8077 /* The intersection is empty. */
8078 *vr0type = VR_UNDEFINED;
8079 *vr0min = NULL_TREE;
8080 *vr0max = NULL_TREE;
8082 else
8083 gcc_unreachable ();
8085 else if ((operand_less_p (vr1min, *vr0max) == 1
8086 || operand_equal_p (vr1min, *vr0max, 0))
8087 && operand_less_p (*vr0min, vr1min) == 1)
8089 /* [ ( ] ) or [ ]( ) */
8090 if (*vr0type == VR_ANTI_RANGE
8091 && vr1type == VR_ANTI_RANGE)
8092 *vr0max = vr1max;
8093 else if (*vr0type == VR_RANGE
8094 && vr1type == VR_RANGE)
8095 *vr0min = vr1min;
8096 else if (*vr0type == VR_RANGE
8097 && vr1type == VR_ANTI_RANGE)
8099 if (TREE_CODE (vr1min) == INTEGER_CST)
8100 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8101 integer_one_node);
8102 else
8103 *vr0max = vr1min;
8105 else if (*vr0type == VR_ANTI_RANGE
8106 && vr1type == VR_RANGE)
8108 *vr0type = VR_RANGE;
8109 if (TREE_CODE (*vr0max) == INTEGER_CST)
8110 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8111 integer_one_node);
8112 else
8113 *vr0min = *vr0max;
8114 *vr0max = vr1max;
8116 else
8117 gcc_unreachable ();
8119 else if ((operand_less_p (*vr0min, vr1max) == 1
8120 || operand_equal_p (*vr0min, vr1max, 0))
8121 && operand_less_p (vr1min, *vr0min) == 1)
8123 /* ( [ ) ] or ( )[ ] */
8124 if (*vr0type == VR_ANTI_RANGE
8125 && vr1type == VR_ANTI_RANGE)
8126 *vr0min = vr1min;
8127 else if (*vr0type == VR_RANGE
8128 && vr1type == VR_RANGE)
8129 *vr0max = vr1max;
8130 else if (*vr0type == VR_RANGE
8131 && vr1type == VR_ANTI_RANGE)
8133 if (TREE_CODE (vr1max) == INTEGER_CST)
8134 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8135 integer_one_node);
8136 else
8137 *vr0min = vr1max;
8139 else if (*vr0type == VR_ANTI_RANGE
8140 && vr1type == VR_RANGE)
8142 *vr0type = VR_RANGE;
8143 if (TREE_CODE (*vr0min) == INTEGER_CST)
8144 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8145 integer_one_node);
8146 else
8147 *vr0max = *vr0min;
8148 *vr0min = vr1min;
8150 else
8151 gcc_unreachable ();
8154 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8155 result for the intersection. That's always a conservative
8156 correct estimate. */
8158 return;
8162 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8163 in *VR0. This may not be the smallest possible such range. */
8165 static void
8166 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8168 value_range_t saved;
8170 /* If either range is VR_VARYING the other one wins. */
8171 if (vr1->type == VR_VARYING)
8172 return;
8173 if (vr0->type == VR_VARYING)
8175 copy_value_range (vr0, vr1);
8176 return;
8179 /* When either range is VR_UNDEFINED the resulting range is
8180 VR_UNDEFINED, too. */
8181 if (vr0->type == VR_UNDEFINED)
8182 return;
8183 if (vr1->type == VR_UNDEFINED)
8185 set_value_range_to_undefined (vr0);
8186 return;
8189 /* Save the original vr0 so we can return it as conservative intersection
8190 result when our worker turns things to varying. */
8191 saved = *vr0;
8192 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8193 vr1->type, vr1->min, vr1->max);
8194 /* Make sure to canonicalize the result though as the inversion of a
8195 VR_RANGE can still be a VR_RANGE. */
8196 set_and_canonicalize_value_range (vr0, vr0->type,
8197 vr0->min, vr0->max, vr0->equiv);
8198 /* If that failed, use the saved original VR0. */
8199 if (vr0->type == VR_VARYING)
8201 *vr0 = saved;
8202 return;
8204 /* If the result is VR_UNDEFINED there is no need to mess with
8205 the equivalencies. */
8206 if (vr0->type == VR_UNDEFINED)
8207 return;
8209 /* The resulting set of equivalences for range intersection is the union of
8210 the two sets. */
8211 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8212 bitmap_ior_into (vr0->equiv, vr1->equiv);
8213 else if (vr1->equiv && !vr0->equiv)
8214 bitmap_copy (vr0->equiv, vr1->equiv);
8217 static void
8218 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8220 if (dump_file && (dump_flags & TDF_DETAILS))
8222 fprintf (dump_file, "Intersecting\n ");
8223 dump_value_range (dump_file, vr0);
8224 fprintf (dump_file, "\nand\n ");
8225 dump_value_range (dump_file, vr1);
8226 fprintf (dump_file, "\n");
8228 vrp_intersect_ranges_1 (vr0, vr1);
8229 if (dump_file && (dump_flags & TDF_DETAILS))
8231 fprintf (dump_file, "to\n ");
8232 dump_value_range (dump_file, vr0);
8233 fprintf (dump_file, "\n");
8237 /* Meet operation for value ranges. Given two value ranges VR0 and
8238 VR1, store in VR0 a range that contains both VR0 and VR1. This
8239 may not be the smallest possible such range. */
8241 static void
8242 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8244 value_range_t saved;
8246 if (vr0->type == VR_UNDEFINED)
8248 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8249 return;
8252 if (vr1->type == VR_UNDEFINED)
8254 /* VR0 already has the resulting range. */
8255 return;
8258 if (vr0->type == VR_VARYING)
8260 /* Nothing to do. VR0 already has the resulting range. */
8261 return;
8264 if (vr1->type == VR_VARYING)
8266 set_value_range_to_varying (vr0);
8267 return;
8270 saved = *vr0;
8271 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8272 vr1->type, vr1->min, vr1->max);
8273 if (vr0->type == VR_VARYING)
8275 /* Failed to find an efficient meet. Before giving up and setting
8276 the result to VARYING, see if we can at least derive a useful
8277 anti-range. FIXME, all this nonsense about distinguishing
8278 anti-ranges from ranges is necessary because of the odd
8279 semantics of range_includes_zero_p and friends. */
8280 if (((saved.type == VR_RANGE
8281 && range_includes_zero_p (saved.min, saved.max) == 0)
8282 || (saved.type == VR_ANTI_RANGE
8283 && range_includes_zero_p (saved.min, saved.max) == 1))
8284 && ((vr1->type == VR_RANGE
8285 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8286 || (vr1->type == VR_ANTI_RANGE
8287 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8289 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8291 /* Since this meet operation did not result from the meeting of
8292 two equivalent names, VR0 cannot have any equivalences. */
8293 if (vr0->equiv)
8294 bitmap_clear (vr0->equiv);
8295 return;
8298 set_value_range_to_varying (vr0);
8299 return;
8301 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8302 vr0->equiv);
8303 if (vr0->type == VR_VARYING)
8304 return;
8306 /* The resulting set of equivalences is always the intersection of
8307 the two sets. */
8308 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8309 bitmap_and_into (vr0->equiv, vr1->equiv);
8310 else if (vr0->equiv && !vr1->equiv)
8311 bitmap_clear (vr0->equiv);
8314 static void
8315 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8317 if (dump_file && (dump_flags & TDF_DETAILS))
8319 fprintf (dump_file, "Meeting\n ");
8320 dump_value_range (dump_file, vr0);
8321 fprintf (dump_file, "\nand\n ");
8322 dump_value_range (dump_file, vr1);
8323 fprintf (dump_file, "\n");
8325 vrp_meet_1 (vr0, vr1);
8326 if (dump_file && (dump_flags & TDF_DETAILS))
8328 fprintf (dump_file, "to\n ");
8329 dump_value_range (dump_file, vr0);
8330 fprintf (dump_file, "\n");
8335 /* Visit all arguments for PHI node PHI that flow through executable
8336 edges. If a valid value range can be derived from all the incoming
8337 value ranges, set a new range for the LHS of PHI. */
8339 static enum ssa_prop_result
8340 vrp_visit_phi_node (gimple phi)
8342 size_t i;
8343 tree lhs = PHI_RESULT (phi);
8344 value_range_t *lhs_vr = get_value_range (lhs);
8345 value_range_t vr_result = VR_INITIALIZER;
8346 bool first = true;
8347 int edges, old_edges;
8348 struct loop *l;
8350 if (dump_file && (dump_flags & TDF_DETAILS))
8352 fprintf (dump_file, "\nVisiting PHI node: ");
8353 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8356 edges = 0;
8357 for (i = 0; i < gimple_phi_num_args (phi); i++)
8359 edge e = gimple_phi_arg_edge (phi, i);
8361 if (dump_file && (dump_flags & TDF_DETAILS))
8363 fprintf (dump_file,
8364 "\n Argument #%d (%d -> %d %sexecutable)\n",
8365 (int) i, e->src->index, e->dest->index,
8366 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8369 if (e->flags & EDGE_EXECUTABLE)
8371 tree arg = PHI_ARG_DEF (phi, i);
8372 value_range_t vr_arg;
8374 ++edges;
8376 if (TREE_CODE (arg) == SSA_NAME)
8378 vr_arg = *(get_value_range (arg));
8379 /* Do not allow equivalences or symbolic ranges to leak in from
8380 backedges. That creates invalid equivalencies.
8381 See PR53465 and PR54767. */
8382 if (e->flags & EDGE_DFS_BACK
8383 && (vr_arg.type == VR_RANGE
8384 || vr_arg.type == VR_ANTI_RANGE))
8386 vr_arg.equiv = NULL;
8387 if (symbolic_range_p (&vr_arg))
8389 vr_arg.type = VR_VARYING;
8390 vr_arg.min = NULL_TREE;
8391 vr_arg.max = NULL_TREE;
8395 else
8397 if (TREE_OVERFLOW_P (arg))
8398 arg = drop_tree_overflow (arg);
8400 vr_arg.type = VR_RANGE;
8401 vr_arg.min = arg;
8402 vr_arg.max = arg;
8403 vr_arg.equiv = NULL;
8406 if (dump_file && (dump_flags & TDF_DETAILS))
8408 fprintf (dump_file, "\t");
8409 print_generic_expr (dump_file, arg, dump_flags);
8410 fprintf (dump_file, "\n\tValue: ");
8411 dump_value_range (dump_file, &vr_arg);
8412 fprintf (dump_file, "\n");
8415 if (first)
8416 copy_value_range (&vr_result, &vr_arg);
8417 else
8418 vrp_meet (&vr_result, &vr_arg);
8419 first = false;
8421 if (vr_result.type == VR_VARYING)
8422 break;
8426 if (vr_result.type == VR_VARYING)
8427 goto varying;
8428 else if (vr_result.type == VR_UNDEFINED)
8429 goto update_range;
8431 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8432 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8434 /* To prevent infinite iterations in the algorithm, derive ranges
8435 when the new value is slightly bigger or smaller than the
8436 previous one. We don't do this if we have seen a new executable
8437 edge; this helps us avoid an overflow infinity for conditionals
8438 which are not in a loop. If the old value-range was VR_UNDEFINED
8439 use the updated range and iterate one more time. */
8440 if (edges > 0
8441 && gimple_phi_num_args (phi) > 1
8442 && edges == old_edges
8443 && lhs_vr->type != VR_UNDEFINED)
8445 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8446 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8448 /* For non VR_RANGE or for pointers fall back to varying if
8449 the range changed. */
8450 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8451 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8452 && (cmp_min != 0 || cmp_max != 0))
8453 goto varying;
8455 /* If the new minimum is smaller or larger than the previous
8456 one, go all the way to -INF. In the first case, to avoid
8457 iterating millions of times to reach -INF, and in the
8458 other case to avoid infinite bouncing between different
8459 minimums. */
8460 if (cmp_min > 0 || cmp_min < 0)
8462 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8463 || !vrp_var_may_overflow (lhs, phi))
8464 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8465 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8466 vr_result.min =
8467 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8470 /* Similarly, if the new maximum is smaller or larger than
8471 the previous one, go all the way to +INF. */
8472 if (cmp_max < 0 || cmp_max > 0)
8474 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8475 || !vrp_var_may_overflow (lhs, phi))
8476 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8477 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8478 vr_result.max =
8479 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8482 /* If we dropped either bound to +-INF then if this is a loop
8483 PHI node SCEV may known more about its value-range. */
8484 if ((cmp_min > 0 || cmp_min < 0
8485 || cmp_max < 0 || cmp_max > 0)
8486 && current_loops
8487 && (l = loop_containing_stmt (phi))
8488 && l->header == gimple_bb (phi))
8489 adjust_range_with_scev (&vr_result, l, phi, lhs);
8491 /* If we will end up with a (-INF, +INF) range, set it to
8492 VARYING. Same if the previous max value was invalid for
8493 the type and we end up with vr_result.min > vr_result.max. */
8494 if ((vrp_val_is_max (vr_result.max)
8495 && vrp_val_is_min (vr_result.min))
8496 || compare_values (vr_result.min,
8497 vr_result.max) > 0)
8498 goto varying;
8501 /* If the new range is different than the previous value, keep
8502 iterating. */
8503 update_range:
8504 if (update_value_range (lhs, &vr_result))
8506 if (dump_file && (dump_flags & TDF_DETAILS))
8508 fprintf (dump_file, "Found new range for ");
8509 print_generic_expr (dump_file, lhs, 0);
8510 fprintf (dump_file, ": ");
8511 dump_value_range (dump_file, &vr_result);
8512 fprintf (dump_file, "\n\n");
8515 return SSA_PROP_INTERESTING;
8518 /* Nothing changed, don't add outgoing edges. */
8519 return SSA_PROP_NOT_INTERESTING;
8521 /* No match found. Set the LHS to VARYING. */
8522 varying:
8523 set_value_range_to_varying (lhs_vr);
8524 return SSA_PROP_VARYING;
8527 /* Simplify boolean operations if the source is known
8528 to be already a boolean. */
8529 static bool
8530 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8532 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8533 tree lhs, op0, op1;
8534 bool need_conversion;
8536 /* We handle only !=/== case here. */
8537 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8539 op0 = gimple_assign_rhs1 (stmt);
8540 if (!op_with_boolean_value_range_p (op0))
8541 return false;
8543 op1 = gimple_assign_rhs2 (stmt);
8544 if (!op_with_boolean_value_range_p (op1))
8545 return false;
8547 /* Reduce number of cases to handle to NE_EXPR. As there is no
8548 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8549 if (rhs_code == EQ_EXPR)
8551 if (TREE_CODE (op1) == INTEGER_CST)
8552 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8553 else
8554 return false;
8557 lhs = gimple_assign_lhs (stmt);
8558 need_conversion
8559 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8561 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8562 if (need_conversion
8563 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8564 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8565 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8566 return false;
8568 /* For A != 0 we can substitute A itself. */
8569 if (integer_zerop (op1))
8570 gimple_assign_set_rhs_with_ops (gsi,
8571 need_conversion
8572 ? NOP_EXPR : TREE_CODE (op0),
8573 op0, NULL_TREE);
8574 /* For A != B we substitute A ^ B. Either with conversion. */
8575 else if (need_conversion)
8577 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8578 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8579 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8580 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8582 /* Or without. */
8583 else
8584 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8585 update_stmt (gsi_stmt (*gsi));
8587 return true;
8590 /* Simplify a division or modulo operator to a right shift or
8591 bitwise and if the first operand is unsigned or is greater
8592 than zero and the second operand is an exact power of two. */
8594 static bool
8595 simplify_div_or_mod_using_ranges (gimple stmt)
8597 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8598 tree val = NULL;
8599 tree op0 = gimple_assign_rhs1 (stmt);
8600 tree op1 = gimple_assign_rhs2 (stmt);
8601 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8603 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8605 val = integer_one_node;
8607 else
8609 bool sop = false;
8611 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8613 if (val
8614 && sop
8615 && integer_onep (val)
8616 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8618 location_t location;
8620 if (!gimple_has_location (stmt))
8621 location = input_location;
8622 else
8623 location = gimple_location (stmt);
8624 warning_at (location, OPT_Wstrict_overflow,
8625 "assuming signed overflow does not occur when "
8626 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8630 if (val && integer_onep (val))
8632 tree t;
8634 if (rhs_code == TRUNC_DIV_EXPR)
8636 t = build_int_cst (integer_type_node, tree_log2 (op1));
8637 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8638 gimple_assign_set_rhs1 (stmt, op0);
8639 gimple_assign_set_rhs2 (stmt, t);
8641 else
8643 t = build_int_cst (TREE_TYPE (op1), 1);
8644 t = int_const_binop (MINUS_EXPR, op1, t);
8645 t = fold_convert (TREE_TYPE (op0), t);
8647 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8648 gimple_assign_set_rhs1 (stmt, op0);
8649 gimple_assign_set_rhs2 (stmt, t);
8652 update_stmt (stmt);
8653 return true;
8656 return false;
8659 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8660 ABS_EXPR. If the operand is <= 0, then simplify the
8661 ABS_EXPR into a NEGATE_EXPR. */
8663 static bool
8664 simplify_abs_using_ranges (gimple stmt)
8666 tree val = NULL;
8667 tree op = gimple_assign_rhs1 (stmt);
8668 tree type = TREE_TYPE (op);
8669 value_range_t *vr = get_value_range (op);
8671 if (TYPE_UNSIGNED (type))
8673 val = integer_zero_node;
8675 else if (vr)
8677 bool sop = false;
8679 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8680 if (!val)
8682 sop = false;
8683 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8684 &sop);
8686 if (val)
8688 if (integer_zerop (val))
8689 val = integer_one_node;
8690 else if (integer_onep (val))
8691 val = integer_zero_node;
8695 if (val
8696 && (integer_onep (val) || integer_zerop (val)))
8698 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8700 location_t location;
8702 if (!gimple_has_location (stmt))
8703 location = input_location;
8704 else
8705 location = gimple_location (stmt);
8706 warning_at (location, OPT_Wstrict_overflow,
8707 "assuming signed overflow does not occur when "
8708 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8711 gimple_assign_set_rhs1 (stmt, op);
8712 if (integer_onep (val))
8713 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8714 else
8715 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8716 update_stmt (stmt);
8717 return true;
8721 return false;
8724 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8725 If all the bits that are being cleared by & are already
8726 known to be zero from VR, or all the bits that are being
8727 set by | are already known to be one from VR, the bit
8728 operation is redundant. */
8730 static bool
8731 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8733 tree op0 = gimple_assign_rhs1 (stmt);
8734 tree op1 = gimple_assign_rhs2 (stmt);
8735 tree op = NULL_TREE;
8736 value_range_t vr0 = VR_INITIALIZER;
8737 value_range_t vr1 = VR_INITIALIZER;
8738 double_int may_be_nonzero0, may_be_nonzero1;
8739 double_int must_be_nonzero0, must_be_nonzero1;
8740 double_int mask;
8742 if (TREE_CODE (op0) == SSA_NAME)
8743 vr0 = *(get_value_range (op0));
8744 else if (is_gimple_min_invariant (op0))
8745 set_value_range_to_value (&vr0, op0, NULL);
8746 else
8747 return false;
8749 if (TREE_CODE (op1) == SSA_NAME)
8750 vr1 = *(get_value_range (op1));
8751 else if (is_gimple_min_invariant (op1))
8752 set_value_range_to_value (&vr1, op1, NULL);
8753 else
8754 return false;
8756 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8757 return false;
8758 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8759 return false;
8761 switch (gimple_assign_rhs_code (stmt))
8763 case BIT_AND_EXPR:
8764 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8765 if (mask.is_zero ())
8767 op = op0;
8768 break;
8770 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8771 if (mask.is_zero ())
8773 op = op1;
8774 break;
8776 break;
8777 case BIT_IOR_EXPR:
8778 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8779 if (mask.is_zero ())
8781 op = op1;
8782 break;
8784 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8785 if (mask.is_zero ())
8787 op = op0;
8788 break;
8790 break;
8791 default:
8792 gcc_unreachable ();
8795 if (op == NULL_TREE)
8796 return false;
8798 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8799 update_stmt (gsi_stmt (*gsi));
8800 return true;
8803 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8804 a known value range VR.
8806 If there is one and only one value which will satisfy the
8807 conditional, then return that value. Else return NULL. */
8809 static tree
8810 test_for_singularity (enum tree_code cond_code, tree op0,
8811 tree op1, value_range_t *vr)
8813 tree min = NULL;
8814 tree max = NULL;
8816 /* Extract minimum/maximum values which satisfy the
8817 the conditional as it was written. */
8818 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8820 /* This should not be negative infinity; there is no overflow
8821 here. */
8822 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8824 max = op1;
8825 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8827 tree one = build_int_cst (TREE_TYPE (op0), 1);
8828 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8829 if (EXPR_P (max))
8830 TREE_NO_WARNING (max) = 1;
8833 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8835 /* This should not be positive infinity; there is no overflow
8836 here. */
8837 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8839 min = op1;
8840 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8842 tree one = build_int_cst (TREE_TYPE (op0), 1);
8843 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8844 if (EXPR_P (min))
8845 TREE_NO_WARNING (min) = 1;
8849 /* Now refine the minimum and maximum values using any
8850 value range information we have for op0. */
8851 if (min && max)
8853 if (compare_values (vr->min, min) == 1)
8854 min = vr->min;
8855 if (compare_values (vr->max, max) == -1)
8856 max = vr->max;
8858 /* If the new min/max values have converged to a single value,
8859 then there is only one value which can satisfy the condition,
8860 return that value. */
8861 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8862 return min;
8864 return NULL;
8867 /* Return whether the value range *VR fits in an integer type specified
8868 by PRECISION and UNSIGNED_P. */
8870 static bool
8871 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8873 tree src_type;
8874 unsigned src_precision;
8875 double_int tem;
8877 /* We can only handle integral and pointer types. */
8878 src_type = TREE_TYPE (vr->min);
8879 if (!INTEGRAL_TYPE_P (src_type)
8880 && !POINTER_TYPE_P (src_type))
8881 return false;
8883 /* An extension is fine unless VR is signed and unsigned_p,
8884 and so is an identity transform. */
8885 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8886 if ((src_precision < precision
8887 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8888 || (src_precision == precision
8889 && TYPE_UNSIGNED (src_type) == unsigned_p))
8890 return true;
8892 /* Now we can only handle ranges with constant bounds. */
8893 if (vr->type != VR_RANGE
8894 || TREE_CODE (vr->min) != INTEGER_CST
8895 || TREE_CODE (vr->max) != INTEGER_CST)
8896 return false;
8898 /* For sign changes, the MSB of the double_int has to be clear.
8899 An unsigned value with its MSB set cannot be represented by
8900 a signed double_int, while a negative value cannot be represented
8901 by an unsigned double_int. */
8902 if (TYPE_UNSIGNED (src_type) != unsigned_p
8903 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8904 return false;
8906 /* Then we can perform the conversion on both ends and compare
8907 the result for equality. */
8908 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8909 if (tree_to_double_int (vr->min) != tem)
8910 return false;
8911 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8912 if (tree_to_double_int (vr->max) != tem)
8913 return false;
8915 return true;
8918 /* Simplify a conditional using a relational operator to an equality
8919 test if the range information indicates only one value can satisfy
8920 the original conditional. */
8922 static bool
8923 simplify_cond_using_ranges (gimple stmt)
8925 tree op0 = gimple_cond_lhs (stmt);
8926 tree op1 = gimple_cond_rhs (stmt);
8927 enum tree_code cond_code = gimple_cond_code (stmt);
8929 if (cond_code != NE_EXPR
8930 && cond_code != EQ_EXPR
8931 && TREE_CODE (op0) == SSA_NAME
8932 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8933 && is_gimple_min_invariant (op1))
8935 value_range_t *vr = get_value_range (op0);
8937 /* If we have range information for OP0, then we might be
8938 able to simplify this conditional. */
8939 if (vr->type == VR_RANGE)
8941 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8943 if (new_tree)
8945 if (dump_file)
8947 fprintf (dump_file, "Simplified relational ");
8948 print_gimple_stmt (dump_file, stmt, 0, 0);
8949 fprintf (dump_file, " into ");
8952 gimple_cond_set_code (stmt, EQ_EXPR);
8953 gimple_cond_set_lhs (stmt, op0);
8954 gimple_cond_set_rhs (stmt, new_tree);
8956 update_stmt (stmt);
8958 if (dump_file)
8960 print_gimple_stmt (dump_file, stmt, 0, 0);
8961 fprintf (dump_file, "\n");
8964 return true;
8967 /* Try again after inverting the condition. We only deal
8968 with integral types here, so no need to worry about
8969 issues with inverting FP comparisons. */
8970 cond_code = invert_tree_comparison (cond_code, false);
8971 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8973 if (new_tree)
8975 if (dump_file)
8977 fprintf (dump_file, "Simplified relational ");
8978 print_gimple_stmt (dump_file, stmt, 0, 0);
8979 fprintf (dump_file, " into ");
8982 gimple_cond_set_code (stmt, NE_EXPR);
8983 gimple_cond_set_lhs (stmt, op0);
8984 gimple_cond_set_rhs (stmt, new_tree);
8986 update_stmt (stmt);
8988 if (dump_file)
8990 print_gimple_stmt (dump_file, stmt, 0, 0);
8991 fprintf (dump_file, "\n");
8994 return true;
8999 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9000 see if OP0 was set by a type conversion where the source of
9001 the conversion is another SSA_NAME with a range that fits
9002 into the range of OP0's type.
9004 If so, the conversion is redundant as the earlier SSA_NAME can be
9005 used for the comparison directly if we just massage the constant in the
9006 comparison. */
9007 if (TREE_CODE (op0) == SSA_NAME
9008 && TREE_CODE (op1) == INTEGER_CST)
9010 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9011 tree innerop;
9013 if (!is_gimple_assign (def_stmt)
9014 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9015 return false;
9017 innerop = gimple_assign_rhs1 (def_stmt);
9019 if (TREE_CODE (innerop) == SSA_NAME
9020 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9022 value_range_t *vr = get_value_range (innerop);
9024 if (range_int_cst_p (vr)
9025 && range_fits_type_p (vr,
9026 TYPE_PRECISION (TREE_TYPE (op0)),
9027 TYPE_UNSIGNED (TREE_TYPE (op0)))
9028 && int_fits_type_p (op1, TREE_TYPE (innerop))
9029 /* The range must not have overflowed, or if it did overflow
9030 we must not be wrapping/trapping overflow and optimizing
9031 with strict overflow semantics. */
9032 && ((!is_negative_overflow_infinity (vr->min)
9033 && !is_positive_overflow_infinity (vr->max))
9034 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9036 /* If the range overflowed and the user has asked for warnings
9037 when strict overflow semantics were used to optimize code,
9038 issue an appropriate warning. */
9039 if ((is_negative_overflow_infinity (vr->min)
9040 || is_positive_overflow_infinity (vr->max))
9041 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9043 location_t location;
9045 if (!gimple_has_location (stmt))
9046 location = input_location;
9047 else
9048 location = gimple_location (stmt);
9049 warning_at (location, OPT_Wstrict_overflow,
9050 "assuming signed overflow does not occur when "
9051 "simplifying conditional");
9054 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9055 gimple_cond_set_lhs (stmt, innerop);
9056 gimple_cond_set_rhs (stmt, newconst);
9057 return true;
9062 return false;
9065 /* Simplify a switch statement using the value range of the switch
9066 argument. */
9068 static bool
9069 simplify_switch_using_ranges (gimple stmt)
9071 tree op = gimple_switch_index (stmt);
9072 value_range_t *vr;
9073 bool take_default;
9074 edge e;
9075 edge_iterator ei;
9076 size_t i = 0, j = 0, n, n2;
9077 tree vec2;
9078 switch_update su;
9079 size_t k = 1, l = 0;
9081 if (TREE_CODE (op) == SSA_NAME)
9083 vr = get_value_range (op);
9085 /* We can only handle integer ranges. */
9086 if ((vr->type != VR_RANGE
9087 && vr->type != VR_ANTI_RANGE)
9088 || symbolic_range_p (vr))
9089 return false;
9091 /* Find case label for min/max of the value range. */
9092 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9094 else if (TREE_CODE (op) == INTEGER_CST)
9096 take_default = !find_case_label_index (stmt, 1, op, &i);
9097 if (take_default)
9099 i = 1;
9100 j = 0;
9102 else
9104 j = i;
9107 else
9108 return false;
9110 n = gimple_switch_num_labels (stmt);
9112 /* Bail out if this is just all edges taken. */
9113 if (i == 1
9114 && j == n - 1
9115 && take_default)
9116 return false;
9118 /* Build a new vector of taken case labels. */
9119 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9120 n2 = 0;
9122 /* Add the default edge, if necessary. */
9123 if (take_default)
9124 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9126 for (; i <= j; ++i, ++n2)
9127 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9129 for (; k <= l; ++k, ++n2)
9130 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9132 /* Mark needed edges. */
9133 for (i = 0; i < n2; ++i)
9135 e = find_edge (gimple_bb (stmt),
9136 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9137 e->aux = (void *)-1;
9140 /* Queue not needed edges for later removal. */
9141 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9143 if (e->aux == (void *)-1)
9145 e->aux = NULL;
9146 continue;
9149 if (dump_file && (dump_flags & TDF_DETAILS))
9151 fprintf (dump_file, "removing unreachable case label\n");
9153 to_remove_edges.safe_push (e);
9154 e->flags &= ~EDGE_EXECUTABLE;
9157 /* And queue an update for the stmt. */
9158 su.stmt = stmt;
9159 su.vec = vec2;
9160 to_update_switch_stmts.safe_push (su);
9161 return false;
9164 /* Simplify an integral conversion from an SSA name in STMT. */
9166 static bool
9167 simplify_conversion_using_ranges (gimple stmt)
9169 tree innerop, middleop, finaltype;
9170 gimple def_stmt;
9171 value_range_t *innervr;
9172 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9173 unsigned inner_prec, middle_prec, final_prec;
9174 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9176 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9177 if (!INTEGRAL_TYPE_P (finaltype))
9178 return false;
9179 middleop = gimple_assign_rhs1 (stmt);
9180 def_stmt = SSA_NAME_DEF_STMT (middleop);
9181 if (!is_gimple_assign (def_stmt)
9182 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9183 return false;
9184 innerop = gimple_assign_rhs1 (def_stmt);
9185 if (TREE_CODE (innerop) != SSA_NAME
9186 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9187 return false;
9189 /* Get the value-range of the inner operand. */
9190 innervr = get_value_range (innerop);
9191 if (innervr->type != VR_RANGE
9192 || TREE_CODE (innervr->min) != INTEGER_CST
9193 || TREE_CODE (innervr->max) != INTEGER_CST)
9194 return false;
9196 /* Simulate the conversion chain to check if the result is equal if
9197 the middle conversion is removed. */
9198 innermin = tree_to_double_int (innervr->min);
9199 innermax = tree_to_double_int (innervr->max);
9201 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9202 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9203 final_prec = TYPE_PRECISION (finaltype);
9205 /* If the first conversion is not injective, the second must not
9206 be widening. */
9207 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9208 && middle_prec < final_prec)
9209 return false;
9210 /* We also want a medium value so that we can track the effect that
9211 narrowing conversions with sign change have. */
9212 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9213 if (inner_unsigned_p)
9214 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9215 else
9216 innermed = double_int_zero;
9217 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9218 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9219 innermed = innermin;
9221 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9222 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9223 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9224 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9226 /* Require that the final conversion applied to both the original
9227 and the intermediate range produces the same result. */
9228 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9229 if (middlemin.ext (final_prec, final_unsigned_p)
9230 != innermin.ext (final_prec, final_unsigned_p)
9231 || middlemed.ext (final_prec, final_unsigned_p)
9232 != innermed.ext (final_prec, final_unsigned_p)
9233 || middlemax.ext (final_prec, final_unsigned_p)
9234 != innermax.ext (final_prec, final_unsigned_p))
9235 return false;
9237 gimple_assign_set_rhs1 (stmt, innerop);
9238 update_stmt (stmt);
9239 return true;
9242 /* Simplify a conversion from integral SSA name to float in STMT. */
9244 static bool
9245 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9247 tree rhs1 = gimple_assign_rhs1 (stmt);
9248 value_range_t *vr = get_value_range (rhs1);
9249 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9250 enum machine_mode mode;
9251 tree tem;
9252 gimple conv;
9254 /* We can only handle constant ranges. */
9255 if (vr->type != VR_RANGE
9256 || TREE_CODE (vr->min) != INTEGER_CST
9257 || TREE_CODE (vr->max) != INTEGER_CST)
9258 return false;
9260 /* First check if we can use a signed type in place of an unsigned. */
9261 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9262 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9263 != CODE_FOR_nothing)
9264 && range_fits_type_p (vr, GET_MODE_PRECISION
9265 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9266 mode = TYPE_MODE (TREE_TYPE (rhs1));
9267 /* If we can do the conversion in the current input mode do nothing. */
9268 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9269 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9270 return false;
9271 /* Otherwise search for a mode we can use, starting from the narrowest
9272 integer mode available. */
9273 else
9275 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9278 /* If we cannot do a signed conversion to float from mode
9279 or if the value-range does not fit in the signed type
9280 try with a wider mode. */
9281 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9282 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9283 break;
9285 mode = GET_MODE_WIDER_MODE (mode);
9286 /* But do not widen the input. Instead leave that to the
9287 optabs expansion code. */
9288 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9289 return false;
9291 while (mode != VOIDmode);
9292 if (mode == VOIDmode)
9293 return false;
9296 /* It works, insert a truncation or sign-change before the
9297 float conversion. */
9298 tem = make_ssa_name (build_nonstandard_integer_type
9299 (GET_MODE_PRECISION (mode), 0), NULL);
9300 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9301 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9302 gimple_assign_set_rhs1 (stmt, tem);
9303 update_stmt (stmt);
9305 return true;
9308 /* Simplify an internal fn call using ranges if possible. */
9310 static bool
9311 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9313 enum tree_code subcode;
9314 switch (gimple_call_internal_fn (stmt))
9316 case IFN_UBSAN_CHECK_ADD:
9317 subcode = PLUS_EXPR;
9318 break;
9319 case IFN_UBSAN_CHECK_SUB:
9320 subcode = MINUS_EXPR;
9321 break;
9322 case IFN_UBSAN_CHECK_MUL:
9323 subcode = MULT_EXPR;
9324 break;
9325 default:
9326 return false;
9329 value_range_t vr0 = VR_INITIALIZER;
9330 value_range_t vr1 = VR_INITIALIZER;
9331 tree op0 = gimple_call_arg (stmt, 0);
9332 tree op1 = gimple_call_arg (stmt, 1);
9334 if (TREE_CODE (op0) == SSA_NAME)
9335 vr0 = *get_value_range (op0);
9336 else if (TREE_CODE (op0) == INTEGER_CST)
9337 set_value_range_to_value (&vr0, op0, NULL);
9338 else
9339 set_value_range_to_varying (&vr0);
9341 if (TREE_CODE (op1) == SSA_NAME)
9342 vr1 = *get_value_range (op1);
9343 else if (TREE_CODE (op1) == INTEGER_CST)
9344 set_value_range_to_value (&vr1, op1, NULL);
9345 else
9346 set_value_range_to_varying (&vr1);
9348 if (!range_int_cst_p (&vr0))
9350 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9351 optimize at least x = y + 0; x = y - 0; x = y * 0;
9352 and x = y * 1; which never overflow. */
9353 if (!range_int_cst_p (&vr1))
9354 return false;
9355 if (tree_int_cst_sgn (vr1.min) == -1)
9356 return false;
9357 if (compare_tree_int (vr1.max, subcode == MULT_EXPR) == 1)
9358 return false;
9360 else if (!range_int_cst_p (&vr1))
9362 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9363 optimize at least x = 0 + y; x = 0 * y; and x = 1 * y;
9364 which never overflow. */
9365 if (subcode == MINUS_EXPR)
9366 return false;
9367 if (!range_int_cst_p (&vr0))
9368 return false;
9369 if (tree_int_cst_sgn (vr0.min) == -1)
9370 return false;
9371 if (compare_tree_int (vr0.max, subcode == MULT_EXPR) == 1)
9372 return false;
9374 else
9376 tree r1 = int_const_binop (subcode, vr0.min, vr1.min);
9377 tree r2 = int_const_binop (subcode, vr0.max, vr1.max);
9378 if (r1 == NULL_TREE || TREE_OVERFLOW (r1)
9379 || r2 == NULL_TREE || TREE_OVERFLOW (r2))
9380 return false;
9381 if (subcode == MULT_EXPR)
9383 tree r3 = int_const_binop (subcode, vr0.min, vr1.max);
9384 tree r4 = int_const_binop (subcode, vr0.max, vr1.min);
9385 if (r3 == NULL_TREE || TREE_OVERFLOW (r3)
9386 || r4 == NULL_TREE || TREE_OVERFLOW (r4))
9387 return false;
9391 gimple g = gimple_build_assign_with_ops (subcode, gimple_call_lhs (stmt),
9392 op0, op1);
9393 gsi_replace (gsi, g, false);
9394 return true;
9397 /* Simplify STMT using ranges if possible. */
9399 static bool
9400 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9402 gimple stmt = gsi_stmt (*gsi);
9403 if (is_gimple_assign (stmt))
9405 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9406 tree rhs1 = gimple_assign_rhs1 (stmt);
9408 switch (rhs_code)
9410 case EQ_EXPR:
9411 case NE_EXPR:
9412 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9413 if the RHS is zero or one, and the LHS are known to be boolean
9414 values. */
9415 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9416 return simplify_truth_ops_using_ranges (gsi, stmt);
9417 break;
9419 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9420 and BIT_AND_EXPR respectively if the first operand is greater
9421 than zero and the second operand is an exact power of two. */
9422 case TRUNC_DIV_EXPR:
9423 case TRUNC_MOD_EXPR:
9424 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9425 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9426 return simplify_div_or_mod_using_ranges (stmt);
9427 break;
9429 /* Transform ABS (X) into X or -X as appropriate. */
9430 case ABS_EXPR:
9431 if (TREE_CODE (rhs1) == SSA_NAME
9432 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9433 return simplify_abs_using_ranges (stmt);
9434 break;
9436 case BIT_AND_EXPR:
9437 case BIT_IOR_EXPR:
9438 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9439 if all the bits being cleared are already cleared or
9440 all the bits being set are already set. */
9441 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9442 return simplify_bit_ops_using_ranges (gsi, stmt);
9443 break;
9445 CASE_CONVERT:
9446 if (TREE_CODE (rhs1) == SSA_NAME
9447 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9448 return simplify_conversion_using_ranges (stmt);
9449 break;
9451 case FLOAT_EXPR:
9452 if (TREE_CODE (rhs1) == SSA_NAME
9453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9454 return simplify_float_conversion_using_ranges (gsi, stmt);
9455 break;
9457 default:
9458 break;
9461 else if (gimple_code (stmt) == GIMPLE_COND)
9462 return simplify_cond_using_ranges (stmt);
9463 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9464 return simplify_switch_using_ranges (stmt);
9465 else if (is_gimple_call (stmt)
9466 && gimple_call_internal_p (stmt))
9467 return simplify_internal_call_using_ranges (gsi, stmt);
9469 return false;
9472 /* If the statement pointed by SI has a predicate whose value can be
9473 computed using the value range information computed by VRP, compute
9474 its value and return true. Otherwise, return false. */
9476 static bool
9477 fold_predicate_in (gimple_stmt_iterator *si)
9479 bool assignment_p = false;
9480 tree val;
9481 gimple stmt = gsi_stmt (*si);
9483 if (is_gimple_assign (stmt)
9484 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9486 assignment_p = true;
9487 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9488 gimple_assign_rhs1 (stmt),
9489 gimple_assign_rhs2 (stmt),
9490 stmt);
9492 else if (gimple_code (stmt) == GIMPLE_COND)
9493 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9494 gimple_cond_lhs (stmt),
9495 gimple_cond_rhs (stmt),
9496 stmt);
9497 else
9498 return false;
9500 if (val)
9502 if (assignment_p)
9503 val = fold_convert (gimple_expr_type (stmt), val);
9505 if (dump_file)
9507 fprintf (dump_file, "Folding predicate ");
9508 print_gimple_expr (dump_file, stmt, 0, 0);
9509 fprintf (dump_file, " to ");
9510 print_generic_expr (dump_file, val, 0);
9511 fprintf (dump_file, "\n");
9514 if (is_gimple_assign (stmt))
9515 gimple_assign_set_rhs_from_tree (si, val);
9516 else
9518 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9519 if (integer_zerop (val))
9520 gimple_cond_make_false (stmt);
9521 else if (integer_onep (val))
9522 gimple_cond_make_true (stmt);
9523 else
9524 gcc_unreachable ();
9527 return true;
9530 return false;
9533 /* Callback for substitute_and_fold folding the stmt at *SI. */
9535 static bool
9536 vrp_fold_stmt (gimple_stmt_iterator *si)
9538 if (fold_predicate_in (si))
9539 return true;
9541 return simplify_stmt_using_ranges (si);
9544 /* Stack of dest,src equivalency pairs that need to be restored after
9545 each attempt to thread a block's incoming edge to an outgoing edge.
9547 A NULL entry is used to mark the end of pairs which need to be
9548 restored. */
9549 static vec<tree> equiv_stack;
9551 /* A trivial wrapper so that we can present the generic jump threading
9552 code with a simple API for simplifying statements. STMT is the
9553 statement we want to simplify, WITHIN_STMT provides the location
9554 for any overflow warnings. */
9556 static tree
9557 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9559 if (gimple_code (stmt) == GIMPLE_COND)
9560 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9561 gimple_cond_lhs (stmt),
9562 gimple_cond_rhs (stmt), within_stmt);
9564 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9566 value_range_t new_vr = VR_INITIALIZER;
9567 tree lhs = gimple_assign_lhs (stmt);
9569 if (TREE_CODE (lhs) == SSA_NAME
9570 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9571 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9573 extract_range_from_assignment (&new_vr, stmt);
9574 if (range_int_cst_singleton_p (&new_vr))
9575 return new_vr.min;
9579 return NULL_TREE;
9582 /* Blocks which have more than one predecessor and more than
9583 one successor present jump threading opportunities, i.e.,
9584 when the block is reached from a specific predecessor, we
9585 may be able to determine which of the outgoing edges will
9586 be traversed. When this optimization applies, we are able
9587 to avoid conditionals at runtime and we may expose secondary
9588 optimization opportunities.
9590 This routine is effectively a driver for the generic jump
9591 threading code. It basically just presents the generic code
9592 with edges that may be suitable for jump threading.
9594 Unlike DOM, we do not iterate VRP if jump threading was successful.
9595 While iterating may expose new opportunities for VRP, it is expected
9596 those opportunities would be very limited and the compile time cost
9597 to expose those opportunities would be significant.
9599 As jump threading opportunities are discovered, they are registered
9600 for later realization. */
9602 static void
9603 identify_jump_threads (void)
9605 basic_block bb;
9606 gimple dummy;
9607 int i;
9608 edge e;
9610 /* Ugh. When substituting values earlier in this pass we can
9611 wipe the dominance information. So rebuild the dominator
9612 information as we need it within the jump threading code. */
9613 calculate_dominance_info (CDI_DOMINATORS);
9615 /* We do not allow VRP information to be used for jump threading
9616 across a back edge in the CFG. Otherwise it becomes too
9617 difficult to avoid eliminating loop exit tests. Of course
9618 EDGE_DFS_BACK is not accurate at this time so we have to
9619 recompute it. */
9620 mark_dfs_back_edges ();
9622 /* Do not thread across edges we are about to remove. Just marking
9623 them as EDGE_DFS_BACK will do. */
9624 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9625 e->flags |= EDGE_DFS_BACK;
9627 /* Allocate our unwinder stack to unwind any temporary equivalences
9628 that might be recorded. */
9629 equiv_stack.create (20);
9631 /* To avoid lots of silly node creation, we create a single
9632 conditional and just modify it in-place when attempting to
9633 thread jumps. */
9634 dummy = gimple_build_cond (EQ_EXPR,
9635 integer_zero_node, integer_zero_node,
9636 NULL, NULL);
9638 /* Walk through all the blocks finding those which present a
9639 potential jump threading opportunity. We could set this up
9640 as a dominator walker and record data during the walk, but
9641 I doubt it's worth the effort for the classes of jump
9642 threading opportunities we are trying to identify at this
9643 point in compilation. */
9644 FOR_EACH_BB_FN (bb, cfun)
9646 gimple last;
9648 /* If the generic jump threading code does not find this block
9649 interesting, then there is nothing to do. */
9650 if (! potentially_threadable_block (bb))
9651 continue;
9653 /* We only care about blocks ending in a COND_EXPR. While there
9654 may be some value in handling SWITCH_EXPR here, I doubt it's
9655 terribly important. */
9656 last = gsi_stmt (gsi_last_bb (bb));
9658 /* We're basically looking for a switch or any kind of conditional with
9659 integral or pointer type arguments. Note the type of the second
9660 argument will be the same as the first argument, so no need to
9661 check it explicitly. */
9662 if (gimple_code (last) == GIMPLE_SWITCH
9663 || (gimple_code (last) == GIMPLE_COND
9664 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9665 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9666 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9667 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9668 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9670 edge_iterator ei;
9672 /* We've got a block with multiple predecessors and multiple
9673 successors which also ends in a suitable conditional or
9674 switch statement. For each predecessor, see if we can thread
9675 it to a specific successor. */
9676 FOR_EACH_EDGE (e, ei, bb->preds)
9678 /* Do not thread across back edges or abnormal edges
9679 in the CFG. */
9680 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9681 continue;
9683 thread_across_edge (dummy, e, true, &equiv_stack,
9684 simplify_stmt_for_jump_threading);
9689 /* We do not actually update the CFG or SSA graphs at this point as
9690 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9691 handle ASSERT_EXPRs gracefully. */
9694 /* We identified all the jump threading opportunities earlier, but could
9695 not transform the CFG at that time. This routine transforms the
9696 CFG and arranges for the dominator tree to be rebuilt if necessary.
9698 Note the SSA graph update will occur during the normal TODO
9699 processing by the pass manager. */
9700 static void
9701 finalize_jump_threads (void)
9703 thread_through_all_blocks (false);
9704 equiv_stack.release ();
9708 /* Traverse all the blocks folding conditionals with known ranges. */
9710 static void
9711 vrp_finalize (void)
9713 size_t i;
9715 values_propagated = true;
9717 if (dump_file)
9719 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9720 dump_all_value_ranges (dump_file);
9721 fprintf (dump_file, "\n");
9724 substitute_and_fold (op_with_constant_singleton_value_range,
9725 vrp_fold_stmt, false);
9727 if (warn_array_bounds)
9728 check_all_array_refs ();
9730 /* We must identify jump threading opportunities before we release
9731 the datastructures built by VRP. */
9732 identify_jump_threads ();
9734 /* Set value range to non pointer SSA_NAMEs. */
9735 for (i = 0; i < num_vr_values; i++)
9736 if (vr_value[i])
9738 tree name = ssa_name (i);
9740 if (!name
9741 || POINTER_TYPE_P (TREE_TYPE (name))
9742 || (vr_value[i]->type == VR_VARYING)
9743 || (vr_value[i]->type == VR_UNDEFINED))
9744 continue;
9746 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9747 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
9748 && (vr_value[i]->type == VR_RANGE
9749 || vr_value[i]->type == VR_ANTI_RANGE))
9750 set_range_info (name, vr_value[i]->type,
9751 tree_to_double_int (vr_value[i]->min),
9752 tree_to_double_int (vr_value[i]->max));
9755 /* Free allocated memory. */
9756 for (i = 0; i < num_vr_values; i++)
9757 if (vr_value[i])
9759 BITMAP_FREE (vr_value[i]->equiv);
9760 free (vr_value[i]);
9763 free (vr_value);
9764 free (vr_phi_edge_counts);
9766 /* So that we can distinguish between VRP data being available
9767 and not available. */
9768 vr_value = NULL;
9769 vr_phi_edge_counts = NULL;
9773 /* Main entry point to VRP (Value Range Propagation). This pass is
9774 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9775 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9776 Programming Language Design and Implementation, pp. 67-78, 1995.
9777 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9779 This is essentially an SSA-CCP pass modified to deal with ranges
9780 instead of constants.
9782 While propagating ranges, we may find that two or more SSA name
9783 have equivalent, though distinct ranges. For instance,
9785 1 x_9 = p_3->a;
9786 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9787 3 if (p_4 == q_2)
9788 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9789 5 endif
9790 6 if (q_2)
9792 In the code above, pointer p_5 has range [q_2, q_2], but from the
9793 code we can also determine that p_5 cannot be NULL and, if q_2 had
9794 a non-varying range, p_5's range should also be compatible with it.
9796 These equivalences are created by two expressions: ASSERT_EXPR and
9797 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9798 result of another assertion, then we can use the fact that p_5 and
9799 p_4 are equivalent when evaluating p_5's range.
9801 Together with value ranges, we also propagate these equivalences
9802 between names so that we can take advantage of information from
9803 multiple ranges when doing final replacement. Note that this
9804 equivalency relation is transitive but not symmetric.
9806 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9807 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9808 in contexts where that assertion does not hold (e.g., in line 6).
9810 TODO, the main difference between this pass and Patterson's is that
9811 we do not propagate edge probabilities. We only compute whether
9812 edges can be taken or not. That is, instead of having a spectrum
9813 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9814 DON'T KNOW. In the future, it may be worthwhile to propagate
9815 probabilities to aid branch prediction. */
9817 static unsigned int
9818 execute_vrp (void)
9820 int i;
9821 edge e;
9822 switch_update *su;
9824 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9825 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9826 scev_initialize ();
9828 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9829 Inserting assertions may split edges which will invalidate
9830 EDGE_DFS_BACK. */
9831 insert_range_assertions ();
9833 to_remove_edges.create (10);
9834 to_update_switch_stmts.create (5);
9835 threadedge_initialize_values ();
9837 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9838 mark_dfs_back_edges ();
9840 vrp_initialize ();
9841 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9842 vrp_finalize ();
9844 free_numbers_of_iterations_estimates ();
9846 /* ASSERT_EXPRs must be removed before finalizing jump threads
9847 as finalizing jump threads calls the CFG cleanup code which
9848 does not properly handle ASSERT_EXPRs. */
9849 remove_range_assertions ();
9851 /* If we exposed any new variables, go ahead and put them into
9852 SSA form now, before we handle jump threading. This simplifies
9853 interactions between rewriting of _DECL nodes into SSA form
9854 and rewriting SSA_NAME nodes into SSA form after block
9855 duplication and CFG manipulation. */
9856 update_ssa (TODO_update_ssa);
9858 finalize_jump_threads ();
9860 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9861 CFG in a broken state and requires a cfg_cleanup run. */
9862 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9863 remove_edge (e);
9864 /* Update SWITCH_EXPR case label vector. */
9865 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9867 size_t j;
9868 size_t n = TREE_VEC_LENGTH (su->vec);
9869 tree label;
9870 gimple_switch_set_num_labels (su->stmt, n);
9871 for (j = 0; j < n; j++)
9872 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9873 /* As we may have replaced the default label with a regular one
9874 make sure to make it a real default label again. This ensures
9875 optimal expansion. */
9876 label = gimple_switch_label (su->stmt, 0);
9877 CASE_LOW (label) = NULL_TREE;
9878 CASE_HIGH (label) = NULL_TREE;
9881 if (to_remove_edges.length () > 0)
9883 free_dominance_info (CDI_DOMINATORS);
9884 if (current_loops)
9885 loops_state_set (LOOPS_NEED_FIXUP);
9888 to_remove_edges.release ();
9889 to_update_switch_stmts.release ();
9890 threadedge_finalize_values ();
9892 scev_finalize ();
9893 loop_optimizer_finalize ();
9894 return 0;
9897 static bool
9898 gate_vrp (void)
9900 return flag_tree_vrp != 0;
9903 namespace {
9905 const pass_data pass_data_vrp =
9907 GIMPLE_PASS, /* type */
9908 "vrp", /* name */
9909 OPTGROUP_NONE, /* optinfo_flags */
9910 true, /* has_gate */
9911 true, /* has_execute */
9912 TV_TREE_VRP, /* tv_id */
9913 PROP_ssa, /* properties_required */
9914 0, /* properties_provided */
9915 0, /* properties_destroyed */
9916 0, /* todo_flags_start */
9917 ( TODO_cleanup_cfg | TODO_update_ssa
9918 | TODO_verify_ssa
9919 | TODO_verify_flow ), /* todo_flags_finish */
9922 class pass_vrp : public gimple_opt_pass
9924 public:
9925 pass_vrp (gcc::context *ctxt)
9926 : gimple_opt_pass (pass_data_vrp, ctxt)
9929 /* opt_pass methods: */
9930 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9931 bool gate () { return gate_vrp (); }
9932 unsigned int execute () { return execute_vrp (); }
9934 }; // class pass_vrp
9936 } // anon namespace
9938 gimple_opt_pass *
9939 make_pass_vrp (gcc::context *ctxt)
9941 return new pass_vrp (ctxt);