PR c++/83897
[official-gcc.git] / gcc / ada / exp_unst.adb
blob6403bdb2def1d5f9a02c987b9d2382db654cef4d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U N S T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2014-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Lib; use Lib;
31 with Namet; use Namet;
32 with Nlists; use Nlists;
33 with Nmake; use Nmake;
34 with Opt;
35 with Output; use Output;
36 with Rtsfind; use Rtsfind;
37 with Sem; use Sem;
38 with Sem_Aux; use Sem_Aux;
39 with Sem_Ch8; use Sem_Ch8;
40 with Sem_Mech; use Sem_Mech;
41 with Sem_Res; use Sem_Res;
42 with Sem_Util; use Sem_Util;
43 with Sinfo; use Sinfo;
44 with Sinput; use Sinput;
45 with Snames; use Snames;
46 with Tbuild; use Tbuild;
47 with Uintp; use Uintp;
49 package body Exp_Unst is
51 -----------------------
52 -- Local Subprograms --
53 -----------------------
55 procedure Unnest_Subprogram (Subp : Entity_Id; Subp_Body : Node_Id);
56 -- Subp is a library-level subprogram which has nested subprograms, and
57 -- Subp_Body is the corresponding N_Subprogram_Body node. This procedure
58 -- declares the AREC types and objects, adds assignments to the AREC record
59 -- as required, defines the xxxPTR types for uplevel referenced objects,
60 -- adds the ARECP parameter to all nested subprograms which need it, and
61 -- modifies all uplevel references appropriately.
63 -----------
64 -- Calls --
65 -----------
67 -- Table to record calls within the nest being analyzed. These are the
68 -- calls which may need to have an AREC actual added. This table is built
69 -- new for each subprogram nest and cleared at the end of processing each
70 -- subprogram nest.
72 type Call_Entry is record
73 N : Node_Id;
74 -- The actual call
76 Caller : Entity_Id;
77 -- Entity of the subprogram containing the call (can be at any level)
79 Callee : Entity_Id;
80 -- Entity of the subprogram called (always at level 2 or higher). Note
81 -- that in accordance with the basic rules of nesting, the level of To
82 -- is either less than or equal to the level of From, or one greater.
83 end record;
85 package Calls is new Table.Table (
86 Table_Component_Type => Call_Entry,
87 Table_Index_Type => Nat,
88 Table_Low_Bound => 1,
89 Table_Initial => 100,
90 Table_Increment => 200,
91 Table_Name => "Unnest_Calls");
92 -- Records each call within the outer subprogram and all nested subprograms
93 -- that are to other subprograms nested within the outer subprogram. These
94 -- are the calls that may need an additional parameter.
96 procedure Append_Unique_Call (Call : Call_Entry);
97 -- Append a call entry to the Calls table. A check is made to see if the
98 -- table already contains this entry and if so it has no effect.
100 -----------
101 -- Urefs --
102 -----------
104 -- Table to record explicit uplevel references to objects (variables,
105 -- constants, formal parameters). These are the references that will
106 -- need rewriting to use the activation table (AREC) pointers. Also
107 -- included are implicit and explicit uplevel references to types, but
108 -- these do not get rewritten by the front end. This table is built new
109 -- for each subprogram nest and cleared at the end of processing each
110 -- subprogram nest.
112 type Uref_Entry is record
113 Ref : Node_Id;
114 -- The reference itself. For objects this is always an entity reference
115 -- and the referenced entity will have its Is_Uplevel_Referenced_Entity
116 -- flag set and will appear in the Uplevel_Referenced_Entities list of
117 -- the subprogram declaring this entity.
119 Ent : Entity_Id;
120 -- The Entity_Id of the uplevel referenced object or type
122 Caller : Entity_Id;
123 -- The entity for the subprogram immediately containing this entity
125 Callee : Entity_Id;
126 -- The entity for the subprogram containing the referenced entity. Note
127 -- that the level of Callee must be less than the level of Caller, since
128 -- this is an uplevel reference.
129 end record;
131 package Urefs is new Table.Table (
132 Table_Component_Type => Uref_Entry,
133 Table_Index_Type => Nat,
134 Table_Low_Bound => 1,
135 Table_Initial => 100,
136 Table_Increment => 200,
137 Table_Name => "Unnest_Urefs");
139 ------------------------
140 -- Append_Unique_Call --
141 ------------------------
143 procedure Append_Unique_Call (Call : Call_Entry) is
144 begin
145 for J in Calls.First .. Calls.Last loop
146 if Calls.Table (J) = Call then
147 return;
148 end if;
149 end loop;
151 Calls.Append (Call);
152 end Append_Unique_Call;
154 ---------------
155 -- Get_Level --
156 ---------------
158 function Get_Level (Subp : Entity_Id; Sub : Entity_Id) return Nat is
159 Lev : Nat;
160 S : Entity_Id;
162 begin
163 Lev := 1;
164 S := Sub;
165 loop
166 if S = Subp then
167 return Lev;
168 else
169 Lev := Lev + 1;
170 S := Enclosing_Subprogram (S);
171 end if;
172 end loop;
173 end Get_Level;
175 ----------------
176 -- Subp_Index --
177 ----------------
179 function Subp_Index (Sub : Entity_Id) return SI_Type is
180 E : Entity_Id := Sub;
182 begin
183 pragma Assert (Is_Subprogram (E));
185 if Subps_Index (E) = Uint_0 then
186 E := Ultimate_Alias (E);
188 if Ekind (E) = E_Function
189 and then Rewritten_For_C (E)
190 and then Present (Corresponding_Procedure (E))
191 then
192 E := Corresponding_Procedure (E);
193 end if;
194 end if;
196 pragma Assert (Subps_Index (E) /= Uint_0);
197 return SI_Type (UI_To_Int (Subps_Index (E)));
198 end Subp_Index;
200 -----------------------
201 -- Unnest_Subprogram --
202 -----------------------
204 procedure Unnest_Subprogram (Subp : Entity_Id; Subp_Body : Node_Id) is
205 function AREC_Name (J : Pos; S : String) return Name_Id;
206 -- Returns name for string ARECjS, where j is the decimal value of j
208 function Enclosing_Subp (Subp : SI_Type) return SI_Type;
209 -- Subp is the index of a subprogram which has a Lev greater than 1.
210 -- This function returns the index of the enclosing subprogram which
211 -- will have a Lev value one less than this.
213 function Img_Pos (N : Pos) return String;
214 -- Return image of N without leading blank
216 function Upref_Name
217 (Ent : Entity_Id;
218 Index : Pos;
219 Clist : List_Id) return Name_Id;
220 -- This function returns the name to be used in the activation record to
221 -- reference the variable uplevel. Clist is the list of components that
222 -- have been created in the activation record so far. Normally the name
223 -- is just a copy of the Chars field of the entity. The exception is
224 -- when the name has already been used, in which case we suffix the name
225 -- with the index value Index to avoid duplication. This happens with
226 -- declare blocks and generic parameters at least.
228 ---------------
229 -- AREC_Name --
230 ---------------
232 function AREC_Name (J : Pos; S : String) return Name_Id is
233 begin
234 return Name_Find ("AREC" & Img_Pos (J) & S);
235 end AREC_Name;
237 --------------------
238 -- Enclosing_Subp --
239 --------------------
241 function Enclosing_Subp (Subp : SI_Type) return SI_Type is
242 STJ : Subp_Entry renames Subps.Table (Subp);
243 Ret : constant SI_Type := Subp_Index (Enclosing_Subprogram (STJ.Ent));
244 begin
245 pragma Assert (STJ.Lev > 1);
246 pragma Assert (Subps.Table (Ret).Lev = STJ.Lev - 1);
247 return Ret;
248 end Enclosing_Subp;
250 -------------
251 -- Img_Pos --
252 -------------
254 function Img_Pos (N : Pos) return String is
255 Buf : String (1 .. 20);
256 Ptr : Natural;
257 NV : Nat;
259 begin
260 Ptr := Buf'Last;
261 NV := N;
262 while NV /= 0 loop
263 Buf (Ptr) := Character'Val (48 + NV mod 10);
264 Ptr := Ptr - 1;
265 NV := NV / 10;
266 end loop;
268 return Buf (Ptr + 1 .. Buf'Last);
269 end Img_Pos;
271 ----------------
272 -- Upref_Name --
273 ----------------
275 function Upref_Name
276 (Ent : Entity_Id;
277 Index : Pos;
278 Clist : List_Id) return Name_Id
280 C : Node_Id;
281 begin
282 C := First (Clist);
283 loop
284 if No (C) then
285 return Chars (Ent);
287 elsif Chars (Defining_Identifier (C)) = Chars (Ent) then
288 return
289 Name_Find (Get_Name_String (Chars (Ent)) & Img_Pos (Index));
290 else
291 Next (C);
292 end if;
293 end loop;
294 end Upref_Name;
296 -- Start of processing for Unnest_Subprogram
298 begin
299 -- Nothing to do inside a generic (all processing is for instance)
301 if Inside_A_Generic then
302 return;
303 end if;
305 -- If the main unit is a package body then we need to examine the spec
306 -- to determine whether the main unit is generic (the scope stack is not
307 -- present when this is called on the main unit).
309 if Ekind (Cunit_Entity (Main_Unit)) = E_Package_Body
310 and then Is_Generic_Unit (Spec_Entity (Cunit_Entity (Main_Unit)))
311 then
312 return;
313 end if;
315 -- At least for now, do not unnest anything but main source unit
317 if not In_Extended_Main_Source_Unit (Subp_Body) then
318 return;
319 end if;
321 -- This routine is called late, after the scope stack is gone. The
322 -- following creates a suitable dummy scope stack to be used for the
323 -- analyze/expand calls made from this routine.
325 Push_Scope (Subp);
327 -- First step, we must mark all nested subprograms that require a static
328 -- link (activation record) because either they contain explicit uplevel
329 -- references (as indicated by Is_Uplevel_Referenced_Entity being set at
330 -- this point), or they make calls to other subprograms in the same nest
331 -- that require a static link (in which case we set this flag).
333 -- This is a recursive definition, and to implement this, we have to
334 -- build a call graph for the set of nested subprograms, and then go
335 -- over this graph to implement recursively the invariant that if a
336 -- subprogram has a call to a subprogram requiring a static link, then
337 -- the calling subprogram requires a static link.
339 -- First populate the above tables
341 Subps_First := Subps.Last + 1;
342 Calls.Init;
343 Urefs.Init;
345 Build_Tables : declare
346 Current_Subprogram : Entity_Id;
347 -- When we scan a subprogram body, we set Current_Subprogram to the
348 -- corresponding entity. This gets recursively saved and restored.
350 function Visit_Node (N : Node_Id) return Traverse_Result;
351 -- Visit a single node in Subp
353 -----------
354 -- Visit --
355 -----------
357 procedure Visit is new Traverse_Proc (Visit_Node);
358 -- Used to traverse the body of Subp, populating the tables
360 ----------------
361 -- Visit_Node --
362 ----------------
364 function Visit_Node (N : Node_Id) return Traverse_Result is
365 Ent : Entity_Id;
366 Caller : Entity_Id;
367 Callee : Entity_Id;
369 procedure Check_Static_Type (T : Entity_Id; DT : in out Boolean);
370 -- Given a type T, checks if it is a static type defined as a type
371 -- with no dynamic bounds in sight. If so, the only action is to
372 -- set Is_Static_Type True for T. If T is not a static type, then
373 -- all types with dynamic bounds associated with T are detected,
374 -- and their bounds are marked as uplevel referenced if not at the
375 -- library level, and DT is set True.
377 procedure Note_Uplevel_Ref
378 (E : Entity_Id;
379 Caller : Entity_Id;
380 Callee : Entity_Id);
381 -- Called when we detect an explicit or implicit uplevel reference
382 -- from within Caller to entity E declared in Callee. E can be a
383 -- an object or a type.
385 -----------------------
386 -- Check_Static_Type --
387 -----------------------
389 procedure Check_Static_Type (T : Entity_Id; DT : in out Boolean) is
390 procedure Note_Uplevel_Bound (N : Node_Id);
391 -- N is the bound of a dynamic type. This procedure notes that
392 -- this bound is uplevel referenced, it can handle references
393 -- to entities (typically _FIRST and _LAST entities), and also
394 -- attribute references of the form T'name (name is typically
395 -- FIRST or LAST) where T is the uplevel referenced bound.
397 ------------------------
398 -- Note_Uplevel_Bound --
399 ------------------------
401 procedure Note_Uplevel_Bound (N : Node_Id) is
402 begin
403 -- Entity name case
405 if Is_Entity_Name (N) then
406 if Present (Entity (N)) then
407 Note_Uplevel_Ref
408 (E => Entity (N),
409 Caller => Current_Subprogram,
410 Callee => Enclosing_Subprogram (Entity (N)));
411 end if;
413 -- Attribute case
415 elsif Nkind (N) = N_Attribute_Reference then
416 Note_Uplevel_Bound (Prefix (N));
417 end if;
418 end Note_Uplevel_Bound;
420 -- Start of processing for Check_Static_Type
422 begin
423 -- If already marked static, immediate return
425 if Is_Static_Type (T) then
426 return;
427 end if;
429 -- If the type is at library level, always consider it static,
430 -- since such uplevel references are irrelevant.
432 if Is_Library_Level_Entity (T) then
433 Set_Is_Static_Type (T);
434 return;
435 end if;
437 -- Otherwise figure out what the story is with this type
439 -- For a scalar type, check bounds
441 if Is_Scalar_Type (T) then
443 -- If both bounds static, then this is a static type
445 declare
446 LB : constant Node_Id := Type_Low_Bound (T);
447 UB : constant Node_Id := Type_High_Bound (T);
449 begin
450 if not Is_Static_Expression (LB) then
451 Note_Uplevel_Bound (LB);
452 DT := True;
453 end if;
455 if not Is_Static_Expression (UB) then
456 Note_Uplevel_Bound (UB);
457 DT := True;
458 end if;
459 end;
461 -- For record type, check all components
463 elsif Is_Record_Type (T) then
464 declare
465 C : Entity_Id;
466 begin
467 C := First_Component_Or_Discriminant (T);
468 while Present (C) loop
469 Check_Static_Type (Etype (C), DT);
470 Next_Component_Or_Discriminant (C);
471 end loop;
472 end;
474 -- For array type, check index types and component type
476 elsif Is_Array_Type (T) then
477 declare
478 IX : Node_Id;
479 begin
480 Check_Static_Type (Component_Type (T), DT);
482 IX := First_Index (T);
483 while Present (IX) loop
484 Check_Static_Type (Etype (IX), DT);
485 Next_Index (IX);
486 end loop;
487 end;
489 -- For private type, examine whether full view is static
491 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
492 Check_Static_Type (Full_View (T), DT);
494 if Is_Static_Type (Full_View (T)) then
495 Set_Is_Static_Type (T);
496 end if;
498 -- For now, ignore other types
500 else
501 return;
502 end if;
504 if not DT then
505 Set_Is_Static_Type (T);
506 end if;
507 end Check_Static_Type;
509 ----------------------
510 -- Note_Uplevel_Ref --
511 ----------------------
513 procedure Note_Uplevel_Ref
514 (E : Entity_Id;
515 Caller : Entity_Id;
516 Callee : Entity_Id)
518 begin
519 -- Nothing to do for static type
521 if Is_Static_Type (E) then
522 return;
523 end if;
525 -- Nothing to do if Caller and Callee are the same
527 if Caller = Callee then
528 return;
530 -- Callee may be a function that returns an array, and that has
531 -- been rewritten as a procedure. If caller is that procedure,
532 -- nothing to do either.
534 elsif Ekind (Callee) = E_Function
535 and then Rewritten_For_C (Callee)
536 and then Corresponding_Procedure (Callee) = Caller
537 then
538 return;
539 end if;
541 -- We have a new uplevel referenced entity
543 -- All we do at this stage is to add the uplevel reference to
544 -- the table. It's too early to do anything else, since this
545 -- uplevel reference may come from an unreachable subprogram
546 -- in which case the entry will be deleted.
548 Urefs.Append ((N, E, Caller, Callee));
549 end Note_Uplevel_Ref;
551 -- Start of processing for Visit_Node
553 begin
554 -- Record a call
556 if Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
558 -- We are only interested in direct calls, not indirect calls
559 -- (where Name (N) is an explicit dereference) at least for now!
561 and then Nkind (Name (N)) in N_Has_Entity
562 then
563 Ent := Entity (Name (N));
565 -- We are only interested in calls to subprograms nested
566 -- within Subp. Calls to Subp itself or to subprograms
567 -- that are outside the nested structure do not affect us.
569 if Scope_Within (Ent, Subp) then
571 -- Ignore calls to imported routines
573 if Is_Imported (Ent) then
574 null;
576 -- Here we have a call to keep and analyze
578 else
579 -- Both caller and callee must be subprograms
581 if Is_Subprogram (Ent) then
582 Append_Unique_Call ((N, Current_Subprogram, Ent));
583 end if;
584 end if;
585 end if;
587 -- Record a 'Access as a (potential) call
589 elsif Nkind (N) = N_Attribute_Reference then
590 declare
591 Attr : constant Attribute_Id :=
592 Get_Attribute_Id (Attribute_Name (N));
593 begin
594 case Attr is
595 when Attribute_Access
596 | Attribute_Unchecked_Access
597 | Attribute_Unrestricted_Access
599 if Nkind (Prefix (N)) in N_Has_Entity then
600 Ent := Entity (Prefix (N));
602 -- We are only interested in calls to subprograms
603 -- nested within Subp.
605 if Scope_Within (Ent, Subp) then
606 if Is_Imported (Ent) then
607 null;
609 elsif Is_Subprogram (Ent) then
610 Append_Unique_Call
611 ((N, Current_Subprogram, Ent));
612 end if;
613 end if;
614 end if;
616 when others =>
617 null;
618 end case;
619 end;
621 -- Record a subprogram. We record a subprogram body that acts as
622 -- a spec. Otherwise we record a subprogram declaration, providing
623 -- that it has a corresponding body we can get hold of. The case
624 -- of no corresponding body being available is ignored for now.
626 elsif Nkind (N) = N_Subprogram_Body then
627 Ent := Unique_Defining_Entity (N);
629 -- Ignore generic subprogram
631 if Is_Generic_Subprogram (Ent) then
632 return Skip;
633 end if;
635 -- Make new entry in subprogram table if not already made
637 declare
638 L : constant Nat := Get_Level (Subp, Ent);
639 begin
640 Subps.Append
641 ((Ent => Ent,
642 Bod => N,
643 Lev => L,
644 Reachable => False,
645 Uplevel_Ref => L,
646 Declares_AREC => False,
647 Uents => No_Elist,
648 Last => 0,
649 ARECnF => Empty,
650 ARECn => Empty,
651 ARECnT => Empty,
652 ARECnPT => Empty,
653 ARECnP => Empty,
654 ARECnU => Empty));
655 Set_Subps_Index (Ent, UI_From_Int (Subps.Last));
656 end;
658 -- We make a recursive call to scan the subprogram body, so
659 -- that we can save and restore Current_Subprogram.
661 declare
662 Save_CS : constant Entity_Id := Current_Subprogram;
663 Decl : Node_Id;
665 begin
666 Current_Subprogram := Ent;
668 -- Scan declarations
670 Decl := First (Declarations (N));
671 while Present (Decl) loop
672 Visit (Decl);
673 Next (Decl);
674 end loop;
676 -- Scan statements
678 Visit (Handled_Statement_Sequence (N));
680 -- Restore current subprogram setting
682 Current_Subprogram := Save_CS;
683 end;
685 -- Now at this level, return skipping the subprogram body
686 -- descendants, since we already took care of them!
688 return Skip;
690 -- Record an uplevel reference
692 elsif Nkind (N) in N_Has_Entity and then Present (Entity (N)) then
693 Ent := Entity (N);
695 -- Only interested in entities declared within our nest
697 if not Is_Library_Level_Entity (Ent)
698 and then Scope_Within_Or_Same (Scope (Ent), Subp)
700 -- Skip entities defined in inlined subprograms
702 and then Chars (Enclosing_Subprogram (Ent)) /= Name_uParent
703 and then
705 -- Constants and variables are interesting
707 (Ekind_In (Ent, E_Constant, E_Variable)
709 -- Formals are interesting, but not if being used as mere
710 -- names of parameters for name notation calls.
712 or else
713 (Is_Formal (Ent)
714 and then not
715 (Nkind (Parent (N)) = N_Parameter_Association
716 and then Selector_Name (Parent (N)) = N))
718 -- Types other than known Is_Static types are interesting
720 or else (Is_Type (Ent)
721 and then not Is_Static_Type (Ent)))
722 then
723 -- Here we have a possible interesting uplevel reference
725 if Is_Type (Ent) then
726 declare
727 DT : Boolean := False;
729 begin
730 Check_Static_Type (Ent, DT);
732 if Is_Static_Type (Ent) then
733 return OK;
734 end if;
735 end;
736 end if;
738 Caller := Current_Subprogram;
739 Callee := Enclosing_Subprogram (Ent);
741 if Callee /= Caller and then not Is_Static_Type (Ent) then
742 Note_Uplevel_Ref (Ent, Caller, Callee);
743 end if;
744 end if;
746 -- If we have a body stub, visit the associated subunit
748 elsif Nkind (N) in N_Body_Stub then
749 Visit (Library_Unit (N));
751 -- Skip generic declarations
753 elsif Nkind (N) in N_Generic_Declaration then
754 return Skip;
756 -- Skip generic package body
758 elsif Nkind (N) = N_Package_Body
759 and then Present (Corresponding_Spec (N))
760 and then Ekind (Corresponding_Spec (N)) = E_Generic_Package
761 then
762 return Skip;
763 end if;
765 -- Fall through to continue scanning children of this node
767 return OK;
768 end Visit_Node;
770 -- Start of processing for Build_Tables
772 begin
773 -- Traverse the body to get subprograms, calls and uplevel references
775 Visit (Subp_Body);
776 end Build_Tables;
778 -- Now do the first transitive closure which determines which
779 -- subprograms in the nest are actually reachable.
781 Reachable_Closure : declare
782 Modified : Boolean;
784 begin
785 Subps.Table (Subps_First).Reachable := True;
787 -- We use a simple minded algorithm as follows (obviously this can
788 -- be done more efficiently, using one of the standard algorithms
789 -- for efficient transitive closure computation, but this is simple
790 -- and most likely fast enough that its speed does not matter).
792 -- Repeatedly scan the list of calls. Any time we find a call from
793 -- A to B, where A is reachable, but B is not, then B is reachable,
794 -- and note that we have made a change by setting Modified True. We
795 -- repeat this until we make a pass with no modifications.
797 Outer : loop
798 Modified := False;
799 Inner : for J in Calls.First .. Calls.Last loop
800 declare
801 CTJ : Call_Entry renames Calls.Table (J);
803 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
804 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
806 SUBF : Subp_Entry renames Subps.Table (SINF);
807 SUBT : Subp_Entry renames Subps.Table (SINT);
809 begin
810 if SUBF.Reachable and then not SUBT.Reachable then
811 SUBT.Reachable := True;
812 Modified := True;
813 end if;
814 end;
815 end loop Inner;
817 exit Outer when not Modified;
818 end loop Outer;
819 end Reachable_Closure;
821 -- Remove calls from unreachable subprograms
823 declare
824 New_Index : Nat;
826 begin
827 New_Index := 0;
828 for J in Calls.First .. Calls.Last loop
829 declare
830 CTJ : Call_Entry renames Calls.Table (J);
832 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
833 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
835 SUBF : Subp_Entry renames Subps.Table (SINF);
836 SUBT : Subp_Entry renames Subps.Table (SINT);
838 begin
839 if SUBF.Reachable then
840 pragma Assert (SUBT.Reachable);
841 New_Index := New_Index + 1;
842 Calls.Table (New_Index) := Calls.Table (J);
843 end if;
844 end;
845 end loop;
847 Calls.Set_Last (New_Index);
848 end;
850 -- Remove uplevel references from unreachable subprograms
852 declare
853 New_Index : Nat;
855 begin
856 New_Index := 0;
857 for J in Urefs.First .. Urefs.Last loop
858 declare
859 URJ : Uref_Entry renames Urefs.Table (J);
861 SINF : constant SI_Type := Subp_Index (URJ.Caller);
862 SINT : constant SI_Type := Subp_Index (URJ.Callee);
864 SUBF : Subp_Entry renames Subps.Table (SINF);
865 SUBT : Subp_Entry renames Subps.Table (SINT);
867 S : Entity_Id;
869 begin
870 -- Keep reachable reference
872 if SUBF.Reachable then
873 New_Index := New_Index + 1;
874 Urefs.Table (New_Index) := Urefs.Table (J);
876 -- And since we know we are keeping this one, this is a good
877 -- place to fill in information for a good reference.
879 -- Mark all enclosing subprograms need to declare AREC
881 S := URJ.Caller;
882 loop
883 S := Enclosing_Subprogram (S);
885 -- if we are at the top level, as can happen with
886 -- references to formals in aspects of nested subprogram
887 -- declarations, there are no further subprograms to
888 -- mark as requiring activation records.
890 exit when No (S);
891 Subps.Table (Subp_Index (S)).Declares_AREC := True;
892 exit when S = URJ.Callee;
893 end loop;
895 -- Add to list of uplevel referenced entities for Callee.
896 -- We do not add types to this list, only actual references
897 -- to objects that will be referenced uplevel, and we use
898 -- the flag Is_Uplevel_Referenced_Entity to avoid making
899 -- duplicate entries in the list.
901 if not Is_Uplevel_Referenced_Entity (URJ.Ent) then
902 Set_Is_Uplevel_Referenced_Entity (URJ.Ent);
904 if not Is_Type (URJ.Ent) then
905 Append_New_Elmt (URJ.Ent, SUBT.Uents);
906 end if;
907 end if;
909 -- And set uplevel indication for caller
911 if SUBT.Lev < SUBF.Uplevel_Ref then
912 SUBF.Uplevel_Ref := SUBT.Lev;
913 end if;
914 end if;
915 end;
916 end loop;
918 Urefs.Set_Last (New_Index);
919 end;
921 -- Remove unreachable subprograms from Subps table. Note that we do
922 -- this after eliminating entries from the other two tables, since
923 -- those elimination steps depend on referencing the Subps table.
925 declare
926 New_SI : SI_Type;
928 begin
929 New_SI := Subps_First - 1;
930 for J in Subps_First .. Subps.Last loop
931 declare
932 STJ : Subp_Entry renames Subps.Table (J);
933 Spec : Node_Id;
934 Decl : Node_Id;
936 begin
937 -- Subprogram is reachable, copy and reset index
939 if STJ.Reachable then
940 New_SI := New_SI + 1;
941 Subps.Table (New_SI) := STJ;
942 Set_Subps_Index (STJ.Ent, UI_From_Int (New_SI));
944 -- Subprogram is not reachable
946 else
947 -- Clear index, since no longer active
949 Set_Subps_Index (Subps.Table (J).Ent, Uint_0);
951 -- Output debug information if -gnatd.3 set
953 if Debug_Flag_Dot_3 then
954 Write_Str ("Eliminate ");
955 Write_Name (Chars (Subps.Table (J).Ent));
956 Write_Str (" at ");
957 Write_Location (Sloc (Subps.Table (J).Ent));
958 Write_Str (" (not referenced)");
959 Write_Eol;
960 end if;
962 -- Rewrite declaration and body to null statements
964 Spec := Corresponding_Spec (STJ.Bod);
966 if Present (Spec) then
967 Decl := Parent (Declaration_Node (Spec));
968 Rewrite (Decl, Make_Null_Statement (Sloc (Decl)));
969 end if;
971 Rewrite (STJ.Bod, Make_Null_Statement (Sloc (STJ.Bod)));
972 end if;
973 end;
974 end loop;
976 Subps.Set_Last (New_SI);
977 end;
979 -- Now it is time for the second transitive closure, which follows calls
980 -- and makes sure that A calls B, and B has uplevel references, then A
981 -- is also marked as having uplevel references.
983 Closure_Uplevel : declare
984 Modified : Boolean;
986 begin
987 -- We use a simple minded algorithm as follows (obviously this can
988 -- be done more efficiently, using one of the standard algorithms
989 -- for efficient transitive closure computation, but this is simple
990 -- and most likely fast enough that its speed does not matter).
992 -- Repeatedly scan the list of calls. Any time we find a call from
993 -- A to B, where B has uplevel references, make sure that A is marked
994 -- as having at least the same level of uplevel referencing.
996 Outer2 : loop
997 Modified := False;
998 Inner2 : for J in Calls.First .. Calls.Last loop
999 declare
1000 CTJ : Call_Entry renames Calls.Table (J);
1001 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1002 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1003 SUBF : Subp_Entry renames Subps.Table (SINF);
1004 SUBT : Subp_Entry renames Subps.Table (SINT);
1005 begin
1006 if SUBT.Lev > SUBT.Uplevel_Ref
1007 and then SUBF.Uplevel_Ref > SUBT.Uplevel_Ref
1008 then
1009 SUBF.Uplevel_Ref := SUBT.Uplevel_Ref;
1010 Modified := True;
1011 end if;
1012 end;
1013 end loop Inner2;
1015 exit Outer2 when not Modified;
1016 end loop Outer2;
1017 end Closure_Uplevel;
1019 -- We have one more step before the tables are complete. An uplevel
1020 -- call from subprogram A to subprogram B where subprogram B has uplevel
1021 -- references is in effect an uplevel reference, and must arrange for
1022 -- the proper activation link to be passed.
1024 for J in Calls.First .. Calls.Last loop
1025 declare
1026 CTJ : Call_Entry renames Calls.Table (J);
1028 SINF : constant SI_Type := Subp_Index (CTJ.Caller);
1029 SINT : constant SI_Type := Subp_Index (CTJ.Callee);
1031 SUBF : Subp_Entry renames Subps.Table (SINF);
1032 SUBT : Subp_Entry renames Subps.Table (SINT);
1034 A : Entity_Id;
1036 begin
1037 -- If callee has uplevel references
1039 if SUBT.Uplevel_Ref < SUBT.Lev
1041 -- And this is an uplevel call
1043 and then SUBT.Lev < SUBF.Lev
1044 then
1045 -- We need to arrange for finding the uplink
1047 A := CTJ.Caller;
1048 loop
1049 A := Enclosing_Subprogram (A);
1050 Subps.Table (Subp_Index (A)).Declares_AREC := True;
1051 exit when A = CTJ.Callee;
1053 -- In any case exit when we get to the outer level. This
1054 -- happens in some odd cases with generics (in particular
1055 -- sem_ch3.adb does not compile without this kludge ???).
1057 exit when A = Subp;
1058 end loop;
1059 end if;
1060 end;
1061 end loop;
1063 -- The tables are now complete, so we can record the last index in the
1064 -- Subps table for later reference in Cprint.
1066 Subps.Table (Subps_First).Last := Subps.Last;
1068 -- Next step, create the entities for code we will insert. We do this
1069 -- at the start so that all the entities are defined, regardless of the
1070 -- order in which we do the code insertions.
1072 Create_Entities : for J in Subps_First .. Subps.Last loop
1073 declare
1074 STJ : Subp_Entry renames Subps.Table (J);
1075 Loc : constant Source_Ptr := Sloc (STJ.Bod);
1077 begin
1078 -- First we create the ARECnF entity for the additional formal for
1079 -- all subprograms which need an activation record passed.
1081 if STJ.Uplevel_Ref < STJ.Lev then
1082 STJ.ARECnF :=
1083 Make_Defining_Identifier (Loc, Chars => AREC_Name (J, "F"));
1084 end if;
1086 -- Define the AREC entities for the activation record if needed
1088 if STJ.Declares_AREC then
1089 STJ.ARECn :=
1090 Make_Defining_Identifier (Loc, AREC_Name (J, ""));
1091 STJ.ARECnT :=
1092 Make_Defining_Identifier (Loc, AREC_Name (J, "T"));
1093 STJ.ARECnPT :=
1094 Make_Defining_Identifier (Loc, AREC_Name (J, "PT"));
1095 STJ.ARECnP :=
1096 Make_Defining_Identifier (Loc, AREC_Name (J, "P"));
1098 -- Define uplink component entity if inner nesting case
1100 if Present (STJ.ARECnF) then
1101 STJ.ARECnU :=
1102 Make_Defining_Identifier (Loc, AREC_Name (J, "U"));
1103 end if;
1104 end if;
1105 end;
1106 end loop Create_Entities;
1108 -- Loop through subprograms
1110 Subp_Loop : declare
1111 Addr : constant Entity_Id := RTE (RE_Address);
1113 begin
1114 for J in Subps_First .. Subps.Last loop
1115 declare
1116 STJ : Subp_Entry renames Subps.Table (J);
1118 begin
1119 -- First add the extra formal if needed. This applies to all
1120 -- nested subprograms that require an activation record to be
1121 -- passed, as indicated by ARECnF being defined.
1123 if Present (STJ.ARECnF) then
1125 -- Here we need the extra formal. We do the expansion and
1126 -- analysis of this manually, since it is fairly simple,
1127 -- and it is not obvious how we can get what we want if we
1128 -- try to use the normal Analyze circuit.
1130 Add_Extra_Formal : declare
1131 Encl : constant SI_Type := Enclosing_Subp (J);
1132 STJE : Subp_Entry renames Subps.Table (Encl);
1133 -- Index and Subp_Entry for enclosing routine
1135 Form : constant Entity_Id := STJ.ARECnF;
1136 -- The formal to be added. Note that n here is one less
1137 -- than the level of the subprogram itself (STJ.Ent).
1139 procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id);
1140 -- S is an N_Function/Procedure_Specification node, and F
1141 -- is the new entity to add to this subprogramn spec as
1142 -- the last Extra_Formal.
1144 ----------------------
1145 -- Add_Form_To_Spec --
1146 ----------------------
1148 procedure Add_Form_To_Spec (F : Entity_Id; S : Node_Id) is
1149 Sub : constant Entity_Id := Defining_Entity (S);
1150 Ent : Entity_Id;
1152 begin
1153 -- Case of at least one Extra_Formal is present, set
1154 -- ARECnF as the new last entry in the list.
1156 if Present (Extra_Formals (Sub)) then
1157 Ent := Extra_Formals (Sub);
1158 while Present (Extra_Formal (Ent)) loop
1159 Ent := Extra_Formal (Ent);
1160 end loop;
1162 Set_Extra_Formal (Ent, F);
1164 -- No Extra formals present
1166 else
1167 Set_Extra_Formals (Sub, F);
1168 Ent := Last_Formal (Sub);
1170 if Present (Ent) then
1171 Set_Extra_Formal (Ent, F);
1172 end if;
1173 end if;
1174 end Add_Form_To_Spec;
1176 -- Start of processing for Add_Extra_Formal
1178 begin
1179 -- Decorate the new formal entity
1181 Set_Scope (Form, STJ.Ent);
1182 Set_Ekind (Form, E_In_Parameter);
1183 Set_Etype (Form, STJE.ARECnPT);
1184 Set_Mechanism (Form, By_Copy);
1185 Set_Never_Set_In_Source (Form, True);
1186 Set_Analyzed (Form, True);
1187 Set_Comes_From_Source (Form, False);
1189 -- Case of only body present
1191 if Acts_As_Spec (STJ.Bod) then
1192 Add_Form_To_Spec (Form, Specification (STJ.Bod));
1194 -- Case of separate spec
1196 else
1197 Add_Form_To_Spec (Form, Parent (STJ.Ent));
1198 end if;
1199 end Add_Extra_Formal;
1200 end if;
1202 -- Processing for subprograms that declare an activation record
1204 if Present (STJ.ARECn) then
1206 -- Local declarations for one such subprogram
1208 declare
1209 Loc : constant Source_Ptr := Sloc (STJ.Bod);
1210 Clist : List_Id;
1211 Comp : Entity_Id;
1213 Decl_ARECnT : Node_Id;
1214 Decl_ARECnPT : Node_Id;
1215 Decl_ARECn : Node_Id;
1216 Decl_ARECnP : Node_Id;
1217 -- Declaration nodes for the AREC entities we build
1219 Decl_Assign : Node_Id;
1220 -- Assigment to set uplink, Empty if none
1222 Decls : List_Id;
1223 -- List of new declarations we create
1225 begin
1226 -- Build list of component declarations for ARECnT
1228 Clist := Empty_List;
1230 -- If we are in a subprogram that has a static link that
1231 -- is passed in (as indicated by ARECnF being defined),
1232 -- then include ARECnU : ARECmPT where ARECmPT comes from
1233 -- the level one higher than the current level, and the
1234 -- entity ARECnPT comes from the enclosing subprogram.
1236 if Present (STJ.ARECnF) then
1237 declare
1238 STJE : Subp_Entry
1239 renames Subps.Table (Enclosing_Subp (J));
1240 begin
1241 Append_To (Clist,
1242 Make_Component_Declaration (Loc,
1243 Defining_Identifier => STJ.ARECnU,
1244 Component_Definition =>
1245 Make_Component_Definition (Loc,
1246 Subtype_Indication =>
1247 New_Occurrence_Of (STJE.ARECnPT, Loc))));
1248 end;
1249 end if;
1251 -- Add components for uplevel referenced entities
1253 if Present (STJ.Uents) then
1254 declare
1255 Elmt : Elmt_Id;
1256 Uent : Entity_Id;
1258 Indx : Nat;
1259 -- 1's origin of index in list of elements. This is
1260 -- used to uniquify names if needed in Upref_Name.
1262 begin
1263 Elmt := First_Elmt (STJ.Uents);
1264 Indx := 0;
1265 while Present (Elmt) loop
1266 Uent := Node (Elmt);
1267 Indx := Indx + 1;
1269 Comp :=
1270 Make_Defining_Identifier (Loc,
1271 Chars => Upref_Name (Uent, Indx, Clist));
1273 Set_Activation_Record_Component
1274 (Uent, Comp);
1276 Append_To (Clist,
1277 Make_Component_Declaration (Loc,
1278 Defining_Identifier => Comp,
1279 Component_Definition =>
1280 Make_Component_Definition (Loc,
1281 Subtype_Indication =>
1282 New_Occurrence_Of (Addr, Loc))));
1284 Next_Elmt (Elmt);
1285 end loop;
1286 end;
1287 end if;
1289 -- Now we can insert the AREC declarations into the body
1291 -- type ARECnT is record .. end record;
1292 -- pragma Suppress_Initialization (ARECnT);
1294 -- Note that we need to set the Suppress_Initialization
1295 -- flag after Decl_ARECnT has been analyzed.
1297 Decl_ARECnT :=
1298 Make_Full_Type_Declaration (Loc,
1299 Defining_Identifier => STJ.ARECnT,
1300 Type_Definition =>
1301 Make_Record_Definition (Loc,
1302 Component_List =>
1303 Make_Component_List (Loc,
1304 Component_Items => Clist)));
1305 Decls := New_List (Decl_ARECnT);
1307 -- type ARECnPT is access all ARECnT;
1309 Decl_ARECnPT :=
1310 Make_Full_Type_Declaration (Loc,
1311 Defining_Identifier => STJ.ARECnPT,
1312 Type_Definition =>
1313 Make_Access_To_Object_Definition (Loc,
1314 All_Present => True,
1315 Subtype_Indication =>
1316 New_Occurrence_Of (STJ.ARECnT, Loc)));
1317 Append_To (Decls, Decl_ARECnPT);
1319 -- ARECn : aliased ARECnT;
1321 Decl_ARECn :=
1322 Make_Object_Declaration (Loc,
1323 Defining_Identifier => STJ.ARECn,
1324 Aliased_Present => True,
1325 Object_Definition =>
1326 New_Occurrence_Of (STJ.ARECnT, Loc));
1327 Append_To (Decls, Decl_ARECn);
1329 -- ARECnP : constant ARECnPT := ARECn'Access;
1331 Decl_ARECnP :=
1332 Make_Object_Declaration (Loc,
1333 Defining_Identifier => STJ.ARECnP,
1334 Constant_Present => True,
1335 Object_Definition =>
1336 New_Occurrence_Of (STJ.ARECnPT, Loc),
1337 Expression =>
1338 Make_Attribute_Reference (Loc,
1339 Prefix =>
1340 New_Occurrence_Of (STJ.ARECn, Loc),
1341 Attribute_Name => Name_Access));
1342 Append_To (Decls, Decl_ARECnP);
1344 -- If we are in a subprogram that has a static link that
1345 -- is passed in (as indicated by ARECnF being defined),
1346 -- then generate ARECn.ARECmU := ARECmF where m is
1347 -- one less than the current level to set the uplink.
1349 if Present (STJ.ARECnF) then
1350 Decl_Assign :=
1351 Make_Assignment_Statement (Loc,
1352 Name =>
1353 Make_Selected_Component (Loc,
1354 Prefix =>
1355 New_Occurrence_Of (STJ.ARECn, Loc),
1356 Selector_Name =>
1357 New_Occurrence_Of (STJ.ARECnU, Loc)),
1358 Expression =>
1359 New_Occurrence_Of (STJ.ARECnF, Loc));
1360 Append_To (Decls, Decl_Assign);
1362 else
1363 Decl_Assign := Empty;
1364 end if;
1366 Prepend_List_To (Declarations (STJ.Bod), Decls);
1368 -- Analyze the newly inserted declarations. Note that we
1369 -- do not need to establish the whole scope stack, since
1370 -- we have already set all entity fields (so there will
1371 -- be no searching of upper scopes to resolve names). But
1372 -- we do set the scope of the current subprogram, so that
1373 -- newly created entities go in the right entity chain.
1375 -- We analyze with all checks suppressed (since we do
1376 -- not expect any exceptions).
1378 Push_Scope (STJ.Ent);
1379 Analyze (Decl_ARECnT, Suppress => All_Checks);
1381 -- Note that we need to call Set_Suppress_Initialization
1382 -- after Decl_ARECnT has been analyzed, but before
1383 -- analyzing Decl_ARECnP so that the flag is properly
1384 -- taking into account.
1386 Set_Suppress_Initialization (STJ.ARECnT);
1388 Analyze (Decl_ARECnPT, Suppress => All_Checks);
1389 Analyze (Decl_ARECn, Suppress => All_Checks);
1390 Analyze (Decl_ARECnP, Suppress => All_Checks);
1392 if Present (Decl_Assign) then
1393 Analyze (Decl_Assign, Suppress => All_Checks);
1394 end if;
1396 Pop_Scope;
1398 -- Next step, for each uplevel referenced entity, add
1399 -- assignment operations to set the component in the
1400 -- activation record.
1402 if Present (STJ.Uents) then
1403 declare
1404 Elmt : Elmt_Id;
1406 begin
1407 Elmt := First_Elmt (STJ.Uents);
1408 while Present (Elmt) loop
1409 declare
1410 Ent : constant Entity_Id := Node (Elmt);
1411 Loc : constant Source_Ptr := Sloc (Ent);
1412 Dec : constant Node_Id :=
1413 Declaration_Node (Ent);
1414 Ins : Node_Id;
1415 Asn : Node_Id;
1417 begin
1418 -- For parameters, we insert the assignment
1419 -- right after the declaration of ARECnP.
1420 -- For all other entities, we insert
1421 -- the assignment immediately after
1422 -- the declaration of the entity.
1424 -- Note: we don't need to mark the entity
1425 -- as being aliased, because the address
1426 -- attribute will mark it as Address_Taken,
1427 -- and that is good enough.
1429 if Is_Formal (Ent) then
1430 Ins := Decl_ARECnP;
1431 else
1432 Ins := Dec;
1433 end if;
1435 -- Build and insert the assignment:
1436 -- ARECn.nam := nam'Address
1438 Asn :=
1439 Make_Assignment_Statement (Loc,
1440 Name =>
1441 Make_Selected_Component (Loc,
1442 Prefix =>
1443 New_Occurrence_Of (STJ.ARECn, Loc),
1444 Selector_Name =>
1445 New_Occurrence_Of
1446 (Activation_Record_Component
1447 (Ent),
1448 Loc)),
1450 Expression =>
1451 Make_Attribute_Reference (Loc,
1452 Prefix =>
1453 New_Occurrence_Of (Ent, Loc),
1454 Attribute_Name => Name_Address));
1456 Insert_After (Ins, Asn);
1458 -- Analyze the assignment statement. We do
1459 -- not need to establish the relevant scope
1460 -- stack entries here, because we have
1461 -- already set the correct entity references,
1462 -- so no name resolution is required, and no
1463 -- new entities are created, so we don't even
1464 -- need to set the current scope.
1466 -- We analyze with all checks suppressed
1467 -- (since we do not expect any exceptions).
1469 Analyze (Asn, Suppress => All_Checks);
1470 end;
1472 Next_Elmt (Elmt);
1473 end loop;
1474 end;
1475 end if;
1476 end;
1477 end if;
1478 end;
1479 end loop;
1480 end Subp_Loop;
1482 -- Next step, process uplevel references. This has to be done in a
1483 -- separate pass, after completing the processing in Sub_Loop because we
1484 -- need all the AREC declarations generated, inserted, and analyzed so
1485 -- that the uplevel references can be successfully analyzed.
1487 Uplev_Refs : for J in Urefs.First .. Urefs.Last loop
1488 declare
1489 UPJ : Uref_Entry renames Urefs.Table (J);
1491 begin
1492 -- Ignore type references, these are implicit references that do
1493 -- not need rewriting (e.g. the appearence in a conversion).
1495 if Is_Type (UPJ.Ent) then
1496 goto Continue;
1497 end if;
1499 -- Also ignore uplevel references to bounds of types that come
1500 -- from the original type reference.
1502 if Is_Entity_Name (UPJ.Ref)
1503 and then Present (Entity (UPJ.Ref))
1504 and then Is_Type (Entity (UPJ.Ref))
1505 then
1506 goto Continue;
1507 end if;
1509 -- Rewrite one reference
1511 Rewrite_One_Ref : declare
1512 Loc : constant Source_Ptr := Sloc (UPJ.Ref);
1513 -- Source location for the reference
1515 Typ : constant Entity_Id := Etype (UPJ.Ent);
1516 -- The type of the referenced entity
1518 Atyp : constant Entity_Id := Get_Actual_Subtype (UPJ.Ref);
1519 -- The actual subtype of the reference
1521 RS_Caller : constant SI_Type := Subp_Index (UPJ.Caller);
1522 -- Subp_Index for caller containing reference
1524 STJR : Subp_Entry renames Subps.Table (RS_Caller);
1525 -- Subp_Entry for subprogram containing reference
1527 RS_Callee : constant SI_Type := Subp_Index (UPJ.Callee);
1528 -- Subp_Index for subprogram containing referenced entity
1530 STJE : Subp_Entry renames Subps.Table (RS_Callee);
1531 -- Subp_Entry for subprogram containing referenced entity
1533 Pfx : Node_Id;
1534 Comp : Entity_Id;
1535 SI : SI_Type;
1537 begin
1538 -- Ignore if no ARECnF entity for enclosing subprogram which
1539 -- probably happens as a result of not properly treating
1540 -- instance bodies. To be examined ???
1542 -- If this test is omitted, then the compilation of freeze.adb
1543 -- and inline.adb fail in unnesting mode.
1545 if No (STJR.ARECnF) then
1546 goto Continue;
1547 end if;
1549 -- Push the current scope, so that the pointer type Tnn, and
1550 -- any subsidiary entities resulting from the analysis of the
1551 -- rewritten reference, go in the right entity chain.
1553 Push_Scope (STJR.Ent);
1555 -- Now we need to rewrite the reference. We have a reference
1556 -- from level STJR.Lev to level STJE.Lev. The general form of
1557 -- the rewritten reference for entity X is:
1559 -- Typ'Deref (ARECaF.ARECbU.ARECcU.ARECdU....ARECm.X)
1561 -- where a,b,c,d .. m =
1562 -- STJR.Lev - 1, STJR.Lev - 2, .. STJE.Lev
1564 pragma Assert (STJR.Lev > STJE.Lev);
1566 -- Compute the prefix of X. Here are examples to make things
1567 -- clear (with parens to show groupings, the prefix is
1568 -- everything except the .X at the end).
1570 -- level 2 to level 1
1572 -- AREC1F.X
1574 -- level 3 to level 1
1576 -- (AREC2F.AREC1U).X
1578 -- level 4 to level 1
1580 -- ((AREC3F.AREC2U).AREC1U).X
1582 -- level 6 to level 2
1584 -- (((AREC5F.AREC4U).AREC3U).AREC2U).X
1586 -- In the above, ARECnF and ARECnU are pointers, so there are
1587 -- explicit dereferences required for these occurrences.
1589 Pfx :=
1590 Make_Explicit_Dereference (Loc,
1591 Prefix => New_Occurrence_Of (STJR.ARECnF, Loc));
1592 SI := RS_Caller;
1593 for L in STJE.Lev .. STJR.Lev - 2 loop
1594 SI := Enclosing_Subp (SI);
1595 Pfx :=
1596 Make_Explicit_Dereference (Loc,
1597 Prefix =>
1598 Make_Selected_Component (Loc,
1599 Prefix => Pfx,
1600 Selector_Name =>
1601 New_Occurrence_Of (Subps.Table (SI).ARECnU, Loc)));
1602 end loop;
1604 -- Get activation record component (must exist)
1606 Comp := Activation_Record_Component (UPJ.Ent);
1607 pragma Assert (Present (Comp));
1609 -- Do the replacement
1611 Rewrite (UPJ.Ref,
1612 Make_Attribute_Reference (Loc,
1613 Prefix => New_Occurrence_Of (Atyp, Loc),
1614 Attribute_Name => Name_Deref,
1615 Expressions => New_List (
1616 Make_Selected_Component (Loc,
1617 Prefix => Pfx,
1618 Selector_Name =>
1619 New_Occurrence_Of (Comp, Loc)))));
1621 -- Analyze and resolve the new expression. We do not need to
1622 -- establish the relevant scope stack entries here, because we
1623 -- have already set all the correct entity references, so no
1624 -- name resolution is needed. We have already set the current
1625 -- scope, so that any new entities created will be in the right
1626 -- scope.
1628 -- We analyze with all checks suppressed (since we do not
1629 -- expect any exceptions)
1631 Analyze_And_Resolve (UPJ.Ref, Typ, Suppress => All_Checks);
1632 Pop_Scope;
1633 end Rewrite_One_Ref;
1634 end;
1636 <<Continue>>
1637 null;
1638 end loop Uplev_Refs;
1640 -- Finally, loop through all calls adding extra actual for the
1641 -- activation record where it is required.
1643 Adjust_Calls : for J in Calls.First .. Calls.Last loop
1645 -- Process a single call, we are only interested in a call to a
1646 -- subprogram that actually needs a pointer to an activation record,
1647 -- as indicated by the ARECnF entity being set. This excludes the
1648 -- top level subprogram, and any subprogram not having uplevel refs.
1650 Adjust_One_Call : declare
1651 CTJ : Call_Entry renames Calls.Table (J);
1652 STF : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Caller));
1653 STT : Subp_Entry renames Subps.Table (Subp_Index (CTJ.Callee));
1655 Loc : constant Source_Ptr := Sloc (CTJ.N);
1657 Extra : Node_Id;
1658 ExtraP : Node_Id;
1659 SubX : SI_Type;
1660 Act : Node_Id;
1662 begin
1663 if Present (STT.ARECnF)
1664 and then Nkind (CTJ.N) /= N_Attribute_Reference
1665 then
1666 -- CTJ.N is a call to a subprogram which may require a pointer
1667 -- to an activation record. The subprogram containing the call
1668 -- is CTJ.From and the subprogram being called is CTJ.To, so we
1669 -- have a call from level STF.Lev to level STT.Lev.
1671 -- There are three possibilities:
1673 -- For a call to the same level, we just pass the activation
1674 -- record passed to the calling subprogram.
1676 if STF.Lev = STT.Lev then
1677 Extra := New_Occurrence_Of (STF.ARECnF, Loc);
1679 -- For a call that goes down a level, we pass a pointer to the
1680 -- activation record constructed within the caller (which may
1681 -- be the outer-level subprogram, but also may be a more deeply
1682 -- nested caller).
1684 elsif STT.Lev = STF.Lev + 1 then
1685 Extra := New_Occurrence_Of (STF.ARECnP, Loc);
1687 -- Otherwise we must have an upcall (STT.Lev < STF.LEV),
1688 -- since it is not possible to do a downcall of more than
1689 -- one level.
1691 -- For a call from level STF.Lev to level STT.Lev, we
1692 -- have to find the activation record needed by the
1693 -- callee. This is as follows:
1695 -- ARECaF.ARECbU.ARECcU....ARECm
1697 -- where a,b,c .. m =
1698 -- STF.Lev - 1, STF.Lev - 2, STF.Lev - 3 .. STT.Lev
1700 else
1701 pragma Assert (STT.Lev < STF.Lev);
1703 Extra := New_Occurrence_Of (STF.ARECnF, Loc);
1704 SubX := Subp_Index (CTJ.Caller);
1705 for K in reverse STT.Lev .. STF.Lev - 1 loop
1706 SubX := Enclosing_Subp (SubX);
1707 Extra :=
1708 Make_Selected_Component (Loc,
1709 Prefix => Extra,
1710 Selector_Name =>
1711 New_Occurrence_Of
1712 (Subps.Table (SubX).ARECnU, Loc));
1713 end loop;
1714 end if;
1716 -- Extra is the additional parameter to be added. Build a
1717 -- parameter association that we can append to the actuals.
1719 ExtraP :=
1720 Make_Parameter_Association (Loc,
1721 Selector_Name =>
1722 New_Occurrence_Of (STT.ARECnF, Loc),
1723 Explicit_Actual_Parameter => Extra);
1725 if No (Parameter_Associations (CTJ.N)) then
1726 Set_Parameter_Associations (CTJ.N, Empty_List);
1727 end if;
1729 Append (ExtraP, Parameter_Associations (CTJ.N));
1731 -- We need to deal with the actual parameter chain as well. The
1732 -- newly added parameter is always the last actual.
1734 Act := First_Named_Actual (CTJ.N);
1736 if No (Act) then
1737 Set_First_Named_Actual (CTJ.N, Extra);
1739 -- Here we must follow the chain and append the new entry
1741 else
1742 loop
1743 declare
1744 PAN : Node_Id;
1745 NNA : Node_Id;
1747 begin
1748 PAN := Parent (Act);
1749 pragma Assert (Nkind (PAN) = N_Parameter_Association);
1750 NNA := Next_Named_Actual (PAN);
1752 if No (NNA) then
1753 Set_Next_Named_Actual (PAN, Extra);
1754 exit;
1755 end if;
1757 Act := NNA;
1758 end;
1759 end loop;
1760 end if;
1762 -- Analyze and resolve the new actual. We do not need to
1763 -- establish the relevant scope stack entries here, because
1764 -- we have already set all the correct entity references, so
1765 -- no name resolution is needed.
1767 -- We analyze with all checks suppressed (since we do not
1768 -- expect any exceptions, and also we temporarily turn off
1769 -- Unested_Subprogram_Mode to avoid trying to mark uplevel
1770 -- references (not needed at this stage, and in fact causes
1771 -- a bit of recursive chaos).
1773 Opt.Unnest_Subprogram_Mode := False;
1774 Analyze_And_Resolve
1775 (Extra, Etype (STT.ARECnF), Suppress => All_Checks);
1776 Opt.Unnest_Subprogram_Mode := True;
1777 end if;
1778 end Adjust_One_Call;
1779 end loop Adjust_Calls;
1781 return;
1782 end Unnest_Subprogram;
1784 ------------------------
1785 -- Unnest_Subprograms --
1786 ------------------------
1788 procedure Unnest_Subprograms (N : Node_Id) is
1789 function Search_Subprograms (N : Node_Id) return Traverse_Result;
1790 -- Tree visitor that search for outer level procedures with nested
1791 -- subprograms and invokes Unnest_Subprogram()
1793 ------------------------
1794 -- Search_Subprograms --
1795 ------------------------
1797 function Search_Subprograms (N : Node_Id) return Traverse_Result is
1798 begin
1799 if Nkind_In (N, N_Subprogram_Body, N_Subprogram_Body_Stub) then
1800 declare
1801 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
1803 begin
1804 -- We are only interested in subprograms (not generic
1805 -- subprograms), that have nested subprograms.
1807 if Is_Subprogram (Spec_Id)
1808 and then Has_Nested_Subprogram (Spec_Id)
1809 and then Is_Library_Level_Entity (Spec_Id)
1810 then
1811 Unnest_Subprogram (Spec_Id, N);
1812 end if;
1813 end;
1814 end if;
1816 return OK;
1817 end Search_Subprograms;
1819 ---------------
1820 -- Do_Search --
1821 ---------------
1823 procedure Do_Search is new Traverse_Proc (Search_Subprograms);
1824 -- Subtree visitor instantiation
1826 -- Start of processing for Unnest_Subprograms
1828 begin
1829 if not Opt.Unnest_Subprogram_Mode then
1830 return;
1831 end if;
1833 Do_Search (N);
1834 end Unnest_Subprograms;
1836 end Exp_Unst;