2014-04-14 Martin Jambor <mjambor@suse.cz>
[official-gcc.git] / gcc / sel-sched.c
blob241bdad146af112d850a402eec4920d074a6dcb8
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
532 /* Variables to accumulate different statistics. */
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
564 static void debug_state (state_t);
567 /* Functions that work with fences. */
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
573 unsigned i;
574 int cycle;
575 rtx insn;
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
586 if (INSN_READY_CYCLE (insn) < cycle)
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
592 i++;
594 if (sched_verbose >= 2)
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
621 return bb == BLOCK_FOR_INSN (succ);
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
643 gcc_assert (!was_here_p);
644 was_here_p = true;
646 gcc_assert (was_here_p && insn != NULL_RTX);
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
655 insn_t succ;
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
672 return;
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
678 int seqno = INSN_SEQNO (succ);
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
704 /* Functions to support substitution. */
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
756 rtx new_insn;
757 rtx *where_replace;
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
792 return true;
794 else
795 return false;
797 else
798 return false;
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
814 p->n = 0;
815 return 1;
818 p->n++;
820 /* Do not traverse subexprs. */
821 return -1;
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
835 /* Continue search. */
836 return 0;
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
844 struct rtx_search_arg arg;
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
852 return arg.n;
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
859 return (count_occurrences_equiv (what, where) > 0);
863 /* Functions to support register renaming. */
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
879 return insn_rtx;
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
911 gcc_assert (VINSN_SEPARABLE_P (vi));
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
924 return res;
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
944 return res;
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
960 return insn_rtx;
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
968 rtx insn_rtx;
969 vinsn_t vinsn;
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
985 unsigned regno;
986 reg_set_iterator rsi;
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1006 return false;
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1017 int alt, i, n_ops;
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1026 for (i = 0; i < n_ops; ++i)
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1033 if (asm_noperands (PATTERN (insn)) > 0)
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1046 return cl;
1049 else if (!CALL_P (insn))
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1074 int cur_reg;
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1088 #endif
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1100 init_hard_regno_rename (from);
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1112 int cur_reg;
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1119 int nregs;
1120 int i;
1122 /* See whether it accepts all modes that occur in
1123 original insns. */
1124 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1125 continue;
1127 nregs = hard_regno_nregs[cur_reg][mode];
1129 for (i = nregs - 1; i >= 0; --i)
1130 if (fixed_regs[cur_reg + i]
1131 || global_regs[cur_reg + i]
1132 /* Can't use regs which aren't saved by
1133 the prologue. */
1134 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1135 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1136 it affects aliasing globally and invalidates all AV sets. */
1137 || get_reg_base_value (cur_reg + i)
1138 #ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a
1140 leaf function. */
1141 || (crtl->is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i])
1143 #endif
1145 break;
1147 if (i >= 0)
1148 continue;
1150 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1151 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1152 cur_reg);
1154 /* If the CUR_REG passed all the checks above,
1155 then it's ok. */
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1159 sel_hrd.regs_for_mode_ok[mode] = true;
1162 /* Init all register sets gathered in HRD. */
1163 static void
1164 init_hard_regs_data (void)
1166 int cur_reg = 0;
1167 int cur_mode = 0;
1169 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1170 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1171 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1172 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1174 /* Initialize registers that are valid based on mode when this is
1175 really needed. */
1176 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1177 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1179 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1180 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1181 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1183 #ifdef STACK_REGS
1184 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1186 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1187 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1188 #endif
1191 /* Mark hardware regs in REG_RENAME_P that are not suitable
1192 for renaming rhs in INSN due to hardware restrictions (register class,
1193 modes compatibility etc). This doesn't affect original insn's dest reg,
1194 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1195 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1196 Registers that are in used_regs are always marked in
1197 unavailable_hard_regs as well. */
1199 static void
1200 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1201 regset used_regs ATTRIBUTE_UNUSED)
1203 enum machine_mode mode;
1204 enum reg_class cl = NO_REGS;
1205 rtx orig_dest;
1206 unsigned cur_reg, regno;
1207 hard_reg_set_iterator hrsi;
1209 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1210 gcc_assert (reg_rename_p);
1212 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1214 /* We have decided not to rename 'mem = something;' insns, as 'something'
1215 is usually a register. */
1216 if (!REG_P (orig_dest))
1217 return;
1219 regno = REGNO (orig_dest);
1221 /* If before reload, don't try to work with pseudos. */
1222 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1223 return;
1225 if (reload_completed)
1226 cl = get_reg_class (def->orig_insn);
1228 /* Stop if the original register is one of the fixed_regs, global_regs or
1229 frame pointer, or we could not discover its class. */
1230 if (fixed_regs[regno]
1231 || global_regs[regno]
1232 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1233 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1234 #else
1235 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1236 #endif
1237 || (reload_completed && cl == NO_REGS))
1239 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1241 /* Give a chance for original register, if it isn't in used_regs. */
1242 if (!def->crosses_call)
1243 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1245 return;
1248 /* If something allocated on stack in this function, mark frame pointer
1249 register unavailable, considering also modes.
1250 FIXME: it is enough to do this once per all original defs. */
1251 if (frame_pointer_needed)
1253 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1254 Pmode, FRAME_POINTER_REGNUM);
1256 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, HARD_FRAME_POINTER_REGNUM);
1261 #ifdef STACK_REGS
1262 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1263 is equivalent to as if all stack regs were in this set.
1264 I.e. no stack register can be renamed, and even if it's an original
1265 register here we make sure it won't be lifted over it's previous def
1266 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1267 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1268 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1269 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1270 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1271 sel_hrd.stack_regs);
1272 #endif
1274 /* If there's a call on this path, make regs from call_used_reg_set
1275 unavailable. */
1276 if (def->crosses_call)
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278 call_used_reg_set);
1280 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1281 but not register classes. */
1282 if (!reload_completed)
1283 return;
1285 /* Leave regs as 'available' only from the current
1286 register class. */
1287 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1288 reg_class_contents[cl]);
1290 mode = GET_MODE (orig_dest);
1292 /* Leave only registers available for this mode. */
1293 if (!sel_hrd.regs_for_mode_ok[mode])
1294 init_regs_for_mode (mode);
1295 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1296 sel_hrd.regs_for_mode[mode]);
1298 /* Exclude registers that are partially call clobbered. */
1299 if (def->crosses_call
1300 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1301 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 sel_hrd.regs_for_call_clobbered[mode]);
1304 /* Leave only those that are ok to rename. */
1305 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 0, cur_reg, hrsi)
1308 int nregs;
1309 int i;
1311 nregs = hard_regno_nregs[cur_reg][mode];
1312 gcc_assert (nregs > 0);
1314 for (i = nregs - 1; i >= 0; --i)
1315 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1316 break;
1318 if (i >= 0)
1319 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1320 cur_reg);
1323 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1324 reg_rename_p->unavailable_hard_regs);
1326 /* Regno is always ok from the renaming part of view, but it really
1327 could be in *unavailable_hard_regs already, so set it here instead
1328 of there. */
1329 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1332 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1333 best register more recently than REG2. */
1334 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1336 /* Indicates the number of times renaming happened before the current one. */
1337 static int reg_rename_this_tick;
1339 /* Choose the register among free, that is suitable for storing
1340 the rhs value.
1342 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1343 originally appears. There could be multiple original operations
1344 for single rhs since we moving it up and merging along different
1345 paths.
1347 Some code is adapted from regrename.c (regrename_optimize).
1348 If original register is available, function returns it.
1349 Otherwise it performs the checks, so the new register should
1350 comply with the following:
1351 - it should not violate any live ranges (such registers are in
1352 REG_RENAME_P->available_for_renaming set);
1353 - it should not be in the HARD_REGS_USED regset;
1354 - it should be in the class compatible with original uses;
1355 - it should not be clobbered through reference with different mode;
1356 - if we're in the leaf function, then the new register should
1357 not be in the LEAF_REGISTERS;
1358 - etc.
1360 If several registers meet the conditions, the register with smallest
1361 tick is returned to achieve more even register allocation.
1363 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1365 If no register satisfies the above conditions, NULL_RTX is returned. */
1366 static rtx
1367 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1368 struct reg_rename *reg_rename_p,
1369 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1371 int best_new_reg;
1372 unsigned cur_reg;
1373 enum machine_mode mode = VOIDmode;
1374 unsigned regno, i, n;
1375 hard_reg_set_iterator hrsi;
1376 def_list_iterator di;
1377 def_t def;
1379 /* If original register is available, return it. */
1380 *is_orig_reg_p_ptr = true;
1382 FOR_EACH_DEF (def, di, original_insns)
1384 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1386 gcc_assert (REG_P (orig_dest));
1388 /* Check that all original operations have the same mode.
1389 This is done for the next loop; if we'd return from this
1390 loop, we'd check only part of them, but in this case
1391 it doesn't matter. */
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (orig_dest);
1394 gcc_assert (mode == GET_MODE (orig_dest));
1396 regno = REGNO (orig_dest);
1397 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1398 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1399 break;
1401 /* All hard registers are available. */
1402 if (i == n)
1404 gcc_assert (mode != VOIDmode);
1406 /* Hard registers should not be shared. */
1407 return gen_rtx_REG (mode, regno);
1411 *is_orig_reg_p_ptr = false;
1412 best_new_reg = -1;
1414 /* Among all available regs choose the register that was
1415 allocated earliest. */
1416 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1417 0, cur_reg, hrsi)
1418 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1420 /* Check that all hard regs for mode are available. */
1421 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1422 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1423 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1424 cur_reg + i))
1425 break;
1427 if (i < n)
1428 continue;
1430 /* All hard registers are available. */
1431 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1434 best_new_reg = cur_reg;
1436 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg])
1438 break;
1442 if (best_new_reg >= 0)
1444 /* Use the check from the above loop. */
1445 gcc_assert (mode != VOIDmode);
1446 return gen_rtx_REG (mode, best_new_reg);
1449 return NULL_RTX;
1452 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */
1454 static rtx
1455 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr);
1461 /* FIXME loop over hard_regno_nregs here. */
1462 gcc_assert (best_reg == NULL_RTX
1463 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1465 return best_reg;
1468 /* Choose the pseudo register for storing rhs value. As this is supposed
1469 to work before reload, we return either the original register or make
1470 the new one. The parameters are the same that in choose_nest_reg_1
1471 functions, except that USED_REGS may contain pseudos.
1472 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1474 TODO: take into account register pressure while doing this. Up to this
1475 moment, this function would never return NULL for pseudos, but we should
1476 not rely on this. */
1477 static rtx
1478 choose_best_pseudo_reg (regset used_regs,
1479 struct reg_rename *reg_rename_p,
1480 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1482 def_list_iterator i;
1483 def_t def;
1484 enum machine_mode mode = VOIDmode;
1485 bool bad_hard_regs = false;
1487 /* We should not use this after reload. */
1488 gcc_assert (!reload_completed);
1490 /* If original register is available, return it. */
1491 *is_orig_reg_p_ptr = true;
1493 FOR_EACH_DEF (def, i, original_insns)
1495 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1496 int orig_regno;
1498 gcc_assert (REG_P (dest));
1500 /* Check that all original operations have the same mode. */
1501 if (mode == VOIDmode)
1502 mode = GET_MODE (dest);
1503 else
1504 gcc_assert (mode == GET_MODE (dest));
1505 orig_regno = REGNO (dest);
1507 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1509 if (orig_regno < FIRST_PSEUDO_REGISTER)
1511 gcc_assert (df_regs_ever_live_p (orig_regno));
1513 /* For hard registers, we have to check hardware imposed
1514 limitations (frame/stack registers, calls crossed). */
1515 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1516 orig_regno))
1518 /* Don't let register cross a call if it doesn't already
1519 cross one. This condition is written in accordance with
1520 that in sched-deps.c sched_analyze_reg(). */
1521 if (!reg_rename_p->crosses_call
1522 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1523 return gen_rtx_REG (mode, orig_regno);
1526 bad_hard_regs = true;
1528 else
1529 return dest;
1533 *is_orig_reg_p_ptr = false;
1535 /* We had some original hard registers that couldn't be used.
1536 Those were likely special. Don't try to create a pseudo. */
1537 if (bad_hard_regs)
1538 return NULL_RTX;
1540 /* We haven't found a register from original operations. Get a new one.
1541 FIXME: control register pressure somehow. */
1543 rtx new_reg = gen_reg_rtx (mode);
1545 gcc_assert (mode != VOIDmode);
1547 max_regno = max_reg_num ();
1548 maybe_extend_reg_info_p ();
1549 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1551 return new_reg;
1555 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1556 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1557 static void
1558 verify_target_availability (expr_t expr, regset used_regs,
1559 struct reg_rename *reg_rename_p)
1561 unsigned n, i, regno;
1562 enum machine_mode mode;
1563 bool target_available, live_available, hard_available;
1565 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1566 return;
1568 regno = expr_dest_regno (expr);
1569 mode = GET_MODE (EXPR_LHS (expr));
1570 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1571 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1573 live_available = hard_available = true;
1574 for (i = 0; i < n; i++)
1576 if (bitmap_bit_p (used_regs, regno + i))
1577 live_available = false;
1578 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1579 hard_available = false;
1582 /* When target is not available, it may be due to hard register
1583 restrictions, e.g. crosses calls, so we check hard_available too. */
1584 if (target_available)
1585 gcc_assert (live_available);
1586 else
1587 /* Check only if we haven't scheduled something on the previous fence,
1588 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1589 and having more than one fence, we may end having targ_un in a block
1590 in which successors target register is actually available.
1592 The last condition handles the case when a dependence from a call insn
1593 was created in sched-deps.c for insns with destination registers that
1594 never crossed a call before, but do cross one after our code motion.
1596 FIXME: in the latter case, we just uselessly called find_used_regs,
1597 because we can't move this expression with any other register
1598 as well. */
1599 gcc_assert (scheduled_something_on_previous_fence || !live_available
1600 || !hard_available
1601 || (!reload_completed && reg_rename_p->crosses_call
1602 && REG_N_CALLS_CROSSED (regno) == 0));
1605 /* Collect unavailable registers due to liveness for EXPR from BNDS
1606 into USED_REGS. Save additional information about available
1607 registers and unavailable due to hardware restriction registers
1608 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1609 list. */
1610 static void
1611 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1612 struct reg_rename *reg_rename_p,
1613 def_list_t *original_insns)
1615 for (; bnds; bnds = BLIST_NEXT (bnds))
1617 bool res;
1618 av_set_t orig_ops = NULL;
1619 bnd_t bnd = BLIST_BND (bnds);
1621 /* If the chosen best expr doesn't belong to current boundary,
1622 skip it. */
1623 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1624 continue;
1626 /* Put in ORIG_OPS all exprs from this boundary that became
1627 RES on top. */
1628 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1630 /* Compute used regs and OR it into the USED_REGS. */
1631 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1632 reg_rename_p, original_insns);
1634 /* FIXME: the assert is true until we'd have several boundaries. */
1635 gcc_assert (res);
1636 av_set_clear (&orig_ops);
1640 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1641 If BEST_REG is valid, replace LHS of EXPR with it. */
1642 static bool
1643 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1645 /* Try whether we'll be able to generate the insn
1646 'dest := best_reg' at the place of the original operation. */
1647 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1649 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1651 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1653 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1654 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1655 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1656 return false;
1659 /* Make sure that EXPR has the right destination
1660 register. */
1661 if (expr_dest_regno (expr) != REGNO (best_reg))
1662 replace_dest_with_reg_in_expr (expr, best_reg);
1663 else
1664 EXPR_TARGET_AVAILABLE (expr) = 1;
1666 return true;
1669 /* Select and assign best register to EXPR searching from BNDS.
1670 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1671 Return FALSE if no register can be chosen, which could happen when:
1672 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1673 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1674 that are used on the moving path. */
1675 static bool
1676 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1678 static struct reg_rename reg_rename_data;
1680 regset used_regs;
1681 def_list_t original_insns = NULL;
1682 bool reg_ok;
1684 *is_orig_reg_p = false;
1686 /* Don't bother to do anything if this insn doesn't set any registers. */
1687 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1688 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1689 return true;
1691 used_regs = get_clear_regset_from_pool ();
1692 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1694 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1695 &original_insns);
1697 #ifdef ENABLE_CHECKING
1698 /* If after reload, make sure we're working with hard regs here. */
1699 if (reload_completed)
1701 reg_set_iterator rsi;
1702 unsigned i;
1704 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1705 gcc_unreachable ();
1707 #endif
1709 if (EXPR_SEPARABLE_P (expr))
1711 rtx best_reg = NULL_RTX;
1712 /* Check that we have computed availability of a target register
1713 correctly. */
1714 verify_target_availability (expr, used_regs, &reg_rename_data);
1716 /* Turn everything in hard regs after reload. */
1717 if (reload_completed)
1719 HARD_REG_SET hard_regs_used;
1720 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1722 /* Join hard registers unavailable due to register class
1723 restrictions and live range intersection. */
1724 IOR_HARD_REG_SET (hard_regs_used,
1725 reg_rename_data.unavailable_hard_regs);
1727 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1728 original_insns, is_orig_reg_p);
1730 else
1731 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1734 if (!best_reg)
1735 reg_ok = false;
1736 else if (*is_orig_reg_p)
1738 /* In case of unification BEST_REG may be different from EXPR's LHS
1739 when EXPR's LHS is unavailable, and there is another LHS among
1740 ORIGINAL_INSNS. */
1741 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1743 else
1745 /* Forbid renaming of low-cost insns. */
1746 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1747 reg_ok = false;
1748 else
1749 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1752 else
1754 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1755 any of the HARD_REGS_USED set. */
1756 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1757 reg_rename_data.unavailable_hard_regs))
1759 reg_ok = false;
1760 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1762 else
1764 reg_ok = true;
1765 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1769 ilist_clear (&original_insns);
1770 return_regset_to_pool (used_regs);
1772 return reg_ok;
1776 /* Return true if dependence described by DS can be overcomed. */
1777 static bool
1778 can_speculate_dep_p (ds_t ds)
1780 if (spec_info == NULL)
1781 return false;
1783 /* Leave only speculative data. */
1784 ds &= SPECULATIVE;
1786 if (ds == 0)
1787 return false;
1790 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1791 that we can overcome. */
1792 ds_t spec_mask = spec_info->mask;
1794 if ((ds & spec_mask) != ds)
1795 return false;
1798 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1799 return false;
1801 return true;
1804 /* Get a speculation check instruction.
1805 C_EXPR is a speculative expression,
1806 CHECK_DS describes speculations that should be checked,
1807 ORIG_INSN is the original non-speculative insn in the stream. */
1808 static insn_t
1809 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1811 rtx check_pattern;
1812 rtx insn_rtx;
1813 insn_t insn;
1814 basic_block recovery_block;
1815 rtx label;
1817 /* Create a recovery block if target is going to emit branchy check, or if
1818 ORIG_INSN was speculative already. */
1819 if (targetm.sched.needs_block_p (check_ds)
1820 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1822 recovery_block = sel_create_recovery_block (orig_insn);
1823 label = BB_HEAD (recovery_block);
1825 else
1827 recovery_block = NULL;
1828 label = NULL_RTX;
1831 /* Get pattern of the check. */
1832 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1833 check_ds);
1835 gcc_assert (check_pattern != NULL);
1837 /* Emit check. */
1838 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1840 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1841 INSN_SEQNO (orig_insn), orig_insn);
1843 /* Make check to be non-speculative. */
1844 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1845 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1847 /* Decrease priority of check by difference of load/check instruction
1848 latencies. */
1849 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1850 - sel_vinsn_cost (INSN_VINSN (insn)));
1852 /* Emit copy of original insn (though with replaced target register,
1853 if needed) to the recovery block. */
1854 if (recovery_block != NULL)
1856 rtx twin_rtx;
1858 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1859 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1860 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1861 INSN_EXPR (orig_insn),
1862 INSN_SEQNO (insn),
1863 bb_note (recovery_block));
1866 /* If we've generated a data speculation check, make sure
1867 that all the bookkeeping instruction we'll create during
1868 this move_op () will allocate an ALAT entry so that the
1869 check won't fail.
1870 In case of control speculation we must convert C_EXPR to control
1871 speculative mode, because failing to do so will bring us an exception
1872 thrown by the non-control-speculative load. */
1873 check_ds = ds_get_max_dep_weak (check_ds);
1874 speculate_expr (c_expr, check_ds);
1876 return insn;
1879 /* True when INSN is a "regN = regN" copy. */
1880 static bool
1881 identical_copy_p (rtx insn)
1883 rtx lhs, rhs, pat;
1885 pat = PATTERN (insn);
1887 if (GET_CODE (pat) != SET)
1888 return false;
1890 lhs = SET_DEST (pat);
1891 if (!REG_P (lhs))
1892 return false;
1894 rhs = SET_SRC (pat);
1895 if (!REG_P (rhs))
1896 return false;
1898 return REGNO (lhs) == REGNO (rhs);
1901 /* Undo all transformations on *AV_PTR that were done when
1902 moving through INSN. */
1903 static void
1904 undo_transformations (av_set_t *av_ptr, rtx insn)
1906 av_set_iterator av_iter;
1907 expr_t expr;
1908 av_set_t new_set = NULL;
1910 /* First, kill any EXPR that uses registers set by an insn. This is
1911 required for correctness. */
1912 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1913 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1914 && bitmap_intersect_p (INSN_REG_SETS (insn),
1915 VINSN_REG_USES (EXPR_VINSN (expr)))
1916 /* When an insn looks like 'r1 = r1', we could substitute through
1917 it, but the above condition will still hold. This happened with
1918 gcc.c-torture/execute/961125-1.c. */
1919 && !identical_copy_p (insn))
1921 if (sched_verbose >= 6)
1922 sel_print ("Expr %d removed due to use/set conflict\n",
1923 INSN_UID (EXPR_INSN_RTX (expr)));
1924 av_set_iter_remove (&av_iter);
1927 /* Undo transformations looking at the history vector. */
1928 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1930 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1931 insn, EXPR_VINSN (expr), true);
1933 if (index >= 0)
1935 expr_history_def *phist;
1937 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1939 switch (phist->type)
1941 case TRANS_SPECULATION:
1943 ds_t old_ds, new_ds;
1945 /* Compute the difference between old and new speculative
1946 statuses: that's what we need to check.
1947 Earlier we used to assert that the status will really
1948 change. This no longer works because only the probability
1949 bits in the status may have changed during compute_av_set,
1950 and in the case of merging different probabilities of the
1951 same speculative status along different paths we do not
1952 record this in the history vector. */
1953 old_ds = phist->spec_ds;
1954 new_ds = EXPR_SPEC_DONE_DS (expr);
1956 old_ds &= SPECULATIVE;
1957 new_ds &= SPECULATIVE;
1958 new_ds &= ~old_ds;
1960 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1961 break;
1963 case TRANS_SUBSTITUTION:
1965 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1966 vinsn_t new_vi;
1967 bool add = true;
1969 new_vi = phist->old_expr_vinsn;
1971 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1972 == EXPR_SEPARABLE_P (expr));
1973 copy_expr (tmp_expr, expr);
1975 if (vinsn_equal_p (phist->new_expr_vinsn,
1976 EXPR_VINSN (tmp_expr)))
1977 change_vinsn_in_expr (tmp_expr, new_vi);
1978 else
1979 /* This happens when we're unsubstituting on a bookkeeping
1980 copy, which was in turn substituted. The history is wrong
1981 in this case. Do it the hard way. */
1982 add = substitute_reg_in_expr (tmp_expr, insn, true);
1983 if (add)
1984 av_set_add (&new_set, tmp_expr);
1985 clear_expr (tmp_expr);
1986 break;
1988 default:
1989 gcc_unreachable ();
1995 av_set_union_and_clear (av_ptr, &new_set, NULL);
1999 /* Moveup_* helpers for code motion and computing av sets. */
2001 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2002 The difference from the below function is that only substitution is
2003 performed. */
2004 static enum MOVEUP_EXPR_CODE
2005 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2007 vinsn_t vi = EXPR_VINSN (expr);
2008 ds_t *has_dep_p;
2009 ds_t full_ds;
2011 /* Do this only inside insn group. */
2012 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2014 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2015 if (full_ds == 0)
2016 return MOVEUP_EXPR_SAME;
2018 /* Substitution is the possible choice in this case. */
2019 if (has_dep_p[DEPS_IN_RHS])
2021 /* Can't substitute UNIQUE VINSNs. */
2022 gcc_assert (!VINSN_UNIQUE_P (vi));
2024 if (can_substitute_through_p (through_insn,
2025 has_dep_p[DEPS_IN_RHS])
2026 && substitute_reg_in_expr (expr, through_insn, false))
2028 EXPR_WAS_SUBSTITUTED (expr) = true;
2029 return MOVEUP_EXPR_CHANGED;
2032 /* Don't care about this, as even true dependencies may be allowed
2033 in an insn group. */
2034 return MOVEUP_EXPR_SAME;
2037 /* This can catch output dependencies in COND_EXECs. */
2038 if (has_dep_p[DEPS_IN_INSN])
2039 return MOVEUP_EXPR_NULL;
2041 /* This is either an output or an anti dependence, which usually have
2042 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2043 will fix this. */
2044 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2045 return MOVEUP_EXPR_AS_RHS;
2048 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2049 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2050 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2051 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2052 && !sel_insn_is_speculation_check (through_insn))
2054 /* True when a conflict on a target register was found during moveup_expr. */
2055 static bool was_target_conflict = false;
2057 /* Return true when moving a debug INSN across THROUGH_INSN will
2058 create a bookkeeping block. We don't want to create such blocks,
2059 for they would cause codegen differences between compilations with
2060 and without debug info. */
2062 static bool
2063 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2064 insn_t through_insn)
2066 basic_block bbi, bbt;
2067 edge e1, e2;
2068 edge_iterator ei1, ei2;
2070 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2072 if (sched_verbose >= 9)
2073 sel_print ("no bookkeeping required: ");
2074 return FALSE;
2077 bbi = BLOCK_FOR_INSN (insn);
2079 if (EDGE_COUNT (bbi->preds) == 1)
2081 if (sched_verbose >= 9)
2082 sel_print ("only one pred edge: ");
2083 return TRUE;
2086 bbt = BLOCK_FOR_INSN (through_insn);
2088 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2090 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2092 if (find_block_for_bookkeeping (e1, e2, TRUE))
2094 if (sched_verbose >= 9)
2095 sel_print ("found existing block: ");
2096 return FALSE;
2101 if (sched_verbose >= 9)
2102 sel_print ("would create bookkeeping block: ");
2104 return TRUE;
2107 /* Return true when the conflict with newly created implicit clobbers
2108 between EXPR and THROUGH_INSN is found because of renaming. */
2109 static bool
2110 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2112 HARD_REG_SET temp;
2113 rtx insn, reg, rhs, pat;
2114 hard_reg_set_iterator hrsi;
2115 unsigned regno;
2116 bool valid;
2118 /* Make a new pseudo register. */
2119 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2120 max_regno = max_reg_num ();
2121 maybe_extend_reg_info_p ();
2123 /* Validate a change and bail out early. */
2124 insn = EXPR_INSN_RTX (expr);
2125 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2126 valid = verify_changes (0);
2127 cancel_changes (0);
2128 if (!valid)
2130 if (sched_verbose >= 6)
2131 sel_print ("implicit clobbers failed validation, ");
2132 return true;
2135 /* Make a new insn with it. */
2136 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2137 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2138 start_sequence ();
2139 insn = emit_insn (pat);
2140 end_sequence ();
2142 /* Calculate implicit clobbers. */
2143 extract_insn (insn);
2144 preprocess_constraints ();
2145 ira_implicitly_set_insn_hard_regs (&temp);
2146 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2148 /* If any implicit clobber registers intersect with regular ones in
2149 through_insn, we have a dependency and thus bail out. */
2150 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2152 vinsn_t vi = INSN_VINSN (through_insn);
2153 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2154 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2155 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2156 return true;
2159 return false;
2162 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2163 performing necessary transformations. Record the type of transformation
2164 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2165 permit all dependencies except true ones, and try to remove those
2166 too via forward substitution. All cases when a non-eliminable
2167 non-zero cost dependency exists inside an insn group will be fixed
2168 in tick_check_p instead. */
2169 static enum MOVEUP_EXPR_CODE
2170 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2171 enum local_trans_type *ptrans_type)
2173 vinsn_t vi = EXPR_VINSN (expr);
2174 insn_t insn = VINSN_INSN_RTX (vi);
2175 bool was_changed = false;
2176 bool as_rhs = false;
2177 ds_t *has_dep_p;
2178 ds_t full_ds;
2180 /* ??? We use dependencies of non-debug insns on debug insns to
2181 indicate that the debug insns need to be reset if the non-debug
2182 insn is pulled ahead of it. It's hard to figure out how to
2183 introduce such a notion in sel-sched, but it already fails to
2184 support debug insns in other ways, so we just go ahead and
2185 let the deug insns go corrupt for now. */
2186 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2187 return MOVEUP_EXPR_SAME;
2189 /* When inside_insn_group, delegate to the helper. */
2190 if (inside_insn_group)
2191 return moveup_expr_inside_insn_group (expr, through_insn);
2193 /* Deal with unique insns and control dependencies. */
2194 if (VINSN_UNIQUE_P (vi))
2196 /* We can move jumps without side-effects or jumps that are
2197 mutually exclusive with instruction THROUGH_INSN (all in cases
2198 dependencies allow to do so and jump is not speculative). */
2199 if (control_flow_insn_p (insn))
2201 basic_block fallthru_bb;
2203 /* Do not move checks and do not move jumps through other
2204 jumps. */
2205 if (control_flow_insn_p (through_insn)
2206 || sel_insn_is_speculation_check (insn))
2207 return MOVEUP_EXPR_NULL;
2209 /* Don't move jumps through CFG joins. */
2210 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2211 return MOVEUP_EXPR_NULL;
2213 /* The jump should have a clear fallthru block, and
2214 this block should be in the current region. */
2215 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2216 || ! in_current_region_p (fallthru_bb))
2217 return MOVEUP_EXPR_NULL;
2219 /* And it should be mutually exclusive with through_insn. */
2220 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2221 && ! DEBUG_INSN_P (through_insn))
2222 return MOVEUP_EXPR_NULL;
2225 /* Don't move what we can't move. */
2226 if (EXPR_CANT_MOVE (expr)
2227 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2228 return MOVEUP_EXPR_NULL;
2230 /* Don't move SCHED_GROUP instruction through anything.
2231 If we don't force this, then it will be possible to start
2232 scheduling a sched_group before all its dependencies are
2233 resolved.
2234 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2235 as late as possible through rank_for_schedule. */
2236 if (SCHED_GROUP_P (insn))
2237 return MOVEUP_EXPR_NULL;
2239 else
2240 gcc_assert (!control_flow_insn_p (insn));
2242 /* Don't move debug insns if this would require bookkeeping. */
2243 if (DEBUG_INSN_P (insn)
2244 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2245 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2246 return MOVEUP_EXPR_NULL;
2248 /* Deal with data dependencies. */
2249 was_target_conflict = false;
2250 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2251 if (full_ds == 0)
2253 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2254 return MOVEUP_EXPR_SAME;
2256 else
2258 /* We can move UNIQUE insn up only as a whole and unchanged,
2259 so it shouldn't have any dependencies. */
2260 if (VINSN_UNIQUE_P (vi))
2261 return MOVEUP_EXPR_NULL;
2264 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2266 int res;
2268 res = speculate_expr (expr, full_ds);
2269 if (res >= 0)
2271 /* Speculation was successful. */
2272 full_ds = 0;
2273 was_changed = (res > 0);
2274 if (res == 2)
2275 was_target_conflict = true;
2276 if (ptrans_type)
2277 *ptrans_type = TRANS_SPECULATION;
2278 sel_clear_has_dependence ();
2282 if (has_dep_p[DEPS_IN_INSN])
2283 /* We have some dependency that cannot be discarded. */
2284 return MOVEUP_EXPR_NULL;
2286 if (has_dep_p[DEPS_IN_LHS])
2288 /* Only separable insns can be moved up with the new register.
2289 Anyways, we should mark that the original register is
2290 unavailable. */
2291 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2292 return MOVEUP_EXPR_NULL;
2294 /* When renaming a hard register to a pseudo before reload, extra
2295 dependencies can occur from the implicit clobbers of the insn.
2296 Filter out such cases here. */
2297 if (!reload_completed && REG_P (EXPR_LHS (expr))
2298 && HARD_REGISTER_P (EXPR_LHS (expr))
2299 && implicit_clobber_conflict_p (through_insn, expr))
2301 if (sched_verbose >= 6)
2302 sel_print ("implicit clobbers conflict detected, ");
2303 return MOVEUP_EXPR_NULL;
2305 EXPR_TARGET_AVAILABLE (expr) = false;
2306 was_target_conflict = true;
2307 as_rhs = true;
2310 /* At this point we have either separable insns, that will be lifted
2311 up only as RHSes, or non-separable insns with no dependency in lhs.
2312 If dependency is in RHS, then try to perform substitution and move up
2313 substituted RHS:
2315 Ex. 1: Ex.2
2316 y = x; y = x;
2317 z = y*2; y = y*2;
2319 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2320 moved above y=x assignment as z=x*2.
2322 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2323 side can be moved because of the output dependency. The operation was
2324 cropped to its rhs above. */
2325 if (has_dep_p[DEPS_IN_RHS])
2327 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2329 /* Can't substitute UNIQUE VINSNs. */
2330 gcc_assert (!VINSN_UNIQUE_P (vi));
2332 if (can_speculate_dep_p (*rhs_dsp))
2334 int res;
2336 res = speculate_expr (expr, *rhs_dsp);
2337 if (res >= 0)
2339 /* Speculation was successful. */
2340 *rhs_dsp = 0;
2341 was_changed = (res > 0);
2342 if (res == 2)
2343 was_target_conflict = true;
2344 if (ptrans_type)
2345 *ptrans_type = TRANS_SPECULATION;
2347 else
2348 return MOVEUP_EXPR_NULL;
2350 else if (can_substitute_through_p (through_insn,
2351 *rhs_dsp)
2352 && substitute_reg_in_expr (expr, through_insn, false))
2354 /* ??? We cannot perform substitution AND speculation on the same
2355 insn. */
2356 gcc_assert (!was_changed);
2357 was_changed = true;
2358 if (ptrans_type)
2359 *ptrans_type = TRANS_SUBSTITUTION;
2360 EXPR_WAS_SUBSTITUTED (expr) = true;
2362 else
2363 return MOVEUP_EXPR_NULL;
2366 /* Don't move trapping insns through jumps.
2367 This check should be at the end to give a chance to control speculation
2368 to perform its duties. */
2369 if (CANT_MOVE_TRAPPING (expr, through_insn))
2370 return MOVEUP_EXPR_NULL;
2372 return (was_changed
2373 ? MOVEUP_EXPR_CHANGED
2374 : (as_rhs
2375 ? MOVEUP_EXPR_AS_RHS
2376 : MOVEUP_EXPR_SAME));
2379 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2380 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2381 that can exist within a parallel group. Write to RES the resulting
2382 code for moveup_expr. */
2383 static bool
2384 try_bitmap_cache (expr_t expr, insn_t insn,
2385 bool inside_insn_group,
2386 enum MOVEUP_EXPR_CODE *res)
2388 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2390 /* First check whether we've analyzed this situation already. */
2391 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2393 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2395 if (sched_verbose >= 6)
2396 sel_print ("removed (cached)\n");
2397 *res = MOVEUP_EXPR_NULL;
2398 return true;
2400 else
2402 if (sched_verbose >= 6)
2403 sel_print ("unchanged (cached)\n");
2404 *res = MOVEUP_EXPR_SAME;
2405 return true;
2408 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2410 if (inside_insn_group)
2412 if (sched_verbose >= 6)
2413 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2414 *res = MOVEUP_EXPR_SAME;
2415 return true;
2418 else
2419 EXPR_TARGET_AVAILABLE (expr) = false;
2421 /* This is the only case when propagation result can change over time,
2422 as we can dynamically switch off scheduling as RHS. In this case,
2423 just check the flag to reach the correct decision. */
2424 if (enable_schedule_as_rhs_p)
2426 if (sched_verbose >= 6)
2427 sel_print ("unchanged (as RHS, cached)\n");
2428 *res = MOVEUP_EXPR_AS_RHS;
2429 return true;
2431 else
2433 if (sched_verbose >= 6)
2434 sel_print ("removed (cached as RHS, but renaming"
2435 " is now disabled)\n");
2436 *res = MOVEUP_EXPR_NULL;
2437 return true;
2441 return false;
2444 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2445 if successful. Write to RES the resulting code for moveup_expr. */
2446 static bool
2447 try_transformation_cache (expr_t expr, insn_t insn,
2448 enum MOVEUP_EXPR_CODE *res)
2450 struct transformed_insns *pti
2451 = (struct transformed_insns *)
2452 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2453 &EXPR_VINSN (expr),
2454 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2455 if (pti)
2457 /* This EXPR was already moved through this insn and was
2458 changed as a result. Fetch the proper data from
2459 the hashtable. */
2460 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2461 INSN_UID (insn), pti->type,
2462 pti->vinsn_old, pti->vinsn_new,
2463 EXPR_SPEC_DONE_DS (expr));
2465 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2466 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2467 change_vinsn_in_expr (expr, pti->vinsn_new);
2468 if (pti->was_target_conflict)
2469 EXPR_TARGET_AVAILABLE (expr) = false;
2470 if (pti->type == TRANS_SPECULATION)
2472 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2473 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2476 if (sched_verbose >= 6)
2478 sel_print ("changed (cached): ");
2479 dump_expr (expr);
2480 sel_print ("\n");
2483 *res = MOVEUP_EXPR_CHANGED;
2484 return true;
2487 return false;
2490 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2491 static void
2492 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2493 enum MOVEUP_EXPR_CODE res)
2495 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2497 /* Do not cache result of propagating jumps through an insn group,
2498 as it is always true, which is not useful outside the group. */
2499 if (inside_insn_group)
2500 return;
2502 if (res == MOVEUP_EXPR_NULL)
2504 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2505 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2507 else if (res == MOVEUP_EXPR_SAME)
2509 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2510 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2512 else if (res == MOVEUP_EXPR_AS_RHS)
2514 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2515 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2517 else
2518 gcc_unreachable ();
2521 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2522 and transformation type TRANS_TYPE. */
2523 static void
2524 update_transformation_cache (expr_t expr, insn_t insn,
2525 bool inside_insn_group,
2526 enum local_trans_type trans_type,
2527 vinsn_t expr_old_vinsn)
2529 struct transformed_insns *pti;
2531 if (inside_insn_group)
2532 return;
2534 pti = XNEW (struct transformed_insns);
2535 pti->vinsn_old = expr_old_vinsn;
2536 pti->vinsn_new = EXPR_VINSN (expr);
2537 pti->type = trans_type;
2538 pti->was_target_conflict = was_target_conflict;
2539 pti->ds = EXPR_SPEC_DONE_DS (expr);
2540 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2541 vinsn_attach (pti->vinsn_old);
2542 vinsn_attach (pti->vinsn_new);
2543 *((struct transformed_insns **)
2544 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2545 pti, VINSN_HASH_RTX (expr_old_vinsn),
2546 INSERT)) = pti;
2549 /* Same as moveup_expr, but first looks up the result of
2550 transformation in caches. */
2551 static enum MOVEUP_EXPR_CODE
2552 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2554 enum MOVEUP_EXPR_CODE res;
2555 bool got_answer = false;
2557 if (sched_verbose >= 6)
2559 sel_print ("Moving ");
2560 dump_expr (expr);
2561 sel_print (" through %d: ", INSN_UID (insn));
2564 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2565 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2566 == EXPR_INSN_RTX (expr)))
2567 /* Don't use cached information for debug insns that are heads of
2568 basic blocks. */;
2569 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2570 /* When inside insn group, we do not want remove stores conflicting
2571 with previosly issued loads. */
2572 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2573 else if (try_transformation_cache (expr, insn, &res))
2574 got_answer = true;
2576 if (! got_answer)
2578 /* Invoke moveup_expr and record the results. */
2579 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2580 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2581 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2582 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2583 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2585 /* ??? Invent something better than this. We can't allow old_vinsn
2586 to go, we need it for the history vector. */
2587 vinsn_attach (expr_old_vinsn);
2589 res = moveup_expr (expr, insn, inside_insn_group,
2590 &trans_type);
2591 switch (res)
2593 case MOVEUP_EXPR_NULL:
2594 update_bitmap_cache (expr, insn, inside_insn_group, res);
2595 if (sched_verbose >= 6)
2596 sel_print ("removed\n");
2597 break;
2599 case MOVEUP_EXPR_SAME:
2600 update_bitmap_cache (expr, insn, inside_insn_group, res);
2601 if (sched_verbose >= 6)
2602 sel_print ("unchanged\n");
2603 break;
2605 case MOVEUP_EXPR_AS_RHS:
2606 gcc_assert (!unique_p || inside_insn_group);
2607 update_bitmap_cache (expr, insn, inside_insn_group, res);
2608 if (sched_verbose >= 6)
2609 sel_print ("unchanged (as RHS)\n");
2610 break;
2612 case MOVEUP_EXPR_CHANGED:
2613 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2614 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2615 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2616 INSN_UID (insn), trans_type,
2617 expr_old_vinsn, EXPR_VINSN (expr),
2618 expr_old_spec_ds);
2619 update_transformation_cache (expr, insn, inside_insn_group,
2620 trans_type, expr_old_vinsn);
2621 if (sched_verbose >= 6)
2623 sel_print ("changed: ");
2624 dump_expr (expr);
2625 sel_print ("\n");
2627 break;
2628 default:
2629 gcc_unreachable ();
2632 vinsn_detach (expr_old_vinsn);
2635 return res;
2638 /* Moves an av set AVP up through INSN, performing necessary
2639 transformations. */
2640 static void
2641 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2643 av_set_iterator i;
2644 expr_t expr;
2646 FOR_EACH_EXPR_1 (expr, i, avp)
2649 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2651 case MOVEUP_EXPR_SAME:
2652 case MOVEUP_EXPR_AS_RHS:
2653 break;
2655 case MOVEUP_EXPR_NULL:
2656 av_set_iter_remove (&i);
2657 break;
2659 case MOVEUP_EXPR_CHANGED:
2660 expr = merge_with_other_exprs (avp, &i, expr);
2661 break;
2663 default:
2664 gcc_unreachable ();
2669 /* Moves AVP set along PATH. */
2670 static void
2671 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2673 int last_cycle;
2675 if (sched_verbose >= 6)
2676 sel_print ("Moving expressions up in the insn group...\n");
2677 if (! path)
2678 return;
2679 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2680 while (path
2681 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2683 moveup_set_expr (avp, ILIST_INSN (path), true);
2684 path = ILIST_NEXT (path);
2688 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2689 static bool
2690 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2692 expr_def _tmp, *tmp = &_tmp;
2693 int last_cycle;
2694 bool res = true;
2696 copy_expr_onside (tmp, expr);
2697 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2698 while (path
2699 && res
2700 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2702 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2703 != MOVEUP_EXPR_NULL);
2704 path = ILIST_NEXT (path);
2707 if (res)
2709 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2710 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2712 if (tmp_vinsn != expr_vliw_vinsn)
2713 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2716 clear_expr (tmp);
2717 return res;
2721 /* Functions that compute av and lv sets. */
2723 /* Returns true if INSN is not a downward continuation of the given path P in
2724 the current stage. */
2725 static bool
2726 is_ineligible_successor (insn_t insn, ilist_t p)
2728 insn_t prev_insn;
2730 /* Check if insn is not deleted. */
2731 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2732 gcc_unreachable ();
2733 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2734 gcc_unreachable ();
2736 /* If it's the first insn visited, then the successor is ok. */
2737 if (!p)
2738 return false;
2740 prev_insn = ILIST_INSN (p);
2742 if (/* a backward edge. */
2743 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2744 /* is already visited. */
2745 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2746 && (ilist_is_in_p (p, insn)
2747 /* We can reach another fence here and still seqno of insn
2748 would be equal to seqno of prev_insn. This is possible
2749 when prev_insn is a previously created bookkeeping copy.
2750 In that case it'd get a seqno of insn. Thus, check here
2751 whether insn is in current fence too. */
2752 || IN_CURRENT_FENCE_P (insn)))
2753 /* Was already scheduled on this round. */
2754 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2755 && IN_CURRENT_FENCE_P (insn))
2756 /* An insn from another fence could also be
2757 scheduled earlier even if this insn is not in
2758 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2759 || (!pipelining_p
2760 && INSN_SCHED_TIMES (insn) > 0))
2761 return true;
2762 else
2763 return false;
2766 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2767 of handling multiple successors and properly merging its av_sets. P is
2768 the current path traversed. WS is the size of lookahead window.
2769 Return the av set computed. */
2770 static av_set_t
2771 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2773 struct succs_info *sinfo;
2774 av_set_t expr_in_all_succ_branches = NULL;
2775 int is;
2776 insn_t succ, zero_succ = NULL;
2777 av_set_t av1 = NULL;
2779 gcc_assert (sel_bb_end_p (insn));
2781 /* Find different kind of successors needed for correct computing of
2782 SPEC and TARGET_AVAILABLE attributes. */
2783 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2785 /* Debug output. */
2786 if (sched_verbose >= 6)
2788 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2789 dump_insn_vector (sinfo->succs_ok);
2790 sel_print ("\n");
2791 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2792 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2795 /* Add insn to the tail of current path. */
2796 ilist_add (&p, insn);
2798 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2800 av_set_t succ_set;
2802 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2803 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2805 av_set_split_usefulness (succ_set,
2806 sinfo->probs_ok[is],
2807 sinfo->all_prob);
2809 if (sinfo->all_succs_n > 1)
2811 /* Find EXPR'es that came from *all* successors and save them
2812 into expr_in_all_succ_branches. This set will be used later
2813 for calculating speculation attributes of EXPR'es. */
2814 if (is == 0)
2816 expr_in_all_succ_branches = av_set_copy (succ_set);
2818 /* Remember the first successor for later. */
2819 zero_succ = succ;
2821 else
2823 av_set_iterator i;
2824 expr_t expr;
2826 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2827 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2828 av_set_iter_remove (&i);
2832 /* Union the av_sets. Check liveness restrictions on target registers
2833 in special case of two successors. */
2834 if (sinfo->succs_ok_n == 2 && is == 1)
2836 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2837 basic_block bb1 = BLOCK_FOR_INSN (succ);
2839 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2840 av_set_union_and_live (&av1, &succ_set,
2841 BB_LV_SET (bb0),
2842 BB_LV_SET (bb1),
2843 insn);
2845 else
2846 av_set_union_and_clear (&av1, &succ_set, insn);
2849 /* Check liveness restrictions via hard way when there are more than
2850 two successors. */
2851 if (sinfo->succs_ok_n > 2)
2852 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2854 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2856 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2857 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2858 BB_LV_SET (succ_bb));
2861 /* Finally, check liveness restrictions on paths leaving the region. */
2862 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2863 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2864 mark_unavailable_targets
2865 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2867 if (sinfo->all_succs_n > 1)
2869 av_set_iterator i;
2870 expr_t expr;
2872 /* Increase the spec attribute of all EXPR'es that didn't come
2873 from all successors. */
2874 FOR_EACH_EXPR (expr, i, av1)
2875 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2876 EXPR_SPEC (expr)++;
2878 av_set_clear (&expr_in_all_succ_branches);
2880 /* Do not move conditional branches through other
2881 conditional branches. So, remove all conditional
2882 branches from av_set if current operator is a conditional
2883 branch. */
2884 av_set_substract_cond_branches (&av1);
2887 ilist_remove (&p);
2888 free_succs_info (sinfo);
2890 if (sched_verbose >= 6)
2892 sel_print ("av_succs (%d): ", INSN_UID (insn));
2893 dump_av_set (av1);
2894 sel_print ("\n");
2897 return av1;
2900 /* This function computes av_set for the FIRST_INSN by dragging valid
2901 av_set through all basic block insns either from the end of basic block
2902 (computed using compute_av_set_at_bb_end) or from the insn on which
2903 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2904 below the basic block and handling conditional branches.
2905 FIRST_INSN - the basic block head, P - path consisting of the insns
2906 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2907 and bb ends are added to the path), WS - current window size,
2908 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2909 static av_set_t
2910 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2911 bool need_copy_p)
2913 insn_t cur_insn;
2914 int end_ws = ws;
2915 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2916 insn_t after_bb_end = NEXT_INSN (bb_end);
2917 insn_t last_insn;
2918 av_set_t av = NULL;
2919 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2921 /* Return NULL if insn is not on the legitimate downward path. */
2922 if (is_ineligible_successor (first_insn, p))
2924 if (sched_verbose >= 6)
2925 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2927 return NULL;
2930 /* If insn already has valid av(insn) computed, just return it. */
2931 if (AV_SET_VALID_P (first_insn))
2933 av_set_t av_set;
2935 if (sel_bb_head_p (first_insn))
2936 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2937 else
2938 av_set = NULL;
2940 if (sched_verbose >= 6)
2942 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2943 dump_av_set (av_set);
2944 sel_print ("\n");
2947 return need_copy_p ? av_set_copy (av_set) : av_set;
2950 ilist_add (&p, first_insn);
2952 /* As the result after this loop have completed, in LAST_INSN we'll
2953 have the insn which has valid av_set to start backward computation
2954 from: it either will be NULL because on it the window size was exceeded
2955 or other valid av_set as returned by compute_av_set for the last insn
2956 of the basic block. */
2957 for (last_insn = first_insn; last_insn != after_bb_end;
2958 last_insn = NEXT_INSN (last_insn))
2960 /* We may encounter valid av_set not only on bb_head, but also on
2961 those insns on which previously MAX_WS was exceeded. */
2962 if (AV_SET_VALID_P (last_insn))
2964 if (sched_verbose >= 6)
2965 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2966 break;
2969 /* The special case: the last insn of the BB may be an
2970 ineligible_successor due to its SEQ_NO that was set on
2971 it as a bookkeeping. */
2972 if (last_insn != first_insn
2973 && is_ineligible_successor (last_insn, p))
2975 if (sched_verbose >= 6)
2976 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2977 break;
2980 if (DEBUG_INSN_P (last_insn))
2981 continue;
2983 if (end_ws > max_ws)
2985 /* We can reach max lookahead size at bb_header, so clean av_set
2986 first. */
2987 INSN_WS_LEVEL (last_insn) = global_level;
2989 if (sched_verbose >= 6)
2990 sel_print ("Insn %d is beyond the software lookahead window size\n",
2991 INSN_UID (last_insn));
2992 break;
2995 end_ws++;
2998 /* Get the valid av_set into AV above the LAST_INSN to start backward
2999 computation from. It either will be empty av_set or av_set computed from
3000 the successors on the last insn of the current bb. */
3001 if (last_insn != after_bb_end)
3003 av = NULL;
3005 /* This is needed only to obtain av_sets that are identical to
3006 those computed by the old compute_av_set version. */
3007 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3008 av_set_add (&av, INSN_EXPR (last_insn));
3010 else
3011 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3012 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3014 /* Compute av_set in AV starting from below the LAST_INSN up to
3015 location above the FIRST_INSN. */
3016 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3017 cur_insn = PREV_INSN (cur_insn))
3018 if (!INSN_NOP_P (cur_insn))
3020 expr_t expr;
3022 moveup_set_expr (&av, cur_insn, false);
3024 /* If the expression for CUR_INSN is already in the set,
3025 replace it by the new one. */
3026 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3027 if (expr != NULL)
3029 clear_expr (expr);
3030 copy_expr (expr, INSN_EXPR (cur_insn));
3032 else
3033 av_set_add (&av, INSN_EXPR (cur_insn));
3036 /* Clear stale bb_av_set. */
3037 if (sel_bb_head_p (first_insn))
3039 av_set_clear (&BB_AV_SET (cur_bb));
3040 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3041 BB_AV_LEVEL (cur_bb) = global_level;
3044 if (sched_verbose >= 6)
3046 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3047 dump_av_set (av);
3048 sel_print ("\n");
3051 ilist_remove (&p);
3052 return av;
3055 /* Compute av set before INSN.
3056 INSN - the current operation (actual rtx INSN)
3057 P - the current path, which is list of insns visited so far
3058 WS - software lookahead window size.
3059 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3060 if we want to save computed av_set in s_i_d, we should make a copy of it.
3062 In the resulting set we will have only expressions that don't have delay
3063 stalls and nonsubstitutable dependences. */
3064 static av_set_t
3065 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3067 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3070 /* Propagate a liveness set LV through INSN. */
3071 static void
3072 propagate_lv_set (regset lv, insn_t insn)
3074 gcc_assert (INSN_P (insn));
3076 if (INSN_NOP_P (insn))
3077 return;
3079 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3082 /* Return livness set at the end of BB. */
3083 static regset
3084 compute_live_after_bb (basic_block bb)
3086 edge e;
3087 edge_iterator ei;
3088 regset lv = get_clear_regset_from_pool ();
3090 gcc_assert (!ignore_first);
3092 FOR_EACH_EDGE (e, ei, bb->succs)
3093 if (sel_bb_empty_p (e->dest))
3095 if (! BB_LV_SET_VALID_P (e->dest))
3097 gcc_unreachable ();
3098 gcc_assert (BB_LV_SET (e->dest) == NULL);
3099 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3100 BB_LV_SET_VALID_P (e->dest) = true;
3102 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3104 else
3105 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3107 return lv;
3110 /* Compute the set of all live registers at the point before INSN and save
3111 it at INSN if INSN is bb header. */
3112 regset
3113 compute_live (insn_t insn)
3115 basic_block bb = BLOCK_FOR_INSN (insn);
3116 insn_t final, temp;
3117 regset lv;
3119 /* Return the valid set if we're already on it. */
3120 if (!ignore_first)
3122 regset src = NULL;
3124 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3125 src = BB_LV_SET (bb);
3126 else
3128 gcc_assert (in_current_region_p (bb));
3129 if (INSN_LIVE_VALID_P (insn))
3130 src = INSN_LIVE (insn);
3133 if (src)
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, src);
3138 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3140 COPY_REG_SET (BB_LV_SET (bb), lv);
3141 BB_LV_SET_VALID_P (bb) = true;
3144 return_regset_to_pool (lv);
3145 return lv;
3149 /* We've skipped the wrong lv_set. Don't skip the right one. */
3150 ignore_first = false;
3151 gcc_assert (in_current_region_p (bb));
3153 /* Find a valid LV set in this block or below, if needed.
3154 Start searching from the next insn: either ignore_first is true, or
3155 INSN doesn't have a correct live set. */
3156 temp = NEXT_INSN (insn);
3157 final = NEXT_INSN (BB_END (bb));
3158 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3159 temp = NEXT_INSN (temp);
3160 if (temp == final)
3162 lv = compute_live_after_bb (bb);
3163 temp = PREV_INSN (temp);
3165 else
3167 lv = get_regset_from_pool ();
3168 COPY_REG_SET (lv, INSN_LIVE (temp));
3171 /* Put correct lv sets on the insns which have bad sets. */
3172 final = PREV_INSN (insn);
3173 while (temp != final)
3175 propagate_lv_set (lv, temp);
3176 COPY_REG_SET (INSN_LIVE (temp), lv);
3177 INSN_LIVE_VALID_P (temp) = true;
3178 temp = PREV_INSN (temp);
3181 /* Also put it in a BB. */
3182 if (sel_bb_head_p (insn))
3184 basic_block bb = BLOCK_FOR_INSN (insn);
3186 COPY_REG_SET (BB_LV_SET (bb), lv);
3187 BB_LV_SET_VALID_P (bb) = true;
3190 /* We return LV to the pool, but will not clear it there. Thus we can
3191 legimatelly use LV till the next use of regset_pool_get (). */
3192 return_regset_to_pool (lv);
3193 return lv;
3196 /* Update liveness sets for INSN. */
3197 static inline void
3198 update_liveness_on_insn (rtx insn)
3200 ignore_first = true;
3201 compute_live (insn);
3204 /* Compute liveness below INSN and write it into REGS. */
3205 static inline void
3206 compute_live_below_insn (rtx insn, regset regs)
3208 rtx succ;
3209 succ_iterator si;
3211 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3212 IOR_REG_SET (regs, compute_live (succ));
3215 /* Update the data gathered in av and lv sets starting from INSN. */
3216 static void
3217 update_data_sets (rtx insn)
3219 update_liveness_on_insn (insn);
3220 if (sel_bb_head_p (insn))
3222 gcc_assert (AV_LEVEL (insn) != 0);
3223 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3224 compute_av_set (insn, NULL, 0, 0);
3229 /* Helper for move_op () and find_used_regs ().
3230 Return speculation type for which a check should be created on the place
3231 of INSN. EXPR is one of the original ops we are searching for. */
3232 static ds_t
3233 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3235 ds_t to_check_ds;
3236 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3238 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3240 if (targetm.sched.get_insn_checked_ds)
3241 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3243 if (spec_info != NULL
3244 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3245 already_checked_ds |= BEGIN_CONTROL;
3247 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3249 to_check_ds &= ~already_checked_ds;
3251 return to_check_ds;
3254 /* Find the set of registers that are unavailable for storing expres
3255 while moving ORIG_OPS up on the path starting from INSN due to
3256 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3258 All the original operations found during the traversal are saved in the
3259 ORIGINAL_INSNS list.
3261 REG_RENAME_P denotes the set of hardware registers that
3262 can not be used with renaming due to the register class restrictions,
3263 mode restrictions and other (the register we'll choose should be
3264 compatible class with the original uses, shouldn't be in call_used_regs,
3265 should be HARD_REGNO_RENAME_OK etc).
3267 Returns TRUE if we've found all original insns, FALSE otherwise.
3269 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3270 to traverse the code motion paths. This helper function finds registers
3271 that are not available for storing expres while moving ORIG_OPS up on the
3272 path starting from INSN. A register considered as used on the moving path,
3273 if one of the following conditions is not satisfied:
3275 (1) a register not set or read on any path from xi to an instance of
3276 the original operation,
3277 (2) not among the live registers of the point immediately following the
3278 first original operation on a given downward path, except for the
3279 original target register of the operation,
3280 (3) not live on the other path of any conditional branch that is passed
3281 by the operation, in case original operations are not present on
3282 both paths of the conditional branch.
3284 All the original operations found during the traversal are saved in the
3285 ORIGINAL_INSNS list.
3287 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3288 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3289 to unavailable hard regs at the point original operation is found. */
3291 static bool
3292 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3293 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3295 def_list_iterator i;
3296 def_t def;
3297 int res;
3298 bool needs_spec_check_p = false;
3299 expr_t expr;
3300 av_set_iterator expr_iter;
3301 struct fur_static_params sparams;
3302 struct cmpd_local_params lparams;
3304 /* We haven't visited any blocks yet. */
3305 bitmap_clear (code_motion_visited_blocks);
3307 /* Init parameters for code_motion_path_driver. */
3308 sparams.crosses_call = false;
3309 sparams.original_insns = original_insns;
3310 sparams.used_regs = used_regs;
3312 /* Set the appropriate hooks and data. */
3313 code_motion_path_driver_info = &fur_hooks;
3315 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3317 reg_rename_p->crosses_call |= sparams.crosses_call;
3319 gcc_assert (res == 1);
3320 gcc_assert (original_insns && *original_insns);
3322 /* ??? We calculate whether an expression needs a check when computing
3323 av sets. This information is not as precise as it could be due to
3324 merging this bit in merge_expr. We can do better in find_used_regs,
3325 but we want to avoid multiple traversals of the same code motion
3326 paths. */
3327 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3328 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3330 /* Mark hardware regs in REG_RENAME_P that are not suitable
3331 for renaming expr in INSN due to hardware restrictions (register class,
3332 modes compatibility etc). */
3333 FOR_EACH_DEF (def, i, *original_insns)
3335 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3337 if (VINSN_SEPARABLE_P (vinsn))
3338 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3340 /* Do not allow clobbering of ld.[sa] address in case some of the
3341 original operations need a check. */
3342 if (needs_spec_check_p)
3343 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3346 return true;
3350 /* Functions to choose the best insn from available ones. */
3352 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3353 static int
3354 sel_target_adjust_priority (expr_t expr)
3356 int priority = EXPR_PRIORITY (expr);
3357 int new_priority;
3359 if (targetm.sched.adjust_priority)
3360 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3361 else
3362 new_priority = priority;
3364 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3365 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3367 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3369 if (sched_verbose >= 4)
3370 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3371 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3372 EXPR_PRIORITY_ADJ (expr), new_priority);
3374 return new_priority;
3377 /* Rank two available exprs for schedule. Never return 0 here. */
3378 static int
3379 sel_rank_for_schedule (const void *x, const void *y)
3381 expr_t tmp = *(const expr_t *) y;
3382 expr_t tmp2 = *(const expr_t *) x;
3383 insn_t tmp_insn, tmp2_insn;
3384 vinsn_t tmp_vinsn, tmp2_vinsn;
3385 int val;
3387 tmp_vinsn = EXPR_VINSN (tmp);
3388 tmp2_vinsn = EXPR_VINSN (tmp2);
3389 tmp_insn = EXPR_INSN_RTX (tmp);
3390 tmp2_insn = EXPR_INSN_RTX (tmp2);
3392 /* Schedule debug insns as early as possible. */
3393 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3394 return -1;
3395 else if (DEBUG_INSN_P (tmp2_insn))
3396 return 1;
3398 /* Prefer SCHED_GROUP_P insns to any others. */
3399 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3401 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3402 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3404 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3405 cannot be cloned. */
3406 if (VINSN_UNIQUE_P (tmp2_vinsn))
3407 return 1;
3408 return -1;
3411 /* Discourage scheduling of speculative checks. */
3412 val = (sel_insn_is_speculation_check (tmp_insn)
3413 - sel_insn_is_speculation_check (tmp2_insn));
3414 if (val)
3415 return val;
3417 /* Prefer not scheduled insn over scheduled one. */
3418 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3420 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3421 if (val)
3422 return val;
3425 /* Prefer jump over non-jump instruction. */
3426 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3427 return -1;
3428 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3429 return 1;
3431 /* Prefer an expr with greater priority. */
3432 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3434 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3435 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3437 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3439 else
3440 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3441 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3442 if (val)
3443 return val;
3445 if (spec_info != NULL && spec_info->mask != 0)
3446 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3448 ds_t ds1, ds2;
3449 dw_t dw1, dw2;
3450 int dw;
3452 ds1 = EXPR_SPEC_DONE_DS (tmp);
3453 if (ds1)
3454 dw1 = ds_weak (ds1);
3455 else
3456 dw1 = NO_DEP_WEAK;
3458 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3459 if (ds2)
3460 dw2 = ds_weak (ds2);
3461 else
3462 dw2 = NO_DEP_WEAK;
3464 dw = dw2 - dw1;
3465 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3466 return dw;
3469 /* Prefer an old insn to a bookkeeping insn. */
3470 if (INSN_UID (tmp_insn) < first_emitted_uid
3471 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3472 return -1;
3473 if (INSN_UID (tmp_insn) >= first_emitted_uid
3474 && INSN_UID (tmp2_insn) < first_emitted_uid)
3475 return 1;
3477 /* Prefer an insn with smaller UID, as a last resort.
3478 We can't safely use INSN_LUID as it is defined only for those insns
3479 that are in the stream. */
3480 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3483 /* Filter out expressions from av set pointed to by AV_PTR
3484 that are pipelined too many times. */
3485 static void
3486 process_pipelined_exprs (av_set_t *av_ptr)
3488 expr_t expr;
3489 av_set_iterator si;
3491 /* Don't pipeline already pipelined code as that would increase
3492 number of unnecessary register moves. */
3493 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3495 if (EXPR_SCHED_TIMES (expr)
3496 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3497 av_set_iter_remove (&si);
3501 /* Filter speculative insns from AV_PTR if we don't want them. */
3502 static void
3503 process_spec_exprs (av_set_t *av_ptr)
3505 bool try_data_p = true;
3506 bool try_control_p = true;
3507 expr_t expr;
3508 av_set_iterator si;
3510 if (spec_info == NULL)
3511 return;
3513 /* Scan *AV_PTR to find out if we want to consider speculative
3514 instructions for scheduling. */
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 ds_t ds;
3519 ds = EXPR_SPEC_DONE_DS (expr);
3521 /* The probability of a success is too low - don't speculate. */
3522 if ((ds & SPECULATIVE)
3523 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3524 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3525 || (pipelining_p && false
3526 && (ds & DATA_SPEC)
3527 && (ds & CONTROL_SPEC))))
3529 av_set_iter_remove (&si);
3530 continue;
3533 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3534 && !(ds & BEGIN_DATA))
3535 try_data_p = false;
3537 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3538 && !(ds & BEGIN_CONTROL))
3539 try_control_p = false;
3542 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3544 ds_t ds;
3546 ds = EXPR_SPEC_DONE_DS (expr);
3548 if (ds & SPECULATIVE)
3550 if ((ds & BEGIN_DATA) && !try_data_p)
3551 /* We don't want any data speculative instructions right
3552 now. */
3553 av_set_iter_remove (&si);
3555 if ((ds & BEGIN_CONTROL) && !try_control_p)
3556 /* We don't want any control speculative instructions right
3557 now. */
3558 av_set_iter_remove (&si);
3563 /* Search for any use-like insns in AV_PTR and decide on scheduling
3564 them. Return one when found, and NULL otherwise.
3565 Note that we check here whether a USE could be scheduled to avoid
3566 an infinite loop later. */
3567 static expr_t
3568 process_use_exprs (av_set_t *av_ptr)
3570 expr_t expr;
3571 av_set_iterator si;
3572 bool uses_present_p = false;
3573 bool try_uses_p = true;
3575 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3577 /* This will also initialize INSN_CODE for later use. */
3578 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3580 /* If we have a USE in *AV_PTR that was not scheduled yet,
3581 do so because it will do good only. */
3582 if (EXPR_SCHED_TIMES (expr) <= 0)
3584 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3585 return expr;
3587 av_set_iter_remove (&si);
3589 else
3591 gcc_assert (pipelining_p);
3593 uses_present_p = true;
3596 else
3597 try_uses_p = false;
3600 if (uses_present_p)
3602 /* If we don't want to schedule any USEs right now and we have some
3603 in *AV_PTR, remove them, else just return the first one found. */
3604 if (!try_uses_p)
3606 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3607 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3608 av_set_iter_remove (&si);
3610 else
3612 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3614 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3616 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3617 return expr;
3619 av_set_iter_remove (&si);
3624 return NULL;
3627 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3628 EXPR's history of changes. */
3629 static bool
3630 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3632 vinsn_t vinsn, expr_vinsn;
3633 int n;
3634 unsigned i;
3636 /* Start with checking expr itself and then proceed with all the old forms
3637 of expr taken from its history vector. */
3638 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3639 expr_vinsn;
3640 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3641 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3642 : NULL))
3643 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3644 if (VINSN_SEPARABLE_P (vinsn))
3646 if (vinsn_equal_p (vinsn, expr_vinsn))
3647 return true;
3649 else
3651 /* For non-separable instructions, the blocking insn can have
3652 another pattern due to substitution, and we can't choose
3653 different register as in the above case. Check all registers
3654 being written instead. */
3655 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3656 VINSN_REG_SETS (expr_vinsn)))
3657 return true;
3660 return false;
3663 #ifdef ENABLE_CHECKING
3664 /* Return true if either of expressions from ORIG_OPS can be blocked
3665 by previously created bookkeeping code. STATIC_PARAMS points to static
3666 parameters of move_op. */
3667 static bool
3668 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3670 expr_t expr;
3671 av_set_iterator iter;
3672 moveop_static_params_p sparams;
3674 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3675 created while scheduling on another fence. */
3676 FOR_EACH_EXPR (expr, iter, orig_ops)
3677 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3678 return true;
3680 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3681 sparams = (moveop_static_params_p) static_params;
3683 /* Expressions can be also blocked by bookkeeping created during current
3684 move_op. */
3685 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3686 FOR_EACH_EXPR (expr, iter, orig_ops)
3687 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3688 return true;
3690 /* Expressions in ORIG_OPS may have wrong destination register due to
3691 renaming. Check with the right register instead. */
3692 if (sparams->dest && REG_P (sparams->dest))
3694 rtx reg = sparams->dest;
3695 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3697 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3698 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3699 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3700 return true;
3703 return false;
3705 #endif
3707 /* Clear VINSN_VEC and detach vinsns. */
3708 static void
3709 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3711 unsigned len = vinsn_vec->length ();
3712 if (len > 0)
3714 vinsn_t vinsn;
3715 int n;
3717 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3718 vinsn_detach (vinsn);
3719 vinsn_vec->block_remove (0, len);
3723 /* Add the vinsn of EXPR to the VINSN_VEC. */
3724 static void
3725 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3727 vinsn_attach (EXPR_VINSN (expr));
3728 vinsn_vec->safe_push (EXPR_VINSN (expr));
3731 /* Free the vector representing blocked expressions. */
3732 static void
3733 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3735 vinsn_vec.release ();
3738 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3740 void sel_add_to_insn_priority (rtx insn, int amount)
3742 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3744 if (sched_verbose >= 2)
3745 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3746 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3747 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3750 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3751 true if there is something to schedule. BNDS and FENCE are current
3752 boundaries and fence, respectively. If we need to stall for some cycles
3753 before an expr from AV would become available, write this number to
3754 *PNEED_STALL. */
3755 static bool
3756 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3757 int *pneed_stall)
3759 av_set_iterator si;
3760 expr_t expr;
3761 int sched_next_worked = 0, stalled, n;
3762 static int av_max_prio, est_ticks_till_branch;
3763 int min_need_stall = -1;
3764 deps_t dc = BND_DC (BLIST_BND (bnds));
3766 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3767 already scheduled. */
3768 if (av == NULL)
3769 return false;
3771 /* Empty vector from the previous stuff. */
3772 if (vec_av_set.length () > 0)
3773 vec_av_set.block_remove (0, vec_av_set.length ());
3775 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3776 for each insn. */
3777 gcc_assert (vec_av_set.is_empty ());
3778 FOR_EACH_EXPR (expr, si, av)
3780 vec_av_set.safe_push (expr);
3782 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3784 /* Adjust priority using target backend hook. */
3785 sel_target_adjust_priority (expr);
3788 /* Sort the vector. */
3789 vec_av_set.qsort (sel_rank_for_schedule);
3791 /* We record maximal priority of insns in av set for current instruction
3792 group. */
3793 if (FENCE_STARTS_CYCLE_P (fence))
3794 av_max_prio = est_ticks_till_branch = INT_MIN;
3796 /* Filter out inappropriate expressions. Loop's direction is reversed to
3797 visit "best" instructions first. We assume that vec::unordered_remove
3798 moves last element in place of one being deleted. */
3799 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3801 expr_t expr = vec_av_set[n];
3802 insn_t insn = EXPR_INSN_RTX (expr);
3803 signed char target_available;
3804 bool is_orig_reg_p = true;
3805 int need_cycles, new_prio;
3806 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3808 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3809 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3811 vec_av_set.unordered_remove (n);
3812 continue;
3815 /* Set number of sched_next insns (just in case there
3816 could be several). */
3817 if (FENCE_SCHED_NEXT (fence))
3818 sched_next_worked++;
3820 /* Check all liveness requirements and try renaming.
3821 FIXME: try to minimize calls to this. */
3822 target_available = EXPR_TARGET_AVAILABLE (expr);
3824 /* If insn was already scheduled on the current fence,
3825 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3826 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3827 && !fence_insn_p)
3828 target_available = -1;
3830 /* If the availability of the EXPR is invalidated by the insertion of
3831 bookkeeping earlier, make sure that we won't choose this expr for
3832 scheduling if it's not separable, and if it is separable, then
3833 we have to recompute the set of available registers for it. */
3834 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3836 vec_av_set.unordered_remove (n);
3837 if (sched_verbose >= 4)
3838 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3839 INSN_UID (insn));
3840 continue;
3843 if (target_available == true)
3845 /* Do nothing -- we can use an existing register. */
3846 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3848 else if (/* Non-separable instruction will never
3849 get another register. */
3850 (target_available == false
3851 && !EXPR_SEPARABLE_P (expr))
3852 /* Don't try to find a register for low-priority expression. */
3853 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3854 /* ??? FIXME: Don't try to rename data speculation. */
3855 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3856 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3858 vec_av_set.unordered_remove (n);
3859 if (sched_verbose >= 4)
3860 sel_print ("Expr %d has no suitable target register\n",
3861 INSN_UID (insn));
3863 /* A fence insn should not get here. */
3864 gcc_assert (!fence_insn_p);
3865 continue;
3868 /* At this point a fence insn should always be available. */
3869 gcc_assert (!fence_insn_p
3870 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3872 /* Filter expressions that need to be renamed or speculated when
3873 pipelining, because compensating register copies or speculation
3874 checks are likely to be placed near the beginning of the loop,
3875 causing a stall. */
3876 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3877 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3879 /* Estimation of number of cycles until loop branch for
3880 renaming/speculation to be successful. */
3881 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3883 if ((int) current_loop_nest->ninsns < 9)
3885 vec_av_set.unordered_remove (n);
3886 if (sched_verbose >= 4)
3887 sel_print ("Pipelining expr %d will likely cause stall\n",
3888 INSN_UID (insn));
3889 continue;
3892 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3893 < need_n_ticks_till_branch * issue_rate / 2
3894 && est_ticks_till_branch < need_n_ticks_till_branch)
3896 vec_av_set.unordered_remove (n);
3897 if (sched_verbose >= 4)
3898 sel_print ("Pipelining expr %d will likely cause stall\n",
3899 INSN_UID (insn));
3900 continue;
3904 /* We want to schedule speculation checks as late as possible. Discard
3905 them from av set if there are instructions with higher priority. */
3906 if (sel_insn_is_speculation_check (insn)
3907 && EXPR_PRIORITY (expr) < av_max_prio)
3909 stalled++;
3910 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3911 vec_av_set.unordered_remove (n);
3912 if (sched_verbose >= 4)
3913 sel_print ("Delaying speculation check %d until its first use\n",
3914 INSN_UID (insn));
3915 continue;
3918 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3919 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3920 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3922 /* Don't allow any insns whose data is not yet ready.
3923 Check first whether we've already tried them and failed. */
3924 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3926 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3927 - FENCE_CYCLE (fence));
3928 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3929 est_ticks_till_branch = MAX (est_ticks_till_branch,
3930 EXPR_PRIORITY (expr) + need_cycles);
3932 if (need_cycles > 0)
3934 stalled++;
3935 min_need_stall = (min_need_stall < 0
3936 ? need_cycles
3937 : MIN (min_need_stall, need_cycles));
3938 vec_av_set.unordered_remove (n);
3940 if (sched_verbose >= 4)
3941 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3942 INSN_UID (insn),
3943 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3944 continue;
3948 /* Now resort to dependence analysis to find whether EXPR might be
3949 stalled due to dependencies from FENCE's context. */
3950 need_cycles = tick_check_p (expr, dc, fence);
3951 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3953 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3954 est_ticks_till_branch = MAX (est_ticks_till_branch,
3955 new_prio);
3957 if (need_cycles > 0)
3959 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3961 int new_size = INSN_UID (insn) * 3 / 2;
3963 FENCE_READY_TICKS (fence)
3964 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3965 new_size, FENCE_READY_TICKS_SIZE (fence),
3966 sizeof (int));
3968 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3969 = FENCE_CYCLE (fence) + need_cycles;
3971 stalled++;
3972 min_need_stall = (min_need_stall < 0
3973 ? need_cycles
3974 : MIN (min_need_stall, need_cycles));
3976 vec_av_set.unordered_remove (n);
3978 if (sched_verbose >= 4)
3979 sel_print ("Expr %d is not ready yet until cycle %d\n",
3980 INSN_UID (insn),
3981 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3982 continue;
3985 if (sched_verbose >= 4)
3986 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3987 min_need_stall = 0;
3990 /* Clear SCHED_NEXT. */
3991 if (FENCE_SCHED_NEXT (fence))
3993 gcc_assert (sched_next_worked == 1);
3994 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3997 /* No need to stall if this variable was not initialized. */
3998 if (min_need_stall < 0)
3999 min_need_stall = 0;
4001 if (vec_av_set.is_empty ())
4003 /* We need to set *pneed_stall here, because later we skip this code
4004 when ready list is empty. */
4005 *pneed_stall = min_need_stall;
4006 return false;
4008 else
4009 gcc_assert (min_need_stall == 0);
4011 /* Sort the vector. */
4012 vec_av_set.qsort (sel_rank_for_schedule);
4014 if (sched_verbose >= 4)
4016 sel_print ("Total ready exprs: %d, stalled: %d\n",
4017 vec_av_set.length (), stalled);
4018 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
4019 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4020 dump_expr (expr);
4021 sel_print ("\n");
4024 *pneed_stall = 0;
4025 return true;
4028 /* Convert a vectored and sorted av set to the ready list that
4029 the rest of the backend wants to see. */
4030 static void
4031 convert_vec_av_set_to_ready (void)
4033 int n;
4034 expr_t expr;
4036 /* Allocate and fill the ready list from the sorted vector. */
4037 ready.n_ready = vec_av_set.length ();
4038 ready.first = ready.n_ready - 1;
4040 gcc_assert (ready.n_ready > 0);
4042 if (ready.n_ready > max_issue_size)
4044 max_issue_size = ready.n_ready;
4045 sched_extend_ready_list (ready.n_ready);
4048 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4050 vinsn_t vi = EXPR_VINSN (expr);
4051 insn_t insn = VINSN_INSN_RTX (vi);
4053 ready_try[n] = 0;
4054 ready.vec[n] = insn;
4058 /* Initialize ready list from *AV_PTR for the max_issue () call.
4059 If any unrecognizable insn found in *AV_PTR, return it (and skip
4060 max_issue). BND and FENCE are current boundary and fence,
4061 respectively. If we need to stall for some cycles before an expr
4062 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4063 static expr_t
4064 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4065 int *pneed_stall)
4067 expr_t expr;
4069 /* We do not support multiple boundaries per fence. */
4070 gcc_assert (BLIST_NEXT (bnds) == NULL);
4072 /* Process expressions required special handling, i.e. pipelined,
4073 speculative and recog() < 0 expressions first. */
4074 process_pipelined_exprs (av_ptr);
4075 process_spec_exprs (av_ptr);
4077 /* A USE could be scheduled immediately. */
4078 expr = process_use_exprs (av_ptr);
4079 if (expr)
4081 *pneed_stall = 0;
4082 return expr;
4085 /* Turn the av set to a vector for sorting. */
4086 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4088 ready.n_ready = 0;
4089 return NULL;
4092 /* Build the final ready list. */
4093 convert_vec_av_set_to_ready ();
4094 return NULL;
4097 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4098 static bool
4099 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4101 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4102 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4103 : FENCE_CYCLE (fence) - 1;
4104 bool res = false;
4105 int sort_p = 0;
4107 if (!targetm.sched.dfa_new_cycle)
4108 return false;
4110 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4112 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4113 insn, last_scheduled_cycle,
4114 FENCE_CYCLE (fence), &sort_p))
4116 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4117 advance_one_cycle (fence);
4118 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4119 res = true;
4122 return res;
4125 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4126 we can issue. FENCE is the current fence. */
4127 static int
4128 invoke_reorder_hooks (fence_t fence)
4130 int issue_more;
4131 bool ran_hook = false;
4133 /* Call the reorder hook at the beginning of the cycle, and call
4134 the reorder2 hook in the middle of the cycle. */
4135 if (FENCE_ISSUED_INSNS (fence) == 0)
4137 if (targetm.sched.reorder
4138 && !SCHED_GROUP_P (ready_element (&ready, 0))
4139 && ready.n_ready > 1)
4141 /* Don't give reorder the most prioritized insn as it can break
4142 pipelining. */
4143 if (pipelining_p)
4144 --ready.n_ready;
4146 issue_more
4147 = targetm.sched.reorder (sched_dump, sched_verbose,
4148 ready_lastpos (&ready),
4149 &ready.n_ready, FENCE_CYCLE (fence));
4151 if (pipelining_p)
4152 ++ready.n_ready;
4154 ran_hook = true;
4156 else
4157 /* Initialize can_issue_more for variable_issue. */
4158 issue_more = issue_rate;
4160 else if (targetm.sched.reorder2
4161 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4163 if (ready.n_ready == 1)
4164 issue_more =
4165 targetm.sched.reorder2 (sched_dump, sched_verbose,
4166 ready_lastpos (&ready),
4167 &ready.n_ready, FENCE_CYCLE (fence));
4168 else
4170 if (pipelining_p)
4171 --ready.n_ready;
4173 issue_more =
4174 targetm.sched.reorder2 (sched_dump, sched_verbose,
4175 ready.n_ready
4176 ? ready_lastpos (&ready) : NULL,
4177 &ready.n_ready, FENCE_CYCLE (fence));
4179 if (pipelining_p)
4180 ++ready.n_ready;
4183 ran_hook = true;
4185 else
4186 issue_more = FENCE_ISSUE_MORE (fence);
4188 /* Ensure that ready list and vec_av_set are in line with each other,
4189 i.e. vec_av_set[i] == ready_element (&ready, i). */
4190 if (issue_more && ran_hook)
4192 int i, j, n;
4193 rtx *arr = ready.vec;
4194 expr_t *vec = vec_av_set.address ();
4196 for (i = 0, n = ready.n_ready; i < n; i++)
4197 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4199 expr_t tmp;
4201 for (j = i; j < n; j++)
4202 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4203 break;
4204 gcc_assert (j < n);
4206 tmp = vec[i];
4207 vec[i] = vec[j];
4208 vec[j] = tmp;
4212 return issue_more;
4215 /* Return an EXPR corresponding to INDEX element of ready list, if
4216 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4217 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4218 ready.vec otherwise. */
4219 static inline expr_t
4220 find_expr_for_ready (int index, bool follow_ready_element)
4222 expr_t expr;
4223 int real_index;
4225 real_index = follow_ready_element ? ready.first - index : index;
4227 expr = vec_av_set[real_index];
4228 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4230 return expr;
4233 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4234 of such insns found. */
4235 static int
4236 invoke_dfa_lookahead_guard (void)
4238 int i, n;
4239 bool have_hook
4240 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4242 if (sched_verbose >= 2)
4243 sel_print ("ready after reorder: ");
4245 for (i = 0, n = 0; i < ready.n_ready; i++)
4247 expr_t expr;
4248 insn_t insn;
4249 int r;
4251 /* In this loop insn is Ith element of the ready list given by
4252 ready_element, not Ith element of ready.vec. */
4253 insn = ready_element (&ready, i);
4255 if (! have_hook || i == 0)
4256 r = 0;
4257 else
4258 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4260 gcc_assert (INSN_CODE (insn) >= 0);
4262 /* Only insns with ready_try = 0 can get here
4263 from fill_ready_list. */
4264 gcc_assert (ready_try [i] == 0);
4265 ready_try[i] = r;
4266 if (!r)
4267 n++;
4269 expr = find_expr_for_ready (i, true);
4271 if (sched_verbose >= 2)
4273 dump_vinsn (EXPR_VINSN (expr));
4274 sel_print (":%d; ", ready_try[i]);
4278 if (sched_verbose >= 2)
4279 sel_print ("\n");
4280 return n;
4283 /* Calculate the number of privileged insns and return it. */
4284 static int
4285 calculate_privileged_insns (void)
4287 expr_t cur_expr, min_spec_expr = NULL;
4288 int privileged_n = 0, i;
4290 for (i = 0; i < ready.n_ready; i++)
4292 if (ready_try[i])
4293 continue;
4295 if (! min_spec_expr)
4296 min_spec_expr = find_expr_for_ready (i, true);
4298 cur_expr = find_expr_for_ready (i, true);
4300 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4301 break;
4303 ++privileged_n;
4306 if (i == ready.n_ready)
4307 privileged_n = 0;
4309 if (sched_verbose >= 2)
4310 sel_print ("privileged_n: %d insns with SPEC %d\n",
4311 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4312 return privileged_n;
4315 /* Call the rest of the hooks after the choice was made. Return
4316 the number of insns that still can be issued given that the current
4317 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4318 and the insn chosen for scheduling, respectively. */
4319 static int
4320 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4322 gcc_assert (INSN_P (best_insn));
4324 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4325 sel_dfa_new_cycle (best_insn, fence);
4327 if (targetm.sched.variable_issue)
4329 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4330 issue_more =
4331 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4332 issue_more);
4333 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4335 else if (GET_CODE (PATTERN (best_insn)) != USE
4336 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4337 issue_more--;
4339 return issue_more;
4342 /* Estimate the cost of issuing INSN on DFA state STATE. */
4343 static int
4344 estimate_insn_cost (rtx insn, state_t state)
4346 static state_t temp = NULL;
4347 int cost;
4349 if (!temp)
4350 temp = xmalloc (dfa_state_size);
4352 memcpy (temp, state, dfa_state_size);
4353 cost = state_transition (temp, insn);
4355 if (cost < 0)
4356 return 0;
4357 else if (cost == 0)
4358 return 1;
4359 return cost;
4362 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4363 This function properly handles ASMs, USEs etc. */
4364 static int
4365 get_expr_cost (expr_t expr, fence_t fence)
4367 rtx insn = EXPR_INSN_RTX (expr);
4369 if (recog_memoized (insn) < 0)
4371 if (!FENCE_STARTS_CYCLE_P (fence)
4372 && INSN_ASM_P (insn))
4373 /* This is asm insn which is tryed to be issued on the
4374 cycle not first. Issue it on the next cycle. */
4375 return 1;
4376 else
4377 /* A USE insn, or something else we don't need to
4378 understand. We can't pass these directly to
4379 state_transition because it will trigger a
4380 fatal error for unrecognizable insns. */
4381 return 0;
4383 else
4384 return estimate_insn_cost (insn, FENCE_STATE (fence));
4387 /* Find the best insn for scheduling, either via max_issue or just take
4388 the most prioritized available. */
4389 static int
4390 choose_best_insn (fence_t fence, int privileged_n, int *index)
4392 int can_issue = 0;
4394 if (dfa_lookahead > 0)
4396 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4397 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4398 can_issue = max_issue (&ready, privileged_n,
4399 FENCE_STATE (fence), true, index);
4400 if (sched_verbose >= 2)
4401 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4402 can_issue, FENCE_ISSUED_INSNS (fence));
4404 else
4406 /* We can't use max_issue; just return the first available element. */
4407 int i;
4409 for (i = 0; i < ready.n_ready; i++)
4411 expr_t expr = find_expr_for_ready (i, true);
4413 if (get_expr_cost (expr, fence) < 1)
4415 can_issue = can_issue_more;
4416 *index = i;
4418 if (sched_verbose >= 2)
4419 sel_print ("using %dth insn from the ready list\n", i + 1);
4421 break;
4425 if (i == ready.n_ready)
4427 can_issue = 0;
4428 *index = -1;
4432 return can_issue;
4435 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4436 BNDS and FENCE are current boundaries and scheduling fence respectively.
4437 Return the expr found and NULL if nothing can be issued atm.
4438 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4439 static expr_t
4440 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4441 int *pneed_stall)
4443 expr_t best;
4445 /* Choose the best insn for scheduling via:
4446 1) sorting the ready list based on priority;
4447 2) calling the reorder hook;
4448 3) calling max_issue. */
4449 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4450 if (best == NULL && ready.n_ready > 0)
4452 int privileged_n, index;
4454 can_issue_more = invoke_reorder_hooks (fence);
4455 if (can_issue_more > 0)
4457 /* Try choosing the best insn until we find one that is could be
4458 scheduled due to liveness restrictions on its destination register.
4459 In the future, we'd like to choose once and then just probe insns
4460 in the order of their priority. */
4461 invoke_dfa_lookahead_guard ();
4462 privileged_n = calculate_privileged_insns ();
4463 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4464 if (can_issue_more)
4465 best = find_expr_for_ready (index, true);
4467 /* We had some available insns, so if we can't issue them,
4468 we have a stall. */
4469 if (can_issue_more == 0)
4471 best = NULL;
4472 *pneed_stall = 1;
4476 if (best != NULL)
4478 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4479 can_issue_more);
4480 if (targetm.sched.variable_issue
4481 && can_issue_more == 0)
4482 *pneed_stall = 1;
4485 if (sched_verbose >= 2)
4487 if (best != NULL)
4489 sel_print ("Best expression (vliw form): ");
4490 dump_expr (best);
4491 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4493 else
4494 sel_print ("No best expr found!\n");
4497 return best;
4501 /* Functions that implement the core of the scheduler. */
4504 /* Emit an instruction from EXPR with SEQNO and VINSN after
4505 PLACE_TO_INSERT. */
4506 static insn_t
4507 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4508 insn_t place_to_insert)
4510 /* This assert fails when we have identical instructions
4511 one of which dominates the other. In this case move_op ()
4512 finds the first instruction and doesn't search for second one.
4513 The solution would be to compute av_set after the first found
4514 insn and, if insn present in that set, continue searching.
4515 For now we workaround this issue in move_op. */
4516 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4518 if (EXPR_WAS_RENAMED (expr))
4520 unsigned regno = expr_dest_regno (expr);
4522 if (HARD_REGISTER_NUM_P (regno))
4524 df_set_regs_ever_live (regno, true);
4525 reg_rename_tick[regno] = ++reg_rename_this_tick;
4529 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4530 place_to_insert);
4533 /* Return TRUE if BB can hold bookkeeping code. */
4534 static bool
4535 block_valid_for_bookkeeping_p (basic_block bb)
4537 insn_t bb_end = BB_END (bb);
4539 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4540 return false;
4542 if (INSN_P (bb_end))
4544 if (INSN_SCHED_TIMES (bb_end) > 0)
4545 return false;
4547 else
4548 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4550 return true;
4553 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4554 into E2->dest, except from E1->src (there may be a sequence of empty basic
4555 blocks between E1->src and E2->dest). Return found block, or NULL if new
4556 one must be created. If LAX holds, don't assume there is a simple path
4557 from E1->src to E2->dest. */
4558 static basic_block
4559 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4561 basic_block candidate_block = NULL;
4562 edge e;
4564 /* Loop over edges from E1 to E2, inclusive. */
4565 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4566 EDGE_SUCC (e->dest, 0))
4568 if (EDGE_COUNT (e->dest->preds) == 2)
4570 if (candidate_block == NULL)
4571 candidate_block = (EDGE_PRED (e->dest, 0) == e
4572 ? EDGE_PRED (e->dest, 1)->src
4573 : EDGE_PRED (e->dest, 0)->src);
4574 else
4575 /* Found additional edge leading to path from e1 to e2
4576 from aside. */
4577 return NULL;
4579 else if (EDGE_COUNT (e->dest->preds) > 2)
4580 /* Several edges leading to path from e1 to e2 from aside. */
4581 return NULL;
4583 if (e == e2)
4584 return ((!lax || candidate_block)
4585 && block_valid_for_bookkeeping_p (candidate_block)
4586 ? candidate_block
4587 : NULL);
4589 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4590 return NULL;
4593 if (lax)
4594 return NULL;
4596 gcc_unreachable ();
4599 /* Create new basic block for bookkeeping code for path(s) incoming into
4600 E2->dest, except from E1->src. Return created block. */
4601 static basic_block
4602 create_block_for_bookkeeping (edge e1, edge e2)
4604 basic_block new_bb, bb = e2->dest;
4606 /* Check that we don't spoil the loop structure. */
4607 if (current_loop_nest)
4609 basic_block latch = current_loop_nest->latch;
4611 /* We do not split header. */
4612 gcc_assert (e2->dest != current_loop_nest->header);
4614 /* We do not redirect the only edge to the latch block. */
4615 gcc_assert (e1->dest != latch
4616 || !single_pred_p (latch)
4617 || e1 != single_pred_edge (latch));
4620 /* Split BB to insert BOOK_INSN there. */
4621 new_bb = sched_split_block (bb, NULL);
4623 /* Move note_list from the upper bb. */
4624 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4625 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4626 BB_NOTE_LIST (bb) = NULL_RTX;
4628 gcc_assert (e2->dest == bb);
4630 /* Skip block for bookkeeping copy when leaving E1->src. */
4631 if (e1->flags & EDGE_FALLTHRU)
4632 sel_redirect_edge_and_branch_force (e1, new_bb);
4633 else
4634 sel_redirect_edge_and_branch (e1, new_bb);
4636 gcc_assert (e1->dest == new_bb);
4637 gcc_assert (sel_bb_empty_p (bb));
4639 /* To keep basic block numbers in sync between debug and non-debug
4640 compilations, we have to rotate blocks here. Consider that we
4641 started from (a,b)->d, (c,d)->e, and d contained only debug
4642 insns. It would have been removed before if the debug insns
4643 weren't there, so we'd have split e rather than d. So what we do
4644 now is to swap the block numbers of new_bb and
4645 single_succ(new_bb) == e, so that the insns that were in e before
4646 get the new block number. */
4648 if (MAY_HAVE_DEBUG_INSNS)
4650 basic_block succ;
4651 insn_t insn = sel_bb_head (new_bb);
4652 insn_t last;
4654 if (DEBUG_INSN_P (insn)
4655 && single_succ_p (new_bb)
4656 && (succ = single_succ (new_bb))
4657 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4658 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4660 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4661 insn = NEXT_INSN (insn);
4663 if (insn == last)
4665 sel_global_bb_info_def gbi;
4666 sel_region_bb_info_def rbi;
4667 int i;
4669 if (sched_verbose >= 2)
4670 sel_print ("Swapping block ids %i and %i\n",
4671 new_bb->index, succ->index);
4673 i = new_bb->index;
4674 new_bb->index = succ->index;
4675 succ->index = i;
4677 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4678 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4680 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4681 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4682 sizeof (gbi));
4683 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4685 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4686 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4687 sizeof (rbi));
4688 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4690 i = BLOCK_TO_BB (new_bb->index);
4691 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4692 BLOCK_TO_BB (succ->index) = i;
4694 i = CONTAINING_RGN (new_bb->index);
4695 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4696 CONTAINING_RGN (succ->index) = i;
4698 for (i = 0; i < current_nr_blocks; i++)
4699 if (BB_TO_BLOCK (i) == succ->index)
4700 BB_TO_BLOCK (i) = new_bb->index;
4701 else if (BB_TO_BLOCK (i) == new_bb->index)
4702 BB_TO_BLOCK (i) = succ->index;
4704 FOR_BB_INSNS (new_bb, insn)
4705 if (INSN_P (insn))
4706 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4708 FOR_BB_INSNS (succ, insn)
4709 if (INSN_P (insn))
4710 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4712 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4713 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4715 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4716 && LABEL_P (BB_HEAD (succ)));
4718 if (sched_verbose >= 4)
4719 sel_print ("Swapping code labels %i and %i\n",
4720 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4721 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4723 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4724 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4725 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4726 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4731 return bb;
4734 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4735 into E2->dest, except from E1->src. If the returned insn immediately
4736 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4737 static insn_t
4738 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4740 insn_t place_to_insert;
4741 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4742 create new basic block, but insert bookkeeping there. */
4743 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4745 if (book_block)
4747 place_to_insert = BB_END (book_block);
4749 /* Don't use a block containing only debug insns for
4750 bookkeeping, this causes scheduling differences between debug
4751 and non-debug compilations, for the block would have been
4752 removed already. */
4753 if (DEBUG_INSN_P (place_to_insert))
4755 rtx insn = sel_bb_head (book_block);
4757 while (insn != place_to_insert &&
4758 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4759 insn = NEXT_INSN (insn);
4761 if (insn == place_to_insert)
4762 book_block = NULL;
4766 if (!book_block)
4768 book_block = create_block_for_bookkeeping (e1, e2);
4769 place_to_insert = BB_END (book_block);
4770 if (sched_verbose >= 9)
4771 sel_print ("New block is %i, split from bookkeeping block %i\n",
4772 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4774 else
4776 if (sched_verbose >= 9)
4777 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4780 *fence_to_rewind = NULL;
4781 /* If basic block ends with a jump, insert bookkeeping code right before it.
4782 Notice if we are crossing a fence when taking PREV_INSN. */
4783 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4785 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4786 place_to_insert = PREV_INSN (place_to_insert);
4789 return place_to_insert;
4792 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4793 for JOIN_POINT. */
4794 static int
4795 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4797 int seqno;
4798 rtx next;
4800 /* Check if we are about to insert bookkeeping copy before a jump, and use
4801 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4802 next = NEXT_INSN (place_to_insert);
4803 if (INSN_P (next)
4804 && JUMP_P (next)
4805 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4807 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4808 seqno = INSN_SEQNO (next);
4810 else if (INSN_SEQNO (join_point) > 0)
4811 seqno = INSN_SEQNO (join_point);
4812 else
4814 seqno = get_seqno_by_preds (place_to_insert);
4816 /* Sometimes the fences can move in such a way that there will be
4817 no instructions with positive seqno around this bookkeeping.
4818 This means that there will be no way to get to it by a regular
4819 fence movement. Never mind because we pick up such pieces for
4820 rescheduling anyways, so any positive value will do for now. */
4821 if (seqno < 0)
4823 gcc_assert (pipelining_p);
4824 seqno = 1;
4828 gcc_assert (seqno > 0);
4829 return seqno;
4832 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4833 NEW_SEQNO to it. Return created insn. */
4834 static insn_t
4835 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4837 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4839 vinsn_t new_vinsn
4840 = create_vinsn_from_insn_rtx (new_insn_rtx,
4841 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4843 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4844 place_to_insert);
4846 INSN_SCHED_TIMES (new_insn) = 0;
4847 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4849 return new_insn;
4852 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4853 E2->dest, except from E1->src (there may be a sequence of empty blocks
4854 between E1->src and E2->dest). Return block containing the copy.
4855 All scheduler data is initialized for the newly created insn. */
4856 static basic_block
4857 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4859 insn_t join_point, place_to_insert, new_insn;
4860 int new_seqno;
4861 bool need_to_exchange_data_sets;
4862 fence_t fence_to_rewind;
4864 if (sched_verbose >= 4)
4865 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4866 e2->dest->index);
4868 join_point = sel_bb_head (e2->dest);
4869 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4870 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4871 need_to_exchange_data_sets
4872 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4874 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4876 if (fence_to_rewind)
4877 FENCE_INSN (fence_to_rewind) = new_insn;
4879 /* When inserting bookkeeping insn in new block, av sets should be
4880 following: old basic block (that now holds bookkeeping) data sets are
4881 the same as was before generation of bookkeeping, and new basic block
4882 (that now hold all other insns of old basic block) data sets are
4883 invalid. So exchange data sets for these basic blocks as sel_split_block
4884 mistakenly exchanges them in this case. Cannot do it earlier because
4885 when single instruction is added to new basic block it should hold NULL
4886 lv_set. */
4887 if (need_to_exchange_data_sets)
4888 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4889 BLOCK_FOR_INSN (join_point));
4891 stat_bookkeeping_copies++;
4892 return BLOCK_FOR_INSN (new_insn);
4895 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4896 on FENCE, but we are unable to copy them. */
4897 static void
4898 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4900 expr_t expr;
4901 av_set_iterator i;
4903 /* An expression does not need bookkeeping if it is available on all paths
4904 from current block to original block and current block dominates
4905 original block. We check availability on all paths by examining
4906 EXPR_SPEC; this is not equivalent, because it may be positive even
4907 if expr is available on all paths (but if expr is not available on
4908 any path, EXPR_SPEC will be positive). */
4910 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4912 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4913 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4914 && (EXPR_SPEC (expr)
4915 || !EXPR_ORIG_BB_INDEX (expr)
4916 || !dominated_by_p (CDI_DOMINATORS,
4917 BASIC_BLOCK_FOR_FN (cfun,
4918 EXPR_ORIG_BB_INDEX (expr)),
4919 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4921 if (sched_verbose >= 4)
4922 sel_print ("Expr %d removed because it would need bookkeeping, which "
4923 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4924 av_set_iter_remove (&i);
4929 /* Moving conditional jump through some instructions.
4931 Consider example:
4933 ... <- current scheduling point
4934 NOTE BASIC BLOCK: <- bb header
4935 (p8) add r14=r14+0x9;;
4936 (p8) mov [r14]=r23
4937 (!p8) jump L1;;
4938 NOTE BASIC BLOCK:
4941 We can schedule jump one cycle earlier, than mov, because they cannot be
4942 executed together as their predicates are mutually exclusive.
4944 This is done in this way: first, new fallthrough basic block is created
4945 after jump (it is always can be done, because there already should be a
4946 fallthrough block, where control flow goes in case of predicate being true -
4947 in our example; otherwise there should be a dependence between those
4948 instructions and jump and we cannot schedule jump right now);
4949 next, all instructions between jump and current scheduling point are moved
4950 to this new block. And the result is this:
4952 NOTE BASIC BLOCK:
4953 (!p8) jump L1 <- current scheduling point
4954 NOTE BASIC BLOCK: <- bb header
4955 (p8) add r14=r14+0x9;;
4956 (p8) mov [r14]=r23
4957 NOTE BASIC BLOCK:
4960 static void
4961 move_cond_jump (rtx insn, bnd_t bnd)
4963 edge ft_edge;
4964 basic_block block_from, block_next, block_new, block_bnd, bb;
4965 rtx next, prev, link, head;
4967 block_from = BLOCK_FOR_INSN (insn);
4968 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4969 prev = BND_TO (bnd);
4971 #ifdef ENABLE_CHECKING
4972 /* Moving of jump should not cross any other jumps or beginnings of new
4973 basic blocks. The only exception is when we move a jump through
4974 mutually exclusive insns along fallthru edges. */
4975 if (block_from != block_bnd)
4977 bb = block_from;
4978 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4979 link = PREV_INSN (link))
4981 if (INSN_P (link))
4982 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4983 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4985 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4986 bb = BLOCK_FOR_INSN (link);
4990 #endif
4992 /* Jump is moved to the boundary. */
4993 next = PREV_INSN (insn);
4994 BND_TO (bnd) = insn;
4996 ft_edge = find_fallthru_edge_from (block_from);
4997 block_next = ft_edge->dest;
4998 /* There must be a fallthrough block (or where should go
4999 control flow in case of false jump predicate otherwise?). */
5000 gcc_assert (block_next);
5002 /* Create new empty basic block after source block. */
5003 block_new = sel_split_edge (ft_edge);
5004 gcc_assert (block_new->next_bb == block_next
5005 && block_from->next_bb == block_new);
5007 /* Move all instructions except INSN to BLOCK_NEW. */
5008 bb = block_bnd;
5009 head = BB_HEAD (block_new);
5010 while (bb != block_from->next_bb)
5012 rtx from, to;
5013 from = bb == block_bnd ? prev : sel_bb_head (bb);
5014 to = bb == block_from ? next : sel_bb_end (bb);
5016 /* The jump being moved can be the first insn in the block.
5017 In this case we don't have to move anything in this block. */
5018 if (NEXT_INSN (to) != from)
5020 reorder_insns (from, to, head);
5022 for (link = to; link != head; link = PREV_INSN (link))
5023 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
5024 head = to;
5027 /* Cleanup possibly empty blocks left. */
5028 block_next = bb->next_bb;
5029 if (bb != block_from)
5030 tidy_control_flow (bb, false);
5031 bb = block_next;
5034 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5035 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5037 gcc_assert (!sel_bb_empty_p (block_from)
5038 && !sel_bb_empty_p (block_new));
5040 /* Update data sets for BLOCK_NEW to represent that INSN and
5041 instructions from the other branch of INSN is no longer
5042 available at BLOCK_NEW. */
5043 BB_AV_LEVEL (block_new) = global_level;
5044 gcc_assert (BB_LV_SET (block_new) == NULL);
5045 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5046 update_data_sets (sel_bb_head (block_new));
5048 /* INSN is a new basic block header - so prepare its data
5049 structures and update availability and liveness sets. */
5050 update_data_sets (insn);
5052 if (sched_verbose >= 4)
5053 sel_print ("Moving jump %d\n", INSN_UID (insn));
5056 /* Remove nops generated during move_op for preventing removal of empty
5057 basic blocks. */
5058 static void
5059 remove_temp_moveop_nops (bool full_tidying)
5061 int i;
5062 insn_t insn;
5064 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5066 gcc_assert (INSN_NOP_P (insn));
5067 return_nop_to_pool (insn, full_tidying);
5070 /* Empty the vector. */
5071 if (vec_temp_moveop_nops.length () > 0)
5072 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5075 /* Records the maximal UID before moving up an instruction. Used for
5076 distinguishing between bookkeeping copies and original insns. */
5077 static int max_uid_before_move_op = 0;
5079 /* Remove from AV_VLIW_P all instructions but next when debug counter
5080 tells us so. Next instruction is fetched from BNDS. */
5081 static void
5082 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5084 if (! dbg_cnt (sel_sched_insn_cnt))
5085 /* Leave only the next insn in av_vliw. */
5087 av_set_iterator av_it;
5088 expr_t expr;
5089 bnd_t bnd = BLIST_BND (bnds);
5090 insn_t next = BND_TO (bnd);
5092 gcc_assert (BLIST_NEXT (bnds) == NULL);
5094 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5095 if (EXPR_INSN_RTX (expr) != next)
5096 av_set_iter_remove (&av_it);
5100 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5101 the computed set to *AV_VLIW_P. */
5102 static void
5103 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5105 if (sched_verbose >= 2)
5107 sel_print ("Boundaries: ");
5108 dump_blist (bnds);
5109 sel_print ("\n");
5112 for (; bnds; bnds = BLIST_NEXT (bnds))
5114 bnd_t bnd = BLIST_BND (bnds);
5115 av_set_t av1_copy;
5116 insn_t bnd_to = BND_TO (bnd);
5118 /* Rewind BND->TO to the basic block header in case some bookkeeping
5119 instructions were inserted before BND->TO and it needs to be
5120 adjusted. */
5121 if (sel_bb_head_p (bnd_to))
5122 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5123 else
5124 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5126 bnd_to = PREV_INSN (bnd_to);
5127 if (sel_bb_head_p (bnd_to))
5128 break;
5131 if (BND_TO (bnd) != bnd_to)
5133 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5134 FENCE_INSN (fence) = bnd_to;
5135 BND_TO (bnd) = bnd_to;
5138 av_set_clear (&BND_AV (bnd));
5139 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5141 av_set_clear (&BND_AV1 (bnd));
5142 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5144 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5146 av1_copy = av_set_copy (BND_AV1 (bnd));
5147 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5150 if (sched_verbose >= 2)
5152 sel_print ("Available exprs (vliw form): ");
5153 dump_av_set (*av_vliw_p);
5154 sel_print ("\n");
5158 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5159 expression. When FOR_MOVEOP is true, also replace the register of
5160 expressions found with the register from EXPR_VLIW. */
5161 static av_set_t
5162 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5164 av_set_t expr_seq = NULL;
5165 expr_t expr;
5166 av_set_iterator i;
5168 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5170 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5172 if (for_moveop)
5174 /* The sequential expression has the right form to pass
5175 to move_op except when renaming happened. Put the
5176 correct register in EXPR then. */
5177 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5179 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5181 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5182 stat_renamed_scheduled++;
5184 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5185 This is needed when renaming came up with original
5186 register. */
5187 else if (EXPR_TARGET_AVAILABLE (expr)
5188 != EXPR_TARGET_AVAILABLE (expr_vliw))
5190 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5191 EXPR_TARGET_AVAILABLE (expr) = 1;
5194 if (EXPR_WAS_SUBSTITUTED (expr))
5195 stat_substitutions_total++;
5198 av_set_add (&expr_seq, expr);
5200 /* With substitution inside insn group, it is possible
5201 that more than one expression in expr_seq will correspond
5202 to expr_vliw. In this case, choose one as the attempt to
5203 move both leads to miscompiles. */
5204 break;
5208 if (for_moveop && sched_verbose >= 2)
5210 sel_print ("Best expression(s) (sequential form): ");
5211 dump_av_set (expr_seq);
5212 sel_print ("\n");
5215 return expr_seq;
5219 /* Move nop to previous block. */
5220 static void ATTRIBUTE_UNUSED
5221 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5223 insn_t prev_insn, next_insn, note;
5225 gcc_assert (sel_bb_head_p (nop)
5226 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5227 note = bb_note (BLOCK_FOR_INSN (nop));
5228 prev_insn = sel_bb_end (prev_bb);
5229 next_insn = NEXT_INSN (nop);
5230 gcc_assert (prev_insn != NULL_RTX
5231 && PREV_INSN (note) == prev_insn);
5233 NEXT_INSN (prev_insn) = nop;
5234 PREV_INSN (nop) = prev_insn;
5236 PREV_INSN (note) = nop;
5237 NEXT_INSN (note) = next_insn;
5239 NEXT_INSN (nop) = note;
5240 PREV_INSN (next_insn) = note;
5242 BB_END (prev_bb) = nop;
5243 BLOCK_FOR_INSN (nop) = prev_bb;
5246 /* Prepare a place to insert the chosen expression on BND. */
5247 static insn_t
5248 prepare_place_to_insert (bnd_t bnd)
5250 insn_t place_to_insert;
5252 /* Init place_to_insert before calling move_op, as the later
5253 can possibly remove BND_TO (bnd). */
5254 if (/* If this is not the first insn scheduled. */
5255 BND_PTR (bnd))
5257 /* Add it after last scheduled. */
5258 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5259 if (DEBUG_INSN_P (place_to_insert))
5261 ilist_t l = BND_PTR (bnd);
5262 while ((l = ILIST_NEXT (l)) &&
5263 DEBUG_INSN_P (ILIST_INSN (l)))
5265 if (!l)
5266 place_to_insert = NULL;
5269 else
5270 place_to_insert = NULL;
5272 if (!place_to_insert)
5274 /* Add it before BND_TO. The difference is in the
5275 basic block, where INSN will be added. */
5276 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5277 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5278 == BLOCK_FOR_INSN (BND_TO (bnd)));
5281 return place_to_insert;
5284 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5285 Return the expression to emit in C_EXPR. */
5286 static bool
5287 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5288 av_set_t expr_seq, expr_t c_expr)
5290 bool b, should_move;
5291 unsigned book_uid;
5292 bitmap_iterator bi;
5293 int n_bookkeeping_copies_before_moveop;
5295 /* Make a move. This call will remove the original operation,
5296 insert all necessary bookkeeping instructions and update the
5297 data sets. After that all we have to do is add the operation
5298 at before BND_TO (BND). */
5299 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5300 max_uid_before_move_op = get_max_uid ();
5301 bitmap_clear (current_copies);
5302 bitmap_clear (current_originators);
5304 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5305 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5307 /* We should be able to find the expression we've chosen for
5308 scheduling. */
5309 gcc_assert (b);
5311 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5312 stat_insns_needed_bookkeeping++;
5314 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5316 unsigned uid;
5317 bitmap_iterator bi;
5319 /* We allocate these bitmaps lazily. */
5320 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5321 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5323 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5324 current_originators);
5326 /* Transitively add all originators' originators. */
5327 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5328 if (INSN_ORIGINATORS_BY_UID (uid))
5329 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5330 INSN_ORIGINATORS_BY_UID (uid));
5333 return should_move;
5337 /* Debug a DFA state as an array of bytes. */
5338 static void
5339 debug_state (state_t state)
5341 unsigned char *p;
5342 unsigned int i, size = dfa_state_size;
5344 sel_print ("state (%u):", size);
5345 for (i = 0, p = (unsigned char *) state; i < size; i++)
5346 sel_print (" %d", p[i]);
5347 sel_print ("\n");
5350 /* Advance state on FENCE with INSN. Return true if INSN is
5351 an ASM, and we should advance state once more. */
5352 static bool
5353 advance_state_on_fence (fence_t fence, insn_t insn)
5355 bool asm_p;
5357 if (recog_memoized (insn) >= 0)
5359 int res;
5360 state_t temp_state = alloca (dfa_state_size);
5362 gcc_assert (!INSN_ASM_P (insn));
5363 asm_p = false;
5365 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5366 res = state_transition (FENCE_STATE (fence), insn);
5367 gcc_assert (res < 0);
5369 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5371 FENCE_ISSUED_INSNS (fence)++;
5373 /* We should never issue more than issue_rate insns. */
5374 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5375 gcc_unreachable ();
5378 else
5380 /* This could be an ASM insn which we'd like to schedule
5381 on the next cycle. */
5382 asm_p = INSN_ASM_P (insn);
5383 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5384 advance_one_cycle (fence);
5387 if (sched_verbose >= 2)
5388 debug_state (FENCE_STATE (fence));
5389 if (!DEBUG_INSN_P (insn))
5390 FENCE_STARTS_CYCLE_P (fence) = 0;
5391 FENCE_ISSUE_MORE (fence) = can_issue_more;
5392 return asm_p;
5395 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5396 is nonzero if we need to stall after issuing INSN. */
5397 static void
5398 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5400 bool asm_p;
5402 /* First, reflect that something is scheduled on this fence. */
5403 asm_p = advance_state_on_fence (fence, insn);
5404 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5405 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5406 if (SCHED_GROUP_P (insn))
5408 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5409 SCHED_GROUP_P (insn) = 0;
5411 else
5412 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5413 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5414 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5416 /* Set instruction scheduling info. This will be used in bundling,
5417 pipelining, tick computations etc. */
5418 ++INSN_SCHED_TIMES (insn);
5419 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5420 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5421 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5422 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5424 /* This does not account for adjust_cost hooks, just add the biggest
5425 constant the hook may add to the latency. TODO: make this
5426 a target dependent constant. */
5427 INSN_READY_CYCLE (insn)
5428 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5430 : maximal_insn_latency (insn) + 1);
5432 /* Change these fields last, as they're used above. */
5433 FENCE_AFTER_STALL_P (fence) = 0;
5434 if (asm_p || need_stall)
5435 advance_one_cycle (fence);
5437 /* Indicate that we've scheduled something on this fence. */
5438 FENCE_SCHEDULED_P (fence) = true;
5439 scheduled_something_on_previous_fence = true;
5441 /* Print debug information when insn's fields are updated. */
5442 if (sched_verbose >= 2)
5444 sel_print ("Scheduling insn: ");
5445 dump_insn_1 (insn, 1);
5446 sel_print ("\n");
5450 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5451 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5452 return it. */
5453 static blist_t *
5454 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5455 blist_t *bnds_tailp)
5457 succ_iterator si;
5458 insn_t succ;
5460 advance_deps_context (BND_DC (bnd), insn);
5461 FOR_EACH_SUCC_1 (succ, si, insn,
5462 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5464 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5466 ilist_add (&ptr, insn);
5468 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5469 && is_ineligible_successor (succ, ptr))
5471 ilist_clear (&ptr);
5472 continue;
5475 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5477 if (sched_verbose >= 9)
5478 sel_print ("Updating fence insn from %i to %i\n",
5479 INSN_UID (insn), INSN_UID (succ));
5480 FENCE_INSN (fence) = succ;
5482 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5483 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5486 blist_remove (bndsp);
5487 return bnds_tailp;
5490 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5491 static insn_t
5492 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5494 av_set_t expr_seq;
5495 expr_t c_expr = XALLOCA (expr_def);
5496 insn_t place_to_insert;
5497 insn_t insn;
5498 bool should_move;
5500 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5502 /* In case of scheduling a jump skipping some other instructions,
5503 prepare CFG. After this, jump is at the boundary and can be
5504 scheduled as usual insn by MOVE_OP. */
5505 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5507 insn = EXPR_INSN_RTX (expr_vliw);
5509 /* Speculative jumps are not handled. */
5510 if (insn != BND_TO (bnd)
5511 && !sel_insn_is_speculation_check (insn))
5512 move_cond_jump (insn, bnd);
5515 /* Find a place for C_EXPR to schedule. */
5516 place_to_insert = prepare_place_to_insert (bnd);
5517 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5518 clear_expr (c_expr);
5520 /* Add the instruction. The corner case to care about is when
5521 the expr_seq set has more than one expr, and we chose the one that
5522 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5523 we can't use it. Generate the new vinsn. */
5524 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5526 vinsn_t vinsn_new;
5528 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5529 change_vinsn_in_expr (expr_vliw, vinsn_new);
5530 should_move = false;
5532 if (should_move)
5533 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5534 else
5535 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5536 place_to_insert);
5538 /* Return the nops generated for preserving of data sets back
5539 into pool. */
5540 if (INSN_NOP_P (place_to_insert))
5541 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5542 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5544 av_set_clear (&expr_seq);
5546 /* Save the expression scheduled so to reset target availability if we'll
5547 meet it later on the same fence. */
5548 if (EXPR_WAS_RENAMED (expr_vliw))
5549 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5551 /* Check that the recent movement didn't destroyed loop
5552 structure. */
5553 gcc_assert (!pipelining_p
5554 || current_loop_nest == NULL
5555 || loop_latch_edge (current_loop_nest));
5556 return insn;
5559 /* Stall for N cycles on FENCE. */
5560 static void
5561 stall_for_cycles (fence_t fence, int n)
5563 int could_more;
5565 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5566 while (n--)
5567 advance_one_cycle (fence);
5568 if (could_more)
5569 FENCE_AFTER_STALL_P (fence) = 1;
5572 /* Gather a parallel group of insns at FENCE and assign their seqno
5573 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5574 list for later recalculation of seqnos. */
5575 static void
5576 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5578 blist_t bnds = NULL, *bnds_tailp;
5579 av_set_t av_vliw = NULL;
5580 insn_t insn = FENCE_INSN (fence);
5582 if (sched_verbose >= 2)
5583 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5584 INSN_UID (insn), FENCE_CYCLE (fence));
5586 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5587 bnds_tailp = &BLIST_NEXT (bnds);
5588 set_target_context (FENCE_TC (fence));
5589 can_issue_more = FENCE_ISSUE_MORE (fence);
5590 target_bb = INSN_BB (insn);
5592 /* Do while we can add any operation to the current group. */
5595 blist_t *bnds_tailp1, *bndsp;
5596 expr_t expr_vliw;
5597 int need_stall = false;
5598 int was_stall = 0, scheduled_insns = 0;
5599 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5600 int max_stall = pipelining_p ? 1 : 3;
5601 bool last_insn_was_debug = false;
5602 bool was_debug_bb_end_p = false;
5604 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5605 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5606 remove_insns_for_debug (bnds, &av_vliw);
5608 /* Return early if we have nothing to schedule. */
5609 if (av_vliw == NULL)
5610 break;
5612 /* Choose the best expression and, if needed, destination register
5613 for it. */
5616 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5617 if (! expr_vliw && need_stall)
5619 /* All expressions required a stall. Do not recompute av sets
5620 as we'll get the same answer (modulo the insns between
5621 the fence and its boundary, which will not be available for
5622 pipelining).
5623 If we are going to stall for too long, break to recompute av
5624 sets and bring more insns for pipelining. */
5625 was_stall++;
5626 if (need_stall <= 3)
5627 stall_for_cycles (fence, need_stall);
5628 else
5630 stall_for_cycles (fence, 1);
5631 break;
5635 while (! expr_vliw && need_stall);
5637 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5638 if (!expr_vliw)
5640 av_set_clear (&av_vliw);
5641 break;
5644 bndsp = &bnds;
5645 bnds_tailp1 = bnds_tailp;
5648 /* This code will be executed only once until we'd have several
5649 boundaries per fence. */
5651 bnd_t bnd = BLIST_BND (*bndsp);
5653 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5655 bndsp = &BLIST_NEXT (*bndsp);
5656 continue;
5659 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5660 last_insn_was_debug = DEBUG_INSN_P (insn);
5661 if (last_insn_was_debug)
5662 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5663 update_fence_and_insn (fence, insn, need_stall);
5664 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5666 /* Add insn to the list of scheduled on this cycle instructions. */
5667 ilist_add (*scheduled_insns_tailpp, insn);
5668 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5670 while (*bndsp != *bnds_tailp1);
5672 av_set_clear (&av_vliw);
5673 if (!last_insn_was_debug)
5674 scheduled_insns++;
5676 /* We currently support information about candidate blocks only for
5677 one 'target_bb' block. Hence we can't schedule after jump insn,
5678 as this will bring two boundaries and, hence, necessity to handle
5679 information for two or more blocks concurrently. */
5680 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5681 || (was_stall
5682 && (was_stall >= max_stall
5683 || scheduled_insns >= max_insns)))
5684 break;
5686 while (bnds);
5688 gcc_assert (!FENCE_BNDS (fence));
5690 /* Update boundaries of the FENCE. */
5691 while (bnds)
5693 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5695 if (ptr)
5697 insn = ILIST_INSN (ptr);
5699 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5700 ilist_add (&FENCE_BNDS (fence), insn);
5703 blist_remove (&bnds);
5706 /* Update target context on the fence. */
5707 reset_target_context (FENCE_TC (fence), false);
5710 /* All exprs in ORIG_OPS must have the same destination register or memory.
5711 Return that destination. */
5712 static rtx
5713 get_dest_from_orig_ops (av_set_t orig_ops)
5715 rtx dest = NULL_RTX;
5716 av_set_iterator av_it;
5717 expr_t expr;
5718 bool first_p = true;
5720 FOR_EACH_EXPR (expr, av_it, orig_ops)
5722 rtx x = EXPR_LHS (expr);
5724 if (first_p)
5726 first_p = false;
5727 dest = x;
5729 else
5730 gcc_assert (dest == x
5731 || (dest != NULL_RTX && x != NULL_RTX
5732 && rtx_equal_p (dest, x)));
5735 return dest;
5738 /* Update data sets for the bookkeeping block and record those expressions
5739 which become no longer available after inserting this bookkeeping. */
5740 static void
5741 update_and_record_unavailable_insns (basic_block book_block)
5743 av_set_iterator i;
5744 av_set_t old_av_set = NULL;
5745 expr_t cur_expr;
5746 rtx bb_end = sel_bb_end (book_block);
5748 /* First, get correct liveness in the bookkeeping block. The problem is
5749 the range between the bookeeping insn and the end of block. */
5750 update_liveness_on_insn (bb_end);
5751 if (control_flow_insn_p (bb_end))
5752 update_liveness_on_insn (PREV_INSN (bb_end));
5754 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5755 fence above, where we may choose to schedule an insn which is
5756 actually blocked from moving up with the bookkeeping we create here. */
5757 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5759 old_av_set = av_set_copy (BB_AV_SET (book_block));
5760 update_data_sets (sel_bb_head (book_block));
5762 /* Traverse all the expressions in the old av_set and check whether
5763 CUR_EXPR is in new AV_SET. */
5764 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5766 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5767 EXPR_VINSN (cur_expr));
5769 if (! new_expr
5770 /* In this case, we can just turn off the E_T_A bit, but we can't
5771 represent this information with the current vector. */
5772 || EXPR_TARGET_AVAILABLE (new_expr)
5773 != EXPR_TARGET_AVAILABLE (cur_expr))
5774 /* Unfortunately, the below code could be also fired up on
5775 separable insns, e.g. when moving insns through the new
5776 speculation check as in PR 53701. */
5777 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5780 av_set_clear (&old_av_set);
5784 /* The main effect of this function is that sparams->c_expr is merged
5785 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5786 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5787 lparams->c_expr_merged is copied back to sparams->c_expr after all
5788 successors has been traversed. lparams->c_expr_local is an expr allocated
5789 on stack in the caller function, and is used if there is more than one
5790 successor.
5792 SUCC is one of the SUCCS_NORMAL successors of INSN,
5793 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5794 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5795 static void
5796 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5797 insn_t succ ATTRIBUTE_UNUSED,
5798 int moveop_drv_call_res,
5799 cmpd_local_params_p lparams, void *static_params)
5801 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5803 /* Nothing to do, if original expr wasn't found below. */
5804 if (moveop_drv_call_res != 1)
5805 return;
5807 /* If this is a first successor. */
5808 if (!lparams->c_expr_merged)
5810 lparams->c_expr_merged = sparams->c_expr;
5811 sparams->c_expr = lparams->c_expr_local;
5813 else
5815 /* We must merge all found expressions to get reasonable
5816 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5817 do so then we can first find the expr with epsilon
5818 speculation success probability and only then with the
5819 good probability. As a result the insn will get epsilon
5820 probability and will never be scheduled because of
5821 weakness_cutoff in find_best_expr.
5823 We call merge_expr_data here instead of merge_expr
5824 because due to speculation C_EXPR and X may have the
5825 same insns with different speculation types. And as of
5826 now such insns are considered non-equal.
5828 However, EXPR_SCHED_TIMES is different -- we must get
5829 SCHED_TIMES from a real insn, not a bookkeeping copy.
5830 We force this here. Instead, we may consider merging
5831 SCHED_TIMES to the maximum instead of minimum in the
5832 below function. */
5833 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5835 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5836 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5837 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5839 clear_expr (sparams->c_expr);
5843 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5845 SUCC is one of the SUCCS_NORMAL successors of INSN,
5846 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5847 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5848 STATIC_PARAMS contain USED_REGS set. */
5849 static void
5850 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5851 int moveop_drv_call_res,
5852 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5853 void *static_params)
5855 regset succ_live;
5856 fur_static_params_p sparams = (fur_static_params_p) static_params;
5858 /* Here we compute live regsets only for branches that do not lie
5859 on the code motion paths. These branches correspond to value
5860 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5861 for such branches code_motion_path_driver is not called. */
5862 if (moveop_drv_call_res != 0)
5863 return;
5865 /* Mark all registers that do not meet the following condition:
5866 (3) not live on the other path of any conditional branch
5867 that is passed by the operation, in case original
5868 operations are not present on both paths of the
5869 conditional branch. */
5870 succ_live = compute_live (succ);
5871 IOR_REG_SET (sparams->used_regs, succ_live);
5874 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5875 into SP->CEXPR. */
5876 static void
5877 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5879 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5881 sp->c_expr = lp->c_expr_merged;
5884 /* Track bookkeeping copies created, insns scheduled, and blocks for
5885 rescheduling when INSN is found by move_op. */
5886 static void
5887 track_scheduled_insns_and_blocks (rtx insn)
5889 /* Even if this insn can be a copy that will be removed during current move_op,
5890 we still need to count it as an originator. */
5891 bitmap_set_bit (current_originators, INSN_UID (insn));
5893 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5895 /* Note that original block needs to be rescheduled, as we pulled an
5896 instruction out of it. */
5897 if (INSN_SCHED_TIMES (insn) > 0)
5898 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5899 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5900 num_insns_scheduled++;
5903 /* For instructions we must immediately remove insn from the
5904 stream, so subsequent update_data_sets () won't include this
5905 insn into av_set.
5906 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5907 if (INSN_UID (insn) > max_uid_before_move_op)
5908 stat_bookkeeping_copies--;
5911 /* Emit a register-register copy for INSN if needed. Return true if
5912 emitted one. PARAMS is the move_op static parameters. */
5913 static bool
5914 maybe_emit_renaming_copy (rtx insn,
5915 moveop_static_params_p params)
5917 bool insn_emitted = false;
5918 rtx cur_reg;
5920 /* Bail out early when expression can not be renamed at all. */
5921 if (!EXPR_SEPARABLE_P (params->c_expr))
5922 return false;
5924 cur_reg = expr_dest_reg (params->c_expr);
5925 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5927 /* If original operation has expr and the register chosen for
5928 that expr is not original operation's dest reg, substitute
5929 operation's right hand side with the register chosen. */
5930 if (REGNO (params->dest) != REGNO (cur_reg))
5932 insn_t reg_move_insn, reg_move_insn_rtx;
5934 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5935 params->dest);
5936 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5937 INSN_EXPR (insn),
5938 INSN_SEQNO (insn),
5939 insn);
5940 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5941 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5943 insn_emitted = true;
5944 params->was_renamed = true;
5947 return insn_emitted;
5950 /* Emit a speculative check for INSN speculated as EXPR if needed.
5951 Return true if we've emitted one. PARAMS is the move_op static
5952 parameters. */
5953 static bool
5954 maybe_emit_speculative_check (rtx insn, expr_t expr,
5955 moveop_static_params_p params)
5957 bool insn_emitted = false;
5958 insn_t x;
5959 ds_t check_ds;
5961 check_ds = get_spec_check_type_for_insn (insn, expr);
5962 if (check_ds != 0)
5964 /* A speculation check should be inserted. */
5965 x = create_speculation_check (params->c_expr, check_ds, insn);
5966 insn_emitted = true;
5968 else
5970 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5971 x = insn;
5974 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5975 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5976 return insn_emitted;
5979 /* Handle transformations that leave an insn in place of original
5980 insn such as renaming/speculation. Return true if one of such
5981 transformations actually happened, and we have emitted this insn. */
5982 static bool
5983 handle_emitting_transformations (rtx insn, expr_t expr,
5984 moveop_static_params_p params)
5986 bool insn_emitted = false;
5988 insn_emitted = maybe_emit_renaming_copy (insn, params);
5989 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5991 return insn_emitted;
5994 /* If INSN is the only insn in the basic block (not counting JUMP,
5995 which may be a jump to next insn, and DEBUG_INSNs), we want to
5996 leave a NOP there till the return to fill_insns. */
5998 static bool
5999 need_nop_to_preserve_insn_bb (rtx insn)
6001 insn_t bb_head, bb_end, bb_next, in_next;
6002 basic_block bb = BLOCK_FOR_INSN (insn);
6004 bb_head = sel_bb_head (bb);
6005 bb_end = sel_bb_end (bb);
6007 if (bb_head == bb_end)
6008 return true;
6010 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
6011 bb_head = NEXT_INSN (bb_head);
6013 if (bb_head == bb_end)
6014 return true;
6016 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
6017 bb_end = PREV_INSN (bb_end);
6019 if (bb_head == bb_end)
6020 return true;
6022 bb_next = NEXT_INSN (bb_head);
6023 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
6024 bb_next = NEXT_INSN (bb_next);
6026 if (bb_next == bb_end && JUMP_P (bb_end))
6027 return true;
6029 in_next = NEXT_INSN (insn);
6030 while (DEBUG_INSN_P (in_next))
6031 in_next = NEXT_INSN (in_next);
6033 if (IN_CURRENT_FENCE_P (in_next))
6034 return true;
6036 return false;
6039 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6040 is not removed but reused when INSN is re-emitted. */
6041 static void
6042 remove_insn_from_stream (rtx insn, bool only_disconnect)
6044 /* If there's only one insn in the BB, make sure that a nop is
6045 inserted into it, so the basic block won't disappear when we'll
6046 delete INSN below with sel_remove_insn. It should also survive
6047 till the return to fill_insns. */
6048 if (need_nop_to_preserve_insn_bb (insn))
6050 insn_t nop = get_nop_from_pool (insn);
6051 gcc_assert (INSN_NOP_P (nop));
6052 vec_temp_moveop_nops.safe_push (nop);
6055 sel_remove_insn (insn, only_disconnect, false);
6058 /* This function is called when original expr is found.
6059 INSN - current insn traversed, EXPR - the corresponding expr found.
6060 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6061 is static parameters of move_op. */
6062 static void
6063 move_op_orig_expr_found (insn_t insn, expr_t expr,
6064 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6065 void *static_params)
6067 bool only_disconnect;
6068 moveop_static_params_p params = (moveop_static_params_p) static_params;
6070 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6071 track_scheduled_insns_and_blocks (insn);
6072 handle_emitting_transformations (insn, expr, params);
6073 only_disconnect = params->uid == INSN_UID (insn);
6075 /* Mark that we've disconnected an insn. */
6076 if (only_disconnect)
6077 params->uid = -1;
6078 remove_insn_from_stream (insn, only_disconnect);
6081 /* The function is called when original expr is found.
6082 INSN - current insn traversed, EXPR - the corresponding expr found,
6083 crosses_call and original_insns in STATIC_PARAMS are updated. */
6084 static void
6085 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6086 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6087 void *static_params)
6089 fur_static_params_p params = (fur_static_params_p) static_params;
6090 regset tmp;
6092 if (CALL_P (insn))
6093 params->crosses_call = true;
6095 def_list_add (params->original_insns, insn, params->crosses_call);
6097 /* Mark the registers that do not meet the following condition:
6098 (2) not among the live registers of the point
6099 immediately following the first original operation on
6100 a given downward path, except for the original target
6101 register of the operation. */
6102 tmp = get_clear_regset_from_pool ();
6103 compute_live_below_insn (insn, tmp);
6104 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6105 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6106 IOR_REG_SET (params->used_regs, tmp);
6107 return_regset_to_pool (tmp);
6109 /* (*1) We need to add to USED_REGS registers that are read by
6110 INSN's lhs. This may lead to choosing wrong src register.
6111 E.g. (scheduling const expr enabled):
6113 429: ax=0x0 <- Can't use AX for this expr (0x0)
6114 433: dx=[bp-0x18]
6115 427: [ax+dx+0x1]=ax
6116 REG_DEAD: ax
6117 168: di=dx
6118 REG_DEAD: dx
6120 /* FIXME: see comment above and enable MEM_P
6121 in vinsn_separable_p. */
6122 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6123 || !MEM_P (INSN_LHS (insn)));
6126 /* This function is called on the ascending pass, before returning from
6127 current basic block. */
6128 static void
6129 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6130 void *static_params)
6132 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6133 basic_block book_block = NULL;
6135 /* When we have removed the boundary insn for scheduling, which also
6136 happened to be the end insn in its bb, we don't need to update sets. */
6137 if (!lparams->removed_last_insn
6138 && lparams->e1
6139 && sel_bb_head_p (insn))
6141 /* We should generate bookkeeping code only if we are not at the
6142 top level of the move_op. */
6143 if (sel_num_cfg_preds_gt_1 (insn))
6144 book_block = generate_bookkeeping_insn (sparams->c_expr,
6145 lparams->e1, lparams->e2);
6146 /* Update data sets for the current insn. */
6147 update_data_sets (insn);
6150 /* If bookkeeping code was inserted, we need to update av sets of basic
6151 block that received bookkeeping. After generation of bookkeeping insn,
6152 bookkeeping block does not contain valid av set because we are not following
6153 the original algorithm in every detail with regards to e.g. renaming
6154 simple reg-reg copies. Consider example:
6156 bookkeeping block scheduling fence
6158 \ join /
6159 ----------
6161 ----------
6164 r1 := r2 r1 := r3
6166 We try to schedule insn "r1 := r3" on the current
6167 scheduling fence. Also, note that av set of bookkeeping block
6168 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6169 been scheduled, the CFG is as follows:
6171 r1 := r3 r1 := r3
6172 bookkeeping block scheduling fence
6174 \ join /
6175 ----------
6177 ----------
6180 r1 := r2
6182 Here, insn "r1 := r3" was scheduled at the current scheduling point
6183 and bookkeeping code was generated at the bookeeping block. This
6184 way insn "r1 := r2" is no longer available as a whole instruction
6185 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6186 This situation is handled by calling update_data_sets.
6188 Since update_data_sets is called only on the bookkeeping block, and
6189 it also may have predecessors with av_sets, containing instructions that
6190 are no longer available, we save all such expressions that become
6191 unavailable during data sets update on the bookkeeping block in
6192 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6193 expressions for scheduling. This allows us to avoid recomputation of
6194 av_sets outside the code motion path. */
6196 if (book_block)
6197 update_and_record_unavailable_insns (book_block);
6199 /* If INSN was previously marked for deletion, it's time to do it. */
6200 if (lparams->removed_last_insn)
6201 insn = PREV_INSN (insn);
6203 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6204 kill a block with a single nop in which the insn should be emitted. */
6205 if (lparams->e1)
6206 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6209 /* This function is called on the ascending pass, before returning from the
6210 current basic block. */
6211 static void
6212 fur_at_first_insn (insn_t insn,
6213 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6214 void *static_params ATTRIBUTE_UNUSED)
6216 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6217 || AV_LEVEL (insn) == -1);
6220 /* Called on the backward stage of recursion to call moveup_expr for insn
6221 and sparams->c_expr. */
6222 static void
6223 move_op_ascend (insn_t insn, void *static_params)
6225 enum MOVEUP_EXPR_CODE res;
6226 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6228 if (! INSN_NOP_P (insn))
6230 res = moveup_expr_cached (sparams->c_expr, insn, false);
6231 gcc_assert (res != MOVEUP_EXPR_NULL);
6234 /* Update liveness for this insn as it was invalidated. */
6235 update_liveness_on_insn (insn);
6238 /* This function is called on enter to the basic block.
6239 Returns TRUE if this block already have been visited and
6240 code_motion_path_driver should return 1, FALSE otherwise. */
6241 static int
6242 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6243 void *static_params, bool visited_p)
6245 fur_static_params_p sparams = (fur_static_params_p) static_params;
6247 if (visited_p)
6249 /* If we have found something below this block, there should be at
6250 least one insn in ORIGINAL_INSNS. */
6251 gcc_assert (*sparams->original_insns);
6253 /* Adjust CROSSES_CALL, since we may have come to this block along
6254 different path. */
6255 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6256 |= sparams->crosses_call;
6258 else
6259 local_params->old_original_insns = *sparams->original_insns;
6261 return 1;
6264 /* Same as above but for move_op. */
6265 static int
6266 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6267 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6268 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6270 if (visited_p)
6271 return -1;
6272 return 1;
6275 /* This function is called while descending current basic block if current
6276 insn is not the original EXPR we're searching for.
6278 Return value: FALSE, if code_motion_path_driver should perform a local
6279 cleanup and return 0 itself;
6280 TRUE, if code_motion_path_driver should continue. */
6281 static bool
6282 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6283 void *static_params)
6285 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6287 #ifdef ENABLE_CHECKING
6288 sparams->failed_insn = insn;
6289 #endif
6291 /* If we're scheduling separate expr, in order to generate correct code
6292 we need to stop the search at bookkeeping code generated with the
6293 same destination register or memory. */
6294 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6295 return false;
6296 return true;
6299 /* This function is called while descending current basic block if current
6300 insn is not the original EXPR we're searching for.
6302 Return value: TRUE (code_motion_path_driver should continue). */
6303 static bool
6304 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6306 bool mutexed;
6307 expr_t r;
6308 av_set_iterator avi;
6309 fur_static_params_p sparams = (fur_static_params_p) static_params;
6311 if (CALL_P (insn))
6312 sparams->crosses_call = true;
6313 else if (DEBUG_INSN_P (insn))
6314 return true;
6316 /* If current insn we are looking at cannot be executed together
6317 with original insn, then we can skip it safely.
6319 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6320 INSN = (!p6) r14 = r14 + 1;
6322 Here we can schedule ORIG_OP with lhs = r14, though only
6323 looking at the set of used and set registers of INSN we must
6324 forbid it. So, add set/used in INSN registers to the
6325 untouchable set only if there is an insn in ORIG_OPS that can
6326 affect INSN. */
6327 mutexed = true;
6328 FOR_EACH_EXPR (r, avi, orig_ops)
6329 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6331 mutexed = false;
6332 break;
6335 /* Mark all registers that do not meet the following condition:
6336 (1) Not set or read on any path from xi to an instance of the
6337 original operation. */
6338 if (!mutexed)
6340 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6341 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6342 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6345 return true;
6348 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6349 struct code_motion_path_driver_info_def move_op_hooks = {
6350 move_op_on_enter,
6351 move_op_orig_expr_found,
6352 move_op_orig_expr_not_found,
6353 move_op_merge_succs,
6354 move_op_after_merge_succs,
6355 move_op_ascend,
6356 move_op_at_first_insn,
6357 SUCCS_NORMAL,
6358 "move_op"
6361 /* Hooks and data to perform find_used_regs operations
6362 with code_motion_path_driver. */
6363 struct code_motion_path_driver_info_def fur_hooks = {
6364 fur_on_enter,
6365 fur_orig_expr_found,
6366 fur_orig_expr_not_found,
6367 fur_merge_succs,
6368 NULL, /* fur_after_merge_succs */
6369 NULL, /* fur_ascend */
6370 fur_at_first_insn,
6371 SUCCS_ALL,
6372 "find_used_regs"
6375 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6376 code_motion_path_driver is called recursively. Original operation
6377 was found at least on one path that is starting with one of INSN's
6378 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6379 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6380 of either move_op or find_used_regs depending on the caller.
6382 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6383 know for sure at this point. */
6384 static int
6385 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6386 ilist_t path, void *static_params)
6388 int res = 0;
6389 succ_iterator succ_i;
6390 rtx succ;
6391 basic_block bb;
6392 int old_index;
6393 unsigned old_succs;
6395 struct cmpd_local_params lparams;
6396 expr_def _x;
6398 lparams.c_expr_local = &_x;
6399 lparams.c_expr_merged = NULL;
6401 /* We need to process only NORMAL succs for move_op, and collect live
6402 registers from ALL branches (including those leading out of the
6403 region) for find_used_regs.
6405 In move_op, there can be a case when insn's bb number has changed
6406 due to created bookkeeping. This happens very rare, as we need to
6407 move expression from the beginning to the end of the same block.
6408 Rescan successors in this case. */
6410 rescan:
6411 bb = BLOCK_FOR_INSN (insn);
6412 old_index = bb->index;
6413 old_succs = EDGE_COUNT (bb->succs);
6415 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6417 int b;
6419 lparams.e1 = succ_i.e1;
6420 lparams.e2 = succ_i.e2;
6422 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6423 current region). */
6424 if (succ_i.current_flags == SUCCS_NORMAL)
6425 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6426 static_params);
6427 else
6428 b = 0;
6430 /* Merge c_expres found or unify live register sets from different
6431 successors. */
6432 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6433 static_params);
6434 if (b == 1)
6435 res = b;
6436 else if (b == -1 && res != 1)
6437 res = b;
6439 /* We have simplified the control flow below this point. In this case,
6440 the iterator becomes invalid. We need to try again.
6441 If we have removed the insn itself, it could be only an
6442 unconditional jump. Thus, do not rescan but break immediately --
6443 we have already visited the only successor block. */
6444 if (!BLOCK_FOR_INSN (insn))
6446 if (sched_verbose >= 6)
6447 sel_print ("Not doing rescan: already visited the only successor"
6448 " of block %d\n", old_index);
6449 break;
6451 if (BLOCK_FOR_INSN (insn)->index != old_index
6452 || EDGE_COUNT (bb->succs) != old_succs)
6454 if (sched_verbose >= 6)
6455 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6456 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6457 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6458 goto rescan;
6462 #ifdef ENABLE_CHECKING
6463 /* Here, RES==1 if original expr was found at least for one of the
6464 successors. After the loop, RES may happen to have zero value
6465 only if at some point the expr searched is present in av_set, but is
6466 not found below. In most cases, this situation is an error.
6467 The exception is when the original operation is blocked by
6468 bookkeeping generated for another fence or for another path in current
6469 move_op. */
6470 gcc_assert (res == 1
6471 || (res == 0
6472 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6473 static_params))
6474 || res == -1);
6475 #endif
6477 /* Merge data, clean up, etc. */
6478 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6479 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6481 return res;
6485 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6486 is the pointer to the av set with expressions we were looking for,
6487 PATH_P is the pointer to the traversed path. */
6488 static inline void
6489 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6491 ilist_remove (path_p);
6492 av_set_clear (orig_ops_p);
6495 /* The driver function that implements move_op or find_used_regs
6496 functionality dependent whether code_motion_path_driver_INFO is set to
6497 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6498 of code (CFG traversal etc) that are shared among both functions. INSN
6499 is the insn we're starting the search from, ORIG_OPS are the expressions
6500 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6501 parameters of the driver, and STATIC_PARAMS are static parameters of
6502 the caller.
6504 Returns whether original instructions were found. Note that top-level
6505 code_motion_path_driver always returns true. */
6506 static int
6507 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6508 cmpd_local_params_p local_params_in,
6509 void *static_params)
6511 expr_t expr = NULL;
6512 basic_block bb = BLOCK_FOR_INSN (insn);
6513 insn_t first_insn, bb_tail, before_first;
6514 bool removed_last_insn = false;
6516 if (sched_verbose >= 6)
6518 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6519 dump_insn (insn);
6520 sel_print (",");
6521 dump_av_set (orig_ops);
6522 sel_print (")\n");
6525 gcc_assert (orig_ops);
6527 /* If no original operations exist below this insn, return immediately. */
6528 if (is_ineligible_successor (insn, path))
6530 if (sched_verbose >= 6)
6531 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6532 return false;
6535 /* The block can have invalid av set, in which case it was created earlier
6536 during move_op. Return immediately. */
6537 if (sel_bb_head_p (insn))
6539 if (! AV_SET_VALID_P (insn))
6541 if (sched_verbose >= 6)
6542 sel_print ("Returned from block %d as it had invalid av set\n",
6543 bb->index);
6544 return false;
6547 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6549 /* We have already found an original operation on this branch, do not
6550 go any further and just return TRUE here. If we don't stop here,
6551 function can have exponential behaviour even on the small code
6552 with many different paths (e.g. with data speculation and
6553 recovery blocks). */
6554 if (sched_verbose >= 6)
6555 sel_print ("Block %d already visited in this traversal\n", bb->index);
6556 if (code_motion_path_driver_info->on_enter)
6557 return code_motion_path_driver_info->on_enter (insn,
6558 local_params_in,
6559 static_params,
6560 true);
6564 if (code_motion_path_driver_info->on_enter)
6565 code_motion_path_driver_info->on_enter (insn, local_params_in,
6566 static_params, false);
6567 orig_ops = av_set_copy (orig_ops);
6569 /* Filter the orig_ops set. */
6570 if (AV_SET_VALID_P (insn))
6571 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6573 /* If no more original ops, return immediately. */
6574 if (!orig_ops)
6576 if (sched_verbose >= 6)
6577 sel_print ("No intersection with av set of block %d\n", bb->index);
6578 return false;
6581 /* For non-speculative insns we have to leave only one form of the
6582 original operation, because if we don't, we may end up with
6583 different C_EXPRes and, consequently, with bookkeepings for different
6584 expression forms along the same code motion path. That may lead to
6585 generation of incorrect code. So for each code motion we stick to
6586 the single form of the instruction, except for speculative insns
6587 which we need to keep in different forms with all speculation
6588 types. */
6589 av_set_leave_one_nonspec (&orig_ops);
6591 /* It is not possible that all ORIG_OPS are filtered out. */
6592 gcc_assert (orig_ops);
6594 /* It is enough to place only heads and tails of visited basic blocks into
6595 the PATH. */
6596 ilist_add (&path, insn);
6597 first_insn = insn;
6598 bb_tail = sel_bb_end (bb);
6600 /* Descend the basic block in search of the original expr; this part
6601 corresponds to the part of the original move_op procedure executed
6602 before the recursive call. */
6603 for (;;)
6605 /* Look at the insn and decide if it could be an ancestor of currently
6606 scheduling operation. If it is so, then the insn "dest = op" could
6607 either be replaced with "dest = reg", because REG now holds the result
6608 of OP, or just removed, if we've scheduled the insn as a whole.
6610 If this insn doesn't contain currently scheduling OP, then proceed
6611 with searching and look at its successors. Operations we're searching
6612 for could have changed when moving up through this insn via
6613 substituting. In this case, perform unsubstitution on them first.
6615 When traversing the DAG below this insn is finished, insert
6616 bookkeeping code, if the insn is a joint point, and remove
6617 leftovers. */
6619 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6620 if (expr)
6622 insn_t last_insn = PREV_INSN (insn);
6624 /* We have found the original operation. */
6625 if (sched_verbose >= 6)
6626 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6628 code_motion_path_driver_info->orig_expr_found
6629 (insn, expr, local_params_in, static_params);
6631 /* Step back, so on the way back we'll start traversing from the
6632 previous insn (or we'll see that it's bb_note and skip that
6633 loop). */
6634 if (insn == first_insn)
6636 first_insn = NEXT_INSN (last_insn);
6637 removed_last_insn = sel_bb_end_p (last_insn);
6639 insn = last_insn;
6640 break;
6642 else
6644 /* We haven't found the original expr, continue descending the basic
6645 block. */
6646 if (code_motion_path_driver_info->orig_expr_not_found
6647 (insn, orig_ops, static_params))
6649 /* Av set ops could have been changed when moving through this
6650 insn. To find them below it, we have to un-substitute them. */
6651 undo_transformations (&orig_ops, insn);
6653 else
6655 /* Clean up and return, if the hook tells us to do so. It may
6656 happen if we've encountered the previously created
6657 bookkeeping. */
6658 code_motion_path_driver_cleanup (&orig_ops, &path);
6659 return -1;
6662 gcc_assert (orig_ops);
6665 /* Stop at insn if we got to the end of BB. */
6666 if (insn == bb_tail)
6667 break;
6669 insn = NEXT_INSN (insn);
6672 /* Here INSN either points to the insn before the original insn (may be
6673 bb_note, if original insn was a bb_head) or to the bb_end. */
6674 if (!expr)
6676 int res;
6677 rtx last_insn = PREV_INSN (insn);
6678 bool added_to_path;
6680 gcc_assert (insn == sel_bb_end (bb));
6682 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6683 it's already in PATH then). */
6684 if (insn != first_insn)
6686 ilist_add (&path, insn);
6687 added_to_path = true;
6689 else
6690 added_to_path = false;
6692 /* Process_successors should be able to find at least one
6693 successor for which code_motion_path_driver returns TRUE. */
6694 res = code_motion_process_successors (insn, orig_ops,
6695 path, static_params);
6697 /* Jump in the end of basic block could have been removed or replaced
6698 during code_motion_process_successors, so recompute insn as the
6699 last insn in bb. */
6700 if (NEXT_INSN (last_insn) != insn)
6702 insn = sel_bb_end (bb);
6703 first_insn = sel_bb_head (bb);
6706 /* Remove bb tail from path. */
6707 if (added_to_path)
6708 ilist_remove (&path);
6710 if (res != 1)
6712 /* This is the case when one of the original expr is no longer available
6713 due to bookkeeping created on this branch with the same register.
6714 In the original algorithm, which doesn't have update_data_sets call
6715 on a bookkeeping block, it would simply result in returning
6716 FALSE when we've encountered a previously generated bookkeeping
6717 insn in moveop_orig_expr_not_found. */
6718 code_motion_path_driver_cleanup (&orig_ops, &path);
6719 return res;
6723 /* Don't need it any more. */
6724 av_set_clear (&orig_ops);
6726 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6727 the beginning of the basic block. */
6728 before_first = PREV_INSN (first_insn);
6729 while (insn != before_first)
6731 if (code_motion_path_driver_info->ascend)
6732 code_motion_path_driver_info->ascend (insn, static_params);
6734 insn = PREV_INSN (insn);
6737 /* Now we're at the bb head. */
6738 insn = first_insn;
6739 ilist_remove (&path);
6740 local_params_in->removed_last_insn = removed_last_insn;
6741 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6743 /* This should be the very last operation as at bb head we could change
6744 the numbering by creating bookkeeping blocks. */
6745 if (removed_last_insn)
6746 insn = PREV_INSN (insn);
6748 /* If we have simplified the control flow and removed the first jump insn,
6749 there's no point in marking this block in the visited blocks bitmap. */
6750 if (BLOCK_FOR_INSN (insn))
6751 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6752 return true;
6755 /* Move up the operations from ORIG_OPS set traversing the dag starting
6756 from INSN. PATH represents the edges traversed so far.
6757 DEST is the register chosen for scheduling the current expr. Insert
6758 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6759 C_EXPR is how it looks like at the given cfg point.
6760 Set *SHOULD_MOVE to indicate whether we have only disconnected
6761 one of the insns found.
6763 Returns whether original instructions were found, which is asserted
6764 to be true in the caller. */
6765 static bool
6766 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6767 rtx dest, expr_t c_expr, bool *should_move)
6769 struct moveop_static_params sparams;
6770 struct cmpd_local_params lparams;
6771 int res;
6773 /* Init params for code_motion_path_driver. */
6774 sparams.dest = dest;
6775 sparams.c_expr = c_expr;
6776 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6777 #ifdef ENABLE_CHECKING
6778 sparams.failed_insn = NULL;
6779 #endif
6780 sparams.was_renamed = false;
6781 lparams.e1 = NULL;
6783 /* We haven't visited any blocks yet. */
6784 bitmap_clear (code_motion_visited_blocks);
6786 /* Set appropriate hooks and data. */
6787 code_motion_path_driver_info = &move_op_hooks;
6788 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6790 gcc_assert (res != -1);
6792 if (sparams.was_renamed)
6793 EXPR_WAS_RENAMED (expr_vliw) = true;
6795 *should_move = (sparams.uid == -1);
6797 return res;
6801 /* Functions that work with regions. */
6803 /* Current number of seqno used in init_seqno and init_seqno_1. */
6804 static int cur_seqno;
6806 /* A helper for init_seqno. Traverse the region starting from BB and
6807 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6808 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6809 static void
6810 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6812 int bbi = BLOCK_TO_BB (bb->index);
6813 insn_t insn, note = bb_note (bb);
6814 insn_t succ_insn;
6815 succ_iterator si;
6817 bitmap_set_bit (visited_bbs, bbi);
6818 if (blocks_to_reschedule)
6819 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6821 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6822 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6824 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6825 int succ_bbi = BLOCK_TO_BB (succ->index);
6827 gcc_assert (in_current_region_p (succ));
6829 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6831 gcc_assert (succ_bbi > bbi);
6833 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6835 else if (blocks_to_reschedule)
6836 bitmap_set_bit (forced_ebb_heads, succ->index);
6839 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6840 INSN_SEQNO (insn) = cur_seqno--;
6843 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6844 blocks on which we're rescheduling when pipelining, FROM is the block where
6845 traversing region begins (it may not be the head of the region when
6846 pipelining, but the head of the loop instead).
6848 Returns the maximal seqno found. */
6849 static int
6850 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6852 sbitmap visited_bbs;
6853 bitmap_iterator bi;
6854 unsigned bbi;
6856 visited_bbs = sbitmap_alloc (current_nr_blocks);
6858 if (blocks_to_reschedule)
6860 bitmap_ones (visited_bbs);
6861 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6863 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6864 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6867 else
6869 bitmap_clear (visited_bbs);
6870 from = EBB_FIRST_BB (0);
6873 cur_seqno = sched_max_luid - 1;
6874 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6876 /* cur_seqno may be positive if the number of instructions is less than
6877 sched_max_luid - 1 (when rescheduling or if some instructions have been
6878 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6879 gcc_assert (cur_seqno >= 0);
6881 sbitmap_free (visited_bbs);
6882 return sched_max_luid - 1;
6885 /* Initialize scheduling parameters for current region. */
6886 static void
6887 sel_setup_region_sched_flags (void)
6889 enable_schedule_as_rhs_p = 1;
6890 bookkeeping_p = 1;
6891 pipelining_p = (bookkeeping_p
6892 && (flag_sel_sched_pipelining != 0)
6893 && current_loop_nest != NULL
6894 && loop_has_exit_edges (current_loop_nest));
6895 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6896 max_ws = MAX_WS;
6899 /* Return true if all basic blocks of current region are empty. */
6900 static bool
6901 current_region_empty_p (void)
6903 int i;
6904 for (i = 0; i < current_nr_blocks; i++)
6905 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6906 return false;
6908 return true;
6911 /* Prepare and verify loop nest for pipelining. */
6912 static void
6913 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6915 current_loop_nest = get_loop_nest_for_rgn (rgn);
6917 if (!current_loop_nest)
6918 return;
6920 /* If this loop has any saved loop preheaders from nested loops,
6921 add these basic blocks to the current region. */
6922 sel_add_loop_preheaders (bbs);
6924 /* Check that we're starting with a valid information. */
6925 gcc_assert (loop_latch_edge (current_loop_nest));
6926 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6929 /* Compute instruction priorities for current region. */
6930 static void
6931 sel_compute_priorities (int rgn)
6933 sched_rgn_compute_dependencies (rgn);
6935 /* Compute insn priorities in haifa style. Then free haifa style
6936 dependencies that we've calculated for this. */
6937 compute_priorities ();
6939 if (sched_verbose >= 5)
6940 debug_rgn_dependencies (0);
6942 free_rgn_deps ();
6945 /* Init scheduling data for RGN. Returns true when this region should not
6946 be scheduled. */
6947 static bool
6948 sel_region_init (int rgn)
6950 int i;
6951 bb_vec_t bbs;
6953 rgn_setup_region (rgn);
6955 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6956 do region initialization here so the region can be bundled correctly,
6957 but we'll skip the scheduling in sel_sched_region (). */
6958 if (current_region_empty_p ())
6959 return true;
6961 bbs.create (current_nr_blocks);
6963 for (i = 0; i < current_nr_blocks; i++)
6964 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6966 sel_init_bbs (bbs);
6968 if (flag_sel_sched_pipelining)
6969 setup_current_loop_nest (rgn, &bbs);
6971 sel_setup_region_sched_flags ();
6973 /* Initialize luids and dependence analysis which both sel-sched and haifa
6974 need. */
6975 sched_init_luids (bbs);
6976 sched_deps_init (false);
6978 /* Initialize haifa data. */
6979 rgn_setup_sched_infos ();
6980 sel_set_sched_flags ();
6981 haifa_init_h_i_d (bbs);
6983 sel_compute_priorities (rgn);
6984 init_deps_global ();
6986 /* Main initialization. */
6987 sel_setup_sched_infos ();
6988 sel_init_global_and_expr (bbs);
6990 bbs.release ();
6992 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6994 /* Init correct liveness sets on each instruction of a single-block loop.
6995 This is the only situation when we can't update liveness when calling
6996 compute_live for the first insn of the loop. */
6997 if (current_loop_nest)
6999 int header =
7000 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
7002 : 0);
7004 if (current_nr_blocks == header + 1)
7005 update_liveness_on_insn
7006 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
7009 /* Set hooks so that no newly generated insn will go out unnoticed. */
7010 sel_register_cfg_hooks ();
7012 /* !!! We call target.sched.init () for the whole region, but we invoke
7013 targetm.sched.finish () for every ebb. */
7014 if (targetm.sched.init)
7015 /* None of the arguments are actually used in any target. */
7016 targetm.sched.init (sched_dump, sched_verbose, -1);
7018 first_emitted_uid = get_max_uid () + 1;
7019 preheader_removed = false;
7021 /* Reset register allocation ticks array. */
7022 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
7023 reg_rename_this_tick = 0;
7025 bitmap_initialize (forced_ebb_heads, 0);
7026 bitmap_clear (forced_ebb_heads);
7028 setup_nop_vinsn ();
7029 current_copies = BITMAP_ALLOC (NULL);
7030 current_originators = BITMAP_ALLOC (NULL);
7031 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7033 return false;
7036 /* Simplify insns after the scheduling. */
7037 static void
7038 simplify_changed_insns (void)
7040 int i;
7042 for (i = 0; i < current_nr_blocks; i++)
7044 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
7045 rtx insn;
7047 FOR_BB_INSNS (bb, insn)
7048 if (INSN_P (insn))
7050 expr_t expr = INSN_EXPR (insn);
7052 if (EXPR_WAS_SUBSTITUTED (expr))
7053 validate_simplify_insn (insn);
7058 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7059 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7060 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7061 static void
7062 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7064 insn_t head, tail;
7065 basic_block bb1 = bb;
7066 if (sched_verbose >= 2)
7067 sel_print ("Finishing schedule in bbs: ");
7071 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7073 if (sched_verbose >= 2)
7074 sel_print ("%d; ", bb1->index);
7076 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7078 if (sched_verbose >= 2)
7079 sel_print ("\n");
7081 get_ebb_head_tail (bb, bb1, &head, &tail);
7083 current_sched_info->head = head;
7084 current_sched_info->tail = tail;
7085 current_sched_info->prev_head = PREV_INSN (head);
7086 current_sched_info->next_tail = NEXT_INSN (tail);
7089 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7090 static void
7091 reset_sched_cycles_in_current_ebb (void)
7093 int last_clock = 0;
7094 int haifa_last_clock = -1;
7095 int haifa_clock = 0;
7096 int issued_insns = 0;
7097 insn_t insn;
7099 if (targetm.sched.init)
7101 /* None of the arguments are actually used in any target.
7102 NB: We should have md_reset () hook for cases like this. */
7103 targetm.sched.init (sched_dump, sched_verbose, -1);
7106 state_reset (curr_state);
7107 advance_state (curr_state);
7109 for (insn = current_sched_info->head;
7110 insn != current_sched_info->next_tail;
7111 insn = NEXT_INSN (insn))
7113 int cost, haifa_cost;
7114 int sort_p;
7115 bool asm_p, real_insn, after_stall, all_issued;
7116 int clock;
7118 if (!INSN_P (insn))
7119 continue;
7121 asm_p = false;
7122 real_insn = recog_memoized (insn) >= 0;
7123 clock = INSN_SCHED_CYCLE (insn);
7125 cost = clock - last_clock;
7127 /* Initialize HAIFA_COST. */
7128 if (! real_insn)
7130 asm_p = INSN_ASM_P (insn);
7132 if (asm_p)
7133 /* This is asm insn which *had* to be scheduled first
7134 on the cycle. */
7135 haifa_cost = 1;
7136 else
7137 /* This is a use/clobber insn. It should not change
7138 cost. */
7139 haifa_cost = 0;
7141 else
7142 haifa_cost = estimate_insn_cost (insn, curr_state);
7144 /* Stall for whatever cycles we've stalled before. */
7145 after_stall = 0;
7146 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7148 haifa_cost = cost;
7149 after_stall = 1;
7151 all_issued = issued_insns == issue_rate;
7152 if (haifa_cost == 0 && all_issued)
7153 haifa_cost = 1;
7154 if (haifa_cost > 0)
7156 int i = 0;
7158 while (haifa_cost--)
7160 advance_state (curr_state);
7161 issued_insns = 0;
7162 i++;
7164 if (sched_verbose >= 2)
7166 sel_print ("advance_state (state_transition)\n");
7167 debug_state (curr_state);
7170 /* The DFA may report that e.g. insn requires 2 cycles to be
7171 issued, but on the next cycle it says that insn is ready
7172 to go. Check this here. */
7173 if (!after_stall
7174 && real_insn
7175 && haifa_cost > 0
7176 && estimate_insn_cost (insn, curr_state) == 0)
7177 break;
7179 /* When the data dependency stall is longer than the DFA stall,
7180 and when we have issued exactly issue_rate insns and stalled,
7181 it could be that after this longer stall the insn will again
7182 become unavailable to the DFA restrictions. Looks strange
7183 but happens e.g. on x86-64. So recheck DFA on the last
7184 iteration. */
7185 if ((after_stall || all_issued)
7186 && real_insn
7187 && haifa_cost == 0)
7188 haifa_cost = estimate_insn_cost (insn, curr_state);
7191 haifa_clock += i;
7192 if (sched_verbose >= 2)
7193 sel_print ("haifa clock: %d\n", haifa_clock);
7195 else
7196 gcc_assert (haifa_cost == 0);
7198 if (sched_verbose >= 2)
7199 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7201 if (targetm.sched.dfa_new_cycle)
7202 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7203 haifa_last_clock, haifa_clock,
7204 &sort_p))
7206 advance_state (curr_state);
7207 issued_insns = 0;
7208 haifa_clock++;
7209 if (sched_verbose >= 2)
7211 sel_print ("advance_state (dfa_new_cycle)\n");
7212 debug_state (curr_state);
7213 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7217 if (real_insn)
7219 static state_t temp = NULL;
7221 if (!temp)
7222 temp = xmalloc (dfa_state_size);
7223 memcpy (temp, curr_state, dfa_state_size);
7225 cost = state_transition (curr_state, insn);
7226 if (memcmp (temp, curr_state, dfa_state_size))
7227 issued_insns++;
7229 if (sched_verbose >= 2)
7231 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7232 haifa_clock + 1);
7233 debug_state (curr_state);
7235 gcc_assert (cost < 0);
7238 if (targetm.sched.variable_issue)
7239 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7241 INSN_SCHED_CYCLE (insn) = haifa_clock;
7243 last_clock = clock;
7244 haifa_last_clock = haifa_clock;
7248 /* Put TImode markers on insns starting a new issue group. */
7249 static void
7250 put_TImodes (void)
7252 int last_clock = -1;
7253 insn_t insn;
7255 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7256 insn = NEXT_INSN (insn))
7258 int cost, clock;
7260 if (!INSN_P (insn))
7261 continue;
7263 clock = INSN_SCHED_CYCLE (insn);
7264 cost = (last_clock == -1) ? 1 : clock - last_clock;
7266 gcc_assert (cost >= 0);
7268 if (issue_rate > 1
7269 && GET_CODE (PATTERN (insn)) != USE
7270 && GET_CODE (PATTERN (insn)) != CLOBBER)
7272 if (reload_completed && cost > 0)
7273 PUT_MODE (insn, TImode);
7275 last_clock = clock;
7278 if (sched_verbose >= 2)
7279 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7283 /* Perform MD_FINISH on EBBs comprising current region. When
7284 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7285 to produce correct sched cycles on insns. */
7286 static void
7287 sel_region_target_finish (bool reset_sched_cycles_p)
7289 int i;
7290 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7292 for (i = 0; i < current_nr_blocks; i++)
7294 if (bitmap_bit_p (scheduled_blocks, i))
7295 continue;
7297 /* While pipelining outer loops, skip bundling for loop
7298 preheaders. Those will be rescheduled in the outer loop. */
7299 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7300 continue;
7302 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7304 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7305 continue;
7307 if (reset_sched_cycles_p)
7308 reset_sched_cycles_in_current_ebb ();
7310 if (targetm.sched.init)
7311 targetm.sched.init (sched_dump, sched_verbose, -1);
7313 put_TImodes ();
7315 if (targetm.sched.finish)
7317 targetm.sched.finish (sched_dump, sched_verbose);
7319 /* Extend luids so that insns generated by the target will
7320 get zero luid. */
7321 sched_extend_luids ();
7325 BITMAP_FREE (scheduled_blocks);
7328 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7329 is true, make an additional pass emulating scheduler to get correct insn
7330 cycles for md_finish calls. */
7331 static void
7332 sel_region_finish (bool reset_sched_cycles_p)
7334 simplify_changed_insns ();
7335 sched_finish_ready_list ();
7336 free_nop_pool ();
7338 /* Free the vectors. */
7339 vec_av_set.release ();
7340 BITMAP_FREE (current_copies);
7341 BITMAP_FREE (current_originators);
7342 BITMAP_FREE (code_motion_visited_blocks);
7343 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7344 vinsn_vec_free (vec_target_unavailable_vinsns);
7346 /* If LV_SET of the region head should be updated, do it now because
7347 there will be no other chance. */
7349 succ_iterator si;
7350 insn_t insn;
7352 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7353 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7355 basic_block bb = BLOCK_FOR_INSN (insn);
7357 if (!BB_LV_SET_VALID_P (bb))
7358 compute_live (insn);
7362 /* Emulate the Haifa scheduler for bundling. */
7363 if (reload_completed)
7364 sel_region_target_finish (reset_sched_cycles_p);
7366 sel_finish_global_and_expr ();
7368 bitmap_clear (forced_ebb_heads);
7370 free_nop_vinsn ();
7372 finish_deps_global ();
7373 sched_finish_luids ();
7374 h_d_i_d.release ();
7376 sel_finish_bbs ();
7377 BITMAP_FREE (blocks_to_reschedule);
7379 sel_unregister_cfg_hooks ();
7381 max_issue_size = 0;
7385 /* Functions that implement the scheduler driver. */
7387 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7388 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7389 of insns scheduled -- these would be postprocessed later. */
7390 static void
7391 schedule_on_fences (flist_t fences, int max_seqno,
7392 ilist_t **scheduled_insns_tailpp)
7394 flist_t old_fences = fences;
7396 if (sched_verbose >= 1)
7398 sel_print ("\nScheduling on fences: ");
7399 dump_flist (fences);
7400 sel_print ("\n");
7403 scheduled_something_on_previous_fence = false;
7404 for (; fences; fences = FLIST_NEXT (fences))
7406 fence_t fence = NULL;
7407 int seqno = 0;
7408 flist_t fences2;
7409 bool first_p = true;
7411 /* Choose the next fence group to schedule.
7412 The fact that insn can be scheduled only once
7413 on the cycle is guaranteed by two properties:
7414 1. seqnos of parallel groups decrease with each iteration.
7415 2. If is_ineligible_successor () sees the larger seqno, it
7416 checks if candidate insn is_in_current_fence_p (). */
7417 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7419 fence_t f = FLIST_FENCE (fences2);
7421 if (!FENCE_PROCESSED_P (f))
7423 int i = INSN_SEQNO (FENCE_INSN (f));
7425 if (first_p || i > seqno)
7427 seqno = i;
7428 fence = f;
7429 first_p = false;
7431 else
7432 /* ??? Seqnos of different groups should be different. */
7433 gcc_assert (1 || i != seqno);
7437 gcc_assert (fence);
7439 /* As FENCE is nonnull, SEQNO is initialized. */
7440 seqno -= max_seqno + 1;
7441 fill_insns (fence, seqno, scheduled_insns_tailpp);
7442 FENCE_PROCESSED_P (fence) = true;
7445 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7446 don't need to keep bookkeeping-invalidated and target-unavailable
7447 vinsns any more. */
7448 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7449 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7452 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7453 static void
7454 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7456 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7458 /* The first element is already processed. */
7459 while ((fences = FLIST_NEXT (fences)))
7461 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7463 if (*min_seqno > seqno)
7464 *min_seqno = seqno;
7465 else if (*max_seqno < seqno)
7466 *max_seqno = seqno;
7470 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7471 static flist_t
7472 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7474 flist_t old_fences = fences;
7475 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7476 int max_time = 0;
7478 flist_tail_init (new_fences);
7479 for (; fences; fences = FLIST_NEXT (fences))
7481 fence_t fence = FLIST_FENCE (fences);
7482 insn_t insn;
7484 if (!FENCE_BNDS (fence))
7486 /* This fence doesn't have any successors. */
7487 if (!FENCE_SCHEDULED_P (fence))
7489 /* Nothing was scheduled on this fence. */
7490 int seqno;
7492 insn = FENCE_INSN (fence);
7493 seqno = INSN_SEQNO (insn);
7494 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7496 if (sched_verbose >= 1)
7497 sel_print ("Fence %d[%d] has not changed\n",
7498 INSN_UID (insn),
7499 BLOCK_NUM (insn));
7500 move_fence_to_fences (fences, new_fences);
7503 else
7504 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7505 max_time = MAX (max_time, FENCE_CYCLE (fence));
7508 flist_clear (&old_fences);
7509 *ptime = max_time;
7510 return FLIST_TAIL_HEAD (new_fences);
7513 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7514 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7515 the highest seqno used in a region. Return the updated highest seqno. */
7516 static int
7517 update_seqnos_and_stage (int min_seqno, int max_seqno,
7518 int highest_seqno_in_use,
7519 ilist_t *pscheduled_insns)
7521 int new_hs;
7522 ilist_iterator ii;
7523 insn_t insn;
7525 /* Actually, new_hs is the seqno of the instruction, that was
7526 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7527 if (*pscheduled_insns)
7529 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7530 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7531 gcc_assert (new_hs > highest_seqno_in_use);
7533 else
7534 new_hs = highest_seqno_in_use;
7536 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7538 gcc_assert (INSN_SEQNO (insn) < 0);
7539 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7540 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7542 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7543 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7544 require > 1GB of memory e.g. on limit-fnargs.c. */
7545 if (! pipelining_p)
7546 free_data_for_scheduled_insn (insn);
7549 ilist_clear (pscheduled_insns);
7550 global_level++;
7552 return new_hs;
7555 /* The main driver for scheduling a region. This function is responsible
7556 for correct propagation of fences (i.e. scheduling points) and creating
7557 a group of parallel insns at each of them. It also supports
7558 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7559 of scheduling. */
7560 static void
7561 sel_sched_region_2 (int orig_max_seqno)
7563 int highest_seqno_in_use = orig_max_seqno;
7564 int max_time = 0;
7566 stat_bookkeeping_copies = 0;
7567 stat_insns_needed_bookkeeping = 0;
7568 stat_renamed_scheduled = 0;
7569 stat_substitutions_total = 0;
7570 num_insns_scheduled = 0;
7572 while (fences)
7574 int min_seqno, max_seqno;
7575 ilist_t scheduled_insns = NULL;
7576 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7578 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7579 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7580 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7581 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7582 highest_seqno_in_use,
7583 &scheduled_insns);
7586 if (sched_verbose >= 1)
7588 sel_print ("Total scheduling time: %d cycles\n", max_time);
7589 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7590 "bookkeeping, %d insns renamed, %d insns substituted\n",
7591 stat_bookkeeping_copies,
7592 stat_insns_needed_bookkeeping,
7593 stat_renamed_scheduled,
7594 stat_substitutions_total);
7598 /* Schedule a region. When pipelining, search for possibly never scheduled
7599 bookkeeping code and schedule it. Reschedule pipelined code without
7600 pipelining after. */
7601 static void
7602 sel_sched_region_1 (void)
7604 int orig_max_seqno;
7606 /* Remove empty blocks that might be in the region from the beginning. */
7607 purge_empty_blocks ();
7609 orig_max_seqno = init_seqno (NULL, NULL);
7610 gcc_assert (orig_max_seqno >= 1);
7612 /* When pipelining outer loops, create fences on the loop header,
7613 not preheader. */
7614 fences = NULL;
7615 if (current_loop_nest)
7616 init_fences (BB_END (EBB_FIRST_BB (0)));
7617 else
7618 init_fences (bb_note (EBB_FIRST_BB (0)));
7619 global_level = 1;
7621 sel_sched_region_2 (orig_max_seqno);
7623 gcc_assert (fences == NULL);
7625 if (pipelining_p)
7627 int i;
7628 basic_block bb;
7629 struct flist_tail_def _new_fences;
7630 flist_tail_t new_fences = &_new_fences;
7631 bool do_p = true;
7633 pipelining_p = false;
7634 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7635 bookkeeping_p = false;
7636 enable_schedule_as_rhs_p = false;
7638 /* Schedule newly created code, that has not been scheduled yet. */
7639 do_p = true;
7641 while (do_p)
7643 do_p = false;
7645 for (i = 0; i < current_nr_blocks; i++)
7647 basic_block bb = EBB_FIRST_BB (i);
7649 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7651 if (! bb_ends_ebb_p (bb))
7652 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7653 if (sel_bb_empty_p (bb))
7655 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7656 continue;
7658 clear_outdated_rtx_info (bb);
7659 if (sel_insn_is_speculation_check (BB_END (bb))
7660 && JUMP_P (BB_END (bb)))
7661 bitmap_set_bit (blocks_to_reschedule,
7662 BRANCH_EDGE (bb)->dest->index);
7664 else if (! sel_bb_empty_p (bb)
7665 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7666 bitmap_set_bit (blocks_to_reschedule, bb->index);
7669 for (i = 0; i < current_nr_blocks; i++)
7671 bb = EBB_FIRST_BB (i);
7673 /* While pipelining outer loops, skip bundling for loop
7674 preheaders. Those will be rescheduled in the outer
7675 loop. */
7676 if (sel_is_loop_preheader_p (bb))
7678 clear_outdated_rtx_info (bb);
7679 continue;
7682 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7684 flist_tail_init (new_fences);
7686 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7688 /* Mark BB as head of the new ebb. */
7689 bitmap_set_bit (forced_ebb_heads, bb->index);
7691 gcc_assert (fences == NULL);
7693 init_fences (bb_note (bb));
7695 sel_sched_region_2 (orig_max_seqno);
7697 do_p = true;
7698 break;
7705 /* Schedule the RGN region. */
7706 void
7707 sel_sched_region (int rgn)
7709 bool schedule_p;
7710 bool reset_sched_cycles_p;
7712 if (sel_region_init (rgn))
7713 return;
7715 if (sched_verbose >= 1)
7716 sel_print ("Scheduling region %d\n", rgn);
7718 schedule_p = (!sched_is_disabled_for_current_region_p ()
7719 && dbg_cnt (sel_sched_region_cnt));
7720 reset_sched_cycles_p = pipelining_p;
7721 if (schedule_p)
7722 sel_sched_region_1 ();
7723 else
7724 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7725 reset_sched_cycles_p = true;
7727 sel_region_finish (reset_sched_cycles_p);
7730 /* Perform global init for the scheduler. */
7731 static void
7732 sel_global_init (void)
7734 calculate_dominance_info (CDI_DOMINATORS);
7735 alloc_sched_pools ();
7737 /* Setup the infos for sched_init. */
7738 sel_setup_sched_infos ();
7739 setup_sched_dump ();
7741 sched_rgn_init (false);
7742 sched_init ();
7744 sched_init_bbs ();
7745 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7746 after_recovery = 0;
7747 can_issue_more = issue_rate;
7749 sched_extend_target ();
7750 sched_deps_init (true);
7751 setup_nop_and_exit_insns ();
7752 sel_extend_global_bb_info ();
7753 init_lv_sets ();
7754 init_hard_regs_data ();
7757 /* Free the global data of the scheduler. */
7758 static void
7759 sel_global_finish (void)
7761 free_bb_note_pool ();
7762 free_lv_sets ();
7763 sel_finish_global_bb_info ();
7765 free_regset_pool ();
7766 free_nop_and_exit_insns ();
7768 sched_rgn_finish ();
7769 sched_deps_finish ();
7770 sched_finish ();
7772 if (current_loops)
7773 sel_finish_pipelining ();
7775 free_sched_pools ();
7776 free_dominance_info (CDI_DOMINATORS);
7779 /* Return true when we need to skip selective scheduling. Used for debugging. */
7780 bool
7781 maybe_skip_selective_scheduling (void)
7783 return ! dbg_cnt (sel_sched_cnt);
7786 /* The entry point. */
7787 void
7788 run_selective_scheduling (void)
7790 int rgn;
7792 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7793 return;
7795 sel_global_init ();
7797 for (rgn = 0; rgn < nr_regions; rgn++)
7798 sel_sched_region (rgn);
7800 sel_global_finish ();
7803 #endif