* gimple-ssa-store-merging.c (struct merged_store_group): Move up
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blob1cefdeb69b8347d93015a39a89e3489b1ee84d7d
1 /* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
27 [p ] := imm1;
28 [p + 1B] := imm2;
29 [p + 2B] := imm3;
30 [p + 3B] := imm4;
31 we can transform this into a single 4-byte store if the target supports it:
32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
34 Or:
35 [p ] := [q ];
36 [p + 1B] := [q + 1B];
37 [p + 2B] := [q + 2B];
38 [p + 3B] := [q + 3B];
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
42 Or:
43 [p ] := [q ] ^ imm1;
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
50 Or:
51 [p:1 ] := imm;
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
56 The algorithm is applied to each basic block in three phases:
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when when the stored
65 values get used subsequently).
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
76 store_immediate_info objects) and coalesce contiguous stores into
77 merged_store_group objects. For bit-field stores, we don't need to
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
84 For example, given the stores:
85 [p ] := 0;
86 [p + 1B] := 1;
87 [p + 3B] := 0;
88 [p + 4B] := 1;
89 [p + 5B] := 0;
90 [p + 6B] := 0;
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
106 [p ] := 0x1234;
107 [p + 2B] := 0x5678;
108 [p + 4B] := 0xab;
109 [p + 5B] := 0xcd;
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
112 p |LE|BE|
113 ---------
114 0 |34|12|
115 1 |12|34|
116 2 |78|56|
117 3 |56|78|
118 4 |ab|ab|
119 5 |cd|cd|
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
141 #include "config.h"
142 #include "system.h"
143 #include "coretypes.h"
144 #include "backend.h"
145 #include "tree.h"
146 #include "gimple.h"
147 #include "builtins.h"
148 #include "fold-const.h"
149 #include "tree-pass.h"
150 #include "ssa.h"
151 #include "gimple-pretty-print.h"
152 #include "alias.h"
153 #include "fold-const.h"
154 #include "params.h"
155 #include "print-tree.h"
156 #include "tree-hash-traits.h"
157 #include "gimple-iterator.h"
158 #include "gimplify.h"
159 #include "gimple-fold.h"
160 #include "stor-layout.h"
161 #include "timevar.h"
162 #include "tree-cfg.h"
163 #include "tree-eh.h"
164 #include "target.h"
165 #include "gimplify-me.h"
166 #include "rtl.h"
167 #include "expr.h" /* For get_bit_range. */
168 #include "optabs-tree.h"
169 #include "selftest.h"
171 /* The maximum size (in bits) of the stores this pass should generate. */
172 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
173 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
175 /* Limit to bound the number of aliasing checks for loads with the same
176 vuse as the corresponding store. */
177 #define MAX_STORE_ALIAS_CHECKS 64
179 namespace {
181 struct bswap_stat
183 /* Number of hand-written 16-bit nop / bswaps found. */
184 int found_16bit;
186 /* Number of hand-written 32-bit nop / bswaps found. */
187 int found_32bit;
189 /* Number of hand-written 64-bit nop / bswaps found. */
190 int found_64bit;
191 } nop_stats, bswap_stats;
193 /* A symbolic number structure is used to detect byte permutation and selection
194 patterns of a source. To achieve that, its field N contains an artificial
195 number consisting of BITS_PER_MARKER sized markers tracking where does each
196 byte come from in the source:
198 0 - target byte has the value 0
199 FF - target byte has an unknown value (eg. due to sign extension)
200 1..size - marker value is the byte index in the source (0 for lsb).
202 To detect permutations on memory sources (arrays and structures), a symbolic
203 number is also associated:
204 - a base address BASE_ADDR and an OFFSET giving the address of the source;
205 - a range which gives the difference between the highest and lowest accessed
206 memory location to make such a symbolic number;
207 - the address SRC of the source element of lowest address as a convenience
208 to easily get BASE_ADDR + offset + lowest bytepos;
209 - number of expressions N_OPS bitwise ored together to represent
210 approximate cost of the computation.
212 Note 1: the range is different from size as size reflects the size of the
213 type of the current expression. For instance, for an array char a[],
214 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
215 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
216 time a range of 1.
218 Note 2: for non-memory sources, range holds the same value as size.
220 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
222 struct symbolic_number {
223 uint64_t n;
224 tree type;
225 tree base_addr;
226 tree offset;
227 poly_int64_pod bytepos;
228 tree src;
229 tree alias_set;
230 tree vuse;
231 unsigned HOST_WIDE_INT range;
232 int n_ops;
235 #define BITS_PER_MARKER 8
236 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
237 #define MARKER_BYTE_UNKNOWN MARKER_MASK
238 #define HEAD_MARKER(n, size) \
239 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
241 /* The number which the find_bswap_or_nop_1 result should match in
242 order to have a nop. The number is masked according to the size of
243 the symbolic number before using it. */
244 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
245 (uint64_t)0x08070605 << 32 | 0x04030201)
247 /* The number which the find_bswap_or_nop_1 result should match in
248 order to have a byte swap. The number is masked according to the
249 size of the symbolic number before using it. */
250 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
251 (uint64_t)0x01020304 << 32 | 0x05060708)
253 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
254 number N. Return false if the requested operation is not permitted
255 on a symbolic number. */
257 inline bool
258 do_shift_rotate (enum tree_code code,
259 struct symbolic_number *n,
260 int count)
262 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
263 unsigned head_marker;
265 if (count % BITS_PER_UNIT != 0)
266 return false;
267 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
269 /* Zero out the extra bits of N in order to avoid them being shifted
270 into the significant bits. */
271 if (size < 64 / BITS_PER_MARKER)
272 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
274 switch (code)
276 case LSHIFT_EXPR:
277 n->n <<= count;
278 break;
279 case RSHIFT_EXPR:
280 head_marker = HEAD_MARKER (n->n, size);
281 n->n >>= count;
282 /* Arithmetic shift of signed type: result is dependent on the value. */
283 if (!TYPE_UNSIGNED (n->type) && head_marker)
284 for (i = 0; i < count / BITS_PER_MARKER; i++)
285 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
286 << ((size - 1 - i) * BITS_PER_MARKER);
287 break;
288 case LROTATE_EXPR:
289 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
290 break;
291 case RROTATE_EXPR:
292 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
293 break;
294 default:
295 return false;
297 /* Zero unused bits for size. */
298 if (size < 64 / BITS_PER_MARKER)
299 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
300 return true;
303 /* Perform sanity checking for the symbolic number N and the gimple
304 statement STMT. */
306 inline bool
307 verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
309 tree lhs_type;
311 lhs_type = gimple_expr_type (stmt);
313 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
314 return false;
316 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
317 return false;
319 return true;
322 /* Initialize the symbolic number N for the bswap pass from the base element
323 SRC manipulated by the bitwise OR expression. */
325 bool
326 init_symbolic_number (struct symbolic_number *n, tree src)
328 int size;
330 if (! INTEGRAL_TYPE_P (TREE_TYPE (src)))
331 return false;
333 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
334 n->src = src;
336 /* Set up the symbolic number N by setting each byte to a value between 1 and
337 the byte size of rhs1. The highest order byte is set to n->size and the
338 lowest order byte to 1. */
339 n->type = TREE_TYPE (src);
340 size = TYPE_PRECISION (n->type);
341 if (size % BITS_PER_UNIT != 0)
342 return false;
343 size /= BITS_PER_UNIT;
344 if (size > 64 / BITS_PER_MARKER)
345 return false;
346 n->range = size;
347 n->n = CMPNOP;
348 n->n_ops = 1;
350 if (size < 64 / BITS_PER_MARKER)
351 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
353 return true;
356 /* Check if STMT might be a byte swap or a nop from a memory source and returns
357 the answer. If so, REF is that memory source and the base of the memory area
358 accessed and the offset of the access from that base are recorded in N. */
360 bool
361 find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
363 /* Leaf node is an array or component ref. Memorize its base and
364 offset from base to compare to other such leaf node. */
365 poly_int64 bitsize, bitpos, bytepos;
366 machine_mode mode;
367 int unsignedp, reversep, volatilep;
368 tree offset, base_addr;
370 /* Not prepared to handle PDP endian. */
371 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
372 return false;
374 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
375 return false;
377 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
378 &unsignedp, &reversep, &volatilep);
380 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
381 /* Do not rewrite TARGET_MEM_REF. */
382 return false;
383 else if (TREE_CODE (base_addr) == MEM_REF)
385 poly_offset_int bit_offset = 0;
386 tree off = TREE_OPERAND (base_addr, 1);
388 if (!integer_zerop (off))
390 poly_offset_int boff = mem_ref_offset (base_addr);
391 boff <<= LOG2_BITS_PER_UNIT;
392 bit_offset += boff;
395 base_addr = TREE_OPERAND (base_addr, 0);
397 /* Avoid returning a negative bitpos as this may wreak havoc later. */
398 if (maybe_lt (bit_offset, 0))
400 tree byte_offset = wide_int_to_tree
401 (sizetype, bits_to_bytes_round_down (bit_offset));
402 bit_offset = num_trailing_bits (bit_offset);
403 if (offset)
404 offset = size_binop (PLUS_EXPR, offset, byte_offset);
405 else
406 offset = byte_offset;
409 bitpos += bit_offset.force_shwi ();
411 else
412 base_addr = build_fold_addr_expr (base_addr);
414 if (!multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
415 return false;
416 if (!multiple_p (bitsize, BITS_PER_UNIT))
417 return false;
418 if (reversep)
419 return false;
421 if (!init_symbolic_number (n, ref))
422 return false;
423 n->base_addr = base_addr;
424 n->offset = offset;
425 n->bytepos = bytepos;
426 n->alias_set = reference_alias_ptr_type (ref);
427 n->vuse = gimple_vuse (stmt);
428 return true;
431 /* Compute the symbolic number N representing the result of a bitwise OR on 2
432 symbolic number N1 and N2 whose source statements are respectively
433 SOURCE_STMT1 and SOURCE_STMT2. */
435 gimple *
436 perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
437 gimple *source_stmt2, struct symbolic_number *n2,
438 struct symbolic_number *n)
440 int i, size;
441 uint64_t mask;
442 gimple *source_stmt;
443 struct symbolic_number *n_start;
445 tree rhs1 = gimple_assign_rhs1 (source_stmt1);
446 if (TREE_CODE (rhs1) == BIT_FIELD_REF
447 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
448 rhs1 = TREE_OPERAND (rhs1, 0);
449 tree rhs2 = gimple_assign_rhs1 (source_stmt2);
450 if (TREE_CODE (rhs2) == BIT_FIELD_REF
451 && TREE_CODE (TREE_OPERAND (rhs2, 0)) == SSA_NAME)
452 rhs2 = TREE_OPERAND (rhs2, 0);
454 /* Sources are different, cancel bswap if they are not memory location with
455 the same base (array, structure, ...). */
456 if (rhs1 != rhs2)
458 uint64_t inc;
459 HOST_WIDE_INT start1, start2, start_sub, end_sub, end1, end2, end;
460 struct symbolic_number *toinc_n_ptr, *n_end;
461 basic_block bb1, bb2;
463 if (!n1->base_addr || !n2->base_addr
464 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
465 return NULL;
467 if (!n1->offset != !n2->offset
468 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
469 return NULL;
471 start1 = 0;
472 if (!(n2->bytepos - n1->bytepos).is_constant (&start2))
473 return NULL;
475 if (start1 < start2)
477 n_start = n1;
478 start_sub = start2 - start1;
480 else
482 n_start = n2;
483 start_sub = start1 - start2;
486 bb1 = gimple_bb (source_stmt1);
487 bb2 = gimple_bb (source_stmt2);
488 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
489 source_stmt = source_stmt1;
490 else
491 source_stmt = source_stmt2;
493 /* Find the highest address at which a load is performed and
494 compute related info. */
495 end1 = start1 + (n1->range - 1);
496 end2 = start2 + (n2->range - 1);
497 if (end1 < end2)
499 end = end2;
500 end_sub = end2 - end1;
502 else
504 end = end1;
505 end_sub = end1 - end2;
507 n_end = (end2 > end1) ? n2 : n1;
509 /* Find symbolic number whose lsb is the most significant. */
510 if (BYTES_BIG_ENDIAN)
511 toinc_n_ptr = (n_end == n1) ? n2 : n1;
512 else
513 toinc_n_ptr = (n_start == n1) ? n2 : n1;
515 n->range = end - MIN (start1, start2) + 1;
517 /* Check that the range of memory covered can be represented by
518 a symbolic number. */
519 if (n->range > 64 / BITS_PER_MARKER)
520 return NULL;
522 /* Reinterpret byte marks in symbolic number holding the value of
523 bigger weight according to target endianness. */
524 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
525 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
526 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
528 unsigned marker
529 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
530 if (marker && marker != MARKER_BYTE_UNKNOWN)
531 toinc_n_ptr->n += inc;
534 else
536 n->range = n1->range;
537 n_start = n1;
538 source_stmt = source_stmt1;
541 if (!n1->alias_set
542 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
543 n->alias_set = n1->alias_set;
544 else
545 n->alias_set = ptr_type_node;
546 n->vuse = n_start->vuse;
547 n->base_addr = n_start->base_addr;
548 n->offset = n_start->offset;
549 n->src = n_start->src;
550 n->bytepos = n_start->bytepos;
551 n->type = n_start->type;
552 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
554 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
556 uint64_t masked1, masked2;
558 masked1 = n1->n & mask;
559 masked2 = n2->n & mask;
560 if (masked1 && masked2 && masked1 != masked2)
561 return NULL;
563 n->n = n1->n | n2->n;
564 n->n_ops = n1->n_ops + n2->n_ops;
566 return source_stmt;
569 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
570 the operation given by the rhs of STMT on the result. If the operation
571 could successfully be executed the function returns a gimple stmt whose
572 rhs's first tree is the expression of the source operand and NULL
573 otherwise. */
575 gimple *
576 find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
578 enum tree_code code;
579 tree rhs1, rhs2 = NULL;
580 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
581 enum gimple_rhs_class rhs_class;
583 if (!limit || !is_gimple_assign (stmt))
584 return NULL;
586 rhs1 = gimple_assign_rhs1 (stmt);
588 if (find_bswap_or_nop_load (stmt, rhs1, n))
589 return stmt;
591 /* Handle BIT_FIELD_REF. */
592 if (TREE_CODE (rhs1) == BIT_FIELD_REF
593 && TREE_CODE (TREE_OPERAND (rhs1, 0)) == SSA_NAME)
595 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs1, 1));
596 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs1, 2));
597 if (bitpos % BITS_PER_UNIT == 0
598 && bitsize % BITS_PER_UNIT == 0
599 && init_symbolic_number (n, TREE_OPERAND (rhs1, 0)))
601 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
602 if (BYTES_BIG_ENDIAN)
603 bitpos = TYPE_PRECISION (n->type) - bitpos - bitsize;
605 /* Shift. */
606 if (!do_shift_rotate (RSHIFT_EXPR, n, bitpos))
607 return NULL;
609 /* Mask. */
610 uint64_t mask = 0;
611 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
612 for (unsigned i = 0; i < bitsize / BITS_PER_UNIT;
613 i++, tmp <<= BITS_PER_UNIT)
614 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
615 n->n &= mask;
617 /* Convert. */
618 n->type = TREE_TYPE (rhs1);
619 if (!n->base_addr)
620 n->range = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
622 return verify_symbolic_number_p (n, stmt) ? stmt : NULL;
625 return NULL;
628 if (TREE_CODE (rhs1) != SSA_NAME)
629 return NULL;
631 code = gimple_assign_rhs_code (stmt);
632 rhs_class = gimple_assign_rhs_class (stmt);
633 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
635 if (rhs_class == GIMPLE_BINARY_RHS)
636 rhs2 = gimple_assign_rhs2 (stmt);
638 /* Handle unary rhs and binary rhs with integer constants as second
639 operand. */
641 if (rhs_class == GIMPLE_UNARY_RHS
642 || (rhs_class == GIMPLE_BINARY_RHS
643 && TREE_CODE (rhs2) == INTEGER_CST))
645 if (code != BIT_AND_EXPR
646 && code != LSHIFT_EXPR
647 && code != RSHIFT_EXPR
648 && code != LROTATE_EXPR
649 && code != RROTATE_EXPR
650 && !CONVERT_EXPR_CODE_P (code))
651 return NULL;
653 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
655 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
656 we have to initialize the symbolic number. */
657 if (!source_stmt1)
659 if (gimple_assign_load_p (stmt)
660 || !init_symbolic_number (n, rhs1))
661 return NULL;
662 source_stmt1 = stmt;
665 switch (code)
667 case BIT_AND_EXPR:
669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
670 uint64_t val = int_cst_value (rhs2), mask = 0;
671 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
673 /* Only constants masking full bytes are allowed. */
674 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
675 if ((val & tmp) != 0 && (val & tmp) != tmp)
676 return NULL;
677 else if (val & tmp)
678 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
680 n->n &= mask;
682 break;
683 case LSHIFT_EXPR:
684 case RSHIFT_EXPR:
685 case LROTATE_EXPR:
686 case RROTATE_EXPR:
687 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
688 return NULL;
689 break;
690 CASE_CONVERT:
692 int i, type_size, old_type_size;
693 tree type;
695 type = gimple_expr_type (stmt);
696 type_size = TYPE_PRECISION (type);
697 if (type_size % BITS_PER_UNIT != 0)
698 return NULL;
699 type_size /= BITS_PER_UNIT;
700 if (type_size > 64 / BITS_PER_MARKER)
701 return NULL;
703 /* Sign extension: result is dependent on the value. */
704 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
705 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
706 && HEAD_MARKER (n->n, old_type_size))
707 for (i = 0; i < type_size - old_type_size; i++)
708 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
709 << ((type_size - 1 - i) * BITS_PER_MARKER);
711 if (type_size < 64 / BITS_PER_MARKER)
713 /* If STMT casts to a smaller type mask out the bits not
714 belonging to the target type. */
715 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
717 n->type = type;
718 if (!n->base_addr)
719 n->range = type_size;
721 break;
722 default:
723 return NULL;
725 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
728 /* Handle binary rhs. */
730 if (rhs_class == GIMPLE_BINARY_RHS)
732 struct symbolic_number n1, n2;
733 gimple *source_stmt, *source_stmt2;
735 if (code != BIT_IOR_EXPR)
736 return NULL;
738 if (TREE_CODE (rhs2) != SSA_NAME)
739 return NULL;
741 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
743 switch (code)
745 case BIT_IOR_EXPR:
746 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
748 if (!source_stmt1)
749 return NULL;
751 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
753 if (!source_stmt2)
754 return NULL;
756 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
757 return NULL;
759 if (n1.vuse != n2.vuse)
760 return NULL;
762 source_stmt
763 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
765 if (!source_stmt)
766 return NULL;
768 if (!verify_symbolic_number_p (n, stmt))
769 return NULL;
771 break;
772 default:
773 return NULL;
775 return source_stmt;
777 return NULL;
780 /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
781 *CMPXCHG, *CMPNOP and adjust *N. */
783 void
784 find_bswap_or_nop_finalize (struct symbolic_number *n, uint64_t *cmpxchg,
785 uint64_t *cmpnop)
787 unsigned rsize;
788 uint64_t tmpn, mask;
790 /* The number which the find_bswap_or_nop_1 result should match in order
791 to have a full byte swap. The number is shifted to the right
792 according to the size of the symbolic number before using it. */
793 *cmpxchg = CMPXCHG;
794 *cmpnop = CMPNOP;
796 /* Find real size of result (highest non-zero byte). */
797 if (n->base_addr)
798 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
799 else
800 rsize = n->range;
802 /* Zero out the bits corresponding to untouched bytes in original gimple
803 expression. */
804 if (n->range < (int) sizeof (int64_t))
806 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
807 *cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
808 *cmpnop &= mask;
811 /* Zero out the bits corresponding to unused bytes in the result of the
812 gimple expression. */
813 if (rsize < n->range)
815 if (BYTES_BIG_ENDIAN)
817 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
818 *cmpxchg &= mask;
819 *cmpnop >>= (n->range - rsize) * BITS_PER_MARKER;
821 else
823 mask = ((uint64_t) 1 << (rsize * BITS_PER_MARKER)) - 1;
824 *cmpxchg >>= (n->range - rsize) * BITS_PER_MARKER;
825 *cmpnop &= mask;
827 n->range = rsize;
830 n->range *= BITS_PER_UNIT;
833 /* Check if STMT completes a bswap implementation or a read in a given
834 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
835 accordingly. It also sets N to represent the kind of operations
836 performed: size of the resulting expression and whether it works on
837 a memory source, and if so alias-set and vuse. At last, the
838 function returns a stmt whose rhs's first tree is the source
839 expression. */
841 gimple *
842 find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
844 /* The last parameter determines the depth search limit. It usually
845 correlates directly to the number n of bytes to be touched. We
846 increase that number by log2(n) + 1 here in order to also
847 cover signed -> unsigned conversions of the src operand as can be seen
848 in libgcc, and for initial shift/and operation of the src operand. */
849 int limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
850 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
851 gimple *ins_stmt = find_bswap_or_nop_1 (stmt, n, limit);
853 if (!ins_stmt)
854 return NULL;
856 uint64_t cmpxchg, cmpnop;
857 find_bswap_or_nop_finalize (n, &cmpxchg, &cmpnop);
859 /* A complete byte swap should make the symbolic number to start with
860 the largest digit in the highest order byte. Unchanged symbolic
861 number indicates a read with same endianness as target architecture. */
862 if (n->n == cmpnop)
863 *bswap = false;
864 else if (n->n == cmpxchg)
865 *bswap = true;
866 else
867 return NULL;
869 /* Useless bit manipulation performed by code. */
870 if (!n->base_addr && n->n == cmpnop && n->n_ops == 1)
871 return NULL;
873 return ins_stmt;
876 const pass_data pass_data_optimize_bswap =
878 GIMPLE_PASS, /* type */
879 "bswap", /* name */
880 OPTGROUP_NONE, /* optinfo_flags */
881 TV_NONE, /* tv_id */
882 PROP_ssa, /* properties_required */
883 0, /* properties_provided */
884 0, /* properties_destroyed */
885 0, /* todo_flags_start */
886 0, /* todo_flags_finish */
889 class pass_optimize_bswap : public gimple_opt_pass
891 public:
892 pass_optimize_bswap (gcc::context *ctxt)
893 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
896 /* opt_pass methods: */
897 virtual bool gate (function *)
899 return flag_expensive_optimizations && optimize && BITS_PER_UNIT == 8;
902 virtual unsigned int execute (function *);
904 }; // class pass_optimize_bswap
906 /* Perform the bswap optimization: replace the expression computed in the rhs
907 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
908 bswap, load or load + bswap expression.
909 Which of these alternatives replace the rhs is given by N->base_addr (non
910 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
911 load to perform are also given in N while the builtin bswap invoke is given
912 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
913 load statements involved to construct the rhs in gsi_stmt (GSI) and
914 N->range gives the size of the rhs expression for maintaining some
915 statistics.
917 Note that if the replacement involve a load and if gsi_stmt (GSI) is
918 non-NULL, that stmt is moved just after INS_STMT to do the load with the
919 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
921 tree
922 bswap_replace (gimple_stmt_iterator gsi, gimple *ins_stmt, tree fndecl,
923 tree bswap_type, tree load_type, struct symbolic_number *n,
924 bool bswap)
926 tree src, tmp, tgt = NULL_TREE;
927 gimple *bswap_stmt;
929 gimple *cur_stmt = gsi_stmt (gsi);
930 src = n->src;
931 if (cur_stmt)
932 tgt = gimple_assign_lhs (cur_stmt);
934 /* Need to load the value from memory first. */
935 if (n->base_addr)
937 gimple_stmt_iterator gsi_ins = gsi;
938 if (ins_stmt)
939 gsi_ins = gsi_for_stmt (ins_stmt);
940 tree addr_expr, addr_tmp, val_expr, val_tmp;
941 tree load_offset_ptr, aligned_load_type;
942 gimple *load_stmt;
943 unsigned align = get_object_alignment (src);
944 poly_int64 load_offset = 0;
946 if (cur_stmt)
948 basic_block ins_bb = gimple_bb (ins_stmt);
949 basic_block cur_bb = gimple_bb (cur_stmt);
950 if (!dominated_by_p (CDI_DOMINATORS, cur_bb, ins_bb))
951 return NULL_TREE;
953 /* Move cur_stmt just before one of the load of the original
954 to ensure it has the same VUSE. See PR61517 for what could
955 go wrong. */
956 if (gimple_bb (cur_stmt) != gimple_bb (ins_stmt))
957 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt));
958 gsi_move_before (&gsi, &gsi_ins);
959 gsi = gsi_for_stmt (cur_stmt);
961 else
962 gsi = gsi_ins;
964 /* Compute address to load from and cast according to the size
965 of the load. */
966 addr_expr = build_fold_addr_expr (src);
967 if (is_gimple_mem_ref_addr (addr_expr))
968 addr_tmp = unshare_expr (addr_expr);
969 else
971 addr_tmp = unshare_expr (n->base_addr);
972 if (!is_gimple_mem_ref_addr (addr_tmp))
973 addr_tmp = force_gimple_operand_gsi_1 (&gsi, addr_tmp,
974 is_gimple_mem_ref_addr,
975 NULL_TREE, true,
976 GSI_SAME_STMT);
977 load_offset = n->bytepos;
978 if (n->offset)
980 tree off
981 = force_gimple_operand_gsi (&gsi, unshare_expr (n->offset),
982 true, NULL_TREE, true,
983 GSI_SAME_STMT);
984 gimple *stmt
985 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp)),
986 POINTER_PLUS_EXPR, addr_tmp, off);
987 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
988 addr_tmp = gimple_assign_lhs (stmt);
992 /* Perform the load. */
993 aligned_load_type = load_type;
994 if (align < TYPE_ALIGN (load_type))
995 aligned_load_type = build_aligned_type (load_type, align);
996 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
997 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
998 load_offset_ptr);
1000 if (!bswap)
1002 if (n->range == 16)
1003 nop_stats.found_16bit++;
1004 else if (n->range == 32)
1005 nop_stats.found_32bit++;
1006 else
1008 gcc_assert (n->range == 64);
1009 nop_stats.found_64bit++;
1012 /* Convert the result of load if necessary. */
1013 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), load_type))
1015 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
1016 "load_dst");
1017 load_stmt = gimple_build_assign (val_tmp, val_expr);
1018 gimple_set_vuse (load_stmt, n->vuse);
1019 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1020 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
1021 update_stmt (cur_stmt);
1023 else if (cur_stmt)
1025 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
1026 gimple_set_vuse (cur_stmt, n->vuse);
1027 update_stmt (cur_stmt);
1029 else
1031 tgt = make_ssa_name (load_type);
1032 cur_stmt = gimple_build_assign (tgt, MEM_REF, val_expr);
1033 gimple_set_vuse (cur_stmt, n->vuse);
1034 gsi_insert_before (&gsi, cur_stmt, GSI_SAME_STMT);
1037 if (dump_file)
1039 fprintf (dump_file,
1040 "%d bit load in target endianness found at: ",
1041 (int) n->range);
1042 print_gimple_stmt (dump_file, cur_stmt, 0);
1044 return tgt;
1046 else
1048 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
1049 load_stmt = gimple_build_assign (val_tmp, val_expr);
1050 gimple_set_vuse (load_stmt, n->vuse);
1051 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
1053 src = val_tmp;
1055 else if (!bswap)
1057 gimple *g = NULL;
1058 if (tgt && !useless_type_conversion_p (TREE_TYPE (tgt), TREE_TYPE (src)))
1060 if (!is_gimple_val (src))
1061 return NULL_TREE;
1062 g = gimple_build_assign (tgt, NOP_EXPR, src);
1064 else if (cur_stmt)
1065 g = gimple_build_assign (tgt, src);
1066 else
1067 tgt = src;
1068 if (n->range == 16)
1069 nop_stats.found_16bit++;
1070 else if (n->range == 32)
1071 nop_stats.found_32bit++;
1072 else
1074 gcc_assert (n->range == 64);
1075 nop_stats.found_64bit++;
1077 if (dump_file)
1079 fprintf (dump_file,
1080 "%d bit reshuffle in target endianness found at: ",
1081 (int) n->range);
1082 if (cur_stmt)
1083 print_gimple_stmt (dump_file, cur_stmt, 0);
1084 else
1086 print_generic_expr (dump_file, tgt, 0);
1087 fprintf (dump_file, "\n");
1090 if (cur_stmt)
1091 gsi_replace (&gsi, g, true);
1092 return tgt;
1094 else if (TREE_CODE (src) == BIT_FIELD_REF)
1095 src = TREE_OPERAND (src, 0);
1097 if (n->range == 16)
1098 bswap_stats.found_16bit++;
1099 else if (n->range == 32)
1100 bswap_stats.found_32bit++;
1101 else
1103 gcc_assert (n->range == 64);
1104 bswap_stats.found_64bit++;
1107 tmp = src;
1109 /* Convert the src expression if necessary. */
1110 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
1112 gimple *convert_stmt;
1114 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1115 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
1116 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1119 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1120 are considered as rotation of 2N bit values by N bits is generally not
1121 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1122 gives 0x03040102 while a bswap for that value is 0x04030201. */
1123 if (bswap && n->range == 16)
1125 tree count = build_int_cst (NULL, BITS_PER_UNIT);
1126 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
1127 bswap_stmt = gimple_build_assign (NULL, src);
1129 else
1130 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
1132 if (tgt == NULL_TREE)
1133 tgt = make_ssa_name (bswap_type);
1134 tmp = tgt;
1136 /* Convert the result if necessary. */
1137 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
1139 gimple *convert_stmt;
1141 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1142 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
1143 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1146 gimple_set_lhs (bswap_stmt, tmp);
1148 if (dump_file)
1150 fprintf (dump_file, "%d bit bswap implementation found at: ",
1151 (int) n->range);
1152 if (cur_stmt)
1153 print_gimple_stmt (dump_file, cur_stmt, 0);
1154 else
1156 print_generic_expr (dump_file, tgt, 0);
1157 fprintf (dump_file, "\n");
1161 if (cur_stmt)
1163 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
1164 gsi_remove (&gsi, true);
1166 else
1167 gsi_insert_before (&gsi, bswap_stmt, GSI_SAME_STMT);
1168 return tgt;
1171 /* Find manual byte swap implementations as well as load in a given
1172 endianness. Byte swaps are turned into a bswap builtin invokation
1173 while endian loads are converted to bswap builtin invokation or
1174 simple load according to the target endianness. */
1176 unsigned int
1177 pass_optimize_bswap::execute (function *fun)
1179 basic_block bb;
1180 bool bswap32_p, bswap64_p;
1181 bool changed = false;
1182 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1184 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1185 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1186 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1187 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1188 || (bswap32_p && word_mode == SImode)));
1190 /* Determine the argument type of the builtins. The code later on
1191 assumes that the return and argument type are the same. */
1192 if (bswap32_p)
1194 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1195 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1198 if (bswap64_p)
1200 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1201 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1204 memset (&nop_stats, 0, sizeof (nop_stats));
1205 memset (&bswap_stats, 0, sizeof (bswap_stats));
1206 calculate_dominance_info (CDI_DOMINATORS);
1208 FOR_EACH_BB_FN (bb, fun)
1210 gimple_stmt_iterator gsi;
1212 /* We do a reverse scan for bswap patterns to make sure we get the
1213 widest match. As bswap pattern matching doesn't handle previously
1214 inserted smaller bswap replacements as sub-patterns, the wider
1215 variant wouldn't be detected. */
1216 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1218 gimple *ins_stmt, *cur_stmt = gsi_stmt (gsi);
1219 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
1220 enum tree_code code;
1221 struct symbolic_number n;
1222 bool bswap;
1224 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1225 might be moved to a different basic block by bswap_replace and gsi
1226 must not points to it if that's the case. Moving the gsi_prev
1227 there make sure that gsi points to the statement previous to
1228 cur_stmt while still making sure that all statements are
1229 considered in this basic block. */
1230 gsi_prev (&gsi);
1232 if (!is_gimple_assign (cur_stmt))
1233 continue;
1235 code = gimple_assign_rhs_code (cur_stmt);
1236 switch (code)
1238 case LROTATE_EXPR:
1239 case RROTATE_EXPR:
1240 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
1241 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
1242 % BITS_PER_UNIT)
1243 continue;
1244 /* Fall through. */
1245 case BIT_IOR_EXPR:
1246 break;
1247 default:
1248 continue;
1251 ins_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
1253 if (!ins_stmt)
1254 continue;
1256 switch (n.range)
1258 case 16:
1259 /* Already in canonical form, nothing to do. */
1260 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
1261 continue;
1262 load_type = bswap_type = uint16_type_node;
1263 break;
1264 case 32:
1265 load_type = uint32_type_node;
1266 if (bswap32_p)
1268 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1269 bswap_type = bswap32_type;
1271 break;
1272 case 64:
1273 load_type = uint64_type_node;
1274 if (bswap64_p)
1276 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1277 bswap_type = bswap64_type;
1279 break;
1280 default:
1281 continue;
1284 if (bswap && !fndecl && n.range != 16)
1285 continue;
1287 if (bswap_replace (gsi_for_stmt (cur_stmt), ins_stmt, fndecl,
1288 bswap_type, load_type, &n, bswap))
1289 changed = true;
1293 statistics_counter_event (fun, "16-bit nop implementations found",
1294 nop_stats.found_16bit);
1295 statistics_counter_event (fun, "32-bit nop implementations found",
1296 nop_stats.found_32bit);
1297 statistics_counter_event (fun, "64-bit nop implementations found",
1298 nop_stats.found_64bit);
1299 statistics_counter_event (fun, "16-bit bswap implementations found",
1300 bswap_stats.found_16bit);
1301 statistics_counter_event (fun, "32-bit bswap implementations found",
1302 bswap_stats.found_32bit);
1303 statistics_counter_event (fun, "64-bit bswap implementations found",
1304 bswap_stats.found_64bit);
1306 return (changed ? TODO_update_ssa : 0);
1309 } // anon namespace
1311 gimple_opt_pass *
1312 make_pass_optimize_bswap (gcc::context *ctxt)
1314 return new pass_optimize_bswap (ctxt);
1317 namespace {
1319 /* Struct recording one operand for the store, which is either a constant,
1320 then VAL represents the constant and all the other fields are zero, or
1321 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1322 and the other fields also reflect the memory load, or an SSA name, then
1323 VAL represents the SSA name and all the other fields are zero, */
1325 struct store_operand_info
1327 tree val;
1328 tree base_addr;
1329 poly_uint64 bitsize;
1330 poly_uint64 bitpos;
1331 poly_uint64 bitregion_start;
1332 poly_uint64 bitregion_end;
1333 gimple *stmt;
1334 bool bit_not_p;
1335 store_operand_info ();
1338 store_operand_info::store_operand_info ()
1339 : val (NULL_TREE), base_addr (NULL_TREE), bitsize (0), bitpos (0),
1340 bitregion_start (0), bitregion_end (0), stmt (NULL), bit_not_p (false)
1344 /* Struct recording the information about a single store of an immediate
1345 to memory. These are created in the first phase and coalesced into
1346 merged_store_group objects in the second phase. */
1348 struct store_immediate_info
1350 unsigned HOST_WIDE_INT bitsize;
1351 unsigned HOST_WIDE_INT bitpos;
1352 unsigned HOST_WIDE_INT bitregion_start;
1353 /* This is one past the last bit of the bit region. */
1354 unsigned HOST_WIDE_INT bitregion_end;
1355 gimple *stmt;
1356 unsigned int order;
1357 /* INTEGER_CST for constant stores, MEM_REF for memory copy,
1358 BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
1359 for bit insertion.
1360 LROTATE_EXPR if it can be only bswap optimized and
1361 ops are not really meaningful.
1362 NOP_EXPR if bswap optimization detected identity, ops
1363 are not meaningful. */
1364 enum tree_code rhs_code;
1365 /* Two fields for bswap optimization purposes. */
1366 struct symbolic_number n;
1367 gimple *ins_stmt;
1368 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1369 bool bit_not_p;
1370 /* True if ops have been swapped and thus ops[1] represents
1371 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1372 bool ops_swapped_p;
1373 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1374 just the first one. */
1375 store_operand_info ops[2];
1376 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1377 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
1378 gimple *, unsigned int, enum tree_code,
1379 struct symbolic_number &, gimple *, bool,
1380 const store_operand_info &,
1381 const store_operand_info &);
1384 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
1385 unsigned HOST_WIDE_INT bp,
1386 unsigned HOST_WIDE_INT brs,
1387 unsigned HOST_WIDE_INT bre,
1388 gimple *st,
1389 unsigned int ord,
1390 enum tree_code rhscode,
1391 struct symbolic_number &nr,
1392 gimple *ins_stmtp,
1393 bool bitnotp,
1394 const store_operand_info &op0r,
1395 const store_operand_info &op1r)
1396 : bitsize (bs), bitpos (bp), bitregion_start (brs), bitregion_end (bre),
1397 stmt (st), order (ord), rhs_code (rhscode), n (nr),
1398 ins_stmt (ins_stmtp), bit_not_p (bitnotp), ops_swapped_p (false)
1399 #if __cplusplus >= 201103L
1400 , ops { op0r, op1r }
1403 #else
1405 ops[0] = op0r;
1406 ops[1] = op1r;
1408 #endif
1410 /* Struct representing a group of stores to contiguous memory locations.
1411 These are produced by the second phase (coalescing) and consumed in the
1412 third phase that outputs the widened stores. */
1414 struct merged_store_group
1416 unsigned HOST_WIDE_INT start;
1417 unsigned HOST_WIDE_INT width;
1418 unsigned HOST_WIDE_INT bitregion_start;
1419 unsigned HOST_WIDE_INT bitregion_end;
1420 /* The size of the allocated memory for val and mask. */
1421 unsigned HOST_WIDE_INT buf_size;
1422 unsigned HOST_WIDE_INT align_base;
1423 poly_uint64 load_align_base[2];
1425 unsigned int align;
1426 unsigned int load_align[2];
1427 unsigned int first_order;
1428 unsigned int last_order;
1429 bool bit_insertion;
1431 auto_vec<store_immediate_info *> stores;
1432 /* We record the first and last original statements in the sequence because
1433 we'll need their vuse/vdef and replacement position. It's easier to keep
1434 track of them separately as 'stores' is reordered by apply_stores. */
1435 gimple *last_stmt;
1436 gimple *first_stmt;
1437 unsigned char *val;
1438 unsigned char *mask;
1440 merged_store_group (store_immediate_info *);
1441 ~merged_store_group ();
1442 bool can_be_merged_into (store_immediate_info *);
1443 void merge_into (store_immediate_info *);
1444 void merge_overlapping (store_immediate_info *);
1445 bool apply_stores ();
1446 private:
1447 void do_merge (store_immediate_info *);
1450 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1452 static void
1453 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
1455 if (!fd)
1456 return;
1458 for (unsigned int i = 0; i < len; i++)
1459 fprintf (fd, "%02x ", ptr[i]);
1460 fprintf (fd, "\n");
1463 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1464 bits between adjacent elements. AMNT should be within
1465 [0, BITS_PER_UNIT).
1466 Example, AMNT = 2:
1467 00011111|11100000 << 2 = 01111111|10000000
1468 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1470 static void
1471 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
1473 if (amnt == 0)
1474 return;
1476 unsigned char carry_over = 0U;
1477 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
1478 unsigned char clear_mask = (~0U) << amnt;
1480 for (unsigned int i = 0; i < sz; i++)
1482 unsigned prev_carry_over = carry_over;
1483 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
1485 ptr[i] <<= amnt;
1486 if (i != 0)
1488 ptr[i] &= clear_mask;
1489 ptr[i] |= prev_carry_over;
1494 /* Like shift_bytes_in_array but for big-endian.
1495 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1496 bits between adjacent elements. AMNT should be within
1497 [0, BITS_PER_UNIT).
1498 Example, AMNT = 2:
1499 00011111|11100000 >> 2 = 00000111|11111000
1500 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1502 static void
1503 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
1504 unsigned int amnt)
1506 if (amnt == 0)
1507 return;
1509 unsigned char carry_over = 0U;
1510 unsigned char carry_mask = ~(~0U << amnt);
1512 for (unsigned int i = 0; i < sz; i++)
1514 unsigned prev_carry_over = carry_over;
1515 carry_over = ptr[i] & carry_mask;
1517 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
1518 ptr[i] >>= amnt;
1519 ptr[i] |= prev_carry_over;
1523 /* Clear out LEN bits starting from bit START in the byte array
1524 PTR. This clears the bits to the *right* from START.
1525 START must be within [0, BITS_PER_UNIT) and counts starting from
1526 the least significant bit. */
1528 static void
1529 clear_bit_region_be (unsigned char *ptr, unsigned int start,
1530 unsigned int len)
1532 if (len == 0)
1533 return;
1534 /* Clear len bits to the right of start. */
1535 else if (len <= start + 1)
1537 unsigned char mask = (~(~0U << len));
1538 mask = mask << (start + 1U - len);
1539 ptr[0] &= ~mask;
1541 else if (start != BITS_PER_UNIT - 1)
1543 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
1544 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
1545 len - (start % BITS_PER_UNIT) - 1);
1547 else if (start == BITS_PER_UNIT - 1
1548 && len > BITS_PER_UNIT)
1550 unsigned int nbytes = len / BITS_PER_UNIT;
1551 memset (ptr, 0, nbytes);
1552 if (len % BITS_PER_UNIT != 0)
1553 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
1554 len % BITS_PER_UNIT);
1556 else
1557 gcc_unreachable ();
1560 /* In the byte array PTR clear the bit region starting at bit
1561 START and is LEN bits wide.
1562 For regions spanning multiple bytes do this recursively until we reach
1563 zero LEN or a region contained within a single byte. */
1565 static void
1566 clear_bit_region (unsigned char *ptr, unsigned int start,
1567 unsigned int len)
1569 /* Degenerate base case. */
1570 if (len == 0)
1571 return;
1572 else if (start >= BITS_PER_UNIT)
1573 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
1574 /* Second base case. */
1575 else if ((start + len) <= BITS_PER_UNIT)
1577 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
1578 mask >>= BITS_PER_UNIT - (start + len);
1580 ptr[0] &= ~mask;
1582 return;
1584 /* Clear most significant bits in a byte and proceed with the next byte. */
1585 else if (start != 0)
1587 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
1588 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
1590 /* Whole bytes need to be cleared. */
1591 else if (start == 0 && len > BITS_PER_UNIT)
1593 unsigned int nbytes = len / BITS_PER_UNIT;
1594 /* We could recurse on each byte but we clear whole bytes, so a simple
1595 memset will do. */
1596 memset (ptr, '\0', nbytes);
1597 /* Clear the remaining sub-byte region if there is one. */
1598 if (len % BITS_PER_UNIT != 0)
1599 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
1601 else
1602 gcc_unreachable ();
1605 /* Write BITLEN bits of EXPR to the byte array PTR at
1606 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1607 Return true if the operation succeeded. */
1609 static bool
1610 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
1611 unsigned int total_bytes)
1613 unsigned int first_byte = bitpos / BITS_PER_UNIT;
1614 tree tmp_int = expr;
1615 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
1616 || (bitpos % BITS_PER_UNIT)
1617 || !int_mode_for_size (bitlen, 0).exists ());
1619 if (!sub_byte_op_p)
1620 return native_encode_expr (tmp_int, ptr + first_byte, total_bytes) != 0;
1622 /* LITTLE-ENDIAN
1623 We are writing a non byte-sized quantity or at a position that is not
1624 at a byte boundary.
1625 |--------|--------|--------| ptr + first_byte
1627 xxx xxxxxxxx xxx< bp>
1628 |______EXPR____|
1630 First native_encode_expr EXPR into a temporary buffer and shift each
1631 byte in the buffer by 'bp' (carrying the bits over as necessary).
1632 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1633 <------bitlen---->< bp>
1634 Then we clear the destination bits:
1635 |---00000|00000000|000-----| ptr + first_byte
1636 <-------bitlen--->< bp>
1638 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1639 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1641 BIG-ENDIAN
1642 We are writing a non byte-sized quantity or at a position that is not
1643 at a byte boundary.
1644 ptr + first_byte |--------|--------|--------|
1646 <bp >xxx xxxxxxxx xxx
1647 |_____EXPR_____|
1649 First native_encode_expr EXPR into a temporary buffer and shift each
1650 byte in the buffer to the right by (carrying the bits over as necessary).
1651 We shift by as much as needed to align the most significant bit of EXPR
1652 with bitpos:
1653 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1654 <---bitlen----> <bp ><-----bitlen----->
1655 Then we clear the destination bits:
1656 ptr + first_byte |-----000||00000000||00000---|
1657 <bp ><-------bitlen----->
1659 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1660 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1661 The awkwardness comes from the fact that bitpos is counted from the
1662 most significant bit of a byte. */
1664 /* We must be dealing with fixed-size data at this point, since the
1665 total size is also fixed. */
1666 fixed_size_mode mode = as_a <fixed_size_mode> (TYPE_MODE (TREE_TYPE (expr)));
1667 /* Allocate an extra byte so that we have space to shift into. */
1668 unsigned int byte_size = GET_MODE_SIZE (mode) + 1;
1669 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
1670 memset (tmpbuf, '\0', byte_size);
1671 /* The store detection code should only have allowed constants that are
1672 accepted by native_encode_expr. */
1673 if (native_encode_expr (expr, tmpbuf, byte_size - 1) == 0)
1674 gcc_unreachable ();
1676 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1677 bytes to write. This means it can write more than
1678 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1679 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1680 bitlen and zero out the bits that are not relevant as well (that may
1681 contain a sign bit due to sign-extension). */
1682 unsigned int padding
1683 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
1684 /* On big-endian the padding is at the 'front' so just skip the initial
1685 bytes. */
1686 if (BYTES_BIG_ENDIAN)
1687 tmpbuf += padding;
1689 byte_size -= padding;
1691 if (bitlen % BITS_PER_UNIT != 0)
1693 if (BYTES_BIG_ENDIAN)
1694 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
1695 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
1696 else
1697 clear_bit_region (tmpbuf, bitlen,
1698 byte_size * BITS_PER_UNIT - bitlen);
1700 /* Left shifting relies on the last byte being clear if bitlen is
1701 a multiple of BITS_PER_UNIT, which might not be clear if
1702 there are padding bytes. */
1703 else if (!BYTES_BIG_ENDIAN)
1704 tmpbuf[byte_size - 1] = '\0';
1706 /* Clear the bit region in PTR where the bits from TMPBUF will be
1707 inserted into. */
1708 if (BYTES_BIG_ENDIAN)
1709 clear_bit_region_be (ptr + first_byte,
1710 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
1711 else
1712 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
1714 int shift_amnt;
1715 int bitlen_mod = bitlen % BITS_PER_UNIT;
1716 int bitpos_mod = bitpos % BITS_PER_UNIT;
1718 bool skip_byte = false;
1719 if (BYTES_BIG_ENDIAN)
1721 /* BITPOS and BITLEN are exactly aligned and no shifting
1722 is necessary. */
1723 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
1724 || (bitpos_mod == 0 && bitlen_mod == 0))
1725 shift_amnt = 0;
1726 /* |. . . . . . . .|
1727 <bp > <blen >.
1728 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1729 of the value until it aligns with 'bp' in the next byte over. */
1730 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
1732 shift_amnt = bitlen_mod + bitpos_mod;
1733 skip_byte = bitlen_mod != 0;
1735 /* |. . . . . . . .|
1736 <----bp--->
1737 <---blen---->.
1738 Shift the value right within the same byte so it aligns with 'bp'. */
1739 else
1740 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
1742 else
1743 shift_amnt = bitpos % BITS_PER_UNIT;
1745 /* Create the shifted version of EXPR. */
1746 if (!BYTES_BIG_ENDIAN)
1748 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
1749 if (shift_amnt == 0)
1750 byte_size--;
1752 else
1754 gcc_assert (BYTES_BIG_ENDIAN);
1755 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
1756 /* If shifting right forced us to move into the next byte skip the now
1757 empty byte. */
1758 if (skip_byte)
1760 tmpbuf++;
1761 byte_size--;
1765 /* Insert the bits from TMPBUF. */
1766 for (unsigned int i = 0; i < byte_size; i++)
1767 ptr[first_byte + i] |= tmpbuf[i];
1769 return true;
1772 /* Sorting function for store_immediate_info objects.
1773 Sorts them by bitposition. */
1775 static int
1776 sort_by_bitpos (const void *x, const void *y)
1778 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1779 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1781 if ((*tmp)->bitpos < (*tmp2)->bitpos)
1782 return -1;
1783 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
1784 return 1;
1785 else
1786 /* If they are the same let's use the order which is guaranteed to
1787 be different. */
1788 return (*tmp)->order - (*tmp2)->order;
1791 /* Sorting function for store_immediate_info objects.
1792 Sorts them by the order field. */
1794 static int
1795 sort_by_order (const void *x, const void *y)
1797 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
1798 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
1800 if ((*tmp)->order < (*tmp2)->order)
1801 return -1;
1802 else if ((*tmp)->order > (*tmp2)->order)
1803 return 1;
1805 gcc_unreachable ();
1808 /* Initialize a merged_store_group object from a store_immediate_info
1809 object. */
1811 merged_store_group::merged_store_group (store_immediate_info *info)
1813 start = info->bitpos;
1814 width = info->bitsize;
1815 bitregion_start = info->bitregion_start;
1816 bitregion_end = info->bitregion_end;
1817 /* VAL has memory allocated for it in apply_stores once the group
1818 width has been finalized. */
1819 val = NULL;
1820 mask = NULL;
1821 bit_insertion = false;
1822 unsigned HOST_WIDE_INT align_bitpos = 0;
1823 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1824 &align, &align_bitpos);
1825 align_base = start - align_bitpos;
1826 for (int i = 0; i < 2; ++i)
1828 store_operand_info &op = info->ops[i];
1829 if (op.base_addr == NULL_TREE)
1831 load_align[i] = 0;
1832 load_align_base[i] = 0;
1834 else
1836 get_object_alignment_1 (op.val, &load_align[i], &align_bitpos);
1837 load_align_base[i] = op.bitpos - align_bitpos;
1840 stores.create (1);
1841 stores.safe_push (info);
1842 last_stmt = info->stmt;
1843 last_order = info->order;
1844 first_stmt = last_stmt;
1845 first_order = last_order;
1846 buf_size = 0;
1849 merged_store_group::~merged_store_group ()
1851 if (val)
1852 XDELETEVEC (val);
1855 /* Return true if the store described by INFO can be merged into the group. */
1857 bool
1858 merged_store_group::can_be_merged_into (store_immediate_info *info)
1860 /* Do not merge bswap patterns. */
1861 if (info->rhs_code == LROTATE_EXPR)
1862 return false;
1864 /* The canonical case. */
1865 if (info->rhs_code == stores[0]->rhs_code)
1866 return true;
1868 /* BIT_INSERT_EXPR is compatible with INTEGER_CST. */
1869 if (info->rhs_code == BIT_INSERT_EXPR && stores[0]->rhs_code == INTEGER_CST)
1870 return true;
1872 if (stores[0]->rhs_code == BIT_INSERT_EXPR && info->rhs_code == INTEGER_CST)
1873 return true;
1875 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
1876 if (info->rhs_code == MEM_REF
1877 && (stores[0]->rhs_code == INTEGER_CST
1878 || stores[0]->rhs_code == BIT_INSERT_EXPR)
1879 && info->bitregion_start == stores[0]->bitregion_start
1880 && info->bitregion_end == stores[0]->bitregion_end)
1881 return true;
1883 if (stores[0]->rhs_code == MEM_REF
1884 && (info->rhs_code == INTEGER_CST
1885 || info->rhs_code == BIT_INSERT_EXPR)
1886 && info->bitregion_start == stores[0]->bitregion_start
1887 && info->bitregion_end == stores[0]->bitregion_end)
1888 return true;
1890 return false;
1893 /* Helper method for merge_into and merge_overlapping to do
1894 the common part. */
1896 void
1897 merged_store_group::do_merge (store_immediate_info *info)
1899 bitregion_start = MIN (bitregion_start, info->bitregion_start);
1900 bitregion_end = MAX (bitregion_end, info->bitregion_end);
1902 unsigned int this_align;
1903 unsigned HOST_WIDE_INT align_bitpos = 0;
1904 get_object_alignment_1 (gimple_assign_lhs (info->stmt),
1905 &this_align, &align_bitpos);
1906 if (this_align > align)
1908 align = this_align;
1909 align_base = info->bitpos - align_bitpos;
1911 for (int i = 0; i < 2; ++i)
1913 store_operand_info &op = info->ops[i];
1914 if (!op.base_addr)
1915 continue;
1917 get_object_alignment_1 (op.val, &this_align, &align_bitpos);
1918 if (this_align > load_align[i])
1920 load_align[i] = this_align;
1921 load_align_base[i] = op.bitpos - align_bitpos;
1925 gimple *stmt = info->stmt;
1926 stores.safe_push (info);
1927 if (info->order > last_order)
1929 last_order = info->order;
1930 last_stmt = stmt;
1932 else if (info->order < first_order)
1934 first_order = info->order;
1935 first_stmt = stmt;
1939 /* Merge a store recorded by INFO into this merged store.
1940 The store is not overlapping with the existing recorded
1941 stores. */
1943 void
1944 merged_store_group::merge_into (store_immediate_info *info)
1946 /* Make sure we're inserting in the position we think we're inserting. */
1947 gcc_assert (info->bitpos >= start + width
1948 && info->bitregion_start <= bitregion_end);
1950 width = info->bitpos + info->bitsize - start;
1951 do_merge (info);
1954 /* Merge a store described by INFO into this merged store.
1955 INFO overlaps in some way with the current store (i.e. it's not contiguous
1956 which is handled by merged_store_group::merge_into). */
1958 void
1959 merged_store_group::merge_overlapping (store_immediate_info *info)
1961 /* If the store extends the size of the group, extend the width. */
1962 if (info->bitpos + info->bitsize > start + width)
1963 width = info->bitpos + info->bitsize - start;
1965 do_merge (info);
1968 /* Go through all the recorded stores in this group in program order and
1969 apply their values to the VAL byte array to create the final merged
1970 value. Return true if the operation succeeded. */
1972 bool
1973 merged_store_group::apply_stores ()
1975 /* Make sure we have more than one store in the group, otherwise we cannot
1976 merge anything. */
1977 if (bitregion_start % BITS_PER_UNIT != 0
1978 || bitregion_end % BITS_PER_UNIT != 0
1979 || stores.length () == 1)
1980 return false;
1982 stores.qsort (sort_by_order);
1983 store_immediate_info *info;
1984 unsigned int i;
1985 /* Create a power-of-2-sized buffer for native_encode_expr. */
1986 buf_size = 1 << ceil_log2 ((bitregion_end - bitregion_start) / BITS_PER_UNIT);
1987 val = XNEWVEC (unsigned char, 2 * buf_size);
1988 mask = val + buf_size;
1989 memset (val, 0, buf_size);
1990 memset (mask, ~0U, buf_size);
1992 FOR_EACH_VEC_ELT (stores, i, info)
1994 unsigned int pos_in_buffer = info->bitpos - bitregion_start;
1995 tree cst;
1996 if (info->ops[0].val && info->ops[0].base_addr == NULL_TREE)
1997 cst = info->ops[0].val;
1998 else if (info->ops[1].val && info->ops[1].base_addr == NULL_TREE)
1999 cst = info->ops[1].val;
2000 else
2001 cst = NULL_TREE;
2002 bool ret = true;
2003 if (cst)
2005 if (info->rhs_code == BIT_INSERT_EXPR)
2006 bit_insertion = true;
2007 else
2008 ret = encode_tree_to_bitpos (cst, val, info->bitsize,
2009 pos_in_buffer, buf_size);
2011 unsigned char *m = mask + (pos_in_buffer / BITS_PER_UNIT);
2012 if (BYTES_BIG_ENDIAN)
2013 clear_bit_region_be (m, (BITS_PER_UNIT - 1
2014 - (pos_in_buffer % BITS_PER_UNIT)),
2015 info->bitsize);
2016 else
2017 clear_bit_region (m, pos_in_buffer % BITS_PER_UNIT, info->bitsize);
2018 if (cst && dump_file && (dump_flags & TDF_DETAILS))
2020 if (ret)
2022 fputs ("After writing ", dump_file);
2023 print_generic_expr (dump_file, cst, 0);
2024 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
2025 " at position %d\n", info->bitsize, pos_in_buffer);
2026 fputs (" the merged value contains ", dump_file);
2027 dump_char_array (dump_file, val, buf_size);
2028 fputs (" the merged mask contains ", dump_file);
2029 dump_char_array (dump_file, mask, buf_size);
2030 if (bit_insertion)
2031 fputs (" bit insertion is required\n", dump_file);
2033 else
2034 fprintf (dump_file, "Failed to merge stores\n");
2036 if (!ret)
2037 return false;
2039 stores.qsort (sort_by_bitpos);
2040 return true;
2043 /* Structure describing the store chain. */
2045 struct imm_store_chain_info
2047 /* Doubly-linked list that imposes an order on chain processing.
2048 PNXP (prev's next pointer) points to the head of a list, or to
2049 the next field in the previous chain in the list.
2050 See pass_store_merging::m_stores_head for more rationale. */
2051 imm_store_chain_info *next, **pnxp;
2052 tree base_addr;
2053 auto_vec<store_immediate_info *> m_store_info;
2054 auto_vec<merged_store_group *> m_merged_store_groups;
2056 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a)
2057 : next (inspt), pnxp (&inspt), base_addr (b_a)
2059 inspt = this;
2060 if (next)
2062 gcc_checking_assert (pnxp == next->pnxp);
2063 next->pnxp = &next;
2066 ~imm_store_chain_info ()
2068 *pnxp = next;
2069 if (next)
2071 gcc_checking_assert (&next == next->pnxp);
2072 next->pnxp = pnxp;
2075 bool terminate_and_process_chain ();
2076 bool try_coalesce_bswap (merged_store_group *, unsigned int, unsigned int);
2077 bool coalesce_immediate_stores ();
2078 bool output_merged_store (merged_store_group *);
2079 bool output_merged_stores ();
2082 const pass_data pass_data_tree_store_merging = {
2083 GIMPLE_PASS, /* type */
2084 "store-merging", /* name */
2085 OPTGROUP_NONE, /* optinfo_flags */
2086 TV_GIMPLE_STORE_MERGING, /* tv_id */
2087 PROP_ssa, /* properties_required */
2088 0, /* properties_provided */
2089 0, /* properties_destroyed */
2090 0, /* todo_flags_start */
2091 TODO_update_ssa, /* todo_flags_finish */
2094 class pass_store_merging : public gimple_opt_pass
2096 public:
2097 pass_store_merging (gcc::context *ctxt)
2098 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head ()
2102 /* Pass not supported for PDP-endian, nor for insane hosts or
2103 target character sizes where native_{encode,interpret}_expr
2104 doesn't work properly. */
2105 virtual bool
2106 gate (function *)
2108 return flag_store_merging
2109 && BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
2110 && CHAR_BIT == 8
2111 && BITS_PER_UNIT == 8;
2114 virtual unsigned int execute (function *);
2116 private:
2117 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
2119 /* Form a doubly-linked stack of the elements of m_stores, so that
2120 we can iterate over them in a predictable way. Using this order
2121 avoids extraneous differences in the compiler output just because
2122 of tree pointer variations (e.g. different chains end up in
2123 different positions of m_stores, so they are handled in different
2124 orders, so they allocate or release SSA names in different
2125 orders, and when they get reused, subsequent passes end up
2126 getting different SSA names, which may ultimately change
2127 decisions when going out of SSA). */
2128 imm_store_chain_info *m_stores_head;
2130 void process_store (gimple *);
2131 bool terminate_and_process_all_chains ();
2132 bool terminate_all_aliasing_chains (imm_store_chain_info **, gimple *);
2133 bool terminate_and_release_chain (imm_store_chain_info *);
2134 }; // class pass_store_merging
2136 /* Terminate and process all recorded chains. Return true if any changes
2137 were made. */
2139 bool
2140 pass_store_merging::terminate_and_process_all_chains ()
2142 bool ret = false;
2143 while (m_stores_head)
2144 ret |= terminate_and_release_chain (m_stores_head);
2145 gcc_assert (m_stores.elements () == 0);
2146 gcc_assert (m_stores_head == NULL);
2148 return ret;
2151 /* Terminate all chains that are affected by the statement STMT.
2152 CHAIN_INFO is the chain we should ignore from the checks if
2153 non-NULL. */
2155 bool
2156 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2157 **chain_info,
2158 gimple *stmt)
2160 bool ret = false;
2162 /* If the statement doesn't touch memory it can't alias. */
2163 if (!gimple_vuse (stmt))
2164 return false;
2166 tree store_lhs = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE;
2167 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next)
2169 next = cur->next;
2171 /* We already checked all the stores in chain_info and terminated the
2172 chain if necessary. Skip it here. */
2173 if (chain_info && *chain_info == cur)
2174 continue;
2176 store_immediate_info *info;
2177 unsigned int i;
2178 FOR_EACH_VEC_ELT (cur->m_store_info, i, info)
2180 tree lhs = gimple_assign_lhs (info->stmt);
2181 if (ref_maybe_used_by_stmt_p (stmt, lhs)
2182 || stmt_may_clobber_ref_p (stmt, lhs)
2183 || (store_lhs && refs_output_dependent_p (store_lhs, lhs)))
2185 if (dump_file && (dump_flags & TDF_DETAILS))
2187 fprintf (dump_file, "stmt causes chain termination:\n");
2188 print_gimple_stmt (dump_file, stmt, 0);
2190 terminate_and_release_chain (cur);
2191 ret = true;
2192 break;
2197 return ret;
2200 /* Helper function. Terminate the recorded chain storing to base object
2201 BASE. Return true if the merging and output was successful. The m_stores
2202 entry is removed after the processing in any case. */
2204 bool
2205 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
2207 bool ret = chain_info->terminate_and_process_chain ();
2208 m_stores.remove (chain_info->base_addr);
2209 delete chain_info;
2210 return ret;
2213 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2214 may clobber REF. FIRST and LAST must be in the same basic block and
2215 have non-NULL vdef. We want to be able to sink load of REF across
2216 stores between FIRST and LAST, up to right before LAST. */
2218 bool
2219 stmts_may_clobber_ref_p (gimple *first, gimple *last, tree ref)
2221 ao_ref r;
2222 ao_ref_init (&r, ref);
2223 unsigned int count = 0;
2224 tree vop = gimple_vdef (last);
2225 gimple *stmt;
2227 gcc_checking_assert (gimple_bb (first) == gimple_bb (last));
2230 stmt = SSA_NAME_DEF_STMT (vop);
2231 if (stmt_may_clobber_ref_p_1 (stmt, &r))
2232 return true;
2233 if (gimple_store_p (stmt)
2234 && refs_anti_dependent_p (ref, gimple_get_lhs (stmt)))
2235 return true;
2236 /* Avoid quadratic compile time by bounding the number of checks
2237 we perform. */
2238 if (++count > MAX_STORE_ALIAS_CHECKS)
2239 return true;
2240 vop = gimple_vuse (stmt);
2242 while (stmt != first);
2243 return false;
2246 /* Return true if INFO->ops[IDX] is mergeable with the
2247 corresponding loads already in MERGED_STORE group.
2248 BASE_ADDR is the base address of the whole store group. */
2250 bool
2251 compatible_load_p (merged_store_group *merged_store,
2252 store_immediate_info *info,
2253 tree base_addr, int idx)
2255 store_immediate_info *infof = merged_store->stores[0];
2256 if (!info->ops[idx].base_addr
2257 || maybe_ne (info->ops[idx].bitpos - infof->ops[idx].bitpos,
2258 info->bitpos - infof->bitpos)
2259 || !operand_equal_p (info->ops[idx].base_addr,
2260 infof->ops[idx].base_addr, 0))
2261 return false;
2263 store_immediate_info *infol = merged_store->stores.last ();
2264 tree load_vuse = gimple_vuse (info->ops[idx].stmt);
2265 /* In this case all vuses should be the same, e.g.
2266 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2268 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2269 and we can emit the coalesced load next to any of those loads. */
2270 if (gimple_vuse (infof->ops[idx].stmt) == load_vuse
2271 && gimple_vuse (infol->ops[idx].stmt) == load_vuse)
2272 return true;
2274 /* Otherwise, at least for now require that the load has the same
2275 vuse as the store. See following examples. */
2276 if (gimple_vuse (info->stmt) != load_vuse)
2277 return false;
2279 if (gimple_vuse (infof->stmt) != gimple_vuse (infof->ops[idx].stmt)
2280 || (infof != infol
2281 && gimple_vuse (infol->stmt) != gimple_vuse (infol->ops[idx].stmt)))
2282 return false;
2284 /* If the load is from the same location as the store, already
2285 the construction of the immediate chain info guarantees no intervening
2286 stores, so no further checks are needed. Example:
2287 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2288 if (known_eq (info->ops[idx].bitpos, info->bitpos)
2289 && operand_equal_p (info->ops[idx].base_addr, base_addr, 0))
2290 return true;
2292 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2293 of the stores in the group, or any other stores in between those.
2294 Previous calls to compatible_load_p ensured that for all the
2295 merged_store->stores IDX loads, no stmts starting with
2296 merged_store->first_stmt and ending right before merged_store->last_stmt
2297 clobbers those loads. */
2298 gimple *first = merged_store->first_stmt;
2299 gimple *last = merged_store->last_stmt;
2300 unsigned int i;
2301 store_immediate_info *infoc;
2302 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2303 comes before the so far first load, we'll be changing
2304 merged_store->first_stmt. In that case we need to give up if
2305 any of the earlier processed loads clobber with the stmts in the new
2306 range. */
2307 if (info->order < merged_store->first_order)
2309 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2310 if (stmts_may_clobber_ref_p (info->stmt, first, infoc->ops[idx].val))
2311 return false;
2312 first = info->stmt;
2314 /* Similarly, we could change merged_store->last_stmt, so ensure
2315 in that case no stmts in the new range clobber any of the earlier
2316 processed loads. */
2317 else if (info->order > merged_store->last_order)
2319 FOR_EACH_VEC_ELT (merged_store->stores, i, infoc)
2320 if (stmts_may_clobber_ref_p (last, info->stmt, infoc->ops[idx].val))
2321 return false;
2322 last = info->stmt;
2324 /* And finally, we'd be adding a new load to the set, ensure it isn't
2325 clobbered in the new range. */
2326 if (stmts_may_clobber_ref_p (first, last, info->ops[idx].val))
2327 return false;
2329 /* Otherwise, we are looking for:
2330 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2332 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2333 return true;
2336 /* Add all refs loaded to compute VAL to REFS vector. */
2338 void
2339 gather_bswap_load_refs (vec<tree> *refs, tree val)
2341 if (TREE_CODE (val) != SSA_NAME)
2342 return;
2344 gimple *stmt = SSA_NAME_DEF_STMT (val);
2345 if (!is_gimple_assign (stmt))
2346 return;
2348 if (gimple_assign_load_p (stmt))
2350 refs->safe_push (gimple_assign_rhs1 (stmt));
2351 return;
2354 switch (gimple_assign_rhs_class (stmt))
2356 case GIMPLE_BINARY_RHS:
2357 gather_bswap_load_refs (refs, gimple_assign_rhs2 (stmt));
2358 /* FALLTHRU */
2359 case GIMPLE_UNARY_RHS:
2360 gather_bswap_load_refs (refs, gimple_assign_rhs1 (stmt));
2361 break;
2362 default:
2363 gcc_unreachable ();
2367 /* Check if there are any stores in M_STORE_INFO after index I
2368 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2369 a potential group ending with END that have their order
2370 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2371 group. Return true if there are no such stores.
2372 Consider:
2373 MEM[(long long int *)p_28] = 0;
2374 MEM[(long long int *)p_28 + 8B] = 0;
2375 MEM[(long long int *)p_28 + 16B] = 0;
2376 MEM[(long long int *)p_28 + 24B] = 0;
2377 _129 = (int) _130;
2378 MEM[(int *)p_28 + 8B] = _129;
2379 MEM[(int *)p_28].a = -1;
2380 We already have
2381 MEM[(long long int *)p_28] = 0;
2382 MEM[(int *)p_28].a = -1;
2383 stmts in the current group and need to consider if it is safe to
2384 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2385 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2386 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2387 into the group and merging of those 3 stores is successful, merged
2388 stmts will be emitted at the latest store from that group, i.e.
2389 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2390 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2391 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2392 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2393 into the group. That way it will be its own store group and will
2394 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2395 INTEGER_CST stores, those are mergeable using merge_overlapping,
2396 so don't return false for those. */
2398 static bool
2399 check_no_overlap (vec<store_immediate_info *> m_store_info, unsigned int i,
2400 enum tree_code rhs_code, unsigned int last_order,
2401 unsigned HOST_WIDE_INT end)
2403 unsigned int len = m_store_info.length ();
2404 for (++i; i < len; ++i)
2406 store_immediate_info *info = m_store_info[i];
2407 if (info->bitpos >= end)
2408 break;
2409 if (info->order < last_order
2410 && (rhs_code != INTEGER_CST || info->rhs_code != INTEGER_CST))
2411 return false;
2413 return true;
2416 /* Return true if m_store_info[first] and at least one following store
2417 form a group which store try_size bitsize value which is byte swapped
2418 from a memory load or some value, or identity from some value.
2419 This uses the bswap pass APIs. */
2421 bool
2422 imm_store_chain_info::try_coalesce_bswap (merged_store_group *merged_store,
2423 unsigned int first,
2424 unsigned int try_size)
2426 unsigned int len = m_store_info.length (), last = first;
2427 unsigned HOST_WIDE_INT width = m_store_info[first]->bitsize;
2428 if (width >= try_size)
2429 return false;
2430 for (unsigned int i = first + 1; i < len; ++i)
2432 if (m_store_info[i]->bitpos != m_store_info[first]->bitpos + width
2433 || m_store_info[i]->ins_stmt == NULL)
2434 return false;
2435 width += m_store_info[i]->bitsize;
2436 if (width >= try_size)
2438 last = i;
2439 break;
2442 if (width != try_size)
2443 return false;
2445 bool allow_unaligned
2446 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
2447 /* Punt if the combined store would not be aligned and we need alignment. */
2448 if (!allow_unaligned)
2450 unsigned int align = merged_store->align;
2451 unsigned HOST_WIDE_INT align_base = merged_store->align_base;
2452 for (unsigned int i = first + 1; i <= last; ++i)
2454 unsigned int this_align;
2455 unsigned HOST_WIDE_INT align_bitpos = 0;
2456 get_object_alignment_1 (gimple_assign_lhs (m_store_info[i]->stmt),
2457 &this_align, &align_bitpos);
2458 if (this_align > align)
2460 align = this_align;
2461 align_base = m_store_info[i]->bitpos - align_bitpos;
2464 unsigned HOST_WIDE_INT align_bitpos
2465 = (m_store_info[first]->bitpos - align_base) & (align - 1);
2466 if (align_bitpos)
2467 align = least_bit_hwi (align_bitpos);
2468 if (align < try_size)
2469 return false;
2472 tree type;
2473 switch (try_size)
2475 case 16: type = uint16_type_node; break;
2476 case 32: type = uint32_type_node; break;
2477 case 64: type = uint64_type_node; break;
2478 default: gcc_unreachable ();
2480 struct symbolic_number n;
2481 gimple *ins_stmt = NULL;
2482 int vuse_store = -1;
2483 unsigned int first_order = merged_store->first_order;
2484 unsigned int last_order = merged_store->last_order;
2485 gimple *first_stmt = merged_store->first_stmt;
2486 gimple *last_stmt = merged_store->last_stmt;
2487 unsigned HOST_WIDE_INT end = merged_store->start + merged_store->width;
2488 store_immediate_info *infof = m_store_info[first];
2490 for (unsigned int i = first; i <= last; ++i)
2492 store_immediate_info *info = m_store_info[i];
2493 struct symbolic_number this_n = info->n;
2494 this_n.type = type;
2495 if (!this_n.base_addr)
2496 this_n.range = try_size / BITS_PER_UNIT;
2497 else
2498 /* Update vuse in case it has changed by output_merged_stores. */
2499 this_n.vuse = gimple_vuse (info->ins_stmt);
2500 unsigned int bitpos = info->bitpos - infof->bitpos;
2501 if (!do_shift_rotate (LSHIFT_EXPR, &this_n,
2502 BYTES_BIG_ENDIAN
2503 ? try_size - info->bitsize - bitpos
2504 : bitpos))
2505 return false;
2506 if (this_n.base_addr && vuse_store)
2508 unsigned int j;
2509 for (j = first; j <= last; ++j)
2510 if (this_n.vuse == gimple_vuse (m_store_info[j]->stmt))
2511 break;
2512 if (j > last)
2514 if (vuse_store == 1)
2515 return false;
2516 vuse_store = 0;
2519 if (i == first)
2521 n = this_n;
2522 ins_stmt = info->ins_stmt;
2524 else
2526 if (n.base_addr && n.vuse != this_n.vuse)
2528 if (vuse_store == 0)
2529 return false;
2530 vuse_store = 1;
2532 if (info->order > last_order)
2534 last_order = info->order;
2535 last_stmt = info->stmt;
2537 else if (info->order < first_order)
2539 first_order = info->order;
2540 first_stmt = info->stmt;
2542 end = MAX (end, info->bitpos + info->bitsize);
2544 ins_stmt = perform_symbolic_merge (ins_stmt, &n, info->ins_stmt,
2545 &this_n, &n);
2546 if (ins_stmt == NULL)
2547 return false;
2551 uint64_t cmpxchg, cmpnop;
2552 find_bswap_or_nop_finalize (&n, &cmpxchg, &cmpnop);
2554 /* A complete byte swap should make the symbolic number to start with
2555 the largest digit in the highest order byte. Unchanged symbolic
2556 number indicates a read with same endianness as target architecture. */
2557 if (n.n != cmpnop && n.n != cmpxchg)
2558 return false;
2560 if (n.base_addr == NULL_TREE && !is_gimple_val (n.src))
2561 return false;
2563 if (!check_no_overlap (m_store_info, last, LROTATE_EXPR, last_order, end))
2564 return false;
2566 /* Don't handle memory copy this way if normal non-bswap processing
2567 would handle it too. */
2568 if (n.n == cmpnop && (unsigned) n.n_ops == last - first + 1)
2570 unsigned int i;
2571 for (i = first; i <= last; ++i)
2572 if (m_store_info[i]->rhs_code != MEM_REF)
2573 break;
2574 if (i == last + 1)
2575 return false;
2578 if (n.n == cmpxchg)
2579 switch (try_size)
2581 case 16:
2582 /* Will emit LROTATE_EXPR. */
2583 break;
2584 case 32:
2585 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2586 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing)
2587 break;
2588 return false;
2589 case 64:
2590 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2591 && optab_handler (bswap_optab, DImode) != CODE_FOR_nothing)
2592 break;
2593 return false;
2594 default:
2595 gcc_unreachable ();
2598 if (!allow_unaligned && n.base_addr)
2600 unsigned int align = get_object_alignment (n.src);
2601 if (align < try_size)
2602 return false;
2605 /* If each load has vuse of the corresponding store, need to verify
2606 the loads can be sunk right before the last store. */
2607 if (vuse_store == 1)
2609 auto_vec<tree, 64> refs;
2610 for (unsigned int i = first; i <= last; ++i)
2611 gather_bswap_load_refs (&refs,
2612 gimple_assign_rhs1 (m_store_info[i]->stmt));
2614 unsigned int i;
2615 tree ref;
2616 FOR_EACH_VEC_ELT (refs, i, ref)
2617 if (stmts_may_clobber_ref_p (first_stmt, last_stmt, ref))
2618 return false;
2619 n.vuse = NULL_TREE;
2622 infof->n = n;
2623 infof->ins_stmt = ins_stmt;
2624 for (unsigned int i = first; i <= last; ++i)
2626 m_store_info[i]->rhs_code = n.n == cmpxchg ? LROTATE_EXPR : NOP_EXPR;
2627 m_store_info[i]->ops[0].base_addr = NULL_TREE;
2628 m_store_info[i]->ops[1].base_addr = NULL_TREE;
2629 if (i != first)
2630 merged_store->merge_into (m_store_info[i]);
2633 return true;
2636 /* Go through the candidate stores recorded in m_store_info and merge them
2637 into merged_store_group objects recorded into m_merged_store_groups
2638 representing the widened stores. Return true if coalescing was successful
2639 and the number of widened stores is fewer than the original number
2640 of stores. */
2642 bool
2643 imm_store_chain_info::coalesce_immediate_stores ()
2645 /* Anything less can't be processed. */
2646 if (m_store_info.length () < 2)
2647 return false;
2649 if (dump_file && (dump_flags & TDF_DETAILS))
2650 fprintf (dump_file, "Attempting to coalesce %u stores in chain\n",
2651 m_store_info.length ());
2653 store_immediate_info *info;
2654 unsigned int i, ignore = 0;
2656 /* Order the stores by the bitposition they write to. */
2657 m_store_info.qsort (sort_by_bitpos);
2659 info = m_store_info[0];
2660 merged_store_group *merged_store = new merged_store_group (info);
2661 if (dump_file && (dump_flags & TDF_DETAILS))
2662 fputs ("New store group\n", dump_file);
2664 FOR_EACH_VEC_ELT (m_store_info, i, info)
2666 if (i <= ignore)
2667 goto done;
2669 /* First try to handle group of stores like:
2670 p[0] = data >> 24;
2671 p[1] = data >> 16;
2672 p[2] = data >> 8;
2673 p[3] = data;
2674 using the bswap framework. */
2675 if (info->bitpos == merged_store->start + merged_store->width
2676 && merged_store->stores.length () == 1
2677 && merged_store->stores[0]->ins_stmt != NULL
2678 && info->ins_stmt != NULL)
2680 unsigned int try_size;
2681 for (try_size = 64; try_size >= 16; try_size >>= 1)
2682 if (try_coalesce_bswap (merged_store, i - 1, try_size))
2683 break;
2685 if (try_size >= 16)
2687 ignore = i + merged_store->stores.length () - 1;
2688 m_merged_store_groups.safe_push (merged_store);
2689 if (ignore < m_store_info.length ())
2690 merged_store = new merged_store_group (m_store_info[ignore]);
2691 else
2692 merged_store = NULL;
2693 goto done;
2697 /* |---store 1---|
2698 |---store 2---|
2699 Overlapping stores. */
2700 if (IN_RANGE (info->bitpos, merged_store->start,
2701 merged_store->start + merged_store->width - 1))
2703 /* Only allow overlapping stores of constants. */
2704 if (info->rhs_code == INTEGER_CST
2705 && merged_store->stores[0]->rhs_code == INTEGER_CST)
2707 merged_store->merge_overlapping (info);
2708 goto done;
2711 /* |---store 1---||---store 2---|
2712 This store is consecutive to the previous one.
2713 Merge it into the current store group. There can be gaps in between
2714 the stores, but there can't be gaps in between bitregions. */
2715 else if (info->bitregion_start <= merged_store->bitregion_end
2716 && merged_store->can_be_merged_into (info))
2718 store_immediate_info *infof = merged_store->stores[0];
2720 /* All the rhs_code ops that take 2 operands are commutative,
2721 swap the operands if it could make the operands compatible. */
2722 if (infof->ops[0].base_addr
2723 && infof->ops[1].base_addr
2724 && info->ops[0].base_addr
2725 && info->ops[1].base_addr
2726 && known_eq (info->ops[1].bitpos - infof->ops[0].bitpos,
2727 info->bitpos - infof->bitpos)
2728 && operand_equal_p (info->ops[1].base_addr,
2729 infof->ops[0].base_addr, 0))
2731 std::swap (info->ops[0], info->ops[1]);
2732 info->ops_swapped_p = true;
2734 if (check_no_overlap (m_store_info, i, info->rhs_code,
2735 MAX (merged_store->last_order,
2736 info->order),
2737 MAX (merged_store->start
2738 + merged_store->width,
2739 info->bitpos + info->bitsize)))
2741 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
2742 if (info->rhs_code == MEM_REF && infof->rhs_code != MEM_REF)
2744 info->rhs_code = BIT_INSERT_EXPR;
2745 info->ops[0].val = gimple_assign_rhs1 (info->stmt);
2746 info->ops[0].base_addr = NULL_TREE;
2748 else if (infof->rhs_code == MEM_REF && info->rhs_code != MEM_REF)
2750 store_immediate_info *infoj;
2751 unsigned int j;
2752 FOR_EACH_VEC_ELT (merged_store->stores, j, infoj)
2754 infoj->rhs_code = BIT_INSERT_EXPR;
2755 infoj->ops[0].val = gimple_assign_rhs1 (infoj->stmt);
2756 infoj->ops[0].base_addr = NULL_TREE;
2759 if ((infof->ops[0].base_addr
2760 ? compatible_load_p (merged_store, info, base_addr, 0)
2761 : !info->ops[0].base_addr)
2762 && (infof->ops[1].base_addr
2763 ? compatible_load_p (merged_store, info, base_addr, 1)
2764 : !info->ops[1].base_addr))
2766 merged_store->merge_into (info);
2767 goto done;
2772 /* |---store 1---| <gap> |---store 2---|.
2773 Gap between stores or the rhs not compatible. Start a new group. */
2775 /* Try to apply all the stores recorded for the group to determine
2776 the bitpattern they write and discard it if that fails.
2777 This will also reject single-store groups. */
2778 if (merged_store->apply_stores ())
2779 m_merged_store_groups.safe_push (merged_store);
2780 else
2781 delete merged_store;
2783 merged_store = new merged_store_group (info);
2784 if (dump_file && (dump_flags & TDF_DETAILS))
2785 fputs ("New store group\n", dump_file);
2787 done:
2788 if (dump_file && (dump_flags & TDF_DETAILS))
2790 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2791 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:",
2792 i, info->bitsize, info->bitpos);
2793 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt));
2794 fputc ('\n', dump_file);
2798 /* Record or discard the last store group. */
2799 if (merged_store)
2801 if (merged_store->apply_stores ())
2802 m_merged_store_groups.safe_push (merged_store);
2803 else
2804 delete merged_store;
2807 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
2809 bool success
2810 = !m_merged_store_groups.is_empty ()
2811 && m_merged_store_groups.length () < m_store_info.length ();
2813 if (success && dump_file)
2814 fprintf (dump_file, "Coalescing successful!\nMerged into %u stores\n",
2815 m_merged_store_groups.length ());
2817 return success;
2820 /* Return the type to use for the merged stores or loads described by STMTS.
2821 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2822 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2823 of the MEM_REFs if any. */
2825 static tree
2826 get_alias_type_for_stmts (vec<gimple *> &stmts, bool is_load,
2827 unsigned short *cliquep, unsigned short *basep)
2829 gimple *stmt;
2830 unsigned int i;
2831 tree type = NULL_TREE;
2832 tree ret = NULL_TREE;
2833 *cliquep = 0;
2834 *basep = 0;
2836 FOR_EACH_VEC_ELT (stmts, i, stmt)
2838 tree ref = is_load ? gimple_assign_rhs1 (stmt)
2839 : gimple_assign_lhs (stmt);
2840 tree type1 = reference_alias_ptr_type (ref);
2841 tree base = get_base_address (ref);
2843 if (i == 0)
2845 if (TREE_CODE (base) == MEM_REF)
2847 *cliquep = MR_DEPENDENCE_CLIQUE (base);
2848 *basep = MR_DEPENDENCE_BASE (base);
2850 ret = type = type1;
2851 continue;
2853 if (!alias_ptr_types_compatible_p (type, type1))
2854 ret = ptr_type_node;
2855 if (TREE_CODE (base) != MEM_REF
2856 || *cliquep != MR_DEPENDENCE_CLIQUE (base)
2857 || *basep != MR_DEPENDENCE_BASE (base))
2859 *cliquep = 0;
2860 *basep = 0;
2863 return ret;
2866 /* Return the location_t information we can find among the statements
2867 in STMTS. */
2869 static location_t
2870 get_location_for_stmts (vec<gimple *> &stmts)
2872 gimple *stmt;
2873 unsigned int i;
2875 FOR_EACH_VEC_ELT (stmts, i, stmt)
2876 if (gimple_has_location (stmt))
2877 return gimple_location (stmt);
2879 return UNKNOWN_LOCATION;
2882 /* Used to decribe a store resulting from splitting a wide store in smaller
2883 regularly-sized stores in split_group. */
2885 struct split_store
2887 unsigned HOST_WIDE_INT bytepos;
2888 unsigned HOST_WIDE_INT size;
2889 unsigned HOST_WIDE_INT align;
2890 auto_vec<store_immediate_info *> orig_stores;
2891 /* True if there is a single orig stmt covering the whole split store. */
2892 bool orig;
2893 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
2894 unsigned HOST_WIDE_INT);
2897 /* Simple constructor. */
2899 split_store::split_store (unsigned HOST_WIDE_INT bp,
2900 unsigned HOST_WIDE_INT sz,
2901 unsigned HOST_WIDE_INT al)
2902 : bytepos (bp), size (sz), align (al), orig (false)
2904 orig_stores.create (0);
2907 /* Record all stores in GROUP that write to the region starting at BITPOS and
2908 is of size BITSIZE. Record infos for such statements in STORES if
2909 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
2910 if there is exactly one original store in the range. */
2912 static store_immediate_info *
2913 find_constituent_stores (struct merged_store_group *group,
2914 vec<store_immediate_info *> *stores,
2915 unsigned int *first,
2916 unsigned HOST_WIDE_INT bitpos,
2917 unsigned HOST_WIDE_INT bitsize)
2919 store_immediate_info *info, *ret = NULL;
2920 unsigned int i;
2921 bool second = false;
2922 bool update_first = true;
2923 unsigned HOST_WIDE_INT end = bitpos + bitsize;
2924 for (i = *first; group->stores.iterate (i, &info); ++i)
2926 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
2927 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
2928 if (stmt_end <= bitpos)
2930 /* BITPOS passed to this function never decreases from within the
2931 same split_group call, so optimize and don't scan info records
2932 which are known to end before or at BITPOS next time.
2933 Only do it if all stores before this one also pass this. */
2934 if (update_first)
2935 *first = i + 1;
2936 continue;
2938 else
2939 update_first = false;
2941 /* The stores in GROUP are ordered by bitposition so if we're past
2942 the region for this group return early. */
2943 if (stmt_start >= end)
2944 return ret;
2946 if (stores)
2948 stores->safe_push (info);
2949 if (ret)
2951 ret = NULL;
2952 second = true;
2955 else if (ret)
2956 return NULL;
2957 if (!second)
2958 ret = info;
2960 return ret;
2963 /* Return how many SSA_NAMEs used to compute value to store in the INFO
2964 store have multiple uses. If any SSA_NAME has multiple uses, also
2965 count statements needed to compute it. */
2967 static unsigned
2968 count_multiple_uses (store_immediate_info *info)
2970 gimple *stmt = info->stmt;
2971 unsigned ret = 0;
2972 switch (info->rhs_code)
2974 case INTEGER_CST:
2975 return 0;
2976 case BIT_AND_EXPR:
2977 case BIT_IOR_EXPR:
2978 case BIT_XOR_EXPR:
2979 if (info->bit_not_p)
2981 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2982 ret = 1; /* Fall through below to return
2983 the BIT_NOT_EXPR stmt and then
2984 BIT_{AND,IOR,XOR}_EXPR and anything it
2985 uses. */
2986 else
2987 /* stmt is after this the BIT_NOT_EXPR. */
2988 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2990 if (!has_single_use (gimple_assign_rhs1 (stmt)))
2992 ret += 1 + info->ops[0].bit_not_p;
2993 if (info->ops[1].base_addr)
2994 ret += 1 + info->ops[1].bit_not_p;
2995 return ret + 1;
2997 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
2998 /* stmt is now the BIT_*_EXPR. */
2999 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3000 ret += 1 + info->ops[info->ops_swapped_p].bit_not_p;
3001 else if (info->ops[info->ops_swapped_p].bit_not_p)
3003 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3004 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3005 ++ret;
3007 if (info->ops[1].base_addr == NULL_TREE)
3009 gcc_checking_assert (!info->ops_swapped_p);
3010 return ret;
3012 if (!has_single_use (gimple_assign_rhs2 (stmt)))
3013 ret += 1 + info->ops[1 - info->ops_swapped_p].bit_not_p;
3014 else if (info->ops[1 - info->ops_swapped_p].bit_not_p)
3016 gimple *stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
3017 if (!has_single_use (gimple_assign_rhs1 (stmt2)))
3018 ++ret;
3020 return ret;
3021 case MEM_REF:
3022 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3023 return 1 + info->ops[0].bit_not_p;
3024 else if (info->ops[0].bit_not_p)
3026 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
3027 if (!has_single_use (gimple_assign_rhs1 (stmt)))
3028 return 1;
3030 return 0;
3031 case BIT_INSERT_EXPR:
3032 return has_single_use (gimple_assign_rhs1 (stmt)) ? 0 : 1;
3033 default:
3034 gcc_unreachable ();
3038 /* Split a merged store described by GROUP by populating the SPLIT_STORES
3039 vector (if non-NULL) with split_store structs describing the byte offset
3040 (from the base), the bit size and alignment of each store as well as the
3041 original statements involved in each such split group.
3042 This is to separate the splitting strategy from the statement
3043 building/emission/linking done in output_merged_store.
3044 Return number of new stores.
3045 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3046 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
3047 If SPLIT_STORES is NULL, it is just a dry run to count number of
3048 new stores. */
3050 static unsigned int
3051 split_group (merged_store_group *group, bool allow_unaligned_store,
3052 bool allow_unaligned_load,
3053 vec<struct split_store *> *split_stores,
3054 unsigned *total_orig,
3055 unsigned *total_new)
3057 unsigned HOST_WIDE_INT pos = group->bitregion_start;
3058 unsigned HOST_WIDE_INT size = group->bitregion_end - pos;
3059 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
3060 unsigned HOST_WIDE_INT group_align = group->align;
3061 unsigned HOST_WIDE_INT align_base = group->align_base;
3062 unsigned HOST_WIDE_INT group_load_align = group_align;
3063 bool any_orig = false;
3065 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
3067 if (group->stores[0]->rhs_code == LROTATE_EXPR
3068 || group->stores[0]->rhs_code == NOP_EXPR)
3070 /* For bswap framework using sets of stores, all the checking
3071 has been done earlier in try_coalesce_bswap and needs to be
3072 emitted as a single store. */
3073 if (total_orig)
3075 /* Avoid the old/new stmt count heuristics. It should be
3076 always beneficial. */
3077 total_new[0] = 1;
3078 total_orig[0] = 2;
3081 if (split_stores)
3083 unsigned HOST_WIDE_INT align_bitpos
3084 = (group->start - align_base) & (group_align - 1);
3085 unsigned HOST_WIDE_INT align = group_align;
3086 if (align_bitpos)
3087 align = least_bit_hwi (align_bitpos);
3088 bytepos = group->start / BITS_PER_UNIT;
3089 struct split_store *store
3090 = new split_store (bytepos, group->width, align);
3091 unsigned int first = 0;
3092 find_constituent_stores (group, &store->orig_stores,
3093 &first, group->start, group->width);
3094 split_stores->safe_push (store);
3097 return 1;
3100 unsigned int ret = 0, first = 0;
3101 unsigned HOST_WIDE_INT try_pos = bytepos;
3103 if (total_orig)
3105 unsigned int i;
3106 store_immediate_info *info = group->stores[0];
3108 total_new[0] = 0;
3109 total_orig[0] = 1; /* The orig store. */
3110 info = group->stores[0];
3111 if (info->ops[0].base_addr)
3112 total_orig[0]++;
3113 if (info->ops[1].base_addr)
3114 total_orig[0]++;
3115 switch (info->rhs_code)
3117 case BIT_AND_EXPR:
3118 case BIT_IOR_EXPR:
3119 case BIT_XOR_EXPR:
3120 total_orig[0]++; /* The orig BIT_*_EXPR stmt. */
3121 break;
3122 default:
3123 break;
3125 total_orig[0] *= group->stores.length ();
3127 FOR_EACH_VEC_ELT (group->stores, i, info)
3129 total_new[0] += count_multiple_uses (info);
3130 total_orig[0] += (info->bit_not_p
3131 + info->ops[0].bit_not_p
3132 + info->ops[1].bit_not_p);
3136 if (!allow_unaligned_load)
3137 for (int i = 0; i < 2; ++i)
3138 if (group->load_align[i])
3139 group_load_align = MIN (group_load_align, group->load_align[i]);
3141 while (size > 0)
3143 if ((allow_unaligned_store || group_align <= BITS_PER_UNIT)
3144 && group->mask[try_pos - bytepos] == (unsigned char) ~0U)
3146 /* Skip padding bytes. */
3147 ++try_pos;
3148 size -= BITS_PER_UNIT;
3149 continue;
3152 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3153 unsigned int try_size = MAX_STORE_BITSIZE, nonmasked;
3154 unsigned HOST_WIDE_INT align_bitpos
3155 = (try_bitpos - align_base) & (group_align - 1);
3156 unsigned HOST_WIDE_INT align = group_align;
3157 if (align_bitpos)
3158 align = least_bit_hwi (align_bitpos);
3159 if (!allow_unaligned_store)
3160 try_size = MIN (try_size, align);
3161 if (!allow_unaligned_load)
3163 /* If we can't do or don't want to do unaligned stores
3164 as well as loads, we need to take the loads into account
3165 as well. */
3166 unsigned HOST_WIDE_INT load_align = group_load_align;
3167 align_bitpos = (try_bitpos - align_base) & (load_align - 1);
3168 if (align_bitpos)
3169 load_align = least_bit_hwi (align_bitpos);
3170 for (int i = 0; i < 2; ++i)
3171 if (group->load_align[i])
3173 align_bitpos
3174 = known_alignment (try_bitpos
3175 - group->stores[0]->bitpos
3176 + group->stores[0]->ops[i].bitpos
3177 - group->load_align_base[i]);
3178 if (align_bitpos & (group_load_align - 1))
3180 unsigned HOST_WIDE_INT a = least_bit_hwi (align_bitpos);
3181 load_align = MIN (load_align, a);
3184 try_size = MIN (try_size, load_align);
3186 store_immediate_info *info
3187 = find_constituent_stores (group, NULL, &first, try_bitpos, try_size);
3188 if (info)
3190 /* If there is just one original statement for the range, see if
3191 we can just reuse the original store which could be even larger
3192 than try_size. */
3193 unsigned HOST_WIDE_INT stmt_end
3194 = ROUND_UP (info->bitpos + info->bitsize, BITS_PER_UNIT);
3195 info = find_constituent_stores (group, NULL, &first, try_bitpos,
3196 stmt_end - try_bitpos);
3197 if (info && info->bitpos >= try_bitpos)
3199 try_size = stmt_end - try_bitpos;
3200 goto found;
3204 /* Approximate store bitsize for the case when there are no padding
3205 bits. */
3206 while (try_size > size)
3207 try_size /= 2;
3208 /* Now look for whole padding bytes at the end of that bitsize. */
3209 for (nonmasked = try_size / BITS_PER_UNIT; nonmasked > 0; --nonmasked)
3210 if (group->mask[try_pos - bytepos + nonmasked - 1]
3211 != (unsigned char) ~0U)
3212 break;
3213 if (nonmasked == 0)
3215 /* If entire try_size range is padding, skip it. */
3216 try_pos += try_size / BITS_PER_UNIT;
3217 size -= try_size;
3218 continue;
3220 /* Otherwise try to decrease try_size if second half, last 3 quarters
3221 etc. are padding. */
3222 nonmasked *= BITS_PER_UNIT;
3223 while (nonmasked <= try_size / 2)
3224 try_size /= 2;
3225 if (!allow_unaligned_store && group_align > BITS_PER_UNIT)
3227 /* Now look for whole padding bytes at the start of that bitsize. */
3228 unsigned int try_bytesize = try_size / BITS_PER_UNIT, masked;
3229 for (masked = 0; masked < try_bytesize; ++masked)
3230 if (group->mask[try_pos - bytepos + masked] != (unsigned char) ~0U)
3231 break;
3232 masked *= BITS_PER_UNIT;
3233 gcc_assert (masked < try_size);
3234 if (masked >= try_size / 2)
3236 while (masked >= try_size / 2)
3238 try_size /= 2;
3239 try_pos += try_size / BITS_PER_UNIT;
3240 size -= try_size;
3241 masked -= try_size;
3243 /* Need to recompute the alignment, so just retry at the new
3244 position. */
3245 continue;
3249 found:
3250 ++ret;
3252 if (split_stores)
3254 struct split_store *store
3255 = new split_store (try_pos, try_size, align);
3256 info = find_constituent_stores (group, &store->orig_stores,
3257 &first, try_bitpos, try_size);
3258 if (info
3259 && info->bitpos >= try_bitpos
3260 && info->bitpos + info->bitsize <= try_bitpos + try_size)
3262 store->orig = true;
3263 any_orig = true;
3265 split_stores->safe_push (store);
3268 try_pos += try_size / BITS_PER_UNIT;
3269 size -= try_size;
3272 if (total_orig)
3274 unsigned int i;
3275 struct split_store *store;
3276 /* If we are reusing some original stores and any of the
3277 original SSA_NAMEs had multiple uses, we need to subtract
3278 those now before we add the new ones. */
3279 if (total_new[0] && any_orig)
3281 FOR_EACH_VEC_ELT (*split_stores, i, store)
3282 if (store->orig)
3283 total_new[0] -= count_multiple_uses (store->orig_stores[0]);
3285 total_new[0] += ret; /* The new store. */
3286 store_immediate_info *info = group->stores[0];
3287 if (info->ops[0].base_addr)
3288 total_new[0] += ret;
3289 if (info->ops[1].base_addr)
3290 total_new[0] += ret;
3291 switch (info->rhs_code)
3293 case BIT_AND_EXPR:
3294 case BIT_IOR_EXPR:
3295 case BIT_XOR_EXPR:
3296 total_new[0] += ret; /* The new BIT_*_EXPR stmt. */
3297 break;
3298 default:
3299 break;
3301 FOR_EACH_VEC_ELT (*split_stores, i, store)
3303 unsigned int j;
3304 bool bit_not_p[3] = { false, false, false };
3305 /* If all orig_stores have certain bit_not_p set, then
3306 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3307 If some orig_stores have certain bit_not_p set, then
3308 we'd use a BIT_XOR_EXPR with a mask and need to account for
3309 it. */
3310 FOR_EACH_VEC_ELT (store->orig_stores, j, info)
3312 if (info->ops[0].bit_not_p)
3313 bit_not_p[0] = true;
3314 if (info->ops[1].bit_not_p)
3315 bit_not_p[1] = true;
3316 if (info->bit_not_p)
3317 bit_not_p[2] = true;
3319 total_new[0] += bit_not_p[0] + bit_not_p[1] + bit_not_p[2];
3324 return ret;
3327 /* Return the operation through which the operand IDX (if < 2) or
3328 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3329 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3330 the bits should be xored with mask. */
3332 static enum tree_code
3333 invert_op (split_store *split_store, int idx, tree int_type, tree &mask)
3335 unsigned int i;
3336 store_immediate_info *info;
3337 unsigned int cnt = 0;
3338 bool any_paddings = false;
3339 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3341 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3342 if (bit_not_p)
3344 ++cnt;
3345 tree lhs = gimple_assign_lhs (info->stmt);
3346 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3347 && TYPE_PRECISION (TREE_TYPE (lhs)) < info->bitsize)
3348 any_paddings = true;
3351 mask = NULL_TREE;
3352 if (cnt == 0)
3353 return NOP_EXPR;
3354 if (cnt == split_store->orig_stores.length () && !any_paddings)
3355 return BIT_NOT_EXPR;
3357 unsigned HOST_WIDE_INT try_bitpos = split_store->bytepos * BITS_PER_UNIT;
3358 unsigned buf_size = split_store->size / BITS_PER_UNIT;
3359 unsigned char *buf
3360 = XALLOCAVEC (unsigned char, buf_size);
3361 memset (buf, ~0U, buf_size);
3362 FOR_EACH_VEC_ELT (split_store->orig_stores, i, info)
3364 bool bit_not_p = idx < 2 ? info->ops[idx].bit_not_p : info->bit_not_p;
3365 if (!bit_not_p)
3366 continue;
3367 /* Clear regions with bit_not_p and invert afterwards, rather than
3368 clear regions with !bit_not_p, so that gaps in between stores aren't
3369 set in the mask. */
3370 unsigned HOST_WIDE_INT bitsize = info->bitsize;
3371 unsigned HOST_WIDE_INT prec = bitsize;
3372 unsigned int pos_in_buffer = 0;
3373 if (any_paddings)
3375 tree lhs = gimple_assign_lhs (info->stmt);
3376 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3377 && TYPE_PRECISION (TREE_TYPE (lhs)) < bitsize)
3378 prec = TYPE_PRECISION (TREE_TYPE (lhs));
3380 if (info->bitpos < try_bitpos)
3382 gcc_assert (info->bitpos + bitsize > try_bitpos);
3383 if (!BYTES_BIG_ENDIAN)
3385 if (prec <= try_bitpos - info->bitpos)
3386 continue;
3387 prec -= try_bitpos - info->bitpos;
3389 bitsize -= try_bitpos - info->bitpos;
3390 if (BYTES_BIG_ENDIAN && prec > bitsize)
3391 prec = bitsize;
3393 else
3394 pos_in_buffer = info->bitpos - try_bitpos;
3395 if (prec < bitsize)
3397 /* If this is a bool inversion, invert just the least significant
3398 prec bits rather than all bits of it. */
3399 if (BYTES_BIG_ENDIAN)
3401 pos_in_buffer += bitsize - prec;
3402 if (pos_in_buffer >= split_store->size)
3403 continue;
3405 bitsize = prec;
3407 if (pos_in_buffer + bitsize > split_store->size)
3408 bitsize = split_store->size - pos_in_buffer;
3409 unsigned char *p = buf + (pos_in_buffer / BITS_PER_UNIT);
3410 if (BYTES_BIG_ENDIAN)
3411 clear_bit_region_be (p, (BITS_PER_UNIT - 1
3412 - (pos_in_buffer % BITS_PER_UNIT)), bitsize);
3413 else
3414 clear_bit_region (p, pos_in_buffer % BITS_PER_UNIT, bitsize);
3416 for (unsigned int i = 0; i < buf_size; ++i)
3417 buf[i] = ~buf[i];
3418 mask = native_interpret_expr (int_type, buf, buf_size);
3419 return BIT_XOR_EXPR;
3422 /* Given a merged store group GROUP output the widened version of it.
3423 The store chain is against the base object BASE.
3424 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3425 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3426 Make sure that the number of statements output is less than the number of
3427 original statements. If a better sequence is possible emit it and
3428 return true. */
3430 bool
3431 imm_store_chain_info::output_merged_store (merged_store_group *group)
3433 split_store *split_store;
3434 unsigned int i;
3435 unsigned HOST_WIDE_INT start_byte_pos
3436 = group->bitregion_start / BITS_PER_UNIT;
3438 unsigned int orig_num_stmts = group->stores.length ();
3439 if (orig_num_stmts < 2)
3440 return false;
3442 auto_vec<struct split_store *, 32> split_stores;
3443 bool allow_unaligned_store
3444 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
3445 bool allow_unaligned_load = allow_unaligned_store;
3446 if (allow_unaligned_store)
3448 /* If unaligned stores are allowed, see how many stores we'd emit
3449 for unaligned and how many stores we'd emit for aligned stores.
3450 Only use unaligned stores if it allows fewer stores than aligned. */
3451 unsigned aligned_cnt
3452 = split_group (group, false, allow_unaligned_load, NULL, NULL, NULL);
3453 unsigned unaligned_cnt
3454 = split_group (group, true, allow_unaligned_load, NULL, NULL, NULL);
3455 if (aligned_cnt <= unaligned_cnt)
3456 allow_unaligned_store = false;
3458 unsigned total_orig, total_new;
3459 split_group (group, allow_unaligned_store, allow_unaligned_load,
3460 &split_stores, &total_orig, &total_new);
3462 if (split_stores.length () >= orig_num_stmts)
3464 /* We didn't manage to reduce the number of statements. Bail out. */
3465 if (dump_file && (dump_flags & TDF_DETAILS))
3466 fprintf (dump_file, "Exceeded original number of stmts (%u)."
3467 " Not profitable to emit new sequence.\n",
3468 orig_num_stmts);
3469 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3470 delete split_store;
3471 return false;
3473 if (total_orig <= total_new)
3475 /* If number of estimated new statements is above estimated original
3476 statements, bail out too. */
3477 if (dump_file && (dump_flags & TDF_DETAILS))
3478 fprintf (dump_file, "Estimated number of original stmts (%u)"
3479 " not larger than estimated number of new"
3480 " stmts (%u).\n",
3481 total_orig, total_new);
3482 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3483 delete split_store;
3484 return false;
3487 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
3488 gimple_seq seq = NULL;
3489 tree last_vdef, new_vuse;
3490 last_vdef = gimple_vdef (group->last_stmt);
3491 new_vuse = gimple_vuse (group->last_stmt);
3492 tree bswap_res = NULL_TREE;
3494 if (group->stores[0]->rhs_code == LROTATE_EXPR
3495 || group->stores[0]->rhs_code == NOP_EXPR)
3497 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
3498 gimple *ins_stmt = group->stores[0]->ins_stmt;
3499 struct symbolic_number *n = &group->stores[0]->n;
3500 bool bswap = group->stores[0]->rhs_code == LROTATE_EXPR;
3502 switch (n->range)
3504 case 16:
3505 load_type = bswap_type = uint16_type_node;
3506 break;
3507 case 32:
3508 load_type = uint32_type_node;
3509 if (bswap)
3511 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
3512 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3514 break;
3515 case 64:
3516 load_type = uint64_type_node;
3517 if (bswap)
3519 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
3520 bswap_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
3522 break;
3523 default:
3524 gcc_unreachable ();
3527 /* If the loads have each vuse of the corresponding store,
3528 we've checked the aliasing already in try_coalesce_bswap and
3529 we want to sink the need load into seq. So need to use new_vuse
3530 on the load. */
3531 if (n->base_addr)
3533 if (n->vuse == NULL)
3535 n->vuse = new_vuse;
3536 ins_stmt = NULL;
3538 else
3539 /* Update vuse in case it has changed by output_merged_stores. */
3540 n->vuse = gimple_vuse (ins_stmt);
3542 bswap_res = bswap_replace (gsi_start (seq), ins_stmt, fndecl,
3543 bswap_type, load_type, n, bswap);
3544 gcc_assert (bswap_res);
3547 gimple *stmt = NULL;
3548 auto_vec<gimple *, 32> orig_stmts;
3549 gimple_seq this_seq;
3550 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &this_seq,
3551 is_gimple_mem_ref_addr, NULL_TREE);
3552 gimple_seq_add_seq_without_update (&seq, this_seq);
3554 tree load_addr[2] = { NULL_TREE, NULL_TREE };
3555 gimple_seq load_seq[2] = { NULL, NULL };
3556 gimple_stmt_iterator load_gsi[2] = { gsi_none (), gsi_none () };
3557 for (int j = 0; j < 2; ++j)
3559 store_operand_info &op = group->stores[0]->ops[j];
3560 if (op.base_addr == NULL_TREE)
3561 continue;
3563 store_immediate_info *infol = group->stores.last ();
3564 if (gimple_vuse (op.stmt) == gimple_vuse (infol->ops[j].stmt))
3566 /* We can't pick the location randomly; while we've verified
3567 all the loads have the same vuse, they can be still in different
3568 basic blocks and we need to pick the one from the last bb:
3569 int x = q[0];
3570 if (x == N) return;
3571 int y = q[1];
3572 p[0] = x;
3573 p[1] = y;
3574 otherwise if we put the wider load at the q[0] load, we might
3575 segfault if q[1] is not mapped. */
3576 basic_block bb = gimple_bb (op.stmt);
3577 gimple *ostmt = op.stmt;
3578 store_immediate_info *info;
3579 FOR_EACH_VEC_ELT (group->stores, i, info)
3581 gimple *tstmt = info->ops[j].stmt;
3582 basic_block tbb = gimple_bb (tstmt);
3583 if (dominated_by_p (CDI_DOMINATORS, tbb, bb))
3585 ostmt = tstmt;
3586 bb = tbb;
3589 load_gsi[j] = gsi_for_stmt (ostmt);
3590 load_addr[j]
3591 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3592 &load_seq[j], is_gimple_mem_ref_addr,
3593 NULL_TREE);
3595 else if (operand_equal_p (base_addr, op.base_addr, 0))
3596 load_addr[j] = addr;
3597 else
3599 load_addr[j]
3600 = force_gimple_operand_1 (unshare_expr (op.base_addr),
3601 &this_seq, is_gimple_mem_ref_addr,
3602 NULL_TREE);
3603 gimple_seq_add_seq_without_update (&seq, this_seq);
3607 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3609 unsigned HOST_WIDE_INT try_size = split_store->size;
3610 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
3611 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
3612 unsigned HOST_WIDE_INT align = split_store->align;
3613 tree dest, src;
3614 location_t loc;
3615 if (split_store->orig)
3617 /* If there is just a single constituent store which covers
3618 the whole area, just reuse the lhs and rhs. */
3619 gimple *orig_stmt = split_store->orig_stores[0]->stmt;
3620 dest = gimple_assign_lhs (orig_stmt);
3621 src = gimple_assign_rhs1 (orig_stmt);
3622 loc = gimple_location (orig_stmt);
3624 else
3626 store_immediate_info *info;
3627 unsigned short clique, base;
3628 unsigned int k;
3629 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3630 orig_stmts.safe_push (info->stmt);
3631 tree offset_type
3632 = get_alias_type_for_stmts (orig_stmts, false, &clique, &base);
3633 loc = get_location_for_stmts (orig_stmts);
3634 orig_stmts.truncate (0);
3636 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
3637 int_type = build_aligned_type (int_type, align);
3638 dest = fold_build2 (MEM_REF, int_type, addr,
3639 build_int_cst (offset_type, try_pos));
3640 if (TREE_CODE (dest) == MEM_REF)
3642 MR_DEPENDENCE_CLIQUE (dest) = clique;
3643 MR_DEPENDENCE_BASE (dest) = base;
3646 tree mask;
3647 if (bswap_res)
3648 mask = integer_zero_node;
3649 else
3650 mask = native_interpret_expr (int_type,
3651 group->mask + try_pos
3652 - start_byte_pos,
3653 group->buf_size);
3655 tree ops[2];
3656 for (int j = 0;
3657 j < 1 + (split_store->orig_stores[0]->ops[1].val != NULL_TREE);
3658 ++j)
3660 store_operand_info &op = split_store->orig_stores[0]->ops[j];
3661 if (bswap_res)
3662 ops[j] = bswap_res;
3663 else if (op.base_addr)
3665 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3666 orig_stmts.safe_push (info->ops[j].stmt);
3668 offset_type = get_alias_type_for_stmts (orig_stmts, true,
3669 &clique, &base);
3670 location_t load_loc = get_location_for_stmts (orig_stmts);
3671 orig_stmts.truncate (0);
3673 unsigned HOST_WIDE_INT load_align = group->load_align[j];
3674 unsigned HOST_WIDE_INT align_bitpos
3675 = known_alignment (try_bitpos
3676 - split_store->orig_stores[0]->bitpos
3677 + op.bitpos);
3678 if (align_bitpos & (load_align - 1))
3679 load_align = least_bit_hwi (align_bitpos);
3681 tree load_int_type
3682 = build_nonstandard_integer_type (try_size, UNSIGNED);
3683 load_int_type
3684 = build_aligned_type (load_int_type, load_align);
3686 poly_uint64 load_pos
3687 = exact_div (try_bitpos
3688 - split_store->orig_stores[0]->bitpos
3689 + op.bitpos,
3690 BITS_PER_UNIT);
3691 ops[j] = fold_build2 (MEM_REF, load_int_type, load_addr[j],
3692 build_int_cst (offset_type, load_pos));
3693 if (TREE_CODE (ops[j]) == MEM_REF)
3695 MR_DEPENDENCE_CLIQUE (ops[j]) = clique;
3696 MR_DEPENDENCE_BASE (ops[j]) = base;
3698 if (!integer_zerop (mask))
3699 /* The load might load some bits (that will be masked off
3700 later on) uninitialized, avoid -W*uninitialized
3701 warnings in that case. */
3702 TREE_NO_WARNING (ops[j]) = 1;
3704 stmt = gimple_build_assign (make_ssa_name (int_type),
3705 ops[j]);
3706 gimple_set_location (stmt, load_loc);
3707 if (gsi_bb (load_gsi[j]))
3709 gimple_set_vuse (stmt, gimple_vuse (op.stmt));
3710 gimple_seq_add_stmt_without_update (&load_seq[j], stmt);
3712 else
3714 gimple_set_vuse (stmt, new_vuse);
3715 gimple_seq_add_stmt_without_update (&seq, stmt);
3717 ops[j] = gimple_assign_lhs (stmt);
3718 tree xor_mask;
3719 enum tree_code inv_op
3720 = invert_op (split_store, j, int_type, xor_mask);
3721 if (inv_op != NOP_EXPR)
3723 stmt = gimple_build_assign (make_ssa_name (int_type),
3724 inv_op, ops[j], xor_mask);
3725 gimple_set_location (stmt, load_loc);
3726 ops[j] = gimple_assign_lhs (stmt);
3728 if (gsi_bb (load_gsi[j]))
3729 gimple_seq_add_stmt_without_update (&load_seq[j],
3730 stmt);
3731 else
3732 gimple_seq_add_stmt_without_update (&seq, stmt);
3735 else
3736 ops[j] = native_interpret_expr (int_type,
3737 group->val + try_pos
3738 - start_byte_pos,
3739 group->buf_size);
3742 switch (split_store->orig_stores[0]->rhs_code)
3744 case BIT_AND_EXPR:
3745 case BIT_IOR_EXPR:
3746 case BIT_XOR_EXPR:
3747 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3749 tree rhs1 = gimple_assign_rhs1 (info->stmt);
3750 orig_stmts.safe_push (SSA_NAME_DEF_STMT (rhs1));
3752 location_t bit_loc;
3753 bit_loc = get_location_for_stmts (orig_stmts);
3754 orig_stmts.truncate (0);
3756 stmt
3757 = gimple_build_assign (make_ssa_name (int_type),
3758 split_store->orig_stores[0]->rhs_code,
3759 ops[0], ops[1]);
3760 gimple_set_location (stmt, bit_loc);
3761 /* If there is just one load and there is a separate
3762 load_seq[0], emit the bitwise op right after it. */
3763 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3764 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3765 /* Otherwise, if at least one load is in seq, we need to
3766 emit the bitwise op right before the store. If there
3767 are two loads and are emitted somewhere else, it would
3768 be better to emit the bitwise op as early as possible;
3769 we don't track where that would be possible right now
3770 though. */
3771 else
3772 gimple_seq_add_stmt_without_update (&seq, stmt);
3773 src = gimple_assign_lhs (stmt);
3774 tree xor_mask;
3775 enum tree_code inv_op;
3776 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3777 if (inv_op != NOP_EXPR)
3779 stmt = gimple_build_assign (make_ssa_name (int_type),
3780 inv_op, src, xor_mask);
3781 gimple_set_location (stmt, bit_loc);
3782 if (load_addr[1] == NULL_TREE && gsi_bb (load_gsi[0]))
3783 gimple_seq_add_stmt_without_update (&load_seq[0], stmt);
3784 else
3785 gimple_seq_add_stmt_without_update (&seq, stmt);
3786 src = gimple_assign_lhs (stmt);
3788 break;
3789 case LROTATE_EXPR:
3790 case NOP_EXPR:
3791 src = ops[0];
3792 if (!is_gimple_val (src))
3794 stmt = gimple_build_assign (make_ssa_name (TREE_TYPE (src)),
3795 src);
3796 gimple_seq_add_stmt_without_update (&seq, stmt);
3797 src = gimple_assign_lhs (stmt);
3799 if (!useless_type_conversion_p (int_type, TREE_TYPE (src)))
3801 stmt = gimple_build_assign (make_ssa_name (int_type),
3802 NOP_EXPR, src);
3803 gimple_seq_add_stmt_without_update (&seq, stmt);
3804 src = gimple_assign_lhs (stmt);
3806 inv_op = invert_op (split_store, 2, int_type, xor_mask);
3807 if (inv_op != NOP_EXPR)
3809 stmt = gimple_build_assign (make_ssa_name (int_type),
3810 inv_op, src, xor_mask);
3811 gimple_set_location (stmt, loc);
3812 gimple_seq_add_stmt_without_update (&seq, stmt);
3813 src = gimple_assign_lhs (stmt);
3815 break;
3816 default:
3817 src = ops[0];
3818 break;
3821 /* If bit insertion is required, we use the source as an accumulator
3822 into which the successive bit-field values are manually inserted.
3823 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
3824 if (group->bit_insertion)
3825 FOR_EACH_VEC_ELT (split_store->orig_stores, k, info)
3826 if (info->rhs_code == BIT_INSERT_EXPR
3827 && info->bitpos < try_bitpos + try_size
3828 && info->bitpos + info->bitsize > try_bitpos)
3830 /* Mask, truncate, convert to final type, shift and ior into
3831 the accumulator. Note that every step can be a no-op. */
3832 const HOST_WIDE_INT start_gap = info->bitpos - try_bitpos;
3833 const HOST_WIDE_INT end_gap
3834 = (try_bitpos + try_size) - (info->bitpos + info->bitsize);
3835 tree tem = info->ops[0].val;
3836 if (TYPE_PRECISION (TREE_TYPE (tem)) <= info->bitsize)
3838 tree bitfield_type
3839 = build_nonstandard_integer_type (info->bitsize,
3840 UNSIGNED);
3841 tem = gimple_convert (&seq, loc, bitfield_type, tem);
3843 else if ((BYTES_BIG_ENDIAN ? start_gap : end_gap) > 0)
3845 const unsigned HOST_WIDE_INT imask
3846 = (HOST_WIDE_INT_1U << info->bitsize) - 1;
3847 tem = gimple_build (&seq, loc,
3848 BIT_AND_EXPR, TREE_TYPE (tem), tem,
3849 build_int_cst (TREE_TYPE (tem),
3850 imask));
3852 const HOST_WIDE_INT shift
3853 = (BYTES_BIG_ENDIAN ? end_gap : start_gap);
3854 if (shift < 0)
3855 tem = gimple_build (&seq, loc,
3856 RSHIFT_EXPR, TREE_TYPE (tem), tem,
3857 build_int_cst (NULL_TREE, -shift));
3858 tem = gimple_convert (&seq, loc, int_type, tem);
3859 if (shift > 0)
3860 tem = gimple_build (&seq, loc,
3861 LSHIFT_EXPR, int_type, tem,
3862 build_int_cst (NULL_TREE, shift));
3863 src = gimple_build (&seq, loc,
3864 BIT_IOR_EXPR, int_type, tem, src);
3867 if (!integer_zerop (mask))
3869 tree tem = make_ssa_name (int_type);
3870 tree load_src = unshare_expr (dest);
3871 /* The load might load some or all bits uninitialized,
3872 avoid -W*uninitialized warnings in that case.
3873 As optimization, it would be nice if all the bits are
3874 provably uninitialized (no stores at all yet or previous
3875 store a CLOBBER) we'd optimize away the load and replace
3876 it e.g. with 0. */
3877 TREE_NO_WARNING (load_src) = 1;
3878 stmt = gimple_build_assign (tem, load_src);
3879 gimple_set_location (stmt, loc);
3880 gimple_set_vuse (stmt, new_vuse);
3881 gimple_seq_add_stmt_without_update (&seq, stmt);
3883 /* FIXME: If there is a single chunk of zero bits in mask,
3884 perhaps use BIT_INSERT_EXPR instead? */
3885 stmt = gimple_build_assign (make_ssa_name (int_type),
3886 BIT_AND_EXPR, tem, mask);
3887 gimple_set_location (stmt, loc);
3888 gimple_seq_add_stmt_without_update (&seq, stmt);
3889 tem = gimple_assign_lhs (stmt);
3891 if (TREE_CODE (src) == INTEGER_CST)
3892 src = wide_int_to_tree (int_type,
3893 wi::bit_and_not (wi::to_wide (src),
3894 wi::to_wide (mask)));
3895 else
3897 tree nmask
3898 = wide_int_to_tree (int_type,
3899 wi::bit_not (wi::to_wide (mask)));
3900 stmt = gimple_build_assign (make_ssa_name (int_type),
3901 BIT_AND_EXPR, src, nmask);
3902 gimple_set_location (stmt, loc);
3903 gimple_seq_add_stmt_without_update (&seq, stmt);
3904 src = gimple_assign_lhs (stmt);
3906 stmt = gimple_build_assign (make_ssa_name (int_type),
3907 BIT_IOR_EXPR, tem, src);
3908 gimple_set_location (stmt, loc);
3909 gimple_seq_add_stmt_without_update (&seq, stmt);
3910 src = gimple_assign_lhs (stmt);
3914 stmt = gimple_build_assign (dest, src);
3915 gimple_set_location (stmt, loc);
3916 gimple_set_vuse (stmt, new_vuse);
3917 gimple_seq_add_stmt_without_update (&seq, stmt);
3919 tree new_vdef;
3920 if (i < split_stores.length () - 1)
3921 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
3922 else
3923 new_vdef = last_vdef;
3925 gimple_set_vdef (stmt, new_vdef);
3926 SSA_NAME_DEF_STMT (new_vdef) = stmt;
3927 new_vuse = new_vdef;
3930 FOR_EACH_VEC_ELT (split_stores, i, split_store)
3931 delete split_store;
3933 gcc_assert (seq);
3934 if (dump_file)
3936 fprintf (dump_file,
3937 "New sequence of %u stores to replace old one of %u stores\n",
3938 split_stores.length (), orig_num_stmts);
3939 if (dump_flags & TDF_DETAILS)
3940 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
3942 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
3943 for (int j = 0; j < 2; ++j)
3944 if (load_seq[j])
3945 gsi_insert_seq_after (&load_gsi[j], load_seq[j], GSI_SAME_STMT);
3947 return true;
3950 /* Process the merged_store_group objects created in the coalescing phase.
3951 The stores are all against the base object BASE.
3952 Try to output the widened stores and delete the original statements if
3953 successful. Return true iff any changes were made. */
3955 bool
3956 imm_store_chain_info::output_merged_stores ()
3958 unsigned int i;
3959 merged_store_group *merged_store;
3960 bool ret = false;
3961 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
3963 if (output_merged_store (merged_store))
3965 unsigned int j;
3966 store_immediate_info *store;
3967 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
3969 gimple *stmt = store->stmt;
3970 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
3971 gsi_remove (&gsi, true);
3972 if (stmt != merged_store->last_stmt)
3974 unlink_stmt_vdef (stmt);
3975 release_defs (stmt);
3978 ret = true;
3981 if (ret && dump_file)
3982 fprintf (dump_file, "Merging successful!\n");
3984 return ret;
3987 /* Coalesce the store_immediate_info objects recorded against the base object
3988 BASE in the first phase and output them.
3989 Delete the allocated structures.
3990 Return true if any changes were made. */
3992 bool
3993 imm_store_chain_info::terminate_and_process_chain ()
3995 /* Process store chain. */
3996 bool ret = false;
3997 if (m_store_info.length () > 1)
3999 ret = coalesce_immediate_stores ();
4000 if (ret)
4001 ret = output_merged_stores ();
4004 /* Delete all the entries we allocated ourselves. */
4005 store_immediate_info *info;
4006 unsigned int i;
4007 FOR_EACH_VEC_ELT (m_store_info, i, info)
4008 delete info;
4010 merged_store_group *merged_info;
4011 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
4012 delete merged_info;
4014 return ret;
4017 /* Return true iff LHS is a destination potentially interesting for
4018 store merging. In practice these are the codes that get_inner_reference
4019 can process. */
4021 static bool
4022 lhs_valid_for_store_merging_p (tree lhs)
4024 tree_code code = TREE_CODE (lhs);
4026 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
4027 || code == COMPONENT_REF || code == BIT_FIELD_REF)
4028 return true;
4030 return false;
4033 /* Return true if the tree RHS is a constant we want to consider
4034 during store merging. In practice accept all codes that
4035 native_encode_expr accepts. */
4037 static bool
4038 rhs_valid_for_store_merging_p (tree rhs)
4040 unsigned HOST_WIDE_INT size;
4041 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs))).is_constant (&size)
4042 && native_encode_expr (rhs, NULL, size) != 0);
4045 /* If MEM is a memory reference usable for store merging (either as
4046 store destination or for loads), return the non-NULL base_addr
4047 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
4048 Otherwise return NULL, *PBITPOS should be still valid even for that
4049 case. */
4051 static tree
4052 mem_valid_for_store_merging (tree mem, poly_uint64 *pbitsize,
4053 poly_uint64 *pbitpos,
4054 poly_uint64 *pbitregion_start,
4055 poly_uint64 *pbitregion_end)
4057 poly_int64 bitsize, bitpos;
4058 poly_uint64 bitregion_start = 0, bitregion_end = 0;
4059 machine_mode mode;
4060 int unsignedp = 0, reversep = 0, volatilep = 0;
4061 tree offset;
4062 tree base_addr = get_inner_reference (mem, &bitsize, &bitpos, &offset, &mode,
4063 &unsignedp, &reversep, &volatilep);
4064 *pbitsize = bitsize;
4065 if (known_eq (bitsize, 0))
4066 return NULL_TREE;
4068 if (TREE_CODE (mem) == COMPONENT_REF
4069 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem, 1)))
4071 get_bit_range (&bitregion_start, &bitregion_end, mem, &bitpos, &offset);
4072 if (maybe_ne (bitregion_end, 0U))
4073 bitregion_end += 1;
4076 if (reversep)
4077 return NULL_TREE;
4079 /* We do not want to rewrite TARGET_MEM_REFs. */
4080 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
4081 return NULL_TREE;
4082 /* In some cases get_inner_reference may return a
4083 MEM_REF [ptr + byteoffset]. For the purposes of this pass
4084 canonicalize the base_addr to MEM_REF [ptr] and take
4085 byteoffset into account in the bitpos. This occurs in
4086 PR 23684 and this way we can catch more chains. */
4087 else if (TREE_CODE (base_addr) == MEM_REF)
4089 poly_offset_int byte_off = mem_ref_offset (base_addr);
4090 poly_offset_int bit_off = byte_off << LOG2_BITS_PER_UNIT;
4091 bit_off += bitpos;
4092 if (known_ge (bit_off, 0) && bit_off.to_shwi (&bitpos))
4094 if (maybe_ne (bitregion_end, 0U))
4096 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4097 bit_off += bitregion_start;
4098 if (bit_off.to_uhwi (&bitregion_start))
4100 bit_off = byte_off << LOG2_BITS_PER_UNIT;
4101 bit_off += bitregion_end;
4102 if (!bit_off.to_uhwi (&bitregion_end))
4103 bitregion_end = 0;
4105 else
4106 bitregion_end = 0;
4109 else
4110 return NULL_TREE;
4111 base_addr = TREE_OPERAND (base_addr, 0);
4113 /* get_inner_reference returns the base object, get at its
4114 address now. */
4115 else
4117 if (maybe_lt (bitpos, 0))
4118 return NULL_TREE;
4119 base_addr = build_fold_addr_expr (base_addr);
4122 if (known_eq (bitregion_end, 0U))
4124 bitregion_start = round_down_to_byte_boundary (bitpos);
4125 bitregion_end = bitpos;
4126 bitregion_end = round_up_to_byte_boundary (bitregion_end + bitsize);
4129 if (offset != NULL_TREE)
4131 /* If the access is variable offset then a base decl has to be
4132 address-taken to be able to emit pointer-based stores to it.
4133 ??? We might be able to get away with re-using the original
4134 base up to the first variable part and then wrapping that inside
4135 a BIT_FIELD_REF. */
4136 tree base = get_base_address (base_addr);
4137 if (! base
4138 || (DECL_P (base) && ! TREE_ADDRESSABLE (base)))
4139 return NULL_TREE;
4141 base_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (base_addr),
4142 base_addr, offset);
4145 *pbitsize = bitsize;
4146 *pbitpos = bitpos;
4147 *pbitregion_start = bitregion_start;
4148 *pbitregion_end = bitregion_end;
4149 return base_addr;
4152 /* Return true if STMT is a load that can be used for store merging.
4153 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4154 BITREGION_END are properties of the corresponding store. */
4156 static bool
4157 handled_load (gimple *stmt, store_operand_info *op,
4158 poly_uint64 bitsize, poly_uint64 bitpos,
4159 poly_uint64 bitregion_start, poly_uint64 bitregion_end)
4161 if (!is_gimple_assign (stmt))
4162 return false;
4163 if (gimple_assign_rhs_code (stmt) == BIT_NOT_EXPR)
4165 tree rhs1 = gimple_assign_rhs1 (stmt);
4166 if (TREE_CODE (rhs1) == SSA_NAME
4167 && handled_load (SSA_NAME_DEF_STMT (rhs1), op, bitsize, bitpos,
4168 bitregion_start, bitregion_end))
4170 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4171 been optimized earlier, but if allowed here, would confuse the
4172 multiple uses counting. */
4173 if (op->bit_not_p)
4174 return false;
4175 op->bit_not_p = !op->bit_not_p;
4176 return true;
4178 return false;
4180 if (gimple_vuse (stmt)
4181 && gimple_assign_load_p (stmt)
4182 && !stmt_can_throw_internal (stmt)
4183 && !gimple_has_volatile_ops (stmt))
4185 tree mem = gimple_assign_rhs1 (stmt);
4186 op->base_addr
4187 = mem_valid_for_store_merging (mem, &op->bitsize, &op->bitpos,
4188 &op->bitregion_start,
4189 &op->bitregion_end);
4190 if (op->base_addr != NULL_TREE
4191 && known_eq (op->bitsize, bitsize)
4192 && multiple_p (op->bitpos - bitpos, BITS_PER_UNIT)
4193 && known_ge (op->bitpos - op->bitregion_start,
4194 bitpos - bitregion_start)
4195 && known_ge (op->bitregion_end - op->bitpos,
4196 bitregion_end - bitpos))
4198 op->stmt = stmt;
4199 op->val = mem;
4200 op->bit_not_p = false;
4201 return true;
4204 return false;
4207 /* Record the store STMT for store merging optimization if it can be
4208 optimized. */
4210 void
4211 pass_store_merging::process_store (gimple *stmt)
4213 tree lhs = gimple_assign_lhs (stmt);
4214 tree rhs = gimple_assign_rhs1 (stmt);
4215 poly_uint64 bitsize, bitpos;
4216 poly_uint64 bitregion_start, bitregion_end;
4217 tree base_addr
4218 = mem_valid_for_store_merging (lhs, &bitsize, &bitpos,
4219 &bitregion_start, &bitregion_end);
4220 if (known_eq (bitsize, 0U))
4221 return;
4223 bool invalid = (base_addr == NULL_TREE
4224 || (maybe_gt (bitsize,
4225 (unsigned int) MAX_BITSIZE_MODE_ANY_INT)
4226 && (TREE_CODE (rhs) != INTEGER_CST)));
4227 enum tree_code rhs_code = ERROR_MARK;
4228 bool bit_not_p = false;
4229 struct symbolic_number n;
4230 gimple *ins_stmt = NULL;
4231 store_operand_info ops[2];
4232 if (invalid)
4234 else if (rhs_valid_for_store_merging_p (rhs))
4236 rhs_code = INTEGER_CST;
4237 ops[0].val = rhs;
4239 else if (TREE_CODE (rhs) != SSA_NAME)
4240 invalid = true;
4241 else
4243 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs), *def_stmt1, *def_stmt2;
4244 if (!is_gimple_assign (def_stmt))
4245 invalid = true;
4246 else if (handled_load (def_stmt, &ops[0], bitsize, bitpos,
4247 bitregion_start, bitregion_end))
4248 rhs_code = MEM_REF;
4249 else if (gimple_assign_rhs_code (def_stmt) == BIT_NOT_EXPR)
4251 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4252 if (TREE_CODE (rhs1) == SSA_NAME
4253 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1)))
4255 bit_not_p = true;
4256 def_stmt = SSA_NAME_DEF_STMT (rhs1);
4260 if (rhs_code == ERROR_MARK && !invalid)
4261 switch ((rhs_code = gimple_assign_rhs_code (def_stmt)))
4263 case BIT_AND_EXPR:
4264 case BIT_IOR_EXPR:
4265 case BIT_XOR_EXPR:
4266 tree rhs1, rhs2;
4267 rhs1 = gimple_assign_rhs1 (def_stmt);
4268 rhs2 = gimple_assign_rhs2 (def_stmt);
4269 invalid = true;
4270 if (TREE_CODE (rhs1) != SSA_NAME)
4271 break;
4272 def_stmt1 = SSA_NAME_DEF_STMT (rhs1);
4273 if (!is_gimple_assign (def_stmt1)
4274 || !handled_load (def_stmt1, &ops[0], bitsize, bitpos,
4275 bitregion_start, bitregion_end))
4276 break;
4277 if (rhs_valid_for_store_merging_p (rhs2))
4278 ops[1].val = rhs2;
4279 else if (TREE_CODE (rhs2) != SSA_NAME)
4280 break;
4281 else
4283 def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
4284 if (!is_gimple_assign (def_stmt2))
4285 break;
4286 else if (!handled_load (def_stmt2, &ops[1], bitsize, bitpos,
4287 bitregion_start, bitregion_end))
4288 break;
4290 invalid = false;
4291 break;
4292 default:
4293 invalid = true;
4294 break;
4297 unsigned HOST_WIDE_INT const_bitsize;
4298 if (bitsize.is_constant (&const_bitsize)
4299 && (const_bitsize % BITS_PER_UNIT) == 0
4300 && const_bitsize <= 64
4301 && multiple_p (bitpos, BITS_PER_UNIT))
4303 ins_stmt = find_bswap_or_nop_1 (def_stmt, &n, 12);
4304 if (ins_stmt)
4306 uint64_t nn = n.n;
4307 for (unsigned HOST_WIDE_INT i = 0;
4308 i < const_bitsize;
4309 i += BITS_PER_UNIT, nn >>= BITS_PER_MARKER)
4310 if ((nn & MARKER_MASK) == 0
4311 || (nn & MARKER_MASK) == MARKER_BYTE_UNKNOWN)
4313 ins_stmt = NULL;
4314 break;
4316 if (ins_stmt)
4318 if (invalid)
4320 rhs_code = LROTATE_EXPR;
4321 ops[0].base_addr = NULL_TREE;
4322 ops[1].base_addr = NULL_TREE;
4324 invalid = false;
4329 if (invalid
4330 && bitsize.is_constant (&const_bitsize)
4331 && ((const_bitsize % BITS_PER_UNIT) != 0
4332 || !multiple_p (bitpos, BITS_PER_UNIT))
4333 && const_bitsize <= 64)
4335 /* Bypass a conversion to the bit-field type. */
4336 if (is_gimple_assign (def_stmt) && CONVERT_EXPR_CODE_P (rhs_code))
4338 tree rhs1 = gimple_assign_rhs1 (def_stmt);
4339 if (TREE_CODE (rhs1) == SSA_NAME
4340 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
4341 rhs = rhs1;
4343 rhs_code = BIT_INSERT_EXPR;
4344 ops[0].val = rhs;
4345 ops[0].base_addr = NULL_TREE;
4346 ops[1].base_addr = NULL_TREE;
4347 invalid = false;
4351 unsigned HOST_WIDE_INT const_bitsize, const_bitpos;
4352 unsigned HOST_WIDE_INT const_bitregion_start, const_bitregion_end;
4353 if (invalid
4354 || !bitsize.is_constant (&const_bitsize)
4355 || !bitpos.is_constant (&const_bitpos)
4356 || !bitregion_start.is_constant (&const_bitregion_start)
4357 || !bitregion_end.is_constant (&const_bitregion_end))
4359 terminate_all_aliasing_chains (NULL, stmt);
4360 return;
4363 if (!ins_stmt)
4364 memset (&n, 0, sizeof (n));
4366 struct imm_store_chain_info **chain_info = NULL;
4367 if (base_addr)
4368 chain_info = m_stores.get (base_addr);
4370 store_immediate_info *info;
4371 if (chain_info)
4373 unsigned int ord = (*chain_info)->m_store_info.length ();
4374 info = new store_immediate_info (const_bitsize, const_bitpos,
4375 const_bitregion_start,
4376 const_bitregion_end,
4377 stmt, ord, rhs_code, n, ins_stmt,
4378 bit_not_p, ops[0], ops[1]);
4379 if (dump_file && (dump_flags & TDF_DETAILS))
4381 fprintf (dump_file, "Recording immediate store from stmt:\n");
4382 print_gimple_stmt (dump_file, stmt, 0);
4384 (*chain_info)->m_store_info.safe_push (info);
4385 terminate_all_aliasing_chains (chain_info, stmt);
4386 /* If we reach the limit of stores to merge in a chain terminate and
4387 process the chain now. */
4388 if ((*chain_info)->m_store_info.length ()
4389 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
4391 if (dump_file && (dump_flags & TDF_DETAILS))
4392 fprintf (dump_file,
4393 "Reached maximum number of statements to merge:\n");
4394 terminate_and_release_chain (*chain_info);
4396 return;
4399 /* Store aliases any existing chain? */
4400 terminate_all_aliasing_chains (NULL, stmt);
4401 /* Start a new chain. */
4402 struct imm_store_chain_info *new_chain
4403 = new imm_store_chain_info (m_stores_head, base_addr);
4404 info = new store_immediate_info (const_bitsize, const_bitpos,
4405 const_bitregion_start,
4406 const_bitregion_end,
4407 stmt, 0, rhs_code, n, ins_stmt,
4408 bit_not_p, ops[0], ops[1]);
4409 new_chain->m_store_info.safe_push (info);
4410 m_stores.put (base_addr, new_chain);
4411 if (dump_file && (dump_flags & TDF_DETAILS))
4413 fprintf (dump_file, "Starting new chain with statement:\n");
4414 print_gimple_stmt (dump_file, stmt, 0);
4415 fprintf (dump_file, "The base object is:\n");
4416 print_generic_expr (dump_file, base_addr);
4417 fprintf (dump_file, "\n");
4421 /* Entry point for the pass. Go over each basic block recording chains of
4422 immediate stores. Upon encountering a terminating statement (as defined
4423 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4424 variants. */
4426 unsigned int
4427 pass_store_merging::execute (function *fun)
4429 basic_block bb;
4430 hash_set<gimple *> orig_stmts;
4432 calculate_dominance_info (CDI_DOMINATORS);
4434 FOR_EACH_BB_FN (bb, fun)
4436 gimple_stmt_iterator gsi;
4437 unsigned HOST_WIDE_INT num_statements = 0;
4438 /* Record the original statements so that we can keep track of
4439 statements emitted in this pass and not re-process new
4440 statements. */
4441 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4443 if (is_gimple_debug (gsi_stmt (gsi)))
4444 continue;
4446 if (++num_statements >= 2)
4447 break;
4450 if (num_statements < 2)
4451 continue;
4453 if (dump_file && (dump_flags & TDF_DETAILS))
4454 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
4456 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4458 gimple *stmt = gsi_stmt (gsi);
4460 if (is_gimple_debug (stmt))
4461 continue;
4463 if (gimple_has_volatile_ops (stmt))
4465 /* Terminate all chains. */
4466 if (dump_file && (dump_flags & TDF_DETAILS))
4467 fprintf (dump_file, "Volatile access terminates "
4468 "all chains\n");
4469 terminate_and_process_all_chains ();
4470 continue;
4473 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
4474 && !stmt_can_throw_internal (stmt)
4475 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
4476 process_store (stmt);
4477 else
4478 terminate_all_aliasing_chains (NULL, stmt);
4480 terminate_and_process_all_chains ();
4482 return 0;
4485 } // anon namespace
4487 /* Construct and return a store merging pass object. */
4489 gimple_opt_pass *
4490 make_pass_store_merging (gcc::context *ctxt)
4492 return new pass_store_merging (ctxt);
4495 #if CHECKING_P
4497 namespace selftest {
4499 /* Selftests for store merging helpers. */
4501 /* Assert that all elements of the byte arrays X and Y, both of length N
4502 are equal. */
4504 static void
4505 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
4507 for (unsigned int i = 0; i < n; i++)
4509 if (x[i] != y[i])
4511 fprintf (stderr, "Arrays do not match. X:\n");
4512 dump_char_array (stderr, x, n);
4513 fprintf (stderr, "Y:\n");
4514 dump_char_array (stderr, y, n);
4516 ASSERT_EQ (x[i], y[i]);
4520 /* Test shift_bytes_in_array and that it carries bits across between
4521 bytes correctly. */
4523 static void
4524 verify_shift_bytes_in_array (void)
4526 /* byte 1 | byte 0
4527 00011111 | 11100000. */
4528 unsigned char orig[2] = { 0xe0, 0x1f };
4529 unsigned char in[2];
4530 memcpy (in, orig, sizeof orig);
4532 unsigned char expected[2] = { 0x80, 0x7f };
4533 shift_bytes_in_array (in, sizeof (in), 2);
4534 verify_array_eq (in, expected, sizeof (in));
4536 memcpy (in, orig, sizeof orig);
4537 memcpy (expected, orig, sizeof orig);
4538 /* Check that shifting by zero doesn't change anything. */
4539 shift_bytes_in_array (in, sizeof (in), 0);
4540 verify_array_eq (in, expected, sizeof (in));
4544 /* Test shift_bytes_in_array_right and that it carries bits across between
4545 bytes correctly. */
4547 static void
4548 verify_shift_bytes_in_array_right (void)
4550 /* byte 1 | byte 0
4551 00011111 | 11100000. */
4552 unsigned char orig[2] = { 0x1f, 0xe0};
4553 unsigned char in[2];
4554 memcpy (in, orig, sizeof orig);
4555 unsigned char expected[2] = { 0x07, 0xf8};
4556 shift_bytes_in_array_right (in, sizeof (in), 2);
4557 verify_array_eq (in, expected, sizeof (in));
4559 memcpy (in, orig, sizeof orig);
4560 memcpy (expected, orig, sizeof orig);
4561 /* Check that shifting by zero doesn't change anything. */
4562 shift_bytes_in_array_right (in, sizeof (in), 0);
4563 verify_array_eq (in, expected, sizeof (in));
4566 /* Test clear_bit_region that it clears exactly the bits asked and
4567 nothing more. */
4569 static void
4570 verify_clear_bit_region (void)
4572 /* Start with all bits set and test clearing various patterns in them. */
4573 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4574 unsigned char in[3];
4575 unsigned char expected[3];
4576 memcpy (in, orig, sizeof in);
4578 /* Check zeroing out all the bits. */
4579 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
4580 expected[0] = expected[1] = expected[2] = 0;
4581 verify_array_eq (in, expected, sizeof in);
4583 memcpy (in, orig, sizeof in);
4584 /* Leave the first and last bits intact. */
4585 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
4586 expected[0] = 0x1;
4587 expected[1] = 0;
4588 expected[2] = 0x80;
4589 verify_array_eq (in, expected, sizeof in);
4592 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4593 nothing more. */
4595 static void
4596 verify_clear_bit_region_be (void)
4598 /* Start with all bits set and test clearing various patterns in them. */
4599 unsigned char orig[3] = { 0xff, 0xff, 0xff};
4600 unsigned char in[3];
4601 unsigned char expected[3];
4602 memcpy (in, orig, sizeof in);
4604 /* Check zeroing out all the bits. */
4605 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
4606 expected[0] = expected[1] = expected[2] = 0;
4607 verify_array_eq (in, expected, sizeof in);
4609 memcpy (in, orig, sizeof in);
4610 /* Leave the first and last bits intact. */
4611 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
4612 expected[0] = 0x80;
4613 expected[1] = 0;
4614 expected[2] = 0x1;
4615 verify_array_eq (in, expected, sizeof in);
4619 /* Run all of the selftests within this file. */
4621 void
4622 store_merging_c_tests (void)
4624 verify_shift_bytes_in_array ();
4625 verify_shift_bytes_in_array_right ();
4626 verify_clear_bit_region ();
4627 verify_clear_bit_region_be ();
4630 } // namespace selftest
4631 #endif /* CHECKING_P. */