Add C++11 header <cuchar>.
[official-gcc.git] / gcc / cfg.c
blobc99849265cf1d34a775a8ad790481c2f1c4610db
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains low level functions to manipulate the CFG and
21 analyze it. All other modules should not transform the data structure
22 directly and use abstraction instead. The file is supposed to be
23 ordered bottom-up and should not contain any code dependent on a
24 particular intermediate language (RTL or trees).
26 Available functionality:
27 - Initialization/deallocation
28 init_flow, clear_edges
29 - Low level basic block manipulation
30 alloc_block, expunge_block
31 - Edge manipulation
32 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
33 - Low level edge redirection (without updating instruction chain)
34 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
35 - Dumping and debugging
36 dump_flow_info, debug_flow_info, dump_edge_info
37 - Allocation of AUX fields for basic blocks
38 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
39 - clear_bb_flags
40 - Consistency checking
41 verify_flow_info
42 - Dumping and debugging
43 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
45 TODO: Document these "Available functionality" functions in the files
46 that implement them.
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "backend.h"
53 #include "alloc-pool.h"
54 #include "alias.h"
55 #include "cfghooks.h"
56 #include "tree.h"
57 #include "hard-reg-set.h"
58 #include "df.h"
59 #include "options.h"
60 #include "cfganal.h"
61 #include "cfgloop.h" /* FIXME: For struct loop. */
62 #include "dumpfile.h"
65 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
67 /* Called once at initialization time. */
69 void
70 init_flow (struct function *the_fun)
72 if (!the_fun->cfg)
73 the_fun->cfg = ggc_cleared_alloc<control_flow_graph> ();
74 n_edges_for_fn (the_fun) = 0;
75 ENTRY_BLOCK_PTR_FOR_FN (the_fun)
76 = ggc_cleared_alloc<basic_block_def> ();
77 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->index = ENTRY_BLOCK;
78 EXIT_BLOCK_PTR_FOR_FN (the_fun)
79 = ggc_cleared_alloc<basic_block_def> ();
80 EXIT_BLOCK_PTR_FOR_FN (the_fun)->index = EXIT_BLOCK;
81 ENTRY_BLOCK_PTR_FOR_FN (the_fun)->next_bb
82 = EXIT_BLOCK_PTR_FOR_FN (the_fun);
83 EXIT_BLOCK_PTR_FOR_FN (the_fun)->prev_bb
84 = ENTRY_BLOCK_PTR_FOR_FN (the_fun);
87 /* Helper function for remove_edge and clear_edges. Frees edge structure
88 without actually removing it from the pred/succ arrays. */
90 static void
91 free_edge (edge e)
93 n_edges_for_fn (cfun)--;
94 ggc_free (e);
97 /* Free the memory associated with the edge structures. */
99 void
100 clear_edges (void)
102 basic_block bb;
103 edge e;
104 edge_iterator ei;
106 FOR_EACH_BB_FN (bb, cfun)
108 FOR_EACH_EDGE (e, ei, bb->succs)
109 free_edge (e);
110 vec_safe_truncate (bb->succs, 0);
111 vec_safe_truncate (bb->preds, 0);
114 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
115 free_edge (e);
116 vec_safe_truncate (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, 0);
117 vec_safe_truncate (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs, 0);
119 gcc_assert (!n_edges_for_fn (cfun));
122 /* Allocate memory for basic_block. */
124 basic_block
125 alloc_block (void)
127 basic_block bb;
128 bb = ggc_cleared_alloc<basic_block_def> ();
129 return bb;
132 /* Link block B to chain after AFTER. */
133 void
134 link_block (basic_block b, basic_block after)
136 b->next_bb = after->next_bb;
137 b->prev_bb = after;
138 after->next_bb = b;
139 b->next_bb->prev_bb = b;
142 /* Unlink block B from chain. */
143 void
144 unlink_block (basic_block b)
146 b->next_bb->prev_bb = b->prev_bb;
147 b->prev_bb->next_bb = b->next_bb;
148 b->prev_bb = NULL;
149 b->next_bb = NULL;
152 /* Sequentially order blocks and compact the arrays. */
153 void
154 compact_blocks (void)
156 int i;
158 SET_BASIC_BLOCK_FOR_FN (cfun, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (cfun));
159 SET_BASIC_BLOCK_FOR_FN (cfun, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (cfun));
161 if (df)
162 df_compact_blocks ();
163 else
165 basic_block bb;
167 i = NUM_FIXED_BLOCKS;
168 FOR_EACH_BB_FN (bb, cfun)
170 SET_BASIC_BLOCK_FOR_FN (cfun, i, bb);
171 bb->index = i;
172 i++;
174 gcc_assert (i == n_basic_blocks_for_fn (cfun));
176 for (; i < last_basic_block_for_fn (cfun); i++)
177 SET_BASIC_BLOCK_FOR_FN (cfun, i, NULL);
179 last_basic_block_for_fn (cfun) = n_basic_blocks_for_fn (cfun);
182 /* Remove block B from the basic block array. */
184 void
185 expunge_block (basic_block b)
187 unlink_block (b);
188 SET_BASIC_BLOCK_FOR_FN (cfun, b->index, NULL);
189 n_basic_blocks_for_fn (cfun)--;
190 /* We should be able to ggc_free here, but we are not.
191 The dead SSA_NAMES are left pointing to dead statements that are pointing
192 to dead basic blocks making garbage collector to die.
193 We should be able to release all dead SSA_NAMES and at the same time we should
194 clear out BB pointer of dead statements consistently. */
197 /* Connect E to E->src. */
199 static inline void
200 connect_src (edge e)
202 vec_safe_push (e->src->succs, e);
203 df_mark_solutions_dirty ();
206 /* Connect E to E->dest. */
208 static inline void
209 connect_dest (edge e)
211 basic_block dest = e->dest;
212 vec_safe_push (dest->preds, e);
213 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
214 df_mark_solutions_dirty ();
217 /* Disconnect edge E from E->src. */
219 static inline void
220 disconnect_src (edge e)
222 basic_block src = e->src;
223 edge_iterator ei;
224 edge tmp;
226 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
228 if (tmp == e)
230 src->succs->unordered_remove (ei.index);
231 df_mark_solutions_dirty ();
232 return;
234 else
235 ei_next (&ei);
238 gcc_unreachable ();
241 /* Disconnect edge E from E->dest. */
243 static inline void
244 disconnect_dest (edge e)
246 basic_block dest = e->dest;
247 unsigned int dest_idx = e->dest_idx;
249 dest->preds->unordered_remove (dest_idx);
251 /* If we removed an edge in the middle of the edge vector, we need
252 to update dest_idx of the edge that moved into the "hole". */
253 if (dest_idx < EDGE_COUNT (dest->preds))
254 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
255 df_mark_solutions_dirty ();
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
262 edge
263 unchecked_make_edge (basic_block src, basic_block dst, int flags)
265 edge e;
266 e = ggc_cleared_alloc<edge_def> ();
267 n_edges_for_fn (cfun)++;
269 e->src = src;
270 e->dest = dst;
271 e->flags = flags;
273 connect_src (e);
274 connect_dest (e);
276 execute_on_growing_pred (e);
277 return e;
280 /* Create an edge connecting SRC and DST with FLAGS optionally using
281 edge cache CACHE. Return the new edge, NULL if already exist. */
283 edge
284 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
286 if (edge_cache == NULL
287 || src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
288 || dst == EXIT_BLOCK_PTR_FOR_FN (cfun))
289 return make_edge (src, dst, flags);
291 /* Does the requested edge already exist? */
292 if (! bitmap_bit_p (edge_cache, dst->index))
294 /* The edge does not exist. Create one and update the
295 cache. */
296 bitmap_set_bit (edge_cache, dst->index);
297 return unchecked_make_edge (src, dst, flags);
300 /* At this point, we know that the requested edge exists. Adjust
301 flags if necessary. */
302 if (flags)
304 edge e = find_edge (src, dst);
305 e->flags |= flags;
308 return NULL;
311 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
312 created edge or NULL if already exist. */
314 edge
315 make_edge (basic_block src, basic_block dest, int flags)
317 edge e = find_edge (src, dest);
319 /* Make sure we don't add duplicate edges. */
320 if (e)
322 e->flags |= flags;
323 return NULL;
326 return unchecked_make_edge (src, dest, flags);
329 /* Create an edge connecting SRC to DEST and set probability by knowing
330 that it is the single edge leaving SRC. */
332 edge
333 make_single_succ_edge (basic_block src, basic_block dest, int flags)
335 edge e = make_edge (src, dest, flags);
337 e->probability = REG_BR_PROB_BASE;
338 e->count = src->count;
339 return e;
342 /* This function will remove an edge from the flow graph. */
344 void
345 remove_edge_raw (edge e)
347 remove_predictions_associated_with_edge (e);
348 execute_on_shrinking_pred (e);
350 disconnect_src (e);
351 disconnect_dest (e);
353 free_edge (e);
356 /* Redirect an edge's successor from one block to another. */
358 void
359 redirect_edge_succ (edge e, basic_block new_succ)
361 execute_on_shrinking_pred (e);
363 disconnect_dest (e);
365 e->dest = new_succ;
367 /* Reconnect the edge to the new successor block. */
368 connect_dest (e);
370 execute_on_growing_pred (e);
373 /* Redirect an edge's predecessor from one block to another. */
375 void
376 redirect_edge_pred (edge e, basic_block new_pred)
378 disconnect_src (e);
380 e->src = new_pred;
382 /* Reconnect the edge to the new predecessor block. */
383 connect_src (e);
386 /* Clear all basic block flags that do not have to be preserved. */
387 void
388 clear_bb_flags (void)
390 basic_block bb;
392 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
393 bb->flags &= BB_FLAGS_TO_PRESERVE;
396 /* Check the consistency of profile information. We can't do that
397 in verify_flow_info, as the counts may get invalid for incompletely
398 solved graphs, later eliminating of conditionals or roundoff errors.
399 It is still practical to have them reported for debugging of simple
400 testcases. */
401 static void
402 check_bb_profile (basic_block bb, FILE * file, int indent, int flags)
404 edge e;
405 int sum = 0;
406 gcov_type lsum;
407 edge_iterator ei;
408 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
409 char *s_indent = (char *) alloca ((size_t) indent + 1);
410 memset ((void *) s_indent, ' ', (size_t) indent);
411 s_indent[indent] = '\0';
413 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
414 return;
416 if (bb != EXIT_BLOCK_PTR_FOR_FN (fun))
418 FOR_EACH_EDGE (e, ei, bb->succs)
419 sum += e->probability;
420 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
421 fprintf (file, "%s%sInvalid sum of outgoing probabilities %.1f%%\n",
422 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
423 sum * 100.0 / REG_BR_PROB_BASE);
424 lsum = 0;
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 lsum += e->count;
427 if (EDGE_COUNT (bb->succs)
428 && (lsum - bb->count > 100 || lsum - bb->count < -100))
429 fprintf (file, "%s%sInvalid sum of outgoing counts %i, should be %i\n",
430 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
431 (int) lsum, (int) bb->count);
433 if (bb != ENTRY_BLOCK_PTR_FOR_FN (fun))
435 sum = 0;
436 FOR_EACH_EDGE (e, ei, bb->preds)
437 sum += EDGE_FREQUENCY (e);
438 if (abs (sum - bb->frequency) > 100)
439 fprintf (file,
440 "%s%sInvalid sum of incoming frequencies %i, should be %i\n",
441 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
442 sum, bb->frequency);
443 lsum = 0;
444 FOR_EACH_EDGE (e, ei, bb->preds)
445 lsum += e->count;
446 if (lsum - bb->count > 100 || lsum - bb->count < -100)
447 fprintf (file, "%s%sInvalid sum of incoming counts %i, should be %i\n",
448 (flags & TDF_COMMENT) ? ";; " : "", s_indent,
449 (int) lsum, (int) bb->count);
451 if (BB_PARTITION (bb) == BB_COLD_PARTITION)
453 /* Warn about inconsistencies in the partitioning that are
454 currently caused by profile insanities created via optimization. */
455 if (!probably_never_executed_bb_p (fun, bb))
456 fprintf (file, "%s%sBlock in cold partition with hot count\n",
457 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
458 FOR_EACH_EDGE (e, ei, bb->preds)
460 if (!probably_never_executed_edge_p (fun, e))
461 fprintf (file,
462 "%s%sBlock in cold partition with incoming hot edge\n",
463 (flags & TDF_COMMENT) ? ";; " : "", s_indent);
468 void
469 dump_edge_info (FILE *file, edge e, int flags, int do_succ)
471 basic_block side = (do_succ ? e->dest : e->src);
472 bool do_details = false;
474 if ((flags & TDF_DETAILS) != 0
475 && (flags & TDF_SLIM) == 0)
476 do_details = true;
478 if (side->index == ENTRY_BLOCK)
479 fputs (" ENTRY", file);
480 else if (side->index == EXIT_BLOCK)
481 fputs (" EXIT", file);
482 else
483 fprintf (file, " %d", side->index);
485 if (e->probability && do_details)
486 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
488 if (e->count && do_details)
490 fputs (" count:", file);
491 fprintf (file, "%" PRId64, e->count);
494 if (e->flags && do_details)
496 static const char * const bitnames[] =
498 #define DEF_EDGE_FLAG(NAME,IDX) #NAME ,
499 #include "cfg-flags.def"
500 NULL
501 #undef DEF_EDGE_FLAG
503 bool comma = false;
504 int i, flags = e->flags;
506 gcc_assert (e->flags <= EDGE_ALL_FLAGS);
507 fputs (" (", file);
508 for (i = 0; flags; i++)
509 if (flags & (1 << i))
511 flags &= ~(1 << i);
513 if (comma)
514 fputc (',', file);
515 fputs (bitnames[i], file);
516 comma = true;
519 fputc (')', file);
523 DEBUG_FUNCTION void
524 debug (edge_def &ref)
526 /* FIXME (crowl): Is this desireable? */
527 dump_edge_info (stderr, &ref, 0, false);
528 dump_edge_info (stderr, &ref, 0, true);
531 DEBUG_FUNCTION void
532 debug (edge_def *ptr)
534 if (ptr)
535 debug (*ptr);
536 else
537 fprintf (stderr, "<nil>\n");
540 /* Simple routines to easily allocate AUX fields of basic blocks. */
542 static struct obstack block_aux_obstack;
543 static void *first_block_aux_obj = 0;
544 static struct obstack edge_aux_obstack;
545 static void *first_edge_aux_obj = 0;
547 /* Allocate a memory block of SIZE as BB->aux. The obstack must
548 be first initialized by alloc_aux_for_blocks. */
550 static void
551 alloc_aux_for_block (basic_block bb, int size)
553 /* Verify that aux field is clear. */
554 gcc_assert (!bb->aux && first_block_aux_obj);
555 bb->aux = obstack_alloc (&block_aux_obstack, size);
556 memset (bb->aux, 0, size);
559 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
560 alloc_aux_for_block for each basic block. */
562 void
563 alloc_aux_for_blocks (int size)
565 static int initialized;
567 if (!initialized)
569 gcc_obstack_init (&block_aux_obstack);
570 initialized = 1;
572 else
573 /* Check whether AUX data are still allocated. */
574 gcc_assert (!first_block_aux_obj);
576 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
577 if (size)
579 basic_block bb;
581 FOR_ALL_BB_FN (bb, cfun)
582 alloc_aux_for_block (bb, size);
586 /* Clear AUX pointers of all blocks. */
588 void
589 clear_aux_for_blocks (void)
591 basic_block bb;
593 FOR_ALL_BB_FN (bb, cfun)
594 bb->aux = NULL;
597 /* Free data allocated in block_aux_obstack and clear AUX pointers
598 of all blocks. */
600 void
601 free_aux_for_blocks (void)
603 gcc_assert (first_block_aux_obj);
604 obstack_free (&block_aux_obstack, first_block_aux_obj);
605 first_block_aux_obj = NULL;
607 clear_aux_for_blocks ();
610 /* Allocate a memory edge of SIZE as E->aux. The obstack must
611 be first initialized by alloc_aux_for_edges. */
613 void
614 alloc_aux_for_edge (edge e, int size)
616 /* Verify that aux field is clear. */
617 gcc_assert (!e->aux && first_edge_aux_obj);
618 e->aux = obstack_alloc (&edge_aux_obstack, size);
619 memset (e->aux, 0, size);
622 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
623 alloc_aux_for_edge for each basic edge. */
625 void
626 alloc_aux_for_edges (int size)
628 static int initialized;
630 if (!initialized)
632 gcc_obstack_init (&edge_aux_obstack);
633 initialized = 1;
635 else
636 /* Check whether AUX data are still allocated. */
637 gcc_assert (!first_edge_aux_obj);
639 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
640 if (size)
642 basic_block bb;
644 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
645 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
647 edge e;
648 edge_iterator ei;
650 FOR_EACH_EDGE (e, ei, bb->succs)
651 alloc_aux_for_edge (e, size);
656 /* Clear AUX pointers of all edges. */
658 void
659 clear_aux_for_edges (void)
661 basic_block bb;
662 edge e;
664 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
665 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
667 edge_iterator ei;
668 FOR_EACH_EDGE (e, ei, bb->succs)
669 e->aux = NULL;
673 /* Free data allocated in edge_aux_obstack and clear AUX pointers
674 of all edges. */
676 void
677 free_aux_for_edges (void)
679 gcc_assert (first_edge_aux_obj);
680 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
681 first_edge_aux_obj = NULL;
683 clear_aux_for_edges ();
686 DEBUG_FUNCTION void
687 debug_bb (basic_block bb)
689 dump_bb (stderr, bb, 0, dump_flags);
692 DEBUG_FUNCTION basic_block
693 debug_bb_n (int n)
695 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, n);
696 debug_bb (bb);
697 return bb;
700 /* Dumps cfg related information about basic block BB to OUTF.
701 If HEADER is true, dump things that appear before the instructions
702 contained in BB. If FOOTER is true, dump things that appear after.
703 Flags are the TDF_* masks as documented in dumpfile.h.
704 NB: With TDF_DETAILS, it is assumed that cfun is available, so
705 that maybe_hot_bb_p and probably_never_executed_bb_p don't ICE. */
707 void
708 dump_bb_info (FILE *outf, basic_block bb, int indent, int flags,
709 bool do_header, bool do_footer)
711 edge_iterator ei;
712 edge e;
713 static const char * const bb_bitnames[] =
715 #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) #NAME ,
716 #include "cfg-flags.def"
717 NULL
718 #undef DEF_BASIC_BLOCK_FLAG
720 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
721 bool first;
722 char *s_indent = (char *) alloca ((size_t) indent + 1);
723 memset ((void *) s_indent, ' ', (size_t) indent);
724 s_indent[indent] = '\0';
726 gcc_assert (bb->flags <= BB_ALL_FLAGS);
728 if (do_header)
730 unsigned i;
732 if (flags & TDF_COMMENT)
733 fputs (";; ", outf);
734 fprintf (outf, "%sbasic block %d, loop depth %d",
735 s_indent, bb->index, bb_loop_depth (bb));
736 if (flags & TDF_DETAILS)
738 struct function *fun = DECL_STRUCT_FUNCTION (current_function_decl);
739 fprintf (outf, ", count " "%" PRId64,
740 (int64_t) bb->count);
741 fprintf (outf, ", freq %i", bb->frequency);
742 if (maybe_hot_bb_p (fun, bb))
743 fputs (", maybe hot", outf);
744 if (probably_never_executed_bb_p (fun, bb))
745 fputs (", probably never executed", outf);
747 fputc ('\n', outf);
749 if (flags & TDF_DETAILS)
751 check_bb_profile (bb, outf, indent, flags);
752 if (flags & TDF_COMMENT)
753 fputs (";; ", outf);
754 fprintf (outf, "%s prev block ", s_indent);
755 if (bb->prev_bb)
756 fprintf (outf, "%d", bb->prev_bb->index);
757 else
758 fprintf (outf, "(nil)");
759 fprintf (outf, ", next block ");
760 if (bb->next_bb)
761 fprintf (outf, "%d", bb->next_bb->index);
762 else
763 fprintf (outf, "(nil)");
765 fputs (", flags:", outf);
766 first = true;
767 for (i = 0; i < n_bitnames; i++)
768 if (bb->flags & (1 << i))
770 if (first)
771 fputs (" (", outf);
772 else
773 fputs (", ", outf);
774 first = false;
775 fputs (bb_bitnames[i], outf);
777 if (!first)
778 fputc (')', outf);
779 fputc ('\n', outf);
782 if (flags & TDF_COMMENT)
783 fputs (";; ", outf);
784 fprintf (outf, "%s pred: ", s_indent);
785 first = true;
786 FOR_EACH_EDGE (e, ei, bb->preds)
788 if (! first)
790 if (flags & TDF_COMMENT)
791 fputs (";; ", outf);
792 fprintf (outf, "%s ", s_indent);
794 first = false;
795 dump_edge_info (outf, e, flags, 0);
796 fputc ('\n', outf);
798 if (first)
799 fputc ('\n', outf);
802 if (do_footer)
804 if (flags & TDF_COMMENT)
805 fputs (";; ", outf);
806 fprintf (outf, "%s succ: ", s_indent);
807 first = true;
808 FOR_EACH_EDGE (e, ei, bb->succs)
810 if (! first)
812 if (flags & TDF_COMMENT)
813 fputs (";; ", outf);
814 fprintf (outf, "%s ", s_indent);
816 first = false;
817 dump_edge_info (outf, e, flags, 1);
818 fputc ('\n', outf);
820 if (first)
821 fputc ('\n', outf);
825 /* Dumps a brief description of cfg to FILE. */
827 void
828 brief_dump_cfg (FILE *file, int flags)
830 basic_block bb;
832 FOR_EACH_BB_FN (bb, cfun)
834 dump_bb_info (file, bb, 0,
835 flags & (TDF_COMMENT | TDF_DETAILS),
836 true, true);
840 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
841 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
842 redirected to destination of TAKEN_EDGE.
844 This function may leave the profile inconsistent in the case TAKEN_EDGE
845 frequency or count is believed to be lower than FREQUENCY or COUNT
846 respectively. */
847 void
848 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
849 gcov_type count, edge taken_edge)
851 edge c;
852 int prob;
853 edge_iterator ei;
855 bb->count -= count;
856 if (bb->count < 0)
858 if (dump_file)
859 fprintf (dump_file, "bb %i count became negative after threading",
860 bb->index);
861 bb->count = 0;
864 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
865 Watch for overflows. */
866 if (bb->frequency)
867 prob = GCOV_COMPUTE_SCALE (edge_frequency, bb->frequency);
868 else
869 prob = 0;
870 if (prob > taken_edge->probability)
872 if (dump_file)
873 fprintf (dump_file, "Jump threading proved probability of edge "
874 "%i->%i too small (it is %i, should be %i).\n",
875 taken_edge->src->index, taken_edge->dest->index,
876 taken_edge->probability, prob);
877 prob = taken_edge->probability;
880 /* Now rescale the probabilities. */
881 taken_edge->probability -= prob;
882 prob = REG_BR_PROB_BASE - prob;
883 bb->frequency -= edge_frequency;
884 if (bb->frequency < 0)
885 bb->frequency = 0;
886 if (prob <= 0)
888 if (dump_file)
889 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
890 "frequency of block should end up being 0, it is %i\n",
891 bb->index, bb->frequency);
892 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
893 ei = ei_start (bb->succs);
894 ei_next (&ei);
895 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
896 c->probability = 0;
898 else if (prob != REG_BR_PROB_BASE)
900 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
902 FOR_EACH_EDGE (c, ei, bb->succs)
904 /* Protect from overflow due to additional scaling. */
905 if (c->probability > prob)
906 c->probability = REG_BR_PROB_BASE;
907 else
909 c->probability = RDIV (c->probability * scale, 65536);
910 if (c->probability > REG_BR_PROB_BASE)
911 c->probability = REG_BR_PROB_BASE;
916 gcc_assert (bb == taken_edge->src);
917 taken_edge->count -= count;
918 if (taken_edge->count < 0)
920 if (dump_file)
921 fprintf (dump_file, "edge %i->%i count became negative after threading",
922 taken_edge->src->index, taken_edge->dest->index);
923 taken_edge->count = 0;
927 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
928 by NUM/DEN, in int arithmetic. May lose some accuracy. */
929 void
930 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
932 int i;
933 edge e;
934 if (num < 0)
935 num = 0;
937 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
938 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
939 and still safely fit in int during calculations. */
940 if (den > 1000)
942 if (num > 1000000)
943 return;
945 num = RDIV (1000 * num, den);
946 den = 1000;
948 if (num > 100 * den)
949 return;
951 for (i = 0; i < nbbs; i++)
953 edge_iterator ei;
954 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
955 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
956 if (bbs[i]->frequency > BB_FREQ_MAX)
957 bbs[i]->frequency = BB_FREQ_MAX;
958 bbs[i]->count = RDIV (bbs[i]->count * num, den);
959 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
960 e->count = RDIV (e->count * num, den);
964 /* numbers smaller than this value are safe to multiply without getting
965 64bit overflow. */
966 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (int64_t) * 4 - 1))
968 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
969 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
970 function but considerably slower. */
971 void
972 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
973 gcov_type den)
975 int i;
976 edge e;
977 gcov_type fraction = RDIV (num * 65536, den);
979 gcc_assert (fraction >= 0);
981 if (num < MAX_SAFE_MULTIPLIER)
982 for (i = 0; i < nbbs; i++)
984 edge_iterator ei;
985 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
986 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
987 bbs[i]->count = RDIV (bbs[i]->count * num, den);
988 else
989 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
990 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
991 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
992 e->count = RDIV (e->count * num, den);
993 else
994 e->count = RDIV (e->count * fraction, 65536);
996 else
997 for (i = 0; i < nbbs; i++)
999 edge_iterator ei;
1000 if (sizeof (gcov_type) > sizeof (int))
1001 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1002 else
1003 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1004 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1005 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1006 e->count = RDIV (e->count * fraction, 65536);
1010 /* Helper types for hash tables. */
1012 struct htab_bb_copy_original_entry
1014 /* Block we are attaching info to. */
1015 int index1;
1016 /* Index of original or copy (depending on the hashtable) */
1017 int index2;
1020 struct bb_copy_hasher : nofree_ptr_hash <htab_bb_copy_original_entry>
1022 static inline hashval_t hash (const htab_bb_copy_original_entry *);
1023 static inline bool equal (const htab_bb_copy_original_entry *existing,
1024 const htab_bb_copy_original_entry * candidate);
1027 inline hashval_t
1028 bb_copy_hasher::hash (const htab_bb_copy_original_entry *data)
1030 return data->index1;
1033 inline bool
1034 bb_copy_hasher::equal (const htab_bb_copy_original_entry *data,
1035 const htab_bb_copy_original_entry *data2)
1037 return data->index1 == data2->index1;
1040 /* Data structures used to maintain mapping between basic blocks and
1041 copies. */
1042 static hash_table<bb_copy_hasher> *bb_original;
1043 static hash_table<bb_copy_hasher> *bb_copy;
1045 /* And between loops and copies. */
1046 static hash_table<bb_copy_hasher> *loop_copy;
1047 static object_allocator<htab_bb_copy_original_entry> *original_copy_bb_pool;
1049 /* Initialize the data structures to maintain mapping between blocks
1050 and its copies. */
1051 void
1052 initialize_original_copy_tables (void)
1054 original_copy_bb_pool = new object_allocator<htab_bb_copy_original_entry>
1055 ("original_copy", 10);
1056 bb_original = new hash_table<bb_copy_hasher> (10);
1057 bb_copy = new hash_table<bb_copy_hasher> (10);
1058 loop_copy = new hash_table<bb_copy_hasher> (10);
1061 /* Free the data structures to maintain mapping between blocks and
1062 its copies. */
1063 void
1064 free_original_copy_tables (void)
1066 gcc_assert (original_copy_bb_pool);
1067 delete bb_copy;
1068 bb_copy = NULL;
1069 delete bb_original;
1070 bb_copy = NULL;
1071 delete loop_copy;
1072 loop_copy = NULL;
1073 delete original_copy_bb_pool;
1074 original_copy_bb_pool = NULL;
1077 /* Removes the value associated with OBJ from table TAB. */
1079 static void
1080 copy_original_table_clear (hash_table<bb_copy_hasher> *tab, unsigned obj)
1082 htab_bb_copy_original_entry **slot;
1083 struct htab_bb_copy_original_entry key, *elt;
1085 if (!original_copy_bb_pool)
1086 return;
1088 key.index1 = obj;
1089 slot = tab->find_slot (&key, NO_INSERT);
1090 if (!slot)
1091 return;
1093 elt = *slot;
1094 tab->clear_slot (slot);
1095 original_copy_bb_pool->remove (elt);
1098 /* Sets the value associated with OBJ in table TAB to VAL.
1099 Do nothing when data structures are not initialized. */
1101 static void
1102 copy_original_table_set (hash_table<bb_copy_hasher> *tab,
1103 unsigned obj, unsigned val)
1105 struct htab_bb_copy_original_entry **slot;
1106 struct htab_bb_copy_original_entry key;
1108 if (!original_copy_bb_pool)
1109 return;
1111 key.index1 = obj;
1112 slot = tab->find_slot (&key, INSERT);
1113 if (!*slot)
1115 *slot = original_copy_bb_pool->allocate ();
1116 (*slot)->index1 = obj;
1118 (*slot)->index2 = val;
1121 /* Set original for basic block. Do nothing when data structures are not
1122 initialized so passes not needing this don't need to care. */
1123 void
1124 set_bb_original (basic_block bb, basic_block original)
1126 copy_original_table_set (bb_original, bb->index, original->index);
1129 /* Get the original basic block. */
1130 basic_block
1131 get_bb_original (basic_block bb)
1133 struct htab_bb_copy_original_entry *entry;
1134 struct htab_bb_copy_original_entry key;
1136 gcc_assert (original_copy_bb_pool);
1138 key.index1 = bb->index;
1139 entry = bb_original->find (&key);
1140 if (entry)
1141 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1142 else
1143 return NULL;
1146 /* Set copy for basic block. Do nothing when data structures are not
1147 initialized so passes not needing this don't need to care. */
1148 void
1149 set_bb_copy (basic_block bb, basic_block copy)
1151 copy_original_table_set (bb_copy, bb->index, copy->index);
1154 /* Get the copy of basic block. */
1155 basic_block
1156 get_bb_copy (basic_block bb)
1158 struct htab_bb_copy_original_entry *entry;
1159 struct htab_bb_copy_original_entry key;
1161 gcc_assert (original_copy_bb_pool);
1163 key.index1 = bb->index;
1164 entry = bb_copy->find (&key);
1165 if (entry)
1166 return BASIC_BLOCK_FOR_FN (cfun, entry->index2);
1167 else
1168 return NULL;
1171 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1172 initialized so passes not needing this don't need to care. */
1174 void
1175 set_loop_copy (struct loop *loop, struct loop *copy)
1177 if (!copy)
1178 copy_original_table_clear (loop_copy, loop->num);
1179 else
1180 copy_original_table_set (loop_copy, loop->num, copy->num);
1183 /* Get the copy of LOOP. */
1185 struct loop *
1186 get_loop_copy (struct loop *loop)
1188 struct htab_bb_copy_original_entry *entry;
1189 struct htab_bb_copy_original_entry key;
1191 gcc_assert (original_copy_bb_pool);
1193 key.index1 = loop->num;
1194 entry = loop_copy->find (&key);
1195 if (entry)
1196 return get_loop (cfun, entry->index2);
1197 else
1198 return NULL;