2014-04-14 Martin Jambor <mjambor@suse.cz>
[official-gcc.git] / gcc / tree-ssa-threadedge.c
blobc447b72c32f3dc731455b92eba6f404c039da375
1 /* SSA Jump Threading
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Jeff Law <law@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "function.h"
31 #include "timevar.h"
32 #include "dumpfile.h"
33 #include "pointer-set.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimple-ssa.h"
41 #include "tree-cfg.h"
42 #include "tree-phinodes.h"
43 #include "ssa-iterators.h"
44 #include "stringpool.h"
45 #include "tree-ssanames.h"
46 #include "tree-ssa-propagate.h"
47 #include "tree-ssa-threadupdate.h"
48 #include "langhooks.h"
49 #include "params.h"
50 #include "tree-ssa-threadedge.h"
52 /* To avoid code explosion due to jump threading, we limit the
53 number of statements we are going to copy. This variable
54 holds the number of statements currently seen that we'll have
55 to copy as part of the jump threading process. */
56 static int stmt_count;
58 /* Array to record value-handles per SSA_NAME. */
59 vec<tree> ssa_name_values;
61 /* Set the value for the SSA name NAME to VALUE. */
63 void
64 set_ssa_name_value (tree name, tree value)
66 if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
67 ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
68 if (value && TREE_OVERFLOW_P (value))
69 value = drop_tree_overflow (value);
70 ssa_name_values[SSA_NAME_VERSION (name)] = value;
73 /* Initialize the per SSA_NAME value-handles array. Returns it. */
74 void
75 threadedge_initialize_values (void)
77 gcc_assert (!ssa_name_values.exists ());
78 ssa_name_values.create (num_ssa_names);
81 /* Free the per SSA_NAME value-handle array. */
82 void
83 threadedge_finalize_values (void)
85 ssa_name_values.release ();
88 /* Return TRUE if we may be able to thread an incoming edge into
89 BB to an outgoing edge from BB. Return FALSE otherwise. */
91 bool
92 potentially_threadable_block (basic_block bb)
94 gimple_stmt_iterator gsi;
96 /* If BB has a single successor or a single predecessor, then
97 there is no threading opportunity. */
98 if (single_succ_p (bb) || single_pred_p (bb))
99 return false;
101 /* If BB does not end with a conditional, switch or computed goto,
102 then there is no threading opportunity. */
103 gsi = gsi_last_bb (bb);
104 if (gsi_end_p (gsi)
105 || ! gsi_stmt (gsi)
106 || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
107 && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
108 && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
109 return false;
111 return true;
114 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
115 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
116 BB. If no such ASSERT_EXPR is found, return OP. */
118 static tree
119 lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
121 imm_use_iterator imm_iter;
122 gimple use_stmt;
123 use_operand_p use_p;
125 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
127 use_stmt = USE_STMT (use_p);
128 if (use_stmt != stmt
129 && gimple_assign_single_p (use_stmt)
130 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
131 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
132 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
134 return gimple_assign_lhs (use_stmt);
137 return op;
140 /* We record temporary equivalences created by PHI nodes or
141 statements within the target block. Doing so allows us to
142 identify more jump threading opportunities, even in blocks
143 with side effects.
145 We keep track of those temporary equivalences in a stack
146 structure so that we can unwind them when we're done processing
147 a particular edge. This routine handles unwinding the data
148 structures. */
150 static void
151 remove_temporary_equivalences (vec<tree> *stack)
153 while (stack->length () > 0)
155 tree prev_value, dest;
157 dest = stack->pop ();
159 /* A NULL value indicates we should stop unwinding, otherwise
160 pop off the next entry as they're recorded in pairs. */
161 if (dest == NULL)
162 break;
164 prev_value = stack->pop ();
165 set_ssa_name_value (dest, prev_value);
169 /* Record a temporary equivalence, saving enough information so that
170 we can restore the state of recorded equivalences when we're
171 done processing the current edge. */
173 static void
174 record_temporary_equivalence (tree x, tree y, vec<tree> *stack)
176 tree prev_x = SSA_NAME_VALUE (x);
178 /* Y may be NULL if we are invalidating entries in the table. */
179 if (y && TREE_CODE (y) == SSA_NAME)
181 tree tmp = SSA_NAME_VALUE (y);
182 y = tmp ? tmp : y;
185 set_ssa_name_value (x, y);
186 stack->reserve (2);
187 stack->quick_push (prev_x);
188 stack->quick_push (x);
191 /* Record temporary equivalences created by PHIs at the target of the
192 edge E. Record unwind information for the equivalences onto STACK.
194 If a PHI which prevents threading is encountered, then return FALSE
195 indicating we should not thread this edge, else return TRUE.
197 If SRC_MAP/DST_MAP exist, then mark the source and destination SSA_NAMEs
198 of any equivalences recorded. We use this to make invalidation after
199 traversing back edges less painful. */
201 static bool
202 record_temporary_equivalences_from_phis (edge e, vec<tree> *stack,
203 bool backedge_seen,
204 bitmap src_map, bitmap dst_map)
206 gimple_stmt_iterator gsi;
208 /* Each PHI creates a temporary equivalence, record them.
209 These are context sensitive equivalences and will be removed
210 later. */
211 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
213 gimple phi = gsi_stmt (gsi);
214 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
215 tree dst = gimple_phi_result (phi);
217 /* If the desired argument is not the same as this PHI's result
218 and it is set by a PHI in E->dest, then we can not thread
219 through E->dest. */
220 if (src != dst
221 && TREE_CODE (src) == SSA_NAME
222 && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
223 && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
224 return false;
226 /* We consider any non-virtual PHI as a statement since it
227 count result in a constant assignment or copy operation. */
228 if (!virtual_operand_p (dst))
229 stmt_count++;
231 record_temporary_equivalence (dst, src, stack);
233 /* If we have crossed a backedge, then start recording equivalences
234 we might need to invalidate. */
235 if (backedge_seen && TREE_CODE (src) == SSA_NAME)
237 bitmap_set_bit (src_map, SSA_NAME_VERSION (src));
238 bitmap_set_bit (dst_map, SSA_NAME_VERSION (dst));
241 return true;
244 /* Fold the RHS of an assignment statement and return it as a tree.
245 May return NULL_TREE if no simplification is possible. */
247 static tree
248 fold_assignment_stmt (gimple stmt)
250 enum tree_code subcode = gimple_assign_rhs_code (stmt);
252 switch (get_gimple_rhs_class (subcode))
254 case GIMPLE_SINGLE_RHS:
255 return fold (gimple_assign_rhs1 (stmt));
257 case GIMPLE_UNARY_RHS:
259 tree lhs = gimple_assign_lhs (stmt);
260 tree op0 = gimple_assign_rhs1 (stmt);
261 return fold_unary (subcode, TREE_TYPE (lhs), op0);
264 case GIMPLE_BINARY_RHS:
266 tree lhs = gimple_assign_lhs (stmt);
267 tree op0 = gimple_assign_rhs1 (stmt);
268 tree op1 = gimple_assign_rhs2 (stmt);
269 return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
272 case GIMPLE_TERNARY_RHS:
274 tree lhs = gimple_assign_lhs (stmt);
275 tree op0 = gimple_assign_rhs1 (stmt);
276 tree op1 = gimple_assign_rhs2 (stmt);
277 tree op2 = gimple_assign_rhs3 (stmt);
279 /* Sadly, we have to handle conditional assignments specially
280 here, because fold expects all the operands of an expression
281 to be folded before the expression itself is folded, but we
282 can't just substitute the folded condition here. */
283 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
284 op0 = fold (op0);
286 return fold_ternary (subcode, TREE_TYPE (lhs), op0, op1, op2);
289 default:
290 gcc_unreachable ();
294 /* A new value has been assigned to LHS. If necessary, invalidate any
295 equivalences that are no longer valid. */
296 static void
297 invalidate_equivalences (tree lhs, vec<tree> *stack,
298 bitmap src_map, bitmap dst_map)
300 /* SRC_MAP contains the source SSA_NAMEs for equivalences created by PHI
301 nodes. If an entry in SRC_MAP changes, there's some destination that
302 has been recorded as equivalent to the source and that equivalency
303 needs to be eliminated. */
304 if (bitmap_bit_p (src_map, SSA_NAME_VERSION (lhs)))
306 unsigned int i;
307 bitmap_iterator bi;
309 /* We know that the LHS of STMT was used as the RHS in an equivalency
310 created by a PHI. All the LHS of such PHIs were recorded into DST_MAP.
311 So we can iterate over them to see if any have the LHS of STMT as
312 an equivalence, and if so, remove the equivalence as it is no longer
313 valid. */
314 EXECUTE_IF_SET_IN_BITMAP (dst_map, 0, i, bi)
316 if (SSA_NAME_VALUE (ssa_name (i)) == lhs)
317 record_temporary_equivalence (ssa_name (i), NULL_TREE, stack);
322 /* Try to simplify each statement in E->dest, ultimately leading to
323 a simplification of the COND_EXPR at the end of E->dest.
325 Record unwind information for temporary equivalences onto STACK.
327 Use SIMPLIFY (a pointer to a callback function) to further simplify
328 statements using pass specific information.
330 We might consider marking just those statements which ultimately
331 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
332 would be recovered by trying to simplify fewer statements.
334 If we are able to simplify a statement into the form
335 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
336 a context sensitive equivalence which may help us simplify
337 later statements in E->dest. */
339 static gimple
340 record_temporary_equivalences_from_stmts_at_dest (edge e,
341 vec<tree> *stack,
342 tree (*simplify) (gimple,
343 gimple),
344 bool backedge_seen,
345 bitmap src_map,
346 bitmap dst_map)
348 gimple stmt = NULL;
349 gimple_stmt_iterator gsi;
350 int max_stmt_count;
352 max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
354 /* Walk through each statement in the block recording equivalences
355 we discover. Note any equivalences we discover are context
356 sensitive (ie, are dependent on traversing E) and must be unwound
357 when we're finished processing E. */
358 for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
360 tree cached_lhs = NULL;
362 stmt = gsi_stmt (gsi);
364 /* Ignore empty statements and labels. */
365 if (gimple_code (stmt) == GIMPLE_NOP
366 || gimple_code (stmt) == GIMPLE_LABEL
367 || is_gimple_debug (stmt))
368 continue;
370 /* If the statement has volatile operands, then we assume we
371 can not thread through this block. This is overly
372 conservative in some ways. */
373 if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
374 return NULL;
376 /* If duplicating this block is going to cause too much code
377 expansion, then do not thread through this block. */
378 stmt_count++;
379 if (stmt_count > max_stmt_count)
380 return NULL;
382 /* If this is not a statement that sets an SSA_NAME to a new
383 value, then do not try to simplify this statement as it will
384 not simplify in any way that is helpful for jump threading. */
385 if ((gimple_code (stmt) != GIMPLE_ASSIGN
386 || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
387 && (gimple_code (stmt) != GIMPLE_CALL
388 || gimple_call_lhs (stmt) == NULL_TREE
389 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
390 continue;
392 /* The result of __builtin_object_size depends on all the arguments
393 of a phi node. Temporarily using only one edge produces invalid
394 results. For example
396 if (x < 6)
397 goto l;
398 else
399 goto l;
402 r = PHI <&w[2].a[1](2), &a.a[6](3)>
403 __builtin_object_size (r, 0)
405 The result of __builtin_object_size is defined to be the maximum of
406 remaining bytes. If we use only one edge on the phi, the result will
407 change to be the remaining bytes for the corresponding phi argument.
409 Similarly for __builtin_constant_p:
411 r = PHI <1(2), 2(3)>
412 __builtin_constant_p (r)
414 Both PHI arguments are constant, but x ? 1 : 2 is still not
415 constant. */
417 if (is_gimple_call (stmt))
419 tree fndecl = gimple_call_fndecl (stmt);
420 if (fndecl
421 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
422 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
424 if (backedge_seen)
426 tree lhs = gimple_get_lhs (stmt);
427 record_temporary_equivalence (lhs, NULL_TREE, stack);
428 invalidate_equivalences (lhs, stack, src_map, dst_map);
430 continue;
434 /* At this point we have a statement which assigns an RHS to an
435 SSA_VAR on the LHS. We want to try and simplify this statement
436 to expose more context sensitive equivalences which in turn may
437 allow us to simplify the condition at the end of the loop.
439 Handle simple copy operations as well as implied copies from
440 ASSERT_EXPRs. */
441 if (gimple_assign_single_p (stmt)
442 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
443 cached_lhs = gimple_assign_rhs1 (stmt);
444 else if (gimple_assign_single_p (stmt)
445 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
446 cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
447 else
449 /* A statement that is not a trivial copy or ASSERT_EXPR.
450 We're going to temporarily copy propagate the operands
451 and see if that allows us to simplify this statement. */
452 tree *copy;
453 ssa_op_iter iter;
454 use_operand_p use_p;
455 unsigned int num, i = 0;
457 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
458 copy = XCNEWVEC (tree, num);
460 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
461 the operands. */
462 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
464 tree tmp = NULL;
465 tree use = USE_FROM_PTR (use_p);
467 copy[i++] = use;
468 if (TREE_CODE (use) == SSA_NAME)
469 tmp = SSA_NAME_VALUE (use);
470 if (tmp)
471 SET_USE (use_p, tmp);
474 /* Try to fold/lookup the new expression. Inserting the
475 expression into the hash table is unlikely to help. */
476 if (is_gimple_call (stmt))
477 cached_lhs = fold_call_stmt (stmt, false);
478 else
479 cached_lhs = fold_assignment_stmt (stmt);
481 if (!cached_lhs
482 || (TREE_CODE (cached_lhs) != SSA_NAME
483 && !is_gimple_min_invariant (cached_lhs)))
484 cached_lhs = (*simplify) (stmt, stmt);
486 /* Restore the statement's original uses/defs. */
487 i = 0;
488 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
489 SET_USE (use_p, copy[i++]);
491 free (copy);
494 /* Record the context sensitive equivalence if we were able
495 to simplify this statement.
497 If we have traversed a backedge at some point during threading,
498 then always enter something here. Either a real equivalence,
499 or a NULL_TREE equivalence which is effectively invalidation of
500 prior equivalences. */
501 if (cached_lhs
502 && (TREE_CODE (cached_lhs) == SSA_NAME
503 || is_gimple_min_invariant (cached_lhs)))
504 record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
505 else if (backedge_seen)
506 record_temporary_equivalence (gimple_get_lhs (stmt), NULL_TREE, stack);
508 if (backedge_seen)
509 invalidate_equivalences (gimple_get_lhs (stmt), stack,
510 src_map, dst_map);
512 return stmt;
515 /* Once we have passed a backedge in the CFG when threading, we do not want to
516 utilize edge equivalences for simplification purpose. They are no longer
517 necessarily valid. We use this callback rather than the ones provided by
518 DOM/VRP to achieve that effect. */
519 static tree
520 dummy_simplify (gimple stmt1 ATTRIBUTE_UNUSED, gimple stmt2 ATTRIBUTE_UNUSED)
522 return NULL_TREE;
525 /* Simplify the control statement at the end of the block E->dest.
527 To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
528 is available to use/clobber in DUMMY_COND.
530 Use SIMPLIFY (a pointer to a callback function) to further simplify
531 a condition using pass specific information.
533 Return the simplified condition or NULL if simplification could
534 not be performed. */
536 static tree
537 simplify_control_stmt_condition (edge e,
538 gimple stmt,
539 gimple dummy_cond,
540 tree (*simplify) (gimple, gimple),
541 bool handle_dominating_asserts)
543 tree cond, cached_lhs;
544 enum gimple_code code = gimple_code (stmt);
546 /* For comparisons, we have to update both operands, then try
547 to simplify the comparison. */
548 if (code == GIMPLE_COND)
550 tree op0, op1;
551 enum tree_code cond_code;
553 op0 = gimple_cond_lhs (stmt);
554 op1 = gimple_cond_rhs (stmt);
555 cond_code = gimple_cond_code (stmt);
557 /* Get the current value of both operands. */
558 if (TREE_CODE (op0) == SSA_NAME)
560 tree tmp = SSA_NAME_VALUE (op0);
561 if (tmp)
562 op0 = tmp;
565 if (TREE_CODE (op1) == SSA_NAME)
567 tree tmp = SSA_NAME_VALUE (op1);
568 if (tmp)
569 op1 = tmp;
572 if (handle_dominating_asserts)
574 /* Now see if the operand was consumed by an ASSERT_EXPR
575 which dominates E->src. If so, we want to replace the
576 operand with the LHS of the ASSERT_EXPR. */
577 if (TREE_CODE (op0) == SSA_NAME)
578 op0 = lhs_of_dominating_assert (op0, e->src, stmt);
580 if (TREE_CODE (op1) == SSA_NAME)
581 op1 = lhs_of_dominating_assert (op1, e->src, stmt);
584 /* We may need to canonicalize the comparison. For
585 example, op0 might be a constant while op1 is an
586 SSA_NAME. Failure to canonicalize will cause us to
587 miss threading opportunities. */
588 if (tree_swap_operands_p (op0, op1, false))
590 tree tmp;
591 cond_code = swap_tree_comparison (cond_code);
592 tmp = op0;
593 op0 = op1;
594 op1 = tmp;
597 /* Stuff the operator and operands into our dummy conditional
598 expression. */
599 gimple_cond_set_code (dummy_cond, cond_code);
600 gimple_cond_set_lhs (dummy_cond, op0);
601 gimple_cond_set_rhs (dummy_cond, op1);
603 /* We absolutely do not care about any type conversions
604 we only care about a zero/nonzero value. */
605 fold_defer_overflow_warnings ();
607 cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
608 if (cached_lhs)
609 while (CONVERT_EXPR_P (cached_lhs))
610 cached_lhs = TREE_OPERAND (cached_lhs, 0);
612 fold_undefer_overflow_warnings ((cached_lhs
613 && is_gimple_min_invariant (cached_lhs)),
614 stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
616 /* If we have not simplified the condition down to an invariant,
617 then use the pass specific callback to simplify the condition. */
618 if (!cached_lhs
619 || !is_gimple_min_invariant (cached_lhs))
620 cached_lhs = (*simplify) (dummy_cond, stmt);
622 return cached_lhs;
625 if (code == GIMPLE_SWITCH)
626 cond = gimple_switch_index (stmt);
627 else if (code == GIMPLE_GOTO)
628 cond = gimple_goto_dest (stmt);
629 else
630 gcc_unreachable ();
632 /* We can have conditionals which just test the state of a variable
633 rather than use a relational operator. These are simpler to handle. */
634 if (TREE_CODE (cond) == SSA_NAME)
636 cached_lhs = cond;
638 /* Get the variable's current value from the equivalence chains.
640 It is possible to get loops in the SSA_NAME_VALUE chains
641 (consider threading the backedge of a loop where we have
642 a loop invariant SSA_NAME used in the condition. */
643 if (cached_lhs
644 && TREE_CODE (cached_lhs) == SSA_NAME
645 && SSA_NAME_VALUE (cached_lhs))
646 cached_lhs = SSA_NAME_VALUE (cached_lhs);
648 /* If we're dominated by a suitable ASSERT_EXPR, then
649 update CACHED_LHS appropriately. */
650 if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
651 cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
653 /* If we haven't simplified to an invariant yet, then use the
654 pass specific callback to try and simplify it further. */
655 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
656 cached_lhs = (*simplify) (stmt, stmt);
658 else
659 cached_lhs = NULL;
661 return cached_lhs;
664 /* Copy debug stmts from DEST's chain of single predecessors up to
665 SRC, so that we don't lose the bindings as PHI nodes are introduced
666 when DEST gains new predecessors. */
667 void
668 propagate_threaded_block_debug_into (basic_block dest, basic_block src)
670 if (!MAY_HAVE_DEBUG_STMTS)
671 return;
673 if (!single_pred_p (dest))
674 return;
676 gcc_checking_assert (dest != src);
678 gimple_stmt_iterator gsi = gsi_after_labels (dest);
679 int i = 0;
680 const int alloc_count = 16; // ?? Should this be a PARAM?
682 /* Estimate the number of debug vars overridden in the beginning of
683 DEST, to tell how many we're going to need to begin with. */
684 for (gimple_stmt_iterator si = gsi;
685 i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
687 gimple stmt = gsi_stmt (si);
688 if (!is_gimple_debug (stmt))
689 break;
690 i++;
693 auto_vec<tree, alloc_count> fewvars;
694 pointer_set_t *vars = NULL;
696 /* If we're already starting with 3/4 of alloc_count, go for a
697 pointer_set, otherwise start with an unordered stack-allocated
698 VEC. */
699 if (i * 4 > alloc_count * 3)
700 vars = pointer_set_create ();
702 /* Now go through the initial debug stmts in DEST again, this time
703 actually inserting in VARS or FEWVARS. Don't bother checking for
704 duplicates in FEWVARS. */
705 for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
707 gimple stmt = gsi_stmt (si);
708 if (!is_gimple_debug (stmt))
709 break;
711 tree var;
713 if (gimple_debug_bind_p (stmt))
714 var = gimple_debug_bind_get_var (stmt);
715 else if (gimple_debug_source_bind_p (stmt))
716 var = gimple_debug_source_bind_get_var (stmt);
717 else
718 gcc_unreachable ();
720 if (vars)
721 pointer_set_insert (vars, var);
722 else
723 fewvars.quick_push (var);
726 basic_block bb = dest;
730 bb = single_pred (bb);
731 for (gimple_stmt_iterator si = gsi_last_bb (bb);
732 !gsi_end_p (si); gsi_prev (&si))
734 gimple stmt = gsi_stmt (si);
735 if (!is_gimple_debug (stmt))
736 continue;
738 tree var;
740 if (gimple_debug_bind_p (stmt))
741 var = gimple_debug_bind_get_var (stmt);
742 else if (gimple_debug_source_bind_p (stmt))
743 var = gimple_debug_source_bind_get_var (stmt);
744 else
745 gcc_unreachable ();
747 /* Discard debug bind overlaps. ??? Unlike stmts from src,
748 copied into a new block that will precede BB, debug bind
749 stmts in bypassed BBs may actually be discarded if
750 they're overwritten by subsequent debug bind stmts, which
751 might be a problem once we introduce stmt frontier notes
752 or somesuch. Adding `&& bb == src' to the condition
753 below will preserve all potentially relevant debug
754 notes. */
755 if (vars && pointer_set_insert (vars, var))
756 continue;
757 else if (!vars)
759 int i = fewvars.length ();
760 while (i--)
761 if (fewvars[i] == var)
762 break;
763 if (i >= 0)
764 continue;
766 if (fewvars.length () < (unsigned) alloc_count)
767 fewvars.quick_push (var);
768 else
770 vars = pointer_set_create ();
771 for (i = 0; i < alloc_count; i++)
772 pointer_set_insert (vars, fewvars[i]);
773 fewvars.release ();
774 pointer_set_insert (vars, var);
778 stmt = gimple_copy (stmt);
779 /* ??? Should we drop the location of the copy to denote
780 they're artificial bindings? */
781 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
784 while (bb != src && single_pred_p (bb));
786 if (vars)
787 pointer_set_destroy (vars);
788 else if (fewvars.exists ())
789 fewvars.release ();
792 /* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
793 need not be duplicated as part of the CFG/SSA updating process).
795 If it is threadable, add it to PATH and VISITED and recurse, ultimately
796 returning TRUE from the toplevel call. Otherwise do nothing and
797 return false.
799 DUMMY_COND, HANDLE_DOMINATING_ASSERTS and SIMPLIFY are used to
800 try and simplify the condition at the end of TAKEN_EDGE->dest. */
801 static bool
802 thread_around_empty_blocks (edge taken_edge,
803 gimple dummy_cond,
804 bool handle_dominating_asserts,
805 tree (*simplify) (gimple, gimple),
806 bitmap visited,
807 vec<jump_thread_edge *> *path,
808 bool *backedge_seen_p)
810 basic_block bb = taken_edge->dest;
811 gimple_stmt_iterator gsi;
812 gimple stmt;
813 tree cond;
815 /* The key property of these blocks is that they need not be duplicated
816 when threading. Thus they can not have visible side effects such
817 as PHI nodes. */
818 if (!gsi_end_p (gsi_start_phis (bb)))
819 return false;
821 /* Skip over DEBUG statements at the start of the block. */
822 gsi = gsi_start_nondebug_bb (bb);
824 /* If the block has no statements, but does have a single successor, then
825 it's just a forwarding block and we can thread through it trivially.
827 However, note that just threading through empty blocks with single
828 successors is not inherently profitable. For the jump thread to
829 be profitable, we must avoid a runtime conditional.
831 By taking the return value from the recursive call, we get the
832 desired effect of returning TRUE when we found a profitable jump
833 threading opportunity and FALSE otherwise.
835 This is particularly important when this routine is called after
836 processing a joiner block. Returning TRUE too aggressively in
837 that case results in pointless duplication of the joiner block. */
838 if (gsi_end_p (gsi))
840 if (single_succ_p (bb))
842 taken_edge = single_succ_edge (bb);
843 if (!bitmap_bit_p (visited, taken_edge->dest->index))
845 jump_thread_edge *x
846 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
847 path->safe_push (x);
848 bitmap_set_bit (visited, taken_edge->dest->index);
849 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
850 if (*backedge_seen_p)
851 simplify = dummy_simplify;
852 return thread_around_empty_blocks (taken_edge,
853 dummy_cond,
854 handle_dominating_asserts,
855 simplify,
856 visited,
857 path,
858 backedge_seen_p);
862 /* We have a block with no statements, but multiple successors? */
863 return false;
866 /* The only real statements this block can have are a control
867 flow altering statement. Anything else stops the thread. */
868 stmt = gsi_stmt (gsi);
869 if (gimple_code (stmt) != GIMPLE_COND
870 && gimple_code (stmt) != GIMPLE_GOTO
871 && gimple_code (stmt) != GIMPLE_SWITCH)
872 return false;
874 /* If we have traversed a backedge, then we do not want to look
875 at certain expressions in the table that can not be relied upon.
876 Luckily the only code that looked at those expressions is the
877 SIMPLIFY callback, which we replace if we can no longer use it. */
878 if (*backedge_seen_p)
879 simplify = dummy_simplify;
881 /* Extract and simplify the condition. */
882 cond = simplify_control_stmt_condition (taken_edge, stmt, dummy_cond,
883 simplify, handle_dominating_asserts);
885 /* If the condition can be statically computed and we have not already
886 visited the destination edge, then add the taken edge to our thread
887 path. */
888 if (cond && is_gimple_min_invariant (cond))
890 taken_edge = find_taken_edge (bb, cond);
892 if (bitmap_bit_p (visited, taken_edge->dest->index))
893 return false;
894 bitmap_set_bit (visited, taken_edge->dest->index);
896 jump_thread_edge *x
897 = new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
898 path->safe_push (x);
899 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
900 if (*backedge_seen_p)
901 simplify = dummy_simplify;
903 thread_around_empty_blocks (taken_edge,
904 dummy_cond,
905 handle_dominating_asserts,
906 simplify,
907 visited,
908 path,
909 backedge_seen_p);
910 return true;
913 return false;
916 /* We are exiting E->src, see if E->dest ends with a conditional
917 jump which has a known value when reached via E.
919 E->dest can have arbitrary side effects which, if threading is
920 successful, will be maintained.
922 Special care is necessary if E is a back edge in the CFG as we
923 may have already recorded equivalences for E->dest into our
924 various tables, including the result of the conditional at
925 the end of E->dest. Threading opportunities are severely
926 limited in that case to avoid short-circuiting the loop
927 incorrectly.
929 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
930 to avoid allocating memory.
932 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
933 the simplified condition with left-hand sides of ASSERT_EXPRs they are
934 used in.
936 STACK is used to undo temporary equivalences created during the walk of
937 E->dest.
939 SIMPLIFY is a pass-specific function used to simplify statements.
941 Our caller is responsible for restoring the state of the expression
942 and const_and_copies stacks. */
944 static bool
945 thread_through_normal_block (edge e,
946 gimple dummy_cond,
947 bool handle_dominating_asserts,
948 vec<tree> *stack,
949 tree (*simplify) (gimple, gimple),
950 vec<jump_thread_edge *> *path,
951 bitmap visited,
952 bool *backedge_seen_p,
953 bitmap src_map,
954 bitmap dst_map)
956 /* If we have traversed a backedge, then we do not want to look
957 at certain expressions in the table that can not be relied upon.
958 Luckily the only code that looked at those expressions is the
959 SIMPLIFY callback, which we replace if we can no longer use it. */
960 if (*backedge_seen_p)
961 simplify = dummy_simplify;
963 /* PHIs create temporary equivalences. */
964 if (!record_temporary_equivalences_from_phis (e, stack, *backedge_seen_p,
965 src_map, dst_map))
966 return false;
968 /* Now walk each statement recording any context sensitive
969 temporary equivalences we can detect. */
970 gimple stmt
971 = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify,
972 *backedge_seen_p,
973 src_map, dst_map);
974 if (!stmt)
975 return false;
977 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
978 will be taken. */
979 if (gimple_code (stmt) == GIMPLE_COND
980 || gimple_code (stmt) == GIMPLE_GOTO
981 || gimple_code (stmt) == GIMPLE_SWITCH)
983 tree cond;
985 /* Extract and simplify the condition. */
986 cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify,
987 handle_dominating_asserts);
989 if (cond && is_gimple_min_invariant (cond))
991 edge taken_edge = find_taken_edge (e->dest, cond);
992 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
994 /* DEST could be NULL for a computed jump to an absolute
995 address. */
996 if (dest == NULL
997 || dest == e->dest
998 || bitmap_bit_p (visited, dest->index))
999 return false;
1001 /* Only push the EDGE_START_JUMP_THREAD marker if this is
1002 first edge on the path. */
1003 if (path->length () == 0)
1005 jump_thread_edge *x
1006 = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1007 path->safe_push (x);
1008 *backedge_seen_p |= ((e->flags & EDGE_DFS_BACK) != 0);
1011 jump_thread_edge *x
1012 = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1013 path->safe_push (x);
1014 *backedge_seen_p |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
1015 if (*backedge_seen_p)
1016 simplify = dummy_simplify;
1018 /* See if we can thread through DEST as well, this helps capture
1019 secondary effects of threading without having to re-run DOM or
1020 VRP.
1022 We don't want to thread back to a block we have already
1023 visited. This may be overly conservative. */
1024 bitmap_set_bit (visited, dest->index);
1025 bitmap_set_bit (visited, e->dest->index);
1026 thread_around_empty_blocks (taken_edge,
1027 dummy_cond,
1028 handle_dominating_asserts,
1029 simplify,
1030 visited,
1031 path,
1032 backedge_seen_p);
1033 return true;
1036 return false;
1039 /* We are exiting E->src, see if E->dest ends with a conditional
1040 jump which has a known value when reached via E.
1042 Special care is necessary if E is a back edge in the CFG as we
1043 may have already recorded equivalences for E->dest into our
1044 various tables, including the result of the conditional at
1045 the end of E->dest. Threading opportunities are severely
1046 limited in that case to avoid short-circuiting the loop
1047 incorrectly.
1049 Note it is quite common for the first block inside a loop to
1050 end with a conditional which is either always true or always
1051 false when reached via the loop backedge. Thus we do not want
1052 to blindly disable threading across a loop backedge.
1054 DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1055 to avoid allocating memory.
1057 HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
1058 the simplified condition with left-hand sides of ASSERT_EXPRs they are
1059 used in.
1061 STACK is used to undo temporary equivalences created during the walk of
1062 E->dest.
1064 SIMPLIFY is a pass-specific function used to simplify statements. */
1066 void
1067 thread_across_edge (gimple dummy_cond,
1068 edge e,
1069 bool handle_dominating_asserts,
1070 vec<tree> *stack,
1071 tree (*simplify) (gimple, gimple))
1073 bitmap visited = BITMAP_ALLOC (NULL);
1074 bitmap src_map = BITMAP_ALLOC (NULL);
1075 bitmap dst_map = BITMAP_ALLOC (NULL);
1076 bool backedge_seen;
1078 stmt_count = 0;
1080 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1081 bitmap_clear (visited);
1082 bitmap_set_bit (visited, e->src->index);
1083 bitmap_set_bit (visited, e->dest->index);
1084 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1085 if (backedge_seen)
1086 simplify = dummy_simplify;
1088 if (thread_through_normal_block (e, dummy_cond, handle_dominating_asserts,
1089 stack, simplify, path, visited,
1090 &backedge_seen, src_map, dst_map))
1092 propagate_threaded_block_debug_into (path->last ()->e->dest,
1093 e->dest);
1094 remove_temporary_equivalences (stack);
1095 BITMAP_FREE (visited);
1096 BITMAP_FREE (src_map);
1097 BITMAP_FREE (dst_map);
1098 register_jump_thread (path);
1099 return;
1101 else
1103 /* There should be no edges on the path, so no need to walk through
1104 the vector entries. */
1105 gcc_assert (path->length () == 0);
1106 path->release ();
1109 /* We were unable to determine what out edge from E->dest is taken. However,
1110 we might still be able to thread through successors of E->dest. This
1111 often occurs when E->dest is a joiner block which then fans back out
1112 based on redundant tests.
1114 If so, we'll copy E->dest and redirect the appropriate predecessor to
1115 the copy. Within the copy of E->dest, we'll thread one or more edges
1116 to points deeper in the CFG.
1118 This is a stopgap until we have a more structured approach to path
1119 isolation. */
1121 edge taken_edge;
1122 edge_iterator ei;
1123 bool found;
1125 /* If E->dest has abnormal outgoing edges, then there's no guarantee
1126 we can safely redirect any of the edges. Just punt those cases. */
1127 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1128 if (taken_edge->flags & EDGE_ABNORMAL)
1130 remove_temporary_equivalences (stack);
1131 BITMAP_FREE (visited);
1132 BITMAP_FREE (src_map);
1133 BITMAP_FREE (dst_map);
1134 return;
1137 /* We need to restore the state of the maps to this point each loop
1138 iteration. */
1139 bitmap src_map_copy = BITMAP_ALLOC (NULL);
1140 bitmap dst_map_copy = BITMAP_ALLOC (NULL);
1141 bitmap_copy (src_map_copy, src_map);
1142 bitmap_copy (dst_map_copy, dst_map);
1144 /* Look at each successor of E->dest to see if we can thread through it. */
1145 FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1147 /* Push a fresh marker so we can unwind the equivalences created
1148 for each of E->dest's successors. */
1149 stack->safe_push (NULL_TREE);
1150 bitmap_copy (src_map, src_map_copy);
1151 bitmap_copy (dst_map, dst_map_copy);
1153 /* Avoid threading to any block we have already visited. */
1154 bitmap_clear (visited);
1155 bitmap_set_bit (visited, e->src->index);
1156 bitmap_set_bit (visited, e->dest->index);
1157 bitmap_set_bit (visited, taken_edge->dest->index);
1158 vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1160 /* Record whether or not we were able to thread through a successor
1161 of E->dest. */
1162 jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1163 path->safe_push (x);
1165 x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1166 path->safe_push (x);
1167 found = false;
1168 backedge_seen = ((e->flags & EDGE_DFS_BACK) != 0);
1169 backedge_seen |= ((taken_edge->flags & EDGE_DFS_BACK) != 0);
1170 if (backedge_seen)
1171 simplify = dummy_simplify;
1172 found = thread_around_empty_blocks (taken_edge,
1173 dummy_cond,
1174 handle_dominating_asserts,
1175 simplify,
1176 visited,
1177 path,
1178 &backedge_seen);
1180 if (backedge_seen)
1181 simplify = dummy_simplify;
1183 if (!found)
1184 found = thread_through_normal_block (path->last ()->e, dummy_cond,
1185 handle_dominating_asserts,
1186 stack, simplify, path, visited,
1187 &backedge_seen,
1188 src_map, dst_map);
1190 /* If we were able to thread through a successor of E->dest, then
1191 record the jump threading opportunity. */
1192 if (found)
1194 propagate_threaded_block_debug_into (path->last ()->e->dest,
1195 taken_edge->dest);
1196 register_jump_thread (path);
1198 else
1200 delete_jump_thread_path (path);
1203 /* And unwind the equivalence table. */
1204 remove_temporary_equivalences (stack);
1206 BITMAP_FREE (visited);
1207 BITMAP_FREE (src_map);
1208 BITMAP_FREE (dst_map);
1209 BITMAP_FREE (src_map_copy);
1210 BITMAP_FREE (dst_map_copy);
1213 remove_temporary_equivalences (stack);