Add C++11 header <cuchar>.
[official-gcc.git] / gcc / gcse.c
blob4d95b4810f1c08538155a6d9f3516eb2a24230eb
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "predict.h"
140 #include "tree.h"
141 #include "rtl.h"
142 #include "df.h"
143 #include "diagnostic-core.h"
144 #include "toplev.h"
145 #include "alias.h"
146 #include "tm_p.h"
147 #include "regs.h"
148 #include "ira.h"
149 #include "flags.h"
150 #include "insn-config.h"
151 #include "recog.h"
152 #include "cfgrtl.h"
153 #include "cfganal.h"
154 #include "lcm.h"
155 #include "cfgcleanup.h"
156 #include "expmed.h"
157 #include "dojump.h"
158 #include "explow.h"
159 #include "calls.h"
160 #include "emit-rtl.h"
161 #include "varasm.h"
162 #include "stmt.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "params.h"
166 #include "alloc-pool.h"
167 #include "cselib.h"
168 #include "intl.h"
169 #include "tree-pass.h"
170 #include "dbgcnt.h"
171 #include "target.h"
172 #include "gcse.h"
173 #include "gcse-common.h"
175 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
176 are a superset of those done by classic GCSE.
178 Two passes of copy/constant propagation are done around PRE or hoisting
179 because the first one enables more GCSE and the second one helps to clean
180 up the copies that PRE and HOIST create. This is needed more for PRE than
181 for HOIST because code hoisting will try to use an existing register
182 containing the common subexpression rather than create a new one. This is
183 harder to do for PRE because of the code motion (which HOIST doesn't do).
185 Expressions we are interested in GCSE-ing are of the form
186 (set (pseudo-reg) (expression)).
187 Function want_to_gcse_p says what these are.
189 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
190 This allows PRE to hoist expressions that are expressed in multiple insns,
191 such as complex address calculations (e.g. for PIC code, or loads with a
192 high part and a low part).
194 PRE handles moving invariant expressions out of loops (by treating them as
195 partially redundant).
197 **********************
199 We used to support multiple passes but there are diminishing returns in
200 doing so. The first pass usually makes 90% of the changes that are doable.
201 A second pass can make a few more changes made possible by the first pass.
202 Experiments show any further passes don't make enough changes to justify
203 the expense.
205 A study of spec92 using an unlimited number of passes:
206 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
207 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
208 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
210 It was found doing copy propagation between each pass enables further
211 substitutions.
213 This study was done before expressions in REG_EQUAL notes were added as
214 candidate expressions for optimization, and before the GIMPLE optimizers
215 were added. Probably, multiple passes is even less efficient now than
216 at the time when the study was conducted.
218 PRE is quite expensive in complicated functions because the DFA can take
219 a while to converge. Hence we only perform one pass.
221 **********************
223 The steps for PRE are:
225 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
227 2) Perform the data flow analysis for PRE.
229 3) Delete the redundant instructions
231 4) Insert the required copies [if any] that make the partially
232 redundant instructions fully redundant.
234 5) For other reaching expressions, insert an instruction to copy the value
235 to a newly created pseudo that will reach the redundant instruction.
237 The deletion is done first so that when we do insertions we
238 know which pseudo reg to use.
240 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
241 argue it is not. The number of iterations for the algorithm to converge
242 is typically 2-4 so I don't view it as that expensive (relatively speaking).
244 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
245 we create. To make an expression reach the place where it's redundant,
246 the result of the expression is copied to a new register, and the redundant
247 expression is deleted by replacing it with this new register. Classic GCSE
248 doesn't have this problem as much as it computes the reaching defs of
249 each register in each block and thus can try to use an existing
250 register. */
252 /* GCSE global vars. */
254 struct target_gcse default_target_gcse;
255 #if SWITCHABLE_TARGET
256 struct target_gcse *this_target_gcse = &default_target_gcse;
257 #endif
259 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
260 int flag_rerun_cse_after_global_opts;
262 /* An obstack for our working variables. */
263 static struct obstack gcse_obstack;
265 /* Hash table of expressions. */
267 struct gcse_expr
269 /* The expression. */
270 rtx expr;
271 /* Index in the available expression bitmaps. */
272 int bitmap_index;
273 /* Next entry with the same hash. */
274 struct gcse_expr *next_same_hash;
275 /* List of anticipatable occurrences in basic blocks in the function.
276 An "anticipatable occurrence" is one that is the first occurrence in the
277 basic block, the operands are not modified in the basic block prior
278 to the occurrence and the output is not used between the start of
279 the block and the occurrence. */
280 struct gcse_occr *antic_occr;
281 /* List of available occurrence in basic blocks in the function.
282 An "available occurrence" is one that is the last occurrence in the
283 basic block and the operands are not modified by following statements in
284 the basic block [including this insn]. */
285 struct gcse_occr *avail_occr;
286 /* Non-null if the computation is PRE redundant.
287 The value is the newly created pseudo-reg to record a copy of the
288 expression in all the places that reach the redundant copy. */
289 rtx reaching_reg;
290 /* Maximum distance in instructions this expression can travel.
291 We avoid moving simple expressions for more than a few instructions
292 to keep register pressure under control.
293 A value of "0" removes restrictions on how far the expression can
294 travel. */
295 int max_distance;
298 /* Occurrence of an expression.
299 There is one per basic block. If a pattern appears more than once the
300 last appearance is used [or first for anticipatable expressions]. */
302 struct gcse_occr
304 /* Next occurrence of this expression. */
305 struct gcse_occr *next;
306 /* The insn that computes the expression. */
307 rtx_insn *insn;
308 /* Nonzero if this [anticipatable] occurrence has been deleted. */
309 char deleted_p;
310 /* Nonzero if this [available] occurrence has been copied to
311 reaching_reg. */
312 /* ??? This is mutually exclusive with deleted_p, so they could share
313 the same byte. */
314 char copied_p;
317 typedef struct gcse_occr *occr_t;
319 /* Expression hash tables.
320 Each hash table is an array of buckets.
321 ??? It is known that if it were an array of entries, structure elements
322 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
323 not clear whether in the final analysis a sufficient amount of memory would
324 be saved as the size of the available expression bitmaps would be larger
325 [one could build a mapping table without holes afterwards though].
326 Someday I'll perform the computation and figure it out. */
328 struct gcse_hash_table_d
330 /* The table itself.
331 This is an array of `expr_hash_table_size' elements. */
332 struct gcse_expr **table;
334 /* Size of the hash table, in elements. */
335 unsigned int size;
337 /* Number of hash table elements. */
338 unsigned int n_elems;
341 /* Expression hash table. */
342 static struct gcse_hash_table_d expr_hash_table;
344 /* This is a list of expressions which are MEMs and will be used by load
345 or store motion.
346 Load motion tracks MEMs which aren't killed by anything except itself,
347 i.e. loads and stores to a single location.
348 We can then allow movement of these MEM refs with a little special
349 allowance. (all stores copy the same value to the reaching reg used
350 for the loads). This means all values used to store into memory must have
351 no side effects so we can re-issue the setter value. */
353 struct ls_expr
355 struct gcse_expr * expr; /* Gcse expression reference for LM. */
356 rtx pattern; /* Pattern of this mem. */
357 rtx pattern_regs; /* List of registers mentioned by the mem. */
358 rtx_insn_list *loads; /* INSN list of loads seen. */
359 rtx_insn_list *stores; /* INSN list of stores seen. */
360 struct ls_expr * next; /* Next in the list. */
361 int invalid; /* Invalid for some reason. */
362 int index; /* If it maps to a bitmap index. */
363 unsigned int hash_index; /* Index when in a hash table. */
364 rtx reaching_reg; /* Register to use when re-writing. */
367 /* Head of the list of load/store memory refs. */
368 static struct ls_expr * pre_ldst_mems = NULL;
370 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
372 typedef value_type compare_type;
373 static inline hashval_t hash (const ls_expr *);
374 static inline bool equal (const ls_expr *, const ls_expr *);
377 /* Hashtable helpers. */
378 inline hashval_t
379 pre_ldst_expr_hasher::hash (const ls_expr *x)
381 int do_not_record_p = 0;
382 return
383 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
386 static int expr_equiv_p (const_rtx, const_rtx);
388 inline bool
389 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
390 const ls_expr *ptr2)
392 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
395 /* Hashtable for the load/store memory refs. */
396 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
398 /* Bitmap containing one bit for each register in the program.
399 Used when performing GCSE to track which registers have been set since
400 the start of the basic block. */
401 static regset reg_set_bitmap;
403 /* Array, indexed by basic block number for a list of insns which modify
404 memory within that block. */
405 static vec<rtx_insn *> *modify_mem_list;
406 static bitmap modify_mem_list_set;
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
416 /* Various variables for statistics gathering. */
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
431 /* For available exprs */
432 static sbitmap *ae_kill;
434 /* Data stored for each basic block. */
435 struct bb_data
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
453 static basic_block curr_bb;
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
466 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
468 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
469 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
470 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
471 static int oprs_available_p (const_rtx, const rtx_insn *);
472 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
473 int, struct gcse_hash_table_d *);
474 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
475 static void record_last_reg_set_info (rtx_insn *, int);
476 static void record_last_mem_set_info (rtx_insn *);
477 static void record_last_set_info (rtx, const_rtx, void *);
478 static void compute_hash_table (struct gcse_hash_table_d *);
479 static void alloc_hash_table (struct gcse_hash_table_d *);
480 static void free_hash_table (struct gcse_hash_table_d *);
481 static void compute_hash_table_work (struct gcse_hash_table_d *);
482 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
483 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
484 struct gcse_hash_table_d *);
485 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
486 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
487 static void alloc_pre_mem (int, int);
488 static void free_pre_mem (void);
489 static struct edge_list *compute_pre_data (void);
490 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
491 basic_block);
492 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
493 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
494 static void pre_insert_copies (void);
495 static int pre_delete (void);
496 static int pre_gcse (struct edge_list *);
497 static int one_pre_gcse_pass (void);
498 static void add_label_notes (rtx, rtx_insn *);
499 static void alloc_code_hoist_mem (int, int);
500 static void free_code_hoist_mem (void);
501 static void compute_code_hoist_vbeinout (void);
502 static void compute_code_hoist_data (void);
503 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
504 sbitmap, int, int *, enum reg_class,
505 int *, bitmap, rtx_insn *);
506 static int hoist_code (void);
507 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
508 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
509 static int one_code_hoisting_pass (void);
510 static rtx_insn *process_insert_insn (struct gcse_expr *);
511 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
512 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
513 basic_block, char *);
514 static struct ls_expr * ldst_entry (rtx);
515 static void free_ldst_entry (struct ls_expr *);
516 static void free_ld_motion_mems (void);
517 static void print_ldst_list (FILE *);
518 static struct ls_expr * find_rtx_in_ldst (rtx);
519 static int simple_mem (const_rtx);
520 static void invalidate_any_buried_refs (rtx);
521 static void compute_ld_motion_mems (void);
522 static void trim_ld_motion_mems (void);
523 static void update_ld_motion_stores (struct gcse_expr *);
524 static void clear_modify_mem_tables (void);
525 static void free_modify_mem_tables (void);
526 static bool is_too_expensive (const char *);
528 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
529 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
531 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
532 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
534 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
535 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
537 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
538 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
540 /* Misc. utilities. */
542 #define can_copy \
543 (this_target_gcse->x_can_copy)
544 #define can_copy_init_p \
545 (this_target_gcse->x_can_copy_init_p)
547 /* Compute which modes support reg/reg copy operations. */
549 static void
550 compute_can_copy (void)
552 int i;
553 #ifndef AVOID_CCMODE_COPIES
554 rtx reg;
555 rtx_insn *insn;
556 #endif
557 memset (can_copy, 0, NUM_MACHINE_MODES);
559 start_sequence ();
560 for (i = 0; i < NUM_MACHINE_MODES; i++)
561 if (GET_MODE_CLASS (i) == MODE_CC)
563 #ifdef AVOID_CCMODE_COPIES
564 can_copy[i] = 0;
565 #else
566 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
567 insn = emit_insn (gen_rtx_SET (reg, reg));
568 if (recog (PATTERN (insn), insn, NULL) >= 0)
569 can_copy[i] = 1;
570 #endif
572 else
573 can_copy[i] = 1;
575 end_sequence ();
578 /* Returns whether the mode supports reg/reg copy operations. */
580 bool
581 can_copy_p (machine_mode mode)
583 if (! can_copy_init_p)
585 compute_can_copy ();
586 can_copy_init_p = true;
589 return can_copy[mode] != 0;
592 /* Cover function to xmalloc to record bytes allocated. */
594 static void *
595 gmalloc (size_t size)
597 bytes_used += size;
598 return xmalloc (size);
601 /* Cover function to xcalloc to record bytes allocated. */
603 static void *
604 gcalloc (size_t nelem, size_t elsize)
606 bytes_used += nelem * elsize;
607 return xcalloc (nelem, elsize);
610 /* Cover function to obstack_alloc. */
612 static void *
613 gcse_alloc (unsigned long size)
615 bytes_used += size;
616 return obstack_alloc (&gcse_obstack, size);
619 /* Allocate memory for the reg/memory set tracking tables.
620 This is called at the start of each pass. */
622 static void
623 alloc_gcse_mem (void)
625 /* Allocate vars to track sets of regs. */
626 reg_set_bitmap = ALLOC_REG_SET (NULL);
628 /* Allocate array to keep a list of insns which modify memory in each
629 basic block. The two typedefs are needed to work around the
630 pre-processor limitation with template types in macro arguments. */
631 typedef vec<rtx_insn *> vec_rtx_heap;
632 typedef vec<modify_pair> vec_modify_pair_heap;
633 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
634 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
635 last_basic_block_for_fn (cfun));
636 modify_mem_list_set = BITMAP_ALLOC (NULL);
637 blocks_with_calls = BITMAP_ALLOC (NULL);
640 /* Free memory allocated by alloc_gcse_mem. */
642 static void
643 free_gcse_mem (void)
645 FREE_REG_SET (reg_set_bitmap);
647 free_modify_mem_tables ();
648 BITMAP_FREE (modify_mem_list_set);
649 BITMAP_FREE (blocks_with_calls);
652 /* Compute the local properties of each recorded expression.
654 Local properties are those that are defined by the block, irrespective of
655 other blocks.
657 An expression is transparent in a block if its operands are not modified
658 in the block.
660 An expression is computed (locally available) in a block if it is computed
661 at least once and expression would contain the same value if the
662 computation was moved to the end of the block.
664 An expression is locally anticipatable in a block if it is computed at
665 least once and expression would contain the same value if the computation
666 was moved to the beginning of the block.
668 We call this routine for pre and code hoisting. They all compute
669 basically the same information and thus can easily share this code.
671 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
672 properties. If NULL, then it is not necessary to compute or record that
673 particular property.
675 TABLE controls which hash table to look at. */
677 static void
678 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
679 struct gcse_hash_table_d *table)
681 unsigned int i;
683 /* Initialize any bitmaps that were passed in. */
684 if (transp)
686 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
689 if (comp)
690 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
691 if (antloc)
692 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
694 for (i = 0; i < table->size; i++)
696 struct gcse_expr *expr;
698 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
700 int indx = expr->bitmap_index;
701 struct gcse_occr *occr;
703 /* The expression is transparent in this block if it is not killed.
704 We start by assuming all are transparent [none are killed], and
705 then reset the bits for those that are. */
706 if (transp)
707 compute_transp (expr->expr, indx, transp,
708 blocks_with_calls,
709 modify_mem_list_set,
710 canon_modify_mem_list);
712 /* The occurrences recorded in antic_occr are exactly those that
713 we want to set to nonzero in ANTLOC. */
714 if (antloc)
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
724 /* The occurrences recorded in avail_occr are exactly those that
725 we want to set to nonzero in COMP. */
726 if (comp)
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
743 /* Hash table support. */
745 struct reg_avail_info
747 basic_block last_bb;
748 int first_set;
749 int last_set;
752 static struct reg_avail_info *reg_avail_info;
753 static basic_block current_bb;
755 /* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
758 static int
759 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
761 #ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767 #endif
769 /* GCSE'ing constants:
771 We do not specifically distinguish between constant and non-constant
772 expressions in PRE and Hoist. We use set_src_cost below to limit
773 the maximum distance simple expressions can travel.
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
787 switch (GET_CODE (x))
789 case REG:
790 case SUBREG:
791 case CALL:
792 return 0;
794 CASE_CONST_ANY:
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
799 /* FALLTHRU */
801 default:
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
805 int cost;
806 int max_distance;
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
810 cost = set_src_cost (x, mode, 0);
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
818 gcc_assert (max_distance > 0);
820 else
821 max_distance = 0;
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
827 return can_assign_to_reg_without_clobbers_p (x);
831 /* Used internally by can_assign_to_reg_without_clobbers_p. */
833 static GTY(()) rtx_insn *test_insn;
835 /* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
847 bool
848 can_assign_to_reg_without_clobbers_p (rtx x)
850 int num_clobbers = 0;
851 int icode;
852 bool can_assign = false;
854 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
855 if (general_operand (x, GET_MODE (x)))
856 return 1;
857 else if (GET_MODE (x) == VOIDmode)
858 return 0;
860 /* Otherwise, check if we can make a valid insn from it. First initialize
861 our test insn if we haven't already. */
862 if (test_insn == 0)
864 test_insn
865 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
868 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
869 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
872 /* Now make an insn like the one we would make when GCSE'ing and see if
873 valid. */
874 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
875 SET_SRC (PATTERN (test_insn)) = x;
877 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
879 /* If the test insn is valid and doesn't need clobbers, and the target also
880 has no objections, we're good. */
881 if (icode >= 0
882 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
883 && ! (targetm.cannot_copy_insn_p
884 && targetm.cannot_copy_insn_p (test_insn)))
885 can_assign = true;
887 /* Make sure test_insn doesn't have any pointers into GC space. */
888 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
890 return can_assign;
893 /* Return nonzero if the operands of expression X are unchanged from the
894 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
895 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
897 static int
898 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
900 int i, j;
901 enum rtx_code code;
902 const char *fmt;
904 if (x == 0)
905 return 1;
907 code = GET_CODE (x);
908 switch (code)
910 case REG:
912 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
914 if (info->last_bb != current_bb)
915 return 1;
916 if (avail_p)
917 return info->last_set < DF_INSN_LUID (insn);
918 else
919 return info->first_set >= DF_INSN_LUID (insn);
922 case MEM:
923 if (! flag_gcse_lm
924 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
925 x, avail_p))
926 return 0;
927 else
928 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
930 case PRE_DEC:
931 case PRE_INC:
932 case POST_DEC:
933 case POST_INC:
934 case PRE_MODIFY:
935 case POST_MODIFY:
936 return 0;
938 case PC:
939 case CC0: /*FIXME*/
940 case CONST:
941 CASE_CONST_ANY:
942 case SYMBOL_REF:
943 case LABEL_REF:
944 case ADDR_VEC:
945 case ADDR_DIFF_VEC:
946 return 1;
948 default:
949 break;
952 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
954 if (fmt[i] == 'e')
956 /* If we are about to do the last recursive call needed at this
957 level, change it into iteration. This function is called enough
958 to be worth it. */
959 if (i == 0)
960 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
962 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
963 return 0;
965 else if (fmt[i] == 'E')
966 for (j = 0; j < XVECLEN (x, i); j++)
967 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
968 return 0;
971 return 1;
974 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
976 struct mem_conflict_info
978 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
979 see if a memory store conflicts with this memory load. */
980 const_rtx mem;
982 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
983 references. */
984 bool conflict;
987 /* DEST is the output of an instruction. If it is a memory reference and
988 possibly conflicts with the load found in DATA, then communicate this
989 information back through DATA. */
991 static void
992 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
993 void *data)
995 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
997 while (GET_CODE (dest) == SUBREG
998 || GET_CODE (dest) == ZERO_EXTRACT
999 || GET_CODE (dest) == STRICT_LOW_PART)
1000 dest = XEXP (dest, 0);
1002 /* If DEST is not a MEM, then it will not conflict with the load. Note
1003 that function calls are assumed to clobber memory, but are handled
1004 elsewhere. */
1005 if (! MEM_P (dest))
1006 return;
1008 /* If we are setting a MEM in our list of specially recognized MEMs,
1009 don't mark as killed this time. */
1010 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1012 if (!find_rtx_in_ldst (dest))
1013 mci->conflict = true;
1014 return;
1017 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1018 mci->conflict = true;
1021 /* Return nonzero if the expression in X (a memory reference) is killed
1022 in block BB before or after the insn with the LUID in UID_LIMIT.
1023 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1024 before UID_LIMIT.
1026 To check the entire block, set UID_LIMIT to max_uid + 1 and
1027 AVAIL_P to 0. */
1029 static int
1030 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1031 int avail_p)
1033 vec<rtx_insn *> list = modify_mem_list[bb->index];
1034 rtx_insn *setter;
1035 unsigned ix;
1037 /* If this is a readonly then we aren't going to be changing it. */
1038 if (MEM_READONLY_P (x))
1039 return 0;
1041 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1043 struct mem_conflict_info mci;
1045 /* Ignore entries in the list that do not apply. */
1046 if ((avail_p
1047 && DF_INSN_LUID (setter) < uid_limit)
1048 || (! avail_p
1049 && DF_INSN_LUID (setter) > uid_limit))
1050 continue;
1052 /* If SETTER is a call everything is clobbered. Note that calls
1053 to pure functions are never put on the list, so we need not
1054 worry about them. */
1055 if (CALL_P (setter))
1056 return 1;
1058 /* SETTER must be an INSN of some kind that sets memory. Call
1059 note_stores to examine each hunk of memory that is modified. */
1060 mci.mem = x;
1061 mci.conflict = false;
1062 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1063 if (mci.conflict)
1064 return 1;
1066 return 0;
1069 /* Return nonzero if the operands of expression X are unchanged from
1070 the start of INSN's basic block up to but not including INSN. */
1072 static int
1073 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1075 return oprs_unchanged_p (x, insn, 0);
1078 /* Return nonzero if the operands of expression X are unchanged from
1079 INSN to the end of INSN's basic block. */
1081 static int
1082 oprs_available_p (const_rtx x, const rtx_insn *insn)
1084 return oprs_unchanged_p (x, insn, 1);
1087 /* Hash expression X.
1089 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1090 indicating if a volatile operand is found or if the expression contains
1091 something we don't want to insert in the table. HASH_TABLE_SIZE is
1092 the current size of the hash table to be probed. */
1094 static unsigned int
1095 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1096 int hash_table_size)
1098 unsigned int hash;
1100 *do_not_record_p = 0;
1102 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1103 return hash % hash_table_size;
1106 /* Return nonzero if exp1 is equivalent to exp2. */
1108 static int
1109 expr_equiv_p (const_rtx x, const_rtx y)
1111 return exp_equiv_p (x, y, 0, true);
1114 /* Insert expression X in INSN in the hash TABLE.
1115 If it is already present, record it as the last occurrence in INSN's
1116 basic block.
1118 MODE is the mode of the value X is being stored into.
1119 It is only used if X is a CONST_INT.
1121 ANTIC_P is nonzero if X is an anticipatable expression.
1122 AVAIL_P is nonzero if X is an available expression.
1124 MAX_DISTANCE is the maximum distance in instructions this expression can
1125 be moved. */
1127 static void
1128 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1129 int antic_p,
1130 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1132 int found, do_not_record_p;
1133 unsigned int hash;
1134 struct gcse_expr *cur_expr, *last_expr = NULL;
1135 struct gcse_occr *antic_occr, *avail_occr;
1137 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1139 /* Do not insert expression in table if it contains volatile operands,
1140 or if hash_expr determines the expression is something we don't want
1141 to or can't handle. */
1142 if (do_not_record_p)
1143 return;
1145 cur_expr = table->table[hash];
1146 found = 0;
1148 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1150 /* If the expression isn't found, save a pointer to the end of
1151 the list. */
1152 last_expr = cur_expr;
1153 cur_expr = cur_expr->next_same_hash;
1156 if (! found)
1158 cur_expr = GOBNEW (struct gcse_expr);
1159 bytes_used += sizeof (struct gcse_expr);
1160 if (table->table[hash] == NULL)
1161 /* This is the first pattern that hashed to this index. */
1162 table->table[hash] = cur_expr;
1163 else
1164 /* Add EXPR to end of this hash chain. */
1165 last_expr->next_same_hash = cur_expr;
1167 /* Set the fields of the expr element. */
1168 cur_expr->expr = x;
1169 cur_expr->bitmap_index = table->n_elems++;
1170 cur_expr->next_same_hash = NULL;
1171 cur_expr->antic_occr = NULL;
1172 cur_expr->avail_occr = NULL;
1173 gcc_assert (max_distance >= 0);
1174 cur_expr->max_distance = max_distance;
1176 else
1177 gcc_assert (cur_expr->max_distance == max_distance);
1179 /* Now record the occurrence(s). */
1180 if (antic_p)
1182 antic_occr = cur_expr->antic_occr;
1184 if (antic_occr
1185 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1186 antic_occr = NULL;
1188 if (antic_occr)
1189 /* Found another instance of the expression in the same basic block.
1190 Prefer the currently recorded one. We want the first one in the
1191 block and the block is scanned from start to end. */
1192 ; /* nothing to do */
1193 else
1195 /* First occurrence of this expression in this basic block. */
1196 antic_occr = GOBNEW (struct gcse_occr);
1197 bytes_used += sizeof (struct gcse_occr);
1198 antic_occr->insn = insn;
1199 antic_occr->next = cur_expr->antic_occr;
1200 antic_occr->deleted_p = 0;
1201 cur_expr->antic_occr = antic_occr;
1205 if (avail_p)
1207 avail_occr = cur_expr->avail_occr;
1209 if (avail_occr
1210 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1212 /* Found another instance of the expression in the same basic block.
1213 Prefer this occurrence to the currently recorded one. We want
1214 the last one in the block and the block is scanned from start
1215 to end. */
1216 avail_occr->insn = insn;
1218 else
1220 /* First occurrence of this expression in this basic block. */
1221 avail_occr = GOBNEW (struct gcse_occr);
1222 bytes_used += sizeof (struct gcse_occr);
1223 avail_occr->insn = insn;
1224 avail_occr->next = cur_expr->avail_occr;
1225 avail_occr->deleted_p = 0;
1226 cur_expr->avail_occr = avail_occr;
1231 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1233 static void
1234 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1236 rtx src = SET_SRC (set);
1237 rtx dest = SET_DEST (set);
1238 rtx note;
1240 if (GET_CODE (src) == CALL)
1241 hash_scan_call (src, insn, table);
1243 else if (REG_P (dest))
1245 unsigned int regno = REGNO (dest);
1246 int max_distance = 0;
1248 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1250 This allows us to do a single GCSE pass and still eliminate
1251 redundant constants, addresses or other expressions that are
1252 constructed with multiple instructions.
1254 However, keep the original SRC if INSN is a simple reg-reg move.
1255 In this case, there will almost always be a REG_EQUAL note on the
1256 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1257 for INSN, we miss copy propagation opportunities and we perform the
1258 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1259 do more than one PRE GCSE pass.
1261 Note that this does not impede profitable constant propagations. We
1262 "look through" reg-reg sets in lookup_avail_set. */
1263 note = find_reg_equal_equiv_note (insn);
1264 if (note != 0
1265 && REG_NOTE_KIND (note) == REG_EQUAL
1266 && !REG_P (src)
1267 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1268 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1270 /* Only record sets of pseudo-regs in the hash table. */
1271 if (regno >= FIRST_PSEUDO_REGISTER
1272 /* Don't GCSE something if we can't do a reg/reg copy. */
1273 && can_copy_p (GET_MODE (dest))
1274 /* GCSE commonly inserts instruction after the insn. We can't
1275 do that easily for EH edges so disable GCSE on these for now. */
1276 /* ??? We can now easily create new EH landing pads at the
1277 gimple level, for splitting edges; there's no reason we
1278 can't do the same thing at the rtl level. */
1279 && !can_throw_internal (insn)
1280 /* Is SET_SRC something we want to gcse? */
1281 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1282 /* Don't CSE a nop. */
1283 && ! set_noop_p (set)
1284 /* Don't GCSE if it has attached REG_EQUIV note.
1285 At this point this only function parameters should have
1286 REG_EQUIV notes and if the argument slot is used somewhere
1287 explicitly, it means address of parameter has been taken,
1288 so we should not extend the lifetime of the pseudo. */
1289 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1291 /* An expression is not anticipatable if its operands are
1292 modified before this insn or if this is not the only SET in
1293 this insn. The latter condition does not have to mean that
1294 SRC itself is not anticipatable, but we just will not be
1295 able to handle code motion of insns with multiple sets. */
1296 int antic_p = oprs_anticipatable_p (src, insn)
1297 && !multiple_sets (insn);
1298 /* An expression is not available if its operands are
1299 subsequently modified, including this insn. It's also not
1300 available if this is a branch, because we can't insert
1301 a set after the branch. */
1302 int avail_p = (oprs_available_p (src, insn)
1303 && ! JUMP_P (insn));
1305 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1306 max_distance, table);
1309 /* In case of store we want to consider the memory value as available in
1310 the REG stored in that memory. This makes it possible to remove
1311 redundant loads from due to stores to the same location. */
1312 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1314 unsigned int regno = REGNO (src);
1315 int max_distance = 0;
1317 /* Only record sets of pseudo-regs in the hash table. */
1318 if (regno >= FIRST_PSEUDO_REGISTER
1319 /* Don't GCSE something if we can't do a reg/reg copy. */
1320 && can_copy_p (GET_MODE (src))
1321 /* GCSE commonly inserts instruction after the insn. We can't
1322 do that easily for EH edges so disable GCSE on these for now. */
1323 && !can_throw_internal (insn)
1324 /* Is SET_DEST something we want to gcse? */
1325 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1326 /* Don't CSE a nop. */
1327 && ! set_noop_p (set)
1328 /* Don't GCSE if it has attached REG_EQUIV note.
1329 At this point this only function parameters should have
1330 REG_EQUIV notes and if the argument slot is used somewhere
1331 explicitly, it means address of parameter has been taken,
1332 so we should not extend the lifetime of the pseudo. */
1333 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1334 || ! MEM_P (XEXP (note, 0))))
1336 /* Stores are never anticipatable. */
1337 int antic_p = 0;
1338 /* An expression is not available if its operands are
1339 subsequently modified, including this insn. It's also not
1340 available if this is a branch, because we can't insert
1341 a set after the branch. */
1342 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1344 /* Record the memory expression (DEST) in the hash table. */
1345 insert_expr_in_table (dest, GET_MODE (dest), insn,
1346 antic_p, avail_p, max_distance, table);
1351 static void
1352 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1353 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1355 /* Currently nothing to do. */
1358 static void
1359 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1360 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1362 /* Currently nothing to do. */
1365 /* Process INSN and add hash table entries as appropriate. */
1367 static void
1368 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1370 rtx pat = PATTERN (insn);
1371 int i;
1373 /* Pick out the sets of INSN and for other forms of instructions record
1374 what's been modified. */
1376 if (GET_CODE (pat) == SET)
1377 hash_scan_set (pat, insn, table);
1379 else if (GET_CODE (pat) == CLOBBER)
1380 hash_scan_clobber (pat, insn, table);
1382 else if (GET_CODE (pat) == CALL)
1383 hash_scan_call (pat, insn, table);
1385 else if (GET_CODE (pat) == PARALLEL)
1386 for (i = 0; i < XVECLEN (pat, 0); i++)
1388 rtx x = XVECEXP (pat, 0, i);
1390 if (GET_CODE (x) == SET)
1391 hash_scan_set (x, insn, table);
1392 else if (GET_CODE (x) == CLOBBER)
1393 hash_scan_clobber (x, insn, table);
1394 else if (GET_CODE (x) == CALL)
1395 hash_scan_call (x, insn, table);
1399 /* Dump the hash table TABLE to file FILE under the name NAME. */
1401 static void
1402 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1404 int i;
1405 /* Flattened out table, so it's printed in proper order. */
1406 struct gcse_expr **flat_table;
1407 unsigned int *hash_val;
1408 struct gcse_expr *expr;
1410 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1411 hash_val = XNEWVEC (unsigned int, table->n_elems);
1413 for (i = 0; i < (int) table->size; i++)
1414 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1416 flat_table[expr->bitmap_index] = expr;
1417 hash_val[expr->bitmap_index] = i;
1420 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1421 name, table->size, table->n_elems);
1423 for (i = 0; i < (int) table->n_elems; i++)
1424 if (flat_table[i] != 0)
1426 expr = flat_table[i];
1427 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1428 expr->bitmap_index, hash_val[i], expr->max_distance);
1429 print_rtl (file, expr->expr);
1430 fprintf (file, "\n");
1433 fprintf (file, "\n");
1435 free (flat_table);
1436 free (hash_val);
1439 /* Record register first/last/block set information for REGNO in INSN.
1441 first_set records the first place in the block where the register
1442 is set and is used to compute "anticipatability".
1444 last_set records the last place in the block where the register
1445 is set and is used to compute "availability".
1447 last_bb records the block for which first_set and last_set are
1448 valid, as a quick test to invalidate them. */
1450 static void
1451 record_last_reg_set_info (rtx_insn *insn, int regno)
1453 struct reg_avail_info *info = &reg_avail_info[regno];
1454 int luid = DF_INSN_LUID (insn);
1456 info->last_set = luid;
1457 if (info->last_bb != current_bb)
1459 info->last_bb = current_bb;
1460 info->first_set = luid;
1464 /* Record memory modification information for INSN. We do not actually care
1465 about the memory location(s) that are set, or even how they are set (consider
1466 a CALL_INSN). We merely need to record which insns modify memory. */
1468 static void
1469 record_last_mem_set_info (rtx_insn *insn)
1471 if (! flag_gcse_lm)
1472 return;
1474 record_last_mem_set_info_common (insn, modify_mem_list,
1475 canon_modify_mem_list,
1476 modify_mem_list_set,
1477 blocks_with_calls);
1480 /* Called from compute_hash_table via note_stores to handle one
1481 SET or CLOBBER in an insn. DATA is really the instruction in which
1482 the SET is taking place. */
1484 static void
1485 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1487 rtx_insn *last_set_insn = (rtx_insn *) data;
1489 if (GET_CODE (dest) == SUBREG)
1490 dest = SUBREG_REG (dest);
1492 if (REG_P (dest))
1493 record_last_reg_set_info (last_set_insn, REGNO (dest));
1494 else if (MEM_P (dest)
1495 /* Ignore pushes, they clobber nothing. */
1496 && ! push_operand (dest, GET_MODE (dest)))
1497 record_last_mem_set_info (last_set_insn);
1500 /* Top level function to create an expression hash table.
1502 Expression entries are placed in the hash table if
1503 - they are of the form (set (pseudo-reg) src),
1504 - src is something we want to perform GCSE on,
1505 - none of the operands are subsequently modified in the block
1507 Currently src must be a pseudo-reg or a const_int.
1509 TABLE is the table computed. */
1511 static void
1512 compute_hash_table_work (struct gcse_hash_table_d *table)
1514 int i;
1516 /* re-Cache any INSN_LIST nodes we have allocated. */
1517 clear_modify_mem_tables ();
1518 /* Some working arrays used to track first and last set in each block. */
1519 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1521 for (i = 0; i < max_reg_num (); ++i)
1522 reg_avail_info[i].last_bb = NULL;
1524 FOR_EACH_BB_FN (current_bb, cfun)
1526 rtx_insn *insn;
1527 unsigned int regno;
1529 /* First pass over the instructions records information used to
1530 determine when registers and memory are first and last set. */
1531 FOR_BB_INSNS (current_bb, insn)
1533 if (!NONDEBUG_INSN_P (insn))
1534 continue;
1536 if (CALL_P (insn))
1538 hard_reg_set_iterator hrsi;
1539 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1540 0, regno, hrsi)
1541 record_last_reg_set_info (insn, regno);
1543 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1544 record_last_mem_set_info (insn);
1547 note_stores (PATTERN (insn), record_last_set_info, insn);
1550 /* The next pass builds the hash table. */
1551 FOR_BB_INSNS (current_bb, insn)
1552 if (NONDEBUG_INSN_P (insn))
1553 hash_scan_insn (insn, table);
1556 free (reg_avail_info);
1557 reg_avail_info = NULL;
1560 /* Allocate space for the set/expr hash TABLE.
1561 It is used to determine the number of buckets to use. */
1563 static void
1564 alloc_hash_table (struct gcse_hash_table_d *table)
1566 int n;
1568 n = get_max_insn_count ();
1570 table->size = n / 4;
1571 if (table->size < 11)
1572 table->size = 11;
1574 /* Attempt to maintain efficient use of hash table.
1575 Making it an odd number is simplest for now.
1576 ??? Later take some measurements. */
1577 table->size |= 1;
1578 n = table->size * sizeof (struct gcse_expr *);
1579 table->table = GNEWVAR (struct gcse_expr *, n);
1582 /* Free things allocated by alloc_hash_table. */
1584 static void
1585 free_hash_table (struct gcse_hash_table_d *table)
1587 free (table->table);
1590 /* Compute the expression hash table TABLE. */
1592 static void
1593 compute_hash_table (struct gcse_hash_table_d *table)
1595 /* Initialize count of number of entries in hash table. */
1596 table->n_elems = 0;
1597 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1599 compute_hash_table_work (table);
1602 /* Expression tracking support. */
1604 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1605 static void
1606 clear_modify_mem_tables (void)
1608 unsigned i;
1609 bitmap_iterator bi;
1611 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1613 modify_mem_list[i].release ();
1614 canon_modify_mem_list[i].release ();
1616 bitmap_clear (modify_mem_list_set);
1617 bitmap_clear (blocks_with_calls);
1620 /* Release memory used by modify_mem_list_set. */
1622 static void
1623 free_modify_mem_tables (void)
1625 clear_modify_mem_tables ();
1626 free (modify_mem_list);
1627 free (canon_modify_mem_list);
1628 modify_mem_list = 0;
1629 canon_modify_mem_list = 0;
1632 /* Compute PRE+LCM working variables. */
1634 /* Local properties of expressions. */
1636 /* Nonzero for expressions that are transparent in the block. */
1637 static sbitmap *transp;
1639 /* Nonzero for expressions that are computed (available) in the block. */
1640 static sbitmap *comp;
1642 /* Nonzero for expressions that are locally anticipatable in the block. */
1643 static sbitmap *antloc;
1645 /* Nonzero for expressions where this block is an optimal computation
1646 point. */
1647 static sbitmap *pre_optimal;
1649 /* Nonzero for expressions which are redundant in a particular block. */
1650 static sbitmap *pre_redundant;
1652 /* Nonzero for expressions which should be inserted on a specific edge. */
1653 static sbitmap *pre_insert_map;
1655 /* Nonzero for expressions which should be deleted in a specific block. */
1656 static sbitmap *pre_delete_map;
1658 /* Allocate vars used for PRE analysis. */
1660 static void
1661 alloc_pre_mem (int n_blocks, int n_exprs)
1663 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1664 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1665 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1667 pre_optimal = NULL;
1668 pre_redundant = NULL;
1669 pre_insert_map = NULL;
1670 pre_delete_map = NULL;
1671 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1673 /* pre_insert and pre_delete are allocated later. */
1676 /* Free vars used for PRE analysis. */
1678 static void
1679 free_pre_mem (void)
1681 sbitmap_vector_free (transp);
1682 sbitmap_vector_free (comp);
1684 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1686 if (pre_optimal)
1687 sbitmap_vector_free (pre_optimal);
1688 if (pre_redundant)
1689 sbitmap_vector_free (pre_redundant);
1690 if (pre_insert_map)
1691 sbitmap_vector_free (pre_insert_map);
1692 if (pre_delete_map)
1693 sbitmap_vector_free (pre_delete_map);
1695 transp = comp = NULL;
1696 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1699 /* Remove certain expressions from anticipatable and transparent
1700 sets of basic blocks that have incoming abnormal edge.
1701 For PRE remove potentially trapping expressions to avoid placing
1702 them on abnormal edges. For hoisting remove memory references that
1703 can be clobbered by calls. */
1705 static void
1706 prune_expressions (bool pre_p)
1708 sbitmap prune_exprs;
1709 struct gcse_expr *expr;
1710 unsigned int ui;
1711 basic_block bb;
1713 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1714 bitmap_clear (prune_exprs);
1715 for (ui = 0; ui < expr_hash_table.size; ui++)
1717 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1719 /* Note potentially trapping expressions. */
1720 if (may_trap_p (expr->expr))
1722 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1723 continue;
1726 if (!pre_p && MEM_P (expr->expr))
1727 /* Note memory references that can be clobbered by a call.
1728 We do not split abnormal edges in hoisting, so would
1729 a memory reference get hoisted along an abnormal edge,
1730 it would be placed /before/ the call. Therefore, only
1731 constant memory references can be hoisted along abnormal
1732 edges. */
1734 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1735 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1736 continue;
1738 if (MEM_READONLY_P (expr->expr)
1739 && !MEM_VOLATILE_P (expr->expr)
1740 && MEM_NOTRAP_P (expr->expr))
1741 /* Constant memory reference, e.g., a PIC address. */
1742 continue;
1744 /* ??? Optimally, we would use interprocedural alias
1745 analysis to determine if this mem is actually killed
1746 by this call. */
1748 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1753 FOR_EACH_BB_FN (bb, cfun)
1755 edge e;
1756 edge_iterator ei;
1758 /* If the current block is the destination of an abnormal edge, we
1759 kill all trapping (for PRE) and memory (for hoist) expressions
1760 because we won't be able to properly place the instruction on
1761 the edge. So make them neither anticipatable nor transparent.
1762 This is fairly conservative.
1764 ??? For hoisting it may be necessary to check for set-and-jump
1765 instructions here, not just for abnormal edges. The general problem
1766 is that when an expression cannot not be placed right at the end of
1767 a basic block we should account for any side-effects of a subsequent
1768 jump instructions that could clobber the expression. It would
1769 be best to implement this check along the lines of
1770 should_hoist_expr_to_dom where the target block is already known
1771 and, hence, there's no need to conservatively prune expressions on
1772 "intermediate" set-and-jump instructions. */
1773 FOR_EACH_EDGE (e, ei, bb->preds)
1774 if ((e->flags & EDGE_ABNORMAL)
1775 && (pre_p || CALL_P (BB_END (e->src))))
1777 bitmap_and_compl (antloc[bb->index],
1778 antloc[bb->index], prune_exprs);
1779 bitmap_and_compl (transp[bb->index],
1780 transp[bb->index], prune_exprs);
1781 break;
1785 sbitmap_free (prune_exprs);
1788 /* It may be necessary to insert a large number of insns on edges to
1789 make the existing occurrences of expressions fully redundant. This
1790 routine examines the set of insertions and deletions and if the ratio
1791 of insertions to deletions is too high for a particular expression, then
1792 the expression is removed from the insertion/deletion sets.
1794 N_ELEMS is the number of elements in the hash table. */
1796 static void
1797 prune_insertions_deletions (int n_elems)
1799 sbitmap_iterator sbi;
1800 sbitmap prune_exprs;
1802 /* We always use I to iterate over blocks/edges and J to iterate over
1803 expressions. */
1804 unsigned int i, j;
1806 /* Counts for the number of times an expression needs to be inserted and
1807 number of times an expression can be removed as a result. */
1808 int *insertions = GCNEWVEC (int, n_elems);
1809 int *deletions = GCNEWVEC (int, n_elems);
1811 /* Set of expressions which require too many insertions relative to
1812 the number of deletions achieved. We will prune these out of the
1813 insertion/deletion sets. */
1814 prune_exprs = sbitmap_alloc (n_elems);
1815 bitmap_clear (prune_exprs);
1817 /* Iterate over the edges counting the number of times each expression
1818 needs to be inserted. */
1819 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1821 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1822 insertions[j]++;
1825 /* Similarly for deletions, but those occur in blocks rather than on
1826 edges. */
1827 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1829 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1830 deletions[j]++;
1833 /* Now that we have accurate counts, iterate over the elements in the
1834 hash table and see if any need too many insertions relative to the
1835 number of evaluations that can be removed. If so, mark them in
1836 PRUNE_EXPRS. */
1837 for (j = 0; j < (unsigned) n_elems; j++)
1838 if (deletions[j]
1839 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1840 bitmap_set_bit (prune_exprs, j);
1842 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1843 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1845 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1846 bitmap_clear_bit (pre_insert_map[i], j);
1848 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1849 bitmap_clear_bit (pre_delete_map[i], j);
1852 sbitmap_free (prune_exprs);
1853 free (insertions);
1854 free (deletions);
1857 /* Top level routine to do the dataflow analysis needed by PRE. */
1859 static struct edge_list *
1860 compute_pre_data (void)
1862 struct edge_list *edge_list;
1863 basic_block bb;
1865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1866 prune_expressions (true);
1867 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1869 /* Compute ae_kill for each basic block using:
1871 ~(TRANSP | COMP)
1874 FOR_EACH_BB_FN (bb, cfun)
1876 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1877 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1880 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1881 ae_kill, &pre_insert_map, &pre_delete_map);
1882 sbitmap_vector_free (antloc);
1883 antloc = NULL;
1884 sbitmap_vector_free (ae_kill);
1885 ae_kill = NULL;
1887 prune_insertions_deletions (expr_hash_table.n_elems);
1889 return edge_list;
1892 /* PRE utilities */
1894 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1895 block BB.
1897 VISITED is a pointer to a working buffer for tracking which BB's have
1898 been visited. It is NULL for the top-level call.
1900 We treat reaching expressions that go through blocks containing the same
1901 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1902 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1903 2 as not reaching. The intent is to improve the probability of finding
1904 only one reaching expression and to reduce register lifetimes by picking
1905 the closest such expression. */
1907 static int
1908 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1909 basic_block bb, char *visited)
1911 edge pred;
1912 edge_iterator ei;
1914 FOR_EACH_EDGE (pred, ei, bb->preds)
1916 basic_block pred_bb = pred->src;
1918 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1919 /* Has predecessor has already been visited? */
1920 || visited[pred_bb->index])
1921 ;/* Nothing to do. */
1923 /* Does this predecessor generate this expression? */
1924 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1926 /* Is this the occurrence we're looking for?
1927 Note that there's only one generating occurrence per block
1928 so we just need to check the block number. */
1929 if (occr_bb == pred_bb)
1930 return 1;
1932 visited[pred_bb->index] = 1;
1934 /* Ignore this predecessor if it kills the expression. */
1935 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1936 visited[pred_bb->index] = 1;
1938 /* Neither gen nor kill. */
1939 else
1941 visited[pred_bb->index] = 1;
1942 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1943 return 1;
1947 /* All paths have been checked. */
1948 return 0;
1951 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1952 memory allocated for that function is returned. */
1954 static int
1955 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1957 int rval;
1958 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1960 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1962 free (visited);
1963 return rval;
1966 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1968 static rtx_insn *
1969 process_insert_insn (struct gcse_expr *expr)
1971 rtx reg = expr->reaching_reg;
1972 /* Copy the expression to make sure we don't have any sharing issues. */
1973 rtx exp = copy_rtx (expr->expr);
1974 rtx_insn *pat;
1976 start_sequence ();
1978 /* If the expression is something that's an operand, like a constant,
1979 just copy it to a register. */
1980 if (general_operand (exp, GET_MODE (reg)))
1981 emit_move_insn (reg, exp);
1983 /* Otherwise, make a new insn to compute this expression and make sure the
1984 insn will be recognized (this also adds any needed CLOBBERs). */
1985 else
1987 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1989 if (insn_invalid_p (insn, false))
1990 gcc_unreachable ();
1993 pat = get_insns ();
1994 end_sequence ();
1996 return pat;
1999 /* Add EXPR to the end of basic block BB.
2001 This is used by both the PRE and code hoisting. */
2003 static void
2004 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2006 rtx_insn *insn = BB_END (bb);
2007 rtx_insn *new_insn;
2008 rtx reg = expr->reaching_reg;
2009 int regno = REGNO (reg);
2010 rtx_insn *pat, *pat_end;
2012 pat = process_insert_insn (expr);
2013 gcc_assert (pat && INSN_P (pat));
2015 pat_end = pat;
2016 while (NEXT_INSN (pat_end) != NULL_RTX)
2017 pat_end = NEXT_INSN (pat_end);
2019 /* If the last insn is a jump, insert EXPR in front [taking care to
2020 handle cc0, etc. properly]. Similarly we need to care trapping
2021 instructions in presence of non-call exceptions. */
2023 if (JUMP_P (insn)
2024 || (NONJUMP_INSN_P (insn)
2025 && (!single_succ_p (bb)
2026 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2028 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2029 if cc0 isn't set. */
2030 if (HAVE_cc0)
2032 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2033 if (note)
2034 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2035 else
2037 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2038 if (maybe_cc0_setter
2039 && INSN_P (maybe_cc0_setter)
2040 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2041 insn = maybe_cc0_setter;
2045 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2046 new_insn = emit_insn_before_noloc (pat, insn, bb);
2049 /* Likewise if the last insn is a call, as will happen in the presence
2050 of exception handling. */
2051 else if (CALL_P (insn)
2052 && (!single_succ_p (bb)
2053 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2055 /* Keeping in mind targets with small register classes and parameters
2056 in registers, we search backward and place the instructions before
2057 the first parameter is loaded. Do this for everyone for consistency
2058 and a presumption that we'll get better code elsewhere as well. */
2060 /* Since different machines initialize their parameter registers
2061 in different orders, assume nothing. Collect the set of all
2062 parameter registers. */
2063 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2065 /* If we found all the parameter loads, then we want to insert
2066 before the first parameter load.
2068 If we did not find all the parameter loads, then we might have
2069 stopped on the head of the block, which could be a CODE_LABEL.
2070 If we inserted before the CODE_LABEL, then we would be putting
2071 the insn in the wrong basic block. In that case, put the insn
2072 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2073 while (LABEL_P (insn)
2074 || NOTE_INSN_BASIC_BLOCK_P (insn))
2075 insn = NEXT_INSN (insn);
2077 new_insn = emit_insn_before_noloc (pat, insn, bb);
2079 else
2080 new_insn = emit_insn_after_noloc (pat, insn, bb);
2082 while (1)
2084 if (INSN_P (pat))
2085 add_label_notes (PATTERN (pat), new_insn);
2086 if (pat == pat_end)
2087 break;
2088 pat = NEXT_INSN (pat);
2091 gcse_create_count++;
2093 if (dump_file)
2095 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2096 bb->index, INSN_UID (new_insn));
2097 fprintf (dump_file, "copying expression %d to reg %d\n",
2098 expr->bitmap_index, regno);
2102 /* Insert partially redundant expressions on edges in the CFG to make
2103 the expressions fully redundant. */
2105 static int
2106 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2108 int e, i, j, num_edges, set_size, did_insert = 0;
2109 sbitmap *inserted;
2111 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2112 if it reaches any of the deleted expressions. */
2114 set_size = pre_insert_map[0]->size;
2115 num_edges = NUM_EDGES (edge_list);
2116 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2117 bitmap_vector_clear (inserted, num_edges);
2119 for (e = 0; e < num_edges; e++)
2121 int indx;
2122 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2124 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2126 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2128 for (j = indx;
2129 insert && j < (int) expr_hash_table.n_elems;
2130 j++, insert >>= 1)
2131 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2133 struct gcse_expr *expr = index_map[j];
2134 struct gcse_occr *occr;
2136 /* Now look at each deleted occurrence of this expression. */
2137 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2139 if (! occr->deleted_p)
2140 continue;
2142 /* Insert this expression on this edge if it would
2143 reach the deleted occurrence in BB. */
2144 if (!bitmap_bit_p (inserted[e], j))
2146 rtx_insn *insn;
2147 edge eg = INDEX_EDGE (edge_list, e);
2149 /* We can't insert anything on an abnormal and
2150 critical edge, so we insert the insn at the end of
2151 the previous block. There are several alternatives
2152 detailed in Morgans book P277 (sec 10.5) for
2153 handling this situation. This one is easiest for
2154 now. */
2156 if (eg->flags & EDGE_ABNORMAL)
2157 insert_insn_end_basic_block (index_map[j], bb);
2158 else
2160 insn = process_insert_insn (index_map[j]);
2161 insert_insn_on_edge (insn, eg);
2164 if (dump_file)
2166 fprintf (dump_file, "PRE: edge (%d,%d), ",
2167 bb->index,
2168 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2169 fprintf (dump_file, "copy expression %d\n",
2170 expr->bitmap_index);
2173 update_ld_motion_stores (expr);
2174 bitmap_set_bit (inserted[e], j);
2175 did_insert = 1;
2176 gcse_create_count++;
2183 sbitmap_vector_free (inserted);
2184 return did_insert;
2187 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2188 Given "old_reg <- expr" (INSN), instead of adding after it
2189 reaching_reg <- old_reg
2190 it's better to do the following:
2191 reaching_reg <- expr
2192 old_reg <- reaching_reg
2193 because this way copy propagation can discover additional PRE
2194 opportunities. But if this fails, we try the old way.
2195 When "expr" is a store, i.e.
2196 given "MEM <- old_reg", instead of adding after it
2197 reaching_reg <- old_reg
2198 it's better to add it before as follows:
2199 reaching_reg <- old_reg
2200 MEM <- reaching_reg. */
2202 static void
2203 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2205 rtx reg = expr->reaching_reg;
2206 int regno = REGNO (reg);
2207 int indx = expr->bitmap_index;
2208 rtx pat = PATTERN (insn);
2209 rtx set, first_set;
2210 rtx_insn *new_insn;
2211 rtx old_reg;
2212 int i;
2214 /* This block matches the logic in hash_scan_insn. */
2215 switch (GET_CODE (pat))
2217 case SET:
2218 set = pat;
2219 break;
2221 case PARALLEL:
2222 /* Search through the parallel looking for the set whose
2223 source was the expression that we're interested in. */
2224 first_set = NULL_RTX;
2225 set = NULL_RTX;
2226 for (i = 0; i < XVECLEN (pat, 0); i++)
2228 rtx x = XVECEXP (pat, 0, i);
2229 if (GET_CODE (x) == SET)
2231 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2232 may not find an equivalent expression, but in this
2233 case the PARALLEL will have a single set. */
2234 if (first_set == NULL_RTX)
2235 first_set = x;
2236 if (expr_equiv_p (SET_SRC (x), expr->expr))
2238 set = x;
2239 break;
2244 gcc_assert (first_set);
2245 if (set == NULL_RTX)
2246 set = first_set;
2247 break;
2249 default:
2250 gcc_unreachable ();
2253 if (REG_P (SET_DEST (set)))
2255 old_reg = SET_DEST (set);
2256 /* Check if we can modify the set destination in the original insn. */
2257 if (validate_change (insn, &SET_DEST (set), reg, 0))
2259 new_insn = gen_move_insn (old_reg, reg);
2260 new_insn = emit_insn_after (new_insn, insn);
2262 else
2264 new_insn = gen_move_insn (reg, old_reg);
2265 new_insn = emit_insn_after (new_insn, insn);
2268 else /* This is possible only in case of a store to memory. */
2270 old_reg = SET_SRC (set);
2271 new_insn = gen_move_insn (reg, old_reg);
2273 /* Check if we can modify the set source in the original insn. */
2274 if (validate_change (insn, &SET_SRC (set), reg, 0))
2275 new_insn = emit_insn_before (new_insn, insn);
2276 else
2277 new_insn = emit_insn_after (new_insn, insn);
2280 gcse_create_count++;
2282 if (dump_file)
2283 fprintf (dump_file,
2284 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2285 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2286 INSN_UID (insn), regno);
2289 /* Copy available expressions that reach the redundant expression
2290 to `reaching_reg'. */
2292 static void
2293 pre_insert_copies (void)
2295 unsigned int i, added_copy;
2296 struct gcse_expr *expr;
2297 struct gcse_occr *occr;
2298 struct gcse_occr *avail;
2300 /* For each available expression in the table, copy the result to
2301 `reaching_reg' if the expression reaches a deleted one.
2303 ??? The current algorithm is rather brute force.
2304 Need to do some profiling. */
2306 for (i = 0; i < expr_hash_table.size; i++)
2307 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2309 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2310 we don't want to insert a copy here because the expression may not
2311 really be redundant. So only insert an insn if the expression was
2312 deleted. This test also avoids further processing if the
2313 expression wasn't deleted anywhere. */
2314 if (expr->reaching_reg == NULL)
2315 continue;
2317 /* Set when we add a copy for that expression. */
2318 added_copy = 0;
2320 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2322 if (! occr->deleted_p)
2323 continue;
2325 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2327 rtx_insn *insn = avail->insn;
2329 /* No need to handle this one if handled already. */
2330 if (avail->copied_p)
2331 continue;
2333 /* Don't handle this one if it's a redundant one. */
2334 if (insn->deleted ())
2335 continue;
2337 /* Or if the expression doesn't reach the deleted one. */
2338 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2339 expr,
2340 BLOCK_FOR_INSN (occr->insn)))
2341 continue;
2343 added_copy = 1;
2345 /* Copy the result of avail to reaching_reg. */
2346 pre_insert_copy_insn (expr, insn);
2347 avail->copied_p = 1;
2351 if (added_copy)
2352 update_ld_motion_stores (expr);
2356 struct set_data
2358 rtx_insn *insn;
2359 const_rtx set;
2360 int nsets;
2363 /* Increment number of sets and record set in DATA. */
2365 static void
2366 record_set_data (rtx dest, const_rtx set, void *data)
2368 struct set_data *s = (struct set_data *)data;
2370 if (GET_CODE (set) == SET)
2372 /* We allow insns having multiple sets, where all but one are
2373 dead as single set insns. In the common case only a single
2374 set is present, so we want to avoid checking for REG_UNUSED
2375 notes unless necessary. */
2376 if (s->nsets == 1
2377 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2378 && !side_effects_p (s->set))
2379 s->nsets = 0;
2381 if (!s->nsets)
2383 /* Record this set. */
2384 s->nsets += 1;
2385 s->set = set;
2387 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2388 || side_effects_p (set))
2389 s->nsets += 1;
2393 static const_rtx
2394 single_set_gcse (rtx_insn *insn)
2396 struct set_data s;
2397 rtx pattern;
2399 gcc_assert (INSN_P (insn));
2401 /* Optimize common case. */
2402 pattern = PATTERN (insn);
2403 if (GET_CODE (pattern) == SET)
2404 return pattern;
2406 s.insn = insn;
2407 s.nsets = 0;
2408 note_stores (pattern, record_set_data, &s);
2410 /* Considered invariant insns have exactly one set. */
2411 gcc_assert (s.nsets == 1);
2412 return s.set;
2415 /* Emit move from SRC to DEST noting the equivalence with expression computed
2416 in INSN. */
2418 static rtx_insn *
2419 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2421 rtx_insn *new_rtx;
2422 const_rtx set = single_set_gcse (insn);
2423 rtx set2;
2424 rtx note;
2425 rtx eqv = NULL_RTX;
2427 /* This should never fail since we're creating a reg->reg copy
2428 we've verified to be valid. */
2430 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2432 /* Note the equivalence for local CSE pass. Take the note from the old
2433 set if there was one. Otherwise record the SET_SRC from the old set
2434 unless DEST is also an operand of the SET_SRC. */
2435 set2 = single_set (new_rtx);
2436 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2437 return new_rtx;
2438 if ((note = find_reg_equal_equiv_note (insn)))
2439 eqv = XEXP (note, 0);
2440 else if (! REG_P (dest)
2441 || ! reg_mentioned_p (dest, SET_SRC (set)))
2442 eqv = SET_SRC (set);
2444 if (eqv != NULL_RTX)
2445 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2447 return new_rtx;
2450 /* Delete redundant computations.
2451 Deletion is done by changing the insn to copy the `reaching_reg' of
2452 the expression into the result of the SET. It is left to later passes
2453 to propagate the copy or eliminate it.
2455 Return nonzero if a change is made. */
2457 static int
2458 pre_delete (void)
2460 unsigned int i;
2461 int changed;
2462 struct gcse_expr *expr;
2463 struct gcse_occr *occr;
2465 changed = 0;
2466 for (i = 0; i < expr_hash_table.size; i++)
2467 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2469 int indx = expr->bitmap_index;
2471 /* We only need to search antic_occr since we require ANTLOC != 0. */
2472 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2474 rtx_insn *insn = occr->insn;
2475 rtx set;
2476 basic_block bb = BLOCK_FOR_INSN (insn);
2478 /* We only delete insns that have a single_set. */
2479 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2480 && (set = single_set (insn)) != 0
2481 && dbg_cnt (pre_insn))
2483 /* Create a pseudo-reg to store the result of reaching
2484 expressions into. Get the mode for the new pseudo from
2485 the mode of the original destination pseudo. */
2486 if (expr->reaching_reg == NULL)
2487 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2489 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2490 delete_insn (insn);
2491 occr->deleted_p = 1;
2492 changed = 1;
2493 gcse_subst_count++;
2495 if (dump_file)
2497 fprintf (dump_file,
2498 "PRE: redundant insn %d (expression %d) in ",
2499 INSN_UID (insn), indx);
2500 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2501 bb->index, REGNO (expr->reaching_reg));
2507 return changed;
2510 /* Perform GCSE optimizations using PRE.
2511 This is called by one_pre_gcse_pass after all the dataflow analysis
2512 has been done.
2514 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2515 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2516 Compiler Design and Implementation.
2518 ??? A new pseudo reg is created to hold the reaching expression. The nice
2519 thing about the classical approach is that it would try to use an existing
2520 reg. If the register can't be adequately optimized [i.e. we introduce
2521 reload problems], one could add a pass here to propagate the new register
2522 through the block.
2524 ??? We don't handle single sets in PARALLELs because we're [currently] not
2525 able to copy the rest of the parallel when we insert copies to create full
2526 redundancies from partial redundancies. However, there's no reason why we
2527 can't handle PARALLELs in the cases where there are no partial
2528 redundancies. */
2530 static int
2531 pre_gcse (struct edge_list *edge_list)
2533 unsigned int i;
2534 int did_insert, changed;
2535 struct gcse_expr **index_map;
2536 struct gcse_expr *expr;
2538 /* Compute a mapping from expression number (`bitmap_index') to
2539 hash table entry. */
2541 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2542 for (i = 0; i < expr_hash_table.size; i++)
2543 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2544 index_map[expr->bitmap_index] = expr;
2546 /* Delete the redundant insns first so that
2547 - we know what register to use for the new insns and for the other
2548 ones with reaching expressions
2549 - we know which insns are redundant when we go to create copies */
2551 changed = pre_delete ();
2552 did_insert = pre_edge_insert (edge_list, index_map);
2554 /* In other places with reaching expressions, copy the expression to the
2555 specially allocated pseudo-reg that reaches the redundant expr. */
2556 pre_insert_copies ();
2557 if (did_insert)
2559 commit_edge_insertions ();
2560 changed = 1;
2563 free (index_map);
2564 return changed;
2567 /* Top level routine to perform one PRE GCSE pass.
2569 Return nonzero if a change was made. */
2571 static int
2572 one_pre_gcse_pass (void)
2574 int changed = 0;
2576 gcse_subst_count = 0;
2577 gcse_create_count = 0;
2579 /* Return if there's nothing to do, or it is too expensive. */
2580 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2581 || is_too_expensive (_("PRE disabled")))
2582 return 0;
2584 /* We need alias. */
2585 init_alias_analysis ();
2587 bytes_used = 0;
2588 gcc_obstack_init (&gcse_obstack);
2589 alloc_gcse_mem ();
2591 alloc_hash_table (&expr_hash_table);
2592 add_noreturn_fake_exit_edges ();
2593 if (flag_gcse_lm)
2594 compute_ld_motion_mems ();
2596 compute_hash_table (&expr_hash_table);
2597 if (flag_gcse_lm)
2598 trim_ld_motion_mems ();
2599 if (dump_file)
2600 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2602 if (expr_hash_table.n_elems > 0)
2604 struct edge_list *edge_list;
2605 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2606 edge_list = compute_pre_data ();
2607 changed |= pre_gcse (edge_list);
2608 free_edge_list (edge_list);
2609 free_pre_mem ();
2612 if (flag_gcse_lm)
2613 free_ld_motion_mems ();
2614 remove_fake_exit_edges ();
2615 free_hash_table (&expr_hash_table);
2617 free_gcse_mem ();
2618 obstack_free (&gcse_obstack, NULL);
2620 /* We are finished with alias. */
2621 end_alias_analysis ();
2623 if (dump_file)
2625 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2626 current_function_name (), n_basic_blocks_for_fn (cfun),
2627 bytes_used);
2628 fprintf (dump_file, "%d substs, %d insns created\n",
2629 gcse_subst_count, gcse_create_count);
2632 return changed;
2635 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2636 to INSN. If such notes are added to an insn which references a
2637 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2638 that note, because the following loop optimization pass requires
2639 them. */
2641 /* ??? If there was a jump optimization pass after gcse and before loop,
2642 then we would not need to do this here, because jump would add the
2643 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2645 static void
2646 add_label_notes (rtx x, rtx_insn *insn)
2648 enum rtx_code code = GET_CODE (x);
2649 int i, j;
2650 const char *fmt;
2652 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2654 /* This code used to ignore labels that referred to dispatch tables to
2655 avoid flow generating (slightly) worse code.
2657 We no longer ignore such label references (see LABEL_REF handling in
2658 mark_jump_label for additional information). */
2660 /* There's no reason for current users to emit jump-insns with
2661 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2662 notes. */
2663 gcc_assert (!JUMP_P (insn));
2664 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2666 if (LABEL_P (LABEL_REF_LABEL (x)))
2667 LABEL_NUSES (LABEL_REF_LABEL (x))++;
2669 return;
2672 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2674 if (fmt[i] == 'e')
2675 add_label_notes (XEXP (x, i), insn);
2676 else if (fmt[i] == 'E')
2677 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2678 add_label_notes (XVECEXP (x, i, j), insn);
2682 /* Code Hoisting variables and subroutines. */
2684 /* Very busy expressions. */
2685 static sbitmap *hoist_vbein;
2686 static sbitmap *hoist_vbeout;
2688 /* ??? We could compute post dominators and run this algorithm in
2689 reverse to perform tail merging, doing so would probably be
2690 more effective than the tail merging code in jump.c.
2692 It's unclear if tail merging could be run in parallel with
2693 code hoisting. It would be nice. */
2695 /* Allocate vars used for code hoisting analysis. */
2697 static void
2698 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2700 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2701 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2702 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2704 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2705 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2708 /* Free vars used for code hoisting analysis. */
2710 static void
2711 free_code_hoist_mem (void)
2713 sbitmap_vector_free (antloc);
2714 sbitmap_vector_free (transp);
2715 sbitmap_vector_free (comp);
2717 sbitmap_vector_free (hoist_vbein);
2718 sbitmap_vector_free (hoist_vbeout);
2720 free_dominance_info (CDI_DOMINATORS);
2723 /* Compute the very busy expressions at entry/exit from each block.
2725 An expression is very busy if all paths from a given point
2726 compute the expression. */
2728 static void
2729 compute_code_hoist_vbeinout (void)
2731 int changed, passes;
2732 basic_block bb;
2734 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2735 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2737 passes = 0;
2738 changed = 1;
2740 while (changed)
2742 changed = 0;
2744 /* We scan the blocks in the reverse order to speed up
2745 the convergence. */
2746 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2748 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2750 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2751 hoist_vbein, bb);
2753 /* Include expressions in VBEout that are calculated
2754 in BB and available at its end. */
2755 bitmap_ior (hoist_vbeout[bb->index],
2756 hoist_vbeout[bb->index], comp[bb->index]);
2759 changed |= bitmap_or_and (hoist_vbein[bb->index],
2760 antloc[bb->index],
2761 hoist_vbeout[bb->index],
2762 transp[bb->index]);
2765 passes++;
2768 if (dump_file)
2770 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2772 FOR_EACH_BB_FN (bb, cfun)
2774 fprintf (dump_file, "vbein (%d): ", bb->index);
2775 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2776 fprintf (dump_file, "vbeout(%d): ", bb->index);
2777 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2782 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2784 static void
2785 compute_code_hoist_data (void)
2787 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2788 prune_expressions (false);
2789 compute_code_hoist_vbeinout ();
2790 calculate_dominance_info (CDI_DOMINATORS);
2791 if (dump_file)
2792 fprintf (dump_file, "\n");
2795 /* Update register pressure for BB when hoisting an expression from
2796 instruction FROM, if live ranges of inputs are shrunk. Also
2797 maintain live_in information if live range of register referred
2798 in FROM is shrunk.
2800 Return 0 if register pressure doesn't change, otherwise return
2801 the number by which register pressure is decreased.
2803 NOTE: Register pressure won't be increased in this function. */
2805 static int
2806 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2808 rtx dreg;
2809 rtx_insn *insn;
2810 basic_block succ_bb;
2811 df_ref use, op_ref;
2812 edge succ;
2813 edge_iterator ei;
2814 int decreased_pressure = 0;
2815 int nregs;
2816 enum reg_class pressure_class;
2818 FOR_EACH_INSN_USE (use, from)
2820 dreg = DF_REF_REAL_REG (use);
2821 /* The live range of register is shrunk only if it isn't:
2822 1. referred on any path from the end of this block to EXIT, or
2823 2. referred by insns other than FROM in this block. */
2824 FOR_EACH_EDGE (succ, ei, bb->succs)
2826 succ_bb = succ->dest;
2827 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2828 continue;
2830 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2831 break;
2833 if (succ != NULL)
2834 continue;
2836 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2837 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2839 if (!DF_REF_INSN_INFO (op_ref))
2840 continue;
2842 insn = DF_REF_INSN (op_ref);
2843 if (BLOCK_FOR_INSN (insn) == bb
2844 && NONDEBUG_INSN_P (insn) && insn != from)
2845 break;
2848 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2849 /* Decrease register pressure and update live_in information for
2850 this block. */
2851 if (!op_ref && pressure_class != NO_REGS)
2853 decreased_pressure += nregs;
2854 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2855 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2858 return decreased_pressure;
2861 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2862 flow graph, if it can reach BB unimpared. Stop the search if the
2863 expression would need to be moved more than DISTANCE instructions.
2865 DISTANCE is the number of instructions through which EXPR can be
2866 hoisted up in flow graph.
2868 BB_SIZE points to an array which contains the number of instructions
2869 for each basic block.
2871 PRESSURE_CLASS and NREGS are register class and number of hard registers
2872 for storing EXPR.
2874 HOISTED_BBS points to a bitmap indicating basic blocks through which
2875 EXPR is hoisted.
2877 FROM is the instruction from which EXPR is hoisted.
2879 It's unclear exactly what Muchnick meant by "unimpared". It seems
2880 to me that the expression must either be computed or transparent in
2881 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2882 would allow the expression to be hoisted out of loops, even if
2883 the expression wasn't a loop invariant.
2885 Contrast this to reachability for PRE where an expression is
2886 considered reachable if *any* path reaches instead of *all*
2887 paths. */
2889 static int
2890 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2891 basic_block bb, sbitmap visited, int distance,
2892 int *bb_size, enum reg_class pressure_class,
2893 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2895 unsigned int i;
2896 edge pred;
2897 edge_iterator ei;
2898 sbitmap_iterator sbi;
2899 int visited_allocated_locally = 0;
2900 int decreased_pressure = 0;
2902 if (flag_ira_hoist_pressure)
2904 /* Record old information of basic block BB when it is visited
2905 at the first time. */
2906 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2908 struct bb_data *data = BB_DATA (bb);
2909 bitmap_copy (data->backup, data->live_in);
2910 data->old_pressure = data->max_reg_pressure[pressure_class];
2912 decreased_pressure = update_bb_reg_pressure (bb, from);
2914 /* Terminate the search if distance, for which EXPR is allowed to move,
2915 is exhausted. */
2916 if (distance > 0)
2918 if (flag_ira_hoist_pressure)
2920 /* Prefer to hoist EXPR if register pressure is decreased. */
2921 if (decreased_pressure > *nregs)
2922 distance += bb_size[bb->index];
2923 /* Let EXPR be hoisted through basic block at no cost if one
2924 of following conditions is satisfied:
2926 1. The basic block has low register pressure.
2927 2. Register pressure won't be increases after hoisting EXPR.
2929 Constant expressions is handled conservatively, because
2930 hoisting constant expression aggressively results in worse
2931 code. This decision is made by the observation of CSiBE
2932 on ARM target, while it has no obvious effect on other
2933 targets like x86, x86_64, mips and powerpc. */
2934 else if (CONST_INT_P (expr->expr)
2935 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2936 >= ira_class_hard_regs_num[pressure_class]
2937 && decreased_pressure < *nregs))
2938 distance -= bb_size[bb->index];
2940 else
2941 distance -= bb_size[bb->index];
2943 if (distance <= 0)
2944 return 0;
2946 else
2947 gcc_assert (distance == 0);
2949 if (visited == NULL)
2951 visited_allocated_locally = 1;
2952 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2953 bitmap_clear (visited);
2956 FOR_EACH_EDGE (pred, ei, bb->preds)
2958 basic_block pred_bb = pred->src;
2960 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2961 break;
2962 else if (pred_bb == expr_bb)
2963 continue;
2964 else if (bitmap_bit_p (visited, pred_bb->index))
2965 continue;
2966 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2967 break;
2968 /* Not killed. */
2969 else
2971 bitmap_set_bit (visited, pred_bb->index);
2972 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2973 visited, distance, bb_size,
2974 pressure_class, nregs,
2975 hoisted_bbs, from))
2976 break;
2979 if (visited_allocated_locally)
2981 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2982 which EXPR is hoisted in hoisted_bbs. */
2983 if (flag_ira_hoist_pressure && !pred)
2985 /* Record the basic block from which EXPR is hoisted. */
2986 bitmap_set_bit (visited, bb->index);
2987 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2988 bitmap_set_bit (hoisted_bbs, i);
2990 sbitmap_free (visited);
2993 return (pred == NULL);
2996 /* Find occurrence in BB. */
2998 static struct gcse_occr *
2999 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3001 /* Find the right occurrence of this expression. */
3002 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3003 occr = occr->next;
3005 return occr;
3008 /* Actually perform code hoisting.
3010 The code hoisting pass can hoist multiple computations of the same
3011 expression along dominated path to a dominating basic block, like
3012 from b2/b3 to b1 as depicted below:
3014 b1 ------
3015 /\ |
3016 / \ |
3017 bx by distance
3018 / \ |
3019 / \ |
3020 b2 b3 ------
3022 Unfortunately code hoisting generally extends the live range of an
3023 output pseudo register, which increases register pressure and hurts
3024 register allocation. To address this issue, an attribute MAX_DISTANCE
3025 is computed and attached to each expression. The attribute is computed
3026 from rtx cost of the corresponding expression and it's used to control
3027 how long the expression can be hoisted up in flow graph. As the
3028 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3029 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3030 register pressure if live ranges of inputs are shrunk.
3032 Option "-fira-hoist-pressure" implements register pressure directed
3033 hoist based on upper method. The rationale is:
3034 1. Calculate register pressure for each basic block by reusing IRA
3035 facility.
3036 2. When expression is hoisted through one basic block, GCC checks
3037 the change of live ranges for inputs/output. The basic block's
3038 register pressure will be increased because of extended live
3039 range of output. However, register pressure will be decreased
3040 if the live ranges of inputs are shrunk.
3041 3. After knowing how hoisting affects register pressure, GCC prefers
3042 to hoist the expression if it can decrease register pressure, by
3043 increasing DISTANCE of the corresponding expression.
3044 4. If hoisting the expression increases register pressure, GCC checks
3045 register pressure of the basic block and decrease DISTANCE only if
3046 the register pressure is high. In other words, expression will be
3047 hoisted through at no cost if the basic block has low register
3048 pressure.
3049 5. Update register pressure information for basic blocks through
3050 which expression is hoisted. */
3052 static int
3053 hoist_code (void)
3055 basic_block bb, dominated;
3056 vec<basic_block> dom_tree_walk;
3057 unsigned int dom_tree_walk_index;
3058 vec<basic_block> domby;
3059 unsigned int i, j, k;
3060 struct gcse_expr **index_map;
3061 struct gcse_expr *expr;
3062 int *to_bb_head;
3063 int *bb_size;
3064 int changed = 0;
3065 struct bb_data *data;
3066 /* Basic blocks that have occurrences reachable from BB. */
3067 bitmap from_bbs;
3068 /* Basic blocks through which expr is hoisted. */
3069 bitmap hoisted_bbs = NULL;
3070 bitmap_iterator bi;
3072 /* Compute a mapping from expression number (`bitmap_index') to
3073 hash table entry. */
3075 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3076 for (i = 0; i < expr_hash_table.size; i++)
3077 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3078 index_map[expr->bitmap_index] = expr;
3080 /* Calculate sizes of basic blocks and note how far
3081 each instruction is from the start of its block. We then use this
3082 data to restrict distance an expression can travel. */
3084 to_bb_head = XCNEWVEC (int, get_max_uid ());
3085 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3087 FOR_EACH_BB_FN (bb, cfun)
3089 rtx_insn *insn;
3090 int to_head;
3092 to_head = 0;
3093 FOR_BB_INSNS (bb, insn)
3095 /* Don't count debug instructions to avoid them affecting
3096 decision choices. */
3097 if (NONDEBUG_INSN_P (insn))
3098 to_bb_head[INSN_UID (insn)] = to_head++;
3101 bb_size[bb->index] = to_head;
3104 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3105 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3106 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3108 from_bbs = BITMAP_ALLOC (NULL);
3109 if (flag_ira_hoist_pressure)
3110 hoisted_bbs = BITMAP_ALLOC (NULL);
3112 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3113 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3115 /* Walk over each basic block looking for potentially hoistable
3116 expressions, nothing gets hoisted from the entry block. */
3117 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3119 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3121 if (domby.length () == 0)
3122 continue;
3124 /* Examine each expression that is very busy at the exit of this
3125 block. These are the potentially hoistable expressions. */
3126 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3128 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3130 int nregs = 0;
3131 enum reg_class pressure_class = NO_REGS;
3132 /* Current expression. */
3133 struct gcse_expr *expr = index_map[i];
3134 /* Number of occurrences of EXPR that can be hoisted to BB. */
3135 int hoistable = 0;
3136 /* Occurrences reachable from BB. */
3137 vec<occr_t> occrs_to_hoist = vNULL;
3138 /* We want to insert the expression into BB only once, so
3139 note when we've inserted it. */
3140 int insn_inserted_p;
3141 occr_t occr;
3143 /* If an expression is computed in BB and is available at end of
3144 BB, hoist all occurrences dominated by BB to BB. */
3145 if (bitmap_bit_p (comp[bb->index], i))
3147 occr = find_occr_in_bb (expr->antic_occr, bb);
3149 if (occr)
3151 /* An occurrence might've been already deleted
3152 while processing a dominator of BB. */
3153 if (!occr->deleted_p)
3155 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3156 hoistable++;
3159 else
3160 hoistable++;
3163 /* We've found a potentially hoistable expression, now
3164 we look at every block BB dominates to see if it
3165 computes the expression. */
3166 FOR_EACH_VEC_ELT (domby, j, dominated)
3168 int max_distance;
3170 /* Ignore self dominance. */
3171 if (bb == dominated)
3172 continue;
3173 /* We've found a dominated block, now see if it computes
3174 the busy expression and whether or not moving that
3175 expression to the "beginning" of that block is safe. */
3176 if (!bitmap_bit_p (antloc[dominated->index], i))
3177 continue;
3179 occr = find_occr_in_bb (expr->antic_occr, dominated);
3180 gcc_assert (occr);
3182 /* An occurrence might've been already deleted
3183 while processing a dominator of BB. */
3184 if (occr->deleted_p)
3185 continue;
3186 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3188 max_distance = expr->max_distance;
3189 if (max_distance > 0)
3190 /* Adjust MAX_DISTANCE to account for the fact that
3191 OCCR won't have to travel all of DOMINATED, but
3192 only part of it. */
3193 max_distance += (bb_size[dominated->index]
3194 - to_bb_head[INSN_UID (occr->insn)]);
3196 pressure_class = get_pressure_class_and_nregs (occr->insn,
3197 &nregs);
3199 /* Note if the expression should be hoisted from the dominated
3200 block to BB if it can reach DOMINATED unimpared.
3202 Keep track of how many times this expression is hoistable
3203 from a dominated block into BB. */
3204 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3205 max_distance, bb_size,
3206 pressure_class, &nregs,
3207 hoisted_bbs, occr->insn))
3209 hoistable++;
3210 occrs_to_hoist.safe_push (occr);
3211 bitmap_set_bit (from_bbs, dominated->index);
3215 /* If we found more than one hoistable occurrence of this
3216 expression, then note it in the vector of expressions to
3217 hoist. It makes no sense to hoist things which are computed
3218 in only one BB, and doing so tends to pessimize register
3219 allocation. One could increase this value to try harder
3220 to avoid any possible code expansion due to register
3221 allocation issues; however experiments have shown that
3222 the vast majority of hoistable expressions are only movable
3223 from two successors, so raising this threshold is likely
3224 to nullify any benefit we get from code hoisting. */
3225 if (hoistable > 1 && dbg_cnt (hoist_insn))
3227 /* If (hoistable != vec::length), then there is
3228 an occurrence of EXPR in BB itself. Don't waste
3229 time looking for LCA in this case. */
3230 if ((unsigned) hoistable == occrs_to_hoist.length ())
3232 basic_block lca;
3234 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3235 from_bbs);
3236 if (lca != bb)
3237 /* Punt, it's better to hoist these occurrences to
3238 LCA. */
3239 occrs_to_hoist.release ();
3242 else
3243 /* Punt, no point hoisting a single occurrence. */
3244 occrs_to_hoist.release ();
3246 if (flag_ira_hoist_pressure
3247 && !occrs_to_hoist.is_empty ())
3249 /* Increase register pressure of basic blocks to which
3250 expr is hoisted because of extended live range of
3251 output. */
3252 data = BB_DATA (bb);
3253 data->max_reg_pressure[pressure_class] += nregs;
3254 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3256 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3257 data->max_reg_pressure[pressure_class] += nregs;
3260 else if (flag_ira_hoist_pressure)
3262 /* Restore register pressure and live_in info for basic
3263 blocks recorded in hoisted_bbs when expr will not be
3264 hoisted. */
3265 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3267 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3268 bitmap_copy (data->live_in, data->backup);
3269 data->max_reg_pressure[pressure_class]
3270 = data->old_pressure;
3274 if (flag_ira_hoist_pressure)
3275 bitmap_clear (hoisted_bbs);
3277 insn_inserted_p = 0;
3279 /* Walk through occurrences of I'th expressions we want
3280 to hoist to BB and make the transformations. */
3281 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3283 rtx_insn *insn;
3284 const_rtx set;
3286 gcc_assert (!occr->deleted_p);
3288 insn = occr->insn;
3289 set = single_set_gcse (insn);
3291 /* Create a pseudo-reg to store the result of reaching
3292 expressions into. Get the mode for the new pseudo
3293 from the mode of the original destination pseudo.
3295 It is important to use new pseudos whenever we
3296 emit a set. This will allow reload to use
3297 rematerialization for such registers. */
3298 if (!insn_inserted_p)
3299 expr->reaching_reg
3300 = gen_reg_rtx_and_attrs (SET_DEST (set));
3302 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3303 insn);
3304 delete_insn (insn);
3305 occr->deleted_p = 1;
3306 changed = 1;
3307 gcse_subst_count++;
3309 if (!insn_inserted_p)
3311 insert_insn_end_basic_block (expr, bb);
3312 insn_inserted_p = 1;
3316 occrs_to_hoist.release ();
3317 bitmap_clear (from_bbs);
3320 domby.release ();
3323 dom_tree_walk.release ();
3324 BITMAP_FREE (from_bbs);
3325 if (flag_ira_hoist_pressure)
3326 BITMAP_FREE (hoisted_bbs);
3328 free (bb_size);
3329 free (to_bb_head);
3330 free (index_map);
3332 return changed;
3335 /* Return pressure class and number of needed hard registers (through
3336 *NREGS) of register REGNO. */
3337 static enum reg_class
3338 get_regno_pressure_class (int regno, int *nregs)
3340 if (regno >= FIRST_PSEUDO_REGISTER)
3342 enum reg_class pressure_class;
3344 pressure_class = reg_allocno_class (regno);
3345 pressure_class = ira_pressure_class_translate[pressure_class];
3346 *nregs
3347 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3348 return pressure_class;
3350 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3351 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3353 *nregs = 1;
3354 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3356 else
3358 *nregs = 0;
3359 return NO_REGS;
3363 /* Return pressure class and number of hard registers (through *NREGS)
3364 for destination of INSN. */
3365 static enum reg_class
3366 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3368 rtx reg;
3369 enum reg_class pressure_class;
3370 const_rtx set = single_set_gcse (insn);
3372 reg = SET_DEST (set);
3373 if (GET_CODE (reg) == SUBREG)
3374 reg = SUBREG_REG (reg);
3375 if (MEM_P (reg))
3377 *nregs = 0;
3378 pressure_class = NO_REGS;
3380 else
3382 gcc_assert (REG_P (reg));
3383 pressure_class = reg_allocno_class (REGNO (reg));
3384 pressure_class = ira_pressure_class_translate[pressure_class];
3385 *nregs
3386 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3388 return pressure_class;
3391 /* Increase (if INCR_P) or decrease current register pressure for
3392 register REGNO. */
3393 static void
3394 change_pressure (int regno, bool incr_p)
3396 int nregs;
3397 enum reg_class pressure_class;
3399 pressure_class = get_regno_pressure_class (regno, &nregs);
3400 if (! incr_p)
3401 curr_reg_pressure[pressure_class] -= nregs;
3402 else
3404 curr_reg_pressure[pressure_class] += nregs;
3405 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3406 < curr_reg_pressure[pressure_class])
3407 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3408 = curr_reg_pressure[pressure_class];
3412 /* Calculate register pressure for each basic block by walking insns
3413 from last to first. */
3414 static void
3415 calculate_bb_reg_pressure (void)
3417 int i;
3418 unsigned int j;
3419 rtx_insn *insn;
3420 basic_block bb;
3421 bitmap curr_regs_live;
3422 bitmap_iterator bi;
3425 ira_setup_eliminable_regset ();
3426 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3427 FOR_EACH_BB_FN (bb, cfun)
3429 curr_bb = bb;
3430 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3431 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3432 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3433 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3434 for (i = 0; i < ira_pressure_classes_num; i++)
3435 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3436 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3437 change_pressure (j, true);
3439 FOR_BB_INSNS_REVERSE (bb, insn)
3441 rtx dreg;
3442 int regno;
3443 df_ref def, use;
3445 if (! NONDEBUG_INSN_P (insn))
3446 continue;
3448 FOR_EACH_INSN_DEF (def, insn)
3450 dreg = DF_REF_REAL_REG (def);
3451 gcc_assert (REG_P (dreg));
3452 regno = REGNO (dreg);
3453 if (!(DF_REF_FLAGS (def)
3454 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3456 if (bitmap_clear_bit (curr_regs_live, regno))
3457 change_pressure (regno, false);
3461 FOR_EACH_INSN_USE (use, insn)
3463 dreg = DF_REF_REAL_REG (use);
3464 gcc_assert (REG_P (dreg));
3465 regno = REGNO (dreg);
3466 if (bitmap_set_bit (curr_regs_live, regno))
3467 change_pressure (regno, true);
3471 BITMAP_FREE (curr_regs_live);
3473 if (dump_file == NULL)
3474 return;
3476 fprintf (dump_file, "\nRegister Pressure: \n");
3477 FOR_EACH_BB_FN (bb, cfun)
3479 fprintf (dump_file, " Basic block %d: \n", bb->index);
3480 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3482 enum reg_class pressure_class;
3484 pressure_class = ira_pressure_classes[i];
3485 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3486 continue;
3488 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3489 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3492 fprintf (dump_file, "\n");
3495 /* Top level routine to perform one code hoisting (aka unification) pass
3497 Return nonzero if a change was made. */
3499 static int
3500 one_code_hoisting_pass (void)
3502 int changed = 0;
3504 gcse_subst_count = 0;
3505 gcse_create_count = 0;
3507 /* Return if there's nothing to do, or it is too expensive. */
3508 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3509 || is_too_expensive (_("GCSE disabled")))
3510 return 0;
3512 doing_code_hoisting_p = true;
3514 /* Calculate register pressure for each basic block. */
3515 if (flag_ira_hoist_pressure)
3517 regstat_init_n_sets_and_refs ();
3518 ira_set_pseudo_classes (false, dump_file);
3519 alloc_aux_for_blocks (sizeof (struct bb_data));
3520 calculate_bb_reg_pressure ();
3521 regstat_free_n_sets_and_refs ();
3524 /* We need alias. */
3525 init_alias_analysis ();
3527 bytes_used = 0;
3528 gcc_obstack_init (&gcse_obstack);
3529 alloc_gcse_mem ();
3531 alloc_hash_table (&expr_hash_table);
3532 compute_hash_table (&expr_hash_table);
3533 if (dump_file)
3534 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3536 if (expr_hash_table.n_elems > 0)
3538 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3539 expr_hash_table.n_elems);
3540 compute_code_hoist_data ();
3541 changed = hoist_code ();
3542 free_code_hoist_mem ();
3545 if (flag_ira_hoist_pressure)
3547 free_aux_for_blocks ();
3548 free_reg_info ();
3550 free_hash_table (&expr_hash_table);
3551 free_gcse_mem ();
3552 obstack_free (&gcse_obstack, NULL);
3554 /* We are finished with alias. */
3555 end_alias_analysis ();
3557 if (dump_file)
3559 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3560 current_function_name (), n_basic_blocks_for_fn (cfun),
3561 bytes_used);
3562 fprintf (dump_file, "%d substs, %d insns created\n",
3563 gcse_subst_count, gcse_create_count);
3566 doing_code_hoisting_p = false;
3568 return changed;
3571 /* Here we provide the things required to do store motion towards the exit.
3572 In order for this to be effective, gcse also needed to be taught how to
3573 move a load when it is killed only by a store to itself.
3575 int i;
3576 float a[10];
3578 void foo(float scale)
3580 for (i=0; i<10; i++)
3581 a[i] *= scale;
3584 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3585 the load out since its live around the loop, and stored at the bottom
3586 of the loop.
3588 The 'Load Motion' referred to and implemented in this file is
3589 an enhancement to gcse which when using edge based LCM, recognizes
3590 this situation and allows gcse to move the load out of the loop.
3592 Once gcse has hoisted the load, store motion can then push this
3593 load towards the exit, and we end up with no loads or stores of 'i'
3594 in the loop. */
3596 /* This will search the ldst list for a matching expression. If it
3597 doesn't find one, we create one and initialize it. */
3599 static struct ls_expr *
3600 ldst_entry (rtx x)
3602 int do_not_record_p = 0;
3603 struct ls_expr * ptr;
3604 unsigned int hash;
3605 ls_expr **slot;
3606 struct ls_expr e;
3608 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3609 NULL, /*have_reg_qty=*/false);
3611 e.pattern = x;
3612 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3613 if (*slot)
3614 return *slot;
3616 ptr = XNEW (struct ls_expr);
3618 ptr->next = pre_ldst_mems;
3619 ptr->expr = NULL;
3620 ptr->pattern = x;
3621 ptr->pattern_regs = NULL_RTX;
3622 ptr->loads = NULL;
3623 ptr->stores = NULL;
3624 ptr->reaching_reg = NULL_RTX;
3625 ptr->invalid = 0;
3626 ptr->index = 0;
3627 ptr->hash_index = hash;
3628 pre_ldst_mems = ptr;
3629 *slot = ptr;
3631 return ptr;
3634 /* Free up an individual ldst entry. */
3636 static void
3637 free_ldst_entry (struct ls_expr * ptr)
3639 free_INSN_LIST_list (& ptr->loads);
3640 free_INSN_LIST_list (& ptr->stores);
3642 free (ptr);
3645 /* Free up all memory associated with the ldst list. */
3647 static void
3648 free_ld_motion_mems (void)
3650 delete pre_ldst_table;
3651 pre_ldst_table = NULL;
3653 while (pre_ldst_mems)
3655 struct ls_expr * tmp = pre_ldst_mems;
3657 pre_ldst_mems = pre_ldst_mems->next;
3659 free_ldst_entry (tmp);
3662 pre_ldst_mems = NULL;
3665 /* Dump debugging info about the ldst list. */
3667 static void
3668 print_ldst_list (FILE * file)
3670 struct ls_expr * ptr;
3672 fprintf (file, "LDST list: \n");
3674 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3676 fprintf (file, " Pattern (%3d): ", ptr->index);
3678 print_rtl (file, ptr->pattern);
3680 fprintf (file, "\n Loads : ");
3682 if (ptr->loads)
3683 print_rtl (file, ptr->loads);
3684 else
3685 fprintf (file, "(nil)");
3687 fprintf (file, "\n Stores : ");
3689 if (ptr->stores)
3690 print_rtl (file, ptr->stores);
3691 else
3692 fprintf (file, "(nil)");
3694 fprintf (file, "\n\n");
3697 fprintf (file, "\n");
3700 /* Returns 1 if X is in the list of ldst only expressions. */
3702 static struct ls_expr *
3703 find_rtx_in_ldst (rtx x)
3705 struct ls_expr e;
3706 ls_expr **slot;
3707 if (!pre_ldst_table)
3708 return NULL;
3709 e.pattern = x;
3710 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3711 if (!slot || (*slot)->invalid)
3712 return NULL;
3713 return *slot;
3716 /* Load Motion for loads which only kill themselves. */
3718 /* Return true if x, a MEM, is a simple access with no side effects.
3719 These are the types of loads we consider for the ld_motion list,
3720 otherwise we let the usual aliasing take care of it. */
3722 static int
3723 simple_mem (const_rtx x)
3725 if (MEM_VOLATILE_P (x))
3726 return 0;
3728 if (GET_MODE (x) == BLKmode)
3729 return 0;
3731 /* If we are handling exceptions, we must be careful with memory references
3732 that may trap. If we are not, the behavior is undefined, so we may just
3733 continue. */
3734 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3735 return 0;
3737 if (side_effects_p (x))
3738 return 0;
3740 /* Do not consider function arguments passed on stack. */
3741 if (reg_mentioned_p (stack_pointer_rtx, x))
3742 return 0;
3744 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3745 return 0;
3747 return 1;
3750 /* Make sure there isn't a buried reference in this pattern anywhere.
3751 If there is, invalidate the entry for it since we're not capable
3752 of fixing it up just yet.. We have to be sure we know about ALL
3753 loads since the aliasing code will allow all entries in the
3754 ld_motion list to not-alias itself. If we miss a load, we will get
3755 the wrong value since gcse might common it and we won't know to
3756 fix it up. */
3758 static void
3759 invalidate_any_buried_refs (rtx x)
3761 const char * fmt;
3762 int i, j;
3763 struct ls_expr * ptr;
3765 /* Invalidate it in the list. */
3766 if (MEM_P (x) && simple_mem (x))
3768 ptr = ldst_entry (x);
3769 ptr->invalid = 1;
3772 /* Recursively process the insn. */
3773 fmt = GET_RTX_FORMAT (GET_CODE (x));
3775 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3777 if (fmt[i] == 'e')
3778 invalidate_any_buried_refs (XEXP (x, i));
3779 else if (fmt[i] == 'E')
3780 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3781 invalidate_any_buried_refs (XVECEXP (x, i, j));
3785 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3786 being defined as MEM loads and stores to symbols, with no side effects
3787 and no registers in the expression. For a MEM destination, we also
3788 check that the insn is still valid if we replace the destination with a
3789 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3790 which don't match this criteria, they are invalidated and trimmed out
3791 later. */
3793 static void
3794 compute_ld_motion_mems (void)
3796 struct ls_expr * ptr;
3797 basic_block bb;
3798 rtx_insn *insn;
3800 pre_ldst_mems = NULL;
3801 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3803 FOR_EACH_BB_FN (bb, cfun)
3805 FOR_BB_INSNS (bb, insn)
3807 if (NONDEBUG_INSN_P (insn))
3809 if (GET_CODE (PATTERN (insn)) == SET)
3811 rtx src = SET_SRC (PATTERN (insn));
3812 rtx dest = SET_DEST (PATTERN (insn));
3813 rtx note = find_reg_equal_equiv_note (insn);
3814 rtx src_eq;
3816 /* Check for a simple LOAD... */
3817 if (MEM_P (src) && simple_mem (src))
3819 ptr = ldst_entry (src);
3820 if (REG_P (dest))
3821 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3822 else
3823 ptr->invalid = 1;
3825 else
3827 /* Make sure there isn't a buried load somewhere. */
3828 invalidate_any_buried_refs (src);
3831 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3832 src_eq = XEXP (note, 0);
3833 else
3834 src_eq = NULL_RTX;
3836 if (src_eq != NULL_RTX
3837 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3838 invalidate_any_buried_refs (src_eq);
3840 /* Check for stores. Don't worry about aliased ones, they
3841 will block any movement we might do later. We only care
3842 about this exact pattern since those are the only
3843 circumstance that we will ignore the aliasing info. */
3844 if (MEM_P (dest) && simple_mem (dest))
3846 ptr = ldst_entry (dest);
3848 if (! MEM_P (src)
3849 && GET_CODE (src) != ASM_OPERANDS
3850 /* Check for REG manually since want_to_gcse_p
3851 returns 0 for all REGs. */
3852 && can_assign_to_reg_without_clobbers_p (src))
3853 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3854 else
3855 ptr->invalid = 1;
3858 else
3859 invalidate_any_buried_refs (PATTERN (insn));
3865 /* Remove any references that have been either invalidated or are not in the
3866 expression list for pre gcse. */
3868 static void
3869 trim_ld_motion_mems (void)
3871 struct ls_expr * * last = & pre_ldst_mems;
3872 struct ls_expr * ptr = pre_ldst_mems;
3874 while (ptr != NULL)
3876 struct gcse_expr * expr;
3878 /* Delete if entry has been made invalid. */
3879 if (! ptr->invalid)
3881 /* Delete if we cannot find this mem in the expression list. */
3882 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3884 for (expr = expr_hash_table.table[hash];
3885 expr != NULL;
3886 expr = expr->next_same_hash)
3887 if (expr_equiv_p (expr->expr, ptr->pattern))
3888 break;
3890 else
3891 expr = (struct gcse_expr *) 0;
3893 if (expr)
3895 /* Set the expression field if we are keeping it. */
3896 ptr->expr = expr;
3897 last = & ptr->next;
3898 ptr = ptr->next;
3900 else
3902 *last = ptr->next;
3903 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3904 free_ldst_entry (ptr);
3905 ptr = * last;
3909 /* Show the world what we've found. */
3910 if (dump_file && pre_ldst_mems != NULL)
3911 print_ldst_list (dump_file);
3914 /* This routine will take an expression which we are replacing with
3915 a reaching register, and update any stores that are needed if
3916 that expression is in the ld_motion list. Stores are updated by
3917 copying their SRC to the reaching register, and then storing
3918 the reaching register into the store location. These keeps the
3919 correct value in the reaching register for the loads. */
3921 static void
3922 update_ld_motion_stores (struct gcse_expr * expr)
3924 struct ls_expr * mem_ptr;
3926 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3928 /* We can try to find just the REACHED stores, but is shouldn't
3929 matter to set the reaching reg everywhere... some might be
3930 dead and should be eliminated later. */
3932 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3933 where reg is the reaching reg used in the load. We checked in
3934 compute_ld_motion_mems that we can replace (set mem expr) with
3935 (set reg expr) in that insn. */
3936 rtx list = mem_ptr->stores;
3938 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3940 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3941 rtx pat = PATTERN (insn);
3942 rtx src = SET_SRC (pat);
3943 rtx reg = expr->reaching_reg;
3945 /* If we've already copied it, continue. */
3946 if (expr->reaching_reg == src)
3947 continue;
3949 if (dump_file)
3951 fprintf (dump_file, "PRE: store updated with reaching reg ");
3952 print_rtl (dump_file, reg);
3953 fprintf (dump_file, ":\n ");
3954 print_inline_rtx (dump_file, insn, 8);
3955 fprintf (dump_file, "\n");
3958 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3959 emit_insn_before (copy, insn);
3960 SET_SRC (pat) = reg;
3961 df_insn_rescan (insn);
3963 /* un-recognize this pattern since it's probably different now. */
3964 INSN_CODE (insn) = -1;
3965 gcse_create_count++;
3970 /* Return true if the graph is too expensive to optimize. PASS is the
3971 optimization about to be performed. */
3973 static bool
3974 is_too_expensive (const char *pass)
3976 /* Trying to perform global optimizations on flow graphs which have
3977 a high connectivity will take a long time and is unlikely to be
3978 particularly useful.
3980 In normal circumstances a cfg should have about twice as many
3981 edges as blocks. But we do not want to punish small functions
3982 which have a couple switch statements. Rather than simply
3983 threshold the number of blocks, uses something with a more
3984 graceful degradation. */
3985 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3987 warning (OPT_Wdisabled_optimization,
3988 "%s: %d basic blocks and %d edges/basic block",
3989 pass, n_basic_blocks_for_fn (cfun),
3990 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3992 return true;
3995 /* If allocating memory for the dataflow bitmaps would take up too much
3996 storage it's better just to disable the optimization. */
3997 if ((n_basic_blocks_for_fn (cfun)
3998 * SBITMAP_SET_SIZE (max_reg_num ())
3999 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4001 warning (OPT_Wdisabled_optimization,
4002 "%s: %d basic blocks and %d registers",
4003 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4005 return true;
4008 return false;
4011 static unsigned int
4012 execute_rtl_pre (void)
4014 int changed;
4015 delete_unreachable_blocks ();
4016 df_analyze ();
4017 changed = one_pre_gcse_pass ();
4018 flag_rerun_cse_after_global_opts |= changed;
4019 if (changed)
4020 cleanup_cfg (0);
4021 return 0;
4024 static unsigned int
4025 execute_rtl_hoist (void)
4027 int changed;
4028 delete_unreachable_blocks ();
4029 df_analyze ();
4030 changed = one_code_hoisting_pass ();
4031 flag_rerun_cse_after_global_opts |= changed;
4032 if (changed)
4033 cleanup_cfg (0);
4034 return 0;
4037 namespace {
4039 const pass_data pass_data_rtl_pre =
4041 RTL_PASS, /* type */
4042 "rtl pre", /* name */
4043 OPTGROUP_NONE, /* optinfo_flags */
4044 TV_PRE, /* tv_id */
4045 PROP_cfglayout, /* properties_required */
4046 0, /* properties_provided */
4047 0, /* properties_destroyed */
4048 0, /* todo_flags_start */
4049 TODO_df_finish, /* todo_flags_finish */
4052 class pass_rtl_pre : public rtl_opt_pass
4054 public:
4055 pass_rtl_pre (gcc::context *ctxt)
4056 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4059 /* opt_pass methods: */
4060 virtual bool gate (function *);
4061 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4063 }; // class pass_rtl_pre
4065 /* We do not construct an accurate cfg in functions which call
4066 setjmp, so none of these passes runs if the function calls
4067 setjmp.
4068 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4070 bool
4071 pass_rtl_pre::gate (function *fun)
4073 return optimize > 0 && flag_gcse
4074 && !fun->calls_setjmp
4075 && optimize_function_for_speed_p (fun)
4076 && dbg_cnt (pre);
4079 } // anon namespace
4081 rtl_opt_pass *
4082 make_pass_rtl_pre (gcc::context *ctxt)
4084 return new pass_rtl_pre (ctxt);
4087 namespace {
4089 const pass_data pass_data_rtl_hoist =
4091 RTL_PASS, /* type */
4092 "hoist", /* name */
4093 OPTGROUP_NONE, /* optinfo_flags */
4094 TV_HOIST, /* tv_id */
4095 PROP_cfglayout, /* properties_required */
4096 0, /* properties_provided */
4097 0, /* properties_destroyed */
4098 0, /* todo_flags_start */
4099 TODO_df_finish, /* todo_flags_finish */
4102 class pass_rtl_hoist : public rtl_opt_pass
4104 public:
4105 pass_rtl_hoist (gcc::context *ctxt)
4106 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4109 /* opt_pass methods: */
4110 virtual bool gate (function *);
4111 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4113 }; // class pass_rtl_hoist
4115 bool
4116 pass_rtl_hoist::gate (function *)
4118 return optimize > 0 && flag_gcse
4119 && !cfun->calls_setjmp
4120 /* It does not make sense to run code hoisting unless we are optimizing
4121 for code size -- it rarely makes programs faster, and can make then
4122 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4123 && optimize_function_for_size_p (cfun)
4124 && dbg_cnt (hoist);
4127 } // anon namespace
4129 rtl_opt_pass *
4130 make_pass_rtl_hoist (gcc::context *ctxt)
4132 return new pass_rtl_hoist (ctxt);
4135 /* Reset all state within gcse.c so that we can rerun the compiler
4136 within the same process. For use by toplev::finalize. */
4138 void
4139 gcse_c_finalize (void)
4141 test_insn = NULL;
4144 #include "gt-gcse.h"