2014-04-14 Martin Jambor <mjambor@suse.cz>
[official-gcc.git] / gcc / haifa-sched.c
blob2d66e5cab6a23a57b5d1d090811a26fd5ee2a86a
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "function.h"
135 #include "flags.h"
136 #include "insn-config.h"
137 #include "insn-attr.h"
138 #include "except.h"
139 #include "recog.h"
140 #include "sched-int.h"
141 #include "target.h"
142 #include "common/common-target.h"
143 #include "params.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "ira.h"
147 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
148 #include "hash-table.h"
149 #include "dumpfile.h"
151 #ifdef INSN_SCHEDULING
153 /* True if we do register pressure relief through live-range
154 shrinkage. */
155 static bool live_range_shrinkage_p;
157 /* Switch on live range shrinkage. */
158 void
159 initialize_live_range_shrinkage (void)
161 live_range_shrinkage_p = true;
164 /* Switch off live range shrinkage. */
165 void
166 finish_live_range_shrinkage (void)
168 live_range_shrinkage_p = false;
171 /* issue_rate is the number of insns that can be scheduled in the same
172 machine cycle. It can be defined in the config/mach/mach.h file,
173 otherwise we set it to 1. */
175 int issue_rate;
177 /* This can be set to true by a backend if the scheduler should not
178 enable a DCE pass. */
179 bool sched_no_dce;
181 /* The current initiation interval used when modulo scheduling. */
182 static int modulo_ii;
184 /* The maximum number of stages we are prepared to handle. */
185 static int modulo_max_stages;
187 /* The number of insns that exist in each iteration of the loop. We use this
188 to detect when we've scheduled all insns from the first iteration. */
189 static int modulo_n_insns;
191 /* The current count of insns in the first iteration of the loop that have
192 already been scheduled. */
193 static int modulo_insns_scheduled;
195 /* The maximum uid of insns from the first iteration of the loop. */
196 static int modulo_iter0_max_uid;
198 /* The number of times we should attempt to backtrack when modulo scheduling.
199 Decreased each time we have to backtrack. */
200 static int modulo_backtracks_left;
202 /* The stage in which the last insn from the original loop was
203 scheduled. */
204 static int modulo_last_stage;
206 /* sched-verbose controls the amount of debugging output the
207 scheduler prints. It is controlled by -fsched-verbose=N:
208 N>0 and no -DSR : the output is directed to stderr.
209 N>=10 will direct the printouts to stderr (regardless of -dSR).
210 N=1: same as -dSR.
211 N=2: bb's probabilities, detailed ready list info, unit/insn info.
212 N=3: rtl at abort point, control-flow, regions info.
213 N=5: dependences info. */
215 int sched_verbose = 0;
217 /* Debugging file. All printouts are sent to dump, which is always set,
218 either to stderr, or to the dump listing file (-dRS). */
219 FILE *sched_dump = 0;
221 /* This is a placeholder for the scheduler parameters common
222 to all schedulers. */
223 struct common_sched_info_def *common_sched_info;
225 #define INSN_TICK(INSN) (HID (INSN)->tick)
226 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
227 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
228 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
229 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
230 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
231 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
232 /* Cached cost of the instruction. Use insn_cost to get cost of the
233 insn. -1 here means that the field is not initialized. */
234 #define INSN_COST(INSN) (HID (INSN)->cost)
236 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
237 then it should be recalculated from scratch. */
238 #define INVALID_TICK (-(max_insn_queue_index + 1))
239 /* The minimal value of the INSN_TICK of an instruction. */
240 #define MIN_TICK (-max_insn_queue_index)
242 /* List of important notes we must keep around. This is a pointer to the
243 last element in the list. */
244 rtx note_list;
246 static struct spec_info_def spec_info_var;
247 /* Description of the speculative part of the scheduling.
248 If NULL - no speculation. */
249 spec_info_t spec_info = NULL;
251 /* True, if recovery block was added during scheduling of current block.
252 Used to determine, if we need to fix INSN_TICKs. */
253 static bool haifa_recovery_bb_recently_added_p;
255 /* True, if recovery block was added during this scheduling pass.
256 Used to determine if we should have empty memory pools of dependencies
257 after finishing current region. */
258 bool haifa_recovery_bb_ever_added_p;
260 /* Counters of different types of speculative instructions. */
261 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
263 /* Array used in {unlink, restore}_bb_notes. */
264 static rtx *bb_header = 0;
266 /* Basic block after which recovery blocks will be created. */
267 static basic_block before_recovery;
269 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
270 created it. */
271 basic_block after_recovery;
273 /* FALSE if we add bb to another region, so we don't need to initialize it. */
274 bool adding_bb_to_current_region_p = true;
276 /* Queues, etc. */
278 /* An instruction is ready to be scheduled when all insns preceding it
279 have already been scheduled. It is important to ensure that all
280 insns which use its result will not be executed until its result
281 has been computed. An insn is maintained in one of four structures:
283 (P) the "Pending" set of insns which cannot be scheduled until
284 their dependencies have been satisfied.
285 (Q) the "Queued" set of insns that can be scheduled when sufficient
286 time has passed.
287 (R) the "Ready" list of unscheduled, uncommitted insns.
288 (S) the "Scheduled" list of insns.
290 Initially, all insns are either "Pending" or "Ready" depending on
291 whether their dependencies are satisfied.
293 Insns move from the "Ready" list to the "Scheduled" list as they
294 are committed to the schedule. As this occurs, the insns in the
295 "Pending" list have their dependencies satisfied and move to either
296 the "Ready" list or the "Queued" set depending on whether
297 sufficient time has passed to make them ready. As time passes,
298 insns move from the "Queued" set to the "Ready" list.
300 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
301 unscheduled insns, i.e., those that are ready, queued, and pending.
302 The "Queued" set (Q) is implemented by the variable `insn_queue'.
303 The "Ready" list (R) is implemented by the variables `ready' and
304 `n_ready'.
305 The "Scheduled" list (S) is the new insn chain built by this pass.
307 The transition (R->S) is implemented in the scheduling loop in
308 `schedule_block' when the best insn to schedule is chosen.
309 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
310 insns move from the ready list to the scheduled list.
311 The transition (Q->R) is implemented in 'queue_to_insn' as time
312 passes or stalls are introduced. */
314 /* Implement a circular buffer to delay instructions until sufficient
315 time has passed. For the new pipeline description interface,
316 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
317 than maximal time of instruction execution computed by genattr.c on
318 the base maximal time of functional unit reservations and getting a
319 result. This is the longest time an insn may be queued. */
321 static rtx *insn_queue;
322 static int q_ptr = 0;
323 static int q_size = 0;
324 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
325 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
327 #define QUEUE_SCHEDULED (-3)
328 #define QUEUE_NOWHERE (-2)
329 #define QUEUE_READY (-1)
330 /* QUEUE_SCHEDULED - INSN is scheduled.
331 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
332 queue or ready list.
333 QUEUE_READY - INSN is in ready list.
334 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
336 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
338 /* The following variable value refers for all current and future
339 reservations of the processor units. */
340 state_t curr_state;
342 /* The following variable value is size of memory representing all
343 current and future reservations of the processor units. */
344 size_t dfa_state_size;
346 /* The following array is used to find the best insn from ready when
347 the automaton pipeline interface is used. */
348 char *ready_try = NULL;
350 /* The ready list. */
351 struct ready_list ready = {NULL, 0, 0, 0, 0};
353 /* The pointer to the ready list (to be removed). */
354 static struct ready_list *readyp = &ready;
356 /* Scheduling clock. */
357 static int clock_var;
359 /* Clock at which the previous instruction was issued. */
360 static int last_clock_var;
362 /* Set to true if, when queuing a shadow insn, we discover that it would be
363 scheduled too late. */
364 static bool must_backtrack;
366 /* The following variable value is number of essential insns issued on
367 the current cycle. An insn is essential one if it changes the
368 processors state. */
369 int cycle_issued_insns;
371 /* This records the actual schedule. It is built up during the main phase
372 of schedule_block, and afterwards used to reorder the insns in the RTL. */
373 static vec<rtx> scheduled_insns;
375 static int may_trap_exp (const_rtx, int);
377 /* Nonzero iff the address is comprised from at most 1 register. */
378 #define CONST_BASED_ADDRESS_P(x) \
379 (REG_P (x) \
380 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
381 || (GET_CODE (x) == LO_SUM)) \
382 && (CONSTANT_P (XEXP (x, 0)) \
383 || CONSTANT_P (XEXP (x, 1)))))
385 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
386 as found by analyzing insn's expression. */
389 static int haifa_luid_for_non_insn (rtx x);
391 /* Haifa version of sched_info hooks common to all headers. */
392 const struct common_sched_info_def haifa_common_sched_info =
394 NULL, /* fix_recovery_cfg */
395 NULL, /* add_block */
396 NULL, /* estimate_number_of_insns */
397 haifa_luid_for_non_insn, /* luid_for_non_insn */
398 SCHED_PASS_UNKNOWN /* sched_pass_id */
401 /* Mapping from instruction UID to its Logical UID. */
402 vec<int> sched_luids = vNULL;
404 /* Next LUID to assign to an instruction. */
405 int sched_max_luid = 1;
407 /* Haifa Instruction Data. */
408 vec<haifa_insn_data_def> h_i_d = vNULL;
410 void (* sched_init_only_bb) (basic_block, basic_block);
412 /* Split block function. Different schedulers might use different functions
413 to handle their internal data consistent. */
414 basic_block (* sched_split_block) (basic_block, rtx);
416 /* Create empty basic block after the specified block. */
417 basic_block (* sched_create_empty_bb) (basic_block);
419 /* Return the number of cycles until INSN is expected to be ready.
420 Return zero if it already is. */
421 static int
422 insn_delay (rtx insn)
424 return MAX (INSN_TICK (insn) - clock_var, 0);
427 static int
428 may_trap_exp (const_rtx x, int is_store)
430 enum rtx_code code;
432 if (x == 0)
433 return TRAP_FREE;
434 code = GET_CODE (x);
435 if (is_store)
437 if (code == MEM && may_trap_p (x))
438 return TRAP_RISKY;
439 else
440 return TRAP_FREE;
442 if (code == MEM)
444 /* The insn uses memory: a volatile load. */
445 if (MEM_VOLATILE_P (x))
446 return IRISKY;
447 /* An exception-free load. */
448 if (!may_trap_p (x))
449 return IFREE;
450 /* A load with 1 base register, to be further checked. */
451 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
452 return PFREE_CANDIDATE;
453 /* No info on the load, to be further checked. */
454 return PRISKY_CANDIDATE;
456 else
458 const char *fmt;
459 int i, insn_class = TRAP_FREE;
461 /* Neither store nor load, check if it may cause a trap. */
462 if (may_trap_p (x))
463 return TRAP_RISKY;
464 /* Recursive step: walk the insn... */
465 fmt = GET_RTX_FORMAT (code);
466 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
468 if (fmt[i] == 'e')
470 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
471 insn_class = WORST_CLASS (insn_class, tmp_class);
473 else if (fmt[i] == 'E')
475 int j;
476 for (j = 0; j < XVECLEN (x, i); j++)
478 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
479 insn_class = WORST_CLASS (insn_class, tmp_class);
480 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
481 break;
484 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
485 break;
487 return insn_class;
491 /* Classifies rtx X of an insn for the purpose of verifying that X can be
492 executed speculatively (and consequently the insn can be moved
493 speculatively), by examining X, returning:
494 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
495 TRAP_FREE: non-load insn.
496 IFREE: load from a globally safe location.
497 IRISKY: volatile load.
498 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
499 being either PFREE or PRISKY. */
501 static int
502 haifa_classify_rtx (const_rtx x)
504 int tmp_class = TRAP_FREE;
505 int insn_class = TRAP_FREE;
506 enum rtx_code code;
508 if (GET_CODE (x) == PARALLEL)
510 int i, len = XVECLEN (x, 0);
512 for (i = len - 1; i >= 0; i--)
514 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
515 insn_class = WORST_CLASS (insn_class, tmp_class);
516 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
517 break;
520 else
522 code = GET_CODE (x);
523 switch (code)
525 case CLOBBER:
526 /* Test if it is a 'store'. */
527 tmp_class = may_trap_exp (XEXP (x, 0), 1);
528 break;
529 case SET:
530 /* Test if it is a store. */
531 tmp_class = may_trap_exp (SET_DEST (x), 1);
532 if (tmp_class == TRAP_RISKY)
533 break;
534 /* Test if it is a load. */
535 tmp_class =
536 WORST_CLASS (tmp_class,
537 may_trap_exp (SET_SRC (x), 0));
538 break;
539 case COND_EXEC:
540 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
541 if (tmp_class == TRAP_RISKY)
542 break;
543 tmp_class = WORST_CLASS (tmp_class,
544 may_trap_exp (COND_EXEC_TEST (x), 0));
545 break;
546 case TRAP_IF:
547 tmp_class = TRAP_RISKY;
548 break;
549 default:;
551 insn_class = tmp_class;
554 return insn_class;
558 haifa_classify_insn (const_rtx insn)
560 return haifa_classify_rtx (PATTERN (insn));
563 /* After the scheduler initialization function has been called, this function
564 can be called to enable modulo scheduling. II is the initiation interval
565 we should use, it affects the delays for delay_pairs that were recorded as
566 separated by a given number of stages.
568 MAX_STAGES provides us with a limit
569 after which we give up scheduling; the caller must have unrolled at least
570 as many copies of the loop body and recorded delay_pairs for them.
572 INSNS is the number of real (non-debug) insns in one iteration of
573 the loop. MAX_UID can be used to test whether an insn belongs to
574 the first iteration of the loop; all of them have a uid lower than
575 MAX_UID. */
576 void
577 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
579 modulo_ii = ii;
580 modulo_max_stages = max_stages;
581 modulo_n_insns = insns;
582 modulo_iter0_max_uid = max_uid;
583 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
586 /* A structure to record a pair of insns where the first one is a real
587 insn that has delay slots, and the second is its delayed shadow.
588 I1 is scheduled normally and will emit an assembly instruction,
589 while I2 describes the side effect that takes place at the
590 transition between cycles CYCLES and (CYCLES + 1) after I1. */
591 struct delay_pair
593 struct delay_pair *next_same_i1;
594 rtx i1, i2;
595 int cycles;
596 /* When doing modulo scheduling, we a delay_pair can also be used to
597 show that I1 and I2 are the same insn in a different stage. If that
598 is the case, STAGES will be nonzero. */
599 int stages;
602 /* Helpers for delay hashing. */
604 struct delay_i1_hasher : typed_noop_remove <delay_pair>
606 typedef delay_pair value_type;
607 typedef void compare_type;
608 static inline hashval_t hash (const value_type *);
609 static inline bool equal (const value_type *, const compare_type *);
612 /* Returns a hash value for X, based on hashing just I1. */
614 inline hashval_t
615 delay_i1_hasher::hash (const value_type *x)
617 return htab_hash_pointer (x->i1);
620 /* Return true if I1 of pair X is the same as that of pair Y. */
622 inline bool
623 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
625 return x->i1 == y;
628 struct delay_i2_hasher : typed_free_remove <delay_pair>
630 typedef delay_pair value_type;
631 typedef void compare_type;
632 static inline hashval_t hash (const value_type *);
633 static inline bool equal (const value_type *, const compare_type *);
636 /* Returns a hash value for X, based on hashing just I2. */
638 inline hashval_t
639 delay_i2_hasher::hash (const value_type *x)
641 return htab_hash_pointer (x->i2);
644 /* Return true if I2 of pair X is the same as that of pair Y. */
646 inline bool
647 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
649 return x->i2 == y;
652 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
653 indexed by I2. */
654 static hash_table <delay_i1_hasher> delay_htab;
655 static hash_table <delay_i2_hasher> delay_htab_i2;
657 /* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
661 haifa_htab_i2_traverse (delay_pair **slot, int *data)
663 int maxuid = *data;
664 struct delay_pair *p = *slot;
665 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
667 delay_htab_i2.clear_slot (slot);
669 return 1;
672 /* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
676 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
678 int maxuid = *data;
679 struct delay_pair *p, *first, **pprev;
681 if (INSN_UID ((*pslot)->i1) >= maxuid)
683 delay_htab.clear_slot (pslot);
684 return 1;
686 pprev = &first;
687 for (p = *pslot; p; p = p->next_same_i1)
689 if (INSN_UID (p->i2) < maxuid)
691 *pprev = p;
692 pprev = &p->next_same_i1;
695 *pprev = NULL;
696 if (first == NULL)
697 delay_htab.clear_slot (pslot);
698 else
699 *pslot = first;
700 return 1;
703 /* Discard all delay pairs which involve an insn with an UID higher
704 than MAX_UID. */
705 void
706 discard_delay_pairs_above (int max_uid)
708 delay_htab.traverse <int *, haifa_htab_i1_traverse> (&max_uid);
709 delay_htab_i2.traverse <int *, haifa_htab_i2_traverse> (&max_uid);
712 /* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
726 scheduling. */
728 void
729 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
731 struct delay_pair *p = XNEW (struct delay_pair);
732 struct delay_pair **slot;
734 p->i1 = i1;
735 p->i2 = i2;
736 p->cycles = cycles;
737 p->stages = stages;
739 if (!delay_htab.is_created ())
741 delay_htab.create (10);
742 delay_htab_i2.create (10);
744 slot = delay_htab.find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
745 p->next_same_i1 = *slot;
746 *slot = p;
747 slot = delay_htab_i2.find_slot_with_hash (i2, htab_hash_pointer (i2), INSERT);
748 *slot = p;
751 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
754 real_insn_for_shadow (rtx insn)
756 struct delay_pair *pair;
758 if (!delay_htab.is_created ())
759 return NULL_RTX;
761 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
762 if (!pair || pair->stages > 0)
763 return NULL_RTX;
764 return pair->i1;
767 /* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
769 static int
770 pair_delay (struct delay_pair *p)
772 if (p->stages == 0)
773 return p->cycles;
774 else
775 return p->stages * modulo_ii;
778 /* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
781 needed. */
782 void
783 add_delay_dependencies (rtx insn)
785 struct delay_pair *pair;
786 sd_iterator_def sd_it;
787 dep_t dep;
789 if (!delay_htab.is_created ())
790 return;
792 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
793 if (!pair)
794 return;
795 add_dependence (insn, pair->i1, REG_DEP_ANTI);
796 if (pair->stages)
797 return;
799 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
801 rtx pro = DEP_PRO (dep);
802 struct delay_pair *other_pair
803 = delay_htab_i2.find_with_hash (pro, htab_hash_pointer (pro));
804 if (!other_pair || other_pair->stages)
805 continue;
806 if (pair_delay (other_pair) >= pair_delay (pair))
808 if (sched_verbose >= 4)
810 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair->i1),
812 INSN_UID (pair->i1));
813 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
814 INSN_UID (pair->i1),
815 INSN_UID (pair->i2),
816 pair_delay (pair));
817 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair->i1),
819 INSN_UID (other_pair->i2),
820 pair_delay (other_pair));
822 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
827 /* Forward declarations. */
829 static int priority (rtx);
830 static int rank_for_schedule (const void *, const void *);
831 static void swap_sort (rtx *, int);
832 static void queue_insn (rtx, int, const char *);
833 static int schedule_insn (rtx);
834 static void adjust_priority (rtx);
835 static void advance_one_cycle (void);
836 static void extend_h_i_d (void);
839 /* Notes handling mechanism:
840 =========================
841 Generally, NOTES are saved before scheduling and restored after scheduling.
842 The scheduler distinguishes between two types of notes:
844 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
845 Before scheduling a region, a pointer to the note is added to the insn
846 that follows or precedes it. (This happens as part of the data dependence
847 computation). After scheduling an insn, the pointer contained in it is
848 used for regenerating the corresponding note (in reemit_notes).
850 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
851 these notes are put in a list (in rm_other_notes() and
852 unlink_other_notes ()). After scheduling the block, these notes are
853 inserted at the beginning of the block (in schedule_block()). */
855 static void ready_add (struct ready_list *, rtx, bool);
856 static rtx ready_remove_first (struct ready_list *);
857 static rtx ready_remove_first_dispatch (struct ready_list *ready);
859 static void queue_to_ready (struct ready_list *);
860 static int early_queue_to_ready (state_t, struct ready_list *);
862 static void debug_ready_list (struct ready_list *);
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx);
869 static void fix_inter_tick (rtx, rtx);
870 static int fix_tick_ready (rtx);
871 static void change_queue_index (rtx, int);
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx);
878 static int haifa_speculate_insn (rtx, ds_t, rtx *);
879 static void generate_recovery_code (rtx);
880 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
881 static void begin_speculative_block (rtx);
882 static void add_to_speculative_block (rtx);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx, rtx);
887 static void dump_new_block_header (int, basic_block, rtx, rtx);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx);
890 static void move_block_after_check (rtx);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx);
893 static void clear_priorities (rtx, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx, rtx);
897 #endif /* INSN_SCHEDULING */
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
907 #else
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
933 /* Initiate register pressure relative info for scheduling the current
934 region. Currently it is only clearing register mentioned in the
935 current region. */
936 void
937 sched_init_region_reg_pressure_info (void)
939 bitmap_clear (region_ref_regs);
942 /* PRESSURE[CL] describes the pressure on register class CL. Update it
943 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
944 LIVE tracks the set of live registers; if it is null, assume that
945 every birth or death is genuine. */
946 static inline void
947 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
949 enum reg_class pressure_class;
951 pressure_class = sched_regno_pressure_class[regno];
952 if (regno >= FIRST_PSEUDO_REGISTER)
954 if (pressure_class != NO_REGS)
956 if (birth_p)
958 if (!live || bitmap_set_bit (live, regno))
959 pressure[pressure_class]
960 += (ira_reg_class_max_nregs
961 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
963 else
965 if (!live || bitmap_clear_bit (live, regno))
966 pressure[pressure_class]
967 -= (ira_reg_class_max_nregs
968 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
972 else if (pressure_class != NO_REGS
973 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
975 if (birth_p)
977 if (!live || bitmap_set_bit (live, regno))
978 pressure[pressure_class]++;
980 else
982 if (!live || bitmap_clear_bit (live, regno))
983 pressure[pressure_class]--;
988 /* Initiate current register pressure related info from living
989 registers given by LIVE. */
990 static void
991 initiate_reg_pressure_info (bitmap live)
993 int i;
994 unsigned int j;
995 bitmap_iterator bi;
997 for (i = 0; i < ira_pressure_classes_num; i++)
998 curr_reg_pressure[ira_pressure_classes[i]] = 0;
999 bitmap_clear (curr_reg_live);
1000 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1001 if (sched_pressure == SCHED_PRESSURE_MODEL
1002 || current_nr_blocks == 1
1003 || bitmap_bit_p (region_ref_regs, j))
1004 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1007 /* Mark registers in X as mentioned in the current region. */
1008 static void
1009 setup_ref_regs (rtx x)
1011 int i, j, regno;
1012 const RTX_CODE code = GET_CODE (x);
1013 const char *fmt;
1015 if (REG_P (x))
1017 regno = REGNO (x);
1018 if (HARD_REGISTER_NUM_P (regno))
1019 bitmap_set_range (region_ref_regs, regno,
1020 hard_regno_nregs[regno][GET_MODE (x)]);
1021 else
1022 bitmap_set_bit (region_ref_regs, REGNO (x));
1023 return;
1025 fmt = GET_RTX_FORMAT (code);
1026 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1027 if (fmt[i] == 'e')
1028 setup_ref_regs (XEXP (x, i));
1029 else if (fmt[i] == 'E')
1031 for (j = 0; j < XVECLEN (x, i); j++)
1032 setup_ref_regs (XVECEXP (x, i, j));
1036 /* Initiate current register pressure related info at the start of
1037 basic block BB. */
1038 static void
1039 initiate_bb_reg_pressure_info (basic_block bb)
1041 unsigned int i ATTRIBUTE_UNUSED;
1042 rtx insn;
1044 if (current_nr_blocks > 1)
1045 FOR_BB_INSNS (bb, insn)
1046 if (NONDEBUG_INSN_P (insn))
1047 setup_ref_regs (PATTERN (insn));
1048 initiate_reg_pressure_info (df_get_live_in (bb));
1049 #ifdef EH_RETURN_DATA_REGNO
1050 if (bb_has_eh_pred (bb))
1051 for (i = 0; ; ++i)
1053 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1055 if (regno == INVALID_REGNUM)
1056 break;
1057 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1058 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1059 regno, true);
1061 #endif
1064 /* Save current register pressure related info. */
1065 static void
1066 save_reg_pressure (void)
1068 int i;
1070 for (i = 0; i < ira_pressure_classes_num; i++)
1071 saved_reg_pressure[ira_pressure_classes[i]]
1072 = curr_reg_pressure[ira_pressure_classes[i]];
1073 bitmap_copy (saved_reg_live, curr_reg_live);
1076 /* Restore saved register pressure related info. */
1077 static void
1078 restore_reg_pressure (void)
1080 int i;
1082 for (i = 0; i < ira_pressure_classes_num; i++)
1083 curr_reg_pressure[ira_pressure_classes[i]]
1084 = saved_reg_pressure[ira_pressure_classes[i]];
1085 bitmap_copy (curr_reg_live, saved_reg_live);
1088 /* Return TRUE if the register is dying after its USE. */
1089 static bool
1090 dying_use_p (struct reg_use_data *use)
1092 struct reg_use_data *next;
1094 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1095 if (NONDEBUG_INSN_P (next->insn)
1096 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1097 return false;
1098 return true;
1101 /* Print info about the current register pressure and its excess for
1102 each pressure class. */
1103 static void
1104 print_curr_reg_pressure (void)
1106 int i;
1107 enum reg_class cl;
1109 fprintf (sched_dump, ";;\t");
1110 for (i = 0; i < ira_pressure_classes_num; i++)
1112 cl = ira_pressure_classes[i];
1113 gcc_assert (curr_reg_pressure[cl] >= 0);
1114 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1115 curr_reg_pressure[cl],
1116 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
1118 fprintf (sched_dump, "\n");
1121 /* Determine if INSN has a condition that is clobbered if a register
1122 in SET_REGS is modified. */
1123 static bool
1124 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1126 rtx pat = PATTERN (insn);
1127 gcc_assert (GET_CODE (pat) == COND_EXEC);
1128 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1130 sd_iterator_def sd_it;
1131 dep_t dep;
1132 haifa_change_pattern (insn, ORIG_PAT (insn));
1133 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1134 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1135 TODO_SPEC (insn) = HARD_DEP;
1136 if (sched_verbose >= 2)
1137 fprintf (sched_dump,
1138 ";;\t\tdequeue insn %s because of clobbered condition\n",
1139 (*current_sched_info->print_insn) (insn, 0));
1140 return true;
1143 return false;
1146 /* This function should be called after modifying the pattern of INSN,
1147 to update scheduler data structures as needed. */
1148 static void
1149 update_insn_after_change (rtx insn)
1151 sd_iterator_def sd_it;
1152 dep_t dep;
1154 dfa_clear_single_insn_cache (insn);
1156 sd_it = sd_iterator_start (insn,
1157 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1158 while (sd_iterator_cond (&sd_it, &dep))
1160 DEP_COST (dep) = UNKNOWN_DEP_COST;
1161 sd_iterator_next (&sd_it);
1164 /* Invalidate INSN_COST, so it'll be recalculated. */
1165 INSN_COST (insn) = -1;
1166 /* Invalidate INSN_TICK, so it'll be recalculated. */
1167 INSN_TICK (insn) = INVALID_TICK;
1171 /* Two VECs, one to hold dependencies for which pattern replacements
1172 need to be applied or restored at the start of the next cycle, and
1173 another to hold an integer that is either one, to apply the
1174 corresponding replacement, or zero to restore it. */
1175 static vec<dep_t> next_cycle_replace_deps;
1176 static vec<int> next_cycle_apply;
1178 static void apply_replacement (dep_t, bool);
1179 static void restore_pattern (dep_t, bool);
1181 /* Look at the remaining dependencies for insn NEXT, and compute and return
1182 the TODO_SPEC value we should use for it. This is called after one of
1183 NEXT's dependencies has been resolved.
1184 We also perform pattern replacements for predication, and for broken
1185 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1186 false. */
1188 static ds_t
1189 recompute_todo_spec (rtx next, bool for_backtrack)
1191 ds_t new_ds;
1192 sd_iterator_def sd_it;
1193 dep_t dep, modify_dep = NULL;
1194 int n_spec = 0;
1195 int n_control = 0;
1196 int n_replace = 0;
1197 bool first_p = true;
1199 if (sd_lists_empty_p (next, SD_LIST_BACK))
1200 /* NEXT has all its dependencies resolved. */
1201 return 0;
1203 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1204 return HARD_DEP;
1206 /* Now we've got NEXT with speculative deps only.
1207 1. Look at the deps to see what we have to do.
1208 2. Check if we can do 'todo'. */
1209 new_ds = 0;
1211 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1213 rtx pro = DEP_PRO (dep);
1214 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1216 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1217 continue;
1219 if (ds)
1221 n_spec++;
1222 if (first_p)
1224 first_p = false;
1226 new_ds = ds;
1228 else
1229 new_ds = ds_merge (new_ds, ds);
1231 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1233 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1235 n_control++;
1236 modify_dep = dep;
1238 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1240 else if (DEP_REPLACE (dep) != NULL)
1242 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1244 n_replace++;
1245 modify_dep = dep;
1247 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1251 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1253 if (!dbg_cnt (sched_breakdep))
1254 return HARD_DEP;
1255 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1257 struct dep_replacement *desc = DEP_REPLACE (dep);
1258 if (desc != NULL)
1260 if (desc->insn == next && !for_backtrack)
1262 gcc_assert (n_replace == 1);
1263 apply_replacement (dep, true);
1265 DEP_STATUS (dep) |= DEP_CANCELLED;
1268 return 0;
1271 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1273 rtx pro, other, new_pat;
1274 rtx cond = NULL_RTX;
1275 bool success;
1276 rtx prev = NULL_RTX;
1277 int i;
1278 unsigned regno;
1280 if ((current_sched_info->flags & DO_PREDICATION) == 0
1281 || (ORIG_PAT (next) != NULL_RTX
1282 && PREDICATED_PAT (next) == NULL_RTX))
1283 return HARD_DEP;
1285 pro = DEP_PRO (modify_dep);
1286 other = real_insn_for_shadow (pro);
1287 if (other != NULL_RTX)
1288 pro = other;
1290 cond = sched_get_reverse_condition_uncached (pro);
1291 regno = REGNO (XEXP (cond, 0));
1293 /* Find the last scheduled insn that modifies the condition register.
1294 We can stop looking once we find the insn we depend on through the
1295 REG_DEP_CONTROL; if the condition register isn't modified after it,
1296 we know that it still has the right value. */
1297 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1298 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1300 HARD_REG_SET t;
1302 find_all_hard_reg_sets (prev, &t);
1303 if (TEST_HARD_REG_BIT (t, regno))
1304 return HARD_DEP;
1305 if (prev == pro)
1306 break;
1308 if (ORIG_PAT (next) == NULL_RTX)
1310 ORIG_PAT (next) = PATTERN (next);
1312 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1313 success = haifa_change_pattern (next, new_pat);
1314 if (!success)
1315 return HARD_DEP;
1316 PREDICATED_PAT (next) = new_pat;
1318 else if (PATTERN (next) != PREDICATED_PAT (next))
1320 bool success = haifa_change_pattern (next,
1321 PREDICATED_PAT (next));
1322 gcc_assert (success);
1324 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1325 return DEP_CONTROL;
1328 if (PREDICATED_PAT (next) != NULL_RTX)
1330 int tick = INSN_TICK (next);
1331 bool success = haifa_change_pattern (next,
1332 ORIG_PAT (next));
1333 INSN_TICK (next) = tick;
1334 gcc_assert (success);
1337 /* We can't handle the case where there are both speculative and control
1338 dependencies, so we return HARD_DEP in such a case. Also fail if
1339 we have speculative dependencies with not enough points, or more than
1340 one control dependency. */
1341 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1342 || (n_spec > 0
1343 /* Too few points? */
1344 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1345 || n_control > 0
1346 || n_replace > 0)
1347 return HARD_DEP;
1349 return new_ds;
1352 /* Pointer to the last instruction scheduled. */
1353 static rtx last_scheduled_insn;
1355 /* Pointer to the last nondebug instruction scheduled within the
1356 block, or the prev_head of the scheduling block. Used by
1357 rank_for_schedule, so that insns independent of the last scheduled
1358 insn will be preferred over dependent instructions. */
1359 static rtx last_nondebug_scheduled_insn;
1361 /* Pointer that iterates through the list of unscheduled insns if we
1362 have a dbg_cnt enabled. It always points at an insn prior to the
1363 first unscheduled one. */
1364 static rtx nonscheduled_insns_begin;
1366 /* Compute cost of executing INSN.
1367 This is the number of cycles between instruction issue and
1368 instruction results. */
1370 insn_cost (rtx insn)
1372 int cost;
1374 if (sel_sched_p ())
1376 if (recog_memoized (insn) < 0)
1377 return 0;
1379 cost = insn_default_latency (insn);
1380 if (cost < 0)
1381 cost = 0;
1383 return cost;
1386 cost = INSN_COST (insn);
1388 if (cost < 0)
1390 /* A USE insn, or something else we don't need to
1391 understand. We can't pass these directly to
1392 result_ready_cost or insn_default_latency because it will
1393 trigger a fatal error for unrecognizable insns. */
1394 if (recog_memoized (insn) < 0)
1396 INSN_COST (insn) = 0;
1397 return 0;
1399 else
1401 cost = insn_default_latency (insn);
1402 if (cost < 0)
1403 cost = 0;
1405 INSN_COST (insn) = cost;
1409 return cost;
1412 /* Compute cost of dependence LINK.
1413 This is the number of cycles between instruction issue and
1414 instruction results.
1415 ??? We also use this function to call recog_memoized on all insns. */
1417 dep_cost_1 (dep_t link, dw_t dw)
1419 rtx insn = DEP_PRO (link);
1420 rtx used = DEP_CON (link);
1421 int cost;
1423 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1424 return DEP_COST (link);
1426 if (delay_htab.is_created ())
1428 struct delay_pair *delay_entry;
1429 delay_entry
1430 = delay_htab_i2.find_with_hash (used, htab_hash_pointer (used));
1431 if (delay_entry)
1433 if (delay_entry->i1 == insn)
1435 DEP_COST (link) = pair_delay (delay_entry);
1436 return DEP_COST (link);
1441 /* A USE insn should never require the value used to be computed.
1442 This allows the computation of a function's result and parameter
1443 values to overlap the return and call. We don't care about the
1444 dependence cost when only decreasing register pressure. */
1445 if (recog_memoized (used) < 0)
1447 cost = 0;
1448 recog_memoized (insn);
1450 else
1452 enum reg_note dep_type = DEP_TYPE (link);
1454 cost = insn_cost (insn);
1456 if (INSN_CODE (insn) >= 0)
1458 if (dep_type == REG_DEP_ANTI)
1459 cost = 0;
1460 else if (dep_type == REG_DEP_OUTPUT)
1462 cost = (insn_default_latency (insn)
1463 - insn_default_latency (used));
1464 if (cost <= 0)
1465 cost = 1;
1467 else if (bypass_p (insn))
1468 cost = insn_latency (insn, used);
1472 if (targetm.sched.adjust_cost_2)
1473 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1474 dw);
1475 else if (targetm.sched.adjust_cost != NULL)
1477 /* This variable is used for backward compatibility with the
1478 targets. */
1479 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1481 /* Make it self-cycled, so that if some tries to walk over this
1482 incomplete list he/she will be caught in an endless loop. */
1483 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1485 /* Targets use only REG_NOTE_KIND of the link. */
1486 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1488 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1489 insn, cost);
1491 free_INSN_LIST_node (dep_cost_rtx_link);
1494 if (cost < 0)
1495 cost = 0;
1498 DEP_COST (link) = cost;
1499 return cost;
1502 /* Compute cost of dependence LINK.
1503 This is the number of cycles between instruction issue and
1504 instruction results. */
1506 dep_cost (dep_t link)
1508 return dep_cost_1 (link, 0);
1511 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1512 INSN_PRIORITY explicitly. */
1513 void
1514 increase_insn_priority (rtx insn, int amount)
1516 if (!sel_sched_p ())
1518 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1519 if (INSN_PRIORITY_KNOWN (insn))
1520 INSN_PRIORITY (insn) += amount;
1522 else
1524 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1525 Use EXPR_PRIORITY instead. */
1526 sel_add_to_insn_priority (insn, amount);
1530 /* Return 'true' if DEP should be included in priority calculations. */
1531 static bool
1532 contributes_to_priority_p (dep_t dep)
1534 if (DEBUG_INSN_P (DEP_CON (dep))
1535 || DEBUG_INSN_P (DEP_PRO (dep)))
1536 return false;
1538 /* Critical path is meaningful in block boundaries only. */
1539 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1540 DEP_PRO (dep)))
1541 return false;
1543 if (DEP_REPLACE (dep) != NULL)
1544 return false;
1546 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1547 then speculative instructions will less likely be
1548 scheduled. That is because the priority of
1549 their producers will increase, and, thus, the
1550 producers will more likely be scheduled, thus,
1551 resolving the dependence. */
1552 if (sched_deps_info->generate_spec_deps
1553 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1554 && (DEP_STATUS (dep) & SPECULATIVE))
1555 return false;
1557 return true;
1560 /* Compute the number of nondebug deps in list LIST for INSN. */
1562 static int
1563 dep_list_size (rtx insn, sd_list_types_def list)
1565 sd_iterator_def sd_it;
1566 dep_t dep;
1567 int dbgcount = 0, nodbgcount = 0;
1569 if (!MAY_HAVE_DEBUG_INSNS)
1570 return sd_lists_size (insn, list);
1572 FOR_EACH_DEP (insn, list, sd_it, dep)
1574 if (DEBUG_INSN_P (DEP_CON (dep)))
1575 dbgcount++;
1576 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1577 nodbgcount++;
1580 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1582 return nodbgcount;
1585 /* Compute the priority number for INSN. */
1586 static int
1587 priority (rtx insn)
1589 if (! INSN_P (insn))
1590 return 0;
1592 /* We should not be interested in priority of an already scheduled insn. */
1593 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1595 if (!INSN_PRIORITY_KNOWN (insn))
1597 int this_priority = -1;
1599 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1600 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1601 some forward deps but all of them are ignored by
1602 contributes_to_priority hook. At the moment we set priority of
1603 such insn to 0. */
1604 this_priority = insn_cost (insn);
1605 else
1607 rtx prev_first, twin;
1608 basic_block rec;
1610 /* For recovery check instructions we calculate priority slightly
1611 different than that of normal instructions. Instead of walking
1612 through INSN_FORW_DEPS (check) list, we walk through
1613 INSN_FORW_DEPS list of each instruction in the corresponding
1614 recovery block. */
1616 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1617 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1618 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1620 prev_first = PREV_INSN (insn);
1621 twin = insn;
1623 else
1625 prev_first = NEXT_INSN (BB_HEAD (rec));
1626 twin = PREV_INSN (BB_END (rec));
1631 sd_iterator_def sd_it;
1632 dep_t dep;
1634 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1636 rtx next;
1637 int next_priority;
1639 next = DEP_CON (dep);
1641 if (BLOCK_FOR_INSN (next) != rec)
1643 int cost;
1645 if (!contributes_to_priority_p (dep))
1646 continue;
1648 if (twin == insn)
1649 cost = dep_cost (dep);
1650 else
1652 struct _dep _dep1, *dep1 = &_dep1;
1654 init_dep (dep1, insn, next, REG_DEP_ANTI);
1656 cost = dep_cost (dep1);
1659 next_priority = cost + priority (next);
1661 if (next_priority > this_priority)
1662 this_priority = next_priority;
1666 twin = PREV_INSN (twin);
1668 while (twin != prev_first);
1671 if (this_priority < 0)
1673 gcc_assert (this_priority == -1);
1675 this_priority = insn_cost (insn);
1678 INSN_PRIORITY (insn) = this_priority;
1679 INSN_PRIORITY_STATUS (insn) = 1;
1682 return INSN_PRIORITY (insn);
1685 /* Macros and functions for keeping the priority queue sorted, and
1686 dealing with queuing and dequeuing of instructions. */
1688 #define SCHED_SORT(READY, N_READY) \
1689 do { if ((N_READY) == 2) \
1690 swap_sort (READY, N_READY); \
1691 else if ((N_READY) > 2) \
1692 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1693 while (0)
1695 /* For each pressure class CL, set DEATH[CL] to the number of registers
1696 in that class that die in INSN. */
1698 static void
1699 calculate_reg_deaths (rtx insn, int *death)
1701 int i;
1702 struct reg_use_data *use;
1704 for (i = 0; i < ira_pressure_classes_num; i++)
1705 death[ira_pressure_classes[i]] = 0;
1706 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1707 if (dying_use_p (use))
1708 mark_regno_birth_or_death (0, death, use->regno, true);
1711 /* Setup info about the current register pressure impact of scheduling
1712 INSN at the current scheduling point. */
1713 static void
1714 setup_insn_reg_pressure_info (rtx insn)
1716 int i, change, before, after, hard_regno;
1717 int excess_cost_change;
1718 enum machine_mode mode;
1719 enum reg_class cl;
1720 struct reg_pressure_data *pressure_info;
1721 int *max_reg_pressure;
1722 static int death[N_REG_CLASSES];
1724 gcc_checking_assert (!DEBUG_INSN_P (insn));
1726 excess_cost_change = 0;
1727 calculate_reg_deaths (insn, death);
1728 pressure_info = INSN_REG_PRESSURE (insn);
1729 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1730 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1731 for (i = 0; i < ira_pressure_classes_num; i++)
1733 cl = ira_pressure_classes[i];
1734 gcc_assert (curr_reg_pressure[cl] >= 0);
1735 change = (int) pressure_info[i].set_increase - death[cl];
1736 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
1737 after = MAX (0, max_reg_pressure[i] + change
1738 - ira_class_hard_regs_num[cl]);
1739 hard_regno = ira_class_hard_regs[cl][0];
1740 gcc_assert (hard_regno >= 0);
1741 mode = reg_raw_mode[hard_regno];
1742 excess_cost_change += ((after - before)
1743 * (ira_memory_move_cost[mode][cl][0]
1744 + ira_memory_move_cost[mode][cl][1]));
1746 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1749 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1750 It tries to make the scheduler take register pressure into account
1751 without introducing too many unnecessary stalls. It hooks into the
1752 main scheduling algorithm at several points:
1754 - Before scheduling starts, model_start_schedule constructs a
1755 "model schedule" for the current block. This model schedule is
1756 chosen solely to keep register pressure down. It does not take the
1757 target's pipeline or the original instruction order into account,
1758 except as a tie-breaker. It also doesn't work to a particular
1759 pressure limit.
1761 This model schedule gives us an idea of what pressure can be
1762 achieved for the block and gives us an example of a schedule that
1763 keeps to that pressure. It also makes the final schedule less
1764 dependent on the original instruction order. This is important
1765 because the original order can either be "wide" (many values live
1766 at once, such as in user-scheduled code) or "narrow" (few values
1767 live at once, such as after loop unrolling, where several
1768 iterations are executed sequentially).
1770 We do not apply this model schedule to the rtx stream. We simply
1771 record it in model_schedule. We also compute the maximum pressure,
1772 MP, that was seen during this schedule.
1774 - Instructions are added to the ready queue even if they require
1775 a stall. The length of the stall is instead computed as:
1777 MAX (INSN_TICK (INSN) - clock_var, 0)
1779 (= insn_delay). This allows rank_for_schedule to choose between
1780 introducing a deliberate stall or increasing pressure.
1782 - Before sorting the ready queue, model_set_excess_costs assigns
1783 a pressure-based cost to each ready instruction in the queue.
1784 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1785 (ECC for short) and is effectively measured in cycles.
1787 - rank_for_schedule ranks instructions based on:
1789 ECC (insn) + insn_delay (insn)
1791 then as:
1793 insn_delay (insn)
1795 So, for example, an instruction X1 with an ECC of 1 that can issue
1796 now will win over an instruction X0 with an ECC of zero that would
1797 introduce a stall of one cycle. However, an instruction X2 with an
1798 ECC of 2 that can issue now will lose to both X0 and X1.
1800 - When an instruction is scheduled, model_recompute updates the model
1801 schedule with the new pressures (some of which might now exceed the
1802 original maximum pressure MP). model_update_limit_points then searches
1803 for the new point of maximum pressure, if not already known. */
1805 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1806 from surrounding debug information. */
1807 #define MODEL_BAR \
1808 ";;\t\t+------------------------------------------------------\n"
1810 /* Information about the pressure on a particular register class at a
1811 particular point of the model schedule. */
1812 struct model_pressure_data {
1813 /* The pressure at this point of the model schedule, or -1 if the
1814 point is associated with an instruction that has already been
1815 scheduled. */
1816 int ref_pressure;
1818 /* The maximum pressure during or after this point of the model schedule. */
1819 int max_pressure;
1822 /* Per-instruction information that is used while building the model
1823 schedule. Here, "schedule" refers to the model schedule rather
1824 than the main schedule. */
1825 struct model_insn_info {
1826 /* The instruction itself. */
1827 rtx insn;
1829 /* If this instruction is in model_worklist, these fields link to the
1830 previous (higher-priority) and next (lower-priority) instructions
1831 in the list. */
1832 struct model_insn_info *prev;
1833 struct model_insn_info *next;
1835 /* While constructing the schedule, QUEUE_INDEX describes whether an
1836 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1837 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1838 old_queue records the value that QUEUE_INDEX had before scheduling
1839 started, so that we can restore it once the schedule is complete. */
1840 int old_queue;
1842 /* The relative importance of an unscheduled instruction. Higher
1843 values indicate greater importance. */
1844 unsigned int model_priority;
1846 /* The length of the longest path of satisfied true dependencies
1847 that leads to this instruction. */
1848 unsigned int depth;
1850 /* The length of the longest path of dependencies of any kind
1851 that leads from this instruction. */
1852 unsigned int alap;
1854 /* The number of predecessor nodes that must still be scheduled. */
1855 int unscheduled_preds;
1858 /* Information about the pressure limit for a particular register class.
1859 This structure is used when applying a model schedule to the main
1860 schedule. */
1861 struct model_pressure_limit {
1862 /* The maximum register pressure seen in the original model schedule. */
1863 int orig_pressure;
1865 /* The maximum register pressure seen in the current model schedule
1866 (which excludes instructions that have already been scheduled). */
1867 int pressure;
1869 /* The point of the current model schedule at which PRESSURE is first
1870 reached. It is set to -1 if the value needs to be recomputed. */
1871 int point;
1874 /* Describes a particular way of measuring register pressure. */
1875 struct model_pressure_group {
1876 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1877 struct model_pressure_limit limits[N_REG_CLASSES];
1879 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1880 on register class ira_pressure_classes[PCI] at point POINT of the
1881 current model schedule. A POINT of model_num_insns describes the
1882 pressure at the end of the schedule. */
1883 struct model_pressure_data *model;
1886 /* Index POINT gives the instruction at point POINT of the model schedule.
1887 This array doesn't change during main scheduling. */
1888 static vec<rtx> model_schedule;
1890 /* The list of instructions in the model worklist, sorted in order of
1891 decreasing priority. */
1892 static struct model_insn_info *model_worklist;
1894 /* Index I describes the instruction with INSN_LUID I. */
1895 static struct model_insn_info *model_insns;
1897 /* The number of instructions in the model schedule. */
1898 static int model_num_insns;
1900 /* The index of the first instruction in model_schedule that hasn't yet been
1901 added to the main schedule, or model_num_insns if all of them have. */
1902 static int model_curr_point;
1904 /* Describes the pressure before each instruction in the model schedule. */
1905 static struct model_pressure_group model_before_pressure;
1907 /* The first unused model_priority value (as used in model_insn_info). */
1908 static unsigned int model_next_priority;
1911 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1912 at point POINT of the model schedule. */
1913 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1914 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1916 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1917 after point POINT of the model schedule. */
1918 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1919 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1921 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1922 of the model schedule. */
1923 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1924 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1926 /* Information about INSN that is used when creating the model schedule. */
1927 #define MODEL_INSN_INFO(INSN) \
1928 (&model_insns[INSN_LUID (INSN)])
1930 /* The instruction at point POINT of the model schedule. */
1931 #define MODEL_INSN(POINT) \
1932 (model_schedule[POINT])
1935 /* Return INSN's index in the model schedule, or model_num_insns if it
1936 doesn't belong to that schedule. */
1938 static int
1939 model_index (rtx insn)
1941 if (INSN_MODEL_INDEX (insn) == 0)
1942 return model_num_insns;
1943 return INSN_MODEL_INDEX (insn) - 1;
1946 /* Make sure that GROUP->limits is up-to-date for the current point
1947 of the model schedule. */
1949 static void
1950 model_update_limit_points_in_group (struct model_pressure_group *group)
1952 int pci, max_pressure, point;
1954 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1956 /* We may have passed the final point at which the pressure in
1957 group->limits[pci].pressure was reached. Update the limit if so. */
1958 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1959 group->limits[pci].pressure = max_pressure;
1961 /* Find the point at which MAX_PRESSURE is first reached. We need
1962 to search in three cases:
1964 - We've already moved past the previous pressure point.
1965 In this case we search forward from model_curr_point.
1967 - We scheduled the previous point of maximum pressure ahead of
1968 its position in the model schedule, but doing so didn't bring
1969 the pressure point earlier. In this case we search forward
1970 from that previous pressure point.
1972 - Scheduling an instruction early caused the maximum pressure
1973 to decrease. In this case we will have set the pressure
1974 point to -1, and we search forward from model_curr_point. */
1975 point = MAX (group->limits[pci].point, model_curr_point);
1976 while (point < model_num_insns
1977 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1978 point++;
1979 group->limits[pci].point = point;
1981 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1982 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1986 /* Make sure that all register-pressure limits are up-to-date for the
1987 current position in the model schedule. */
1989 static void
1990 model_update_limit_points (void)
1992 model_update_limit_points_in_group (&model_before_pressure);
1995 /* Return the model_index of the last unscheduled use in chain USE
1996 outside of USE's instruction. Return -1 if there are no other uses,
1997 or model_num_insns if the register is live at the end of the block. */
1999 static int
2000 model_last_use_except (struct reg_use_data *use)
2002 struct reg_use_data *next;
2003 int last, index;
2005 last = -1;
2006 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2007 if (NONDEBUG_INSN_P (next->insn)
2008 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2010 index = model_index (next->insn);
2011 if (index == model_num_insns)
2012 return model_num_insns;
2013 if (last < index)
2014 last = index;
2016 return last;
2019 /* An instruction with model_index POINT has just been scheduled, and it
2020 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2021 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2022 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2024 static void
2025 model_start_update_pressure (struct model_pressure_group *group,
2026 int point, int pci, int delta)
2028 int next_max_pressure;
2030 if (point == model_num_insns)
2032 /* The instruction wasn't part of the model schedule; it was moved
2033 from a different block. Update the pressure for the end of
2034 the model schedule. */
2035 MODEL_REF_PRESSURE (group, point, pci) += delta;
2036 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2038 else
2040 /* Record that this instruction has been scheduled. Nothing now
2041 changes between POINT and POINT + 1, so get the maximum pressure
2042 from the latter. If the maximum pressure decreases, the new
2043 pressure point may be before POINT. */
2044 MODEL_REF_PRESSURE (group, point, pci) = -1;
2045 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2046 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2048 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2049 if (group->limits[pci].point == point)
2050 group->limits[pci].point = -1;
2055 /* Record that scheduling a later instruction has changed the pressure
2056 at point POINT of the model schedule by DELTA (which might be 0).
2057 Update GROUP accordingly. Return nonzero if these changes might
2058 trigger changes to previous points as well. */
2060 static int
2061 model_update_pressure (struct model_pressure_group *group,
2062 int point, int pci, int delta)
2064 int ref_pressure, max_pressure, next_max_pressure;
2066 /* If POINT hasn't yet been scheduled, update its pressure. */
2067 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2068 if (ref_pressure >= 0 && delta != 0)
2070 ref_pressure += delta;
2071 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2073 /* Check whether the maximum pressure in the overall schedule
2074 has increased. (This means that the MODEL_MAX_PRESSURE of
2075 every point <= POINT will need to increae too; see below.) */
2076 if (group->limits[pci].pressure < ref_pressure)
2077 group->limits[pci].pressure = ref_pressure;
2079 /* If we are at maximum pressure, and the maximum pressure
2080 point was previously unknown or later than POINT,
2081 bring it forward. */
2082 if (group->limits[pci].pressure == ref_pressure
2083 && !IN_RANGE (group->limits[pci].point, 0, point))
2084 group->limits[pci].point = point;
2086 /* If POINT used to be the point of maximum pressure, but isn't
2087 any longer, we need to recalculate it using a forward walk. */
2088 if (group->limits[pci].pressure > ref_pressure
2089 && group->limits[pci].point == point)
2090 group->limits[pci].point = -1;
2093 /* Update the maximum pressure at POINT. Changes here might also
2094 affect the maximum pressure at POINT - 1. */
2095 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2096 max_pressure = MAX (ref_pressure, next_max_pressure);
2097 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2099 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2100 return 1;
2102 return 0;
2105 /* INSN has just been scheduled. Update the model schedule accordingly. */
2107 static void
2108 model_recompute (rtx insn)
2110 struct {
2111 int last_use;
2112 int regno;
2113 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2114 struct reg_use_data *use;
2115 struct reg_pressure_data *reg_pressure;
2116 int delta[N_REG_CLASSES];
2117 int pci, point, mix, new_last, cl, ref_pressure, queue;
2118 unsigned int i, num_uses, num_pending_births;
2119 bool print_p;
2121 /* The destinations of INSN were previously live from POINT onwards, but are
2122 now live from model_curr_point onwards. Set up DELTA accordingly. */
2123 point = model_index (insn);
2124 reg_pressure = INSN_REG_PRESSURE (insn);
2125 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2127 cl = ira_pressure_classes[pci];
2128 delta[cl] = reg_pressure[pci].set_increase;
2131 /* Record which registers previously died at POINT, but which now die
2132 before POINT. Adjust DELTA so that it represents the effect of
2133 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2134 registers that will be born in the range [model_curr_point, POINT). */
2135 num_uses = 0;
2136 num_pending_births = 0;
2137 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2139 new_last = model_last_use_except (use);
2140 if (new_last < point)
2142 gcc_assert (num_uses < ARRAY_SIZE (uses));
2143 uses[num_uses].last_use = new_last;
2144 uses[num_uses].regno = use->regno;
2145 /* This register is no longer live after POINT - 1. */
2146 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2147 num_uses++;
2148 if (new_last >= 0)
2149 num_pending_births++;
2153 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2154 Also set each group pressure limit for POINT. */
2155 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2157 cl = ira_pressure_classes[pci];
2158 model_start_update_pressure (&model_before_pressure,
2159 point, pci, delta[cl]);
2162 /* Walk the model schedule backwards, starting immediately before POINT. */
2163 print_p = false;
2164 if (point != model_curr_point)
2167 point--;
2168 insn = MODEL_INSN (point);
2169 queue = QUEUE_INDEX (insn);
2171 if (queue != QUEUE_SCHEDULED)
2173 /* DELTA describes the effect of the move on the register pressure
2174 after POINT. Make it describe the effect on the pressure
2175 before POINT. */
2176 i = 0;
2177 while (i < num_uses)
2179 if (uses[i].last_use == point)
2181 /* This register is now live again. */
2182 mark_regno_birth_or_death (NULL, delta,
2183 uses[i].regno, true);
2185 /* Remove this use from the array. */
2186 uses[i] = uses[num_uses - 1];
2187 num_uses--;
2188 num_pending_births--;
2190 else
2191 i++;
2194 if (sched_verbose >= 5)
2196 if (!print_p)
2198 fprintf (sched_dump, MODEL_BAR);
2199 fprintf (sched_dump, ";;\t\t| New pressure for model"
2200 " schedule\n");
2201 fprintf (sched_dump, MODEL_BAR);
2202 print_p = true;
2205 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2206 point, INSN_UID (insn),
2207 str_pattern_slim (PATTERN (insn)));
2208 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2210 cl = ira_pressure_classes[pci];
2211 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2212 point, pci);
2213 fprintf (sched_dump, " %s:[%d->%d]",
2214 reg_class_names[ira_pressure_classes[pci]],
2215 ref_pressure, ref_pressure + delta[cl]);
2217 fprintf (sched_dump, "\n");
2221 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2222 might have changed as well. */
2223 mix = num_pending_births;
2224 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2226 cl = ira_pressure_classes[pci];
2227 mix |= delta[cl];
2228 mix |= model_update_pressure (&model_before_pressure,
2229 point, pci, delta[cl]);
2232 while (mix && point > model_curr_point);
2234 if (print_p)
2235 fprintf (sched_dump, MODEL_BAR);
2238 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2239 check whether the insn's pattern needs restoring. */
2240 static bool
2241 must_restore_pattern_p (rtx next, dep_t dep)
2243 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2244 return false;
2246 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2248 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2249 gcc_assert (next == DEP_CON (dep));
2251 else
2253 struct dep_replacement *desc = DEP_REPLACE (dep);
2254 if (desc->insn != next)
2256 gcc_assert (*desc->loc == desc->orig);
2257 return false;
2260 return true;
2263 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2264 pressure on CL from P to P'. We use this to calculate a "base ECC",
2265 baseECC (CL, X), for each pressure class CL and each instruction X.
2266 Supposing X changes the pressure on CL from P to P', and that the
2267 maximum pressure on CL in the current model schedule is MP', then:
2269 * if X occurs before or at the next point of maximum pressure in
2270 the model schedule and P' > MP', then:
2272 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2274 The idea is that the pressure after scheduling a fixed set of
2275 instructions -- in this case, the set up to and including the
2276 next maximum pressure point -- is going to be the same regardless
2277 of the order; we simply want to keep the intermediate pressure
2278 under control. Thus X has a cost of zero unless scheduling it
2279 now would exceed MP'.
2281 If all increases in the set are by the same amount, no zero-cost
2282 instruction will ever cause the pressure to exceed MP'. However,
2283 if X is instead moved past an instruction X' with pressure in the
2284 range (MP' - (P' - P), MP'), the pressure at X' will increase
2285 beyond MP'. Since baseECC is very much a heuristic anyway,
2286 it doesn't seem worth the overhead of tracking cases like these.
2288 The cost of exceeding MP' is always based on the original maximum
2289 pressure MP. This is so that going 2 registers over the original
2290 limit has the same cost regardless of whether it comes from two
2291 separate +1 deltas or from a single +2 delta.
2293 * if X occurs after the next point of maximum pressure in the model
2294 schedule and P' > P, then:
2296 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2298 That is, if we move X forward across a point of maximum pressure,
2299 and if X increases the pressure by P' - P, then we conservatively
2300 assume that scheduling X next would increase the maximum pressure
2301 by P' - P. Again, the cost of doing this is based on the original
2302 maximum pressure MP, for the same reason as above.
2304 * if P' < P, P > MP, and X occurs at or after the next point of
2305 maximum pressure, then:
2307 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2309 That is, if we have already exceeded the original maximum pressure MP,
2310 and if X might reduce the maximum pressure again -- or at least push
2311 it further back, and thus allow more scheduling freedom -- it is given
2312 a negative cost to reflect the improvement.
2314 * otherwise,
2316 baseECC (CL, X) = 0
2318 In this case, X is not expected to affect the maximum pressure MP',
2319 so it has zero cost.
2321 We then create a combined value baseECC (X) that is the sum of
2322 baseECC (CL, X) for each pressure class CL.
2324 baseECC (X) could itself be used as the ECC value described above.
2325 However, this is often too conservative, in the sense that it
2326 tends to make high-priority instructions that increase pressure
2327 wait too long in cases where introducing a spill would be better.
2328 For this reason the final ECC is a priority-adjusted form of
2329 baseECC (X). Specifically, we calculate:
2331 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2332 baseP = MAX { P (X) | baseECC (X) <= 0 }
2334 Then:
2336 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2338 Thus an instruction's effect on pressure is ignored if it has a high
2339 enough priority relative to the ones that don't increase pressure.
2340 Negative values of baseECC (X) do not increase the priority of X
2341 itself, but they do make it harder for other instructions to
2342 increase the pressure further.
2344 This pressure cost is deliberately timid. The intention has been
2345 to choose a heuristic that rarely interferes with the normal list
2346 scheduler in cases where that scheduler would produce good code.
2347 We simply want to curb some of its worst excesses. */
2349 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2351 Here we use the very simplistic cost model that every register above
2352 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2353 measures instead, such as one based on MEMORY_MOVE_COST. However:
2355 (1) In order for an instruction to be scheduled, the higher cost
2356 would need to be justified in a single saving of that many stalls.
2357 This is overly pessimistic, because the benefit of spilling is
2358 often to avoid a sequence of several short stalls rather than
2359 a single long one.
2361 (2) The cost is still arbitrary. Because we are not allocating
2362 registers during scheduling, we have no way of knowing for
2363 sure how many memory accesses will be required by each spill,
2364 where the spills will be placed within the block, or even
2365 which block(s) will contain the spills.
2367 So a higher cost than 1 is often too conservative in practice,
2368 forcing blocks to contain unnecessary stalls instead of spill code.
2369 The simple cost below seems to be the best compromise. It reduces
2370 the interference with the normal list scheduler, which helps make
2371 it more suitable for a default-on option. */
2373 static int
2374 model_spill_cost (int cl, int from, int to)
2376 from = MAX (from, ira_class_hard_regs_num[cl]);
2377 return MAX (to, from) - from;
2380 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2381 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2382 P' = P + DELTA. */
2384 static int
2385 model_excess_group_cost (struct model_pressure_group *group,
2386 int point, int pci, int delta)
2388 int pressure, cl;
2390 cl = ira_pressure_classes[pci];
2391 if (delta < 0 && point >= group->limits[pci].point)
2393 pressure = MAX (group->limits[pci].orig_pressure,
2394 curr_reg_pressure[cl] + delta);
2395 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2398 if (delta > 0)
2400 if (point > group->limits[pci].point)
2401 pressure = group->limits[pci].pressure + delta;
2402 else
2403 pressure = curr_reg_pressure[cl] + delta;
2405 if (pressure > group->limits[pci].pressure)
2406 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2407 pressure);
2410 return 0;
2413 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2414 if PRINT_P. */
2416 static int
2417 model_excess_cost (rtx insn, bool print_p)
2419 int point, pci, cl, cost, this_cost, delta;
2420 struct reg_pressure_data *insn_reg_pressure;
2421 int insn_death[N_REG_CLASSES];
2423 calculate_reg_deaths (insn, insn_death);
2424 point = model_index (insn);
2425 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2426 cost = 0;
2428 if (print_p)
2429 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2430 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2432 /* Sum up the individual costs for each register class. */
2433 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2435 cl = ira_pressure_classes[pci];
2436 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2437 this_cost = model_excess_group_cost (&model_before_pressure,
2438 point, pci, delta);
2439 cost += this_cost;
2440 if (print_p)
2441 fprintf (sched_dump, " %s:[%d base cost %d]",
2442 reg_class_names[cl], delta, this_cost);
2445 if (print_p)
2446 fprintf (sched_dump, "\n");
2448 return cost;
2451 /* Dump the next points of maximum pressure for GROUP. */
2453 static void
2454 model_dump_pressure_points (struct model_pressure_group *group)
2456 int pci, cl;
2458 fprintf (sched_dump, ";;\t\t| pressure points");
2459 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2461 cl = ira_pressure_classes[pci];
2462 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2463 curr_reg_pressure[cl], group->limits[pci].pressure);
2464 if (group->limits[pci].point < model_num_insns)
2465 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2466 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2467 else
2468 fprintf (sched_dump, "end]");
2470 fprintf (sched_dump, "\n");
2473 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2475 static void
2476 model_set_excess_costs (rtx *insns, int count)
2478 int i, cost, priority_base, priority;
2479 bool print_p;
2481 /* Record the baseECC value for each instruction in the model schedule,
2482 except that negative costs are converted to zero ones now rather thatn
2483 later. Do not assign a cost to debug instructions, since they must
2484 not change code-generation decisions. Experiments suggest we also
2485 get better results by not assigning a cost to instructions from
2486 a different block.
2488 Set PRIORITY_BASE to baseP in the block comment above. This is the
2489 maximum priority of the "cheap" instructions, which should always
2490 include the next model instruction. */
2491 priority_base = 0;
2492 print_p = false;
2493 for (i = 0; i < count; i++)
2494 if (INSN_MODEL_INDEX (insns[i]))
2496 if (sched_verbose >= 6 && !print_p)
2498 fprintf (sched_dump, MODEL_BAR);
2499 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2500 model_dump_pressure_points (&model_before_pressure);
2501 fprintf (sched_dump, MODEL_BAR);
2502 print_p = true;
2504 cost = model_excess_cost (insns[i], print_p);
2505 if (cost <= 0)
2507 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2508 priority_base = MAX (priority_base, priority);
2509 cost = 0;
2511 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2513 if (print_p)
2514 fprintf (sched_dump, MODEL_BAR);
2516 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2517 instruction. */
2518 for (i = 0; i < count; i++)
2520 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2521 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2522 if (cost > 0 && priority > priority_base)
2524 cost += priority_base - priority;
2525 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2530 /* Returns a positive value if x is preferred; returns a negative value if
2531 y is preferred. Should never return 0, since that will make the sort
2532 unstable. */
2534 static int
2535 rank_for_schedule (const void *x, const void *y)
2537 rtx tmp = *(const rtx *) y;
2538 rtx tmp2 = *(const rtx *) x;
2539 int tmp_class, tmp2_class;
2540 int val, priority_val, info_val, diff;
2542 if (MAY_HAVE_DEBUG_INSNS)
2544 /* Schedule debug insns as early as possible. */
2545 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2546 return -1;
2547 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2548 return 1;
2549 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2550 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2553 if (live_range_shrinkage_p)
2555 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2556 code. */
2557 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2558 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2559 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2560 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2561 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2562 return diff;
2563 /* Sort by INSN_LUID (original insn order), so that we make the
2564 sort stable. This minimizes instruction movement, thus
2565 minimizing sched's effect on debugging and cross-jumping. */
2566 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2569 /* The insn in a schedule group should be issued the first. */
2570 if (flag_sched_group_heuristic &&
2571 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2572 return SCHED_GROUP_P (tmp2) ? 1 : -1;
2574 /* Make sure that priority of TMP and TMP2 are initialized. */
2575 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2577 if (sched_pressure != SCHED_PRESSURE_NONE)
2579 /* Prefer insn whose scheduling results in the smallest register
2580 pressure excess. */
2581 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2582 + insn_delay (tmp)
2583 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2584 - insn_delay (tmp2))))
2585 return diff;
2588 if (sched_pressure != SCHED_PRESSURE_NONE
2589 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
2591 if (INSN_TICK (tmp) <= clock_var)
2592 return -1;
2593 else if (INSN_TICK (tmp2) <= clock_var)
2594 return 1;
2595 else
2596 return INSN_TICK (tmp) - INSN_TICK (tmp2);
2599 /* If we are doing backtracking in this schedule, prefer insns that
2600 have forward dependencies with negative cost against an insn that
2601 was already scheduled. */
2602 if (current_sched_info->flags & DO_BACKTRACKING)
2604 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2605 if (priority_val)
2606 return priority_val;
2609 /* Prefer insn with higher priority. */
2610 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2612 if (flag_sched_critical_path_heuristic && priority_val)
2613 return priority_val;
2615 /* Prefer speculative insn with greater dependencies weakness. */
2616 if (flag_sched_spec_insn_heuristic && spec_info)
2618 ds_t ds1, ds2;
2619 dw_t dw1, dw2;
2620 int dw;
2622 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2623 if (ds1)
2624 dw1 = ds_weak (ds1);
2625 else
2626 dw1 = NO_DEP_WEAK;
2628 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2629 if (ds2)
2630 dw2 = ds_weak (ds2);
2631 else
2632 dw2 = NO_DEP_WEAK;
2634 dw = dw2 - dw1;
2635 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2636 return dw;
2639 info_val = (*current_sched_info->rank) (tmp, tmp2);
2640 if (flag_sched_rank_heuristic && info_val)
2641 return info_val;
2643 /* Compare insns based on their relation to the last scheduled
2644 non-debug insn. */
2645 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2647 dep_t dep1;
2648 dep_t dep2;
2649 rtx last = last_nondebug_scheduled_insn;
2651 /* Classify the instructions into three classes:
2652 1) Data dependent on last schedule insn.
2653 2) Anti/Output dependent on last scheduled insn.
2654 3) Independent of last scheduled insn, or has latency of one.
2655 Choose the insn from the highest numbered class if different. */
2656 dep1 = sd_find_dep_between (last, tmp, true);
2658 if (dep1 == NULL || dep_cost (dep1) == 1)
2659 tmp_class = 3;
2660 else if (/* Data dependence. */
2661 DEP_TYPE (dep1) == REG_DEP_TRUE)
2662 tmp_class = 1;
2663 else
2664 tmp_class = 2;
2666 dep2 = sd_find_dep_between (last, tmp2, true);
2668 if (dep2 == NULL || dep_cost (dep2) == 1)
2669 tmp2_class = 3;
2670 else if (/* Data dependence. */
2671 DEP_TYPE (dep2) == REG_DEP_TRUE)
2672 tmp2_class = 1;
2673 else
2674 tmp2_class = 2;
2676 if ((val = tmp2_class - tmp_class))
2677 return val;
2680 /* Prefer instructions that occur earlier in the model schedule. */
2681 if (sched_pressure == SCHED_PRESSURE_MODEL)
2683 int diff;
2685 diff = model_index (tmp) - model_index (tmp2);
2686 if (diff != 0)
2687 return diff;
2690 /* Prefer the insn which has more later insns that depend on it.
2691 This gives the scheduler more freedom when scheduling later
2692 instructions at the expense of added register pressure. */
2694 val = (dep_list_size (tmp2, SD_LIST_FORW)
2695 - dep_list_size (tmp, SD_LIST_FORW));
2697 if (flag_sched_dep_count_heuristic && val != 0)
2698 return val;
2700 /* If insns are equally good, sort by INSN_LUID (original insn order),
2701 so that we make the sort stable. This minimizes instruction movement,
2702 thus minimizing sched's effect on debugging and cross-jumping. */
2703 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2706 /* Resort the array A in which only element at index N may be out of order. */
2708 HAIFA_INLINE static void
2709 swap_sort (rtx *a, int n)
2711 rtx insn = a[n - 1];
2712 int i = n - 2;
2714 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2716 a[i + 1] = a[i];
2717 i -= 1;
2719 a[i + 1] = insn;
2722 /* Add INSN to the insn queue so that it can be executed at least
2723 N_CYCLES after the currently executing insn. Preserve insns
2724 chain for debugging purposes. REASON will be printed in debugging
2725 output. */
2727 HAIFA_INLINE static void
2728 queue_insn (rtx insn, int n_cycles, const char *reason)
2730 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2731 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2732 int new_tick;
2734 gcc_assert (n_cycles <= max_insn_queue_index);
2735 gcc_assert (!DEBUG_INSN_P (insn));
2737 insn_queue[next_q] = link;
2738 q_size += 1;
2740 if (sched_verbose >= 2)
2742 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2743 (*current_sched_info->print_insn) (insn, 0));
2745 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2748 QUEUE_INDEX (insn) = next_q;
2750 if (current_sched_info->flags & DO_BACKTRACKING)
2752 new_tick = clock_var + n_cycles;
2753 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2754 INSN_TICK (insn) = new_tick;
2756 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2757 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2759 must_backtrack = true;
2760 if (sched_verbose >= 2)
2761 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2766 /* Remove INSN from queue. */
2767 static void
2768 queue_remove (rtx insn)
2770 gcc_assert (QUEUE_INDEX (insn) >= 0);
2771 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2772 q_size--;
2773 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2776 /* Return a pointer to the bottom of the ready list, i.e. the insn
2777 with the lowest priority. */
2779 rtx *
2780 ready_lastpos (struct ready_list *ready)
2782 gcc_assert (ready->n_ready >= 1);
2783 return ready->vec + ready->first - ready->n_ready + 1;
2786 /* Add an element INSN to the ready list so that it ends up with the
2787 lowest/highest priority depending on FIRST_P. */
2789 HAIFA_INLINE static void
2790 ready_add (struct ready_list *ready, rtx insn, bool first_p)
2792 if (!first_p)
2794 if (ready->first == ready->n_ready)
2796 memmove (ready->vec + ready->veclen - ready->n_ready,
2797 ready_lastpos (ready),
2798 ready->n_ready * sizeof (rtx));
2799 ready->first = ready->veclen - 1;
2801 ready->vec[ready->first - ready->n_ready] = insn;
2803 else
2805 if (ready->first == ready->veclen - 1)
2807 if (ready->n_ready)
2808 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2809 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2810 ready_lastpos (ready),
2811 ready->n_ready * sizeof (rtx));
2812 ready->first = ready->veclen - 2;
2814 ready->vec[++(ready->first)] = insn;
2817 ready->n_ready++;
2818 if (DEBUG_INSN_P (insn))
2819 ready->n_debug++;
2821 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2822 QUEUE_INDEX (insn) = QUEUE_READY;
2824 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2825 && INSN_EXACT_TICK (insn) < clock_var)
2827 must_backtrack = true;
2831 /* Remove the element with the highest priority from the ready list and
2832 return it. */
2834 HAIFA_INLINE static rtx
2835 ready_remove_first (struct ready_list *ready)
2837 rtx t;
2839 gcc_assert (ready->n_ready);
2840 t = ready->vec[ready->first--];
2841 ready->n_ready--;
2842 if (DEBUG_INSN_P (t))
2843 ready->n_debug--;
2844 /* If the queue becomes empty, reset it. */
2845 if (ready->n_ready == 0)
2846 ready->first = ready->veclen - 1;
2848 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2849 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2851 return t;
2854 /* The following code implements multi-pass scheduling for the first
2855 cycle. In other words, we will try to choose ready insn which
2856 permits to start maximum number of insns on the same cycle. */
2858 /* Return a pointer to the element INDEX from the ready. INDEX for
2859 insn with the highest priority is 0, and the lowest priority has
2860 N_READY - 1. */
2863 ready_element (struct ready_list *ready, int index)
2865 gcc_assert (ready->n_ready && index < ready->n_ready);
2867 return ready->vec[ready->first - index];
2870 /* Remove the element INDEX from the ready list and return it. INDEX
2871 for insn with the highest priority is 0, and the lowest priority
2872 has N_READY - 1. */
2874 HAIFA_INLINE static rtx
2875 ready_remove (struct ready_list *ready, int index)
2877 rtx t;
2878 int i;
2880 if (index == 0)
2881 return ready_remove_first (ready);
2882 gcc_assert (ready->n_ready && index < ready->n_ready);
2883 t = ready->vec[ready->first - index];
2884 ready->n_ready--;
2885 if (DEBUG_INSN_P (t))
2886 ready->n_debug--;
2887 for (i = index; i < ready->n_ready; i++)
2888 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2889 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2890 return t;
2893 /* Remove INSN from the ready list. */
2894 static void
2895 ready_remove_insn (rtx insn)
2897 int i;
2899 for (i = 0; i < readyp->n_ready; i++)
2900 if (ready_element (readyp, i) == insn)
2902 ready_remove (readyp, i);
2903 return;
2905 gcc_unreachable ();
2908 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2909 macro. */
2911 void
2912 ready_sort (struct ready_list *ready)
2914 int i;
2915 rtx *first = ready_lastpos (ready);
2917 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2919 for (i = 0; i < ready->n_ready; i++)
2920 if (!DEBUG_INSN_P (first[i]))
2921 setup_insn_reg_pressure_info (first[i]);
2923 if (sched_pressure == SCHED_PRESSURE_MODEL
2924 && model_curr_point < model_num_insns)
2925 model_set_excess_costs (first, ready->n_ready);
2926 SCHED_SORT (first, ready->n_ready);
2929 /* PREV is an insn that is ready to execute. Adjust its priority if that
2930 will help shorten or lengthen register lifetimes as appropriate. Also
2931 provide a hook for the target to tweak itself. */
2933 HAIFA_INLINE static void
2934 adjust_priority (rtx prev)
2936 /* ??? There used to be code here to try and estimate how an insn
2937 affected register lifetimes, but it did it by looking at REG_DEAD
2938 notes, which we removed in schedule_region. Nor did it try to
2939 take into account register pressure or anything useful like that.
2941 Revisit when we have a machine model to work with and not before. */
2943 if (targetm.sched.adjust_priority)
2944 INSN_PRIORITY (prev) =
2945 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2948 /* Advance DFA state STATE on one cycle. */
2949 void
2950 advance_state (state_t state)
2952 if (targetm.sched.dfa_pre_advance_cycle)
2953 targetm.sched.dfa_pre_advance_cycle ();
2955 if (targetm.sched.dfa_pre_cycle_insn)
2956 state_transition (state,
2957 targetm.sched.dfa_pre_cycle_insn ());
2959 state_transition (state, NULL);
2961 if (targetm.sched.dfa_post_cycle_insn)
2962 state_transition (state,
2963 targetm.sched.dfa_post_cycle_insn ());
2965 if (targetm.sched.dfa_post_advance_cycle)
2966 targetm.sched.dfa_post_advance_cycle ();
2969 /* Advance time on one cycle. */
2970 HAIFA_INLINE static void
2971 advance_one_cycle (void)
2973 advance_state (curr_state);
2974 if (sched_verbose >= 6)
2975 fprintf (sched_dump, ";;\tAdvanced a state.\n");
2978 /* Update register pressure after scheduling INSN. */
2979 static void
2980 update_register_pressure (rtx insn)
2982 struct reg_use_data *use;
2983 struct reg_set_data *set;
2985 gcc_checking_assert (!DEBUG_INSN_P (insn));
2987 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2988 if (dying_use_p (use))
2989 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2990 use->regno, false);
2991 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2992 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2993 set->regno, true);
2996 /* Set up or update (if UPDATE_P) max register pressure (see its
2997 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2998 after insn AFTER. */
2999 static void
3000 setup_insn_max_reg_pressure (rtx after, bool update_p)
3002 int i, p;
3003 bool eq_p;
3004 rtx insn;
3005 static int max_reg_pressure[N_REG_CLASSES];
3007 save_reg_pressure ();
3008 for (i = 0; i < ira_pressure_classes_num; i++)
3009 max_reg_pressure[ira_pressure_classes[i]]
3010 = curr_reg_pressure[ira_pressure_classes[i]];
3011 for (insn = NEXT_INSN (after);
3012 insn != NULL_RTX && ! BARRIER_P (insn)
3013 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3014 insn = NEXT_INSN (insn))
3015 if (NONDEBUG_INSN_P (insn))
3017 eq_p = true;
3018 for (i = 0; i < ira_pressure_classes_num; i++)
3020 p = max_reg_pressure[ira_pressure_classes[i]];
3021 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3023 eq_p = false;
3024 INSN_MAX_REG_PRESSURE (insn)[i]
3025 = max_reg_pressure[ira_pressure_classes[i]];
3028 if (update_p && eq_p)
3029 break;
3030 update_register_pressure (insn);
3031 for (i = 0; i < ira_pressure_classes_num; i++)
3032 if (max_reg_pressure[ira_pressure_classes[i]]
3033 < curr_reg_pressure[ira_pressure_classes[i]])
3034 max_reg_pressure[ira_pressure_classes[i]]
3035 = curr_reg_pressure[ira_pressure_classes[i]];
3037 restore_reg_pressure ();
3040 /* Update the current register pressure after scheduling INSN. Update
3041 also max register pressure for unscheduled insns of the current
3042 BB. */
3043 static void
3044 update_reg_and_insn_max_reg_pressure (rtx insn)
3046 int i;
3047 int before[N_REG_CLASSES];
3049 for (i = 0; i < ira_pressure_classes_num; i++)
3050 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3051 update_register_pressure (insn);
3052 for (i = 0; i < ira_pressure_classes_num; i++)
3053 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3054 break;
3055 if (i < ira_pressure_classes_num)
3056 setup_insn_max_reg_pressure (insn, true);
3059 /* Set up register pressure at the beginning of basic block BB whose
3060 insns starting after insn AFTER. Set up also max register pressure
3061 for all insns of the basic block. */
3062 void
3063 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
3065 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3066 initiate_bb_reg_pressure_info (bb);
3067 setup_insn_max_reg_pressure (after, false);
3070 /* If doing predication while scheduling, verify whether INSN, which
3071 has just been scheduled, clobbers the conditions of any
3072 instructions that must be predicated in order to break their
3073 dependencies. If so, remove them from the queues so that they will
3074 only be scheduled once their control dependency is resolved. */
3076 static void
3077 check_clobbered_conditions (rtx insn)
3079 HARD_REG_SET t;
3080 int i;
3082 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3083 return;
3085 find_all_hard_reg_sets (insn, &t);
3087 restart:
3088 for (i = 0; i < ready.n_ready; i++)
3090 rtx x = ready_element (&ready, i);
3091 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3093 ready_remove_insn (x);
3094 goto restart;
3097 for (i = 0; i <= max_insn_queue_index; i++)
3099 rtx link;
3100 int q = NEXT_Q_AFTER (q_ptr, i);
3102 restart_queue:
3103 for (link = insn_queue[q]; link; link = XEXP (link, 1))
3105 rtx x = XEXP (link, 0);
3106 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3108 queue_remove (x);
3109 goto restart_queue;
3115 /* Return (in order):
3117 - positive if INSN adversely affects the pressure on one
3118 register class
3120 - negative if INSN reduces the pressure on one register class
3122 - 0 if INSN doesn't affect the pressure on any register class. */
3124 static int
3125 model_classify_pressure (struct model_insn_info *insn)
3127 struct reg_pressure_data *reg_pressure;
3128 int death[N_REG_CLASSES];
3129 int pci, cl, sum;
3131 calculate_reg_deaths (insn->insn, death);
3132 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3133 sum = 0;
3134 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3136 cl = ira_pressure_classes[pci];
3137 if (death[cl] < reg_pressure[pci].set_increase)
3138 return 1;
3139 sum += reg_pressure[pci].set_increase - death[cl];
3141 return sum;
3144 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3146 static int
3147 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3149 unsigned int height1, height2;
3150 unsigned int priority1, priority2;
3152 /* Prefer instructions with a higher model priority. */
3153 if (insn1->model_priority != insn2->model_priority)
3154 return insn1->model_priority > insn2->model_priority;
3156 /* Combine the length of the longest path of satisfied true dependencies
3157 that leads to each instruction (depth) with the length of the longest
3158 path of any dependencies that leads from the instruction (alap).
3159 Prefer instructions with the greatest combined length. If the combined
3160 lengths are equal, prefer instructions with the greatest depth.
3162 The idea is that, if we have a set S of "equal" instructions that each
3163 have ALAP value X, and we pick one such instruction I, any true-dependent
3164 successors of I that have ALAP value X - 1 should be preferred over S.
3165 This encourages the schedule to be "narrow" rather than "wide".
3166 However, if I is a low-priority instruction that we decided to
3167 schedule because of its model_classify_pressure, and if there
3168 is a set of higher-priority instructions T, the aforementioned
3169 successors of I should not have the edge over T. */
3170 height1 = insn1->depth + insn1->alap;
3171 height2 = insn2->depth + insn2->alap;
3172 if (height1 != height2)
3173 return height1 > height2;
3174 if (insn1->depth != insn2->depth)
3175 return insn1->depth > insn2->depth;
3177 /* We have no real preference between INSN1 an INSN2 as far as attempts
3178 to reduce pressure go. Prefer instructions with higher priorities. */
3179 priority1 = INSN_PRIORITY (insn1->insn);
3180 priority2 = INSN_PRIORITY (insn2->insn);
3181 if (priority1 != priority2)
3182 return priority1 > priority2;
3184 /* Use the original rtl sequence as a tie-breaker. */
3185 return insn1 < insn2;
3188 /* Add INSN to the model worklist immediately after PREV. Add it to the
3189 beginning of the list if PREV is null. */
3191 static void
3192 model_add_to_worklist_at (struct model_insn_info *insn,
3193 struct model_insn_info *prev)
3195 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3196 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3198 insn->prev = prev;
3199 if (prev)
3201 insn->next = prev->next;
3202 prev->next = insn;
3204 else
3206 insn->next = model_worklist;
3207 model_worklist = insn;
3209 if (insn->next)
3210 insn->next->prev = insn;
3213 /* Remove INSN from the model worklist. */
3215 static void
3216 model_remove_from_worklist (struct model_insn_info *insn)
3218 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3219 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3221 if (insn->prev)
3222 insn->prev->next = insn->next;
3223 else
3224 model_worklist = insn->next;
3225 if (insn->next)
3226 insn->next->prev = insn->prev;
3229 /* Add INSN to the model worklist. Start looking for a suitable position
3230 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3231 insns either side. A null PREV indicates the beginning of the list and
3232 a null NEXT indicates the end. */
3234 static void
3235 model_add_to_worklist (struct model_insn_info *insn,
3236 struct model_insn_info *prev,
3237 struct model_insn_info *next)
3239 int count;
3241 count = MAX_SCHED_READY_INSNS;
3242 if (count > 0 && prev && model_order_p (insn, prev))
3245 count--;
3246 prev = prev->prev;
3248 while (count > 0 && prev && model_order_p (insn, prev));
3249 else
3250 while (count > 0 && next && model_order_p (next, insn))
3252 count--;
3253 prev = next;
3254 next = next->next;
3256 model_add_to_worklist_at (insn, prev);
3259 /* INSN may now have a higher priority (in the model_order_p sense)
3260 than before. Move it up the worklist if necessary. */
3262 static void
3263 model_promote_insn (struct model_insn_info *insn)
3265 struct model_insn_info *prev;
3266 int count;
3268 prev = insn->prev;
3269 count = MAX_SCHED_READY_INSNS;
3270 while (count > 0 && prev && model_order_p (insn, prev))
3272 count--;
3273 prev = prev->prev;
3275 if (prev != insn->prev)
3277 model_remove_from_worklist (insn);
3278 model_add_to_worklist_at (insn, prev);
3282 /* Add INSN to the end of the model schedule. */
3284 static void
3285 model_add_to_schedule (rtx insn)
3287 unsigned int point;
3289 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3290 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3292 point = model_schedule.length ();
3293 model_schedule.quick_push (insn);
3294 INSN_MODEL_INDEX (insn) = point + 1;
3297 /* Analyze the instructions that are to be scheduled, setting up
3298 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3299 instructions to model_worklist. */
3301 static void
3302 model_analyze_insns (void)
3304 rtx start, end, iter;
3305 sd_iterator_def sd_it;
3306 dep_t dep;
3307 struct model_insn_info *insn, *con;
3309 model_num_insns = 0;
3310 start = PREV_INSN (current_sched_info->next_tail);
3311 end = current_sched_info->prev_head;
3312 for (iter = start; iter != end; iter = PREV_INSN (iter))
3313 if (NONDEBUG_INSN_P (iter))
3315 insn = MODEL_INSN_INFO (iter);
3316 insn->insn = iter;
3317 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3319 con = MODEL_INSN_INFO (DEP_CON (dep));
3320 if (con->insn && insn->alap < con->alap + 1)
3321 insn->alap = con->alap + 1;
3324 insn->old_queue = QUEUE_INDEX (iter);
3325 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3327 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3328 if (insn->unscheduled_preds == 0)
3329 model_add_to_worklist (insn, NULL, model_worklist);
3331 model_num_insns++;
3335 /* The global state describes the register pressure at the start of the
3336 model schedule. Initialize GROUP accordingly. */
3338 static void
3339 model_init_pressure_group (struct model_pressure_group *group)
3341 int pci, cl;
3343 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3345 cl = ira_pressure_classes[pci];
3346 group->limits[pci].pressure = curr_reg_pressure[cl];
3347 group->limits[pci].point = 0;
3349 /* Use index model_num_insns to record the state after the last
3350 instruction in the model schedule. */
3351 group->model = XNEWVEC (struct model_pressure_data,
3352 (model_num_insns + 1) * ira_pressure_classes_num);
3355 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3356 Update the maximum pressure for the whole schedule. */
3358 static void
3359 model_record_pressure (struct model_pressure_group *group,
3360 int point, int pci, int pressure)
3362 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3363 if (group->limits[pci].pressure < pressure)
3365 group->limits[pci].pressure = pressure;
3366 group->limits[pci].point = point;
3370 /* INSN has just been added to the end of the model schedule. Record its
3371 register-pressure information. */
3373 static void
3374 model_record_pressures (struct model_insn_info *insn)
3376 struct reg_pressure_data *reg_pressure;
3377 int point, pci, cl, delta;
3378 int death[N_REG_CLASSES];
3380 point = model_index (insn->insn);
3381 if (sched_verbose >= 2)
3383 if (point == 0)
3385 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3386 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3388 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3389 point, INSN_UID (insn->insn), insn->model_priority,
3390 insn->depth + insn->alap, insn->depth,
3391 INSN_PRIORITY (insn->insn),
3392 str_pattern_slim (PATTERN (insn->insn)));
3394 calculate_reg_deaths (insn->insn, death);
3395 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3396 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3398 cl = ira_pressure_classes[pci];
3399 delta = reg_pressure[pci].set_increase - death[cl];
3400 if (sched_verbose >= 2)
3401 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3402 curr_reg_pressure[cl], delta);
3403 model_record_pressure (&model_before_pressure, point, pci,
3404 curr_reg_pressure[cl]);
3406 if (sched_verbose >= 2)
3407 fprintf (sched_dump, "\n");
3410 /* All instructions have been added to the model schedule. Record the
3411 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3413 static void
3414 model_record_final_pressures (struct model_pressure_group *group)
3416 int point, pci, max_pressure, ref_pressure, cl;
3418 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3420 /* Record the final pressure for this class. */
3421 cl = ira_pressure_classes[pci];
3422 point = model_num_insns;
3423 ref_pressure = curr_reg_pressure[cl];
3424 model_record_pressure (group, point, pci, ref_pressure);
3426 /* Record the original maximum pressure. */
3427 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3429 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3430 max_pressure = ref_pressure;
3431 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3432 while (point > 0)
3434 point--;
3435 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3436 max_pressure = MAX (max_pressure, ref_pressure);
3437 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3442 /* Update all successors of INSN, given that INSN has just been scheduled. */
3444 static void
3445 model_add_successors_to_worklist (struct model_insn_info *insn)
3447 sd_iterator_def sd_it;
3448 struct model_insn_info *con;
3449 dep_t dep;
3451 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3453 con = MODEL_INSN_INFO (DEP_CON (dep));
3454 /* Ignore debug instructions, and instructions from other blocks. */
3455 if (con->insn)
3457 con->unscheduled_preds--;
3459 /* Update the depth field of each true-dependent successor.
3460 Increasing the depth gives them a higher priority than
3461 before. */
3462 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3464 con->depth = insn->depth + 1;
3465 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3466 model_promote_insn (con);
3469 /* If this is a true dependency, or if there are no remaining
3470 dependencies for CON (meaning that CON only had non-true
3471 dependencies), make sure that CON is on the worklist.
3472 We don't bother otherwise because it would tend to fill the
3473 worklist with a lot of low-priority instructions that are not
3474 yet ready to issue. */
3475 if ((con->depth > 0 || con->unscheduled_preds == 0)
3476 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3477 model_add_to_worklist (con, insn, insn->next);
3482 /* Give INSN a higher priority than any current instruction, then give
3483 unscheduled predecessors of INSN a higher priority still. If any of
3484 those predecessors are not on the model worklist, do the same for its
3485 predecessors, and so on. */
3487 static void
3488 model_promote_predecessors (struct model_insn_info *insn)
3490 struct model_insn_info *pro, *first;
3491 sd_iterator_def sd_it;
3492 dep_t dep;
3494 if (sched_verbose >= 7)
3495 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3496 INSN_UID (insn->insn), model_next_priority);
3497 insn->model_priority = model_next_priority++;
3498 model_remove_from_worklist (insn);
3499 model_add_to_worklist_at (insn, NULL);
3501 first = NULL;
3502 for (;;)
3504 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3506 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3507 /* The first test is to ignore debug instructions, and instructions
3508 from other blocks. */
3509 if (pro->insn
3510 && pro->model_priority != model_next_priority
3511 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3513 pro->model_priority = model_next_priority;
3514 if (sched_verbose >= 7)
3515 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3516 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3518 /* PRO is already in the worklist, but it now has
3519 a higher priority than before. Move it at the
3520 appropriate place. */
3521 model_remove_from_worklist (pro);
3522 model_add_to_worklist (pro, NULL, model_worklist);
3524 else
3526 /* PRO isn't in the worklist. Recursively process
3527 its predecessors until we find one that is. */
3528 pro->next = first;
3529 first = pro;
3533 if (!first)
3534 break;
3535 insn = first;
3536 first = insn->next;
3538 if (sched_verbose >= 7)
3539 fprintf (sched_dump, " = %d\n", model_next_priority);
3540 model_next_priority++;
3543 /* Pick one instruction from model_worklist and process it. */
3545 static void
3546 model_choose_insn (void)
3548 struct model_insn_info *insn, *fallback;
3549 int count;
3551 if (sched_verbose >= 7)
3553 fprintf (sched_dump, ";;\t+--- worklist:\n");
3554 insn = model_worklist;
3555 count = MAX_SCHED_READY_INSNS;
3556 while (count > 0 && insn)
3558 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3559 INSN_UID (insn->insn), insn->model_priority,
3560 insn->depth + insn->alap, insn->depth,
3561 INSN_PRIORITY (insn->insn));
3562 count--;
3563 insn = insn->next;
3567 /* Look for a ready instruction whose model_classify_priority is zero
3568 or negative, picking the highest-priority one. Adding such an
3569 instruction to the schedule now should do no harm, and may actually
3570 do some good.
3572 Failing that, see whether there is an instruction with the highest
3573 extant model_priority that is not yet ready, but which would reduce
3574 pressure if it became ready. This is designed to catch cases like:
3576 (set (mem (reg R1)) (reg R2))
3578 where the instruction is the last remaining use of R1 and where the
3579 value of R2 is not yet available (or vice versa). The death of R1
3580 means that this instruction already reduces pressure. It is of
3581 course possible that the computation of R2 involves other registers
3582 that are hard to kill, but such cases are rare enough for this
3583 heuristic to be a win in general.
3585 Failing that, just pick the highest-priority instruction in the
3586 worklist. */
3587 count = MAX_SCHED_READY_INSNS;
3588 insn = model_worklist;
3589 fallback = 0;
3590 for (;;)
3592 if (count == 0 || !insn)
3594 insn = fallback ? fallback : model_worklist;
3595 break;
3597 if (insn->unscheduled_preds)
3599 if (model_worklist->model_priority == insn->model_priority
3600 && !fallback
3601 && model_classify_pressure (insn) < 0)
3602 fallback = insn;
3604 else
3606 if (model_classify_pressure (insn) <= 0)
3607 break;
3609 count--;
3610 insn = insn->next;
3613 if (sched_verbose >= 7 && insn != model_worklist)
3615 if (insn->unscheduled_preds)
3616 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3617 INSN_UID (insn->insn));
3618 else
3619 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3620 INSN_UID (insn->insn));
3622 if (insn->unscheduled_preds)
3623 /* INSN isn't yet ready to issue. Give all its predecessors the
3624 highest priority. */
3625 model_promote_predecessors (insn);
3626 else
3628 /* INSN is ready. Add it to the end of model_schedule and
3629 process its successors. */
3630 model_add_successors_to_worklist (insn);
3631 model_remove_from_worklist (insn);
3632 model_add_to_schedule (insn->insn);
3633 model_record_pressures (insn);
3634 update_register_pressure (insn->insn);
3638 /* Restore all QUEUE_INDEXs to the values that they had before
3639 model_start_schedule was called. */
3641 static void
3642 model_reset_queue_indices (void)
3644 unsigned int i;
3645 rtx insn;
3647 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3648 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3651 /* We have calculated the model schedule and spill costs. Print a summary
3652 to sched_dump. */
3654 static void
3655 model_dump_pressure_summary (void)
3657 int pci, cl;
3659 fprintf (sched_dump, ";; Pressure summary:");
3660 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3662 cl = ira_pressure_classes[pci];
3663 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3664 model_before_pressure.limits[pci].pressure);
3666 fprintf (sched_dump, "\n\n");
3669 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3670 scheduling region. */
3672 static void
3673 model_start_schedule (void)
3675 basic_block bb;
3677 model_next_priority = 1;
3678 model_schedule.create (sched_max_luid);
3679 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3681 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3682 initiate_reg_pressure_info (df_get_live_in (bb));
3684 model_analyze_insns ();
3685 model_init_pressure_group (&model_before_pressure);
3686 while (model_worklist)
3687 model_choose_insn ();
3688 gcc_assert (model_num_insns == (int) model_schedule.length ());
3689 if (sched_verbose >= 2)
3690 fprintf (sched_dump, "\n");
3692 model_record_final_pressures (&model_before_pressure);
3693 model_reset_queue_indices ();
3695 XDELETEVEC (model_insns);
3697 model_curr_point = 0;
3698 initiate_reg_pressure_info (df_get_live_in (bb));
3699 if (sched_verbose >= 1)
3700 model_dump_pressure_summary ();
3703 /* Free the information associated with GROUP. */
3705 static void
3706 model_finalize_pressure_group (struct model_pressure_group *group)
3708 XDELETEVEC (group->model);
3711 /* Free the information created by model_start_schedule. */
3713 static void
3714 model_end_schedule (void)
3716 model_finalize_pressure_group (&model_before_pressure);
3717 model_schedule.release ();
3720 /* A structure that holds local state for the loop in schedule_block. */
3721 struct sched_block_state
3723 /* True if no real insns have been scheduled in the current cycle. */
3724 bool first_cycle_insn_p;
3725 /* True if a shadow insn has been scheduled in the current cycle, which
3726 means that no more normal insns can be issued. */
3727 bool shadows_only_p;
3728 /* True if we're winding down a modulo schedule, which means that we only
3729 issue insns with INSN_EXACT_TICK set. */
3730 bool modulo_epilogue;
3731 /* Initialized with the machine's issue rate every cycle, and updated
3732 by calls to the variable_issue hook. */
3733 int can_issue_more;
3736 /* INSN is the "currently executing insn". Launch each insn which was
3737 waiting on INSN. READY is the ready list which contains the insns
3738 that are ready to fire. CLOCK is the current cycle. The function
3739 returns necessary cycle advance after issuing the insn (it is not
3740 zero for insns in a schedule group). */
3742 static int
3743 schedule_insn (rtx insn)
3745 sd_iterator_def sd_it;
3746 dep_t dep;
3747 int i;
3748 int advance = 0;
3750 if (sched_verbose >= 1)
3752 struct reg_pressure_data *pressure_info;
3753 fprintf (sched_dump, ";;\t%3i--> %s%-40s:",
3754 clock_var, (*current_sched_info->print_insn) (insn, 1),
3755 str_pattern_slim (PATTERN (insn)));
3757 if (recog_memoized (insn) < 0)
3758 fprintf (sched_dump, "nothing");
3759 else
3760 print_reservation (sched_dump, insn);
3761 pressure_info = INSN_REG_PRESSURE (insn);
3762 if (pressure_info != NULL)
3764 fputc (':', sched_dump);
3765 for (i = 0; i < ira_pressure_classes_num; i++)
3766 fprintf (sched_dump, "%s%s%+d(%d)",
3767 scheduled_insns.length () > 1
3768 && INSN_LUID (insn)
3769 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3770 reg_class_names[ira_pressure_classes[i]],
3771 pressure_info[i].set_increase, pressure_info[i].change);
3773 if (sched_pressure == SCHED_PRESSURE_MODEL
3774 && model_curr_point < model_num_insns
3775 && model_index (insn) == model_curr_point)
3776 fprintf (sched_dump, ":model %d", model_curr_point);
3777 fputc ('\n', sched_dump);
3780 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3781 update_reg_and_insn_max_reg_pressure (insn);
3783 /* Scheduling instruction should have all its dependencies resolved and
3784 should have been removed from the ready list. */
3785 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3787 /* Reset debug insns invalidated by moving this insn. */
3788 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3789 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3790 sd_iterator_cond (&sd_it, &dep);)
3792 rtx dbg = DEP_PRO (dep);
3793 struct reg_use_data *use, *next;
3795 if (DEP_STATUS (dep) & DEP_CANCELLED)
3797 sd_iterator_next (&sd_it);
3798 continue;
3801 gcc_assert (DEBUG_INSN_P (dbg));
3803 if (sched_verbose >= 6)
3804 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3805 INSN_UID (dbg));
3807 /* ??? Rather than resetting the debug insn, we might be able
3808 to emit a debug temp before the just-scheduled insn, but
3809 this would involve checking that the expression at the
3810 point of the debug insn is equivalent to the expression
3811 before the just-scheduled insn. They might not be: the
3812 expression in the debug insn may depend on other insns not
3813 yet scheduled that set MEMs, REGs or even other debug
3814 insns. It's not clear that attempting to preserve debug
3815 information in these cases is worth the effort, given how
3816 uncommon these resets are and the likelihood that the debug
3817 temps introduced won't survive the schedule change. */
3818 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3819 df_insn_rescan (dbg);
3821 /* Unknown location doesn't use any registers. */
3822 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3824 struct reg_use_data *prev = use;
3826 /* Remove use from the cyclic next_regno_use chain first. */
3827 while (prev->next_regno_use != use)
3828 prev = prev->next_regno_use;
3829 prev->next_regno_use = use->next_regno_use;
3830 next = use->next_insn_use;
3831 free (use);
3833 INSN_REG_USE_LIST (dbg) = NULL;
3835 /* We delete rather than resolve these deps, otherwise we
3836 crash in sched_free_deps(), because forward deps are
3837 expected to be released before backward deps. */
3838 sd_delete_dep (sd_it);
3841 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3842 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3844 if (sched_pressure == SCHED_PRESSURE_MODEL
3845 && model_curr_point < model_num_insns
3846 && NONDEBUG_INSN_P (insn))
3848 if (model_index (insn) == model_curr_point)
3850 model_curr_point++;
3851 while (model_curr_point < model_num_insns
3852 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3853 == QUEUE_SCHEDULED));
3854 else
3855 model_recompute (insn);
3856 model_update_limit_points ();
3857 update_register_pressure (insn);
3858 if (sched_verbose >= 2)
3859 print_curr_reg_pressure ();
3862 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3863 if (INSN_TICK (insn) > clock_var)
3864 /* INSN has been prematurely moved from the queue to the ready list.
3865 This is possible only if following flag is set. */
3866 gcc_assert (flag_sched_stalled_insns);
3868 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3869 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3870 INSN_TICK (insn) = clock_var;
3872 check_clobbered_conditions (insn);
3874 /* Update dependent instructions. First, see if by scheduling this insn
3875 now we broke a dependence in a way that requires us to change another
3876 insn. */
3877 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3878 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
3880 struct dep_replacement *desc = DEP_REPLACE (dep);
3881 rtx pro = DEP_PRO (dep);
3882 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
3883 && desc != NULL && desc->insn == pro)
3884 apply_replacement (dep, false);
3887 /* Go through and resolve forward dependencies. */
3888 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3889 sd_iterator_cond (&sd_it, &dep);)
3891 rtx next = DEP_CON (dep);
3892 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3894 /* Resolve the dependence between INSN and NEXT.
3895 sd_resolve_dep () moves current dep to another list thus
3896 advancing the iterator. */
3897 sd_resolve_dep (sd_it);
3899 if (cancelled)
3901 if (must_restore_pattern_p (next, dep))
3902 restore_pattern (dep, false);
3903 continue;
3906 /* Don't bother trying to mark next as ready if insn is a debug
3907 insn. If insn is the last hard dependency, it will have
3908 already been discounted. */
3909 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3910 continue;
3912 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
3914 int effective_cost;
3916 effective_cost = try_ready (next);
3918 if (effective_cost >= 0
3919 && SCHED_GROUP_P (next)
3920 && advance < effective_cost)
3921 advance = effective_cost;
3923 else
3924 /* Check always has only one forward dependence (to the first insn in
3925 the recovery block), therefore, this will be executed only once. */
3927 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
3928 fix_recovery_deps (RECOVERY_BLOCK (insn));
3932 /* Annotate the instruction with issue information -- TImode
3933 indicates that the instruction is expected not to be able
3934 to issue on the same cycle as the previous insn. A machine
3935 may use this information to decide how the instruction should
3936 be aligned. */
3937 if (issue_rate > 1
3938 && GET_CODE (PATTERN (insn)) != USE
3939 && GET_CODE (PATTERN (insn)) != CLOBBER
3940 && !DEBUG_INSN_P (insn))
3942 if (reload_completed)
3943 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3944 last_clock_var = clock_var;
3947 return advance;
3950 /* Functions for handling of notes. */
3952 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
3953 void
3954 concat_note_lists (rtx from_end, rtx *to_endp)
3956 rtx from_start;
3958 /* It's easy when have nothing to concat. */
3959 if (from_end == NULL)
3960 return;
3962 /* It's also easy when destination is empty. */
3963 if (*to_endp == NULL)
3965 *to_endp = from_end;
3966 return;
3969 from_start = from_end;
3970 while (PREV_INSN (from_start) != NULL)
3971 from_start = PREV_INSN (from_start);
3973 PREV_INSN (from_start) = *to_endp;
3974 NEXT_INSN (*to_endp) = from_start;
3975 *to_endp = from_end;
3978 /* Delete notes between HEAD and TAIL and put them in the chain
3979 of notes ended by NOTE_LIST. */
3980 void
3981 remove_notes (rtx head, rtx tail)
3983 rtx next_tail, insn, next;
3985 note_list = 0;
3986 if (head == tail && !INSN_P (head))
3987 return;
3989 next_tail = NEXT_INSN (tail);
3990 for (insn = head; insn != next_tail; insn = next)
3992 next = NEXT_INSN (insn);
3993 if (!NOTE_P (insn))
3994 continue;
3996 switch (NOTE_KIND (insn))
3998 case NOTE_INSN_BASIC_BLOCK:
3999 continue;
4001 case NOTE_INSN_EPILOGUE_BEG:
4002 if (insn != tail)
4004 remove_insn (insn);
4005 add_reg_note (next, REG_SAVE_NOTE,
4006 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4007 break;
4009 /* FALLTHRU */
4011 default:
4012 remove_insn (insn);
4014 /* Add the note to list that ends at NOTE_LIST. */
4015 PREV_INSN (insn) = note_list;
4016 NEXT_INSN (insn) = NULL_RTX;
4017 if (note_list)
4018 NEXT_INSN (note_list) = insn;
4019 note_list = insn;
4020 break;
4023 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4027 /* A structure to record enough data to allow us to backtrack the scheduler to
4028 a previous state. */
4029 struct haifa_saved_data
4031 /* Next entry on the list. */
4032 struct haifa_saved_data *next;
4034 /* Backtracking is associated with scheduling insns that have delay slots.
4035 DELAY_PAIR points to the structure that contains the insns involved, and
4036 the number of cycles between them. */
4037 struct delay_pair *delay_pair;
4039 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4040 void *fe_saved_data;
4041 /* Data used by the backend. */
4042 void *be_saved_data;
4044 /* Copies of global state. */
4045 int clock_var, last_clock_var;
4046 struct ready_list ready;
4047 state_t curr_state;
4049 rtx last_scheduled_insn;
4050 rtx last_nondebug_scheduled_insn;
4051 int cycle_issued_insns;
4053 /* Copies of state used in the inner loop of schedule_block. */
4054 struct sched_block_state sched_block;
4056 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4057 to 0 when restoring. */
4058 int q_size;
4059 rtx *insn_queue;
4061 /* Describe pattern replacements that occurred since this backtrack point
4062 was queued. */
4063 vec<dep_t> replacement_deps;
4064 vec<int> replace_apply;
4066 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4067 point. */
4068 vec<dep_t> next_cycle_deps;
4069 vec<int> next_cycle_apply;
4072 /* A record, in reverse order, of all scheduled insns which have delay slots
4073 and may require backtracking. */
4074 static struct haifa_saved_data *backtrack_queue;
4076 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4077 to SET_P. */
4078 static void
4079 mark_backtrack_feeds (rtx insn, int set_p)
4081 sd_iterator_def sd_it;
4082 dep_t dep;
4083 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4085 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4089 /* Save the current scheduler state so that we can backtrack to it
4090 later if necessary. PAIR gives the insns that make it necessary to
4091 save this point. SCHED_BLOCK is the local state of schedule_block
4092 that need to be saved. */
4093 static void
4094 save_backtrack_point (struct delay_pair *pair,
4095 struct sched_block_state sched_block)
4097 int i;
4098 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4100 save->curr_state = xmalloc (dfa_state_size);
4101 memcpy (save->curr_state, curr_state, dfa_state_size);
4103 save->ready.first = ready.first;
4104 save->ready.n_ready = ready.n_ready;
4105 save->ready.n_debug = ready.n_debug;
4106 save->ready.veclen = ready.veclen;
4107 save->ready.vec = XNEWVEC (rtx, ready.veclen);
4108 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4110 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
4111 save->q_size = q_size;
4112 for (i = 0; i <= max_insn_queue_index; i++)
4114 int q = NEXT_Q_AFTER (q_ptr, i);
4115 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4118 save->clock_var = clock_var;
4119 save->last_clock_var = last_clock_var;
4120 save->cycle_issued_insns = cycle_issued_insns;
4121 save->last_scheduled_insn = last_scheduled_insn;
4122 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4124 save->sched_block = sched_block;
4126 save->replacement_deps.create (0);
4127 save->replace_apply.create (0);
4128 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4129 save->next_cycle_apply = next_cycle_apply.copy ();
4131 if (current_sched_info->save_state)
4132 save->fe_saved_data = (*current_sched_info->save_state) ();
4134 if (targetm.sched.alloc_sched_context)
4136 save->be_saved_data = targetm.sched.alloc_sched_context ();
4137 targetm.sched.init_sched_context (save->be_saved_data, false);
4139 else
4140 save->be_saved_data = NULL;
4142 save->delay_pair = pair;
4144 save->next = backtrack_queue;
4145 backtrack_queue = save;
4147 while (pair)
4149 mark_backtrack_feeds (pair->i2, 1);
4150 INSN_TICK (pair->i2) = INVALID_TICK;
4151 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4152 SHADOW_P (pair->i2) = pair->stages == 0;
4153 pair = pair->next_same_i1;
4157 /* Walk the ready list and all queues. If any insns have unresolved backwards
4158 dependencies, these must be cancelled deps, broken by predication. Set or
4159 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4161 static void
4162 toggle_cancelled_flags (bool set)
4164 int i;
4165 sd_iterator_def sd_it;
4166 dep_t dep;
4168 if (ready.n_ready > 0)
4170 rtx *first = ready_lastpos (&ready);
4171 for (i = 0; i < ready.n_ready; i++)
4172 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4173 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4175 if (set)
4176 DEP_STATUS (dep) |= DEP_CANCELLED;
4177 else
4178 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4181 for (i = 0; i <= max_insn_queue_index; i++)
4183 int q = NEXT_Q_AFTER (q_ptr, i);
4184 rtx link;
4185 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4187 rtx insn = XEXP (link, 0);
4188 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4189 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4191 if (set)
4192 DEP_STATUS (dep) |= DEP_CANCELLED;
4193 else
4194 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4200 /* Undo the replacements that have occurred after backtrack point SAVE
4201 was placed. */
4202 static void
4203 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4205 while (!save->replacement_deps.is_empty ())
4207 dep_t dep = save->replacement_deps.pop ();
4208 int apply_p = save->replace_apply.pop ();
4210 if (apply_p)
4211 restore_pattern (dep, true);
4212 else
4213 apply_replacement (dep, true);
4215 save->replacement_deps.release ();
4216 save->replace_apply.release ();
4219 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4220 Restore their dependencies to an unresolved state, and mark them as
4221 queued nowhere. */
4223 static void
4224 unschedule_insns_until (rtx insn)
4226 auto_vec<rtx> recompute_vec;
4228 /* Make two passes over the insns to be unscheduled. First, we clear out
4229 dependencies and other trivial bookkeeping. */
4230 for (;;)
4232 rtx last;
4233 sd_iterator_def sd_it;
4234 dep_t dep;
4236 last = scheduled_insns.pop ();
4238 /* This will be changed by restore_backtrack_point if the insn is in
4239 any queue. */
4240 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4241 if (last != insn)
4242 INSN_TICK (last) = INVALID_TICK;
4244 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4245 modulo_insns_scheduled--;
4247 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4248 sd_iterator_cond (&sd_it, &dep);)
4250 rtx con = DEP_CON (dep);
4251 sd_unresolve_dep (sd_it);
4252 if (!MUST_RECOMPUTE_SPEC_P (con))
4254 MUST_RECOMPUTE_SPEC_P (con) = 1;
4255 recompute_vec.safe_push (con);
4259 if (last == insn)
4260 break;
4263 /* A second pass, to update ready and speculation status for insns
4264 depending on the unscheduled ones. The first pass must have
4265 popped the scheduled_insns vector up to the point where we
4266 restart scheduling, as recompute_todo_spec requires it to be
4267 up-to-date. */
4268 while (!recompute_vec.is_empty ())
4270 rtx con;
4272 con = recompute_vec.pop ();
4273 MUST_RECOMPUTE_SPEC_P (con) = 0;
4274 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4276 TODO_SPEC (con) = HARD_DEP;
4277 INSN_TICK (con) = INVALID_TICK;
4278 if (PREDICATED_PAT (con) != NULL_RTX)
4279 haifa_change_pattern (con, ORIG_PAT (con));
4281 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4282 TODO_SPEC (con) = recompute_todo_spec (con, true);
4286 /* Restore scheduler state from the topmost entry on the backtracking queue.
4287 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4288 overwrite with the saved data.
4289 The caller must already have called unschedule_insns_until. */
4291 static void
4292 restore_last_backtrack_point (struct sched_block_state *psched_block)
4294 rtx link;
4295 int i;
4296 struct haifa_saved_data *save = backtrack_queue;
4298 backtrack_queue = save->next;
4300 if (current_sched_info->restore_state)
4301 (*current_sched_info->restore_state) (save->fe_saved_data);
4303 if (targetm.sched.alloc_sched_context)
4305 targetm.sched.set_sched_context (save->be_saved_data);
4306 targetm.sched.free_sched_context (save->be_saved_data);
4309 /* Do this first since it clobbers INSN_TICK of the involved
4310 instructions. */
4311 undo_replacements_for_backtrack (save);
4313 /* Clear the QUEUE_INDEX of everything in the ready list or one
4314 of the queues. */
4315 if (ready.n_ready > 0)
4317 rtx *first = ready_lastpos (&ready);
4318 for (i = 0; i < ready.n_ready; i++)
4320 rtx insn = first[i];
4321 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4322 INSN_TICK (insn) = INVALID_TICK;
4325 for (i = 0; i <= max_insn_queue_index; i++)
4327 int q = NEXT_Q_AFTER (q_ptr, i);
4329 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4331 rtx x = XEXP (link, 0);
4332 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4333 INSN_TICK (x) = INVALID_TICK;
4335 free_INSN_LIST_list (&insn_queue[q]);
4338 free (ready.vec);
4339 ready = save->ready;
4341 if (ready.n_ready > 0)
4343 rtx *first = ready_lastpos (&ready);
4344 for (i = 0; i < ready.n_ready; i++)
4346 rtx insn = first[i];
4347 QUEUE_INDEX (insn) = QUEUE_READY;
4348 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4349 INSN_TICK (insn) = save->clock_var;
4353 q_ptr = 0;
4354 q_size = save->q_size;
4355 for (i = 0; i <= max_insn_queue_index; i++)
4357 int q = NEXT_Q_AFTER (q_ptr, i);
4359 insn_queue[q] = save->insn_queue[q];
4361 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4363 rtx x = XEXP (link, 0);
4364 QUEUE_INDEX (x) = i;
4365 TODO_SPEC (x) = recompute_todo_spec (x, true);
4366 INSN_TICK (x) = save->clock_var + i;
4369 free (save->insn_queue);
4371 toggle_cancelled_flags (true);
4373 clock_var = save->clock_var;
4374 last_clock_var = save->last_clock_var;
4375 cycle_issued_insns = save->cycle_issued_insns;
4376 last_scheduled_insn = save->last_scheduled_insn;
4377 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4379 *psched_block = save->sched_block;
4381 memcpy (curr_state, save->curr_state, dfa_state_size);
4382 free (save->curr_state);
4384 mark_backtrack_feeds (save->delay_pair->i2, 0);
4386 gcc_assert (next_cycle_replace_deps.is_empty ());
4387 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4388 next_cycle_apply = save->next_cycle_apply.copy ();
4390 free (save);
4392 for (save = backtrack_queue; save; save = save->next)
4394 mark_backtrack_feeds (save->delay_pair->i2, 1);
4398 /* Discard all data associated with the topmost entry in the backtrack
4399 queue. If RESET_TICK is false, we just want to free the data. If true,
4400 we are doing this because we discovered a reason to backtrack. In the
4401 latter case, also reset the INSN_TICK for the shadow insn. */
4402 static void
4403 free_topmost_backtrack_point (bool reset_tick)
4405 struct haifa_saved_data *save = backtrack_queue;
4406 int i;
4408 backtrack_queue = save->next;
4410 if (reset_tick)
4412 struct delay_pair *pair = save->delay_pair;
4413 while (pair)
4415 INSN_TICK (pair->i2) = INVALID_TICK;
4416 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4417 pair = pair->next_same_i1;
4419 undo_replacements_for_backtrack (save);
4421 else
4423 save->replacement_deps.release ();
4424 save->replace_apply.release ();
4427 if (targetm.sched.free_sched_context)
4428 targetm.sched.free_sched_context (save->be_saved_data);
4429 if (current_sched_info->restore_state)
4430 free (save->fe_saved_data);
4431 for (i = 0; i <= max_insn_queue_index; i++)
4432 free_INSN_LIST_list (&save->insn_queue[i]);
4433 free (save->insn_queue);
4434 free (save->curr_state);
4435 free (save->ready.vec);
4436 free (save);
4439 /* Free the entire backtrack queue. */
4440 static void
4441 free_backtrack_queue (void)
4443 while (backtrack_queue)
4444 free_topmost_backtrack_point (false);
4447 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4448 may have to postpone the replacement until the start of the next cycle,
4449 at which point we will be called again with IMMEDIATELY true. This is
4450 only done for machines which have instruction packets with explicit
4451 parallelism however. */
4452 static void
4453 apply_replacement (dep_t dep, bool immediately)
4455 struct dep_replacement *desc = DEP_REPLACE (dep);
4456 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4458 next_cycle_replace_deps.safe_push (dep);
4459 next_cycle_apply.safe_push (1);
4461 else
4463 bool success;
4465 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4466 return;
4468 if (sched_verbose >= 5)
4469 fprintf (sched_dump, "applying replacement for insn %d\n",
4470 INSN_UID (desc->insn));
4472 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4473 gcc_assert (success);
4475 update_insn_after_change (desc->insn);
4476 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4477 fix_tick_ready (desc->insn);
4479 if (backtrack_queue != NULL)
4481 backtrack_queue->replacement_deps.safe_push (dep);
4482 backtrack_queue->replace_apply.safe_push (1);
4487 /* We have determined that a pattern involved in DEP must be restored.
4488 If IMMEDIATELY is false, we may have to postpone the replacement
4489 until the start of the next cycle, at which point we will be called
4490 again with IMMEDIATELY true. */
4491 static void
4492 restore_pattern (dep_t dep, bool immediately)
4494 rtx next = DEP_CON (dep);
4495 int tick = INSN_TICK (next);
4497 /* If we already scheduled the insn, the modified version is
4498 correct. */
4499 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4500 return;
4502 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4504 next_cycle_replace_deps.safe_push (dep);
4505 next_cycle_apply.safe_push (0);
4506 return;
4510 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4512 if (sched_verbose >= 5)
4513 fprintf (sched_dump, "restoring pattern for insn %d\n",
4514 INSN_UID (next));
4515 haifa_change_pattern (next, ORIG_PAT (next));
4517 else
4519 struct dep_replacement *desc = DEP_REPLACE (dep);
4520 bool success;
4522 if (sched_verbose >= 5)
4523 fprintf (sched_dump, "restoring pattern for insn %d\n",
4524 INSN_UID (desc->insn));
4525 tick = INSN_TICK (desc->insn);
4527 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4528 gcc_assert (success);
4529 update_insn_after_change (desc->insn);
4530 if (backtrack_queue != NULL)
4532 backtrack_queue->replacement_deps.safe_push (dep);
4533 backtrack_queue->replace_apply.safe_push (0);
4536 INSN_TICK (next) = tick;
4537 if (TODO_SPEC (next) == DEP_POSTPONED)
4538 return;
4540 if (sd_lists_empty_p (next, SD_LIST_BACK))
4541 TODO_SPEC (next) = 0;
4542 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4543 TODO_SPEC (next) = HARD_DEP;
4546 /* Perform pattern replacements that were queued up until the next
4547 cycle. */
4548 static void
4549 perform_replacements_new_cycle (void)
4551 int i;
4552 dep_t dep;
4553 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4555 int apply_p = next_cycle_apply[i];
4556 if (apply_p)
4557 apply_replacement (dep, true);
4558 else
4559 restore_pattern (dep, true);
4561 next_cycle_replace_deps.truncate (0);
4562 next_cycle_apply.truncate (0);
4565 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4566 instructions we've previously encountered, a set bit prevents
4567 recursion. BUDGET is a limit on how far ahead we look, it is
4568 reduced on recursive calls. Return true if we produced a good
4569 estimate, or false if we exceeded the budget. */
4570 static bool
4571 estimate_insn_tick (bitmap processed, rtx insn, int budget)
4573 sd_iterator_def sd_it;
4574 dep_t dep;
4575 int earliest = INSN_TICK (insn);
4577 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4579 rtx pro = DEP_PRO (dep);
4580 int t;
4582 if (DEP_STATUS (dep) & DEP_CANCELLED)
4583 continue;
4585 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4586 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4587 else
4589 int cost = dep_cost (dep);
4590 if (cost >= budget)
4591 return false;
4592 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4594 if (!estimate_insn_tick (processed, pro, budget - cost))
4595 return false;
4597 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4598 t = INSN_TICK_ESTIMATE (pro) + cost;
4599 if (earliest == INVALID_TICK || t > earliest)
4600 earliest = t;
4603 bitmap_set_bit (processed, INSN_LUID (insn));
4604 INSN_TICK_ESTIMATE (insn) = earliest;
4605 return true;
4608 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4609 infinite resources) the cycle in which the delayed shadow can be issued.
4610 Return the number of cycles that must pass before the real insn can be
4611 issued in order to meet this constraint. */
4612 static int
4613 estimate_shadow_tick (struct delay_pair *p)
4615 bitmap_head processed;
4616 int t;
4617 bool cutoff;
4618 bitmap_initialize (&processed, 0);
4620 cutoff = !estimate_insn_tick (&processed, p->i2,
4621 max_insn_queue_index + pair_delay (p));
4622 bitmap_clear (&processed);
4623 if (cutoff)
4624 return max_insn_queue_index;
4625 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4626 if (t > 0)
4627 return t;
4628 return 0;
4631 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4632 recursively resolve all its forward dependencies. */
4633 static void
4634 resolve_dependencies (rtx insn)
4636 sd_iterator_def sd_it;
4637 dep_t dep;
4639 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4640 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4641 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4642 return;
4644 if (sched_verbose >= 4)
4645 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4647 if (QUEUE_INDEX (insn) >= 0)
4648 queue_remove (insn);
4650 scheduled_insns.safe_push (insn);
4652 /* Update dependent instructions. */
4653 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4654 sd_iterator_cond (&sd_it, &dep);)
4656 rtx next = DEP_CON (dep);
4658 if (sched_verbose >= 4)
4659 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4660 INSN_UID (next));
4662 /* Resolve the dependence between INSN and NEXT.
4663 sd_resolve_dep () moves current dep to another list thus
4664 advancing the iterator. */
4665 sd_resolve_dep (sd_it);
4667 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4669 resolve_dependencies (next);
4671 else
4672 /* Check always has only one forward dependence (to the first insn in
4673 the recovery block), therefore, this will be executed only once. */
4675 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4681 /* Return the head and tail pointers of ebb starting at BEG and ending
4682 at END. */
4683 void
4684 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4686 rtx beg_head = BB_HEAD (beg);
4687 rtx beg_tail = BB_END (beg);
4688 rtx end_head = BB_HEAD (end);
4689 rtx end_tail = BB_END (end);
4691 /* Don't include any notes or labels at the beginning of the BEG
4692 basic block, or notes at the end of the END basic blocks. */
4694 if (LABEL_P (beg_head))
4695 beg_head = NEXT_INSN (beg_head);
4697 while (beg_head != beg_tail)
4698 if (NOTE_P (beg_head))
4699 beg_head = NEXT_INSN (beg_head);
4700 else if (DEBUG_INSN_P (beg_head))
4702 rtx note, next;
4704 for (note = NEXT_INSN (beg_head);
4705 note != beg_tail;
4706 note = next)
4708 next = NEXT_INSN (note);
4709 if (NOTE_P (note))
4711 if (sched_verbose >= 9)
4712 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4714 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4716 if (BLOCK_FOR_INSN (note) != beg)
4717 df_insn_change_bb (note, beg);
4719 else if (!DEBUG_INSN_P (note))
4720 break;
4723 break;
4725 else
4726 break;
4728 *headp = beg_head;
4730 if (beg == end)
4731 end_head = beg_head;
4732 else if (LABEL_P (end_head))
4733 end_head = NEXT_INSN (end_head);
4735 while (end_head != end_tail)
4736 if (NOTE_P (end_tail))
4737 end_tail = PREV_INSN (end_tail);
4738 else if (DEBUG_INSN_P (end_tail))
4740 rtx note, prev;
4742 for (note = PREV_INSN (end_tail);
4743 note != end_head;
4744 note = prev)
4746 prev = PREV_INSN (note);
4747 if (NOTE_P (note))
4749 if (sched_verbose >= 9)
4750 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4752 reorder_insns_nobb (note, note, end_tail);
4754 if (end_tail == BB_END (end))
4755 BB_END (end) = note;
4757 if (BLOCK_FOR_INSN (note) != end)
4758 df_insn_change_bb (note, end);
4760 else if (!DEBUG_INSN_P (note))
4761 break;
4764 break;
4766 else
4767 break;
4769 *tailp = end_tail;
4772 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4775 no_real_insns_p (const_rtx head, const_rtx tail)
4777 while (head != NEXT_INSN (tail))
4779 if (!NOTE_P (head) && !LABEL_P (head))
4780 return 0;
4781 head = NEXT_INSN (head);
4783 return 1;
4786 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4787 previously found among the insns. Insert them just before HEAD. */
4789 restore_other_notes (rtx head, basic_block head_bb)
4791 if (note_list != 0)
4793 rtx note_head = note_list;
4795 if (head)
4796 head_bb = BLOCK_FOR_INSN (head);
4797 else
4798 head = NEXT_INSN (bb_note (head_bb));
4800 while (PREV_INSN (note_head))
4802 set_block_for_insn (note_head, head_bb);
4803 note_head = PREV_INSN (note_head);
4805 /* In the above cycle we've missed this note. */
4806 set_block_for_insn (note_head, head_bb);
4808 PREV_INSN (note_head) = PREV_INSN (head);
4809 NEXT_INSN (PREV_INSN (head)) = note_head;
4810 PREV_INSN (head) = note_list;
4811 NEXT_INSN (note_list) = head;
4813 if (BLOCK_FOR_INSN (head) != head_bb)
4814 BB_END (head_bb) = note_list;
4816 head = note_head;
4819 return head;
4822 /* When we know we are going to discard the schedule due to a failed attempt
4823 at modulo scheduling, undo all replacements. */
4824 static void
4825 undo_all_replacements (void)
4827 rtx insn;
4828 int i;
4830 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4832 sd_iterator_def sd_it;
4833 dep_t dep;
4835 /* See if we must undo a replacement. */
4836 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4837 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4839 struct dep_replacement *desc = DEP_REPLACE (dep);
4840 if (desc != NULL)
4841 validate_change (desc->insn, desc->loc, desc->orig, 0);
4846 /* Move insns that became ready to fire from queue to ready list. */
4848 static void
4849 queue_to_ready (struct ready_list *ready)
4851 rtx insn;
4852 rtx link;
4853 rtx skip_insn;
4855 q_ptr = NEXT_Q (q_ptr);
4857 if (dbg_cnt (sched_insn) == false)
4859 /* If debug counter is activated do not requeue the first
4860 nonscheduled insn. */
4861 skip_insn = nonscheduled_insns_begin;
4864 skip_insn = next_nonnote_nondebug_insn (skip_insn);
4866 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
4868 else
4869 skip_insn = NULL_RTX;
4871 /* Add all pending insns that can be scheduled without stalls to the
4872 ready list. */
4873 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4875 insn = XEXP (link, 0);
4876 q_size -= 1;
4878 if (sched_verbose >= 2)
4879 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4880 (*current_sched_info->print_insn) (insn, 0));
4882 /* If the ready list is full, delay the insn for 1 cycle.
4883 See the comment in schedule_block for the rationale. */
4884 if (!reload_completed
4885 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4886 || (sched_pressure == SCHED_PRESSURE_MODEL
4887 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4888 instructions too. */
4889 && model_index (insn) > (model_curr_point
4890 + MAX_SCHED_READY_INSNS)))
4891 && !(sched_pressure == SCHED_PRESSURE_MODEL
4892 && model_curr_point < model_num_insns
4893 /* Always allow the next model instruction to issue. */
4894 && model_index (insn) == model_curr_point)
4895 && !SCHED_GROUP_P (insn)
4896 && insn != skip_insn)
4897 queue_insn (insn, 1, "ready full");
4898 else
4900 ready_add (ready, insn, false);
4901 if (sched_verbose >= 2)
4902 fprintf (sched_dump, "moving to ready without stalls\n");
4905 free_INSN_LIST_list (&insn_queue[q_ptr]);
4907 /* If there are no ready insns, stall until one is ready and add all
4908 of the pending insns at that point to the ready list. */
4909 if (ready->n_ready == 0)
4911 int stalls;
4913 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
4915 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4917 for (; link; link = XEXP (link, 1))
4919 insn = XEXP (link, 0);
4920 q_size -= 1;
4922 if (sched_verbose >= 2)
4923 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4924 (*current_sched_info->print_insn) (insn, 0));
4926 ready_add (ready, insn, false);
4927 if (sched_verbose >= 2)
4928 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
4930 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
4932 advance_one_cycle ();
4934 break;
4937 advance_one_cycle ();
4940 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
4941 clock_var += stalls;
4945 /* Used by early_queue_to_ready. Determines whether it is "ok" to
4946 prematurely move INSN from the queue to the ready list. Currently,
4947 if a target defines the hook 'is_costly_dependence', this function
4948 uses the hook to check whether there exist any dependences which are
4949 considered costly by the target, between INSN and other insns that
4950 have already been scheduled. Dependences are checked up to Y cycles
4951 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
4952 controlling this value.
4953 (Other considerations could be taken into account instead (or in
4954 addition) depending on user flags and target hooks. */
4956 static bool
4957 ok_for_early_queue_removal (rtx insn)
4959 if (targetm.sched.is_costly_dependence)
4961 rtx prev_insn;
4962 int n_cycles;
4963 int i = scheduled_insns.length ();
4964 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
4966 while (i-- > 0)
4968 int cost;
4970 prev_insn = scheduled_insns[i];
4972 if (!NOTE_P (prev_insn))
4974 dep_t dep;
4976 dep = sd_find_dep_between (prev_insn, insn, true);
4978 if (dep != NULL)
4980 cost = dep_cost (dep);
4982 if (targetm.sched.is_costly_dependence (dep, cost,
4983 flag_sched_stalled_insns_dep - n_cycles))
4984 return false;
4988 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
4989 break;
4992 if (i == 0)
4993 break;
4997 return true;
5001 /* Remove insns from the queue, before they become "ready" with respect
5002 to FU latency considerations. */
5004 static int
5005 early_queue_to_ready (state_t state, struct ready_list *ready)
5007 rtx insn;
5008 rtx link;
5009 rtx next_link;
5010 rtx prev_link;
5011 bool move_to_ready;
5012 int cost;
5013 state_t temp_state = alloca (dfa_state_size);
5014 int stalls;
5015 int insns_removed = 0;
5018 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5019 function:
5021 X == 0: There is no limit on how many queued insns can be removed
5022 prematurely. (flag_sched_stalled_insns = -1).
5024 X >= 1: Only X queued insns can be removed prematurely in each
5025 invocation. (flag_sched_stalled_insns = X).
5027 Otherwise: Early queue removal is disabled.
5028 (flag_sched_stalled_insns = 0)
5031 if (! flag_sched_stalled_insns)
5032 return 0;
5034 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5036 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5038 if (sched_verbose > 6)
5039 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5041 prev_link = 0;
5042 while (link)
5044 next_link = XEXP (link, 1);
5045 insn = XEXP (link, 0);
5046 if (insn && sched_verbose > 6)
5047 print_rtl_single (sched_dump, insn);
5049 memcpy (temp_state, state, dfa_state_size);
5050 if (recog_memoized (insn) < 0)
5051 /* non-negative to indicate that it's not ready
5052 to avoid infinite Q->R->Q->R... */
5053 cost = 0;
5054 else
5055 cost = state_transition (temp_state, insn);
5057 if (sched_verbose >= 6)
5058 fprintf (sched_dump, "transition cost = %d\n", cost);
5060 move_to_ready = false;
5061 if (cost < 0)
5063 move_to_ready = ok_for_early_queue_removal (insn);
5064 if (move_to_ready == true)
5066 /* move from Q to R */
5067 q_size -= 1;
5068 ready_add (ready, insn, false);
5070 if (prev_link)
5071 XEXP (prev_link, 1) = next_link;
5072 else
5073 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5075 free_INSN_LIST_node (link);
5077 if (sched_verbose >= 2)
5078 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5079 (*current_sched_info->print_insn) (insn, 0));
5081 insns_removed++;
5082 if (insns_removed == flag_sched_stalled_insns)
5083 /* Remove no more than flag_sched_stalled_insns insns
5084 from Q at a time. */
5085 return insns_removed;
5089 if (move_to_ready == false)
5090 prev_link = link;
5092 link = next_link;
5093 } /* while link */
5094 } /* if link */
5096 } /* for stalls.. */
5098 return insns_removed;
5102 /* Print the ready list for debugging purposes. Callable from debugger. */
5104 static void
5105 debug_ready_list (struct ready_list *ready)
5107 rtx *p;
5108 int i;
5110 if (ready->n_ready == 0)
5112 fprintf (sched_dump, "\n");
5113 return;
5116 p = ready_lastpos (ready);
5117 for (i = 0; i < ready->n_ready; i++)
5119 fprintf (sched_dump, " %s:%d",
5120 (*current_sched_info->print_insn) (p[i], 0),
5121 INSN_LUID (p[i]));
5122 if (sched_pressure != SCHED_PRESSURE_NONE)
5123 fprintf (sched_dump, "(cost=%d",
5124 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5125 if (INSN_TICK (p[i]) > clock_var)
5126 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5127 if (sched_pressure != SCHED_PRESSURE_NONE)
5128 fprintf (sched_dump, ")");
5130 fprintf (sched_dump, "\n");
5133 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5134 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5135 replaces the epilogue note in the correct basic block. */
5136 void
5137 reemit_notes (rtx insn)
5139 rtx note, last = insn;
5141 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5143 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5145 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5147 last = emit_note_before (note_type, last);
5148 remove_note (insn, note);
5153 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5154 static void
5155 move_insn (rtx insn, rtx last, rtx nt)
5157 if (PREV_INSN (insn) != last)
5159 basic_block bb;
5160 rtx note;
5161 int jump_p = 0;
5163 bb = BLOCK_FOR_INSN (insn);
5165 /* BB_HEAD is either LABEL or NOTE. */
5166 gcc_assert (BB_HEAD (bb) != insn);
5168 if (BB_END (bb) == insn)
5169 /* If this is last instruction in BB, move end marker one
5170 instruction up. */
5172 /* Jumps are always placed at the end of basic block. */
5173 jump_p = control_flow_insn_p (insn);
5175 gcc_assert (!jump_p
5176 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5177 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5178 || (common_sched_info->sched_pass_id
5179 == SCHED_EBB_PASS));
5181 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5183 BB_END (bb) = PREV_INSN (insn);
5186 gcc_assert (BB_END (bb) != last);
5188 if (jump_p)
5189 /* We move the block note along with jump. */
5191 gcc_assert (nt);
5193 note = NEXT_INSN (insn);
5194 while (NOTE_NOT_BB_P (note) && note != nt)
5195 note = NEXT_INSN (note);
5197 if (note != nt
5198 && (LABEL_P (note)
5199 || BARRIER_P (note)))
5200 note = NEXT_INSN (note);
5202 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5204 else
5205 note = insn;
5207 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5208 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5210 NEXT_INSN (note) = NEXT_INSN (last);
5211 PREV_INSN (NEXT_INSN (last)) = note;
5213 NEXT_INSN (last) = insn;
5214 PREV_INSN (insn) = last;
5216 bb = BLOCK_FOR_INSN (last);
5218 if (jump_p)
5220 fix_jump_move (insn);
5222 if (BLOCK_FOR_INSN (insn) != bb)
5223 move_block_after_check (insn);
5225 gcc_assert (BB_END (bb) == last);
5228 df_insn_change_bb (insn, bb);
5230 /* Update BB_END, if needed. */
5231 if (BB_END (bb) == last)
5232 BB_END (bb) = insn;
5235 SCHED_GROUP_P (insn) = 0;
5238 /* Return true if scheduling INSN will finish current clock cycle. */
5239 static bool
5240 insn_finishes_cycle_p (rtx insn)
5242 if (SCHED_GROUP_P (insn))
5243 /* After issuing INSN, rest of the sched_group will be forced to issue
5244 in order. Don't make any plans for the rest of cycle. */
5245 return true;
5247 /* Finishing the block will, apparently, finish the cycle. */
5248 if (current_sched_info->insn_finishes_block_p
5249 && current_sched_info->insn_finishes_block_p (insn))
5250 return true;
5252 return false;
5255 /* Define type for target data used in multipass scheduling. */
5256 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5257 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5258 #endif
5259 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5261 /* The following structure describe an entry of the stack of choices. */
5262 struct choice_entry
5264 /* Ordinal number of the issued insn in the ready queue. */
5265 int index;
5266 /* The number of the rest insns whose issues we should try. */
5267 int rest;
5268 /* The number of issued essential insns. */
5269 int n;
5270 /* State after issuing the insn. */
5271 state_t state;
5272 /* Target-specific data. */
5273 first_cycle_multipass_data_t target_data;
5276 /* The following array is used to implement a stack of choices used in
5277 function max_issue. */
5278 static struct choice_entry *choice_stack;
5280 /* This holds the value of the target dfa_lookahead hook. */
5281 int dfa_lookahead;
5283 /* The following variable value is maximal number of tries of issuing
5284 insns for the first cycle multipass insn scheduling. We define
5285 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5286 need this constraint if all real insns (with non-negative codes)
5287 had reservations because in this case the algorithm complexity is
5288 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5289 might be incomplete and such insn might occur. For such
5290 descriptions, the complexity of algorithm (without the constraint)
5291 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5292 static int max_lookahead_tries;
5294 /* The following value is value of hook
5295 `first_cycle_multipass_dfa_lookahead' at the last call of
5296 `max_issue'. */
5297 static int cached_first_cycle_multipass_dfa_lookahead = 0;
5299 /* The following value is value of `issue_rate' at the last call of
5300 `sched_init'. */
5301 static int cached_issue_rate = 0;
5303 /* The following function returns maximal (or close to maximal) number
5304 of insns which can be issued on the same cycle and one of which
5305 insns is insns with the best rank (the first insn in READY). To
5306 make this function tries different samples of ready insns. READY
5307 is current queue `ready'. Global array READY_TRY reflects what
5308 insns are already issued in this try. The function stops immediately,
5309 if it reached the such a solution, that all instruction can be issued.
5310 INDEX will contain index of the best insn in READY. The following
5311 function is used only for first cycle multipass scheduling.
5313 PRIVILEGED_N >= 0
5315 This function expects recognized insns only. All USEs,
5316 CLOBBERs, etc must be filtered elsewhere. */
5318 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5319 bool first_cycle_insn_p, int *index)
5321 int n, i, all, n_ready, best, delay, tries_num;
5322 int more_issue;
5323 struct choice_entry *top;
5324 rtx insn;
5326 n_ready = ready->n_ready;
5327 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5328 && privileged_n <= n_ready);
5330 /* Init MAX_LOOKAHEAD_TRIES. */
5331 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5333 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5334 max_lookahead_tries = 100;
5335 for (i = 0; i < issue_rate; i++)
5336 max_lookahead_tries *= dfa_lookahead;
5339 /* Init max_points. */
5340 more_issue = issue_rate - cycle_issued_insns;
5341 gcc_assert (more_issue >= 0);
5343 /* The number of the issued insns in the best solution. */
5344 best = 0;
5346 top = choice_stack;
5348 /* Set initial state of the search. */
5349 memcpy (top->state, state, dfa_state_size);
5350 top->rest = dfa_lookahead;
5351 top->n = 0;
5352 if (targetm.sched.first_cycle_multipass_begin)
5353 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5354 ready_try, n_ready,
5355 first_cycle_insn_p);
5357 /* Count the number of the insns to search among. */
5358 for (all = i = 0; i < n_ready; i++)
5359 if (!ready_try [i])
5360 all++;
5362 /* I is the index of the insn to try next. */
5363 i = 0;
5364 tries_num = 0;
5365 for (;;)
5367 if (/* If we've reached a dead end or searched enough of what we have
5368 been asked... */
5369 top->rest == 0
5370 /* or have nothing else to try... */
5371 || i >= n_ready
5372 /* or should not issue more. */
5373 || top->n >= more_issue)
5375 /* ??? (... || i == n_ready). */
5376 gcc_assert (i <= n_ready);
5378 /* We should not issue more than issue_rate instructions. */
5379 gcc_assert (top->n <= more_issue);
5381 if (top == choice_stack)
5382 break;
5384 if (best < top - choice_stack)
5386 if (privileged_n)
5388 n = privileged_n;
5389 /* Try to find issued privileged insn. */
5390 while (n && !ready_try[--n])
5394 if (/* If all insns are equally good... */
5395 privileged_n == 0
5396 /* Or a privileged insn will be issued. */
5397 || ready_try[n])
5398 /* Then we have a solution. */
5400 best = top - choice_stack;
5401 /* This is the index of the insn issued first in this
5402 solution. */
5403 *index = choice_stack [1].index;
5404 if (top->n == more_issue || best == all)
5405 break;
5409 /* Set ready-list index to point to the last insn
5410 ('i++' below will advance it to the next insn). */
5411 i = top->index;
5413 /* Backtrack. */
5414 ready_try [i] = 0;
5416 if (targetm.sched.first_cycle_multipass_backtrack)
5417 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5418 ready_try, n_ready);
5420 top--;
5421 memcpy (state, top->state, dfa_state_size);
5423 else if (!ready_try [i])
5425 tries_num++;
5426 if (tries_num > max_lookahead_tries)
5427 break;
5428 insn = ready_element (ready, i);
5429 delay = state_transition (state, insn);
5430 if (delay < 0)
5432 if (state_dead_lock_p (state)
5433 || insn_finishes_cycle_p (insn))
5434 /* We won't issue any more instructions in the next
5435 choice_state. */
5436 top->rest = 0;
5437 else
5438 top->rest--;
5440 n = top->n;
5441 if (memcmp (top->state, state, dfa_state_size) != 0)
5442 n++;
5444 /* Advance to the next choice_entry. */
5445 top++;
5446 /* Initialize it. */
5447 top->rest = dfa_lookahead;
5448 top->index = i;
5449 top->n = n;
5450 memcpy (top->state, state, dfa_state_size);
5451 ready_try [i] = 1;
5453 if (targetm.sched.first_cycle_multipass_issue)
5454 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5455 ready_try, n_ready,
5456 insn,
5457 &((top - 1)
5458 ->target_data));
5460 i = -1;
5464 /* Increase ready-list index. */
5465 i++;
5468 if (targetm.sched.first_cycle_multipass_end)
5469 targetm.sched.first_cycle_multipass_end (best != 0
5470 ? &choice_stack[1].target_data
5471 : NULL);
5473 /* Restore the original state of the DFA. */
5474 memcpy (state, choice_stack->state, dfa_state_size);
5476 return best;
5479 /* The following function chooses insn from READY and modifies
5480 READY. The following function is used only for first
5481 cycle multipass scheduling.
5482 Return:
5483 -1 if cycle should be advanced,
5484 0 if INSN_PTR is set to point to the desirable insn,
5485 1 if choose_ready () should be restarted without advancing the cycle. */
5486 static int
5487 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5488 rtx *insn_ptr)
5490 int lookahead;
5492 if (dbg_cnt (sched_insn) == false)
5494 rtx insn = nonscheduled_insns_begin;
5497 insn = next_nonnote_insn (insn);
5499 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5501 if (QUEUE_INDEX (insn) == QUEUE_READY)
5502 /* INSN is in the ready_list. */
5504 nonscheduled_insns_begin = insn;
5505 ready_remove_insn (insn);
5506 *insn_ptr = insn;
5507 return 0;
5510 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5511 return -1;
5514 lookahead = 0;
5516 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5517 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5518 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5519 || DEBUG_INSN_P (ready_element (ready, 0)))
5521 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5522 *insn_ptr = ready_remove_first_dispatch (ready);
5523 else
5524 *insn_ptr = ready_remove_first (ready);
5526 return 0;
5528 else
5530 /* Try to choose the better insn. */
5531 int index = 0, i, n;
5532 rtx insn;
5533 int try_data = 1, try_control = 1;
5534 ds_t ts;
5536 insn = ready_element (ready, 0);
5537 if (INSN_CODE (insn) < 0)
5539 *insn_ptr = ready_remove_first (ready);
5540 return 0;
5543 if (spec_info
5544 && spec_info->flags & (PREFER_NON_DATA_SPEC
5545 | PREFER_NON_CONTROL_SPEC))
5547 for (i = 0, n = ready->n_ready; i < n; i++)
5549 rtx x;
5550 ds_t s;
5552 x = ready_element (ready, i);
5553 s = TODO_SPEC (x);
5555 if (spec_info->flags & PREFER_NON_DATA_SPEC
5556 && !(s & DATA_SPEC))
5558 try_data = 0;
5559 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
5560 || !try_control)
5561 break;
5564 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
5565 && !(s & CONTROL_SPEC))
5567 try_control = 0;
5568 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
5569 break;
5574 ts = TODO_SPEC (insn);
5575 if ((ts & SPECULATIVE)
5576 && (((!try_data && (ts & DATA_SPEC))
5577 || (!try_control && (ts & CONTROL_SPEC)))
5578 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
5579 && !targetm.sched
5580 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
5581 /* Discard speculative instruction that stands first in the ready
5582 list. */
5584 change_queue_index (insn, 1);
5585 return 1;
5588 ready_try[0] = 0;
5590 for (i = 1; i < ready->n_ready; i++)
5592 insn = ready_element (ready, i);
5594 ready_try [i]
5595 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
5596 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
5599 /* Let the target filter the search space. */
5600 for (i = 1; i < ready->n_ready; i++)
5601 if (!ready_try[i])
5603 insn = ready_element (ready, i);
5605 /* If this insn is recognizable we should have already
5606 recognized it earlier.
5607 ??? Not very clear where this is supposed to be done.
5608 See dep_cost_1. */
5609 gcc_checking_assert (INSN_CODE (insn) >= 0
5610 || recog_memoized (insn) < 0);
5612 ready_try [i]
5613 = (/* INSN_CODE check can be omitted here as it is also done later
5614 in max_issue (). */
5615 INSN_CODE (insn) < 0
5616 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5617 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5618 (insn)));
5621 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5623 *insn_ptr = ready_remove_first (ready);
5624 if (sched_verbose >= 4)
5625 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5626 (*current_sched_info->print_insn) (*insn_ptr, 0));
5627 return 0;
5629 else
5631 if (sched_verbose >= 4)
5632 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5633 (*current_sched_info->print_insn)
5634 (ready_element (ready, index), 0));
5636 *insn_ptr = ready_remove (ready, index);
5637 return 0;
5642 /* This function is called when we have successfully scheduled a
5643 block. It uses the schedule stored in the scheduled_insns vector
5644 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5645 append the scheduled insns; TAIL is the insn after the scheduled
5646 block. TARGET_BB is the argument passed to schedule_block. */
5648 static void
5649 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5651 unsigned int i;
5652 rtx insn;
5654 last_scheduled_insn = prev_head;
5655 for (i = 0;
5656 scheduled_insns.iterate (i, &insn);
5657 i++)
5659 if (control_flow_insn_p (last_scheduled_insn)
5660 || current_sched_info->advance_target_bb (*target_bb, insn))
5662 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5664 if (sched_verbose)
5666 rtx x;
5668 x = next_real_insn (last_scheduled_insn);
5669 gcc_assert (x);
5670 dump_new_block_header (1, *target_bb, x, tail);
5673 last_scheduled_insn = bb_note (*target_bb);
5676 if (current_sched_info->begin_move_insn)
5677 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5678 move_insn (insn, last_scheduled_insn,
5679 current_sched_info->next_tail);
5680 if (!DEBUG_INSN_P (insn))
5681 reemit_notes (insn);
5682 last_scheduled_insn = insn;
5685 scheduled_insns.truncate (0);
5688 /* Examine all insns on the ready list and queue those which can't be
5689 issued in this cycle. TEMP_STATE is temporary scheduler state we
5690 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5691 have been issued for the current cycle, which means it is valid to
5692 issue an asm statement.
5694 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5695 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5696 we only leave insns which have an INSN_EXACT_TICK. */
5698 static void
5699 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5700 bool shadows_only_p, bool modulo_epilogue_p)
5702 int i, pass;
5703 bool sched_group_found = false;
5704 int min_cost_group = 1;
5706 for (i = 0; i < ready.n_ready; i++)
5708 rtx insn = ready_element (&ready, i);
5709 if (SCHED_GROUP_P (insn))
5711 sched_group_found = true;
5712 break;
5716 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5717 such an insn first and note its cost, then schedule all other insns
5718 for one cycle later. */
5719 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5721 int n = ready.n_ready;
5722 for (i = 0; i < n; i++)
5724 rtx insn = ready_element (&ready, i);
5725 int cost = 0;
5726 const char *reason = "resource conflict";
5728 if (DEBUG_INSN_P (insn))
5729 continue;
5731 if (sched_group_found && !SCHED_GROUP_P (insn))
5733 if (pass == 0)
5734 continue;
5735 cost = min_cost_group;
5736 reason = "not in sched group";
5738 else if (modulo_epilogue_p
5739 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5741 cost = max_insn_queue_index;
5742 reason = "not an epilogue insn";
5744 else if (shadows_only_p && !SHADOW_P (insn))
5746 cost = 1;
5747 reason = "not a shadow";
5749 else if (recog_memoized (insn) < 0)
5751 if (!first_cycle_insn_p
5752 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5753 || asm_noperands (PATTERN (insn)) >= 0))
5754 cost = 1;
5755 reason = "asm";
5757 else if (sched_pressure != SCHED_PRESSURE_NONE)
5759 if (sched_pressure == SCHED_PRESSURE_MODEL
5760 && INSN_TICK (insn) <= clock_var)
5762 memcpy (temp_state, curr_state, dfa_state_size);
5763 if (state_transition (temp_state, insn) >= 0)
5764 INSN_TICK (insn) = clock_var + 1;
5766 cost = 0;
5768 else
5770 int delay_cost = 0;
5772 if (delay_htab.is_created ())
5774 struct delay_pair *delay_entry;
5775 delay_entry
5776 = delay_htab.find_with_hash (insn,
5777 htab_hash_pointer (insn));
5778 while (delay_entry && delay_cost == 0)
5780 delay_cost = estimate_shadow_tick (delay_entry);
5781 if (delay_cost > max_insn_queue_index)
5782 delay_cost = max_insn_queue_index;
5783 delay_entry = delay_entry->next_same_i1;
5787 memcpy (temp_state, curr_state, dfa_state_size);
5788 cost = state_transition (temp_state, insn);
5789 if (cost < 0)
5790 cost = 0;
5791 else if (cost == 0)
5792 cost = 1;
5793 if (cost < delay_cost)
5795 cost = delay_cost;
5796 reason = "shadow tick";
5799 if (cost >= 1)
5801 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5802 min_cost_group = cost;
5803 ready_remove (&ready, i);
5804 queue_insn (insn, cost, reason);
5805 if (i + 1 < n)
5806 break;
5809 if (i == n)
5810 pass++;
5814 /* Called when we detect that the schedule is impossible. We examine the
5815 backtrack queue to find the earliest insn that caused this condition. */
5817 static struct haifa_saved_data *
5818 verify_shadows (void)
5820 struct haifa_saved_data *save, *earliest_fail = NULL;
5821 for (save = backtrack_queue; save; save = save->next)
5823 int t;
5824 struct delay_pair *pair = save->delay_pair;
5825 rtx i1 = pair->i1;
5827 for (; pair; pair = pair->next_same_i1)
5829 rtx i2 = pair->i2;
5831 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5832 continue;
5834 t = INSN_TICK (i1) + pair_delay (pair);
5835 if (t < clock_var)
5837 if (sched_verbose >= 2)
5838 fprintf (sched_dump,
5839 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5840 ", not ready\n",
5841 INSN_UID (pair->i1), INSN_UID (pair->i2),
5842 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5843 earliest_fail = save;
5844 break;
5846 if (QUEUE_INDEX (i2) >= 0)
5848 int queued_for = INSN_TICK (i2);
5850 if (t < queued_for)
5852 if (sched_verbose >= 2)
5853 fprintf (sched_dump,
5854 ";;\t\tfailed delay requirements for %d/%d"
5855 " (%d->%d), queued too late\n",
5856 INSN_UID (pair->i1), INSN_UID (pair->i2),
5857 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5858 earliest_fail = save;
5859 break;
5865 return earliest_fail;
5868 /* Use forward list scheduling to rearrange insns of block pointed to by
5869 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5870 region. */
5872 bool
5873 schedule_block (basic_block *target_bb, state_t init_state)
5875 int i;
5876 bool success = modulo_ii == 0;
5877 struct sched_block_state ls;
5878 state_t temp_state = NULL; /* It is used for multipass scheduling. */
5879 int sort_p, advance, start_clock_var;
5881 /* Head/tail info for this block. */
5882 rtx prev_head = current_sched_info->prev_head;
5883 rtx next_tail = current_sched_info->next_tail;
5884 rtx head = NEXT_INSN (prev_head);
5885 rtx tail = PREV_INSN (next_tail);
5887 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
5888 && sched_pressure != SCHED_PRESSURE_MODEL)
5889 find_modifiable_mems (head, tail);
5891 /* We used to have code to avoid getting parameters moved from hard
5892 argument registers into pseudos.
5894 However, it was removed when it proved to be of marginal benefit
5895 and caused problems because schedule_block and compute_forward_dependences
5896 had different notions of what the "head" insn was. */
5898 gcc_assert (head != tail || INSN_P (head));
5900 haifa_recovery_bb_recently_added_p = false;
5902 backtrack_queue = NULL;
5904 /* Debug info. */
5905 if (sched_verbose)
5906 dump_new_block_header (0, *target_bb, head, tail);
5908 if (init_state == NULL)
5909 state_reset (curr_state);
5910 else
5911 memcpy (curr_state, init_state, dfa_state_size);
5913 /* Clear the ready list. */
5914 ready.first = ready.veclen - 1;
5915 ready.n_ready = 0;
5916 ready.n_debug = 0;
5918 /* It is used for first cycle multipass scheduling. */
5919 temp_state = alloca (dfa_state_size);
5921 if (targetm.sched.init)
5922 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
5924 /* We start inserting insns after PREV_HEAD. */
5925 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
5926 last_nondebug_scheduled_insn = NULL_RTX;
5928 gcc_assert ((NOTE_P (last_scheduled_insn)
5929 || DEBUG_INSN_P (last_scheduled_insn))
5930 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
5932 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
5933 queue. */
5934 q_ptr = 0;
5935 q_size = 0;
5937 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
5938 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
5940 /* Start just before the beginning of time. */
5941 clock_var = -1;
5943 /* We need queue and ready lists and clock_var be initialized
5944 in try_ready () (which is called through init_ready_list ()). */
5945 (*current_sched_info->init_ready_list) ();
5947 if (sched_pressure == SCHED_PRESSURE_MODEL)
5948 model_start_schedule ();
5950 /* The algorithm is O(n^2) in the number of ready insns at any given
5951 time in the worst case. Before reload we are more likely to have
5952 big lists so truncate them to a reasonable size. */
5953 if (!reload_completed
5954 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
5956 ready_sort (&ready);
5958 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
5959 If there are debug insns, we know they're first. */
5960 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
5961 if (!SCHED_GROUP_P (ready_element (&ready, i)))
5962 break;
5964 if (sched_verbose >= 2)
5966 fprintf (sched_dump,
5967 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
5968 fprintf (sched_dump,
5969 ";;\t\t before reload => truncated to %d insns\n", i);
5972 /* Delay all insns past it for 1 cycle. If debug counter is
5973 activated make an exception for the insn right after
5974 nonscheduled_insns_begin. */
5976 rtx skip_insn;
5978 if (dbg_cnt (sched_insn) == false)
5979 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
5980 else
5981 skip_insn = NULL_RTX;
5983 while (i < ready.n_ready)
5985 rtx insn;
5987 insn = ready_remove (&ready, i);
5989 if (insn != skip_insn)
5990 queue_insn (insn, 1, "list truncated");
5992 if (skip_insn)
5993 ready_add (&ready, skip_insn, true);
5997 /* Now we can restore basic block notes and maintain precise cfg. */
5998 restore_bb_notes (*target_bb);
6000 last_clock_var = -1;
6002 advance = 0;
6004 gcc_assert (scheduled_insns.length () == 0);
6005 sort_p = TRUE;
6006 must_backtrack = false;
6007 modulo_insns_scheduled = 0;
6009 ls.modulo_epilogue = false;
6011 /* Loop until all the insns in BB are scheduled. */
6012 while ((*current_sched_info->schedule_more_p) ())
6014 perform_replacements_new_cycle ();
6017 start_clock_var = clock_var;
6019 clock_var++;
6021 advance_one_cycle ();
6023 /* Add to the ready list all pending insns that can be issued now.
6024 If there are no ready insns, increment clock until one
6025 is ready and add all pending insns at that point to the ready
6026 list. */
6027 queue_to_ready (&ready);
6029 gcc_assert (ready.n_ready);
6031 if (sched_verbose >= 2)
6033 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
6034 debug_ready_list (&ready);
6036 advance -= clock_var - start_clock_var;
6038 while (advance > 0);
6040 if (ls.modulo_epilogue)
6042 int stage = clock_var / modulo_ii;
6043 if (stage > modulo_last_stage * 2 + 2)
6045 if (sched_verbose >= 2)
6046 fprintf (sched_dump,
6047 ";;\t\tmodulo scheduled succeeded at II %d\n",
6048 modulo_ii);
6049 success = true;
6050 goto end_schedule;
6053 else if (modulo_ii > 0)
6055 int stage = clock_var / modulo_ii;
6056 if (stage > modulo_max_stages)
6058 if (sched_verbose >= 2)
6059 fprintf (sched_dump,
6060 ";;\t\tfailing schedule due to excessive stages\n");
6061 goto end_schedule;
6063 if (modulo_n_insns == modulo_insns_scheduled
6064 && stage > modulo_last_stage)
6066 if (sched_verbose >= 2)
6067 fprintf (sched_dump,
6068 ";;\t\tfound kernel after %d stages, II %d\n",
6069 stage, modulo_ii);
6070 ls.modulo_epilogue = true;
6074 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6075 if (ready.n_ready == 0)
6076 continue;
6077 if (must_backtrack)
6078 goto do_backtrack;
6080 ls.first_cycle_insn_p = true;
6081 ls.shadows_only_p = false;
6082 cycle_issued_insns = 0;
6083 ls.can_issue_more = issue_rate;
6084 for (;;)
6086 rtx insn;
6087 int cost;
6088 bool asm_p;
6090 if (sort_p && ready.n_ready > 0)
6092 /* Sort the ready list based on priority. This must be
6093 done every iteration through the loop, as schedule_insn
6094 may have readied additional insns that will not be
6095 sorted correctly. */
6096 ready_sort (&ready);
6098 if (sched_verbose >= 2)
6100 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
6101 debug_ready_list (&ready);
6105 /* We don't want md sched reorder to even see debug isns, so put
6106 them out right away. */
6107 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6108 && (*current_sched_info->schedule_more_p) ())
6110 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6112 rtx insn = ready_remove_first (&ready);
6113 gcc_assert (DEBUG_INSN_P (insn));
6114 (*current_sched_info->begin_schedule_ready) (insn);
6115 scheduled_insns.safe_push (insn);
6116 last_scheduled_insn = insn;
6117 advance = schedule_insn (insn);
6118 gcc_assert (advance == 0);
6119 if (ready.n_ready > 0)
6120 ready_sort (&ready);
6124 if (ls.first_cycle_insn_p && !ready.n_ready)
6125 break;
6127 resume_after_backtrack:
6128 /* Allow the target to reorder the list, typically for
6129 better instruction bundling. */
6130 if (sort_p
6131 && (ready.n_ready == 0
6132 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6134 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6135 ls.can_issue_more
6136 = targetm.sched.reorder (sched_dump, sched_verbose,
6137 ready_lastpos (&ready),
6138 &ready.n_ready, clock_var);
6139 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6140 ls.can_issue_more
6141 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6142 ready.n_ready
6143 ? ready_lastpos (&ready) : NULL,
6144 &ready.n_ready, clock_var);
6147 restart_choose_ready:
6148 if (sched_verbose >= 2)
6150 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6151 clock_var);
6152 debug_ready_list (&ready);
6153 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6154 print_curr_reg_pressure ();
6157 if (ready.n_ready == 0
6158 && ls.can_issue_more
6159 && reload_completed)
6161 /* Allow scheduling insns directly from the queue in case
6162 there's nothing better to do (ready list is empty) but
6163 there are still vacant dispatch slots in the current cycle. */
6164 if (sched_verbose >= 6)
6165 fprintf (sched_dump,";;\t\tSecond chance\n");
6166 memcpy (temp_state, curr_state, dfa_state_size);
6167 if (early_queue_to_ready (temp_state, &ready))
6168 ready_sort (&ready);
6171 if (ready.n_ready == 0
6172 || !ls.can_issue_more
6173 || state_dead_lock_p (curr_state)
6174 || !(*current_sched_info->schedule_more_p) ())
6175 break;
6177 /* Select and remove the insn from the ready list. */
6178 if (sort_p)
6180 int res;
6182 insn = NULL_RTX;
6183 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6185 if (res < 0)
6186 /* Finish cycle. */
6187 break;
6188 if (res > 0)
6189 goto restart_choose_ready;
6191 gcc_assert (insn != NULL_RTX);
6193 else
6194 insn = ready_remove_first (&ready);
6196 if (sched_pressure != SCHED_PRESSURE_NONE
6197 && INSN_TICK (insn) > clock_var)
6199 ready_add (&ready, insn, true);
6200 advance = 1;
6201 break;
6204 if (targetm.sched.dfa_new_cycle
6205 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6206 insn, last_clock_var,
6207 clock_var, &sort_p))
6208 /* SORT_P is used by the target to override sorting
6209 of the ready list. This is needed when the target
6210 has modified its internal structures expecting that
6211 the insn will be issued next. As we need the insn
6212 to have the highest priority (so it will be returned by
6213 the ready_remove_first call above), we invoke
6214 ready_add (&ready, insn, true).
6215 But, still, there is one issue: INSN can be later
6216 discarded by scheduler's front end through
6217 current_sched_info->can_schedule_ready_p, hence, won't
6218 be issued next. */
6220 ready_add (&ready, insn, true);
6221 break;
6224 sort_p = TRUE;
6226 if (current_sched_info->can_schedule_ready_p
6227 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6228 /* We normally get here only if we don't want to move
6229 insn from the split block. */
6231 TODO_SPEC (insn) = DEP_POSTPONED;
6232 goto restart_choose_ready;
6235 if (delay_htab.is_created ())
6237 /* If this insn is the first part of a delay-slot pair, record a
6238 backtrack point. */
6239 struct delay_pair *delay_entry;
6240 delay_entry
6241 = delay_htab.find_with_hash (insn, htab_hash_pointer (insn));
6242 if (delay_entry)
6244 save_backtrack_point (delay_entry, ls);
6245 if (sched_verbose >= 2)
6246 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6250 /* DECISION is made. */
6252 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6254 modulo_insns_scheduled++;
6255 modulo_last_stage = clock_var / modulo_ii;
6257 if (TODO_SPEC (insn) & SPECULATIVE)
6258 generate_recovery_code (insn);
6260 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6261 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6263 /* Update counters, etc in the scheduler's front end. */
6264 (*current_sched_info->begin_schedule_ready) (insn);
6265 scheduled_insns.safe_push (insn);
6266 gcc_assert (NONDEBUG_INSN_P (insn));
6267 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6269 if (recog_memoized (insn) >= 0)
6271 memcpy (temp_state, curr_state, dfa_state_size);
6272 cost = state_transition (curr_state, insn);
6273 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6274 gcc_assert (cost < 0);
6275 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6276 cycle_issued_insns++;
6277 asm_p = false;
6279 else
6280 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6281 || asm_noperands (PATTERN (insn)) >= 0);
6283 if (targetm.sched.variable_issue)
6284 ls.can_issue_more =
6285 targetm.sched.variable_issue (sched_dump, sched_verbose,
6286 insn, ls.can_issue_more);
6287 /* A naked CLOBBER or USE generates no instruction, so do
6288 not count them against the issue rate. */
6289 else if (GET_CODE (PATTERN (insn)) != USE
6290 && GET_CODE (PATTERN (insn)) != CLOBBER)
6291 ls.can_issue_more--;
6292 advance = schedule_insn (insn);
6294 if (SHADOW_P (insn))
6295 ls.shadows_only_p = true;
6297 /* After issuing an asm insn we should start a new cycle. */
6298 if (advance == 0 && asm_p)
6299 advance = 1;
6301 if (must_backtrack)
6302 break;
6304 if (advance != 0)
6305 break;
6307 ls.first_cycle_insn_p = false;
6308 if (ready.n_ready > 0)
6309 prune_ready_list (temp_state, false, ls.shadows_only_p,
6310 ls.modulo_epilogue);
6313 do_backtrack:
6314 if (!must_backtrack)
6315 for (i = 0; i < ready.n_ready; i++)
6317 rtx insn = ready_element (&ready, i);
6318 if (INSN_EXACT_TICK (insn) == clock_var)
6320 must_backtrack = true;
6321 clock_var++;
6322 break;
6325 if (must_backtrack && modulo_ii > 0)
6327 if (modulo_backtracks_left == 0)
6328 goto end_schedule;
6329 modulo_backtracks_left--;
6331 while (must_backtrack)
6333 struct haifa_saved_data *failed;
6334 rtx failed_insn;
6336 must_backtrack = false;
6337 failed = verify_shadows ();
6338 gcc_assert (failed);
6340 failed_insn = failed->delay_pair->i1;
6341 /* Clear these queues. */
6342 perform_replacements_new_cycle ();
6343 toggle_cancelled_flags (false);
6344 unschedule_insns_until (failed_insn);
6345 while (failed != backtrack_queue)
6346 free_topmost_backtrack_point (true);
6347 restore_last_backtrack_point (&ls);
6348 if (sched_verbose >= 2)
6349 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6350 /* Delay by at least a cycle. This could cause additional
6351 backtracking. */
6352 queue_insn (failed_insn, 1, "backtracked");
6353 advance = 0;
6354 if (must_backtrack)
6355 continue;
6356 if (ready.n_ready > 0)
6357 goto resume_after_backtrack;
6358 else
6360 if (clock_var == 0 && ls.first_cycle_insn_p)
6361 goto end_schedule;
6362 advance = 1;
6363 break;
6367 if (ls.modulo_epilogue)
6368 success = true;
6369 end_schedule:
6370 advance_one_cycle ();
6371 perform_replacements_new_cycle ();
6372 if (modulo_ii > 0)
6374 /* Once again, debug insn suckiness: they can be on the ready list
6375 even if they have unresolved dependencies. To make our view
6376 of the world consistent, remove such "ready" insns. */
6377 restart_debug_insn_loop:
6378 for (i = ready.n_ready - 1; i >= 0; i--)
6380 rtx x;
6382 x = ready_element (&ready, i);
6383 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6384 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6386 ready_remove (&ready, i);
6387 goto restart_debug_insn_loop;
6390 for (i = ready.n_ready - 1; i >= 0; i--)
6392 rtx x;
6394 x = ready_element (&ready, i);
6395 resolve_dependencies (x);
6397 for (i = 0; i <= max_insn_queue_index; i++)
6399 rtx link;
6400 while ((link = insn_queue[i]) != NULL)
6402 rtx x = XEXP (link, 0);
6403 insn_queue[i] = XEXP (link, 1);
6404 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6405 free_INSN_LIST_node (link);
6406 resolve_dependencies (x);
6411 if (!success)
6412 undo_all_replacements ();
6414 /* Debug info. */
6415 if (sched_verbose)
6417 fprintf (sched_dump, ";;\tReady list (final): ");
6418 debug_ready_list (&ready);
6421 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6422 /* Sanity check -- queue must be empty now. Meaningless if region has
6423 multiple bbs. */
6424 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6425 else if (modulo_ii == 0)
6427 /* We must maintain QUEUE_INDEX between blocks in region. */
6428 for (i = ready.n_ready - 1; i >= 0; i--)
6430 rtx x;
6432 x = ready_element (&ready, i);
6433 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6434 TODO_SPEC (x) = HARD_DEP;
6437 if (q_size)
6438 for (i = 0; i <= max_insn_queue_index; i++)
6440 rtx link;
6441 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6443 rtx x;
6445 x = XEXP (link, 0);
6446 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6447 TODO_SPEC (x) = HARD_DEP;
6449 free_INSN_LIST_list (&insn_queue[i]);
6453 if (sched_pressure == SCHED_PRESSURE_MODEL)
6454 model_end_schedule ();
6456 if (success)
6458 commit_schedule (prev_head, tail, target_bb);
6459 if (sched_verbose)
6460 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6462 else
6463 last_scheduled_insn = tail;
6465 scheduled_insns.truncate (0);
6467 if (!current_sched_info->queue_must_finish_empty
6468 || haifa_recovery_bb_recently_added_p)
6470 /* INSN_TICK (minimum clock tick at which the insn becomes
6471 ready) may be not correct for the insn in the subsequent
6472 blocks of the region. We should use a correct value of
6473 `clock_var' or modify INSN_TICK. It is better to keep
6474 clock_var value equal to 0 at the start of a basic block.
6475 Therefore we modify INSN_TICK here. */
6476 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6479 if (targetm.sched.finish)
6481 targetm.sched.finish (sched_dump, sched_verbose);
6482 /* Target might have added some instructions to the scheduled block
6483 in its md_finish () hook. These new insns don't have any data
6484 initialized and to identify them we extend h_i_d so that they'll
6485 get zero luids. */
6486 sched_extend_luids ();
6489 if (sched_verbose)
6490 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
6491 INSN_UID (head), INSN_UID (tail));
6493 /* Update head/tail boundaries. */
6494 head = NEXT_INSN (prev_head);
6495 tail = last_scheduled_insn;
6497 head = restore_other_notes (head, NULL);
6499 current_sched_info->head = head;
6500 current_sched_info->tail = tail;
6502 free_backtrack_queue ();
6504 return success;
6507 /* Set_priorities: compute priority of each insn in the block. */
6510 set_priorities (rtx head, rtx tail)
6512 rtx insn;
6513 int n_insn;
6514 int sched_max_insns_priority =
6515 current_sched_info->sched_max_insns_priority;
6516 rtx prev_head;
6518 if (head == tail && ! INSN_P (head))
6519 gcc_unreachable ();
6521 n_insn = 0;
6523 prev_head = PREV_INSN (head);
6524 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6526 if (!INSN_P (insn))
6527 continue;
6529 n_insn++;
6530 (void) priority (insn);
6532 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6534 sched_max_insns_priority = MAX (sched_max_insns_priority,
6535 INSN_PRIORITY (insn));
6538 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6540 return n_insn;
6543 /* Set dump and sched_verbose for the desired debugging output. If no
6544 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6545 For -fsched-verbose=N, N>=10, print everything to stderr. */
6546 void
6547 setup_sched_dump (void)
6549 sched_verbose = sched_verbose_param;
6550 if (sched_verbose_param == 0 && dump_file)
6551 sched_verbose = 1;
6552 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6553 ? stderr : dump_file);
6556 /* Allocate data for register pressure sensitive scheduling. */
6557 static void
6558 alloc_global_sched_pressure_data (void)
6560 if (sched_pressure != SCHED_PRESSURE_NONE)
6562 int i, max_regno = max_reg_num ();
6564 if (sched_dump != NULL)
6565 /* We need info about pseudos for rtl dumps about pseudo
6566 classes and costs. */
6567 regstat_init_n_sets_and_refs ();
6568 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6569 sched_regno_pressure_class
6570 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6571 for (i = 0; i < max_regno; i++)
6572 sched_regno_pressure_class[i]
6573 = (i < FIRST_PSEUDO_REGISTER
6574 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6575 : ira_pressure_class_translate[reg_allocno_class (i)]);
6576 curr_reg_live = BITMAP_ALLOC (NULL);
6577 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6579 saved_reg_live = BITMAP_ALLOC (NULL);
6580 region_ref_regs = BITMAP_ALLOC (NULL);
6585 /* Free data for register pressure sensitive scheduling. Also called
6586 from schedule_region when stopping sched-pressure early. */
6587 void
6588 free_global_sched_pressure_data (void)
6590 if (sched_pressure != SCHED_PRESSURE_NONE)
6592 if (regstat_n_sets_and_refs != NULL)
6593 regstat_free_n_sets_and_refs ();
6594 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6596 BITMAP_FREE (region_ref_regs);
6597 BITMAP_FREE (saved_reg_live);
6599 BITMAP_FREE (curr_reg_live);
6600 free (sched_regno_pressure_class);
6604 /* Initialize some global state for the scheduler. This function works
6605 with the common data shared between all the schedulers. It is called
6606 from the scheduler specific initialization routine. */
6608 void
6609 sched_init (void)
6611 /* Disable speculative loads in their presence if cc0 defined. */
6612 #ifdef HAVE_cc0
6613 flag_schedule_speculative_load = 0;
6614 #endif
6616 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6617 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6619 if (live_range_shrinkage_p)
6620 sched_pressure = SCHED_PRESSURE_WEIGHTED;
6621 else if (flag_sched_pressure
6622 && !reload_completed
6623 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6624 sched_pressure = ((enum sched_pressure_algorithm)
6625 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6626 else
6627 sched_pressure = SCHED_PRESSURE_NONE;
6629 if (sched_pressure != SCHED_PRESSURE_NONE)
6630 ira_setup_eliminable_regset ();
6632 /* Initialize SPEC_INFO. */
6633 if (targetm.sched.set_sched_flags)
6635 spec_info = &spec_info_var;
6636 targetm.sched.set_sched_flags (spec_info);
6638 if (spec_info->mask != 0)
6640 spec_info->data_weakness_cutoff =
6641 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6642 spec_info->control_weakness_cutoff =
6643 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6644 * REG_BR_PROB_BASE) / 100;
6646 else
6647 /* So we won't read anything accidentally. */
6648 spec_info = NULL;
6651 else
6652 /* So we won't read anything accidentally. */
6653 spec_info = 0;
6655 /* Initialize issue_rate. */
6656 if (targetm.sched.issue_rate)
6657 issue_rate = targetm.sched.issue_rate ();
6658 else
6659 issue_rate = 1;
6661 if (cached_issue_rate != issue_rate)
6663 cached_issue_rate = issue_rate;
6664 /* To invalidate max_lookahead_tries: */
6665 cached_first_cycle_multipass_dfa_lookahead = 0;
6668 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6669 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6670 else
6671 dfa_lookahead = 0;
6673 if (targetm.sched.init_dfa_pre_cycle_insn)
6674 targetm.sched.init_dfa_pre_cycle_insn ();
6676 if (targetm.sched.init_dfa_post_cycle_insn)
6677 targetm.sched.init_dfa_post_cycle_insn ();
6679 dfa_start ();
6680 dfa_state_size = state_size ();
6682 init_alias_analysis ();
6684 if (!sched_no_dce)
6685 df_set_flags (DF_LR_RUN_DCE);
6686 df_note_add_problem ();
6688 /* More problems needed for interloop dep calculation in SMS. */
6689 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6691 df_rd_add_problem ();
6692 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6695 df_analyze ();
6697 /* Do not run DCE after reload, as this can kill nops inserted
6698 by bundling. */
6699 if (reload_completed)
6700 df_clear_flags (DF_LR_RUN_DCE);
6702 regstat_compute_calls_crossed ();
6704 if (targetm.sched.init_global)
6705 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6707 alloc_global_sched_pressure_data ();
6709 curr_state = xmalloc (dfa_state_size);
6712 static void haifa_init_only_bb (basic_block, basic_block);
6714 /* Initialize data structures specific to the Haifa scheduler. */
6715 void
6716 haifa_sched_init (void)
6718 setup_sched_dump ();
6719 sched_init ();
6721 scheduled_insns.create (0);
6723 if (spec_info != NULL)
6725 sched_deps_info->use_deps_list = 1;
6726 sched_deps_info->generate_spec_deps = 1;
6729 /* Initialize luids, dependency caches, target and h_i_d for the
6730 whole function. */
6732 bb_vec_t bbs;
6733 bbs.create (n_basic_blocks_for_fn (cfun));
6734 basic_block bb;
6736 sched_init_bbs ();
6738 FOR_EACH_BB_FN (bb, cfun)
6739 bbs.quick_push (bb);
6740 sched_init_luids (bbs);
6741 sched_deps_init (true);
6742 sched_extend_target ();
6743 haifa_init_h_i_d (bbs);
6745 bbs.release ();
6748 sched_init_only_bb = haifa_init_only_bb;
6749 sched_split_block = sched_split_block_1;
6750 sched_create_empty_bb = sched_create_empty_bb_1;
6751 haifa_recovery_bb_ever_added_p = false;
6753 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6754 before_recovery = 0;
6755 after_recovery = 0;
6757 modulo_ii = 0;
6760 /* Finish work with the data specific to the Haifa scheduler. */
6761 void
6762 haifa_sched_finish (void)
6764 sched_create_empty_bb = NULL;
6765 sched_split_block = NULL;
6766 sched_init_only_bb = NULL;
6768 if (spec_info && spec_info->dump)
6770 char c = reload_completed ? 'a' : 'b';
6772 fprintf (spec_info->dump,
6773 ";; %s:\n", current_function_name ());
6775 fprintf (spec_info->dump,
6776 ";; Procedure %cr-begin-data-spec motions == %d\n",
6777 c, nr_begin_data);
6778 fprintf (spec_info->dump,
6779 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6780 c, nr_be_in_data);
6781 fprintf (spec_info->dump,
6782 ";; Procedure %cr-begin-control-spec motions == %d\n",
6783 c, nr_begin_control);
6784 fprintf (spec_info->dump,
6785 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6786 c, nr_be_in_control);
6789 scheduled_insns.release ();
6791 /* Finalize h_i_d, dependency caches, and luids for the whole
6792 function. Target will be finalized in md_global_finish (). */
6793 sched_deps_finish ();
6794 sched_finish_luids ();
6795 current_sched_info = NULL;
6796 sched_finish ();
6799 /* Free global data used during insn scheduling. This function works with
6800 the common data shared between the schedulers. */
6802 void
6803 sched_finish (void)
6805 haifa_finish_h_i_d ();
6806 free_global_sched_pressure_data ();
6807 free (curr_state);
6809 if (targetm.sched.finish_global)
6810 targetm.sched.finish_global (sched_dump, sched_verbose);
6812 end_alias_analysis ();
6814 regstat_free_calls_crossed ();
6816 dfa_finish ();
6819 /* Free all delay_pair structures that were recorded. */
6820 void
6821 free_delay_pairs (void)
6823 if (delay_htab.is_created ())
6825 delay_htab.empty ();
6826 delay_htab_i2.empty ();
6830 /* Fix INSN_TICKs of the instructions in the current block as well as
6831 INSN_TICKs of their dependents.
6832 HEAD and TAIL are the begin and the end of the current scheduled block. */
6833 static void
6834 fix_inter_tick (rtx head, rtx tail)
6836 /* Set of instructions with corrected INSN_TICK. */
6837 bitmap_head processed;
6838 /* ??? It is doubtful if we should assume that cycle advance happens on
6839 basic block boundaries. Basically insns that are unconditionally ready
6840 on the start of the block are more preferable then those which have
6841 a one cycle dependency over insn from the previous block. */
6842 int next_clock = clock_var + 1;
6844 bitmap_initialize (&processed, 0);
6846 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6847 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6848 across different blocks. */
6849 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6851 if (INSN_P (head))
6853 int tick;
6854 sd_iterator_def sd_it;
6855 dep_t dep;
6857 tick = INSN_TICK (head);
6858 gcc_assert (tick >= MIN_TICK);
6860 /* Fix INSN_TICK of instruction from just scheduled block. */
6861 if (bitmap_set_bit (&processed, INSN_LUID (head)))
6863 tick -= next_clock;
6865 if (tick < MIN_TICK)
6866 tick = MIN_TICK;
6868 INSN_TICK (head) = tick;
6871 if (DEBUG_INSN_P (head))
6872 continue;
6874 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
6876 rtx next;
6878 next = DEP_CON (dep);
6879 tick = INSN_TICK (next);
6881 if (tick != INVALID_TICK
6882 /* If NEXT has its INSN_TICK calculated, fix it.
6883 If not - it will be properly calculated from
6884 scratch later in fix_tick_ready. */
6885 && bitmap_set_bit (&processed, INSN_LUID (next)))
6887 tick -= next_clock;
6889 if (tick < MIN_TICK)
6890 tick = MIN_TICK;
6892 if (tick > INTER_TICK (next))
6893 INTER_TICK (next) = tick;
6894 else
6895 tick = INTER_TICK (next);
6897 INSN_TICK (next) = tick;
6902 bitmap_clear (&processed);
6905 /* Check if NEXT is ready to be added to the ready or queue list.
6906 If "yes", add it to the proper list.
6907 Returns:
6908 -1 - is not ready yet,
6909 0 - added to the ready list,
6910 0 < N - queued for N cycles. */
6912 try_ready (rtx next)
6914 ds_t old_ts, new_ts;
6916 old_ts = TODO_SPEC (next);
6918 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
6919 && (old_ts == HARD_DEP
6920 || old_ts == DEP_POSTPONED
6921 || (old_ts & SPECULATIVE)
6922 || old_ts == DEP_CONTROL));
6924 new_ts = recompute_todo_spec (next, false);
6926 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6927 gcc_assert (new_ts == old_ts
6928 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
6929 else if (current_sched_info->new_ready)
6930 new_ts = current_sched_info->new_ready (next, new_ts);
6932 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
6933 have its original pattern or changed (speculative) one. This is due
6934 to changing ebb in region scheduling.
6935 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
6936 has speculative pattern.
6938 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
6939 control-speculative NEXT could have been discarded by sched-rgn.c
6940 (the same case as when discarded by can_schedule_ready_p ()). */
6942 if ((new_ts & SPECULATIVE)
6943 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
6944 need to change anything. */
6945 && new_ts != old_ts)
6947 int res;
6948 rtx new_pat;
6950 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
6952 res = haifa_speculate_insn (next, new_ts, &new_pat);
6954 switch (res)
6956 case -1:
6957 /* It would be nice to change DEP_STATUS of all dependences,
6958 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
6959 so we won't reanalyze anything. */
6960 new_ts = HARD_DEP;
6961 break;
6963 case 0:
6964 /* We follow the rule, that every speculative insn
6965 has non-null ORIG_PAT. */
6966 if (!ORIG_PAT (next))
6967 ORIG_PAT (next) = PATTERN (next);
6968 break;
6970 case 1:
6971 if (!ORIG_PAT (next))
6972 /* If we gonna to overwrite the original pattern of insn,
6973 save it. */
6974 ORIG_PAT (next) = PATTERN (next);
6976 res = haifa_change_pattern (next, new_pat);
6977 gcc_assert (res);
6978 break;
6980 default:
6981 gcc_unreachable ();
6985 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
6986 either correct (new_ts & SPECULATIVE),
6987 or we simply don't care (new_ts & HARD_DEP). */
6989 gcc_assert (!ORIG_PAT (next)
6990 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
6992 TODO_SPEC (next) = new_ts;
6994 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6996 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
6997 control-speculative NEXT could have been discarded by sched-rgn.c
6998 (the same case as when discarded by can_schedule_ready_p ()). */
6999 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7001 change_queue_index (next, QUEUE_NOWHERE);
7003 return -1;
7005 else if (!(new_ts & BEGIN_SPEC)
7006 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7007 && !IS_SPECULATION_CHECK_P (next))
7008 /* We should change pattern of every previously speculative
7009 instruction - and we determine if NEXT was speculative by using
7010 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7011 pat too, so skip them. */
7013 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7014 gcc_assert (success);
7015 ORIG_PAT (next) = 0;
7018 if (sched_verbose >= 2)
7020 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7021 (*current_sched_info->print_insn) (next, 0));
7023 if (spec_info && spec_info->dump)
7025 if (new_ts & BEGIN_DATA)
7026 fprintf (spec_info->dump, "; data-spec;");
7027 if (new_ts & BEGIN_CONTROL)
7028 fprintf (spec_info->dump, "; control-spec;");
7029 if (new_ts & BE_IN_CONTROL)
7030 fprintf (spec_info->dump, "; in-control-spec;");
7032 if (TODO_SPEC (next) & DEP_CONTROL)
7033 fprintf (sched_dump, " predicated");
7034 fprintf (sched_dump, "\n");
7037 adjust_priority (next);
7039 return fix_tick_ready (next);
7042 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7043 static int
7044 fix_tick_ready (rtx next)
7046 int tick, delay;
7048 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7050 int full_p;
7051 sd_iterator_def sd_it;
7052 dep_t dep;
7054 tick = INSN_TICK (next);
7055 /* if tick is not equal to INVALID_TICK, then update
7056 INSN_TICK of NEXT with the most recent resolved dependence
7057 cost. Otherwise, recalculate from scratch. */
7058 full_p = (tick == INVALID_TICK);
7060 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7062 rtx pro = DEP_PRO (dep);
7063 int tick1;
7065 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7067 tick1 = INSN_TICK (pro) + dep_cost (dep);
7068 if (tick1 > tick)
7069 tick = tick1;
7071 if (!full_p)
7072 break;
7075 else
7076 tick = -1;
7078 INSN_TICK (next) = tick;
7080 delay = tick - clock_var;
7081 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7082 delay = QUEUE_READY;
7084 change_queue_index (next, delay);
7086 return delay;
7089 /* Move NEXT to the proper queue list with (DELAY >= 1),
7090 or add it to the ready list (DELAY == QUEUE_READY),
7091 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7092 static void
7093 change_queue_index (rtx next, int delay)
7095 int i = QUEUE_INDEX (next);
7097 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7098 && delay != 0);
7099 gcc_assert (i != QUEUE_SCHEDULED);
7101 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7102 || (delay < 0 && delay == i))
7103 /* We have nothing to do. */
7104 return;
7106 /* Remove NEXT from wherever it is now. */
7107 if (i == QUEUE_READY)
7108 ready_remove_insn (next);
7109 else if (i >= 0)
7110 queue_remove (next);
7112 /* Add it to the proper place. */
7113 if (delay == QUEUE_READY)
7114 ready_add (readyp, next, false);
7115 else if (delay >= 1)
7116 queue_insn (next, delay, "change queue index");
7118 if (sched_verbose >= 2)
7120 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7121 (*current_sched_info->print_insn) (next, 0));
7123 if (delay == QUEUE_READY)
7124 fprintf (sched_dump, " into ready\n");
7125 else if (delay >= 1)
7126 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7127 else
7128 fprintf (sched_dump, " removed from ready or queue lists\n");
7132 static int sched_ready_n_insns = -1;
7134 /* Initialize per region data structures. */
7135 void
7136 sched_extend_ready_list (int new_sched_ready_n_insns)
7138 int i;
7140 if (sched_ready_n_insns == -1)
7141 /* At the first call we need to initialize one more choice_stack
7142 entry. */
7144 i = 0;
7145 sched_ready_n_insns = 0;
7146 scheduled_insns.reserve (new_sched_ready_n_insns);
7148 else
7149 i = sched_ready_n_insns + 1;
7151 ready.veclen = new_sched_ready_n_insns + issue_rate;
7152 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
7154 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7156 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7157 sched_ready_n_insns, sizeof (*ready_try));
7159 /* We allocate +1 element to save initial state in the choice_stack[0]
7160 entry. */
7161 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7162 new_sched_ready_n_insns + 1);
7164 for (; i <= new_sched_ready_n_insns; i++)
7166 choice_stack[i].state = xmalloc (dfa_state_size);
7168 if (targetm.sched.first_cycle_multipass_init)
7169 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7170 .target_data));
7173 sched_ready_n_insns = new_sched_ready_n_insns;
7176 /* Free per region data structures. */
7177 void
7178 sched_finish_ready_list (void)
7180 int i;
7182 free (ready.vec);
7183 ready.vec = NULL;
7184 ready.veclen = 0;
7186 free (ready_try);
7187 ready_try = NULL;
7189 for (i = 0; i <= sched_ready_n_insns; i++)
7191 if (targetm.sched.first_cycle_multipass_fini)
7192 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7193 .target_data));
7195 free (choice_stack [i].state);
7197 free (choice_stack);
7198 choice_stack = NULL;
7200 sched_ready_n_insns = -1;
7203 static int
7204 haifa_luid_for_non_insn (rtx x)
7206 gcc_assert (NOTE_P (x) || LABEL_P (x));
7208 return 0;
7211 /* Generates recovery code for INSN. */
7212 static void
7213 generate_recovery_code (rtx insn)
7215 if (TODO_SPEC (insn) & BEGIN_SPEC)
7216 begin_speculative_block (insn);
7218 /* Here we have insn with no dependencies to
7219 instructions other then CHECK_SPEC ones. */
7221 if (TODO_SPEC (insn) & BE_IN_SPEC)
7222 add_to_speculative_block (insn);
7225 /* Helper function.
7226 Tries to add speculative dependencies of type FS between instructions
7227 in deps_list L and TWIN. */
7228 static void
7229 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
7231 sd_iterator_def sd_it;
7232 dep_t dep;
7234 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7236 ds_t ds;
7237 rtx consumer;
7239 consumer = DEP_CON (dep);
7241 ds = DEP_STATUS (dep);
7243 if (/* If we want to create speculative dep. */
7245 /* And we can do that because this is a true dep. */
7246 && (ds & DEP_TYPES) == DEP_TRUE)
7248 gcc_assert (!(ds & BE_IN_SPEC));
7250 if (/* If this dep can be overcome with 'begin speculation'. */
7251 ds & BEGIN_SPEC)
7252 /* Then we have a choice: keep the dep 'begin speculative'
7253 or transform it into 'be in speculative'. */
7255 if (/* In try_ready we assert that if insn once became ready
7256 it can be removed from the ready (or queue) list only
7257 due to backend decision. Hence we can't let the
7258 probability of the speculative dep to decrease. */
7259 ds_weak (ds) <= ds_weak (fs))
7261 ds_t new_ds;
7263 new_ds = (ds & ~BEGIN_SPEC) | fs;
7265 if (/* consumer can 'be in speculative'. */
7266 sched_insn_is_legitimate_for_speculation_p (consumer,
7267 new_ds))
7268 /* Transform it to be in speculative. */
7269 ds = new_ds;
7272 else
7273 /* Mark the dep as 'be in speculative'. */
7274 ds |= fs;
7278 dep_def _new_dep, *new_dep = &_new_dep;
7280 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7281 sd_add_dep (new_dep, false);
7286 /* Generates recovery code for BEGIN speculative INSN. */
7287 static void
7288 begin_speculative_block (rtx insn)
7290 if (TODO_SPEC (insn) & BEGIN_DATA)
7291 nr_begin_data++;
7292 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7293 nr_begin_control++;
7295 create_check_block_twin (insn, false);
7297 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7300 static void haifa_init_insn (rtx);
7302 /* Generates recovery code for BE_IN speculative INSN. */
7303 static void
7304 add_to_speculative_block (rtx insn)
7306 ds_t ts;
7307 sd_iterator_def sd_it;
7308 dep_t dep;
7309 rtx twins = NULL;
7310 rtx_vec_t priorities_roots;
7312 ts = TODO_SPEC (insn);
7313 gcc_assert (!(ts & ~BE_IN_SPEC));
7315 if (ts & BE_IN_DATA)
7316 nr_be_in_data++;
7317 if (ts & BE_IN_CONTROL)
7318 nr_be_in_control++;
7320 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7321 gcc_assert (!TODO_SPEC (insn));
7323 DONE_SPEC (insn) |= ts;
7325 /* First we convert all simple checks to branchy. */
7326 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7327 sd_iterator_cond (&sd_it, &dep);)
7329 rtx check = DEP_PRO (dep);
7331 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7333 create_check_block_twin (check, true);
7335 /* Restart search. */
7336 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7338 else
7339 /* Continue search. */
7340 sd_iterator_next (&sd_it);
7343 priorities_roots.create (0);
7344 clear_priorities (insn, &priorities_roots);
7346 while (1)
7348 rtx check, twin;
7349 basic_block rec;
7351 /* Get the first backward dependency of INSN. */
7352 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7353 if (!sd_iterator_cond (&sd_it, &dep))
7354 /* INSN has no backward dependencies left. */
7355 break;
7357 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7358 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7359 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7361 check = DEP_PRO (dep);
7363 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7364 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7366 rec = BLOCK_FOR_INSN (check);
7368 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7369 haifa_init_insn (twin);
7371 sd_copy_back_deps (twin, insn, true);
7373 if (sched_verbose && spec_info->dump)
7374 /* INSN_BB (insn) isn't determined for twin insns yet.
7375 So we can't use current_sched_info->print_insn. */
7376 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7377 INSN_UID (twin), rec->index);
7379 twins = alloc_INSN_LIST (twin, twins);
7381 /* Add dependences between TWIN and all appropriate
7382 instructions from REC. */
7383 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7385 rtx pro = DEP_PRO (dep);
7387 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7389 /* INSN might have dependencies from the instructions from
7390 several recovery blocks. At this iteration we process those
7391 producers that reside in REC. */
7392 if (BLOCK_FOR_INSN (pro) == rec)
7394 dep_def _new_dep, *new_dep = &_new_dep;
7396 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7397 sd_add_dep (new_dep, false);
7401 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7403 /* Remove all dependencies between INSN and insns in REC. */
7404 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7405 sd_iterator_cond (&sd_it, &dep);)
7407 rtx pro = DEP_PRO (dep);
7409 if (BLOCK_FOR_INSN (pro) == rec)
7410 sd_delete_dep (sd_it);
7411 else
7412 sd_iterator_next (&sd_it);
7416 /* We couldn't have added the dependencies between INSN and TWINS earlier
7417 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7418 while (twins)
7420 rtx twin;
7422 twin = XEXP (twins, 0);
7425 dep_def _new_dep, *new_dep = &_new_dep;
7427 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7428 sd_add_dep (new_dep, false);
7431 twin = XEXP (twins, 1);
7432 free_INSN_LIST_node (twins);
7433 twins = twin;
7436 calc_priorities (priorities_roots);
7437 priorities_roots.release ();
7440 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7441 void *
7442 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7444 gcc_assert (new_nmemb >= old_nmemb);
7445 p = XRESIZEVAR (void, p, new_nmemb * size);
7446 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7447 return p;
7450 /* Helper function.
7451 Find fallthru edge from PRED. */
7452 edge
7453 find_fallthru_edge_from (basic_block pred)
7455 edge e;
7456 basic_block succ;
7458 succ = pred->next_bb;
7459 gcc_assert (succ->prev_bb == pred);
7461 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7463 e = find_fallthru_edge (pred->succs);
7465 if (e)
7467 gcc_assert (e->dest == succ);
7468 return e;
7471 else
7473 e = find_fallthru_edge (succ->preds);
7475 if (e)
7477 gcc_assert (e->src == pred);
7478 return e;
7482 return NULL;
7485 /* Extend per basic block data structures. */
7486 static void
7487 sched_extend_bb (void)
7489 /* The following is done to keep current_sched_info->next_tail non null. */
7490 rtx end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
7491 rtx insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
7492 if (NEXT_INSN (end) == 0
7493 || (!NOTE_P (insn)
7494 && !LABEL_P (insn)
7495 /* Don't emit a NOTE if it would end up before a BARRIER. */
7496 && !BARRIER_P (NEXT_INSN (end))))
7498 rtx note = emit_note_after (NOTE_INSN_DELETED, end);
7499 /* Make note appear outside BB. */
7500 set_block_for_insn (note, NULL);
7501 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
7505 /* Init per basic block data structures. */
7506 void
7507 sched_init_bbs (void)
7509 sched_extend_bb ();
7512 /* Initialize BEFORE_RECOVERY variable. */
7513 static void
7514 init_before_recovery (basic_block *before_recovery_ptr)
7516 basic_block last;
7517 edge e;
7519 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7520 e = find_fallthru_edge_from (last);
7522 if (e)
7524 /* We create two basic blocks:
7525 1. Single instruction block is inserted right after E->SRC
7526 and has jump to
7527 2. Empty block right before EXIT_BLOCK.
7528 Between these two blocks recovery blocks will be emitted. */
7530 basic_block single, empty;
7531 rtx x, label;
7533 /* If the fallthrough edge to exit we've found is from the block we've
7534 created before, don't do anything more. */
7535 if (last == after_recovery)
7536 return;
7538 adding_bb_to_current_region_p = false;
7540 single = sched_create_empty_bb (last);
7541 empty = sched_create_empty_bb (single);
7543 /* Add new blocks to the root loop. */
7544 if (current_loops != NULL)
7546 add_bb_to_loop (single, (*current_loops->larray)[0]);
7547 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7550 single->count = last->count;
7551 empty->count = last->count;
7552 single->frequency = last->frequency;
7553 empty->frequency = last->frequency;
7554 BB_COPY_PARTITION (single, last);
7555 BB_COPY_PARTITION (empty, last);
7557 redirect_edge_succ (e, single);
7558 make_single_succ_edge (single, empty, 0);
7559 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
7560 EDGE_FALLTHRU);
7562 label = block_label (empty);
7563 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7564 JUMP_LABEL (x) = label;
7565 LABEL_NUSES (label)++;
7566 haifa_init_insn (x);
7568 emit_barrier_after (x);
7570 sched_init_only_bb (empty, NULL);
7571 sched_init_only_bb (single, NULL);
7572 sched_extend_bb ();
7574 adding_bb_to_current_region_p = true;
7575 before_recovery = single;
7576 after_recovery = empty;
7578 if (before_recovery_ptr)
7579 *before_recovery_ptr = before_recovery;
7581 if (sched_verbose >= 2 && spec_info->dump)
7582 fprintf (spec_info->dump,
7583 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7584 last->index, single->index, empty->index);
7586 else
7587 before_recovery = last;
7590 /* Returns new recovery block. */
7591 basic_block
7592 sched_create_recovery_block (basic_block *before_recovery_ptr)
7594 rtx label;
7595 rtx barrier;
7596 basic_block rec;
7598 haifa_recovery_bb_recently_added_p = true;
7599 haifa_recovery_bb_ever_added_p = true;
7601 init_before_recovery (before_recovery_ptr);
7603 barrier = get_last_bb_insn (before_recovery);
7604 gcc_assert (BARRIER_P (barrier));
7606 label = emit_label_after (gen_label_rtx (), barrier);
7608 rec = create_basic_block (label, label, before_recovery);
7610 /* A recovery block always ends with an unconditional jump. */
7611 emit_barrier_after (BB_END (rec));
7613 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7614 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7616 if (sched_verbose && spec_info->dump)
7617 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7618 rec->index);
7620 return rec;
7623 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7624 and emit necessary jumps. */
7625 void
7626 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7627 basic_block second_bb)
7629 rtx label;
7630 rtx jump;
7631 int edge_flags;
7633 /* This is fixing of incoming edge. */
7634 /* ??? Which other flags should be specified? */
7635 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7636 /* Partition type is the same, if it is "unpartitioned". */
7637 edge_flags = EDGE_CROSSING;
7638 else
7639 edge_flags = 0;
7641 make_edge (first_bb, rec, edge_flags);
7642 label = block_label (second_bb);
7643 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7644 JUMP_LABEL (jump) = label;
7645 LABEL_NUSES (label)++;
7647 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7648 /* Partition type is the same, if it is "unpartitioned". */
7650 /* Rewritten from cfgrtl.c. */
7651 if (flag_reorder_blocks_and_partition
7652 && targetm_common.have_named_sections)
7654 /* We don't need the same note for the check because
7655 any_condjump_p (check) == true. */
7656 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
7658 edge_flags = EDGE_CROSSING;
7660 else
7661 edge_flags = 0;
7663 make_single_succ_edge (rec, second_bb, edge_flags);
7664 if (dom_info_available_p (CDI_DOMINATORS))
7665 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7668 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7669 INSN is a simple check, that should be converted to branchy one. */
7670 static void
7671 create_check_block_twin (rtx insn, bool mutate_p)
7673 basic_block rec;
7674 rtx label, check, twin;
7675 ds_t fs;
7676 sd_iterator_def sd_it;
7677 dep_t dep;
7678 dep_def _new_dep, *new_dep = &_new_dep;
7679 ds_t todo_spec;
7681 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7683 if (!mutate_p)
7684 todo_spec = TODO_SPEC (insn);
7685 else
7687 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7688 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7690 todo_spec = CHECK_SPEC (insn);
7693 todo_spec &= SPECULATIVE;
7695 /* Create recovery block. */
7696 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7698 rec = sched_create_recovery_block (NULL);
7699 label = BB_HEAD (rec);
7701 else
7703 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
7704 label = NULL_RTX;
7707 /* Emit CHECK. */
7708 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
7710 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7712 /* To have mem_reg alive at the beginning of second_bb,
7713 we emit check BEFORE insn, so insn after splitting
7714 insn will be at the beginning of second_bb, which will
7715 provide us with the correct life information. */
7716 check = emit_jump_insn_before (check, insn);
7717 JUMP_LABEL (check) = label;
7718 LABEL_NUSES (label)++;
7720 else
7721 check = emit_insn_before (check, insn);
7723 /* Extend data structures. */
7724 haifa_init_insn (check);
7726 /* CHECK is being added to current region. Extend ready list. */
7727 gcc_assert (sched_ready_n_insns != -1);
7728 sched_extend_ready_list (sched_ready_n_insns + 1);
7730 if (current_sched_info->add_remove_insn)
7731 current_sched_info->add_remove_insn (insn, 0);
7733 RECOVERY_BLOCK (check) = rec;
7735 if (sched_verbose && spec_info->dump)
7736 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7737 (*current_sched_info->print_insn) (check, 0));
7739 gcc_assert (ORIG_PAT (insn));
7741 /* Initialize TWIN (twin is a duplicate of original instruction
7742 in the recovery block). */
7743 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7745 sd_iterator_def sd_it;
7746 dep_t dep;
7748 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7749 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7751 struct _dep _dep2, *dep2 = &_dep2;
7753 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7755 sd_add_dep (dep2, true);
7758 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7759 haifa_init_insn (twin);
7761 if (sched_verbose && spec_info->dump)
7762 /* INSN_BB (insn) isn't determined for twin insns yet.
7763 So we can't use current_sched_info->print_insn. */
7764 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7765 INSN_UID (twin), rec->index);
7767 else
7769 ORIG_PAT (check) = ORIG_PAT (insn);
7770 HAS_INTERNAL_DEP (check) = 1;
7771 twin = check;
7772 /* ??? We probably should change all OUTPUT dependencies to
7773 (TRUE | OUTPUT). */
7776 /* Copy all resolved back dependencies of INSN to TWIN. This will
7777 provide correct value for INSN_TICK (TWIN). */
7778 sd_copy_back_deps (twin, insn, true);
7780 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7781 /* In case of branchy check, fix CFG. */
7783 basic_block first_bb, second_bb;
7784 rtx jump;
7786 first_bb = BLOCK_FOR_INSN (check);
7787 second_bb = sched_split_block (first_bb, check);
7789 sched_create_recovery_edges (first_bb, rec, second_bb);
7791 sched_init_only_bb (second_bb, first_bb);
7792 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
7794 jump = BB_END (rec);
7795 haifa_init_insn (jump);
7798 /* Move backward dependences from INSN to CHECK and
7799 move forward dependences from INSN to TWIN. */
7801 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7802 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7804 rtx pro = DEP_PRO (dep);
7805 ds_t ds;
7807 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7808 check --TRUE--> producer ??? or ANTI ???
7809 twin --TRUE--> producer
7810 twin --ANTI--> check
7812 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7813 check --ANTI--> producer
7814 twin --ANTI--> producer
7815 twin --ANTI--> check
7817 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7818 check ~~TRUE~~> producer
7819 twin ~~TRUE~~> producer
7820 twin --ANTI--> check */
7822 ds = DEP_STATUS (dep);
7824 if (ds & BEGIN_SPEC)
7826 gcc_assert (!mutate_p);
7827 ds &= ~BEGIN_SPEC;
7830 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7831 sd_add_dep (new_dep, false);
7833 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7835 DEP_CON (new_dep) = twin;
7836 sd_add_dep (new_dep, false);
7840 /* Second, remove backward dependencies of INSN. */
7841 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7842 sd_iterator_cond (&sd_it, &dep);)
7844 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7845 || mutate_p)
7846 /* We can delete this dep because we overcome it with
7847 BEGIN_SPECULATION. */
7848 sd_delete_dep (sd_it);
7849 else
7850 sd_iterator_next (&sd_it);
7853 /* Future Speculations. Determine what BE_IN speculations will be like. */
7854 fs = 0;
7856 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7857 here. */
7859 gcc_assert (!DONE_SPEC (insn));
7861 if (!mutate_p)
7863 ds_t ts = TODO_SPEC (insn);
7865 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7866 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7868 /* Luckiness of future speculations solely depends upon initial
7869 BEGIN speculation. */
7870 if (ts & BEGIN_DATA)
7871 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7872 if (ts & BEGIN_CONTROL)
7873 fs = set_dep_weak (fs, BE_IN_CONTROL,
7874 get_dep_weak (ts, BEGIN_CONTROL));
7876 else
7877 CHECK_SPEC (check) = CHECK_SPEC (insn);
7879 /* Future speculations: call the helper. */
7880 process_insn_forw_deps_be_in_spec (insn, twin, fs);
7882 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
7884 /* Which types of dependencies should we use here is,
7885 generally, machine-dependent question... But, for now,
7886 it is not. */
7888 if (!mutate_p)
7890 init_dep (new_dep, insn, check, REG_DEP_TRUE);
7891 sd_add_dep (new_dep, false);
7893 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7894 sd_add_dep (new_dep, false);
7896 else
7898 if (spec_info->dump)
7899 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
7900 (*current_sched_info->print_insn) (insn, 0));
7902 /* Remove all dependencies of the INSN. */
7904 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
7905 | SD_LIST_BACK
7906 | SD_LIST_RES_BACK));
7907 while (sd_iterator_cond (&sd_it, &dep))
7908 sd_delete_dep (sd_it);
7911 /* If former check (INSN) already was moved to the ready (or queue)
7912 list, add new check (CHECK) there too. */
7913 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
7914 try_ready (check);
7916 /* Remove old check from instruction stream and free its
7917 data. */
7918 sched_remove_insn (insn);
7921 init_dep (new_dep, check, twin, REG_DEP_ANTI);
7922 sd_add_dep (new_dep, false);
7924 else
7926 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
7927 sd_add_dep (new_dep, false);
7930 if (!mutate_p)
7931 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
7932 because it'll be done later in add_to_speculative_block. */
7934 rtx_vec_t priorities_roots = rtx_vec_t ();
7936 clear_priorities (twin, &priorities_roots);
7937 calc_priorities (priorities_roots);
7938 priorities_roots.release ();
7942 /* Removes dependency between instructions in the recovery block REC
7943 and usual region instructions. It keeps inner dependences so it
7944 won't be necessary to recompute them. */
7945 static void
7946 fix_recovery_deps (basic_block rec)
7948 rtx note, insn, jump, ready_list = 0;
7949 bitmap_head in_ready;
7950 rtx link;
7952 bitmap_initialize (&in_ready, 0);
7954 /* NOTE - a basic block note. */
7955 note = NEXT_INSN (BB_HEAD (rec));
7956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7957 insn = BB_END (rec);
7958 gcc_assert (JUMP_P (insn));
7959 insn = PREV_INSN (insn);
7963 sd_iterator_def sd_it;
7964 dep_t dep;
7966 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
7967 sd_iterator_cond (&sd_it, &dep);)
7969 rtx consumer = DEP_CON (dep);
7971 if (BLOCK_FOR_INSN (consumer) != rec)
7973 sd_delete_dep (sd_it);
7975 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
7976 ready_list = alloc_INSN_LIST (consumer, ready_list);
7978 else
7980 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7982 sd_iterator_next (&sd_it);
7986 insn = PREV_INSN (insn);
7988 while (insn != note);
7990 bitmap_clear (&in_ready);
7992 /* Try to add instructions to the ready or queue list. */
7993 for (link = ready_list; link; link = XEXP (link, 1))
7994 try_ready (XEXP (link, 0));
7995 free_INSN_LIST_list (&ready_list);
7997 /* Fixing jump's dependences. */
7998 insn = BB_HEAD (rec);
7999 jump = BB_END (rec);
8001 gcc_assert (LABEL_P (insn));
8002 insn = NEXT_INSN (insn);
8004 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8005 add_jump_dependencies (insn, jump);
8008 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8009 instruction data. */
8010 static bool
8011 haifa_change_pattern (rtx insn, rtx new_pat)
8013 int t;
8015 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8016 if (!t)
8017 return false;
8019 update_insn_after_change (insn);
8020 return true;
8023 /* -1 - can't speculate,
8024 0 - for speculation with REQUEST mode it is OK to use
8025 current instruction pattern,
8026 1 - need to change pattern for *NEW_PAT to be speculative. */
8028 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
8030 gcc_assert (current_sched_info->flags & DO_SPECULATION
8031 && (request & SPECULATIVE)
8032 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8034 if ((request & spec_info->mask) != request)
8035 return -1;
8037 if (request & BE_IN_SPEC
8038 && !(request & BEGIN_SPEC))
8039 return 0;
8041 return targetm.sched.speculate_insn (insn, request, new_pat);
8044 static int
8045 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
8047 gcc_assert (sched_deps_info->generate_spec_deps
8048 && !IS_SPECULATION_CHECK_P (insn));
8050 if (HAS_INTERNAL_DEP (insn)
8051 || SCHED_GROUP_P (insn))
8052 return -1;
8054 return sched_speculate_insn (insn, request, new_pat);
8057 /* Print some information about block BB, which starts with HEAD and
8058 ends with TAIL, before scheduling it.
8059 I is zero, if scheduler is about to start with the fresh ebb. */
8060 static void
8061 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
8063 if (!i)
8064 fprintf (sched_dump,
8065 ";; ======================================================\n");
8066 else
8067 fprintf (sched_dump,
8068 ";; =====================ADVANCING TO=====================\n");
8069 fprintf (sched_dump,
8070 ";; -- basic block %d from %d to %d -- %s reload\n",
8071 bb->index, INSN_UID (head), INSN_UID (tail),
8072 (reload_completed ? "after" : "before"));
8073 fprintf (sched_dump,
8074 ";; ======================================================\n");
8075 fprintf (sched_dump, "\n");
8078 /* Unlink basic block notes and labels and saves them, so they
8079 can be easily restored. We unlink basic block notes in EBB to
8080 provide back-compatibility with the previous code, as target backends
8081 assume, that there'll be only instructions between
8082 current_sched_info->{head and tail}. We restore these notes as soon
8083 as we can.
8084 FIRST (LAST) is the first (last) basic block in the ebb.
8085 NB: In usual case (FIRST == LAST) nothing is really done. */
8086 void
8087 unlink_bb_notes (basic_block first, basic_block last)
8089 /* We DON'T unlink basic block notes of the first block in the ebb. */
8090 if (first == last)
8091 return;
8093 bb_header = XNEWVEC (rtx, last_basic_block_for_fn (cfun));
8095 /* Make a sentinel. */
8096 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8097 bb_header[last->next_bb->index] = 0;
8099 first = first->next_bb;
8102 rtx prev, label, note, next;
8104 label = BB_HEAD (last);
8105 if (LABEL_P (label))
8106 note = NEXT_INSN (label);
8107 else
8108 note = label;
8109 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8111 prev = PREV_INSN (label);
8112 next = NEXT_INSN (note);
8113 gcc_assert (prev && next);
8115 NEXT_INSN (prev) = next;
8116 PREV_INSN (next) = prev;
8118 bb_header[last->index] = label;
8120 if (last == first)
8121 break;
8123 last = last->prev_bb;
8125 while (1);
8128 /* Restore basic block notes.
8129 FIRST is the first basic block in the ebb. */
8130 static void
8131 restore_bb_notes (basic_block first)
8133 if (!bb_header)
8134 return;
8136 /* We DON'T unlink basic block notes of the first block in the ebb. */
8137 first = first->next_bb;
8138 /* Remember: FIRST is actually a second basic block in the ebb. */
8140 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8141 && bb_header[first->index])
8143 rtx prev, label, note, next;
8145 label = bb_header[first->index];
8146 prev = PREV_INSN (label);
8147 next = NEXT_INSN (prev);
8149 if (LABEL_P (label))
8150 note = NEXT_INSN (label);
8151 else
8152 note = label;
8153 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8155 bb_header[first->index] = 0;
8157 NEXT_INSN (prev) = label;
8158 NEXT_INSN (note) = next;
8159 PREV_INSN (next) = note;
8161 first = first->next_bb;
8164 free (bb_header);
8165 bb_header = 0;
8168 /* Helper function.
8169 Fix CFG after both in- and inter-block movement of
8170 control_flow_insn_p JUMP. */
8171 static void
8172 fix_jump_move (rtx jump)
8174 basic_block bb, jump_bb, jump_bb_next;
8176 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8177 jump_bb = BLOCK_FOR_INSN (jump);
8178 jump_bb_next = jump_bb->next_bb;
8180 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8181 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8183 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8184 /* if jump_bb_next is not empty. */
8185 BB_END (jump_bb) = BB_END (jump_bb_next);
8187 if (BB_END (bb) != PREV_INSN (jump))
8188 /* Then there are instruction after jump that should be placed
8189 to jump_bb_next. */
8190 BB_END (jump_bb_next) = BB_END (bb);
8191 else
8192 /* Otherwise jump_bb_next is empty. */
8193 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8195 /* To make assertion in move_insn happy. */
8196 BB_END (bb) = PREV_INSN (jump);
8198 update_bb_for_insn (jump_bb_next);
8201 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8202 static void
8203 move_block_after_check (rtx jump)
8205 basic_block bb, jump_bb, jump_bb_next;
8206 vec<edge, va_gc> *t;
8208 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8209 jump_bb = BLOCK_FOR_INSN (jump);
8210 jump_bb_next = jump_bb->next_bb;
8212 update_bb_for_insn (jump_bb);
8214 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8215 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8217 unlink_block (jump_bb_next);
8218 link_block (jump_bb_next, bb);
8220 t = bb->succs;
8221 bb->succs = 0;
8222 move_succs (&(jump_bb->succs), bb);
8223 move_succs (&(jump_bb_next->succs), jump_bb);
8224 move_succs (&t, jump_bb_next);
8226 df_mark_solutions_dirty ();
8228 common_sched_info->fix_recovery_cfg
8229 (bb->index, jump_bb->index, jump_bb_next->index);
8232 /* Helper function for move_block_after_check.
8233 This functions attaches edge vector pointed to by SUCCSP to
8234 block TO. */
8235 static void
8236 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8238 edge e;
8239 edge_iterator ei;
8241 gcc_assert (to->succs == 0);
8243 to->succs = *succsp;
8245 FOR_EACH_EDGE (e, ei, to->succs)
8246 e->src = to;
8248 *succsp = 0;
8251 /* Remove INSN from the instruction stream.
8252 INSN should have any dependencies. */
8253 static void
8254 sched_remove_insn (rtx insn)
8256 sd_finish_insn (insn);
8258 change_queue_index (insn, QUEUE_NOWHERE);
8259 current_sched_info->add_remove_insn (insn, 1);
8260 delete_insn (insn);
8263 /* Clear priorities of all instructions, that are forward dependent on INSN.
8264 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8265 be invoked to initialize all cleared priorities. */
8266 static void
8267 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
8269 sd_iterator_def sd_it;
8270 dep_t dep;
8271 bool insn_is_root_p = true;
8273 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8275 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8277 rtx pro = DEP_PRO (dep);
8279 if (INSN_PRIORITY_STATUS (pro) >= 0
8280 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8282 /* If DEP doesn't contribute to priority then INSN itself should
8283 be added to priority roots. */
8284 if (contributes_to_priority_p (dep))
8285 insn_is_root_p = false;
8287 INSN_PRIORITY_STATUS (pro) = -1;
8288 clear_priorities (pro, roots_ptr);
8292 if (insn_is_root_p)
8293 roots_ptr->safe_push (insn);
8296 /* Recompute priorities of instructions, whose priorities might have been
8297 changed. ROOTS is a vector of instructions whose priority computation will
8298 trigger initialization of all cleared priorities. */
8299 static void
8300 calc_priorities (rtx_vec_t roots)
8302 int i;
8303 rtx insn;
8305 FOR_EACH_VEC_ELT (roots, i, insn)
8306 priority (insn);
8310 /* Add dependences between JUMP and other instructions in the recovery
8311 block. INSN is the first insn the recovery block. */
8312 static void
8313 add_jump_dependencies (rtx insn, rtx jump)
8317 insn = NEXT_INSN (insn);
8318 if (insn == jump)
8319 break;
8321 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8323 dep_def _new_dep, *new_dep = &_new_dep;
8325 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8326 sd_add_dep (new_dep, false);
8329 while (1);
8331 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8334 /* Extend data structures for logical insn UID. */
8335 void
8336 sched_extend_luids (void)
8338 int new_luids_max_uid = get_max_uid () + 1;
8340 sched_luids.safe_grow_cleared (new_luids_max_uid);
8343 /* Initialize LUID for INSN. */
8344 void
8345 sched_init_insn_luid (rtx insn)
8347 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8348 int luid;
8350 if (i >= 0)
8352 luid = sched_max_luid;
8353 sched_max_luid += i;
8355 else
8356 luid = -1;
8358 SET_INSN_LUID (insn, luid);
8361 /* Initialize luids for BBS.
8362 The hook common_sched_info->luid_for_non_insn () is used to determine
8363 if notes, labels, etc. need luids. */
8364 void
8365 sched_init_luids (bb_vec_t bbs)
8367 int i;
8368 basic_block bb;
8370 sched_extend_luids ();
8371 FOR_EACH_VEC_ELT (bbs, i, bb)
8373 rtx insn;
8375 FOR_BB_INSNS (bb, insn)
8376 sched_init_insn_luid (insn);
8380 /* Free LUIDs. */
8381 void
8382 sched_finish_luids (void)
8384 sched_luids.release ();
8385 sched_max_luid = 1;
8388 /* Return logical uid of INSN. Helpful while debugging. */
8390 insn_luid (rtx insn)
8392 return INSN_LUID (insn);
8395 /* Extend per insn data in the target. */
8396 void
8397 sched_extend_target (void)
8399 if (targetm.sched.h_i_d_extended)
8400 targetm.sched.h_i_d_extended ();
8403 /* Extend global scheduler structures (those, that live across calls to
8404 schedule_block) to include information about just emitted INSN. */
8405 static void
8406 extend_h_i_d (void)
8408 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8409 if (reserve > 0
8410 && ! h_i_d.space (reserve))
8412 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8413 sched_extend_target ();
8417 /* Initialize h_i_d entry of the INSN with default values.
8418 Values, that are not explicitly initialized here, hold zero. */
8419 static void
8420 init_h_i_d (rtx insn)
8422 if (INSN_LUID (insn) > 0)
8424 INSN_COST (insn) = -1;
8425 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8426 INSN_TICK (insn) = INVALID_TICK;
8427 INSN_EXACT_TICK (insn) = INVALID_TICK;
8428 INTER_TICK (insn) = INVALID_TICK;
8429 TODO_SPEC (insn) = HARD_DEP;
8433 /* Initialize haifa_insn_data for BBS. */
8434 void
8435 haifa_init_h_i_d (bb_vec_t bbs)
8437 int i;
8438 basic_block bb;
8440 extend_h_i_d ();
8441 FOR_EACH_VEC_ELT (bbs, i, bb)
8443 rtx insn;
8445 FOR_BB_INSNS (bb, insn)
8446 init_h_i_d (insn);
8450 /* Finalize haifa_insn_data. */
8451 void
8452 haifa_finish_h_i_d (void)
8454 int i;
8455 haifa_insn_data_t data;
8456 struct reg_use_data *use, *next;
8458 FOR_EACH_VEC_ELT (h_i_d, i, data)
8460 free (data->max_reg_pressure);
8461 free (data->reg_pressure);
8462 for (use = data->reg_use_list; use != NULL; use = next)
8464 next = use->next_insn_use;
8465 free (use);
8468 h_i_d.release ();
8471 /* Init data for the new insn INSN. */
8472 static void
8473 haifa_init_insn (rtx insn)
8475 gcc_assert (insn != NULL);
8477 sched_extend_luids ();
8478 sched_init_insn_luid (insn);
8479 sched_extend_target ();
8480 sched_deps_init (false);
8481 extend_h_i_d ();
8482 init_h_i_d (insn);
8484 if (adding_bb_to_current_region_p)
8486 sd_init_insn (insn);
8488 /* Extend dependency caches by one element. */
8489 extend_dependency_caches (1, false);
8491 if (sched_pressure != SCHED_PRESSURE_NONE)
8492 init_insn_reg_pressure_info (insn);
8495 /* Init data for the new basic block BB which comes after AFTER. */
8496 static void
8497 haifa_init_only_bb (basic_block bb, basic_block after)
8499 gcc_assert (bb != NULL);
8501 sched_init_bbs ();
8503 if (common_sched_info->add_block)
8504 /* This changes only data structures of the front-end. */
8505 common_sched_info->add_block (bb, after);
8508 /* A generic version of sched_split_block (). */
8509 basic_block
8510 sched_split_block_1 (basic_block first_bb, rtx after)
8512 edge e;
8514 e = split_block (first_bb, after);
8515 gcc_assert (e->src == first_bb);
8517 /* sched_split_block emits note if *check == BB_END. Probably it
8518 is better to rip that note off. */
8520 return e->dest;
8523 /* A generic version of sched_create_empty_bb (). */
8524 basic_block
8525 sched_create_empty_bb_1 (basic_block after)
8527 return create_empty_bb (after);
8530 /* Insert PAT as an INSN into the schedule and update the necessary data
8531 structures to account for it. */
8533 sched_emit_insn (rtx pat)
8535 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
8536 haifa_init_insn (insn);
8538 if (current_sched_info->add_remove_insn)
8539 current_sched_info->add_remove_insn (insn, 0);
8541 (*current_sched_info->begin_schedule_ready) (insn);
8542 scheduled_insns.safe_push (insn);
8544 last_scheduled_insn = insn;
8545 return insn;
8548 /* This function returns a candidate satisfying dispatch constraints from
8549 the ready list. */
8551 static rtx
8552 ready_remove_first_dispatch (struct ready_list *ready)
8554 int i;
8555 rtx insn = ready_element (ready, 0);
8557 if (ready->n_ready == 1
8558 || !INSN_P (insn)
8559 || INSN_CODE (insn) < 0
8560 || !active_insn_p (insn)
8561 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8562 return ready_remove_first (ready);
8564 for (i = 1; i < ready->n_ready; i++)
8566 insn = ready_element (ready, i);
8568 if (!INSN_P (insn)
8569 || INSN_CODE (insn) < 0
8570 || !active_insn_p (insn))
8571 continue;
8573 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8575 /* Return ith element of ready. */
8576 insn = ready_remove (ready, i);
8577 return insn;
8581 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8582 return ready_remove_first (ready);
8584 for (i = 1; i < ready->n_ready; i++)
8586 insn = ready_element (ready, i);
8588 if (!INSN_P (insn)
8589 || INSN_CODE (insn) < 0
8590 || !active_insn_p (insn))
8591 continue;
8593 /* Return i-th element of ready. */
8594 if (targetm.sched.dispatch (insn, IS_CMP))
8595 return ready_remove (ready, i);
8598 return ready_remove_first (ready);
8601 /* Get number of ready insn in the ready list. */
8604 number_in_ready (void)
8606 return ready.n_ready;
8609 /* Get number of ready's in the ready list. */
8612 get_ready_element (int i)
8614 return ready_element (&ready, i);
8617 #endif /* INSN_SCHEDULING */