Import gcc-2.8.1.tar.bz2
[official-gcc.git] / gcc / unroll.c
blobcffd0e7aaf3ff4ba88a849424a4c04dc3a533150
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Try to unroll a loop, and split induction variables.
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
55 /* Possible improvements follow: */
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
140 #define NUM_FACTORS 4
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145 /* Describes the different types of loop unrolling performed. */
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149 #include "config.h"
150 #include <stdio.h>
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
173 static struct induction **addr_combined_regs;
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
179 static rtx *splittable_regs;
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
186 static int *splittable_regs_updates;
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
197 /* Forward declarations. */
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PROTO((rtx));
215 /* Try to unroll one loop and split induction variables in the loop.
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
226 void
227 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
243 char *local_regno;
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
277 if (1 /* write_symbols != NO_DEBUG */)
279 int block_begins = 0;
280 int block_ends = 0;
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
284 if (GET_CODE (insn) == NOTE)
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
293 if (block_begins != block_ends)
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
317 /* Find and save a pointer to the last nonnote insn in the loop. */
319 last_loop_insn = prev_nonnote_insn (loop_end);
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
324 if (loop_n_iterations == 1)
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
333 if (GET_CODE (last_loop_insn) == BARRIER)
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
340 #ifdef HAVE_cc0
341 /* The immediately preceding insn is a compare which must be
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345 #else
346 /* The immediately preceding insn may not be the compare, so don't
347 delete it. */
348 delete_insn (last_loop_insn);
349 #endif
351 return;
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
359 else if (loop_n_iterations > 0)
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
372 factors[i].count++;
373 temp = temp / factors[i].factor;
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
389 else
390 break;
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
401 else
402 unroll_type = UNROLL_MODULO;
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
417 unroll_type = UNROLL_NAIVE;
420 /* Now we know how many times to unroll the loop. */
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
440 if (unroll_type == UNROLL_COMPLETELY)
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
449 copy_start = loop_start;
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
461 #ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 #else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469 #endif
471 else
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
483 else if (unroll_type == UNROLL_MODULO)
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
491 copy_start = loop_start;
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
502 #ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 #else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512 #endif
514 else
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
526 else
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
531 if (GET_CODE (last_loop_insn) == BARRIER)
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
538 This will be corrected below if the target of this jump is
539 not the start_label. */
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
552 else
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
577 if (GET_CODE (insn) == JUMP_INSN)
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
594 else
595 copy_start = loop_start;
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
610 This case currently can not be handled by the loop unrolling code. */
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
617 if (LABEL_NAME (start_label))
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
666 map->integrating = 0;
668 /* Allocate the label map. */
670 if (max_labelno > 0)
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
677 else
678 map->label_map = 0;
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
693 if (JUMP_LABEL (insn))
694 set_label_in_map (map,
695 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
696 JUMP_LABEL (insn));
697 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
698 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
700 rtx pat = PATTERN (insn);
701 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
702 int len = XVECLEN (pat, diff_vec_p);
703 rtx label;
705 for (i = 0; i < len; i++)
707 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
708 set_label_in_map (map,
709 CODE_LABEL_NUMBER (label),
710 label);
716 /* Allocate space for the insn map. */
718 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
720 /* Set this to zero, to indicate that we are doing loop unrolling,
721 not function inlining. */
722 map->inline_target = 0;
724 /* The register and constant maps depend on the number of registers
725 present, so the final maps can't be created until after
726 find_splittable_regs is called. However, they are needed for
727 preconditioning, so we create temporary maps when preconditioning
728 is performed. */
730 /* The preconditioning code may allocate two new pseudo registers. */
731 maxregnum = max_reg_num ();
733 /* Allocate and zero out the splittable_regs and addr_combined_regs
734 arrays. These must be zeroed here because they will be used if
735 loop preconditioning is performed, and must be zero for that case.
737 It is safe to do this here, since the extra registers created by the
738 preconditioning code and find_splittable_regs will never be used
739 to access the splittable_regs[] and addr_combined_regs[] arrays. */
741 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
742 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
743 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
744 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
745 addr_combined_regs
746 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
747 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
748 /* We must limit it to max_reg_before_loop, because only these pseudo
749 registers have valid regno_first_uid info. Any register created after
750 that is unlikely to be local to the loop anyways. */
751 local_regno = (char *) alloca (max_reg_before_loop);
752 bzero (local_regno, max_reg_before_loop);
754 /* Mark all local registers, i.e. the ones which are referenced only
755 inside the loop. */
756 if (INSN_UID (copy_end) < max_uid_for_loop)
758 int copy_start_luid = INSN_LUID (copy_start);
759 int copy_end_luid = INSN_LUID (copy_end);
761 /* If a register is used in the jump insn, we must not duplicate it
762 since it will also be used outside the loop. */
763 if (GET_CODE (copy_end) == JUMP_INSN)
764 copy_end_luid--;
765 /* If copy_start points to the NOTE that starts the loop, then we must
766 use the next luid, because invariant pseudo-regs moved out of the loop
767 have their lifetimes modified to start here, but they are not safe
768 to duplicate. */
769 if (copy_start == loop_start)
770 copy_start_luid++;
772 /* If a pseudo's lifetime is entirely contained within this loop, then we
773 can use a different pseudo in each unrolled copy of the loop. This
774 results in better code. */
775 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
776 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
777 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
778 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
779 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
781 /* However, we must also check for loop-carried dependencies.
782 If the value the pseudo has at the end of iteration X is
783 used by iteration X+1, then we can not use a different pseudo
784 for each unrolled copy of the loop. */
785 /* A pseudo is safe if regno_first_uid is a set, and this
786 set dominates all instructions from regno_first_uid to
787 regno_last_uid. */
788 /* ??? This check is simplistic. We would get better code if
789 this check was more sophisticated. */
790 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
791 copy_start, copy_end))
792 local_regno[j] = 1;
794 if (loop_dump_stream)
796 if (local_regno[j])
797 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
798 else
799 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
805 /* If this loop requires exit tests when unrolled, check to see if we
806 can precondition the loop so as to make the exit tests unnecessary.
807 Just like variable splitting, this is not safe if the loop is entered
808 via a jump to the bottom. Also, can not do this if no strength
809 reduce info, because precondition_loop_p uses this info. */
811 /* Must copy the loop body for preconditioning before the following
812 find_splittable_regs call since that will emit insns which need to
813 be after the preconditioned loop copies, but immediately before the
814 unrolled loop copies. */
816 /* Also, it is not safe to split induction variables for the preconditioned
817 copies of the loop body. If we split induction variables, then the code
818 assumes that each induction variable can be represented as a function
819 of its initial value and the loop iteration number. This is not true
820 in this case, because the last preconditioned copy of the loop body
821 could be any iteration from the first up to the `unroll_number-1'th,
822 depending on the initial value of the iteration variable. Therefore
823 we can not split induction variables here, because we can not calculate
824 their value. Hence, this code must occur before find_splittable_regs
825 is called. */
827 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
829 rtx initial_value, final_value, increment;
831 if (precondition_loop_p (&initial_value, &final_value, &increment,
832 loop_start, loop_end))
834 register rtx diff, temp;
835 enum machine_mode mode;
836 rtx *labels;
837 int abs_inc, neg_inc;
839 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
841 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
842 map->const_age_map = (unsigned *) alloca (maxregnum
843 * sizeof (unsigned));
844 map->const_equiv_map_size = maxregnum;
845 global_const_equiv_map = map->const_equiv_map;
846 global_const_equiv_map_size = maxregnum;
848 init_reg_map (map, maxregnum);
850 /* Limit loop unrolling to 4, since this will make 7 copies of
851 the loop body. */
852 if (unroll_number > 4)
853 unroll_number = 4;
855 /* Save the absolute value of the increment, and also whether or
856 not it is negative. */
857 neg_inc = 0;
858 abs_inc = INTVAL (increment);
859 if (abs_inc < 0)
861 abs_inc = - abs_inc;
862 neg_inc = 1;
865 start_sequence ();
867 /* Decide what mode to do these calculations in. Choose the larger
868 of final_value's mode and initial_value's mode, or a full-word if
869 both are constants. */
870 mode = GET_MODE (final_value);
871 if (mode == VOIDmode)
873 mode = GET_MODE (initial_value);
874 if (mode == VOIDmode)
875 mode = word_mode;
877 else if (mode != GET_MODE (initial_value)
878 && (GET_MODE_SIZE (mode)
879 < GET_MODE_SIZE (GET_MODE (initial_value))))
880 mode = GET_MODE (initial_value);
882 /* Calculate the difference between the final and initial values.
883 Final value may be a (plus (reg x) (const_int 1)) rtx.
884 Let the following cse pass simplify this if initial value is
885 a constant.
887 We must copy the final and initial values here to avoid
888 improperly shared rtl. */
890 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
891 copy_rtx (initial_value), NULL_RTX, 0,
892 OPTAB_LIB_WIDEN);
894 /* Now calculate (diff % (unroll * abs (increment))) by using an
895 and instruction. */
896 diff = expand_binop (GET_MODE (diff), and_optab, diff,
897 GEN_INT (unroll_number * abs_inc - 1),
898 NULL_RTX, 0, OPTAB_LIB_WIDEN);
900 /* Now emit a sequence of branches to jump to the proper precond
901 loop entry point. */
903 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
904 for (i = 0; i < unroll_number; i++)
905 labels[i] = gen_label_rtx ();
907 /* Check for the case where the initial value is greater than or
908 equal to the final value. In that case, we want to execute
909 exactly one loop iteration. The code below will fail for this
910 case. This check does not apply if the loop has a NE
911 comparison at the end. */
913 if (loop_comparison_code != NE)
915 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
916 NULL_RTX, mode, 0, 0);
917 if (neg_inc)
918 emit_jump_insn (gen_ble (labels[1]));
919 else
920 emit_jump_insn (gen_bge (labels[1]));
921 JUMP_LABEL (get_last_insn ()) = labels[1];
922 LABEL_NUSES (labels[1])++;
925 /* Assuming the unroll_number is 4, and the increment is 2, then
926 for a negative increment: for a positive increment:
927 diff = 0,1 precond 0 diff = 0,7 precond 0
928 diff = 2,3 precond 3 diff = 1,2 precond 1
929 diff = 4,5 precond 2 diff = 3,4 precond 2
930 diff = 6,7 precond 1 diff = 5,6 precond 3 */
932 /* We only need to emit (unroll_number - 1) branches here, the
933 last case just falls through to the following code. */
935 /* ??? This would give better code if we emitted a tree of branches
936 instead of the current linear list of branches. */
938 for (i = 0; i < unroll_number - 1; i++)
940 int cmp_const;
941 enum rtx_code cmp_code;
943 /* For negative increments, must invert the constant compared
944 against, except when comparing against zero. */
945 if (i == 0)
947 cmp_const = 0;
948 cmp_code = EQ;
950 else if (neg_inc)
952 cmp_const = unroll_number - i;
953 cmp_code = GE;
955 else
957 cmp_const = i;
958 cmp_code = LE;
961 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
962 cmp_code, NULL_RTX, mode, 0, 0);
964 if (i == 0)
965 emit_jump_insn (gen_beq (labels[i]));
966 else if (neg_inc)
967 emit_jump_insn (gen_bge (labels[i]));
968 else
969 emit_jump_insn (gen_ble (labels[i]));
970 JUMP_LABEL (get_last_insn ()) = labels[i];
971 LABEL_NUSES (labels[i])++;
974 /* If the increment is greater than one, then we need another branch,
975 to handle other cases equivalent to 0. */
977 /* ??? This should be merged into the code above somehow to help
978 simplify the code here, and reduce the number of branches emitted.
979 For the negative increment case, the branch here could easily
980 be merged with the `0' case branch above. For the positive
981 increment case, it is not clear how this can be simplified. */
983 if (abs_inc != 1)
985 int cmp_const;
986 enum rtx_code cmp_code;
988 if (neg_inc)
990 cmp_const = abs_inc - 1;
991 cmp_code = LE;
993 else
995 cmp_const = abs_inc * (unroll_number - 1) + 1;
996 cmp_code = GE;
999 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1000 mode, 0, 0);
1002 if (neg_inc)
1003 emit_jump_insn (gen_ble (labels[0]));
1004 else
1005 emit_jump_insn (gen_bge (labels[0]));
1006 JUMP_LABEL (get_last_insn ()) = labels[0];
1007 LABEL_NUSES (labels[0])++;
1010 sequence = gen_sequence ();
1011 end_sequence ();
1012 emit_insn_before (sequence, loop_start);
1014 /* Only the last copy of the loop body here needs the exit
1015 test, so set copy_end to exclude the compare/branch here,
1016 and then reset it inside the loop when get to the last
1017 copy. */
1019 if (GET_CODE (last_loop_insn) == BARRIER)
1020 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1021 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1023 #ifdef HAVE_cc0
1024 /* The immediately preceding insn is a compare which we do not
1025 want to copy. */
1026 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1027 #else
1028 /* The immediately preceding insn may not be a compare, so we
1029 must copy it. */
1030 copy_end = PREV_INSN (last_loop_insn);
1031 #endif
1033 else
1034 abort ();
1036 for (i = 1; i < unroll_number; i++)
1038 emit_label_after (labels[unroll_number - i],
1039 PREV_INSN (loop_start));
1041 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1042 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1043 bzero ((char *) map->const_age_map,
1044 maxregnum * sizeof (unsigned));
1045 map->const_age = 0;
1047 for (j = 0; j < max_labelno; j++)
1048 if (local_label[j])
1049 set_label_in_map (map, j, gen_label_rtx ());
1051 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1052 if (local_regno[j])
1053 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1055 /* The last copy needs the compare/branch insns at the end,
1056 so reset copy_end here if the loop ends with a conditional
1057 branch. */
1059 if (i == unroll_number - 1)
1061 if (GET_CODE (last_loop_insn) == BARRIER)
1062 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1063 else
1064 copy_end = last_loop_insn;
1067 /* None of the copies are the `last_iteration', so just
1068 pass zero for that parameter. */
1069 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1070 unroll_type, start_label, loop_end,
1071 loop_start, copy_end);
1073 emit_label_after (labels[0], PREV_INSN (loop_start));
1075 if (GET_CODE (last_loop_insn) == BARRIER)
1077 insert_before = PREV_INSN (last_loop_insn);
1078 copy_end = PREV_INSN (insert_before);
1080 else
1082 #ifdef HAVE_cc0
1083 /* The immediately preceding insn is a compare which we do not
1084 want to copy. */
1085 insert_before = PREV_INSN (last_loop_insn);
1086 copy_end = PREV_INSN (insert_before);
1087 #else
1088 /* The immediately preceding insn may not be a compare, so we
1089 must copy it. */
1090 insert_before = last_loop_insn;
1091 copy_end = PREV_INSN (last_loop_insn);
1092 #endif
1095 /* Set unroll type to MODULO now. */
1096 unroll_type = UNROLL_MODULO;
1097 loop_preconditioned = 1;
1101 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1102 the loop unless all loops are being unrolled. */
1103 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1105 if (loop_dump_stream)
1106 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1107 return;
1110 /* At this point, we are guaranteed to unroll the loop. */
1112 /* For each biv and giv, determine whether it can be safely split into
1113 a different variable for each unrolled copy of the loop body.
1114 We precalculate and save this info here, since computing it is
1115 expensive.
1117 Do this before deleting any instructions from the loop, so that
1118 back_branch_in_range_p will work correctly. */
1120 if (splitting_not_safe)
1121 temp = 0;
1122 else
1123 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1124 end_insert_before, unroll_number);
1126 /* find_splittable_regs may have created some new registers, so must
1127 reallocate the reg_map with the new larger size, and must realloc
1128 the constant maps also. */
1130 maxregnum = max_reg_num ();
1131 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1133 init_reg_map (map, maxregnum);
1135 /* Space is needed in some of the map for new registers, so new_maxregnum
1136 is an (over)estimate of how many registers will exist at the end. */
1137 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1139 /* Must realloc space for the constant maps, because the number of registers
1140 may have changed. */
1142 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1143 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1145 map->const_equiv_map_size = new_maxregnum;
1146 global_const_equiv_map = map->const_equiv_map;
1147 global_const_equiv_map_size = new_maxregnum;
1149 /* Search the list of bivs and givs to find ones which need to be remapped
1150 when split, and set their reg_map entry appropriately. */
1152 for (bl = loop_iv_list; bl; bl = bl->next)
1154 if (REGNO (bl->biv->src_reg) != bl->regno)
1155 map->reg_map[bl->regno] = bl->biv->src_reg;
1156 #if 0
1157 /* Currently, non-reduced/final-value givs are never split. */
1158 for (v = bl->giv; v; v = v->next_iv)
1159 if (REGNO (v->src_reg) != bl->regno)
1160 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1161 #endif
1164 /* Use our current register alignment and pointer flags. */
1165 map->regno_pointer_flag = regno_pointer_flag;
1166 map->regno_pointer_align = regno_pointer_align;
1168 /* If the loop is being partially unrolled, and the iteration variables
1169 are being split, and are being renamed for the split, then must fix up
1170 the compare/jump instruction at the end of the loop to refer to the new
1171 registers. This compare isn't copied, so the registers used in it
1172 will never be replaced if it isn't done here. */
1174 if (unroll_type == UNROLL_MODULO)
1176 insn = NEXT_INSN (copy_end);
1177 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1178 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1181 /* For unroll_number - 1 times, make a copy of each instruction
1182 between copy_start and copy_end, and insert these new instructions
1183 before the end of the loop. */
1185 for (i = 0; i < unroll_number; i++)
1187 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1188 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1189 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1190 map->const_age = 0;
1192 for (j = 0; j < max_labelno; j++)
1193 if (local_label[j])
1194 set_label_in_map (map, j, gen_label_rtx ());
1196 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1197 if (local_regno[j])
1198 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1200 /* If loop starts with a branch to the test, then fix it so that
1201 it points to the test of the first unrolled copy of the loop. */
1202 if (i == 0 && loop_start != copy_start)
1204 insn = PREV_INSN (copy_start);
1205 pattern = PATTERN (insn);
1207 tem = get_label_from_map (map,
1208 CODE_LABEL_NUMBER
1209 (XEXP (SET_SRC (pattern), 0)));
1210 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1212 /* Set the jump label so that it can be used by later loop unrolling
1213 passes. */
1214 JUMP_LABEL (insn) = tem;
1215 LABEL_NUSES (tem)++;
1218 copy_loop_body (copy_start, copy_end, map, exit_label,
1219 i == unroll_number - 1, unroll_type, start_label,
1220 loop_end, insert_before, insert_before);
1223 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1224 insn to be deleted. This prevents any runaway delete_insn call from
1225 more insns that it should, as it always stops at a CODE_LABEL. */
1227 /* Delete the compare and branch at the end of the loop if completely
1228 unrolling the loop. Deleting the backward branch at the end also
1229 deletes the code label at the start of the loop. This is done at
1230 the very end to avoid problems with back_branch_in_range_p. */
1232 if (unroll_type == UNROLL_COMPLETELY)
1233 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1234 else
1235 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1237 /* Delete all of the original loop instructions. Don't delete the
1238 LOOP_BEG note, or the first code label in the loop. */
1240 insn = NEXT_INSN (copy_start);
1241 while (insn != safety_label)
1243 if (insn != start_label)
1244 insn = delete_insn (insn);
1245 else
1246 insn = NEXT_INSN (insn);
1249 /* Can now delete the 'safety' label emitted to protect us from runaway
1250 delete_insn calls. */
1251 if (INSN_DELETED_P (safety_label))
1252 abort ();
1253 delete_insn (safety_label);
1255 /* If exit_label exists, emit it after the loop. Doing the emit here
1256 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1257 This is needed so that mostly_true_jump in reorg.c will treat jumps
1258 to this loop end label correctly, i.e. predict that they are usually
1259 not taken. */
1260 if (exit_label)
1261 emit_label_after (exit_label, loop_end);
1264 /* Return true if the loop can be safely, and profitably, preconditioned
1265 so that the unrolled copies of the loop body don't need exit tests.
1267 This only works if final_value, initial_value and increment can be
1268 determined, and if increment is a constant power of 2.
1269 If increment is not a power of 2, then the preconditioning modulo
1270 operation would require a real modulo instead of a boolean AND, and this
1271 is not considered `profitable'. */
1273 /* ??? If the loop is known to be executed very many times, or the machine
1274 has a very cheap divide instruction, then preconditioning is a win even
1275 when the increment is not a power of 2. Use RTX_COST to compute
1276 whether divide is cheap. */
1278 static int
1279 precondition_loop_p (initial_value, final_value, increment, loop_start,
1280 loop_end)
1281 rtx *initial_value, *final_value, *increment;
1282 rtx loop_start, loop_end;
1285 if (loop_n_iterations > 0)
1287 *initial_value = const0_rtx;
1288 *increment = const1_rtx;
1289 *final_value = GEN_INT (loop_n_iterations);
1291 if (loop_dump_stream)
1292 fprintf (loop_dump_stream,
1293 "Preconditioning: Success, number of iterations known, %d.\n",
1294 loop_n_iterations);
1295 return 1;
1298 if (loop_initial_value == 0)
1300 if (loop_dump_stream)
1301 fprintf (loop_dump_stream,
1302 "Preconditioning: Could not find initial value.\n");
1303 return 0;
1305 else if (loop_increment == 0)
1307 if (loop_dump_stream)
1308 fprintf (loop_dump_stream,
1309 "Preconditioning: Could not find increment value.\n");
1310 return 0;
1312 else if (GET_CODE (loop_increment) != CONST_INT)
1314 if (loop_dump_stream)
1315 fprintf (loop_dump_stream,
1316 "Preconditioning: Increment not a constant.\n");
1317 return 0;
1319 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1320 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1322 if (loop_dump_stream)
1323 fprintf (loop_dump_stream,
1324 "Preconditioning: Increment not a constant power of 2.\n");
1325 return 0;
1328 /* Unsigned_compare and compare_dir can be ignored here, since they do
1329 not matter for preconditioning. */
1331 if (loop_final_value == 0)
1333 if (loop_dump_stream)
1334 fprintf (loop_dump_stream,
1335 "Preconditioning: EQ comparison loop.\n");
1336 return 0;
1339 /* Must ensure that final_value is invariant, so call invariant_p to
1340 check. Before doing so, must check regno against max_reg_before_loop
1341 to make sure that the register is in the range covered by invariant_p.
1342 If it isn't, then it is most likely a biv/giv which by definition are
1343 not invariant. */
1344 if ((GET_CODE (loop_final_value) == REG
1345 && REGNO (loop_final_value) >= max_reg_before_loop)
1346 || (GET_CODE (loop_final_value) == PLUS
1347 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1348 || ! invariant_p (loop_final_value))
1350 if (loop_dump_stream)
1351 fprintf (loop_dump_stream,
1352 "Preconditioning: Final value not invariant.\n");
1353 return 0;
1356 /* Fail for floating point values, since the caller of this function
1357 does not have code to deal with them. */
1358 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1359 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1361 if (loop_dump_stream)
1362 fprintf (loop_dump_stream,
1363 "Preconditioning: Floating point final or initial value.\n");
1364 return 0;
1367 /* Now set initial_value to be the iteration_var, since that may be a
1368 simpler expression, and is guaranteed to be correct if all of the
1369 above tests succeed.
1371 We can not use the initial_value as calculated, because it will be
1372 one too small for loops of the form "while (i-- > 0)". We can not
1373 emit code before the loop_skip_over insns to fix this problem as this
1374 will then give a number one too large for loops of the form
1375 "while (--i > 0)".
1377 Note that all loops that reach here are entered at the top, because
1378 this function is not called if the loop starts with a jump. */
1380 /* Fail if loop_iteration_var is not live before loop_start, since we need
1381 to test its value in the preconditioning code. */
1383 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1384 > INSN_LUID (loop_start))
1386 if (loop_dump_stream)
1387 fprintf (loop_dump_stream,
1388 "Preconditioning: Iteration var not live before loop start.\n");
1389 return 0;
1392 *initial_value = loop_iteration_var;
1393 *increment = loop_increment;
1394 *final_value = loop_final_value;
1396 /* Success! */
1397 if (loop_dump_stream)
1398 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1399 return 1;
1403 /* All pseudo-registers must be mapped to themselves. Two hard registers
1404 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1405 REGNUM, to avoid function-inlining specific conversions of these
1406 registers. All other hard regs can not be mapped because they may be
1407 used with different
1408 modes. */
1410 static void
1411 init_reg_map (map, maxregnum)
1412 struct inline_remap *map;
1413 int maxregnum;
1415 int i;
1417 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1418 map->reg_map[i] = regno_reg_rtx[i];
1419 /* Just clear the rest of the entries. */
1420 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1421 map->reg_map[i] = 0;
1423 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1424 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1425 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1426 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1429 /* Strength-reduction will often emit code for optimized biv/givs which
1430 calculates their value in a temporary register, and then copies the result
1431 to the iv. This procedure reconstructs the pattern computing the iv;
1432 verifying that all operands are of the proper form.
1434 PATTERN must be the result of single_set.
1435 The return value is the amount that the giv is incremented by. */
1437 static rtx
1438 calculate_giv_inc (pattern, src_insn, regno)
1439 rtx pattern, src_insn;
1440 int regno;
1442 rtx increment;
1443 rtx increment_total = 0;
1444 int tries = 0;
1446 retry:
1447 /* Verify that we have an increment insn here. First check for a plus
1448 as the set source. */
1449 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1451 /* SR sometimes computes the new giv value in a temp, then copies it
1452 to the new_reg. */
1453 src_insn = PREV_INSN (src_insn);
1454 pattern = PATTERN (src_insn);
1455 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1456 abort ();
1458 /* The last insn emitted is not needed, so delete it to avoid confusing
1459 the second cse pass. This insn sets the giv unnecessarily. */
1460 delete_insn (get_last_insn ());
1463 /* Verify that we have a constant as the second operand of the plus. */
1464 increment = XEXP (SET_SRC (pattern), 1);
1465 if (GET_CODE (increment) != CONST_INT)
1467 /* SR sometimes puts the constant in a register, especially if it is
1468 too big to be an add immed operand. */
1469 src_insn = PREV_INSN (src_insn);
1470 increment = SET_SRC (PATTERN (src_insn));
1472 /* SR may have used LO_SUM to compute the constant if it is too large
1473 for a load immed operand. In this case, the constant is in operand
1474 one of the LO_SUM rtx. */
1475 if (GET_CODE (increment) == LO_SUM)
1476 increment = XEXP (increment, 1);
1477 else if (GET_CODE (increment) == IOR
1478 || GET_CODE (increment) == ASHIFT
1479 || GET_CODE (increment) == PLUS)
1481 /* The rs6000 port loads some constants with IOR.
1482 The alpha port loads some constants with ASHIFT and PLUS. */
1483 rtx second_part = XEXP (increment, 1);
1484 enum rtx_code code = GET_CODE (increment);
1486 src_insn = PREV_INSN (src_insn);
1487 increment = SET_SRC (PATTERN (src_insn));
1488 /* Don't need the last insn anymore. */
1489 delete_insn (get_last_insn ());
1491 if (GET_CODE (second_part) != CONST_INT
1492 || GET_CODE (increment) != CONST_INT)
1493 abort ();
1495 if (code == IOR)
1496 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1497 else if (code == PLUS)
1498 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1499 else
1500 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1503 if (GET_CODE (increment) != CONST_INT)
1504 abort ();
1506 /* The insn loading the constant into a register is no longer needed,
1507 so delete it. */
1508 delete_insn (get_last_insn ());
1511 if (increment_total)
1512 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1513 else
1514 increment_total = increment;
1516 /* Check that the source register is the same as the register we expected
1517 to see as the source. If not, something is seriously wrong. */
1518 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1519 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1521 /* Some machines (e.g. the romp), may emit two add instructions for
1522 certain constants, so lets try looking for another add immediately
1523 before this one if we have only seen one add insn so far. */
1525 if (tries == 0)
1527 tries++;
1529 src_insn = PREV_INSN (src_insn);
1530 pattern = PATTERN (src_insn);
1532 delete_insn (get_last_insn ());
1534 goto retry;
1537 abort ();
1540 return increment_total;
1543 /* Copy REG_NOTES, except for insn references, because not all insn_map
1544 entries are valid yet. We do need to copy registers now though, because
1545 the reg_map entries can change during copying. */
1547 static rtx
1548 initial_reg_note_copy (notes, map)
1549 rtx notes;
1550 struct inline_remap *map;
1552 rtx copy;
1554 if (notes == 0)
1555 return 0;
1557 copy = rtx_alloc (GET_CODE (notes));
1558 PUT_MODE (copy, GET_MODE (notes));
1560 if (GET_CODE (notes) == EXPR_LIST)
1561 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1562 else if (GET_CODE (notes) == INSN_LIST)
1563 /* Don't substitute for these yet. */
1564 XEXP (copy, 0) = XEXP (notes, 0);
1565 else
1566 abort ();
1568 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1570 return copy;
1573 /* Fixup insn references in copied REG_NOTES. */
1575 static void
1576 final_reg_note_copy (notes, map)
1577 rtx notes;
1578 struct inline_remap *map;
1580 rtx note;
1582 for (note = notes; note; note = XEXP (note, 1))
1583 if (GET_CODE (note) == INSN_LIST)
1584 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1587 /* Copy each instruction in the loop, substituting from map as appropriate.
1588 This is very similar to a loop in expand_inline_function. */
1590 static void
1591 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1592 unroll_type, start_label, loop_end, insert_before,
1593 copy_notes_from)
1594 rtx copy_start, copy_end;
1595 struct inline_remap *map;
1596 rtx exit_label;
1597 int last_iteration;
1598 enum unroll_types unroll_type;
1599 rtx start_label, loop_end, insert_before, copy_notes_from;
1601 rtx insn, pattern;
1602 rtx set, tem, copy;
1603 int dest_reg_was_split, i;
1604 rtx cc0_insn = 0;
1605 rtx final_label = 0;
1606 rtx giv_inc, giv_dest_reg, giv_src_reg;
1608 /* If this isn't the last iteration, then map any references to the
1609 start_label to final_label. Final label will then be emitted immediately
1610 after the end of this loop body if it was ever used.
1612 If this is the last iteration, then map references to the start_label
1613 to itself. */
1614 if (! last_iteration)
1616 final_label = gen_label_rtx ();
1617 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1618 final_label);
1620 else
1621 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1623 start_sequence ();
1625 insn = copy_start;
1628 insn = NEXT_INSN (insn);
1630 map->orig_asm_operands_vector = 0;
1632 switch (GET_CODE (insn))
1634 case INSN:
1635 pattern = PATTERN (insn);
1636 copy = 0;
1637 giv_inc = 0;
1639 /* Check to see if this is a giv that has been combined with
1640 some split address givs. (Combined in the sense that
1641 `combine_givs' in loop.c has put two givs in the same register.)
1642 In this case, we must search all givs based on the same biv to
1643 find the address givs. Then split the address givs.
1644 Do this before splitting the giv, since that may map the
1645 SET_DEST to a new register. */
1647 if ((set = single_set (insn))
1648 && GET_CODE (SET_DEST (set)) == REG
1649 && addr_combined_regs[REGNO (SET_DEST (set))])
1651 struct iv_class *bl;
1652 struct induction *v, *tv;
1653 int regno = REGNO (SET_DEST (set));
1655 v = addr_combined_regs[REGNO (SET_DEST (set))];
1656 bl = reg_biv_class[REGNO (v->src_reg)];
1658 /* Although the giv_inc amount is not needed here, we must call
1659 calculate_giv_inc here since it might try to delete the
1660 last insn emitted. If we wait until later to call it,
1661 we might accidentally delete insns generated immediately
1662 below by emit_unrolled_add. */
1664 giv_inc = calculate_giv_inc (set, insn, regno);
1666 /* Now find all address giv's that were combined with this
1667 giv 'v'. */
1668 for (tv = bl->giv; tv; tv = tv->next_iv)
1669 if (tv->giv_type == DEST_ADDR && tv->same == v)
1671 int this_giv_inc;
1673 /* If this DEST_ADDR giv was not split, then ignore it. */
1674 if (*tv->location != tv->dest_reg)
1675 continue;
1677 /* Scale this_giv_inc if the multiplicative factors of
1678 the two givs are different. */
1679 this_giv_inc = INTVAL (giv_inc);
1680 if (tv->mult_val != v->mult_val)
1681 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1682 * INTVAL (tv->mult_val));
1684 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1685 *tv->location = tv->dest_reg;
1687 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1689 /* Must emit an insn to increment the split address
1690 giv. Add in the const_adjust field in case there
1691 was a constant eliminated from the address. */
1692 rtx value, dest_reg;
1694 /* tv->dest_reg will be either a bare register,
1695 or else a register plus a constant. */
1696 if (GET_CODE (tv->dest_reg) == REG)
1697 dest_reg = tv->dest_reg;
1698 else
1699 dest_reg = XEXP (tv->dest_reg, 0);
1701 /* Check for shared address givs, and avoid
1702 incrementing the shared pseudo reg more than
1703 once. */
1704 if (! tv->same_insn)
1706 /* tv->dest_reg may actually be a (PLUS (REG)
1707 (CONST)) here, so we must call plus_constant
1708 to add the const_adjust amount before calling
1709 emit_unrolled_add below. */
1710 value = plus_constant (tv->dest_reg,
1711 tv->const_adjust);
1713 /* The constant could be too large for an add
1714 immediate, so can't directly emit an insn
1715 here. */
1716 emit_unrolled_add (dest_reg, XEXP (value, 0),
1717 XEXP (value, 1));
1720 /* Reset the giv to be just the register again, in case
1721 it is used after the set we have just emitted.
1722 We must subtract the const_adjust factor added in
1723 above. */
1724 tv->dest_reg = plus_constant (dest_reg,
1725 - tv->const_adjust);
1726 *tv->location = tv->dest_reg;
1731 /* If this is a setting of a splittable variable, then determine
1732 how to split the variable, create a new set based on this split,
1733 and set up the reg_map so that later uses of the variable will
1734 use the new split variable. */
1736 dest_reg_was_split = 0;
1738 if ((set = single_set (insn))
1739 && GET_CODE (SET_DEST (set)) == REG
1740 && splittable_regs[REGNO (SET_DEST (set))])
1742 int regno = REGNO (SET_DEST (set));
1744 dest_reg_was_split = 1;
1746 /* Compute the increment value for the giv, if it wasn't
1747 already computed above. */
1749 if (giv_inc == 0)
1750 giv_inc = calculate_giv_inc (set, insn, regno);
1751 giv_dest_reg = SET_DEST (set);
1752 giv_src_reg = SET_DEST (set);
1754 if (unroll_type == UNROLL_COMPLETELY)
1756 /* Completely unrolling the loop. Set the induction
1757 variable to a known constant value. */
1759 /* The value in splittable_regs may be an invariant
1760 value, so we must use plus_constant here. */
1761 splittable_regs[regno]
1762 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1764 if (GET_CODE (splittable_regs[regno]) == PLUS)
1766 giv_src_reg = XEXP (splittable_regs[regno], 0);
1767 giv_inc = XEXP (splittable_regs[regno], 1);
1769 else
1771 /* The splittable_regs value must be a REG or a
1772 CONST_INT, so put the entire value in the giv_src_reg
1773 variable. */
1774 giv_src_reg = splittable_regs[regno];
1775 giv_inc = const0_rtx;
1778 else
1780 /* Partially unrolling loop. Create a new pseudo
1781 register for the iteration variable, and set it to
1782 be a constant plus the original register. Except
1783 on the last iteration, when the result has to
1784 go back into the original iteration var register. */
1786 /* Handle bivs which must be mapped to a new register
1787 when split. This happens for bivs which need their
1788 final value set before loop entry. The new register
1789 for the biv was stored in the biv's first struct
1790 induction entry by find_splittable_regs. */
1792 if (regno < max_reg_before_loop
1793 && reg_iv_type[regno] == BASIC_INDUCT)
1795 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1796 giv_dest_reg = giv_src_reg;
1799 #if 0
1800 /* If non-reduced/final-value givs were split, then
1801 this would have to remap those givs also. See
1802 find_splittable_regs. */
1803 #endif
1805 splittable_regs[regno]
1806 = GEN_INT (INTVAL (giv_inc)
1807 + INTVAL (splittable_regs[regno]));
1808 giv_inc = splittable_regs[regno];
1810 /* Now split the induction variable by changing the dest
1811 of this insn to a new register, and setting its
1812 reg_map entry to point to this new register.
1814 If this is the last iteration, and this is the last insn
1815 that will update the iv, then reuse the original dest,
1816 to ensure that the iv will have the proper value when
1817 the loop exits or repeats.
1819 Using splittable_regs_updates here like this is safe,
1820 because it can only be greater than one if all
1821 instructions modifying the iv are always executed in
1822 order. */
1824 if (! last_iteration
1825 || (splittable_regs_updates[regno]-- != 1))
1827 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1828 giv_dest_reg = tem;
1829 map->reg_map[regno] = tem;
1831 else
1832 map->reg_map[regno] = giv_src_reg;
1835 /* The constant being added could be too large for an add
1836 immediate, so can't directly emit an insn here. */
1837 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1838 copy = get_last_insn ();
1839 pattern = PATTERN (copy);
1841 else
1843 pattern = copy_rtx_and_substitute (pattern, map);
1844 copy = emit_insn (pattern);
1846 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1848 #ifdef HAVE_cc0
1849 /* If this insn is setting CC0, it may need to look at
1850 the insn that uses CC0 to see what type of insn it is.
1851 In that case, the call to recog via validate_change will
1852 fail. So don't substitute constants here. Instead,
1853 do it when we emit the following insn.
1855 For example, see the pyr.md file. That machine has signed and
1856 unsigned compares. The compare patterns must check the
1857 following branch insn to see which what kind of compare to
1858 emit.
1860 If the previous insn set CC0, substitute constants on it as
1861 well. */
1862 if (sets_cc0_p (PATTERN (copy)) != 0)
1863 cc0_insn = copy;
1864 else
1866 if (cc0_insn)
1867 try_constants (cc0_insn, map);
1868 cc0_insn = 0;
1869 try_constants (copy, map);
1871 #else
1872 try_constants (copy, map);
1873 #endif
1875 /* Make split induction variable constants `permanent' since we
1876 know there are no backward branches across iteration variable
1877 settings which would invalidate this. */
1878 if (dest_reg_was_split)
1880 int regno = REGNO (SET_DEST (pattern));
1882 if (regno < map->const_equiv_map_size
1883 && map->const_age_map[regno] == map->const_age)
1884 map->const_age_map[regno] = -1;
1886 break;
1888 case JUMP_INSN:
1889 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1890 copy = emit_jump_insn (pattern);
1891 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1893 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1894 && ! last_iteration)
1896 /* This is a branch to the beginning of the loop; this is the
1897 last insn being copied; and this is not the last iteration.
1898 In this case, we want to change the original fall through
1899 case to be a branch past the end of the loop, and the
1900 original jump label case to fall_through. */
1902 if (invert_exp (pattern, copy))
1904 if (! redirect_exp (&pattern,
1905 get_label_from_map (map,
1906 CODE_LABEL_NUMBER
1907 (JUMP_LABEL (insn))),
1908 exit_label, copy))
1909 abort ();
1911 else
1913 rtx jmp;
1914 rtx lab = gen_label_rtx ();
1915 /* Can't do it by reversing the jump (probably because we
1916 couldn't reverse the conditions), so emit a new
1917 jump_insn after COPY, and redirect the jump around
1918 that. */
1919 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1920 jmp = emit_barrier_after (jmp);
1921 emit_label_after (lab, jmp);
1922 LABEL_NUSES (lab) = 0;
1923 if (! redirect_exp (&pattern,
1924 get_label_from_map (map,
1925 CODE_LABEL_NUMBER
1926 (JUMP_LABEL (insn))),
1927 lab, copy))
1928 abort ();
1932 #ifdef HAVE_cc0
1933 if (cc0_insn)
1934 try_constants (cc0_insn, map);
1935 cc0_insn = 0;
1936 #endif
1937 try_constants (copy, map);
1939 /* Set the jump label of COPY correctly to avoid problems with
1940 later passes of unroll_loop, if INSN had jump label set. */
1941 if (JUMP_LABEL (insn))
1943 rtx label = 0;
1945 /* Can't use the label_map for every insn, since this may be
1946 the backward branch, and hence the label was not mapped. */
1947 if ((set = single_set (copy)))
1949 tem = SET_SRC (set);
1950 if (GET_CODE (tem) == LABEL_REF)
1951 label = XEXP (tem, 0);
1952 else if (GET_CODE (tem) == IF_THEN_ELSE)
1954 if (XEXP (tem, 1) != pc_rtx)
1955 label = XEXP (XEXP (tem, 1), 0);
1956 else
1957 label = XEXP (XEXP (tem, 2), 0);
1961 if (label && GET_CODE (label) == CODE_LABEL)
1962 JUMP_LABEL (copy) = label;
1963 else
1965 /* An unrecognizable jump insn, probably the entry jump
1966 for a switch statement. This label must have been mapped,
1967 so just use the label_map to get the new jump label. */
1968 JUMP_LABEL (copy)
1969 = get_label_from_map (map,
1970 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
1973 /* If this is a non-local jump, then must increase the label
1974 use count so that the label will not be deleted when the
1975 original jump is deleted. */
1976 LABEL_NUSES (JUMP_LABEL (copy))++;
1978 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1979 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1981 rtx pat = PATTERN (copy);
1982 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1983 int len = XVECLEN (pat, diff_vec_p);
1984 int i;
1986 for (i = 0; i < len; i++)
1987 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1990 /* If this used to be a conditional jump insn but whose branch
1991 direction is now known, we must do something special. */
1992 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1994 #ifdef HAVE_cc0
1995 /* The previous insn set cc0 for us. So delete it. */
1996 delete_insn (PREV_INSN (copy));
1997 #endif
1999 /* If this is now a no-op, delete it. */
2000 if (map->last_pc_value == pc_rtx)
2002 /* Don't let delete_insn delete the label referenced here,
2003 because we might possibly need it later for some other
2004 instruction in the loop. */
2005 if (JUMP_LABEL (copy))
2006 LABEL_NUSES (JUMP_LABEL (copy))++;
2007 delete_insn (copy);
2008 if (JUMP_LABEL (copy))
2009 LABEL_NUSES (JUMP_LABEL (copy))--;
2010 copy = 0;
2012 else
2013 /* Otherwise, this is unconditional jump so we must put a
2014 BARRIER after it. We could do some dead code elimination
2015 here, but jump.c will do it just as well. */
2016 emit_barrier ();
2018 break;
2020 case CALL_INSN:
2021 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2022 copy = emit_call_insn (pattern);
2023 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2025 /* Because the USAGE information potentially contains objects other
2026 than hard registers, we need to copy it. */
2027 CALL_INSN_FUNCTION_USAGE (copy)
2028 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2030 #ifdef HAVE_cc0
2031 if (cc0_insn)
2032 try_constants (cc0_insn, map);
2033 cc0_insn = 0;
2034 #endif
2035 try_constants (copy, map);
2037 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2039 map->const_equiv_map[i] = 0;
2040 break;
2042 case CODE_LABEL:
2043 /* If this is the loop start label, then we don't need to emit a
2044 copy of this label since no one will use it. */
2046 if (insn != start_label)
2048 copy = emit_label (get_label_from_map (map,
2049 CODE_LABEL_NUMBER (insn)));
2050 map->const_age++;
2052 break;
2054 case BARRIER:
2055 copy = emit_barrier ();
2056 break;
2058 case NOTE:
2059 /* VTOP notes are valid only before the loop exit test. If placed
2060 anywhere else, loop may generate bad code. */
2062 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2063 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2064 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2065 copy = emit_note (NOTE_SOURCE_FILE (insn),
2066 NOTE_LINE_NUMBER (insn));
2067 else
2068 copy = 0;
2069 break;
2071 default:
2072 abort ();
2073 break;
2076 map->insn_map[INSN_UID (insn)] = copy;
2078 while (insn != copy_end);
2080 /* Now finish coping the REG_NOTES. */
2081 insn = copy_start;
2084 insn = NEXT_INSN (insn);
2085 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2086 || GET_CODE (insn) == CALL_INSN)
2087 && map->insn_map[INSN_UID (insn)])
2088 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2090 while (insn != copy_end);
2092 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2093 each of these notes here, since there may be some important ones, such as
2094 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2095 iteration, because the original notes won't be deleted.
2097 We can't use insert_before here, because when from preconditioning,
2098 insert_before points before the loop. We can't use copy_end, because
2099 there may be insns already inserted after it (which we don't want to
2100 copy) when not from preconditioning code. */
2102 if (! last_iteration)
2104 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2106 if (GET_CODE (insn) == NOTE
2107 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2108 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2112 if (final_label && LABEL_NUSES (final_label) > 0)
2113 emit_label (final_label);
2115 tem = gen_sequence ();
2116 end_sequence ();
2117 emit_insn_before (tem, insert_before);
2120 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2121 emitted. This will correctly handle the case where the increment value
2122 won't fit in the immediate field of a PLUS insns. */
2124 void
2125 emit_unrolled_add (dest_reg, src_reg, increment)
2126 rtx dest_reg, src_reg, increment;
2128 rtx result;
2130 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2131 dest_reg, 0, OPTAB_LIB_WIDEN);
2133 if (dest_reg != result)
2134 emit_move_insn (dest_reg, result);
2137 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2138 is a backward branch in that range that branches to somewhere between
2139 LOOP_START and INSN. Returns 0 otherwise. */
2141 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2142 In practice, this is not a problem, because this function is seldom called,
2143 and uses a negligible amount of CPU time on average. */
2146 back_branch_in_range_p (insn, loop_start, loop_end)
2147 rtx insn;
2148 rtx loop_start, loop_end;
2150 rtx p, q, target_insn;
2151 rtx orig_loop_end = loop_end;
2153 /* Stop before we get to the backward branch at the end of the loop. */
2154 loop_end = prev_nonnote_insn (loop_end);
2155 if (GET_CODE (loop_end) == BARRIER)
2156 loop_end = PREV_INSN (loop_end);
2158 /* Check in case insn has been deleted, search forward for first non
2159 deleted insn following it. */
2160 while (INSN_DELETED_P (insn))
2161 insn = NEXT_INSN (insn);
2163 /* Check for the case where insn is the last insn in the loop. Deal
2164 with the case where INSN was a deleted loop test insn, in which case
2165 it will now be the NOTE_LOOP_END. */
2166 if (insn == loop_end || insn == orig_loop_end)
2167 return 0;
2169 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2171 if (GET_CODE (p) == JUMP_INSN)
2173 target_insn = JUMP_LABEL (p);
2175 /* Search from loop_start to insn, to see if one of them is
2176 the target_insn. We can't use INSN_LUID comparisons here,
2177 since insn may not have an LUID entry. */
2178 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2179 if (q == target_insn)
2180 return 1;
2184 return 0;
2187 /* Try to generate the simplest rtx for the expression
2188 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2189 value of giv's. */
2191 static rtx
2192 fold_rtx_mult_add (mult1, mult2, add1, mode)
2193 rtx mult1, mult2, add1;
2194 enum machine_mode mode;
2196 rtx temp, mult_res;
2197 rtx result;
2199 /* The modes must all be the same. This should always be true. For now,
2200 check to make sure. */
2201 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2202 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2203 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2204 abort ();
2206 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2207 will be a constant. */
2208 if (GET_CODE (mult1) == CONST_INT)
2210 temp = mult2;
2211 mult2 = mult1;
2212 mult1 = temp;
2215 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2216 if (! mult_res)
2217 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2219 /* Again, put the constant second. */
2220 if (GET_CODE (add1) == CONST_INT)
2222 temp = add1;
2223 add1 = mult_res;
2224 mult_res = temp;
2227 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2228 if (! result)
2229 result = gen_rtx (PLUS, mode, add1, mult_res);
2231 return result;
2234 /* Searches the list of induction struct's for the biv BL, to try to calculate
2235 the total increment value for one iteration of the loop as a constant.
2237 Returns the increment value as an rtx, simplified as much as possible,
2238 if it can be calculated. Otherwise, returns 0. */
2240 rtx
2241 biv_total_increment (bl, loop_start, loop_end)
2242 struct iv_class *bl;
2243 rtx loop_start, loop_end;
2245 struct induction *v;
2246 rtx result;
2248 /* For increment, must check every instruction that sets it. Each
2249 instruction must be executed only once each time through the loop.
2250 To verify this, we check that the the insn is always executed, and that
2251 there are no backward branches after the insn that branch to before it.
2252 Also, the insn must have a mult_val of one (to make sure it really is
2253 an increment). */
2255 result = const0_rtx;
2256 for (v = bl->biv; v; v = v->next_iv)
2258 if (v->always_computable && v->mult_val == const1_rtx
2259 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2260 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2261 else
2262 return 0;
2265 return result;
2268 /* Determine the initial value of the iteration variable, and the amount
2269 that it is incremented each loop. Use the tables constructed by
2270 the strength reduction pass to calculate these values.
2272 Initial_value and/or increment are set to zero if their values could not
2273 be calculated. */
2275 static void
2276 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2277 rtx iteration_var, *initial_value, *increment;
2278 rtx loop_start, loop_end;
2280 struct iv_class *bl;
2281 struct induction *v, *b;
2283 /* Clear the result values, in case no answer can be found. */
2284 *initial_value = 0;
2285 *increment = 0;
2287 /* The iteration variable can be either a giv or a biv. Check to see
2288 which it is, and compute the variable's initial value, and increment
2289 value if possible. */
2291 /* If this is a new register, can't handle it since we don't have any
2292 reg_iv_type entry for it. */
2293 if (REGNO (iteration_var) >= max_reg_before_loop)
2295 if (loop_dump_stream)
2296 fprintf (loop_dump_stream,
2297 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2298 return;
2301 /* Reject iteration variables larger than the host wide int size, since they
2302 could result in a number of iterations greater than the range of our
2303 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2304 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2305 > HOST_BITS_PER_WIDE_INT))
2307 if (loop_dump_stream)
2308 fprintf (loop_dump_stream,
2309 "Loop unrolling: Iteration var rejected because mode too large.\n");
2310 return;
2312 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2314 if (loop_dump_stream)
2315 fprintf (loop_dump_stream,
2316 "Loop unrolling: Iteration var not an integer.\n");
2317 return;
2319 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2321 /* Grab initial value, only useful if it is a constant. */
2322 bl = reg_biv_class[REGNO (iteration_var)];
2323 *initial_value = bl->initial_value;
2325 *increment = biv_total_increment (bl, loop_start, loop_end);
2327 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2329 #if 1
2330 /* ??? The code below does not work because the incorrect number of
2331 iterations is calculated when the biv is incremented after the giv
2332 is set (which is the usual case). This can probably be accounted
2333 for by biasing the initial_value by subtracting the amount of the
2334 increment that occurs between the giv set and the giv test. However,
2335 a giv as an iterator is very rare, so it does not seem worthwhile
2336 to handle this. */
2337 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2338 if (loop_dump_stream)
2339 fprintf (loop_dump_stream,
2340 "Loop unrolling: Giv iterators are not handled.\n");
2341 return;
2342 #else
2343 /* Initial value is mult_val times the biv's initial value plus
2344 add_val. Only useful if it is a constant. */
2345 v = reg_iv_info[REGNO (iteration_var)];
2346 bl = reg_biv_class[REGNO (v->src_reg)];
2347 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2348 v->add_val, v->mode);
2350 /* Increment value is mult_val times the increment value of the biv. */
2352 *increment = biv_total_increment (bl, loop_start, loop_end);
2353 if (*increment)
2354 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2355 v->mode);
2356 #endif
2358 else
2360 if (loop_dump_stream)
2361 fprintf (loop_dump_stream,
2362 "Loop unrolling: Not basic or general induction var.\n");
2363 return;
2367 /* Calculate the approximate final value of the iteration variable
2368 which has an loop exit test with code COMPARISON_CODE and comparison value
2369 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2370 was signed or unsigned, and the direction of the comparison. This info is
2371 needed to calculate the number of loop iterations. */
2373 static rtx
2374 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2375 enum rtx_code comparison_code;
2376 rtx comparison_value;
2377 int *unsigned_p;
2378 int *compare_dir;
2380 /* Calculate the final value of the induction variable.
2381 The exact final value depends on the branch operator, and increment sign.
2382 This is only an approximate value. It will be wrong if the iteration
2383 variable is not incremented by one each time through the loop, and
2384 approx final value - start value % increment != 0. */
2386 *unsigned_p = 0;
2387 switch (comparison_code)
2389 case LEU:
2390 *unsigned_p = 1;
2391 case LE:
2392 *compare_dir = 1;
2393 return plus_constant (comparison_value, 1);
2394 case GEU:
2395 *unsigned_p = 1;
2396 case GE:
2397 *compare_dir = -1;
2398 return plus_constant (comparison_value, -1);
2399 case EQ:
2400 /* Can not calculate a final value for this case. */
2401 *compare_dir = 0;
2402 return 0;
2403 case LTU:
2404 *unsigned_p = 1;
2405 case LT:
2406 *compare_dir = 1;
2407 return comparison_value;
2408 break;
2409 case GTU:
2410 *unsigned_p = 1;
2411 case GT:
2412 *compare_dir = -1;
2413 return comparison_value;
2414 case NE:
2415 *compare_dir = 0;
2416 return comparison_value;
2417 default:
2418 abort ();
2422 /* For each biv and giv, determine whether it can be safely split into
2423 a different variable for each unrolled copy of the loop body. If it
2424 is safe to split, then indicate that by saving some useful info
2425 in the splittable_regs array.
2427 If the loop is being completely unrolled, then splittable_regs will hold
2428 the current value of the induction variable while the loop is unrolled.
2429 It must be set to the initial value of the induction variable here.
2430 Otherwise, splittable_regs will hold the difference between the current
2431 value of the induction variable and the value the induction variable had
2432 at the top of the loop. It must be set to the value 0 here.
2434 Returns the total number of instructions that set registers that are
2435 splittable. */
2437 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2438 constant values are unnecessary, since we can easily calculate increment
2439 values in this case even if nothing is constant. The increment value
2440 should not involve a multiply however. */
2442 /* ?? Even if the biv/giv increment values aren't constant, it may still
2443 be beneficial to split the variable if the loop is only unrolled a few
2444 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2446 static int
2447 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2448 unroll_number)
2449 enum unroll_types unroll_type;
2450 rtx loop_start, loop_end;
2451 rtx end_insert_before;
2452 int unroll_number;
2454 struct iv_class *bl;
2455 struct induction *v;
2456 rtx increment, tem;
2457 rtx biv_final_value;
2458 int biv_splittable;
2459 int result = 0;
2461 for (bl = loop_iv_list; bl; bl = bl->next)
2463 /* Biv_total_increment must return a constant value,
2464 otherwise we can not calculate the split values. */
2466 increment = biv_total_increment (bl, loop_start, loop_end);
2467 if (! increment || GET_CODE (increment) != CONST_INT)
2468 continue;
2470 /* The loop must be unrolled completely, or else have a known number
2471 of iterations and only one exit, or else the biv must be dead
2472 outside the loop, or else the final value must be known. Otherwise,
2473 it is unsafe to split the biv since it may not have the proper
2474 value on loop exit. */
2476 /* loop_number_exit_count is non-zero if the loop has an exit other than
2477 a fall through at the end. */
2479 biv_splittable = 1;
2480 biv_final_value = 0;
2481 if (unroll_type != UNROLL_COMPLETELY
2482 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2483 || unroll_type == UNROLL_NAIVE)
2484 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2485 || ! bl->init_insn
2486 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2487 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2488 < INSN_LUID (bl->init_insn))
2489 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2490 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2491 biv_splittable = 0;
2493 /* If any of the insns setting the BIV don't do so with a simple
2494 PLUS, we don't know how to split it. */
2495 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2496 if ((tem = single_set (v->insn)) == 0
2497 || GET_CODE (SET_DEST (tem)) != REG
2498 || REGNO (SET_DEST (tem)) != bl->regno
2499 || GET_CODE (SET_SRC (tem)) != PLUS)
2500 biv_splittable = 0;
2502 /* If final value is non-zero, then must emit an instruction which sets
2503 the value of the biv to the proper value. This is done after
2504 handling all of the givs, since some of them may need to use the
2505 biv's value in their initialization code. */
2507 /* This biv is splittable. If completely unrolling the loop, save
2508 the biv's initial value. Otherwise, save the constant zero. */
2510 if (biv_splittable == 1)
2512 if (unroll_type == UNROLL_COMPLETELY)
2514 /* If the initial value of the biv is itself (i.e. it is too
2515 complicated for strength_reduce to compute), or is a hard
2516 register, or it isn't invariant, then we must create a new
2517 pseudo reg to hold the initial value of the biv. */
2519 if (GET_CODE (bl->initial_value) == REG
2520 && (REGNO (bl->initial_value) == bl->regno
2521 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2522 || ! invariant_p (bl->initial_value)))
2524 rtx tem = gen_reg_rtx (bl->biv->mode);
2526 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2527 loop_start);
2529 if (loop_dump_stream)
2530 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2531 bl->regno, REGNO (tem));
2533 splittable_regs[bl->regno] = tem;
2535 else
2536 splittable_regs[bl->regno] = bl->initial_value;
2538 else
2539 splittable_regs[bl->regno] = const0_rtx;
2541 /* Save the number of instructions that modify the biv, so that
2542 we can treat the last one specially. */
2544 splittable_regs_updates[bl->regno] = bl->biv_count;
2545 result += bl->biv_count;
2547 if (loop_dump_stream)
2548 fprintf (loop_dump_stream,
2549 "Biv %d safe to split.\n", bl->regno);
2552 /* Check every giv that depends on this biv to see whether it is
2553 splittable also. Even if the biv isn't splittable, givs which
2554 depend on it may be splittable if the biv is live outside the
2555 loop, and the givs aren't. */
2557 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2558 increment, unroll_number);
2560 /* If final value is non-zero, then must emit an instruction which sets
2561 the value of the biv to the proper value. This is done after
2562 handling all of the givs, since some of them may need to use the
2563 biv's value in their initialization code. */
2564 if (biv_final_value)
2566 /* If the loop has multiple exits, emit the insns before the
2567 loop to ensure that it will always be executed no matter
2568 how the loop exits. Otherwise emit the insn after the loop,
2569 since this is slightly more efficient. */
2570 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2571 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2572 biv_final_value),
2573 end_insert_before);
2574 else
2576 /* Create a new register to hold the value of the biv, and then
2577 set the biv to its final value before the loop start. The biv
2578 is set to its final value before loop start to ensure that
2579 this insn will always be executed, no matter how the loop
2580 exits. */
2581 rtx tem = gen_reg_rtx (bl->biv->mode);
2582 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2583 loop_start);
2584 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2585 biv_final_value),
2586 loop_start);
2588 if (loop_dump_stream)
2589 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2590 REGNO (bl->biv->src_reg), REGNO (tem));
2592 /* Set up the mapping from the original biv register to the new
2593 register. */
2594 bl->biv->src_reg = tem;
2598 return result;
2601 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2602 for the instruction that is using it. Do not make any changes to that
2603 instruction. */
2605 static int
2606 verify_addresses (v, giv_inc, unroll_number)
2607 struct induction *v;
2608 rtx giv_inc;
2609 int unroll_number;
2611 int ret = 1;
2612 rtx orig_addr = *v->location;
2613 rtx last_addr = plus_constant (v->dest_reg,
2614 INTVAL (giv_inc) * (unroll_number - 1));
2616 /* First check to see if either address would fail. */
2617 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2618 || ! validate_change (v->insn, v->location, last_addr, 0))
2619 ret = 0;
2621 /* Now put things back the way they were before. This will always
2622 succeed. */
2623 validate_change (v->insn, v->location, orig_addr, 0);
2625 return ret;
2628 /* For every giv based on the biv BL, check to determine whether it is
2629 splittable. This is a subroutine to find_splittable_regs ().
2631 Return the number of instructions that set splittable registers. */
2633 static int
2634 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2635 unroll_number)
2636 struct iv_class *bl;
2637 enum unroll_types unroll_type;
2638 rtx loop_start, loop_end;
2639 rtx increment;
2640 int unroll_number;
2642 struct induction *v, *v2;
2643 rtx final_value;
2644 rtx tem;
2645 int result = 0;
2647 /* Scan the list of givs, and set the same_insn field when there are
2648 multiple identical givs in the same insn. */
2649 for (v = bl->giv; v; v = v->next_iv)
2650 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2651 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2652 && ! v2->same_insn)
2653 v2->same_insn = v;
2655 for (v = bl->giv; v; v = v->next_iv)
2657 rtx giv_inc, value;
2659 /* Only split the giv if it has already been reduced, or if the loop is
2660 being completely unrolled. */
2661 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2662 continue;
2664 /* The giv can be split if the insn that sets the giv is executed once
2665 and only once on every iteration of the loop. */
2666 /* An address giv can always be split. v->insn is just a use not a set,
2667 and hence it does not matter whether it is always executed. All that
2668 matters is that all the biv increments are always executed, and we
2669 won't reach here if they aren't. */
2670 if (v->giv_type != DEST_ADDR
2671 && (! v->always_computable
2672 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2673 continue;
2675 /* The giv increment value must be a constant. */
2676 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2677 v->mode);
2678 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2679 continue;
2681 /* The loop must be unrolled completely, or else have a known number of
2682 iterations and only one exit, or else the giv must be dead outside
2683 the loop, or else the final value of the giv must be known.
2684 Otherwise, it is not safe to split the giv since it may not have the
2685 proper value on loop exit. */
2687 /* The used outside loop test will fail for DEST_ADDR givs. They are
2688 never used outside the loop anyways, so it is always safe to split a
2689 DEST_ADDR giv. */
2691 final_value = 0;
2692 if (unroll_type != UNROLL_COMPLETELY
2693 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2694 || unroll_type == UNROLL_NAIVE)
2695 && v->giv_type != DEST_ADDR
2696 /* The next part is true if the pseudo is used outside the loop.
2697 We assume that this is true for any pseudo created after loop
2698 starts, because we don't have a reg_n_info entry for them. */
2699 && (REGNO (v->dest_reg) >= max_reg_before_loop
2700 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2701 /* Check for the case where the pseudo is set by a shift/add
2702 sequence, in which case the first insn setting the pseudo
2703 is the first insn of the shift/add sequence. */
2704 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2705 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2706 != INSN_UID (XEXP (tem, 0)))))
2707 /* Line above always fails if INSN was moved by loop opt. */
2708 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2709 >= INSN_LUID (loop_end)))
2710 && ! (final_value = v->final_value))
2711 continue;
2713 #if 0
2714 /* Currently, non-reduced/final-value givs are never split. */
2715 /* Should emit insns after the loop if possible, as the biv final value
2716 code below does. */
2718 /* If the final value is non-zero, and the giv has not been reduced,
2719 then must emit an instruction to set the final value. */
2720 if (final_value && !v->new_reg)
2722 /* Create a new register to hold the value of the giv, and then set
2723 the giv to its final value before the loop start. The giv is set
2724 to its final value before loop start to ensure that this insn
2725 will always be executed, no matter how we exit. */
2726 tem = gen_reg_rtx (v->mode);
2727 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2728 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2729 loop_start);
2731 if (loop_dump_stream)
2732 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2733 REGNO (v->dest_reg), REGNO (tem));
2735 v->src_reg = tem;
2737 #endif
2739 /* This giv is splittable. If completely unrolling the loop, save the
2740 giv's initial value. Otherwise, save the constant zero for it. */
2742 if (unroll_type == UNROLL_COMPLETELY)
2744 /* It is not safe to use bl->initial_value here, because it may not
2745 be invariant. It is safe to use the initial value stored in
2746 the splittable_regs array if it is set. In rare cases, it won't
2747 be set, so then we do exactly the same thing as
2748 find_splittable_regs does to get a safe value. */
2749 rtx biv_initial_value;
2751 if (splittable_regs[bl->regno])
2752 biv_initial_value = splittable_regs[bl->regno];
2753 else if (GET_CODE (bl->initial_value) != REG
2754 || (REGNO (bl->initial_value) != bl->regno
2755 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2756 biv_initial_value = bl->initial_value;
2757 else
2759 rtx tem = gen_reg_rtx (bl->biv->mode);
2761 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2762 loop_start);
2763 biv_initial_value = tem;
2765 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2766 v->add_val, v->mode);
2768 else
2769 value = const0_rtx;
2771 if (v->new_reg)
2773 /* If a giv was combined with another giv, then we can only split
2774 this giv if the giv it was combined with was reduced. This
2775 is because the value of v->new_reg is meaningless in this
2776 case. */
2777 if (v->same && ! v->same->new_reg)
2779 if (loop_dump_stream)
2780 fprintf (loop_dump_stream,
2781 "giv combined with unreduced giv not split.\n");
2782 continue;
2784 /* If the giv is an address destination, it could be something other
2785 than a simple register, these have to be treated differently. */
2786 else if (v->giv_type == DEST_REG)
2788 /* If value is not a constant, register, or register plus
2789 constant, then compute its value into a register before
2790 loop start. This prevents invalid rtx sharing, and should
2791 generate better code. We can use bl->initial_value here
2792 instead of splittable_regs[bl->regno] because this code
2793 is going before the loop start. */
2794 if (unroll_type == UNROLL_COMPLETELY
2795 && GET_CODE (value) != CONST_INT
2796 && GET_CODE (value) != REG
2797 && (GET_CODE (value) != PLUS
2798 || GET_CODE (XEXP (value, 0)) != REG
2799 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2801 rtx tem = gen_reg_rtx (v->mode);
2802 emit_iv_add_mult (bl->initial_value, v->mult_val,
2803 v->add_val, tem, loop_start);
2804 value = tem;
2807 splittable_regs[REGNO (v->new_reg)] = value;
2809 else
2811 /* Splitting address givs is useful since it will often allow us
2812 to eliminate some increment insns for the base giv as
2813 unnecessary. */
2815 /* If the addr giv is combined with a dest_reg giv, then all
2816 references to that dest reg will be remapped, which is NOT
2817 what we want for split addr regs. We always create a new
2818 register for the split addr giv, just to be safe. */
2820 /* ??? If there are multiple address givs which have been
2821 combined with the same dest_reg giv, then we may only need
2822 one new register for them. Pulling out constants below will
2823 catch some of the common cases of this. Currently, I leave
2824 the work of simplifying multiple address givs to the
2825 following cse pass. */
2827 /* As a special case, if we have multiple identical address givs
2828 within a single instruction, then we do use a single pseudo
2829 reg for both. This is necessary in case one is a match_dup
2830 of the other. */
2832 v->const_adjust = 0;
2834 if (v->same_insn)
2836 v->dest_reg = v->same_insn->dest_reg;
2837 if (loop_dump_stream)
2838 fprintf (loop_dump_stream,
2839 "Sharing address givs in insn %d\n",
2840 INSN_UID (v->insn));
2842 else if (unroll_type != UNROLL_COMPLETELY)
2844 /* If not completely unrolling the loop, then create a new
2845 register to hold the split value of the DEST_ADDR giv.
2846 Emit insn to initialize its value before loop start. */
2847 tem = gen_reg_rtx (v->mode);
2849 /* If the address giv has a constant in its new_reg value,
2850 then this constant can be pulled out and put in value,
2851 instead of being part of the initialization code. */
2853 if (GET_CODE (v->new_reg) == PLUS
2854 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2856 v->dest_reg
2857 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2859 /* Only succeed if this will give valid addresses.
2860 Try to validate both the first and the last
2861 address resulting from loop unrolling, if
2862 one fails, then can't do const elim here. */
2863 if (verify_addresses (v, giv_inc, unroll_number))
2865 /* Save the negative of the eliminated const, so
2866 that we can calculate the dest_reg's increment
2867 value later. */
2868 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2870 v->new_reg = XEXP (v->new_reg, 0);
2871 if (loop_dump_stream)
2872 fprintf (loop_dump_stream,
2873 "Eliminating constant from giv %d\n",
2874 REGNO (tem));
2876 else
2877 v->dest_reg = tem;
2879 else
2880 v->dest_reg = tem;
2882 /* If the address hasn't been checked for validity yet, do so
2883 now, and fail completely if either the first or the last
2884 unrolled copy of the address is not a valid address
2885 for the instruction that uses it. */
2886 if (v->dest_reg == tem
2887 && ! verify_addresses (v, giv_inc, unroll_number))
2889 if (loop_dump_stream)
2890 fprintf (loop_dump_stream,
2891 "Invalid address for giv at insn %d\n",
2892 INSN_UID (v->insn));
2893 continue;
2896 /* To initialize the new register, just move the value of
2897 new_reg into it. This is not guaranteed to give a valid
2898 instruction on machines with complex addressing modes.
2899 If we can't recognize it, then delete it and emit insns
2900 to calculate the value from scratch. */
2901 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2902 copy_rtx (v->new_reg)),
2903 loop_start);
2904 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2906 rtx sequence, ret;
2908 /* We can't use bl->initial_value to compute the initial
2909 value, because the loop may have been preconditioned.
2910 We must calculate it from NEW_REG. Try using
2911 force_operand instead of emit_iv_add_mult. */
2912 delete_insn (PREV_INSN (loop_start));
2914 start_sequence ();
2915 ret = force_operand (v->new_reg, tem);
2916 if (ret != tem)
2917 emit_move_insn (tem, ret);
2918 sequence = gen_sequence ();
2919 end_sequence ();
2920 emit_insn_before (sequence, loop_start);
2922 if (loop_dump_stream)
2923 fprintf (loop_dump_stream,
2924 "Invalid init insn, rewritten.\n");
2927 else
2929 v->dest_reg = value;
2931 /* Check the resulting address for validity, and fail
2932 if the resulting address would be invalid. */
2933 if (! verify_addresses (v, giv_inc, unroll_number))
2935 if (loop_dump_stream)
2936 fprintf (loop_dump_stream,
2937 "Invalid address for giv at insn %d\n",
2938 INSN_UID (v->insn));
2939 continue;
2943 /* Store the value of dest_reg into the insn. This sharing
2944 will not be a problem as this insn will always be copied
2945 later. */
2947 *v->location = v->dest_reg;
2949 /* If this address giv is combined with a dest reg giv, then
2950 save the base giv's induction pointer so that we will be
2951 able to handle this address giv properly. The base giv
2952 itself does not have to be splittable. */
2954 if (v->same && v->same->giv_type == DEST_REG)
2955 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2957 if (GET_CODE (v->new_reg) == REG)
2959 /* This giv maybe hasn't been combined with any others.
2960 Make sure that it's giv is marked as splittable here. */
2962 splittable_regs[REGNO (v->new_reg)] = value;
2964 /* Make it appear to depend upon itself, so that the
2965 giv will be properly split in the main loop above. */
2966 if (! v->same)
2968 v->same = v;
2969 addr_combined_regs[REGNO (v->new_reg)] = v;
2973 if (loop_dump_stream)
2974 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2977 else
2979 #if 0
2980 /* Currently, unreduced giv's can't be split. This is not too much
2981 of a problem since unreduced giv's are not live across loop
2982 iterations anyways. When unrolling a loop completely though,
2983 it makes sense to reduce&split givs when possible, as this will
2984 result in simpler instructions, and will not require that a reg
2985 be live across loop iterations. */
2987 splittable_regs[REGNO (v->dest_reg)] = value;
2988 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2989 REGNO (v->dest_reg), INSN_UID (v->insn));
2990 #else
2991 continue;
2992 #endif
2995 /* Unreduced givs are only updated once by definition. Reduced givs
2996 are updated as many times as their biv is. Mark it so if this is
2997 a splittable register. Don't need to do anything for address givs
2998 where this may not be a register. */
3000 if (GET_CODE (v->new_reg) == REG)
3002 int count = 1;
3003 if (! v->ignore)
3004 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3006 splittable_regs_updates[REGNO (v->new_reg)] = count;
3009 result++;
3011 if (loop_dump_stream)
3013 int regnum;
3015 if (GET_CODE (v->dest_reg) == CONST_INT)
3016 regnum = -1;
3017 else if (GET_CODE (v->dest_reg) != REG)
3018 regnum = REGNO (XEXP (v->dest_reg, 0));
3019 else
3020 regnum = REGNO (v->dest_reg);
3021 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3022 regnum, INSN_UID (v->insn));
3026 return result;
3029 /* Try to prove that the register is dead after the loop exits. Trace every
3030 loop exit looking for an insn that will always be executed, which sets
3031 the register to some value, and appears before the first use of the register
3032 is found. If successful, then return 1, otherwise return 0. */
3034 /* ?? Could be made more intelligent in the handling of jumps, so that
3035 it can search past if statements and other similar structures. */
3037 static int
3038 reg_dead_after_loop (reg, loop_start, loop_end)
3039 rtx reg, loop_start, loop_end;
3041 rtx insn, label;
3042 enum rtx_code code;
3043 int jump_count = 0;
3044 int label_count = 0;
3045 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3047 /* In addition to checking all exits of this loop, we must also check
3048 all exits of inner nested loops that would exit this loop. We don't
3049 have any way to identify those, so we just give up if there are any
3050 such inner loop exits. */
3052 for (label = loop_number_exit_labels[this_loop_num]; label;
3053 label = LABEL_NEXTREF (label))
3054 label_count++;
3056 if (label_count != loop_number_exit_count[this_loop_num])
3057 return 0;
3059 /* HACK: Must also search the loop fall through exit, create a label_ref
3060 here which points to the loop_end, and append the loop_number_exit_labels
3061 list to it. */
3062 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3063 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3065 for ( ; label; label = LABEL_NEXTREF (label))
3067 /* Succeed if find an insn which sets the biv or if reach end of
3068 function. Fail if find an insn that uses the biv, or if come to
3069 a conditional jump. */
3071 insn = NEXT_INSN (XEXP (label, 0));
3072 while (insn)
3074 code = GET_CODE (insn);
3075 if (GET_RTX_CLASS (code) == 'i')
3077 rtx set;
3079 if (reg_referenced_p (reg, PATTERN (insn)))
3080 return 0;
3082 set = single_set (insn);
3083 if (set && rtx_equal_p (SET_DEST (set), reg))
3084 break;
3087 if (code == JUMP_INSN)
3089 if (GET_CODE (PATTERN (insn)) == RETURN)
3090 break;
3091 else if (! simplejump_p (insn)
3092 /* Prevent infinite loop following infinite loops. */
3093 || jump_count++ > 20)
3094 return 0;
3095 else
3096 insn = JUMP_LABEL (insn);
3099 insn = NEXT_INSN (insn);
3103 /* Success, the register is dead on all loop exits. */
3104 return 1;
3107 /* Try to calculate the final value of the biv, the value it will have at
3108 the end of the loop. If we can do it, return that value. */
3111 final_biv_value (bl, loop_start, loop_end)
3112 struct iv_class *bl;
3113 rtx loop_start, loop_end;
3115 rtx increment, tem;
3117 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3119 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3120 return 0;
3122 /* The final value for reversed bivs must be calculated differently than
3123 for ordinary bivs. In this case, there is already an insn after the
3124 loop which sets this biv's final value (if necessary), and there are
3125 no other loop exits, so we can return any value. */
3126 if (bl->reversed)
3128 if (loop_dump_stream)
3129 fprintf (loop_dump_stream,
3130 "Final biv value for %d, reversed biv.\n", bl->regno);
3132 return const0_rtx;
3135 /* Try to calculate the final value as initial value + (number of iterations
3136 * increment). For this to work, increment must be invariant, the only
3137 exit from the loop must be the fall through at the bottom (otherwise
3138 it may not have its final value when the loop exits), and the initial
3139 value of the biv must be invariant. */
3141 if (loop_n_iterations != 0
3142 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3143 && invariant_p (bl->initial_value))
3145 increment = biv_total_increment (bl, loop_start, loop_end);
3147 if (increment && invariant_p (increment))
3149 /* Can calculate the loop exit value, emit insns after loop
3150 end to calculate this value into a temporary register in
3151 case it is needed later. */
3153 tem = gen_reg_rtx (bl->biv->mode);
3154 /* Make sure loop_end is not the last insn. */
3155 if (NEXT_INSN (loop_end) == 0)
3156 emit_note_after (NOTE_INSN_DELETED, loop_end);
3157 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3158 bl->initial_value, tem, NEXT_INSN (loop_end));
3160 if (loop_dump_stream)
3161 fprintf (loop_dump_stream,
3162 "Final biv value for %d, calculated.\n", bl->regno);
3164 return tem;
3168 /* Check to see if the biv is dead at all loop exits. */
3169 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3171 if (loop_dump_stream)
3172 fprintf (loop_dump_stream,
3173 "Final biv value for %d, biv dead after loop exit.\n",
3174 bl->regno);
3176 return const0_rtx;
3179 return 0;
3182 /* Try to calculate the final value of the giv, the value it will have at
3183 the end of the loop. If we can do it, return that value. */
3186 final_giv_value (v, loop_start, loop_end)
3187 struct induction *v;
3188 rtx loop_start, loop_end;
3190 struct iv_class *bl;
3191 rtx insn;
3192 rtx increment, tem;
3193 rtx insert_before, seq;
3195 bl = reg_biv_class[REGNO (v->src_reg)];
3197 /* The final value for givs which depend on reversed bivs must be calculated
3198 differently than for ordinary givs. In this case, there is already an
3199 insn after the loop which sets this giv's final value (if necessary),
3200 and there are no other loop exits, so we can return any value. */
3201 if (bl->reversed)
3203 if (loop_dump_stream)
3204 fprintf (loop_dump_stream,
3205 "Final giv value for %d, depends on reversed biv\n",
3206 REGNO (v->dest_reg));
3207 return const0_rtx;
3210 /* Try to calculate the final value as a function of the biv it depends
3211 upon. The only exit from the loop must be the fall through at the bottom
3212 (otherwise it may not have its final value when the loop exits). */
3214 /* ??? Can calculate the final giv value by subtracting off the
3215 extra biv increments times the giv's mult_val. The loop must have
3216 only one exit for this to work, but the loop iterations does not need
3217 to be known. */
3219 if (loop_n_iterations != 0
3220 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3222 /* ?? It is tempting to use the biv's value here since these insns will
3223 be put after the loop, and hence the biv will have its final value
3224 then. However, this fails if the biv is subsequently eliminated.
3225 Perhaps determine whether biv's are eliminable before trying to
3226 determine whether giv's are replaceable so that we can use the
3227 biv value here if it is not eliminable. */
3229 /* We are emitting code after the end of the loop, so we must make
3230 sure that bl->initial_value is still valid then. It will still
3231 be valid if it is invariant. */
3233 increment = biv_total_increment (bl, loop_start, loop_end);
3235 if (increment && invariant_p (increment)
3236 && invariant_p (bl->initial_value))
3238 /* Can calculate the loop exit value of its biv as
3239 (loop_n_iterations * increment) + initial_value */
3241 /* The loop exit value of the giv is then
3242 (final_biv_value - extra increments) * mult_val + add_val.
3243 The extra increments are any increments to the biv which
3244 occur in the loop after the giv's value is calculated.
3245 We must search from the insn that sets the giv to the end
3246 of the loop to calculate this value. */
3248 insert_before = NEXT_INSN (loop_end);
3250 /* Put the final biv value in tem. */
3251 tem = gen_reg_rtx (bl->biv->mode);
3252 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3253 bl->initial_value, tem, insert_before);
3255 /* Subtract off extra increments as we find them. */
3256 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3257 insn = NEXT_INSN (insn))
3259 struct induction *biv;
3261 for (biv = bl->biv; biv; biv = biv->next_iv)
3262 if (biv->insn == insn)
3264 start_sequence ();
3265 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3266 biv->add_val, NULL_RTX, 0,
3267 OPTAB_LIB_WIDEN);
3268 seq = gen_sequence ();
3269 end_sequence ();
3270 emit_insn_before (seq, insert_before);
3274 /* Now calculate the giv's final value. */
3275 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3276 insert_before);
3278 if (loop_dump_stream)
3279 fprintf (loop_dump_stream,
3280 "Final giv value for %d, calc from biv's value.\n",
3281 REGNO (v->dest_reg));
3283 return tem;
3287 /* Replaceable giv's should never reach here. */
3288 if (v->replaceable)
3289 abort ();
3291 /* Check to see if the biv is dead at all loop exits. */
3292 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3294 if (loop_dump_stream)
3295 fprintf (loop_dump_stream,
3296 "Final giv value for %d, giv dead after loop exit.\n",
3297 REGNO (v->dest_reg));
3299 return const0_rtx;
3302 return 0;
3306 /* Calculate the number of loop iterations. Returns the exact number of loop
3307 iterations if it can be calculated, otherwise returns zero. */
3309 unsigned HOST_WIDE_INT
3310 loop_iterations (loop_start, loop_end)
3311 rtx loop_start, loop_end;
3313 rtx comparison, comparison_value;
3314 rtx iteration_var, initial_value, increment, final_value;
3315 enum rtx_code comparison_code;
3316 HOST_WIDE_INT i;
3317 int increment_dir;
3318 int unsigned_compare, compare_dir, final_larger;
3319 unsigned long tempu;
3320 rtx last_loop_insn;
3322 /* First find the iteration variable. If the last insn is a conditional
3323 branch, and the insn before tests a register value, make that the
3324 iteration variable. */
3326 loop_initial_value = 0;
3327 loop_increment = 0;
3328 loop_final_value = 0;
3329 loop_iteration_var = 0;
3331 /* We used to use pren_nonnote_insn here, but that fails because it might
3332 accidentally get the branch for a contained loop if the branch for this
3333 loop was deleted. We can only trust branches immediately before the
3334 loop_end. */
3335 last_loop_insn = PREV_INSN (loop_end);
3337 comparison = get_condition_for_loop (last_loop_insn);
3338 if (comparison == 0)
3340 if (loop_dump_stream)
3341 fprintf (loop_dump_stream,
3342 "Loop unrolling: No final conditional branch found.\n");
3343 return 0;
3346 /* ??? Get_condition may switch position of induction variable and
3347 invariant register when it canonicalizes the comparison. */
3349 comparison_code = GET_CODE (comparison);
3350 iteration_var = XEXP (comparison, 0);
3351 comparison_value = XEXP (comparison, 1);
3353 if (GET_CODE (iteration_var) != REG)
3355 if (loop_dump_stream)
3356 fprintf (loop_dump_stream,
3357 "Loop unrolling: Comparison not against register.\n");
3358 return 0;
3361 /* Loop iterations is always called before any new registers are created
3362 now, so this should never occur. */
3364 if (REGNO (iteration_var) >= max_reg_before_loop)
3365 abort ();
3367 iteration_info (iteration_var, &initial_value, &increment,
3368 loop_start, loop_end);
3369 if (initial_value == 0)
3370 /* iteration_info already printed a message. */
3371 return 0;
3373 /* If the comparison value is an invariant register, then try to find
3374 its value from the insns before the start of the loop. */
3376 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3378 rtx insn, set;
3380 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3382 if (GET_CODE (insn) == CODE_LABEL)
3383 break;
3385 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3386 && reg_set_p (comparison_value, insn))
3388 /* We found the last insn before the loop that sets the register.
3389 If it sets the entire register, and has a REG_EQUAL note,
3390 then use the value of the REG_EQUAL note. */
3391 if ((set = single_set (insn))
3392 && (SET_DEST (set) == comparison_value))
3394 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3396 /* Only use the REG_EQUAL note if it is a constant.
3397 Other things, divide in particular, will cause
3398 problems later if we use them. */
3399 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3400 && CONSTANT_P (XEXP (note, 0)))
3401 comparison_value = XEXP (note, 0);
3403 break;
3408 final_value = approx_final_value (comparison_code, comparison_value,
3409 &unsigned_compare, &compare_dir);
3411 /* Save the calculated values describing this loop's bounds, in case
3412 precondition_loop_p will need them later. These values can not be
3413 recalculated inside precondition_loop_p because strength reduction
3414 optimizations may obscure the loop's structure. */
3416 loop_iteration_var = iteration_var;
3417 loop_initial_value = initial_value;
3418 loop_increment = increment;
3419 loop_final_value = final_value;
3420 loop_comparison_code = comparison_code;
3422 if (increment == 0)
3424 if (loop_dump_stream)
3425 fprintf (loop_dump_stream,
3426 "Loop unrolling: Increment value can't be calculated.\n");
3427 return 0;
3429 else if (GET_CODE (increment) != CONST_INT)
3431 if (loop_dump_stream)
3432 fprintf (loop_dump_stream,
3433 "Loop unrolling: Increment value not constant.\n");
3434 return 0;
3436 else if (GET_CODE (initial_value) != CONST_INT)
3438 if (loop_dump_stream)
3439 fprintf (loop_dump_stream,
3440 "Loop unrolling: Initial value not constant.\n");
3441 return 0;
3443 else if (final_value == 0)
3445 if (loop_dump_stream)
3446 fprintf (loop_dump_stream,
3447 "Loop unrolling: EQ comparison loop.\n");
3448 return 0;
3450 else if (GET_CODE (final_value) != CONST_INT)
3452 if (loop_dump_stream)
3453 fprintf (loop_dump_stream,
3454 "Loop unrolling: Final value not constant.\n");
3455 return 0;
3458 /* ?? Final value and initial value do not have to be constants.
3459 Only their difference has to be constant. When the iteration variable
3460 is an array address, the final value and initial value might both
3461 be addresses with the same base but different constant offsets.
3462 Final value must be invariant for this to work.
3464 To do this, need some way to find the values of registers which are
3465 invariant. */
3467 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3468 if (unsigned_compare)
3469 final_larger
3470 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3471 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3472 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3473 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3474 else
3475 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3476 - (INTVAL (final_value) < INTVAL (initial_value));
3478 if (INTVAL (increment) > 0)
3479 increment_dir = 1;
3480 else if (INTVAL (increment) == 0)
3481 increment_dir = 0;
3482 else
3483 increment_dir = -1;
3485 /* There are 27 different cases: compare_dir = -1, 0, 1;
3486 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3487 There are 4 normal cases, 4 reverse cases (where the iteration variable
3488 will overflow before the loop exits), 4 infinite loop cases, and 15
3489 immediate exit (0 or 1 iteration depending on loop type) cases.
3490 Only try to optimize the normal cases. */
3492 /* (compare_dir/final_larger/increment_dir)
3493 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3494 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3495 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3496 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3498 /* ?? If the meaning of reverse loops (where the iteration variable
3499 will overflow before the loop exits) is undefined, then could
3500 eliminate all of these special checks, and just always assume
3501 the loops are normal/immediate/infinite. Note that this means
3502 the sign of increment_dir does not have to be known. Also,
3503 since it does not really hurt if immediate exit loops or infinite loops
3504 are optimized, then that case could be ignored also, and hence all
3505 loops can be optimized.
3507 According to ANSI Spec, the reverse loop case result is undefined,
3508 because the action on overflow is undefined.
3510 See also the special test for NE loops below. */
3512 if (final_larger == increment_dir && final_larger != 0
3513 && (final_larger == compare_dir || compare_dir == 0))
3514 /* Normal case. */
3516 else
3518 if (loop_dump_stream)
3519 fprintf (loop_dump_stream,
3520 "Loop unrolling: Not normal loop.\n");
3521 return 0;
3524 /* Calculate the number of iterations, final_value is only an approximation,
3525 so correct for that. Note that tempu and loop_n_iterations are
3526 unsigned, because they can be as large as 2^n - 1. */
3528 i = INTVAL (increment);
3529 if (i > 0)
3530 tempu = INTVAL (final_value) - INTVAL (initial_value);
3531 else if (i < 0)
3533 tempu = INTVAL (initial_value) - INTVAL (final_value);
3534 i = -i;
3536 else
3537 abort ();
3539 /* For NE tests, make sure that the iteration variable won't miss the
3540 final value. If tempu mod i is not zero, then the iteration variable
3541 will overflow before the loop exits, and we can not calculate the
3542 number of iterations. */
3543 if (compare_dir == 0 && (tempu % i) != 0)
3544 return 0;
3546 return tempu / i + ((tempu % i) != 0);
3549 /* Replace uses of split bivs with their split pseudo register. This is
3550 for original instructions which remain after loop unrolling without
3551 copying. */
3553 static rtx
3554 remap_split_bivs (x)
3555 rtx x;
3557 register enum rtx_code code;
3558 register int i;
3559 register char *fmt;
3561 if (x == 0)
3562 return x;
3564 code = GET_CODE (x);
3565 switch (code)
3567 case SCRATCH:
3568 case PC:
3569 case CC0:
3570 case CONST_INT:
3571 case CONST_DOUBLE:
3572 case CONST:
3573 case SYMBOL_REF:
3574 case LABEL_REF:
3575 return x;
3577 case REG:
3578 #if 0
3579 /* If non-reduced/final-value givs were split, then this would also
3580 have to remap those givs also. */
3581 #endif
3582 if (REGNO (x) < max_reg_before_loop
3583 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3584 return reg_biv_class[REGNO (x)]->biv->src_reg;
3585 break;
3587 default:
3588 break;
3591 fmt = GET_RTX_FORMAT (code);
3592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3594 if (fmt[i] == 'e')
3595 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3596 if (fmt[i] == 'E')
3598 register int j;
3599 for (j = 0; j < XVECLEN (x, i); j++)
3600 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3603 return x;
3606 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3607 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3608 return 0. COPY_START is where we can start looking for the insns
3609 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3610 insns.
3612 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3613 must dominate LAST_UID.
3615 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3616 may not dominate LAST_UID.
3618 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3619 must dominate LAST_UID. */
3622 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3623 int regno;
3624 int first_uid;
3625 int last_uid;
3626 rtx copy_start;
3627 rtx copy_end;
3629 int passed_jump = 0;
3630 rtx p = NEXT_INSN (copy_start);
3632 while (INSN_UID (p) != first_uid)
3634 if (GET_CODE (p) == JUMP_INSN)
3635 passed_jump= 1;
3636 /* Could not find FIRST_UID. */
3637 if (p == copy_end)
3638 return 0;
3639 p = NEXT_INSN (p);
3642 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3643 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3644 || ! dead_or_set_regno_p (p, regno))
3645 return 0;
3647 /* FIRST_UID is always executed. */
3648 if (passed_jump == 0)
3649 return 1;
3651 while (INSN_UID (p) != last_uid)
3653 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3654 can not be sure that FIRST_UID dominates LAST_UID. */
3655 if (GET_CODE (p) == CODE_LABEL)
3656 return 0;
3657 /* Could not find LAST_UID, but we reached the end of the loop, so
3658 it must be safe. */
3659 else if (p == copy_end)
3660 return 1;
3661 p = NEXT_INSN (p);
3664 /* FIRST_UID is always executed if LAST_UID is executed. */
3665 return 1;