Check in tree-dce enh to trunk
[official-gcc.git] / gcc / tree-vrp.c
blob8636c5f4fa7b26de58803148fadc6625d2d4d409
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static int compare_values_warnv (tree val1, tree val2, bool *);
48 static void vrp_meet (value_range_t *, value_range_t *);
49 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
50 tree, tree, bool, bool *);
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
72 /* Value being compared against. */
73 tree val;
75 /* Expression to compare. */
76 tree expr;
78 /* Next node in the linked list. */
79 struct assert_locus_d *next;
82 typedef struct assert_locus_d *assert_locus_t;
84 /* If bit I is present, it means that SSA name N_i has a list of
85 assertions that should be inserted in the IL. */
86 static bitmap need_assert_for;
88 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
89 holds a list of ASSERT_LOCUS_T nodes that describe where
90 ASSERT_EXPRs for SSA name N_I should be inserted. */
91 static assert_locus_t *asserts_for;
93 /* Set of blocks visited in find_assert_locations. Used to avoid
94 visiting the same block more than once. */
95 static sbitmap blocks_visited;
97 /* Value range array. After propagation, VR_VALUE[I] holds the range
98 of values that SSA name N_I may take. */
99 static value_range_t **vr_value;
101 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
102 number of executable edges we saw the last time we visited the
103 node. */
104 static int *vr_phi_edge_counts;
106 typedef struct {
107 tree stmt;
108 tree vec;
109 } switch_update;
111 static VEC (edge, heap) *to_remove_edges;
112 DEF_VEC_O(switch_update);
113 DEF_VEC_ALLOC_O(switch_update, heap);
114 static VEC (switch_update, heap) *to_update_switch_stmts;
117 /* Return the maximum value for TYPEs base type. */
119 static inline tree
120 vrp_val_max (const_tree type)
122 if (!INTEGRAL_TYPE_P (type))
123 return NULL_TREE;
125 /* For integer sub-types the values for the base type are relevant. */
126 if (TREE_TYPE (type))
127 type = TREE_TYPE (type);
129 return TYPE_MAX_VALUE (type);
132 /* Return the minimum value for TYPEs base type. */
134 static inline tree
135 vrp_val_min (const_tree type)
137 if (!INTEGRAL_TYPE_P (type))
138 return NULL_TREE;
140 /* For integer sub-types the values for the base type are relevant. */
141 if (TREE_TYPE (type))
142 type = TREE_TYPE (type);
144 return TYPE_MIN_VALUE (type);
147 /* Return whether VAL is equal to the maximum value of its type. This
148 will be true for a positive overflow infinity. We can't do a
149 simple equality comparison with TYPE_MAX_VALUE because C typedefs
150 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
151 to the integer constant with the same value in the type. */
153 static inline bool
154 vrp_val_is_max (const_tree val)
156 tree type_max = vrp_val_max (TREE_TYPE (val));
157 return (val == type_max
158 || (type_max != NULL_TREE
159 && operand_equal_p (val, type_max, 0)));
162 /* Return whether VAL is equal to the minimum value of its type. This
163 will be true for a negative overflow infinity. */
165 static inline bool
166 vrp_val_is_min (const_tree val)
168 tree type_min = vrp_val_min (TREE_TYPE (val));
169 return (val == type_min
170 || (type_min != NULL_TREE
171 && operand_equal_p (val, type_min, 0)));
175 /* Return whether TYPE should use an overflow infinity distinct from
176 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
177 represent a signed overflow during VRP computations. An infinity
178 is distinct from a half-range, which will go from some number to
179 TYPE_{MIN,MAX}_VALUE. */
181 static inline bool
182 needs_overflow_infinity (const_tree type)
184 return (INTEGRAL_TYPE_P (type)
185 && !TYPE_OVERFLOW_WRAPS (type)
186 /* Integer sub-types never overflow as they are never
187 operands of arithmetic operators. */
188 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
191 /* Return whether TYPE can support our overflow infinity
192 representation: we use the TREE_OVERFLOW flag, which only exists
193 for constants. If TYPE doesn't support this, we don't optimize
194 cases which would require signed overflow--we drop them to
195 VARYING. */
197 static inline bool
198 supports_overflow_infinity (const_tree type)
200 tree min = vrp_val_min (type), max = vrp_val_max (type);
201 #ifdef ENABLE_CHECKING
202 gcc_assert (needs_overflow_infinity (type));
203 #endif
204 return (min != NULL_TREE
205 && CONSTANT_CLASS_P (min)
206 && max != NULL_TREE
207 && CONSTANT_CLASS_P (max));
210 /* VAL is the maximum or minimum value of a type. Return a
211 corresponding overflow infinity. */
213 static inline tree
214 make_overflow_infinity (tree val)
216 #ifdef ENABLE_CHECKING
217 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
218 #endif
219 val = copy_node (val);
220 TREE_OVERFLOW (val) = 1;
221 return val;
224 /* Return a negative overflow infinity for TYPE. */
226 static inline tree
227 negative_overflow_infinity (tree type)
229 #ifdef ENABLE_CHECKING
230 gcc_assert (supports_overflow_infinity (type));
231 #endif
232 return make_overflow_infinity (vrp_val_min (type));
235 /* Return a positive overflow infinity for TYPE. */
237 static inline tree
238 positive_overflow_infinity (tree type)
240 #ifdef ENABLE_CHECKING
241 gcc_assert (supports_overflow_infinity (type));
242 #endif
243 return make_overflow_infinity (vrp_val_max (type));
246 /* Return whether VAL is a negative overflow infinity. */
248 static inline bool
249 is_negative_overflow_infinity (const_tree val)
251 return (needs_overflow_infinity (TREE_TYPE (val))
252 && CONSTANT_CLASS_P (val)
253 && TREE_OVERFLOW (val)
254 && vrp_val_is_min (val));
257 /* Return whether VAL is a positive overflow infinity. */
259 static inline bool
260 is_positive_overflow_infinity (const_tree val)
262 return (needs_overflow_infinity (TREE_TYPE (val))
263 && CONSTANT_CLASS_P (val)
264 && TREE_OVERFLOW (val)
265 && vrp_val_is_max (val));
268 /* Return whether VAL is a positive or negative overflow infinity. */
270 static inline bool
271 is_overflow_infinity (const_tree val)
273 return (needs_overflow_infinity (TREE_TYPE (val))
274 && CONSTANT_CLASS_P (val)
275 && TREE_OVERFLOW (val)
276 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
279 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
280 the same value with TREE_OVERFLOW clear. This can be used to avoid
281 confusing a regular value with an overflow value. */
283 static inline tree
284 avoid_overflow_infinity (tree val)
286 if (!is_overflow_infinity (val))
287 return val;
289 if (vrp_val_is_max (val))
290 return vrp_val_max (TREE_TYPE (val));
291 else
293 #ifdef ENABLE_CHECKING
294 gcc_assert (vrp_val_is_min (val));
295 #endif
296 return vrp_val_min (TREE_TYPE (val));
301 /* Return true if ARG is marked with the nonnull attribute in the
302 current function signature. */
304 static bool
305 nonnull_arg_p (const_tree arg)
307 tree t, attrs, fntype;
308 unsigned HOST_WIDE_INT arg_num;
310 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
312 /* The static chain decl is always non null. */
313 if (arg == cfun->static_chain_decl)
314 return true;
316 fntype = TREE_TYPE (current_function_decl);
317 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
319 /* If "nonnull" wasn't specified, we know nothing about the argument. */
320 if (attrs == NULL_TREE)
321 return false;
323 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
324 if (TREE_VALUE (attrs) == NULL_TREE)
325 return true;
327 /* Get the position number for ARG in the function signature. */
328 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
330 t = TREE_CHAIN (t), arg_num++)
332 if (t == arg)
333 break;
336 gcc_assert (t == arg);
338 /* Now see if ARG_NUM is mentioned in the nonnull list. */
339 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
341 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
342 return true;
345 return false;
349 /* Set value range VR to VR_VARYING. */
351 static inline void
352 set_value_range_to_varying (value_range_t *vr)
354 vr->type = VR_VARYING;
355 vr->min = vr->max = NULL_TREE;
356 if (vr->equiv)
357 bitmap_clear (vr->equiv);
361 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
363 static void
364 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
365 tree max, bitmap equiv)
367 #if defined ENABLE_CHECKING
368 /* Check the validity of the range. */
369 if (t == VR_RANGE || t == VR_ANTI_RANGE)
371 int cmp;
373 gcc_assert (min && max);
375 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
376 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
378 cmp = compare_values (min, max);
379 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
381 if (needs_overflow_infinity (TREE_TYPE (min)))
382 gcc_assert (!is_overflow_infinity (min)
383 || !is_overflow_infinity (max));
386 if (t == VR_UNDEFINED || t == VR_VARYING)
387 gcc_assert (min == NULL_TREE && max == NULL_TREE);
389 if (t == VR_UNDEFINED || t == VR_VARYING)
390 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
391 #endif
393 vr->type = t;
394 vr->min = min;
395 vr->max = max;
397 /* Since updating the equivalence set involves deep copying the
398 bitmaps, only do it if absolutely necessary. */
399 if (vr->equiv == NULL
400 && equiv != NULL)
401 vr->equiv = BITMAP_ALLOC (NULL);
403 if (equiv != vr->equiv)
405 if (equiv && !bitmap_empty_p (equiv))
406 bitmap_copy (vr->equiv, equiv);
407 else
408 bitmap_clear (vr->equiv);
413 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
414 This means adjusting T, MIN and MAX representing the case of a
415 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
416 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
417 In corner cases where MAX+1 or MIN-1 wraps this will fall back
418 to varying.
419 This routine exists to ease canonicalization in the case where we
420 extract ranges from var + CST op limit. */
422 static void
423 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
424 tree min, tree max, bitmap equiv)
426 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
427 if ((t != VR_RANGE
428 && t != VR_ANTI_RANGE)
429 || TREE_CODE (min) != INTEGER_CST
430 || TREE_CODE (max) != INTEGER_CST)
432 set_value_range (vr, t, min, max, equiv);
433 return;
436 /* Wrong order for min and max, to swap them and the VR type we need
437 to adjust them. */
438 if (tree_int_cst_lt (max, min))
440 tree one = build_int_cst (TREE_TYPE (min), 1);
441 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
442 max = int_const_binop (MINUS_EXPR, min, one, 0);
443 min = tmp;
445 /* There's one corner case, if we had [C+1, C] before we now have
446 that again. But this represents an empty value range, so drop
447 to varying in this case. */
448 if (tree_int_cst_lt (max, min))
450 set_value_range_to_varying (vr);
451 return;
454 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
457 /* Anti-ranges that can be represented as ranges should be so. */
458 if (t == VR_ANTI_RANGE)
460 bool is_min = vrp_val_is_min (min);
461 bool is_max = vrp_val_is_max (max);
463 if (is_min && is_max)
465 /* We cannot deal with empty ranges, drop to varying. */
466 set_value_range_to_varying (vr);
467 return;
469 else if (is_min
470 /* As a special exception preserve non-null ranges. */
471 && !(TYPE_UNSIGNED (TREE_TYPE (min))
472 && integer_zerop (max)))
474 tree one = build_int_cst (TREE_TYPE (max), 1);
475 min = int_const_binop (PLUS_EXPR, max, one, 0);
476 max = vrp_val_max (TREE_TYPE (max));
477 t = VR_RANGE;
479 else if (is_max)
481 tree one = build_int_cst (TREE_TYPE (min), 1);
482 max = int_const_binop (MINUS_EXPR, min, one, 0);
483 min = vrp_val_min (TREE_TYPE (min));
484 t = VR_RANGE;
488 set_value_range (vr, t, min, max, equiv);
491 /* Copy value range FROM into value range TO. */
493 static inline void
494 copy_value_range (value_range_t *to, value_range_t *from)
496 set_value_range (to, from->type, from->min, from->max, from->equiv);
499 /* Set value range VR to a single value. This function is only called
500 with values we get from statements, and exists to clear the
501 TREE_OVERFLOW flag so that we don't think we have an overflow
502 infinity when we shouldn't. */
504 static inline void
505 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
507 gcc_assert (is_gimple_min_invariant (val));
508 val = avoid_overflow_infinity (val);
509 set_value_range (vr, VR_RANGE, val, val, equiv);
512 /* Set value range VR to a non-negative range of type TYPE.
513 OVERFLOW_INFINITY indicates whether to use an overflow infinity
514 rather than TYPE_MAX_VALUE; this should be true if we determine
515 that the range is nonnegative based on the assumption that signed
516 overflow does not occur. */
518 static inline void
519 set_value_range_to_nonnegative (value_range_t *vr, tree type,
520 bool overflow_infinity)
522 tree zero;
524 if (overflow_infinity && !supports_overflow_infinity (type))
526 set_value_range_to_varying (vr);
527 return;
530 zero = build_int_cst (type, 0);
531 set_value_range (vr, VR_RANGE, zero,
532 (overflow_infinity
533 ? positive_overflow_infinity (type)
534 : TYPE_MAX_VALUE (type)),
535 vr->equiv);
538 /* Set value range VR to a non-NULL range of type TYPE. */
540 static inline void
541 set_value_range_to_nonnull (value_range_t *vr, tree type)
543 tree zero = build_int_cst (type, 0);
544 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
548 /* Set value range VR to a NULL range of type TYPE. */
550 static inline void
551 set_value_range_to_null (value_range_t *vr, tree type)
553 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
557 /* Set value range VR to a range of a truthvalue of type TYPE. */
559 static inline void
560 set_value_range_to_truthvalue (value_range_t *vr, tree type)
562 if (TYPE_PRECISION (type) == 1)
563 set_value_range_to_varying (vr);
564 else
565 set_value_range (vr, VR_RANGE,
566 build_int_cst (type, 0), build_int_cst (type, 1),
567 vr->equiv);
571 /* Set value range VR to VR_UNDEFINED. */
573 static inline void
574 set_value_range_to_undefined (value_range_t *vr)
576 vr->type = VR_UNDEFINED;
577 vr->min = vr->max = NULL_TREE;
578 if (vr->equiv)
579 bitmap_clear (vr->equiv);
583 /* Return value range information for VAR.
585 If we have no values ranges recorded (ie, VRP is not running), then
586 return NULL. Otherwise create an empty range if none existed for VAR. */
588 static value_range_t *
589 get_value_range (const_tree var)
591 value_range_t *vr;
592 tree sym;
593 unsigned ver = SSA_NAME_VERSION (var);
595 /* If we have no recorded ranges, then return NULL. */
596 if (! vr_value)
597 return NULL;
599 vr = vr_value[ver];
600 if (vr)
601 return vr;
603 /* Create a default value range. */
604 vr_value[ver] = vr = XCNEW (value_range_t);
606 /* Defer allocating the equivalence set. */
607 vr->equiv = NULL;
609 /* If VAR is a default definition, the variable can take any value
610 in VAR's type. */
611 sym = SSA_NAME_VAR (var);
612 if (SSA_NAME_IS_DEFAULT_DEF (var))
614 /* Try to use the "nonnull" attribute to create ~[0, 0]
615 anti-ranges for pointers. Note that this is only valid with
616 default definitions of PARM_DECLs. */
617 if (TREE_CODE (sym) == PARM_DECL
618 && POINTER_TYPE_P (TREE_TYPE (sym))
619 && nonnull_arg_p (sym))
620 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
621 else
622 set_value_range_to_varying (vr);
625 return vr;
628 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
630 static inline bool
631 vrp_operand_equal_p (const_tree val1, const_tree val2)
633 if (val1 == val2)
634 return true;
635 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
636 return false;
637 if (is_overflow_infinity (val1))
638 return is_overflow_infinity (val2);
639 return true;
642 /* Return true, if the bitmaps B1 and B2 are equal. */
644 static inline bool
645 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
647 return (b1 == b2
648 || (b1 && b2
649 && bitmap_equal_p (b1, b2)));
652 /* Update the value range and equivalence set for variable VAR to
653 NEW_VR. Return true if NEW_VR is different from VAR's previous
654 value.
656 NOTE: This function assumes that NEW_VR is a temporary value range
657 object created for the sole purpose of updating VAR's range. The
658 storage used by the equivalence set from NEW_VR will be freed by
659 this function. Do not call update_value_range when NEW_VR
660 is the range object associated with another SSA name. */
662 static inline bool
663 update_value_range (const_tree var, value_range_t *new_vr)
665 value_range_t *old_vr;
666 bool is_new;
668 /* Update the value range, if necessary. */
669 old_vr = get_value_range (var);
670 is_new = old_vr->type != new_vr->type
671 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
672 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
673 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
675 if (is_new)
676 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
677 new_vr->equiv);
679 BITMAP_FREE (new_vr->equiv);
681 return is_new;
685 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
686 point where equivalence processing can be turned on/off. */
688 static void
689 add_equivalence (bitmap *equiv, const_tree var)
691 unsigned ver = SSA_NAME_VERSION (var);
692 value_range_t *vr = vr_value[ver];
694 if (*equiv == NULL)
695 *equiv = BITMAP_ALLOC (NULL);
696 bitmap_set_bit (*equiv, ver);
697 if (vr && vr->equiv)
698 bitmap_ior_into (*equiv, vr->equiv);
702 /* Return true if VR is ~[0, 0]. */
704 static inline bool
705 range_is_nonnull (value_range_t *vr)
707 return vr->type == VR_ANTI_RANGE
708 && integer_zerop (vr->min)
709 && integer_zerop (vr->max);
713 /* Return true if VR is [0, 0]. */
715 static inline bool
716 range_is_null (value_range_t *vr)
718 return vr->type == VR_RANGE
719 && integer_zerop (vr->min)
720 && integer_zerop (vr->max);
724 /* Return true if value range VR involves at least one symbol. */
726 static inline bool
727 symbolic_range_p (value_range_t *vr)
729 return (!is_gimple_min_invariant (vr->min)
730 || !is_gimple_min_invariant (vr->max));
733 /* Return true if value range VR uses an overflow infinity. */
735 static inline bool
736 overflow_infinity_range_p (value_range_t *vr)
738 return (vr->type == VR_RANGE
739 && (is_overflow_infinity (vr->min)
740 || is_overflow_infinity (vr->max)));
743 /* Return false if we can not make a valid comparison based on VR;
744 this will be the case if it uses an overflow infinity and overflow
745 is not undefined (i.e., -fno-strict-overflow is in effect).
746 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
747 uses an overflow infinity. */
749 static bool
750 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
752 gcc_assert (vr->type == VR_RANGE);
753 if (is_overflow_infinity (vr->min))
755 *strict_overflow_p = true;
756 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
757 return false;
759 if (is_overflow_infinity (vr->max))
761 *strict_overflow_p = true;
762 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
763 return false;
765 return true;
769 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
770 ranges obtained so far. */
772 static bool
773 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
775 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
778 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
779 obtained so far. */
781 static bool
782 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
784 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
785 return true;
787 /* If we have an expression of the form &X->a, then the expression
788 is nonnull if X is nonnull. */
789 if (TREE_CODE (expr) == ADDR_EXPR)
791 tree base = get_base_address (TREE_OPERAND (expr, 0));
793 if (base != NULL_TREE
794 && TREE_CODE (base) == INDIRECT_REF
795 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
797 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
798 if (range_is_nonnull (vr))
799 return true;
803 return false;
806 /* Returns true if EXPR is a valid value (as expected by compare_values) --
807 a gimple invariant, or SSA_NAME +- CST. */
809 static bool
810 valid_value_p (tree expr)
812 if (TREE_CODE (expr) == SSA_NAME)
813 return true;
815 if (TREE_CODE (expr) == PLUS_EXPR
816 || TREE_CODE (expr) == MINUS_EXPR)
817 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
818 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
820 return is_gimple_min_invariant (expr);
823 /* Return
824 1 if VAL < VAL2
825 0 if !(VAL < VAL2)
826 -2 if those are incomparable. */
827 static inline int
828 operand_less_p (tree val, tree val2)
830 /* LT is folded faster than GE and others. Inline the common case. */
831 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
833 if (TYPE_UNSIGNED (TREE_TYPE (val)))
834 return INT_CST_LT_UNSIGNED (val, val2);
835 else
837 if (INT_CST_LT (val, val2))
838 return 1;
841 else
843 tree tcmp;
845 fold_defer_overflow_warnings ();
847 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
849 fold_undefer_and_ignore_overflow_warnings ();
851 if (!tcmp
852 || TREE_CODE (tcmp) != INTEGER_CST)
853 return -2;
855 if (!integer_zerop (tcmp))
856 return 1;
859 /* val >= val2, not considering overflow infinity. */
860 if (is_negative_overflow_infinity (val))
861 return is_negative_overflow_infinity (val2) ? 0 : 1;
862 else if (is_positive_overflow_infinity (val2))
863 return is_positive_overflow_infinity (val) ? 0 : 1;
865 return 0;
868 /* Compare two values VAL1 and VAL2. Return
870 -2 if VAL1 and VAL2 cannot be compared at compile-time,
871 -1 if VAL1 < VAL2,
872 0 if VAL1 == VAL2,
873 +1 if VAL1 > VAL2, and
874 +2 if VAL1 != VAL2
876 This is similar to tree_int_cst_compare but supports pointer values
877 and values that cannot be compared at compile time.
879 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
880 true if the return value is only valid if we assume that signed
881 overflow is undefined. */
883 static int
884 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
886 if (val1 == val2)
887 return 0;
889 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
890 both integers. */
891 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
892 == POINTER_TYPE_P (TREE_TYPE (val2)));
893 /* Convert the two values into the same type. This is needed because
894 sizetype causes sign extension even for unsigned types. */
895 val2 = fold_convert (TREE_TYPE (val1), val2);
896 STRIP_USELESS_TYPE_CONVERSION (val2);
898 if ((TREE_CODE (val1) == SSA_NAME
899 || TREE_CODE (val1) == PLUS_EXPR
900 || TREE_CODE (val1) == MINUS_EXPR)
901 && (TREE_CODE (val2) == SSA_NAME
902 || TREE_CODE (val2) == PLUS_EXPR
903 || TREE_CODE (val2) == MINUS_EXPR))
905 tree n1, c1, n2, c2;
906 enum tree_code code1, code2;
908 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
909 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
910 same name, return -2. */
911 if (TREE_CODE (val1) == SSA_NAME)
913 code1 = SSA_NAME;
914 n1 = val1;
915 c1 = NULL_TREE;
917 else
919 code1 = TREE_CODE (val1);
920 n1 = TREE_OPERAND (val1, 0);
921 c1 = TREE_OPERAND (val1, 1);
922 if (tree_int_cst_sgn (c1) == -1)
924 if (is_negative_overflow_infinity (c1))
925 return -2;
926 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
927 if (!c1)
928 return -2;
929 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
933 if (TREE_CODE (val2) == SSA_NAME)
935 code2 = SSA_NAME;
936 n2 = val2;
937 c2 = NULL_TREE;
939 else
941 code2 = TREE_CODE (val2);
942 n2 = TREE_OPERAND (val2, 0);
943 c2 = TREE_OPERAND (val2, 1);
944 if (tree_int_cst_sgn (c2) == -1)
946 if (is_negative_overflow_infinity (c2))
947 return -2;
948 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
949 if (!c2)
950 return -2;
951 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
955 /* Both values must use the same name. */
956 if (n1 != n2)
957 return -2;
959 if (code1 == SSA_NAME
960 && code2 == SSA_NAME)
961 /* NAME == NAME */
962 return 0;
964 /* If overflow is defined we cannot simplify more. */
965 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
966 return -2;
968 if (strict_overflow_p != NULL
969 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
970 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
971 *strict_overflow_p = true;
973 if (code1 == SSA_NAME)
975 if (code2 == PLUS_EXPR)
976 /* NAME < NAME + CST */
977 return -1;
978 else if (code2 == MINUS_EXPR)
979 /* NAME > NAME - CST */
980 return 1;
982 else if (code1 == PLUS_EXPR)
984 if (code2 == SSA_NAME)
985 /* NAME + CST > NAME */
986 return 1;
987 else if (code2 == PLUS_EXPR)
988 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
989 return compare_values_warnv (c1, c2, strict_overflow_p);
990 else if (code2 == MINUS_EXPR)
991 /* NAME + CST1 > NAME - CST2 */
992 return 1;
994 else if (code1 == MINUS_EXPR)
996 if (code2 == SSA_NAME)
997 /* NAME - CST < NAME */
998 return -1;
999 else if (code2 == PLUS_EXPR)
1000 /* NAME - CST1 < NAME + CST2 */
1001 return -1;
1002 else if (code2 == MINUS_EXPR)
1003 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1004 C1 and C2 are swapped in the call to compare_values. */
1005 return compare_values_warnv (c2, c1, strict_overflow_p);
1008 gcc_unreachable ();
1011 /* We cannot compare non-constants. */
1012 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1013 return -2;
1015 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1017 /* We cannot compare overflowed values, except for overflow
1018 infinities. */
1019 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1021 if (strict_overflow_p != NULL)
1022 *strict_overflow_p = true;
1023 if (is_negative_overflow_infinity (val1))
1024 return is_negative_overflow_infinity (val2) ? 0 : -1;
1025 else if (is_negative_overflow_infinity (val2))
1026 return 1;
1027 else if (is_positive_overflow_infinity (val1))
1028 return is_positive_overflow_infinity (val2) ? 0 : 1;
1029 else if (is_positive_overflow_infinity (val2))
1030 return -1;
1031 return -2;
1034 return tree_int_cst_compare (val1, val2);
1036 else
1038 tree t;
1040 /* First see if VAL1 and VAL2 are not the same. */
1041 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1042 return 0;
1044 /* If VAL1 is a lower address than VAL2, return -1. */
1045 if (operand_less_p (val1, val2) == 1)
1046 return -1;
1048 /* If VAL1 is a higher address than VAL2, return +1. */
1049 if (operand_less_p (val2, val1) == 1)
1050 return 1;
1052 /* If VAL1 is different than VAL2, return +2.
1053 For integer constants we either have already returned -1 or 1
1054 or they are equivalent. We still might succeed in proving
1055 something about non-trivial operands. */
1056 if (TREE_CODE (val1) != INTEGER_CST
1057 || TREE_CODE (val2) != INTEGER_CST)
1059 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1060 if (t && integer_onep (t))
1061 return 2;
1064 return -2;
1068 /* Compare values like compare_values_warnv, but treat comparisons of
1069 nonconstants which rely on undefined overflow as incomparable. */
1071 static int
1072 compare_values (tree val1, tree val2)
1074 bool sop;
1075 int ret;
1077 sop = false;
1078 ret = compare_values_warnv (val1, val2, &sop);
1079 if (sop
1080 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1081 ret = -2;
1082 return ret;
1086 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1087 0 if VAL is not inside VR,
1088 -2 if we cannot tell either way.
1090 FIXME, the current semantics of this functions are a bit quirky
1091 when taken in the context of VRP. In here we do not care
1092 about VR's type. If VR is the anti-range ~[3, 5] the call
1093 value_inside_range (4, VR) will return 1.
1095 This is counter-intuitive in a strict sense, but the callers
1096 currently expect this. They are calling the function
1097 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1098 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1099 themselves.
1101 This also applies to value_ranges_intersect_p and
1102 range_includes_zero_p. The semantics of VR_RANGE and
1103 VR_ANTI_RANGE should be encoded here, but that also means
1104 adapting the users of these functions to the new semantics.
1106 Benchmark compile/20001226-1.c compilation time after changing this
1107 function. */
1109 static inline int
1110 value_inside_range (tree val, value_range_t * vr)
1112 int cmp1, cmp2;
1114 cmp1 = operand_less_p (val, vr->min);
1115 if (cmp1 == -2)
1116 return -2;
1117 if (cmp1 == 1)
1118 return 0;
1120 cmp2 = operand_less_p (vr->max, val);
1121 if (cmp2 == -2)
1122 return -2;
1124 return !cmp2;
1128 /* Return true if value ranges VR0 and VR1 have a non-empty
1129 intersection.
1131 Benchmark compile/20001226-1.c compilation time after changing this
1132 function.
1135 static inline bool
1136 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1138 /* The value ranges do not intersect if the maximum of the first range is
1139 less than the minimum of the second range or vice versa.
1140 When those relations are unknown, we can't do any better. */
1141 if (operand_less_p (vr0->max, vr1->min) != 0)
1142 return false;
1143 if (operand_less_p (vr1->max, vr0->min) != 0)
1144 return false;
1145 return true;
1149 /* Return true if VR includes the value zero, false otherwise. FIXME,
1150 currently this will return false for an anti-range like ~[-4, 3].
1151 This will be wrong when the semantics of value_inside_range are
1152 modified (currently the users of this function expect these
1153 semantics). */
1155 static inline bool
1156 range_includes_zero_p (value_range_t *vr)
1158 tree zero;
1160 gcc_assert (vr->type != VR_UNDEFINED
1161 && vr->type != VR_VARYING
1162 && !symbolic_range_p (vr));
1164 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1165 return (value_inside_range (zero, vr) == 1);
1168 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1169 false otherwise or if no value range information is available. */
1171 bool
1172 ssa_name_nonnegative_p (const_tree t)
1174 value_range_t *vr = get_value_range (t);
1176 if (!vr)
1177 return false;
1179 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1180 which would return a useful value should be encoded as a VR_RANGE. */
1181 if (vr->type == VR_RANGE)
1183 int result = compare_values (vr->min, integer_zero_node);
1185 return (result == 0 || result == 1);
1187 return false;
1190 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1191 false otherwise or if no value range information is available. */
1193 bool
1194 ssa_name_nonzero_p (const_tree t)
1196 value_range_t *vr = get_value_range (t);
1198 if (!vr)
1199 return false;
1201 /* A VR_RANGE which does not include zero is a nonzero value. */
1202 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1203 return ! range_includes_zero_p (vr);
1205 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1206 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1207 return range_includes_zero_p (vr);
1209 return false;
1213 /* Extract value range information from an ASSERT_EXPR EXPR and store
1214 it in *VR_P. */
1216 static void
1217 extract_range_from_assert (value_range_t *vr_p, tree expr)
1219 tree var, cond, limit, min, max, type;
1220 value_range_t *var_vr, *limit_vr;
1221 enum tree_code cond_code;
1223 var = ASSERT_EXPR_VAR (expr);
1224 cond = ASSERT_EXPR_COND (expr);
1226 gcc_assert (COMPARISON_CLASS_P (cond));
1228 /* Find VAR in the ASSERT_EXPR conditional. */
1229 if (var == TREE_OPERAND (cond, 0)
1230 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1231 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1233 /* If the predicate is of the form VAR COMP LIMIT, then we just
1234 take LIMIT from the RHS and use the same comparison code. */
1235 cond_code = TREE_CODE (cond);
1236 limit = TREE_OPERAND (cond, 1);
1237 cond = TREE_OPERAND (cond, 0);
1239 else
1241 /* If the predicate is of the form LIMIT COMP VAR, then we need
1242 to flip around the comparison code to create the proper range
1243 for VAR. */
1244 cond_code = swap_tree_comparison (TREE_CODE (cond));
1245 limit = TREE_OPERAND (cond, 0);
1246 cond = TREE_OPERAND (cond, 1);
1249 limit = avoid_overflow_infinity (limit);
1251 type = TREE_TYPE (limit);
1252 gcc_assert (limit != var);
1254 /* For pointer arithmetic, we only keep track of pointer equality
1255 and inequality. */
1256 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1258 set_value_range_to_varying (vr_p);
1259 return;
1262 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1263 try to use LIMIT's range to avoid creating symbolic ranges
1264 unnecessarily. */
1265 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1267 /* LIMIT's range is only interesting if it has any useful information. */
1268 if (limit_vr
1269 && (limit_vr->type == VR_UNDEFINED
1270 || limit_vr->type == VR_VARYING
1271 || symbolic_range_p (limit_vr)))
1272 limit_vr = NULL;
1274 /* Initially, the new range has the same set of equivalences of
1275 VAR's range. This will be revised before returning the final
1276 value. Since assertions may be chained via mutually exclusive
1277 predicates, we will need to trim the set of equivalences before
1278 we are done. */
1279 gcc_assert (vr_p->equiv == NULL);
1280 add_equivalence (&vr_p->equiv, var);
1282 /* Extract a new range based on the asserted comparison for VAR and
1283 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1284 will only use it for equality comparisons (EQ_EXPR). For any
1285 other kind of assertion, we cannot derive a range from LIMIT's
1286 anti-range that can be used to describe the new range. For
1287 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1288 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1289 no single range for x_2 that could describe LE_EXPR, so we might
1290 as well build the range [b_4, +INF] for it.
1291 One special case we handle is extracting a range from a
1292 range test encoded as (unsigned)var + CST <= limit. */
1293 if (TREE_CODE (cond) == NOP_EXPR
1294 || TREE_CODE (cond) == PLUS_EXPR)
1296 if (TREE_CODE (cond) == PLUS_EXPR)
1298 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1299 TREE_OPERAND (cond, 1));
1300 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1301 cond = TREE_OPERAND (cond, 0);
1303 else
1305 min = build_int_cst (TREE_TYPE (var), 0);
1306 max = limit;
1309 /* Make sure to not set TREE_OVERFLOW on the final type
1310 conversion. We are willingly interpreting large positive
1311 unsigned values as negative singed values here. */
1312 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1313 TREE_INT_CST_HIGH (min), 0, false);
1314 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1315 TREE_INT_CST_HIGH (max), 0, false);
1317 /* We can transform a max, min range to an anti-range or
1318 vice-versa. Use set_and_canonicalize_value_range which does
1319 this for us. */
1320 if (cond_code == LE_EXPR)
1321 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1322 min, max, vr_p->equiv);
1323 else if (cond_code == GT_EXPR)
1324 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1325 min, max, vr_p->equiv);
1326 else
1327 gcc_unreachable ();
1329 else if (cond_code == EQ_EXPR)
1331 enum value_range_type range_type;
1333 if (limit_vr)
1335 range_type = limit_vr->type;
1336 min = limit_vr->min;
1337 max = limit_vr->max;
1339 else
1341 range_type = VR_RANGE;
1342 min = limit;
1343 max = limit;
1346 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1348 /* When asserting the equality VAR == LIMIT and LIMIT is another
1349 SSA name, the new range will also inherit the equivalence set
1350 from LIMIT. */
1351 if (TREE_CODE (limit) == SSA_NAME)
1352 add_equivalence (&vr_p->equiv, limit);
1354 else if (cond_code == NE_EXPR)
1356 /* As described above, when LIMIT's range is an anti-range and
1357 this assertion is an inequality (NE_EXPR), then we cannot
1358 derive anything from the anti-range. For instance, if
1359 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1360 not imply that VAR's range is [0, 0]. So, in the case of
1361 anti-ranges, we just assert the inequality using LIMIT and
1362 not its anti-range.
1364 If LIMIT_VR is a range, we can only use it to build a new
1365 anti-range if LIMIT_VR is a single-valued range. For
1366 instance, if LIMIT_VR is [0, 1], the predicate
1367 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1368 Rather, it means that for value 0 VAR should be ~[0, 0]
1369 and for value 1, VAR should be ~[1, 1]. We cannot
1370 represent these ranges.
1372 The only situation in which we can build a valid
1373 anti-range is when LIMIT_VR is a single-valued range
1374 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1375 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1376 if (limit_vr
1377 && limit_vr->type == VR_RANGE
1378 && compare_values (limit_vr->min, limit_vr->max) == 0)
1380 min = limit_vr->min;
1381 max = limit_vr->max;
1383 else
1385 /* In any other case, we cannot use LIMIT's range to build a
1386 valid anti-range. */
1387 min = max = limit;
1390 /* If MIN and MAX cover the whole range for their type, then
1391 just use the original LIMIT. */
1392 if (INTEGRAL_TYPE_P (type)
1393 && vrp_val_is_min (min)
1394 && vrp_val_is_max (max))
1395 min = max = limit;
1397 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1399 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1401 min = TYPE_MIN_VALUE (type);
1403 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1404 max = limit;
1405 else
1407 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1408 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1409 LT_EXPR. */
1410 max = limit_vr->max;
1413 /* If the maximum value forces us to be out of bounds, simply punt.
1414 It would be pointless to try and do anything more since this
1415 all should be optimized away above us. */
1416 if ((cond_code == LT_EXPR
1417 && compare_values (max, min) == 0)
1418 || is_overflow_infinity (max))
1419 set_value_range_to_varying (vr_p);
1420 else
1422 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1423 if (cond_code == LT_EXPR)
1425 tree one = build_int_cst (type, 1);
1426 max = fold_build2 (MINUS_EXPR, type, max, one);
1427 if (EXPR_P (max))
1428 TREE_NO_WARNING (max) = 1;
1431 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1434 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1436 max = TYPE_MAX_VALUE (type);
1438 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1439 min = limit;
1440 else
1442 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1443 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1444 GT_EXPR. */
1445 min = limit_vr->min;
1448 /* If the minimum value forces us to be out of bounds, simply punt.
1449 It would be pointless to try and do anything more since this
1450 all should be optimized away above us. */
1451 if ((cond_code == GT_EXPR
1452 && compare_values (min, max) == 0)
1453 || is_overflow_infinity (min))
1454 set_value_range_to_varying (vr_p);
1455 else
1457 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1458 if (cond_code == GT_EXPR)
1460 tree one = build_int_cst (type, 1);
1461 min = fold_build2 (PLUS_EXPR, type, min, one);
1462 if (EXPR_P (min))
1463 TREE_NO_WARNING (min) = 1;
1466 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1469 else
1470 gcc_unreachable ();
1472 /* If VAR already had a known range, it may happen that the new
1473 range we have computed and VAR's range are not compatible. For
1474 instance,
1476 if (p_5 == NULL)
1477 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1478 x_7 = p_6->fld;
1479 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1481 While the above comes from a faulty program, it will cause an ICE
1482 later because p_8 and p_6 will have incompatible ranges and at
1483 the same time will be considered equivalent. A similar situation
1484 would arise from
1486 if (i_5 > 10)
1487 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1488 if (i_5 < 5)
1489 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1491 Again i_6 and i_7 will have incompatible ranges. It would be
1492 pointless to try and do anything with i_7's range because
1493 anything dominated by 'if (i_5 < 5)' will be optimized away.
1494 Note, due to the wa in which simulation proceeds, the statement
1495 i_7 = ASSERT_EXPR <...> we would never be visited because the
1496 conditional 'if (i_5 < 5)' always evaluates to false. However,
1497 this extra check does not hurt and may protect against future
1498 changes to VRP that may get into a situation similar to the
1499 NULL pointer dereference example.
1501 Note that these compatibility tests are only needed when dealing
1502 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1503 are both anti-ranges, they will always be compatible, because two
1504 anti-ranges will always have a non-empty intersection. */
1506 var_vr = get_value_range (var);
1508 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1509 ranges or anti-ranges. */
1510 if (vr_p->type == VR_VARYING
1511 || vr_p->type == VR_UNDEFINED
1512 || var_vr->type == VR_VARYING
1513 || var_vr->type == VR_UNDEFINED
1514 || symbolic_range_p (vr_p)
1515 || symbolic_range_p (var_vr))
1516 return;
1518 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1520 /* If the two ranges have a non-empty intersection, we can
1521 refine the resulting range. Since the assert expression
1522 creates an equivalency and at the same time it asserts a
1523 predicate, we can take the intersection of the two ranges to
1524 get better precision. */
1525 if (value_ranges_intersect_p (var_vr, vr_p))
1527 /* Use the larger of the two minimums. */
1528 if (compare_values (vr_p->min, var_vr->min) == -1)
1529 min = var_vr->min;
1530 else
1531 min = vr_p->min;
1533 /* Use the smaller of the two maximums. */
1534 if (compare_values (vr_p->max, var_vr->max) == 1)
1535 max = var_vr->max;
1536 else
1537 max = vr_p->max;
1539 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1541 else
1543 /* The two ranges do not intersect, set the new range to
1544 VARYING, because we will not be able to do anything
1545 meaningful with it. */
1546 set_value_range_to_varying (vr_p);
1549 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1550 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1552 /* A range and an anti-range will cancel each other only if
1553 their ends are the same. For instance, in the example above,
1554 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1555 so VR_P should be set to VR_VARYING. */
1556 if (compare_values (var_vr->min, vr_p->min) == 0
1557 && compare_values (var_vr->max, vr_p->max) == 0)
1558 set_value_range_to_varying (vr_p);
1559 else
1561 tree min, max, anti_min, anti_max, real_min, real_max;
1562 int cmp;
1564 /* We want to compute the logical AND of the two ranges;
1565 there are three cases to consider.
1568 1. The VR_ANTI_RANGE range is completely within the
1569 VR_RANGE and the endpoints of the ranges are
1570 different. In that case the resulting range
1571 should be whichever range is more precise.
1572 Typically that will be the VR_RANGE.
1574 2. The VR_ANTI_RANGE is completely disjoint from
1575 the VR_RANGE. In this case the resulting range
1576 should be the VR_RANGE.
1578 3. There is some overlap between the VR_ANTI_RANGE
1579 and the VR_RANGE.
1581 3a. If the high limit of the VR_ANTI_RANGE resides
1582 within the VR_RANGE, then the result is a new
1583 VR_RANGE starting at the high limit of the
1584 the VR_ANTI_RANGE + 1 and extending to the
1585 high limit of the original VR_RANGE.
1587 3b. If the low limit of the VR_ANTI_RANGE resides
1588 within the VR_RANGE, then the result is a new
1589 VR_RANGE starting at the low limit of the original
1590 VR_RANGE and extending to the low limit of the
1591 VR_ANTI_RANGE - 1. */
1592 if (vr_p->type == VR_ANTI_RANGE)
1594 anti_min = vr_p->min;
1595 anti_max = vr_p->max;
1596 real_min = var_vr->min;
1597 real_max = var_vr->max;
1599 else
1601 anti_min = var_vr->min;
1602 anti_max = var_vr->max;
1603 real_min = vr_p->min;
1604 real_max = vr_p->max;
1608 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1609 not including any endpoints. */
1610 if (compare_values (anti_max, real_max) == -1
1611 && compare_values (anti_min, real_min) == 1)
1613 /* If the range is covering the whole valid range of
1614 the type keep the anti-range. */
1615 if (!vrp_val_is_min (real_min)
1616 || !vrp_val_is_max (real_max))
1617 set_value_range (vr_p, VR_RANGE, real_min,
1618 real_max, vr_p->equiv);
1620 /* Case 2, VR_ANTI_RANGE completely disjoint from
1621 VR_RANGE. */
1622 else if (compare_values (anti_min, real_max) == 1
1623 || compare_values (anti_max, real_min) == -1)
1625 set_value_range (vr_p, VR_RANGE, real_min,
1626 real_max, vr_p->equiv);
1628 /* Case 3a, the anti-range extends into the low
1629 part of the real range. Thus creating a new
1630 low for the real range. */
1631 else if (((cmp = compare_values (anti_max, real_min)) == 1
1632 || cmp == 0)
1633 && compare_values (anti_max, real_max) == -1)
1635 gcc_assert (!is_positive_overflow_infinity (anti_max));
1636 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1637 && vrp_val_is_max (anti_max))
1639 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1641 set_value_range_to_varying (vr_p);
1642 return;
1644 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1646 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1647 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1648 anti_max,
1649 build_int_cst (TREE_TYPE (var_vr->min), 1));
1650 else
1651 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1652 anti_max, size_int (1));
1653 max = real_max;
1654 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1656 /* Case 3b, the anti-range extends into the high
1657 part of the real range. Thus creating a new
1658 higher for the real range. */
1659 else if (compare_values (anti_min, real_min) == 1
1660 && ((cmp = compare_values (anti_min, real_max)) == -1
1661 || cmp == 0))
1663 gcc_assert (!is_negative_overflow_infinity (anti_min));
1664 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1665 && vrp_val_is_min (anti_min))
1667 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1669 set_value_range_to_varying (vr_p);
1670 return;
1672 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1674 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1675 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1676 anti_min,
1677 build_int_cst (TREE_TYPE (var_vr->min), 1));
1678 else
1679 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1680 anti_min,
1681 size_int (-1));
1682 min = real_min;
1683 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1690 /* Extract range information from SSA name VAR and store it in VR. If
1691 VAR has an interesting range, use it. Otherwise, create the
1692 range [VAR, VAR] and return it. This is useful in situations where
1693 we may have conditionals testing values of VARYING names. For
1694 instance,
1696 x_3 = y_5;
1697 if (x_3 > y_5)
1700 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1701 always false. */
1703 static void
1704 extract_range_from_ssa_name (value_range_t *vr, tree var)
1706 value_range_t *var_vr = get_value_range (var);
1708 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1709 copy_value_range (vr, var_vr);
1710 else
1711 set_value_range (vr, VR_RANGE, var, var, NULL);
1713 add_equivalence (&vr->equiv, var);
1717 /* Wrapper around int_const_binop. If the operation overflows and we
1718 are not using wrapping arithmetic, then adjust the result to be
1719 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1720 NULL_TREE if we need to use an overflow infinity representation but
1721 the type does not support it. */
1723 static tree
1724 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1726 tree res;
1728 res = int_const_binop (code, val1, val2, 0);
1730 /* If we are not using wrapping arithmetic, operate symbolically
1731 on -INF and +INF. */
1732 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1734 int checkz = compare_values (res, val1);
1735 bool overflow = false;
1737 /* Ensure that res = val1 [+*] val2 >= val1
1738 or that res = val1 - val2 <= val1. */
1739 if ((code == PLUS_EXPR
1740 && !(checkz == 1 || checkz == 0))
1741 || (code == MINUS_EXPR
1742 && !(checkz == 0 || checkz == -1)))
1744 overflow = true;
1746 /* Checking for multiplication overflow is done by dividing the
1747 output of the multiplication by the first input of the
1748 multiplication. If the result of that division operation is
1749 not equal to the second input of the multiplication, then the
1750 multiplication overflowed. */
1751 else if (code == MULT_EXPR && !integer_zerop (val1))
1753 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1754 res,
1755 val1, 0);
1756 int check = compare_values (tmp, val2);
1758 if (check != 0)
1759 overflow = true;
1762 if (overflow)
1764 res = copy_node (res);
1765 TREE_OVERFLOW (res) = 1;
1769 else if ((TREE_OVERFLOW (res)
1770 && !TREE_OVERFLOW (val1)
1771 && !TREE_OVERFLOW (val2))
1772 || is_overflow_infinity (val1)
1773 || is_overflow_infinity (val2))
1775 /* If the operation overflowed but neither VAL1 nor VAL2 are
1776 overflown, return -INF or +INF depending on the operation
1777 and the combination of signs of the operands. */
1778 int sgn1 = tree_int_cst_sgn (val1);
1779 int sgn2 = tree_int_cst_sgn (val2);
1781 if (needs_overflow_infinity (TREE_TYPE (res))
1782 && !supports_overflow_infinity (TREE_TYPE (res)))
1783 return NULL_TREE;
1785 /* We have to punt on adding infinities of different signs,
1786 since we can't tell what the sign of the result should be.
1787 Likewise for subtracting infinities of the same sign. */
1788 if (((code == PLUS_EXPR && sgn1 != sgn2)
1789 || (code == MINUS_EXPR && sgn1 == sgn2))
1790 && is_overflow_infinity (val1)
1791 && is_overflow_infinity (val2))
1792 return NULL_TREE;
1794 /* Don't try to handle division or shifting of infinities. */
1795 if ((code == TRUNC_DIV_EXPR
1796 || code == FLOOR_DIV_EXPR
1797 || code == CEIL_DIV_EXPR
1798 || code == EXACT_DIV_EXPR
1799 || code == ROUND_DIV_EXPR
1800 || code == RSHIFT_EXPR)
1801 && (is_overflow_infinity (val1)
1802 || is_overflow_infinity (val2)))
1803 return NULL_TREE;
1805 /* Notice that we only need to handle the restricted set of
1806 operations handled by extract_range_from_binary_expr.
1807 Among them, only multiplication, addition and subtraction
1808 can yield overflow without overflown operands because we
1809 are working with integral types only... except in the
1810 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1811 for division too. */
1813 /* For multiplication, the sign of the overflow is given
1814 by the comparison of the signs of the operands. */
1815 if ((code == MULT_EXPR && sgn1 == sgn2)
1816 /* For addition, the operands must be of the same sign
1817 to yield an overflow. Its sign is therefore that
1818 of one of the operands, for example the first. For
1819 infinite operands X + -INF is negative, not positive. */
1820 || (code == PLUS_EXPR
1821 && (sgn1 >= 0
1822 ? !is_negative_overflow_infinity (val2)
1823 : is_positive_overflow_infinity (val2)))
1824 /* For subtraction, non-infinite operands must be of
1825 different signs to yield an overflow. Its sign is
1826 therefore that of the first operand or the opposite of
1827 that of the second operand. A first operand of 0 counts
1828 as positive here, for the corner case 0 - (-INF), which
1829 overflows, but must yield +INF. For infinite operands 0
1830 - INF is negative, not positive. */
1831 || (code == MINUS_EXPR
1832 && (sgn1 >= 0
1833 ? !is_positive_overflow_infinity (val2)
1834 : is_negative_overflow_infinity (val2)))
1835 /* We only get in here with positive shift count, so the
1836 overflow direction is the same as the sign of val1.
1837 Actually rshift does not overflow at all, but we only
1838 handle the case of shifting overflowed -INF and +INF. */
1839 || (code == RSHIFT_EXPR
1840 && sgn1 >= 0)
1841 /* For division, the only case is -INF / -1 = +INF. */
1842 || code == TRUNC_DIV_EXPR
1843 || code == FLOOR_DIV_EXPR
1844 || code == CEIL_DIV_EXPR
1845 || code == EXACT_DIV_EXPR
1846 || code == ROUND_DIV_EXPR)
1847 return (needs_overflow_infinity (TREE_TYPE (res))
1848 ? positive_overflow_infinity (TREE_TYPE (res))
1849 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1850 else
1851 return (needs_overflow_infinity (TREE_TYPE (res))
1852 ? negative_overflow_infinity (TREE_TYPE (res))
1853 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1856 return res;
1860 /* Extract range information from a binary expression EXPR based on
1861 the ranges of each of its operands and the expression code. */
1863 static void
1864 extract_range_from_binary_expr (value_range_t *vr,
1865 enum tree_code code,
1866 tree expr_type, tree op0, tree op1)
1868 enum value_range_type type;
1869 tree min, max;
1870 int cmp;
1871 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1872 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1874 /* Not all binary expressions can be applied to ranges in a
1875 meaningful way. Handle only arithmetic operations. */
1876 if (code != PLUS_EXPR
1877 && code != MINUS_EXPR
1878 && code != POINTER_PLUS_EXPR
1879 && code != MULT_EXPR
1880 && code != TRUNC_DIV_EXPR
1881 && code != FLOOR_DIV_EXPR
1882 && code != CEIL_DIV_EXPR
1883 && code != EXACT_DIV_EXPR
1884 && code != ROUND_DIV_EXPR
1885 && code != RSHIFT_EXPR
1886 && code != MIN_EXPR
1887 && code != MAX_EXPR
1888 && code != BIT_AND_EXPR
1889 && code != TRUTH_AND_EXPR
1890 && code != TRUTH_OR_EXPR)
1892 set_value_range_to_varying (vr);
1893 return;
1896 /* Get value ranges for each operand. For constant operands, create
1897 a new value range with the operand to simplify processing. */
1898 if (TREE_CODE (op0) == SSA_NAME)
1899 vr0 = *(get_value_range (op0));
1900 else if (is_gimple_min_invariant (op0))
1901 set_value_range_to_value (&vr0, op0, NULL);
1902 else
1903 set_value_range_to_varying (&vr0);
1905 if (TREE_CODE (op1) == SSA_NAME)
1906 vr1 = *(get_value_range (op1));
1907 else if (is_gimple_min_invariant (op1))
1908 set_value_range_to_value (&vr1, op1, NULL);
1909 else
1910 set_value_range_to_varying (&vr1);
1912 /* If either range is UNDEFINED, so is the result. */
1913 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1915 set_value_range_to_undefined (vr);
1916 return;
1919 /* The type of the resulting value range defaults to VR0.TYPE. */
1920 type = vr0.type;
1922 /* Refuse to operate on VARYING ranges, ranges of different kinds
1923 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1924 because we may be able to derive a useful range even if one of
1925 the operands is VR_VARYING or symbolic range. TODO, we may be
1926 able to derive anti-ranges in some cases. */
1927 if (code != BIT_AND_EXPR
1928 && code != TRUTH_AND_EXPR
1929 && code != TRUTH_OR_EXPR
1930 && (vr0.type == VR_VARYING
1931 || vr1.type == VR_VARYING
1932 || vr0.type != vr1.type
1933 || symbolic_range_p (&vr0)
1934 || symbolic_range_p (&vr1)))
1936 set_value_range_to_varying (vr);
1937 return;
1940 /* Now evaluate the expression to determine the new range. */
1941 if (POINTER_TYPE_P (expr_type)
1942 || POINTER_TYPE_P (TREE_TYPE (op0))
1943 || POINTER_TYPE_P (TREE_TYPE (op1)))
1945 if (code == MIN_EXPR || code == MAX_EXPR)
1947 /* For MIN/MAX expressions with pointers, we only care about
1948 nullness, if both are non null, then the result is nonnull.
1949 If both are null, then the result is null. Otherwise they
1950 are varying. */
1951 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1952 set_value_range_to_nonnull (vr, expr_type);
1953 else if (range_is_null (&vr0) && range_is_null (&vr1))
1954 set_value_range_to_null (vr, expr_type);
1955 else
1956 set_value_range_to_varying (vr);
1958 return;
1960 gcc_assert (code == POINTER_PLUS_EXPR);
1961 /* For pointer types, we are really only interested in asserting
1962 whether the expression evaluates to non-NULL. */
1963 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1964 set_value_range_to_nonnull (vr, expr_type);
1965 else if (range_is_null (&vr0) && range_is_null (&vr1))
1966 set_value_range_to_null (vr, expr_type);
1967 else
1968 set_value_range_to_varying (vr);
1970 return;
1973 /* For integer ranges, apply the operation to each end of the
1974 range and see what we end up with. */
1975 if (code == TRUTH_AND_EXPR
1976 || code == TRUTH_OR_EXPR)
1978 /* If one of the operands is zero, we know that the whole
1979 expression evaluates zero. */
1980 if (code == TRUTH_AND_EXPR
1981 && ((vr0.type == VR_RANGE
1982 && integer_zerop (vr0.min)
1983 && integer_zerop (vr0.max))
1984 || (vr1.type == VR_RANGE
1985 && integer_zerop (vr1.min)
1986 && integer_zerop (vr1.max))))
1988 type = VR_RANGE;
1989 min = max = build_int_cst (expr_type, 0);
1991 /* If one of the operands is one, we know that the whole
1992 expression evaluates one. */
1993 else if (code == TRUTH_OR_EXPR
1994 && ((vr0.type == VR_RANGE
1995 && integer_onep (vr0.min)
1996 && integer_onep (vr0.max))
1997 || (vr1.type == VR_RANGE
1998 && integer_onep (vr1.min)
1999 && integer_onep (vr1.max))))
2001 type = VR_RANGE;
2002 min = max = build_int_cst (expr_type, 1);
2004 else if (vr0.type != VR_VARYING
2005 && vr1.type != VR_VARYING
2006 && vr0.type == vr1.type
2007 && !symbolic_range_p (&vr0)
2008 && !overflow_infinity_range_p (&vr0)
2009 && !symbolic_range_p (&vr1)
2010 && !overflow_infinity_range_p (&vr1))
2012 /* Boolean expressions cannot be folded with int_const_binop. */
2013 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2014 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2016 else
2018 /* The result of a TRUTH_*_EXPR is always true or false. */
2019 set_value_range_to_truthvalue (vr, expr_type);
2020 return;
2023 else if (code == PLUS_EXPR
2024 || code == MIN_EXPR
2025 || code == MAX_EXPR)
2027 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2028 VR_VARYING. It would take more effort to compute a precise
2029 range for such a case. For example, if we have op0 == 1 and
2030 op1 == -1 with their ranges both being ~[0,0], we would have
2031 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2032 Note that we are guaranteed to have vr0.type == vr1.type at
2033 this point. */
2034 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2036 set_value_range_to_varying (vr);
2037 return;
2040 /* For operations that make the resulting range directly
2041 proportional to the original ranges, apply the operation to
2042 the same end of each range. */
2043 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2044 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2046 else if (code == MULT_EXPR
2047 || code == TRUNC_DIV_EXPR
2048 || code == FLOOR_DIV_EXPR
2049 || code == CEIL_DIV_EXPR
2050 || code == EXACT_DIV_EXPR
2051 || code == ROUND_DIV_EXPR
2052 || code == RSHIFT_EXPR)
2054 tree val[4];
2055 size_t i;
2056 bool sop;
2058 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2059 drop to VR_VARYING. It would take more effort to compute a
2060 precise range for such a case. For example, if we have
2061 op0 == 65536 and op1 == 65536 with their ranges both being
2062 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2063 we cannot claim that the product is in ~[0,0]. Note that we
2064 are guaranteed to have vr0.type == vr1.type at this
2065 point. */
2066 if (code == MULT_EXPR
2067 && vr0.type == VR_ANTI_RANGE
2068 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2070 set_value_range_to_varying (vr);
2071 return;
2074 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2075 then drop to VR_VARYING. Outside of this range we get undefined
2076 behavior from the shift operation. We cannot even trust
2077 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2078 shifts, and the operation at the tree level may be widened. */
2079 if (code == RSHIFT_EXPR)
2081 if (vr1.type == VR_ANTI_RANGE
2082 || !vrp_expr_computes_nonnegative (op1, &sop)
2083 || (operand_less_p
2084 (build_int_cst (TREE_TYPE (vr1.max),
2085 TYPE_PRECISION (expr_type) - 1),
2086 vr1.max) != 0))
2088 set_value_range_to_varying (vr);
2089 return;
2093 /* Multiplications and divisions are a bit tricky to handle,
2094 depending on the mix of signs we have in the two ranges, we
2095 need to operate on different values to get the minimum and
2096 maximum values for the new range. One approach is to figure
2097 out all the variations of range combinations and do the
2098 operations.
2100 However, this involves several calls to compare_values and it
2101 is pretty convoluted. It's simpler to do the 4 operations
2102 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2103 MAX1) and then figure the smallest and largest values to form
2104 the new range. */
2106 /* Divisions by zero result in a VARYING value. */
2107 else if (code != MULT_EXPR
2108 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
2110 set_value_range_to_varying (vr);
2111 return;
2114 /* Compute the 4 cross operations. */
2115 sop = false;
2116 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2117 if (val[0] == NULL_TREE)
2118 sop = true;
2120 if (vr1.max == vr1.min)
2121 val[1] = NULL_TREE;
2122 else
2124 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2125 if (val[1] == NULL_TREE)
2126 sop = true;
2129 if (vr0.max == vr0.min)
2130 val[2] = NULL_TREE;
2131 else
2133 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2134 if (val[2] == NULL_TREE)
2135 sop = true;
2138 if (vr0.min == vr0.max || vr1.min == vr1.max)
2139 val[3] = NULL_TREE;
2140 else
2142 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2143 if (val[3] == NULL_TREE)
2144 sop = true;
2147 if (sop)
2149 set_value_range_to_varying (vr);
2150 return;
2153 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2154 of VAL[i]. */
2155 min = val[0];
2156 max = val[0];
2157 for (i = 1; i < 4; i++)
2159 if (!is_gimple_min_invariant (min)
2160 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2161 || !is_gimple_min_invariant (max)
2162 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2163 break;
2165 if (val[i])
2167 if (!is_gimple_min_invariant (val[i])
2168 || (TREE_OVERFLOW (val[i])
2169 && !is_overflow_infinity (val[i])))
2171 /* If we found an overflowed value, set MIN and MAX
2172 to it so that we set the resulting range to
2173 VARYING. */
2174 min = max = val[i];
2175 break;
2178 if (compare_values (val[i], min) == -1)
2179 min = val[i];
2181 if (compare_values (val[i], max) == 1)
2182 max = val[i];
2186 else if (code == MINUS_EXPR)
2188 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2189 VR_VARYING. It would take more effort to compute a precise
2190 range for such a case. For example, if we have op0 == 1 and
2191 op1 == 1 with their ranges both being ~[0,0], we would have
2192 op0 - op1 == 0, so we cannot claim that the difference is in
2193 ~[0,0]. Note that we are guaranteed to have
2194 vr0.type == vr1.type at this point. */
2195 if (vr0.type == VR_ANTI_RANGE)
2197 set_value_range_to_varying (vr);
2198 return;
2201 /* For MINUS_EXPR, apply the operation to the opposite ends of
2202 each range. */
2203 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2204 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2206 else if (code == BIT_AND_EXPR)
2208 if (vr0.type == VR_RANGE
2209 && vr0.min == vr0.max
2210 && TREE_CODE (vr0.max) == INTEGER_CST
2211 && !TREE_OVERFLOW (vr0.max)
2212 && tree_int_cst_sgn (vr0.max) >= 0)
2214 min = build_int_cst (expr_type, 0);
2215 max = vr0.max;
2217 else if (vr1.type == VR_RANGE
2218 && vr1.min == vr1.max
2219 && TREE_CODE (vr1.max) == INTEGER_CST
2220 && !TREE_OVERFLOW (vr1.max)
2221 && tree_int_cst_sgn (vr1.max) >= 0)
2223 type = VR_RANGE;
2224 min = build_int_cst (expr_type, 0);
2225 max = vr1.max;
2227 else
2229 set_value_range_to_varying (vr);
2230 return;
2233 else
2234 gcc_unreachable ();
2236 /* If either MIN or MAX overflowed, then set the resulting range to
2237 VARYING. But we do accept an overflow infinity
2238 representation. */
2239 if (min == NULL_TREE
2240 || !is_gimple_min_invariant (min)
2241 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2242 || max == NULL_TREE
2243 || !is_gimple_min_invariant (max)
2244 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2246 set_value_range_to_varying (vr);
2247 return;
2250 /* We punt if:
2251 1) [-INF, +INF]
2252 2) [-INF, +-INF(OVF)]
2253 3) [+-INF(OVF), +INF]
2254 4) [+-INF(OVF), +-INF(OVF)]
2255 We learn nothing when we have INF and INF(OVF) on both sides.
2256 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2257 overflow. */
2258 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2259 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2261 set_value_range_to_varying (vr);
2262 return;
2265 cmp = compare_values (min, max);
2266 if (cmp == -2 || cmp == 1)
2268 /* If the new range has its limits swapped around (MIN > MAX),
2269 then the operation caused one of them to wrap around, mark
2270 the new range VARYING. */
2271 set_value_range_to_varying (vr);
2273 else
2274 set_value_range (vr, type, min, max, NULL);
2278 /* Extract range information from a unary expression EXPR based on
2279 the range of its operand and the expression code. */
2281 static void
2282 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2283 tree type, tree op0)
2285 tree min, max;
2286 int cmp;
2287 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2289 /* Refuse to operate on certain unary expressions for which we
2290 cannot easily determine a resulting range. */
2291 if (code == FIX_TRUNC_EXPR
2292 || code == FLOAT_EXPR
2293 || code == BIT_NOT_EXPR
2294 || code == CONJ_EXPR)
2296 set_value_range_to_varying (vr);
2297 return;
2300 /* Get value ranges for the operand. For constant operands, create
2301 a new value range with the operand to simplify processing. */
2302 if (TREE_CODE (op0) == SSA_NAME)
2303 vr0 = *(get_value_range (op0));
2304 else if (is_gimple_min_invariant (op0))
2305 set_value_range_to_value (&vr0, op0, NULL);
2306 else
2307 set_value_range_to_varying (&vr0);
2309 /* If VR0 is UNDEFINED, so is the result. */
2310 if (vr0.type == VR_UNDEFINED)
2312 set_value_range_to_undefined (vr);
2313 return;
2316 /* Refuse to operate on symbolic ranges, or if neither operand is
2317 a pointer or integral type. */
2318 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2319 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2320 || (vr0.type != VR_VARYING
2321 && symbolic_range_p (&vr0)))
2323 set_value_range_to_varying (vr);
2324 return;
2327 /* If the expression involves pointers, we are only interested in
2328 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2329 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2331 bool sop;
2333 sop = false;
2334 if (range_is_nonnull (&vr0)
2335 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2336 && !sop))
2337 set_value_range_to_nonnull (vr, type);
2338 else if (range_is_null (&vr0))
2339 set_value_range_to_null (vr, type);
2340 else
2341 set_value_range_to_varying (vr);
2343 return;
2346 /* Handle unary expressions on integer ranges. */
2347 if ((code == NOP_EXPR
2348 || code == CONVERT_EXPR)
2349 && INTEGRAL_TYPE_P (type)
2350 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2352 tree inner_type = TREE_TYPE (op0);
2353 tree outer_type = type;
2355 /* Always use base-types here. This is important for the
2356 correct signedness. */
2357 if (TREE_TYPE (inner_type))
2358 inner_type = TREE_TYPE (inner_type);
2359 if (TREE_TYPE (outer_type))
2360 outer_type = TREE_TYPE (outer_type);
2362 /* If VR0 is varying and we increase the type precision, assume
2363 a full range for the following transformation. */
2364 if (vr0.type == VR_VARYING
2365 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2367 vr0.type = VR_RANGE;
2368 vr0.min = TYPE_MIN_VALUE (inner_type);
2369 vr0.max = TYPE_MAX_VALUE (inner_type);
2372 /* If VR0 is a constant range or anti-range and the conversion is
2373 not truncating we can convert the min and max values and
2374 canonicalize the resulting range. Otherwise we can do the
2375 conversion if the size of the range is less than what the
2376 precision of the target type can represent and the range is
2377 not an anti-range. */
2378 if ((vr0.type == VR_RANGE
2379 || vr0.type == VR_ANTI_RANGE)
2380 && TREE_CODE (vr0.min) == INTEGER_CST
2381 && TREE_CODE (vr0.max) == INTEGER_CST
2382 && !is_overflow_infinity (vr0.min)
2383 && !is_overflow_infinity (vr0.max)
2384 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2385 || (vr0.type == VR_RANGE
2386 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2387 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2388 size_int (TYPE_PRECISION (outer_type)), 0)))))
2390 tree new_min, new_max;
2391 new_min = force_fit_type_double (outer_type,
2392 TREE_INT_CST_LOW (vr0.min),
2393 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2394 new_max = force_fit_type_double (outer_type,
2395 TREE_INT_CST_LOW (vr0.max),
2396 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2397 set_and_canonicalize_value_range (vr, vr0.type,
2398 new_min, new_max, NULL);
2399 return;
2402 set_value_range_to_varying (vr);
2403 return;
2406 /* Conversion of a VR_VARYING value to a wider type can result
2407 in a usable range. So wait until after we've handled conversions
2408 before dropping the result to VR_VARYING if we had a source
2409 operand that is VR_VARYING. */
2410 if (vr0.type == VR_VARYING)
2412 set_value_range_to_varying (vr);
2413 return;
2416 /* Apply the operation to each end of the range and see what we end
2417 up with. */
2418 if (code == NEGATE_EXPR
2419 && !TYPE_UNSIGNED (type))
2421 /* NEGATE_EXPR flips the range around. We need to treat
2422 TYPE_MIN_VALUE specially. */
2423 if (is_positive_overflow_infinity (vr0.max))
2424 min = negative_overflow_infinity (type);
2425 else if (is_negative_overflow_infinity (vr0.max))
2426 min = positive_overflow_infinity (type);
2427 else if (!vrp_val_is_min (vr0.max))
2428 min = fold_unary_to_constant (code, type, vr0.max);
2429 else if (needs_overflow_infinity (type))
2431 if (supports_overflow_infinity (type)
2432 && !is_overflow_infinity (vr0.min)
2433 && !vrp_val_is_min (vr0.min))
2434 min = positive_overflow_infinity (type);
2435 else
2437 set_value_range_to_varying (vr);
2438 return;
2441 else
2442 min = TYPE_MIN_VALUE (type);
2444 if (is_positive_overflow_infinity (vr0.min))
2445 max = negative_overflow_infinity (type);
2446 else if (is_negative_overflow_infinity (vr0.min))
2447 max = positive_overflow_infinity (type);
2448 else if (!vrp_val_is_min (vr0.min))
2449 max = fold_unary_to_constant (code, type, vr0.min);
2450 else if (needs_overflow_infinity (type))
2452 if (supports_overflow_infinity (type))
2453 max = positive_overflow_infinity (type);
2454 else
2456 set_value_range_to_varying (vr);
2457 return;
2460 else
2461 max = TYPE_MIN_VALUE (type);
2463 else if (code == NEGATE_EXPR
2464 && TYPE_UNSIGNED (type))
2466 if (!range_includes_zero_p (&vr0))
2468 max = fold_unary_to_constant (code, type, vr0.min);
2469 min = fold_unary_to_constant (code, type, vr0.max);
2471 else
2473 if (range_is_null (&vr0))
2474 set_value_range_to_null (vr, type);
2475 else
2476 set_value_range_to_varying (vr);
2477 return;
2480 else if (code == ABS_EXPR
2481 && !TYPE_UNSIGNED (type))
2483 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2484 useful range. */
2485 if (!TYPE_OVERFLOW_UNDEFINED (type)
2486 && ((vr0.type == VR_RANGE
2487 && vrp_val_is_min (vr0.min))
2488 || (vr0.type == VR_ANTI_RANGE
2489 && !vrp_val_is_min (vr0.min)
2490 && !range_includes_zero_p (&vr0))))
2492 set_value_range_to_varying (vr);
2493 return;
2496 /* ABS_EXPR may flip the range around, if the original range
2497 included negative values. */
2498 if (is_overflow_infinity (vr0.min))
2499 min = positive_overflow_infinity (type);
2500 else if (!vrp_val_is_min (vr0.min))
2501 min = fold_unary_to_constant (code, type, vr0.min);
2502 else if (!needs_overflow_infinity (type))
2503 min = TYPE_MAX_VALUE (type);
2504 else if (supports_overflow_infinity (type))
2505 min = positive_overflow_infinity (type);
2506 else
2508 set_value_range_to_varying (vr);
2509 return;
2512 if (is_overflow_infinity (vr0.max))
2513 max = positive_overflow_infinity (type);
2514 else if (!vrp_val_is_min (vr0.max))
2515 max = fold_unary_to_constant (code, type, vr0.max);
2516 else if (!needs_overflow_infinity (type))
2517 max = TYPE_MAX_VALUE (type);
2518 else if (supports_overflow_infinity (type))
2519 max = positive_overflow_infinity (type);
2520 else
2522 set_value_range_to_varying (vr);
2523 return;
2526 cmp = compare_values (min, max);
2528 /* If a VR_ANTI_RANGEs contains zero, then we have
2529 ~[-INF, min(MIN, MAX)]. */
2530 if (vr0.type == VR_ANTI_RANGE)
2532 if (range_includes_zero_p (&vr0))
2534 /* Take the lower of the two values. */
2535 if (cmp != 1)
2536 max = min;
2538 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2539 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2540 flag_wrapv is set and the original anti-range doesn't include
2541 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2542 if (TYPE_OVERFLOW_WRAPS (type))
2544 tree type_min_value = TYPE_MIN_VALUE (type);
2546 min = (vr0.min != type_min_value
2547 ? int_const_binop (PLUS_EXPR, type_min_value,
2548 integer_one_node, 0)
2549 : type_min_value);
2551 else
2553 if (overflow_infinity_range_p (&vr0))
2554 min = negative_overflow_infinity (type);
2555 else
2556 min = TYPE_MIN_VALUE (type);
2559 else
2561 /* All else has failed, so create the range [0, INF], even for
2562 flag_wrapv since TYPE_MIN_VALUE is in the original
2563 anti-range. */
2564 vr0.type = VR_RANGE;
2565 min = build_int_cst (type, 0);
2566 if (needs_overflow_infinity (type))
2568 if (supports_overflow_infinity (type))
2569 max = positive_overflow_infinity (type);
2570 else
2572 set_value_range_to_varying (vr);
2573 return;
2576 else
2577 max = TYPE_MAX_VALUE (type);
2581 /* If the range contains zero then we know that the minimum value in the
2582 range will be zero. */
2583 else if (range_includes_zero_p (&vr0))
2585 if (cmp == 1)
2586 max = min;
2587 min = build_int_cst (type, 0);
2589 else
2591 /* If the range was reversed, swap MIN and MAX. */
2592 if (cmp == 1)
2594 tree t = min;
2595 min = max;
2596 max = t;
2600 else
2602 /* Otherwise, operate on each end of the range. */
2603 min = fold_unary_to_constant (code, type, vr0.min);
2604 max = fold_unary_to_constant (code, type, vr0.max);
2606 if (needs_overflow_infinity (type))
2608 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2610 /* If both sides have overflowed, we don't know
2611 anything. */
2612 if ((is_overflow_infinity (vr0.min)
2613 || TREE_OVERFLOW (min))
2614 && (is_overflow_infinity (vr0.max)
2615 || TREE_OVERFLOW (max)))
2617 set_value_range_to_varying (vr);
2618 return;
2621 if (is_overflow_infinity (vr0.min))
2622 min = vr0.min;
2623 else if (TREE_OVERFLOW (min))
2625 if (supports_overflow_infinity (type))
2626 min = (tree_int_cst_sgn (min) >= 0
2627 ? positive_overflow_infinity (TREE_TYPE (min))
2628 : negative_overflow_infinity (TREE_TYPE (min)));
2629 else
2631 set_value_range_to_varying (vr);
2632 return;
2636 if (is_overflow_infinity (vr0.max))
2637 max = vr0.max;
2638 else if (TREE_OVERFLOW (max))
2640 if (supports_overflow_infinity (type))
2641 max = (tree_int_cst_sgn (max) >= 0
2642 ? positive_overflow_infinity (TREE_TYPE (max))
2643 : negative_overflow_infinity (TREE_TYPE (max)));
2644 else
2646 set_value_range_to_varying (vr);
2647 return;
2653 cmp = compare_values (min, max);
2654 if (cmp == -2 || cmp == 1)
2656 /* If the new range has its limits swapped around (MIN > MAX),
2657 then the operation caused one of them to wrap around, mark
2658 the new range VARYING. */
2659 set_value_range_to_varying (vr);
2661 else
2662 set_value_range (vr, vr0.type, min, max, NULL);
2666 /* Extract range information from a conditional expression EXPR based on
2667 the ranges of each of its operands and the expression code. */
2669 static void
2670 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2672 tree op0, op1;
2673 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2674 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2676 /* Get value ranges for each operand. For constant operands, create
2677 a new value range with the operand to simplify processing. */
2678 op0 = COND_EXPR_THEN (expr);
2679 if (TREE_CODE (op0) == SSA_NAME)
2680 vr0 = *(get_value_range (op0));
2681 else if (is_gimple_min_invariant (op0))
2682 set_value_range_to_value (&vr0, op0, NULL);
2683 else
2684 set_value_range_to_varying (&vr0);
2686 op1 = COND_EXPR_ELSE (expr);
2687 if (TREE_CODE (op1) == SSA_NAME)
2688 vr1 = *(get_value_range (op1));
2689 else if (is_gimple_min_invariant (op1))
2690 set_value_range_to_value (&vr1, op1, NULL);
2691 else
2692 set_value_range_to_varying (&vr1);
2694 /* The resulting value range is the union of the operand ranges */
2695 vrp_meet (&vr0, &vr1);
2696 copy_value_range (vr, &vr0);
2700 /* Extract range information from a comparison expression EXPR based
2701 on the range of its operand and the expression code. */
2703 static void
2704 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
2705 tree type, tree op0, tree op1)
2707 bool sop = false;
2708 tree val = vrp_evaluate_conditional_warnv_with_ops (code,
2709 op0,
2710 op1,
2711 false, &sop);
2713 /* A disadvantage of using a special infinity as an overflow
2714 representation is that we lose the ability to record overflow
2715 when we don't have an infinity. So we have to ignore a result
2716 which relies on overflow. */
2718 if (val && !is_overflow_infinity (val) && !sop)
2720 /* Since this expression was found on the RHS of an assignment,
2721 its type may be different from _Bool. Convert VAL to EXPR's
2722 type. */
2723 val = fold_convert (type, val);
2724 if (is_gimple_min_invariant (val))
2725 set_value_range_to_value (vr, val, vr->equiv);
2726 else
2727 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2729 else
2730 /* The result of a comparison is always true or false. */
2731 set_value_range_to_truthvalue (vr, type);
2735 /* Try to compute a useful range out of expression EXPR and store it
2736 in *VR. */
2738 static void
2739 extract_range_from_expr (value_range_t *vr, tree expr)
2741 enum tree_code code = TREE_CODE (expr);
2743 if (code == ASSERT_EXPR)
2744 extract_range_from_assert (vr, expr);
2745 else if (code == SSA_NAME)
2746 extract_range_from_ssa_name (vr, expr);
2747 else if (TREE_CODE_CLASS (code) == tcc_binary
2748 || code == TRUTH_AND_EXPR
2749 || code == TRUTH_OR_EXPR
2750 || code == TRUTH_XOR_EXPR)
2751 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2752 TREE_OPERAND (expr, 0),
2753 TREE_OPERAND (expr, 1));
2754 else if (TREE_CODE_CLASS (code) == tcc_unary)
2755 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
2756 TREE_OPERAND (expr, 0));
2757 else if (code == COND_EXPR)
2758 extract_range_from_cond_expr (vr, expr);
2759 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2760 extract_range_from_comparison (vr, TREE_CODE (expr), TREE_TYPE (expr),
2761 TREE_OPERAND (expr, 0),
2762 TREE_OPERAND (expr, 1));
2763 else if (is_gimple_min_invariant (expr))
2764 set_value_range_to_value (vr, expr, NULL);
2765 else
2766 set_value_range_to_varying (vr);
2768 /* If we got a varying range from the tests above, try a final
2769 time to derive a nonnegative or nonzero range. This time
2770 relying primarily on generic routines in fold in conjunction
2771 with range data. */
2772 if (vr->type == VR_VARYING)
2774 bool sop = false;
2776 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2777 && vrp_expr_computes_nonnegative (expr, &sop))
2778 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2779 sop || is_overflow_infinity (expr));
2780 else if (vrp_expr_computes_nonzero (expr, &sop)
2781 && !sop)
2782 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2786 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2787 would be profitable to adjust VR using scalar evolution information
2788 for VAR. If so, update VR with the new limits. */
2790 static void
2791 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2792 tree var)
2794 tree init, step, chrec, tmin, tmax, min, max, type;
2795 enum ev_direction dir;
2797 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2798 better opportunities than a regular range, but I'm not sure. */
2799 if (vr->type == VR_ANTI_RANGE)
2800 return;
2802 /* Ensure that there are not values in the scev cache based on assumptions
2803 on ranges of ssa names that were changed
2804 (in set_value_range/set_value_range_to_varying). Preserve cached numbers
2805 of iterations, that were computed before the start of VRP (we do not
2806 recompute these each time to save the compile time). */
2807 scev_reset_except_niters ();
2809 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2811 /* Like in PR19590, scev can return a constant function. */
2812 if (is_gimple_min_invariant (chrec))
2814 set_value_range_to_value (vr, chrec, vr->equiv);
2815 return;
2818 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2819 return;
2821 init = initial_condition_in_loop_num (chrec, loop->num);
2822 step = evolution_part_in_loop_num (chrec, loop->num);
2824 /* If STEP is symbolic, we can't know whether INIT will be the
2825 minimum or maximum value in the range. Also, unless INIT is
2826 a simple expression, compare_values and possibly other functions
2827 in tree-vrp won't be able to handle it. */
2828 if (step == NULL_TREE
2829 || !is_gimple_min_invariant (step)
2830 || !valid_value_p (init))
2831 return;
2833 dir = scev_direction (chrec);
2834 if (/* Do not adjust ranges if we do not know whether the iv increases
2835 or decreases, ... */
2836 dir == EV_DIR_UNKNOWN
2837 /* ... or if it may wrap. */
2838 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2839 true))
2840 return;
2842 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2843 negative_overflow_infinity and positive_overflow_infinity,
2844 because we have concluded that the loop probably does not
2845 wrap. */
2847 type = TREE_TYPE (var);
2848 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2849 tmin = lower_bound_in_type (type, type);
2850 else
2851 tmin = TYPE_MIN_VALUE (type);
2852 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2853 tmax = upper_bound_in_type (type, type);
2854 else
2855 tmax = TYPE_MAX_VALUE (type);
2857 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2859 min = tmin;
2860 max = tmax;
2862 /* For VARYING or UNDEFINED ranges, just about anything we get
2863 from scalar evolutions should be better. */
2865 if (dir == EV_DIR_DECREASES)
2866 max = init;
2867 else
2868 min = init;
2870 /* If we would create an invalid range, then just assume we
2871 know absolutely nothing. This may be over-conservative,
2872 but it's clearly safe, and should happen only in unreachable
2873 parts of code, or for invalid programs. */
2874 if (compare_values (min, max) == 1)
2875 return;
2877 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2879 else if (vr->type == VR_RANGE)
2881 min = vr->min;
2882 max = vr->max;
2884 if (dir == EV_DIR_DECREASES)
2886 /* INIT is the maximum value. If INIT is lower than VR->MAX
2887 but no smaller than VR->MIN, set VR->MAX to INIT. */
2888 if (compare_values (init, max) == -1)
2890 max = init;
2892 /* If we just created an invalid range with the minimum
2893 greater than the maximum, we fail conservatively.
2894 This should happen only in unreachable
2895 parts of code, or for invalid programs. */
2896 if (compare_values (min, max) == 1)
2897 return;
2900 /* According to the loop information, the variable does not
2901 overflow. If we think it does, probably because of an
2902 overflow due to arithmetic on a different INF value,
2903 reset now. */
2904 if (is_negative_overflow_infinity (min))
2905 min = tmin;
2907 else
2909 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2910 if (compare_values (init, min) == 1)
2912 min = init;
2914 /* Again, avoid creating invalid range by failing. */
2915 if (compare_values (min, max) == 1)
2916 return;
2919 if (is_positive_overflow_infinity (max))
2920 max = tmax;
2923 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2927 /* Return true if VAR may overflow at STMT. This checks any available
2928 loop information to see if we can determine that VAR does not
2929 overflow. */
2931 static bool
2932 vrp_var_may_overflow (tree var, tree stmt)
2934 struct loop *l;
2935 tree chrec, init, step;
2937 if (current_loops == NULL)
2938 return true;
2940 l = loop_containing_stmt (stmt);
2941 if (l == NULL)
2942 return true;
2944 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2945 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2946 return true;
2948 init = initial_condition_in_loop_num (chrec, l->num);
2949 step = evolution_part_in_loop_num (chrec, l->num);
2951 if (step == NULL_TREE
2952 || !is_gimple_min_invariant (step)
2953 || !valid_value_p (init))
2954 return true;
2956 /* If we get here, we know something useful about VAR based on the
2957 loop information. If it wraps, it may overflow. */
2959 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2960 true))
2961 return true;
2963 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2965 print_generic_expr (dump_file, var, 0);
2966 fprintf (dump_file, ": loop information indicates does not overflow\n");
2969 return false;
2973 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2975 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2976 all the values in the ranges.
2978 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2980 - Return NULL_TREE if it is not always possible to determine the
2981 value of the comparison.
2983 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2984 overflow infinity was used in the test. */
2987 static tree
2988 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2989 bool *strict_overflow_p)
2991 /* VARYING or UNDEFINED ranges cannot be compared. */
2992 if (vr0->type == VR_VARYING
2993 || vr0->type == VR_UNDEFINED
2994 || vr1->type == VR_VARYING
2995 || vr1->type == VR_UNDEFINED)
2996 return NULL_TREE;
2998 /* Anti-ranges need to be handled separately. */
2999 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3001 /* If both are anti-ranges, then we cannot compute any
3002 comparison. */
3003 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3004 return NULL_TREE;
3006 /* These comparisons are never statically computable. */
3007 if (comp == GT_EXPR
3008 || comp == GE_EXPR
3009 || comp == LT_EXPR
3010 || comp == LE_EXPR)
3011 return NULL_TREE;
3013 /* Equality can be computed only between a range and an
3014 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3015 if (vr0->type == VR_RANGE)
3017 /* To simplify processing, make VR0 the anti-range. */
3018 value_range_t *tmp = vr0;
3019 vr0 = vr1;
3020 vr1 = tmp;
3023 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3025 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3026 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3027 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3029 return NULL_TREE;
3032 if (!usable_range_p (vr0, strict_overflow_p)
3033 || !usable_range_p (vr1, strict_overflow_p))
3034 return NULL_TREE;
3036 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3037 operands around and change the comparison code. */
3038 if (comp == GT_EXPR || comp == GE_EXPR)
3040 value_range_t *tmp;
3041 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3042 tmp = vr0;
3043 vr0 = vr1;
3044 vr1 = tmp;
3047 if (comp == EQ_EXPR)
3049 /* Equality may only be computed if both ranges represent
3050 exactly one value. */
3051 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3052 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3054 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3055 strict_overflow_p);
3056 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3057 strict_overflow_p);
3058 if (cmp_min == 0 && cmp_max == 0)
3059 return boolean_true_node;
3060 else if (cmp_min != -2 && cmp_max != -2)
3061 return boolean_false_node;
3063 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3064 else if (compare_values_warnv (vr0->min, vr1->max,
3065 strict_overflow_p) == 1
3066 || compare_values_warnv (vr1->min, vr0->max,
3067 strict_overflow_p) == 1)
3068 return boolean_false_node;
3070 return NULL_TREE;
3072 else if (comp == NE_EXPR)
3074 int cmp1, cmp2;
3076 /* If VR0 is completely to the left or completely to the right
3077 of VR1, they are always different. Notice that we need to
3078 make sure that both comparisons yield similar results to
3079 avoid comparing values that cannot be compared at
3080 compile-time. */
3081 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3082 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3083 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3084 return boolean_true_node;
3086 /* If VR0 and VR1 represent a single value and are identical,
3087 return false. */
3088 else if (compare_values_warnv (vr0->min, vr0->max,
3089 strict_overflow_p) == 0
3090 && compare_values_warnv (vr1->min, vr1->max,
3091 strict_overflow_p) == 0
3092 && compare_values_warnv (vr0->min, vr1->min,
3093 strict_overflow_p) == 0
3094 && compare_values_warnv (vr0->max, vr1->max,
3095 strict_overflow_p) == 0)
3096 return boolean_false_node;
3098 /* Otherwise, they may or may not be different. */
3099 else
3100 return NULL_TREE;
3102 else if (comp == LT_EXPR || comp == LE_EXPR)
3104 int tst;
3106 /* If VR0 is to the left of VR1, return true. */
3107 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3108 if ((comp == LT_EXPR && tst == -1)
3109 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3111 if (overflow_infinity_range_p (vr0)
3112 || overflow_infinity_range_p (vr1))
3113 *strict_overflow_p = true;
3114 return boolean_true_node;
3117 /* If VR0 is to the right of VR1, return false. */
3118 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3119 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3120 || (comp == LE_EXPR && tst == 1))
3122 if (overflow_infinity_range_p (vr0)
3123 || overflow_infinity_range_p (vr1))
3124 *strict_overflow_p = true;
3125 return boolean_false_node;
3128 /* Otherwise, we don't know. */
3129 return NULL_TREE;
3132 gcc_unreachable ();
3136 /* Given a value range VR, a value VAL and a comparison code COMP, return
3137 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3138 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3139 always returns false. Return NULL_TREE if it is not always
3140 possible to determine the value of the comparison. Also set
3141 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3142 infinity was used in the test. */
3144 static tree
3145 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3146 bool *strict_overflow_p)
3148 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3149 return NULL_TREE;
3151 /* Anti-ranges need to be handled separately. */
3152 if (vr->type == VR_ANTI_RANGE)
3154 /* For anti-ranges, the only predicates that we can compute at
3155 compile time are equality and inequality. */
3156 if (comp == GT_EXPR
3157 || comp == GE_EXPR
3158 || comp == LT_EXPR
3159 || comp == LE_EXPR)
3160 return NULL_TREE;
3162 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3163 if (value_inside_range (val, vr) == 1)
3164 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3166 return NULL_TREE;
3169 if (!usable_range_p (vr, strict_overflow_p))
3170 return NULL_TREE;
3172 if (comp == EQ_EXPR)
3174 /* EQ_EXPR may only be computed if VR represents exactly
3175 one value. */
3176 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3178 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3179 if (cmp == 0)
3180 return boolean_true_node;
3181 else if (cmp == -1 || cmp == 1 || cmp == 2)
3182 return boolean_false_node;
3184 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3185 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3186 return boolean_false_node;
3188 return NULL_TREE;
3190 else if (comp == NE_EXPR)
3192 /* If VAL is not inside VR, then they are always different. */
3193 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3194 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3195 return boolean_true_node;
3197 /* If VR represents exactly one value equal to VAL, then return
3198 false. */
3199 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3200 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3201 return boolean_false_node;
3203 /* Otherwise, they may or may not be different. */
3204 return NULL_TREE;
3206 else if (comp == LT_EXPR || comp == LE_EXPR)
3208 int tst;
3210 /* If VR is to the left of VAL, return true. */
3211 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3212 if ((comp == LT_EXPR && tst == -1)
3213 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3215 if (overflow_infinity_range_p (vr))
3216 *strict_overflow_p = true;
3217 return boolean_true_node;
3220 /* If VR is to the right of VAL, return false. */
3221 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3222 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3223 || (comp == LE_EXPR && tst == 1))
3225 if (overflow_infinity_range_p (vr))
3226 *strict_overflow_p = true;
3227 return boolean_false_node;
3230 /* Otherwise, we don't know. */
3231 return NULL_TREE;
3233 else if (comp == GT_EXPR || comp == GE_EXPR)
3235 int tst;
3237 /* If VR is to the right of VAL, return true. */
3238 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3239 if ((comp == GT_EXPR && tst == 1)
3240 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3242 if (overflow_infinity_range_p (vr))
3243 *strict_overflow_p = true;
3244 return boolean_true_node;
3247 /* If VR is to the left of VAL, return false. */
3248 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3249 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3250 || (comp == GE_EXPR && tst == -1))
3252 if (overflow_infinity_range_p (vr))
3253 *strict_overflow_p = true;
3254 return boolean_false_node;
3257 /* Otherwise, we don't know. */
3258 return NULL_TREE;
3261 gcc_unreachable ();
3265 /* Debugging dumps. */
3267 void dump_value_range (FILE *, value_range_t *);
3268 void debug_value_range (value_range_t *);
3269 void dump_all_value_ranges (FILE *);
3270 void debug_all_value_ranges (void);
3271 void dump_vr_equiv (FILE *, bitmap);
3272 void debug_vr_equiv (bitmap);
3275 /* Dump value range VR to FILE. */
3277 void
3278 dump_value_range (FILE *file, value_range_t *vr)
3280 if (vr == NULL)
3281 fprintf (file, "[]");
3282 else if (vr->type == VR_UNDEFINED)
3283 fprintf (file, "UNDEFINED");
3284 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3286 tree type = TREE_TYPE (vr->min);
3288 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3290 if (is_negative_overflow_infinity (vr->min))
3291 fprintf (file, "-INF(OVF)");
3292 else if (INTEGRAL_TYPE_P (type)
3293 && !TYPE_UNSIGNED (type)
3294 && vrp_val_is_min (vr->min))
3295 fprintf (file, "-INF");
3296 else
3297 print_generic_expr (file, vr->min, 0);
3299 fprintf (file, ", ");
3301 if (is_positive_overflow_infinity (vr->max))
3302 fprintf (file, "+INF(OVF)");
3303 else if (INTEGRAL_TYPE_P (type)
3304 && vrp_val_is_max (vr->max))
3305 fprintf (file, "+INF");
3306 else
3307 print_generic_expr (file, vr->max, 0);
3309 fprintf (file, "]");
3311 if (vr->equiv)
3313 bitmap_iterator bi;
3314 unsigned i, c = 0;
3316 fprintf (file, " EQUIVALENCES: { ");
3318 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3320 print_generic_expr (file, ssa_name (i), 0);
3321 fprintf (file, " ");
3322 c++;
3325 fprintf (file, "} (%u elements)", c);
3328 else if (vr->type == VR_VARYING)
3329 fprintf (file, "VARYING");
3330 else
3331 fprintf (file, "INVALID RANGE");
3335 /* Dump value range VR to stderr. */
3337 void
3338 debug_value_range (value_range_t *vr)
3340 dump_value_range (stderr, vr);
3341 fprintf (stderr, "\n");
3345 /* Dump value ranges of all SSA_NAMEs to FILE. */
3347 void
3348 dump_all_value_ranges (FILE *file)
3350 size_t i;
3352 for (i = 0; i < num_ssa_names; i++)
3354 if (vr_value[i])
3356 print_generic_expr (file, ssa_name (i), 0);
3357 fprintf (file, ": ");
3358 dump_value_range (file, vr_value[i]);
3359 fprintf (file, "\n");
3363 fprintf (file, "\n");
3367 /* Dump all value ranges to stderr. */
3369 void
3370 debug_all_value_ranges (void)
3372 dump_all_value_ranges (stderr);
3376 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3377 create a new SSA name N and return the assertion assignment
3378 'V = ASSERT_EXPR <V, V OP W>'. */
3380 static tree
3381 build_assert_expr_for (tree cond, tree v)
3383 tree n, assertion;
3385 gcc_assert (TREE_CODE (v) == SSA_NAME);
3386 n = duplicate_ssa_name (v, NULL_TREE);
3388 if (COMPARISON_CLASS_P (cond))
3390 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3391 assertion = build_gimple_modify_stmt (n, a);
3393 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3395 /* Given !V, build the assignment N = false. */
3396 tree op0 = TREE_OPERAND (cond, 0);
3397 gcc_assert (op0 == v);
3398 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3400 else if (TREE_CODE (cond) == SSA_NAME)
3402 /* Given V, build the assignment N = true. */
3403 gcc_assert (v == cond);
3404 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3406 else
3407 gcc_unreachable ();
3409 SSA_NAME_DEF_STMT (n) = assertion;
3411 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3412 operand of the ASSERT_EXPR. Register the new name and the old one
3413 in the replacement table so that we can fix the SSA web after
3414 adding all the ASSERT_EXPRs. */
3415 register_new_name_mapping (n, v);
3417 return assertion;
3421 /* Return false if EXPR is a predicate expression involving floating
3422 point values. */
3424 static inline bool
3425 fp_predicate (const_tree expr)
3427 return (COMPARISON_CLASS_P (expr)
3428 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3432 /* If the range of values taken by OP can be inferred after STMT executes,
3433 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3434 describes the inferred range. Return true if a range could be
3435 inferred. */
3437 static bool
3438 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3440 *val_p = NULL_TREE;
3441 *comp_code_p = ERROR_MARK;
3443 /* Do not attempt to infer anything in names that flow through
3444 abnormal edges. */
3445 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3446 return false;
3448 /* Similarly, don't infer anything from statements that may throw
3449 exceptions. */
3450 if (tree_could_throw_p (stmt))
3451 return false;
3453 /* If STMT is the last statement of a basic block with no
3454 successors, there is no point inferring anything about any of its
3455 operands. We would not be able to find a proper insertion point
3456 for the assertion, anyway. */
3457 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3458 return false;
3460 /* We can only assume that a pointer dereference will yield
3461 non-NULL if -fdelete-null-pointer-checks is enabled. */
3462 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3464 unsigned num_uses, num_loads, num_stores;
3466 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3467 if (num_loads + num_stores > 0)
3469 *val_p = build_int_cst (TREE_TYPE (op), 0);
3470 *comp_code_p = NE_EXPR;
3471 return true;
3475 return false;
3479 void dump_asserts_for (FILE *, tree);
3480 void debug_asserts_for (tree);
3481 void dump_all_asserts (FILE *);
3482 void debug_all_asserts (void);
3484 /* Dump all the registered assertions for NAME to FILE. */
3486 void
3487 dump_asserts_for (FILE *file, tree name)
3489 assert_locus_t loc;
3491 fprintf (file, "Assertions to be inserted for ");
3492 print_generic_expr (file, name, 0);
3493 fprintf (file, "\n");
3495 loc = asserts_for[SSA_NAME_VERSION (name)];
3496 while (loc)
3498 fprintf (file, "\t");
3499 print_generic_expr (file, bsi_stmt (loc->si), 0);
3500 fprintf (file, "\n\tBB #%d", loc->bb->index);
3501 if (loc->e)
3503 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3504 loc->e->dest->index);
3505 dump_edge_info (file, loc->e, 0);
3507 fprintf (file, "\n\tPREDICATE: ");
3508 print_generic_expr (file, name, 0);
3509 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3510 print_generic_expr (file, loc->val, 0);
3511 fprintf (file, "\n\n");
3512 loc = loc->next;
3515 fprintf (file, "\n");
3519 /* Dump all the registered assertions for NAME to stderr. */
3521 void
3522 debug_asserts_for (tree name)
3524 dump_asserts_for (stderr, name);
3528 /* Dump all the registered assertions for all the names to FILE. */
3530 void
3531 dump_all_asserts (FILE *file)
3533 unsigned i;
3534 bitmap_iterator bi;
3536 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3537 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3538 dump_asserts_for (file, ssa_name (i));
3539 fprintf (file, "\n");
3543 /* Dump all the registered assertions for all the names to stderr. */
3545 void
3546 debug_all_asserts (void)
3548 dump_all_asserts (stderr);
3552 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3553 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3554 E->DEST, then register this location as a possible insertion point
3555 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3557 BB, E and SI provide the exact insertion point for the new
3558 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3559 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3560 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3561 must not be NULL. */
3563 static void
3564 register_new_assert_for (tree name, tree expr,
3565 enum tree_code comp_code,
3566 tree val,
3567 basic_block bb,
3568 edge e,
3569 block_stmt_iterator si)
3571 assert_locus_t n, loc, last_loc;
3572 bool found;
3573 basic_block dest_bb;
3575 #if defined ENABLE_CHECKING
3576 gcc_assert (bb == NULL || e == NULL);
3578 if (e == NULL)
3579 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3580 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3581 #endif
3583 /* The new assertion A will be inserted at BB or E. We need to
3584 determine if the new location is dominated by a previously
3585 registered location for A. If we are doing an edge insertion,
3586 assume that A will be inserted at E->DEST. Note that this is not
3587 necessarily true.
3589 If E is a critical edge, it will be split. But even if E is
3590 split, the new block will dominate the same set of blocks that
3591 E->DEST dominates.
3593 The reverse, however, is not true, blocks dominated by E->DEST
3594 will not be dominated by the new block created to split E. So,
3595 if the insertion location is on a critical edge, we will not use
3596 the new location to move another assertion previously registered
3597 at a block dominated by E->DEST. */
3598 dest_bb = (bb) ? bb : e->dest;
3600 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3601 VAL at a block dominating DEST_BB, then we don't need to insert a new
3602 one. Similarly, if the same assertion already exists at a block
3603 dominated by DEST_BB and the new location is not on a critical
3604 edge, then update the existing location for the assertion (i.e.,
3605 move the assertion up in the dominance tree).
3607 Note, this is implemented as a simple linked list because there
3608 should not be more than a handful of assertions registered per
3609 name. If this becomes a performance problem, a table hashed by
3610 COMP_CODE and VAL could be implemented. */
3611 loc = asserts_for[SSA_NAME_VERSION (name)];
3612 last_loc = loc;
3613 found = false;
3614 while (loc)
3616 if (loc->comp_code == comp_code
3617 && (loc->val == val
3618 || operand_equal_p (loc->val, val, 0))
3619 && (loc->expr == expr
3620 || operand_equal_p (loc->expr, expr, 0)))
3622 /* If the assertion NAME COMP_CODE VAL has already been
3623 registered at a basic block that dominates DEST_BB, then
3624 we don't need to insert the same assertion again. Note
3625 that we don't check strict dominance here to avoid
3626 replicating the same assertion inside the same basic
3627 block more than once (e.g., when a pointer is
3628 dereferenced several times inside a block).
3630 An exception to this rule are edge insertions. If the
3631 new assertion is to be inserted on edge E, then it will
3632 dominate all the other insertions that we may want to
3633 insert in DEST_BB. So, if we are doing an edge
3634 insertion, don't do this dominance check. */
3635 if (e == NULL
3636 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3637 return;
3639 /* Otherwise, if E is not a critical edge and DEST_BB
3640 dominates the existing location for the assertion, move
3641 the assertion up in the dominance tree by updating its
3642 location information. */
3643 if ((e == NULL || !EDGE_CRITICAL_P (e))
3644 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3646 loc->bb = dest_bb;
3647 loc->e = e;
3648 loc->si = si;
3649 return;
3653 /* Update the last node of the list and move to the next one. */
3654 last_loc = loc;
3655 loc = loc->next;
3658 /* If we didn't find an assertion already registered for
3659 NAME COMP_CODE VAL, add a new one at the end of the list of
3660 assertions associated with NAME. */
3661 n = XNEW (struct assert_locus_d);
3662 n->bb = dest_bb;
3663 n->e = e;
3664 n->si = si;
3665 n->comp_code = comp_code;
3666 n->val = val;
3667 n->expr = expr;
3668 n->next = NULL;
3670 if (last_loc)
3671 last_loc->next = n;
3672 else
3673 asserts_for[SSA_NAME_VERSION (name)] = n;
3675 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3678 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
3679 Extract a suitable test code and value and store them into *CODE_P and
3680 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
3682 If no extraction was possible, return FALSE, otherwise return TRUE.
3684 If INVERT is true, then we invert the result stored into *CODE_P. */
3686 static bool
3687 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
3688 tree cond_op0, tree cond_op1,
3689 bool invert, enum tree_code *code_p,
3690 tree *val_p)
3692 enum tree_code comp_code;
3693 tree val;
3695 /* Otherwise, we have a comparison of the form NAME COMP VAL
3696 or VAL COMP NAME. */
3697 if (name == cond_op1)
3699 /* If the predicate is of the form VAL COMP NAME, flip
3700 COMP around because we need to register NAME as the
3701 first operand in the predicate. */
3702 comp_code = swap_tree_comparison (cond_code);
3703 val = cond_op0;
3705 else
3707 /* The comparison is of the form NAME COMP VAL, so the
3708 comparison code remains unchanged. */
3709 comp_code = cond_code;
3710 val = cond_op1;
3713 /* Invert the comparison code as necessary. */
3714 if (invert)
3715 comp_code = invert_tree_comparison (comp_code, 0);
3717 /* VRP does not handle float types. */
3718 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3719 return false;
3721 /* Do not register always-false predicates.
3722 FIXME: this works around a limitation in fold() when dealing with
3723 enumerations. Given 'enum { N1, N2 } x;', fold will not
3724 fold 'if (x > N2)' to 'if (0)'. */
3725 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3726 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3728 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3729 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3731 if (comp_code == GT_EXPR
3732 && (!max
3733 || compare_values (val, max) == 0))
3734 return false;
3736 if (comp_code == LT_EXPR
3737 && (!min
3738 || compare_values (val, min) == 0))
3739 return false;
3741 *code_p = comp_code;
3742 *val_p = val;
3743 return true;
3746 /* Try to register an edge assertion for SSA name NAME on edge E for
3747 the condition COND contributing to the conditional jump pointed to by BSI.
3748 Invert the condition COND if INVERT is true.
3749 Return true if an assertion for NAME could be registered. */
3751 static bool
3752 register_edge_assert_for_2 (tree name, edge e, block_stmt_iterator bsi,
3753 enum tree_code cond_code,
3754 tree cond_op0, tree cond_op1, bool invert)
3756 tree val;
3757 enum tree_code comp_code;
3758 bool retval = false;
3760 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3761 cond_op0,
3762 cond_op1,
3763 invert, &comp_code, &val))
3764 return false;
3766 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3767 reachable from E. */
3768 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name))
3769 && !has_single_use (name))
3771 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
3772 retval = true;
3775 /* In the case of NAME <= CST and NAME being defined as
3776 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
3777 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
3778 This catches range and anti-range tests. */
3779 if ((comp_code == LE_EXPR
3780 || comp_code == GT_EXPR)
3781 && TREE_CODE (val) == INTEGER_CST
3782 && TYPE_UNSIGNED (TREE_TYPE (val)))
3784 tree def_stmt = SSA_NAME_DEF_STMT (name);
3785 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
3787 /* Extract CST2 from the (optional) addition. */
3788 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3789 && TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == PLUS_EXPR)
3791 name2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3792 cst2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3793 if (TREE_CODE (name2) == SSA_NAME
3794 && TREE_CODE (cst2) == INTEGER_CST)
3795 def_stmt = SSA_NAME_DEF_STMT (name2);
3798 /* Extract NAME2 from the (optional) sign-changing cast. */
3799 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3800 && CONVERT_EXPR_P (GIMPLE_STMT_OPERAND (def_stmt, 1)))
3802 tree rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
3803 if (CONVERT_EXPR_P (rhs)
3804 && ! TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (rhs, 0)))
3805 && (TYPE_PRECISION (TREE_TYPE (rhs))
3806 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (rhs, 0)))))
3807 name3 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3810 /* If name3 is used later, create an ASSERT_EXPR for it. */
3811 if (name3 != NULL_TREE
3812 && TREE_CODE (name3) == SSA_NAME
3813 && (cst2 == NULL_TREE
3814 || TREE_CODE (cst2) == INTEGER_CST)
3815 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
3816 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name3))
3817 && !has_single_use (name3))
3819 tree tmp;
3821 /* Build an expression for the range test. */
3822 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
3823 if (cst2 != NULL_TREE)
3824 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3826 if (dump_file)
3828 fprintf (dump_file, "Adding assert for ");
3829 print_generic_expr (dump_file, name3, 0);
3830 fprintf (dump_file, " from ");
3831 print_generic_expr (dump_file, tmp, 0);
3832 fprintf (dump_file, "\n");
3835 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
3837 retval = true;
3840 /* If name2 is used later, create an ASSERT_EXPR for it. */
3841 if (name2 != NULL_TREE
3842 && TREE_CODE (name2) == SSA_NAME
3843 && TREE_CODE (cst2) == INTEGER_CST
3844 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3845 && TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name2))
3846 && !has_single_use (name2))
3848 tree tmp;
3850 /* Build an expression for the range test. */
3851 tmp = name2;
3852 if (TREE_TYPE (name) != TREE_TYPE (name2))
3853 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
3854 if (cst2 != NULL_TREE)
3855 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
3857 if (dump_file)
3859 fprintf (dump_file, "Adding assert for ");
3860 print_generic_expr (dump_file, name2, 0);
3861 fprintf (dump_file, " from ");
3862 print_generic_expr (dump_file, tmp, 0);
3863 fprintf (dump_file, "\n");
3866 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
3868 retval = true;
3872 return retval;
3875 /* OP is an operand of a truth value expression which is known to have
3876 a particular value. Register any asserts for OP and for any
3877 operands in OP's defining statement.
3879 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3880 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3882 static bool
3883 register_edge_assert_for_1 (tree op, enum tree_code code,
3884 edge e, block_stmt_iterator bsi)
3886 bool retval = false;
3887 tree op_def, rhs, val;
3888 enum tree_code rhs_code;
3890 /* We only care about SSA_NAMEs. */
3891 if (TREE_CODE (op) != SSA_NAME)
3892 return false;
3894 /* We know that OP will have a zero or nonzero value. If OP is used
3895 more than once go ahead and register an assert for OP.
3897 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3898 it will always be set for OP (because OP is used in a COND_EXPR in
3899 the subgraph). */
3900 if (!has_single_use (op))
3902 val = build_int_cst (TREE_TYPE (op), 0);
3903 register_new_assert_for (op, op, code, val, NULL, e, bsi);
3904 retval = true;
3907 /* Now look at how OP is set. If it's set from a comparison,
3908 a truth operation or some bit operations, then we may be able
3909 to register information about the operands of that assignment. */
3910 op_def = SSA_NAME_DEF_STMT (op);
3911 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3912 return retval;
3914 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3915 rhs_code = TREE_CODE (rhs);
3917 if (COMPARISON_CLASS_P (rhs))
3919 bool invert = (code == EQ_EXPR ? true : false);
3920 tree op0 = TREE_OPERAND (rhs, 0);
3921 tree op1 = TREE_OPERAND (rhs, 1);
3923 if (TREE_CODE (op0) == SSA_NAME)
3924 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
3925 invert);
3926 if (TREE_CODE (op1) == SSA_NAME)
3927 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
3928 invert);
3930 else if ((code == NE_EXPR
3931 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3932 || TREE_CODE (rhs) == BIT_AND_EXPR))
3933 || (code == EQ_EXPR
3934 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3935 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3937 /* Recurse on each operand. */
3938 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3939 code, e, bsi);
3940 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3941 code, e, bsi);
3943 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3945 /* Recurse, flipping CODE. */
3946 code = invert_tree_comparison (code, false);
3947 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3948 code, e, bsi);
3950 else if (TREE_CODE (rhs) == SSA_NAME)
3952 /* Recurse through the copy. */
3953 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3955 else if (CONVERT_EXPR_P (rhs))
3957 /* Recurse through the type conversion. */
3958 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3959 code, e, bsi);
3962 return retval;
3965 /* Try to register an edge assertion for SSA name NAME on edge E for
3966 the condition COND contributing to the conditional jump pointed to by SI.
3967 Return true if an assertion for NAME could be registered. */
3969 static bool
3970 register_edge_assert_for (tree name, edge e, block_stmt_iterator si,
3971 enum tree_code cond_code, tree cond_op0,
3972 tree cond_op1)
3974 tree val;
3975 enum tree_code comp_code;
3976 bool retval = false;
3977 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3979 /* Do not attempt to infer anything in names that flow through
3980 abnormal edges. */
3981 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3982 return false;
3984 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3985 cond_op0, cond_op1,
3986 is_else_edge,
3987 &comp_code, &val))
3988 return false;
3990 /* Register ASSERT_EXPRs for name. */
3991 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
3992 cond_op1, is_else_edge);
3995 /* If COND is effectively an equality test of an SSA_NAME against
3996 the value zero or one, then we may be able to assert values
3997 for SSA_NAMEs which flow into COND. */
3999 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4000 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4001 have nonzero value. */
4002 if (((comp_code == EQ_EXPR && integer_onep (val))
4003 || (comp_code == NE_EXPR && integer_zerop (val))))
4005 tree def_stmt = SSA_NAME_DEF_STMT (name);
4007 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4008 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
4009 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
4011 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4012 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4013 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4014 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4018 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4019 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4020 have zero value. */
4021 if (((comp_code == EQ_EXPR && integer_zerop (val))
4022 || (comp_code == NE_EXPR && integer_onep (val))))
4024 tree def_stmt = SSA_NAME_DEF_STMT (name);
4026 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4027 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
4028 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4029 necessarily zero value. */
4030 || (comp_code == EQ_EXPR
4031 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1))
4032 == BIT_IOR_EXPR))))
4034 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4035 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
4036 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4037 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4041 return retval;
4045 static bool find_assert_locations (basic_block bb);
4047 /* Determine whether the outgoing edges of BB should receive an
4048 ASSERT_EXPR for each of the operands of BB's LAST statement.
4049 The last statement of BB must be a COND_EXPR.
4051 If any of the sub-graphs rooted at BB have an interesting use of
4052 the predicate operands, an assert location node is added to the
4053 list of assertions for the corresponding operands. */
4055 static bool
4056 find_conditional_asserts (basic_block bb, tree last)
4058 bool need_assert;
4059 block_stmt_iterator bsi;
4060 tree op;
4061 edge_iterator ei;
4062 edge e;
4063 ssa_op_iter iter;
4065 need_assert = false;
4066 bsi = bsi_for_stmt (last);
4068 /* Look for uses of the operands in each of the sub-graphs
4069 rooted at BB. We need to check each of the outgoing edges
4070 separately, so that we know what kind of ASSERT_EXPR to
4071 insert. */
4072 FOR_EACH_EDGE (e, ei, bb->succs)
4074 if (e->dest == bb)
4075 continue;
4077 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
4078 Otherwise, when we finish traversing each of the sub-graphs, we
4079 won't know whether the variables were found in the sub-graphs or
4080 if they had been found in a block upstream from BB.
4082 This is actually a bad idea is some cases, particularly jump
4083 threading. Consider a CFG like the following:
4093 Assume that one or more operands in the conditional at the
4094 end of block 0 are used in a conditional in block 2, but not
4095 anywhere in block 1. In this case we will not insert any
4096 assert statements in block 1, which may cause us to miss
4097 opportunities to optimize, particularly for jump threading. */
4098 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4099 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4101 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4102 to determine if any of the operands in the conditional
4103 predicate are used. */
4104 need_assert |= find_assert_locations (e->dest);
4106 /* Register the necessary assertions for each operand in the
4107 conditional predicate. */
4108 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4110 tree cond = COND_EXPR_COND (last);
4111 if (op != cond)
4112 need_assert |= register_edge_assert_for (op, e, bsi,
4113 TREE_CODE (cond),
4114 TREE_OPERAND (cond, 0),
4115 TREE_OPERAND (cond, 1));
4116 else
4117 need_assert |= register_edge_assert_for (op, e, bsi, EQ_EXPR, op,
4118 boolean_true_node);
4122 /* Finally, indicate that we have found the operands in the
4123 conditional. */
4124 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4125 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4127 return need_assert;
4130 /* Compare two case labels sorting first by the destination label uid
4131 and then by the case value. */
4133 static int
4134 compare_case_labels (const void *p1, const void *p2)
4136 const_tree const case1 = *(const_tree const*)p1;
4137 const_tree const case2 = *(const_tree const*)p2;
4138 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4139 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4141 if (uid1 < uid2)
4142 return -1;
4143 else if (uid1 == uid2)
4145 /* Make sure the default label is first in a group. */
4146 if (!CASE_LOW (case1))
4147 return -1;
4148 else if (!CASE_LOW (case2))
4149 return 1;
4150 else
4151 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4153 else
4154 return 1;
4157 /* Determine whether the outgoing edges of BB should receive an
4158 ASSERT_EXPR for each of the operands of BB's LAST statement.
4159 The last statement of BB must be a SWITCH_EXPR.
4161 If any of the sub-graphs rooted at BB have an interesting use of
4162 the predicate operands, an assert location node is added to the
4163 list of assertions for the corresponding operands. */
4165 static bool
4166 find_switch_asserts (basic_block bb, tree last)
4168 bool need_assert;
4169 block_stmt_iterator bsi;
4170 tree op;
4171 edge e;
4172 tree vec = SWITCH_LABELS (last), vec2;
4173 size_t n = TREE_VEC_LENGTH (vec);
4174 unsigned int idx;
4176 need_assert = false;
4177 bsi = bsi_for_stmt (last);
4178 op = TREE_OPERAND (last, 0);
4179 if (TREE_CODE (op) != SSA_NAME)
4180 return false;
4182 /* Build a vector of case labels sorted by destination label. */
4183 vec2 = make_tree_vec (n);
4184 for (idx = 0; idx < n; ++idx)
4185 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
4186 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4188 for (idx = 0; idx < n; ++idx)
4190 tree min, max;
4191 tree cl = TREE_VEC_ELT (vec2, idx);
4193 min = CASE_LOW (cl);
4194 max = CASE_HIGH (cl);
4196 /* If there are multiple case labels with the same destination
4197 we need to combine them to a single value range for the edge. */
4198 if (idx + 1 < n
4199 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4201 /* Skip labels until the last of the group. */
4202 do {
4203 ++idx;
4204 } while (idx < n
4205 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4206 --idx;
4208 /* Pick up the maximum of the case label range. */
4209 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4210 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4211 else
4212 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4215 /* Nothing to do if the range includes the default label until we
4216 can register anti-ranges. */
4217 if (min == NULL_TREE)
4218 continue;
4220 /* Find the edge to register the assert expr on. */
4221 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4223 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
4224 Otherwise, when we finish traversing each of the sub-graphs, we
4225 won't know whether the variables were found in the sub-graphs or
4226 if they had been found in a block upstream from BB. */
4227 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4229 /* Traverse the strictly dominated sub-graph rooted at E->DEST
4230 to determine if any of the operands in the conditional
4231 predicate are used. */
4232 if (e->dest != bb)
4233 need_assert |= find_assert_locations (e->dest);
4235 /* Register the necessary assertions for the operand in the
4236 SWITCH_EXPR. */
4237 need_assert |= register_edge_assert_for (op, e, bsi,
4238 max ? GE_EXPR : EQ_EXPR,
4240 fold_convert (TREE_TYPE (op),
4241 min));
4242 if (max)
4244 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4246 fold_convert (TREE_TYPE (op),
4247 max));
4251 /* Finally, indicate that we have found the operand in the
4252 SWITCH_EXPR. */
4253 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4255 return need_assert;
4259 /* Traverse all the statements in block BB looking for statements that
4260 may generate useful assertions for the SSA names in their operand.
4261 If a statement produces a useful assertion A for name N_i, then the
4262 list of assertions already generated for N_i is scanned to
4263 determine if A is actually needed.
4265 If N_i already had the assertion A at a location dominating the
4266 current location, then nothing needs to be done. Otherwise, the
4267 new location for A is recorded instead.
4269 1- For every statement S in BB, all the variables used by S are
4270 added to bitmap FOUND_IN_SUBGRAPH.
4272 2- If statement S uses an operand N in a way that exposes a known
4273 value range for N, then if N was not already generated by an
4274 ASSERT_EXPR, create a new assert location for N. For instance,
4275 if N is a pointer and the statement dereferences it, we can
4276 assume that N is not NULL.
4278 3- COND_EXPRs are a special case of #2. We can derive range
4279 information from the predicate but need to insert different
4280 ASSERT_EXPRs for each of the sub-graphs rooted at the
4281 conditional block. If the last statement of BB is a conditional
4282 expression of the form 'X op Y', then
4284 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4286 b) If the conditional is the only entry point to the sub-graph
4287 corresponding to the THEN_CLAUSE, recurse into it. On
4288 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4289 an ASSERT_EXPR is added for the corresponding variable.
4291 c) Repeat step (b) on the ELSE_CLAUSE.
4293 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4295 For instance,
4297 if (a == 9)
4298 b = a;
4299 else
4300 b = c + 1;
4302 In this case, an assertion on the THEN clause is useful to
4303 determine that 'a' is always 9 on that edge. However, an assertion
4304 on the ELSE clause would be unnecessary.
4306 4- If BB does not end in a conditional expression, then we recurse
4307 into BB's dominator children.
4309 At the end of the recursive traversal, every SSA name will have a
4310 list of locations where ASSERT_EXPRs should be added. When a new
4311 location for name N is found, it is registered by calling
4312 register_new_assert_for. That function keeps track of all the
4313 registered assertions to prevent adding unnecessary assertions.
4314 For instance, if a pointer P_4 is dereferenced more than once in a
4315 dominator tree, only the location dominating all the dereference of
4316 P_4 will receive an ASSERT_EXPR.
4318 If this function returns true, then it means that there are names
4319 for which we need to generate ASSERT_EXPRs. Those assertions are
4320 inserted by process_assert_insertions. */
4322 static bool
4323 find_assert_locations (basic_block bb)
4325 block_stmt_iterator si;
4326 tree last, phi;
4327 bool need_assert;
4328 basic_block son;
4330 if (TEST_BIT (blocks_visited, bb->index))
4331 return false;
4333 SET_BIT (blocks_visited, bb->index);
4335 need_assert = false;
4337 /* Traverse all PHI nodes in BB marking used operands. */
4338 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4340 use_operand_p arg_p;
4341 ssa_op_iter i;
4343 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4345 tree arg = USE_FROM_PTR (arg_p);
4346 if (TREE_CODE (arg) == SSA_NAME)
4348 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4349 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4354 /* Traverse all the statements in BB marking used names and looking
4355 for statements that may infer assertions for their used operands. */
4356 last = NULL_TREE;
4357 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4359 tree stmt, op;
4360 ssa_op_iter i;
4362 stmt = bsi_stmt (si);
4364 /* See if we can derive an assertion for any of STMT's operands. */
4365 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4367 tree value;
4368 enum tree_code comp_code;
4370 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4371 the sub-graph of a conditional block, when we return from
4372 this recursive walk, our parent will use the
4373 FOUND_IN_SUBGRAPH bitset to determine if one of the
4374 operands it was looking for was present in the sub-graph. */
4375 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4377 /* If OP is used in such a way that we can infer a value
4378 range for it, and we don't find a previous assertion for
4379 it, create a new assertion location node for OP. */
4380 if (infer_value_range (stmt, op, &comp_code, &value))
4382 /* If we are able to infer a nonzero value range for OP,
4383 then walk backwards through the use-def chain to see if OP
4384 was set via a typecast.
4386 If so, then we can also infer a nonzero value range
4387 for the operand of the NOP_EXPR. */
4388 if (comp_code == NE_EXPR && integer_zerop (value))
4390 tree t = op;
4391 tree def_stmt = SSA_NAME_DEF_STMT (t);
4393 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4394 && TREE_CODE
4395 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4396 && TREE_CODE
4397 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4398 0)) == SSA_NAME
4399 && POINTER_TYPE_P
4400 (TREE_TYPE (TREE_OPERAND
4401 (GIMPLE_STMT_OPERAND (def_stmt,
4402 1), 0))))
4404 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4405 def_stmt = SSA_NAME_DEF_STMT (t);
4407 /* Note we want to register the assert for the
4408 operand of the NOP_EXPR after SI, not after the
4409 conversion. */
4410 if (! has_single_use (t))
4412 register_new_assert_for (t, t, comp_code, value,
4413 bb, NULL, si);
4414 need_assert = true;
4419 /* If OP is used only once, namely in this STMT, don't
4420 bother creating an ASSERT_EXPR for it. Such an
4421 ASSERT_EXPR would do nothing but increase compile time. */
4422 if (!has_single_use (op))
4424 register_new_assert_for (op, op, comp_code, value,
4425 bb, NULL, si);
4426 need_assert = true;
4431 /* Remember the last statement of the block. */
4432 last = stmt;
4435 /* If BB's last statement is a conditional expression
4436 involving integer operands, recurse into each of the sub-graphs
4437 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4438 if (last
4439 && TREE_CODE (last) == COND_EXPR
4440 && !fp_predicate (COND_EXPR_COND (last))
4441 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4442 need_assert |= find_conditional_asserts (bb, last);
4444 if (last
4445 && TREE_CODE (last) == SWITCH_EXPR
4446 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4447 need_assert |= find_switch_asserts (bb, last);
4449 /* Recurse into the dominator children of BB. */
4450 for (son = first_dom_son (CDI_DOMINATORS, bb);
4451 son;
4452 son = next_dom_son (CDI_DOMINATORS, son))
4453 need_assert |= find_assert_locations (son);
4455 return need_assert;
4459 /* Create an ASSERT_EXPR for NAME and insert it in the location
4460 indicated by LOC. Return true if we made any edge insertions. */
4462 static bool
4463 process_assert_insertions_for (tree name, assert_locus_t loc)
4465 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4466 tree stmt, cond, assert_expr;
4467 edge_iterator ei;
4468 edge e;
4470 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4471 assert_expr = build_assert_expr_for (cond, name);
4473 if (loc->e)
4475 /* We have been asked to insert the assertion on an edge. This
4476 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4477 #if defined ENABLE_CHECKING
4478 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4479 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4480 #endif
4482 bsi_insert_on_edge (loc->e, assert_expr);
4483 return true;
4486 /* Otherwise, we can insert right after LOC->SI iff the
4487 statement must not be the last statement in the block. */
4488 stmt = bsi_stmt (loc->si);
4489 if (!stmt_ends_bb_p (stmt))
4491 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4492 return false;
4495 /* If STMT must be the last statement in BB, we can only insert new
4496 assertions on the non-abnormal edge out of BB. Note that since
4497 STMT is not control flow, there may only be one non-abnormal edge
4498 out of BB. */
4499 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4500 if (!(e->flags & EDGE_ABNORMAL))
4502 bsi_insert_on_edge (e, assert_expr);
4503 return true;
4506 gcc_unreachable ();
4510 /* Process all the insertions registered for every name N_i registered
4511 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4512 found in ASSERTS_FOR[i]. */
4514 static void
4515 process_assert_insertions (void)
4517 unsigned i;
4518 bitmap_iterator bi;
4519 bool update_edges_p = false;
4520 int num_asserts = 0;
4522 if (dump_file && (dump_flags & TDF_DETAILS))
4523 dump_all_asserts (dump_file);
4525 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4527 assert_locus_t loc = asserts_for[i];
4528 gcc_assert (loc);
4530 while (loc)
4532 assert_locus_t next = loc->next;
4533 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4534 free (loc);
4535 loc = next;
4536 num_asserts++;
4540 if (update_edges_p)
4541 bsi_commit_edge_inserts ();
4543 if (dump_file && (dump_flags & TDF_STATS))
4544 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4545 num_asserts);
4549 /* Traverse the flowgraph looking for conditional jumps to insert range
4550 expressions. These range expressions are meant to provide information
4551 to optimizations that need to reason in terms of value ranges. They
4552 will not be expanded into RTL. For instance, given:
4554 x = ...
4555 y = ...
4556 if (x < y)
4557 y = x - 2;
4558 else
4559 x = y + 3;
4561 this pass will transform the code into:
4563 x = ...
4564 y = ...
4565 if (x < y)
4567 x = ASSERT_EXPR <x, x < y>
4568 y = x - 2
4570 else
4572 y = ASSERT_EXPR <y, x <= y>
4573 x = y + 3
4576 The idea is that once copy and constant propagation have run, other
4577 optimizations will be able to determine what ranges of values can 'x'
4578 take in different paths of the code, simply by checking the reaching
4579 definition of 'x'. */
4581 static void
4582 insert_range_assertions (void)
4584 edge e;
4585 edge_iterator ei;
4586 bool update_ssa_p;
4588 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4589 sbitmap_zero (found_in_subgraph);
4591 blocks_visited = sbitmap_alloc (last_basic_block);
4592 sbitmap_zero (blocks_visited);
4594 need_assert_for = BITMAP_ALLOC (NULL);
4595 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4597 calculate_dominance_info (CDI_DOMINATORS);
4599 update_ssa_p = false;
4600 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4601 if (find_assert_locations (e->dest))
4602 update_ssa_p = true;
4604 if (update_ssa_p)
4606 process_assert_insertions ();
4607 update_ssa (TODO_update_ssa_no_phi);
4610 if (dump_file && (dump_flags & TDF_DETAILS))
4612 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4613 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4616 sbitmap_free (found_in_subgraph);
4617 free (asserts_for);
4618 BITMAP_FREE (need_assert_for);
4621 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4622 and "struct" hacks. If VRP can determine that the
4623 array subscript is a constant, check if it is outside valid
4624 range. If the array subscript is a RANGE, warn if it is
4625 non-overlapping with valid range.
4626 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4628 static void
4629 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4631 value_range_t* vr = NULL;
4632 tree low_sub, up_sub;
4633 tree low_bound, up_bound = array_ref_up_bound (ref);
4635 low_sub = up_sub = TREE_OPERAND (ref, 1);
4637 if (!up_bound || TREE_NO_WARNING (ref)
4638 || TREE_CODE (up_bound) != INTEGER_CST
4639 /* Can not check flexible arrays. */
4640 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4641 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4642 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4643 /* Accesses after the end of arrays of size 0 (gcc
4644 extension) and 1 are likely intentional ("struct
4645 hack"). */
4646 || compare_tree_int (up_bound, 1) <= 0)
4647 return;
4649 low_bound = array_ref_low_bound (ref);
4651 if (TREE_CODE (low_sub) == SSA_NAME)
4653 vr = get_value_range (low_sub);
4654 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4656 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4657 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4661 if (vr && vr->type == VR_ANTI_RANGE)
4663 if (TREE_CODE (up_sub) == INTEGER_CST
4664 && tree_int_cst_lt (up_bound, up_sub)
4665 && TREE_CODE (low_sub) == INTEGER_CST
4666 && tree_int_cst_lt (low_sub, low_bound))
4668 warning (OPT_Warray_bounds,
4669 "%Harray subscript is outside array bounds", locus);
4670 TREE_NO_WARNING (ref) = 1;
4673 else if (TREE_CODE (up_sub) == INTEGER_CST
4674 && tree_int_cst_lt (up_bound, up_sub)
4675 && !tree_int_cst_equal (up_bound, up_sub)
4676 && (!ignore_off_by_one
4677 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4678 up_bound,
4679 integer_one_node,
4681 up_sub)))
4683 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4684 locus);
4685 TREE_NO_WARNING (ref) = 1;
4687 else if (TREE_CODE (low_sub) == INTEGER_CST
4688 && tree_int_cst_lt (low_sub, low_bound))
4690 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4691 locus);
4692 TREE_NO_WARNING (ref) = 1;
4696 /* Searches if the expr T, located at LOCATION computes
4697 address of an ARRAY_REF, and call check_array_ref on it. */
4699 static void
4700 search_for_addr_array(tree t, location_t* location)
4702 while (TREE_CODE (t) == SSA_NAME)
4704 t = SSA_NAME_DEF_STMT (t);
4705 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4706 return;
4707 t = GIMPLE_STMT_OPERAND (t, 1);
4711 /* We are only interested in addresses of ARRAY_REF's. */
4712 if (TREE_CODE (t) != ADDR_EXPR)
4713 return;
4715 /* Check each ARRAY_REFs in the reference chain. */
4718 if (TREE_CODE (t) == ARRAY_REF)
4719 check_array_ref (t, location, true /*ignore_off_by_one*/);
4721 t = TREE_OPERAND(t,0);
4723 while (handled_component_p (t));
4726 /* walk_tree() callback that checks if *TP is
4727 an ARRAY_REF inside an ADDR_EXPR (in which an array
4728 subscript one outside the valid range is allowed). Call
4729 check_array_ref for each ARRAY_REF found. The location is
4730 passed in DATA. */
4732 static tree
4733 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4735 tree t = *tp;
4736 tree stmt = (tree)data;
4737 location_t *location = EXPR_LOCUS (stmt);
4739 if (!EXPR_HAS_LOCATION (stmt))
4741 *walk_subtree = FALSE;
4742 return NULL_TREE;
4745 *walk_subtree = TRUE;
4747 if (TREE_CODE (t) == ARRAY_REF)
4748 check_array_ref (t, location, false /*ignore_off_by_one*/);
4750 if (TREE_CODE (t) == INDIRECT_REF
4751 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4752 search_for_addr_array (TREE_OPERAND (t, 0), location);
4753 else if (TREE_CODE (t) == CALL_EXPR)
4755 tree arg;
4756 call_expr_arg_iterator iter;
4758 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4759 search_for_addr_array (arg, location);
4762 if (TREE_CODE (t) == ADDR_EXPR)
4763 *walk_subtree = FALSE;
4765 return NULL_TREE;
4768 /* Walk over all statements of all reachable BBs and call check_array_bounds
4769 on them. */
4771 static void
4772 check_all_array_refs (void)
4774 basic_block bb;
4775 block_stmt_iterator si;
4777 FOR_EACH_BB (bb)
4779 /* Skip bb's that are clearly unreachable. */
4780 if (single_pred_p (bb))
4782 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4783 tree ls = NULL_TREE;
4785 if (!bsi_end_p (bsi_last (pred_bb)))
4786 ls = bsi_stmt (bsi_last (pred_bb));
4788 if (ls && TREE_CODE (ls) == COND_EXPR
4789 && ((COND_EXPR_COND (ls) == boolean_false_node
4790 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4791 || (COND_EXPR_COND (ls) == boolean_true_node
4792 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4793 continue;
4795 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4796 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4797 bsi_stmt (si), NULL);
4801 /* Convert range assertion expressions into the implied copies and
4802 copy propagate away the copies. Doing the trivial copy propagation
4803 here avoids the need to run the full copy propagation pass after
4804 VRP.
4806 FIXME, this will eventually lead to copy propagation removing the
4807 names that had useful range information attached to them. For
4808 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4809 then N_i will have the range [3, +INF].
4811 However, by converting the assertion into the implied copy
4812 operation N_i = N_j, we will then copy-propagate N_j into the uses
4813 of N_i and lose the range information. We may want to hold on to
4814 ASSERT_EXPRs a little while longer as the ranges could be used in
4815 things like jump threading.
4817 The problem with keeping ASSERT_EXPRs around is that passes after
4818 VRP need to handle them appropriately.
4820 Another approach would be to make the range information a first
4821 class property of the SSA_NAME so that it can be queried from
4822 any pass. This is made somewhat more complex by the need for
4823 multiple ranges to be associated with one SSA_NAME. */
4825 static void
4826 remove_range_assertions (void)
4828 basic_block bb;
4829 block_stmt_iterator si;
4831 /* Note that the BSI iterator bump happens at the bottom of the
4832 loop and no bump is necessary if we're removing the statement
4833 referenced by the current BSI. */
4834 FOR_EACH_BB (bb)
4835 for (si = bsi_start (bb); !bsi_end_p (si);)
4837 tree stmt = bsi_stmt (si);
4838 tree use_stmt;
4840 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4841 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4843 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4844 tree cond = fold (ASSERT_EXPR_COND (rhs));
4845 use_operand_p use_p;
4846 imm_use_iterator iter;
4848 gcc_assert (cond != boolean_false_node);
4850 /* Propagate the RHS into every use of the LHS. */
4851 var = ASSERT_EXPR_VAR (rhs);
4852 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4853 GIMPLE_STMT_OPERAND (stmt, 0))
4854 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4856 SET_USE (use_p, var);
4857 gcc_assert (TREE_CODE (var) == SSA_NAME);
4860 /* And finally, remove the copy, it is not needed. */
4861 bsi_remove (&si, true);
4862 release_defs (stmt);
4864 else
4865 bsi_next (&si);
4868 sbitmap_free (blocks_visited);
4872 /* Return true if STMT is interesting for VRP. */
4874 static bool
4875 stmt_interesting_for_vrp (tree stmt)
4877 if (TREE_CODE (stmt) == PHI_NODE
4878 && is_gimple_reg (PHI_RESULT (stmt))
4879 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4880 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4881 return true;
4882 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4884 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4885 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4887 /* In general, assignments with virtual operands are not useful
4888 for deriving ranges, with the obvious exception of calls to
4889 builtin functions. */
4890 if (TREE_CODE (lhs) == SSA_NAME
4891 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4892 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4893 && ((TREE_CODE (rhs) == CALL_EXPR
4894 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4895 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4896 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4897 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4898 return true;
4900 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4901 return true;
4903 return false;
4907 /* Initialize local data structures for VRP. */
4909 static void
4910 vrp_initialize (void)
4912 basic_block bb;
4914 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4915 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4917 FOR_EACH_BB (bb)
4919 block_stmt_iterator si;
4920 tree phi;
4922 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4924 if (!stmt_interesting_for_vrp (phi))
4926 tree lhs = PHI_RESULT (phi);
4927 set_value_range_to_varying (get_value_range (lhs));
4928 DONT_SIMULATE_AGAIN (phi) = true;
4930 else
4931 DONT_SIMULATE_AGAIN (phi) = false;
4934 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4936 tree stmt = bsi_stmt (si);
4938 if (!stmt_interesting_for_vrp (stmt))
4940 ssa_op_iter i;
4941 tree def;
4942 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4943 set_value_range_to_varying (get_value_range (def));
4944 DONT_SIMULATE_AGAIN (stmt) = true;
4946 else
4948 DONT_SIMULATE_AGAIN (stmt) = false;
4955 /* Visit assignment STMT. If it produces an interesting range, record
4956 the SSA name in *OUTPUT_P. */
4958 static enum ssa_prop_result
4959 vrp_visit_assignment (tree stmt, tree *output_p)
4961 tree lhs, rhs, def;
4962 ssa_op_iter iter;
4964 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4965 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4967 /* We only keep track of ranges in integral and pointer types. */
4968 if (TREE_CODE (lhs) == SSA_NAME
4969 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4970 /* It is valid to have NULL MIN/MAX values on a type. See
4971 build_range_type. */
4972 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4973 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4974 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4976 struct loop *l;
4977 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4979 extract_range_from_expr (&new_vr, rhs);
4981 /* If STMT is inside a loop, we may be able to know something
4982 else about the range of LHS by examining scalar evolution
4983 information. */
4984 if (current_loops && (l = loop_containing_stmt (stmt)))
4985 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4987 if (update_value_range (lhs, &new_vr))
4989 *output_p = lhs;
4991 if (dump_file && (dump_flags & TDF_DETAILS))
4993 fprintf (dump_file, "Found new range for ");
4994 print_generic_expr (dump_file, lhs, 0);
4995 fprintf (dump_file, ": ");
4996 dump_value_range (dump_file, &new_vr);
4997 fprintf (dump_file, "\n\n");
5000 if (new_vr.type == VR_VARYING)
5001 return SSA_PROP_VARYING;
5003 return SSA_PROP_INTERESTING;
5006 return SSA_PROP_NOT_INTERESTING;
5009 /* Every other statement produces no useful ranges. */
5010 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5011 set_value_range_to_varying (get_value_range (def));
5013 return SSA_PROP_VARYING;
5016 /* Helper that gets the value range of the SSA_NAME with version I
5017 or a symbolic range containing the SSA_NAME only if the value range
5018 is varying or undefined. */
5020 static inline value_range_t
5021 get_vr_for_comparison (int i)
5023 value_range_t vr = *(vr_value[i]);
5025 /* If name N_i does not have a valid range, use N_i as its own
5026 range. This allows us to compare against names that may
5027 have N_i in their ranges. */
5028 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5030 vr.type = VR_RANGE;
5031 vr.min = ssa_name (i);
5032 vr.max = ssa_name (i);
5035 return vr;
5038 /* Compare all the value ranges for names equivalent to VAR with VAL
5039 using comparison code COMP. Return the same value returned by
5040 compare_range_with_value, including the setting of
5041 *STRICT_OVERFLOW_P. */
5043 static tree
5044 compare_name_with_value (enum tree_code comp, tree var, tree val,
5045 bool *strict_overflow_p)
5047 bitmap_iterator bi;
5048 unsigned i;
5049 bitmap e;
5050 tree retval, t;
5051 int used_strict_overflow;
5052 bool sop;
5053 value_range_t equiv_vr;
5055 /* Get the set of equivalences for VAR. */
5056 e = get_value_range (var)->equiv;
5058 /* Start at -1. Set it to 0 if we do a comparison without relying
5059 on overflow, or 1 if all comparisons rely on overflow. */
5060 used_strict_overflow = -1;
5062 /* Compare vars' value range with val. */
5063 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5064 sop = false;
5065 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5066 if (retval)
5067 used_strict_overflow = sop ? 1 : 0;
5069 /* If the equiv set is empty we have done all work we need to do. */
5070 if (e == NULL)
5072 if (retval
5073 && used_strict_overflow > 0)
5074 *strict_overflow_p = true;
5075 return retval;
5078 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5080 equiv_vr = get_vr_for_comparison (i);
5081 sop = false;
5082 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5083 if (t)
5085 /* If we get different answers from different members
5086 of the equivalence set this check must be in a dead
5087 code region. Folding it to a trap representation
5088 would be correct here. For now just return don't-know. */
5089 if (retval != NULL
5090 && t != retval)
5092 retval = NULL_TREE;
5093 break;
5095 retval = t;
5097 if (!sop)
5098 used_strict_overflow = 0;
5099 else if (used_strict_overflow < 0)
5100 used_strict_overflow = 1;
5104 if (retval
5105 && used_strict_overflow > 0)
5106 *strict_overflow_p = true;
5108 return retval;
5112 /* Given a comparison code COMP and names N1 and N2, compare all the
5113 ranges equivalent to N1 against all the ranges equivalent to N2
5114 to determine the value of N1 COMP N2. Return the same value
5115 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5116 whether we relied on an overflow infinity in the comparison. */
5119 static tree
5120 compare_names (enum tree_code comp, tree n1, tree n2,
5121 bool *strict_overflow_p)
5123 tree t, retval;
5124 bitmap e1, e2;
5125 bitmap_iterator bi1, bi2;
5126 unsigned i1, i2;
5127 int used_strict_overflow;
5128 static bitmap_obstack *s_obstack = NULL;
5129 static bitmap s_e1 = NULL, s_e2 = NULL;
5131 /* Compare the ranges of every name equivalent to N1 against the
5132 ranges of every name equivalent to N2. */
5133 e1 = get_value_range (n1)->equiv;
5134 e2 = get_value_range (n2)->equiv;
5136 /* Use the fake bitmaps if e1 or e2 are not available. */
5137 if (s_obstack == NULL)
5139 s_obstack = XNEW (bitmap_obstack);
5140 bitmap_obstack_initialize (s_obstack);
5141 s_e1 = BITMAP_ALLOC (s_obstack);
5142 s_e2 = BITMAP_ALLOC (s_obstack);
5144 if (e1 == NULL)
5145 e1 = s_e1;
5146 if (e2 == NULL)
5147 e2 = s_e2;
5149 /* Add N1 and N2 to their own set of equivalences to avoid
5150 duplicating the body of the loop just to check N1 and N2
5151 ranges. */
5152 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5153 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5155 /* If the equivalence sets have a common intersection, then the two
5156 names can be compared without checking their ranges. */
5157 if (bitmap_intersect_p (e1, e2))
5159 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5160 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5162 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5163 ? boolean_true_node
5164 : boolean_false_node;
5167 /* Start at -1. Set it to 0 if we do a comparison without relying
5168 on overflow, or 1 if all comparisons rely on overflow. */
5169 used_strict_overflow = -1;
5171 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5172 N2 to their own set of equivalences to avoid duplicating the body
5173 of the loop just to check N1 and N2 ranges. */
5174 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5176 value_range_t vr1 = get_vr_for_comparison (i1);
5178 t = retval = NULL_TREE;
5179 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5181 bool sop = false;
5183 value_range_t vr2 = get_vr_for_comparison (i2);
5185 t = compare_ranges (comp, &vr1, &vr2, &sop);
5186 if (t)
5188 /* If we get different answers from different members
5189 of the equivalence set this check must be in a dead
5190 code region. Folding it to a trap representation
5191 would be correct here. For now just return don't-know. */
5192 if (retval != NULL
5193 && t != retval)
5195 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5196 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5197 return NULL_TREE;
5199 retval = t;
5201 if (!sop)
5202 used_strict_overflow = 0;
5203 else if (used_strict_overflow < 0)
5204 used_strict_overflow = 1;
5208 if (retval)
5210 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5211 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5212 if (used_strict_overflow > 0)
5213 *strict_overflow_p = true;
5214 return retval;
5218 /* None of the equivalent ranges are useful in computing this
5219 comparison. */
5220 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5221 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5222 return NULL_TREE;
5225 /* Helper function for vrp_evaluate_conditional_warnv. */
5227 static tree
5228 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5229 tree op1, bool use_equiv_p,
5230 bool *strict_overflow_p)
5232 /* We only deal with integral and pointer types. */
5233 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5234 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5235 return NULL_TREE;
5237 if (use_equiv_p)
5239 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5240 return compare_names (code, op0, op1,
5241 strict_overflow_p);
5242 else if (TREE_CODE (op0) == SSA_NAME)
5243 return compare_name_with_value (code, op0, op1,
5244 strict_overflow_p);
5245 else if (TREE_CODE (op1) == SSA_NAME)
5246 return (compare_name_with_value
5247 (swap_tree_comparison (code), op1, op0,
5248 strict_overflow_p));
5250 else
5252 value_range_t *vr0, *vr1;
5254 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5255 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5257 if (vr0 && vr1)
5258 return compare_ranges (code, vr0, vr1,
5259 strict_overflow_p);
5260 else if (vr0 && vr1 == NULL)
5261 return compare_range_with_value (code, vr0, op1,
5262 strict_overflow_p);
5263 else if (vr0 == NULL && vr1)
5264 return (compare_range_with_value
5265 (swap_tree_comparison (code), vr1, op0,
5266 strict_overflow_p));
5268 return NULL_TREE;
5271 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5272 information. Return NULL if the conditional can not be evaluated.
5273 The ranges of all the names equivalent with the operands in COND
5274 will be used when trying to compute the value. If the result is
5275 based on undefined signed overflow, issue a warning if
5276 appropriate. */
5278 tree
5279 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, tree stmt)
5281 bool sop;
5282 tree ret;
5284 sop = false;
5285 ret = vrp_evaluate_conditional_warnv_with_ops (code,
5286 op0,
5287 op1,
5288 true,
5289 &sop);
5291 if (ret && sop)
5293 enum warn_strict_overflow_code wc;
5294 const char* warnmsg;
5296 if (is_gimple_min_invariant (ret))
5298 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5299 warnmsg = G_("assuming signed overflow does not occur when "
5300 "simplifying conditional to constant");
5302 else
5304 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5305 warnmsg = G_("assuming signed overflow does not occur when "
5306 "simplifying conditional");
5309 if (issue_strict_overflow_warning (wc))
5311 location_t locus;
5313 if (!EXPR_HAS_LOCATION (stmt))
5314 locus = input_location;
5315 else
5316 locus = EXPR_LOCATION (stmt);
5317 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5321 if (warn_type_limits
5322 && ret
5323 && TREE_CODE_CLASS (code) == tcc_comparison
5324 && TREE_CODE (op0) == SSA_NAME)
5326 /* If the comparison is being folded and the operand on the LHS
5327 is being compared against a constant value that is outside of
5328 the natural range of OP0's type, then the predicate will
5329 always fold regardless of the value of OP0. If -Wtype-limits
5330 was specified, emit a warning. */
5331 const char *warnmsg = NULL;
5332 tree type = TREE_TYPE (op0);
5333 value_range_t *vr0 = get_value_range (op0);
5335 if (vr0->type != VR_VARYING
5336 && INTEGRAL_TYPE_P (type)
5337 && vrp_val_is_min (vr0->min)
5338 && vrp_val_is_max (vr0->max)
5339 && is_gimple_min_invariant (op1))
5341 if (integer_zerop (ret))
5342 warnmsg = G_("comparison always false due to limited range of "
5343 "data type");
5344 else
5345 warnmsg = G_("comparison always true due to limited range of "
5346 "data type");
5349 if (warnmsg)
5351 location_t locus;
5353 if (!EXPR_HAS_LOCATION (stmt))
5354 locus = input_location;
5355 else
5356 locus = EXPR_LOCATION (stmt);
5358 warning (OPT_Wtype_limits, "%H%s", &locus, warnmsg);
5362 return ret;
5366 /* Visit conditional statement STMT. If we can determine which edge
5367 will be taken out of STMT's basic block, record it in
5368 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5369 SSA_PROP_VARYING. */
5371 static enum ssa_prop_result
5372 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5374 tree cond, val;
5375 bool sop;
5377 *taken_edge_p = NULL;
5378 cond = COND_EXPR_COND (stmt);
5380 if (dump_file && (dump_flags & TDF_DETAILS))
5382 tree use;
5383 ssa_op_iter i;
5385 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5386 print_generic_expr (dump_file, cond, 0);
5387 fprintf (dump_file, "\nWith known ranges\n");
5389 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5391 fprintf (dump_file, "\t");
5392 print_generic_expr (dump_file, use, 0);
5393 fprintf (dump_file, ": ");
5394 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5397 fprintf (dump_file, "\n");
5400 /* Compute the value of the predicate COND by checking the known
5401 ranges of each of its operands.
5403 Note that we cannot evaluate all the equivalent ranges here
5404 because those ranges may not yet be final and with the current
5405 propagation strategy, we cannot determine when the value ranges
5406 of the names in the equivalence set have changed.
5408 For instance, given the following code fragment
5410 i_5 = PHI <8, i_13>
5412 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5413 if (i_14 == 1)
5416 Assume that on the first visit to i_14, i_5 has the temporary
5417 range [8, 8] because the second argument to the PHI function is
5418 not yet executable. We derive the range ~[0, 0] for i_14 and the
5419 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5420 the first time, since i_14 is equivalent to the range [8, 8], we
5421 determine that the predicate is always false.
5423 On the next round of propagation, i_13 is determined to be
5424 VARYING, which causes i_5 to drop down to VARYING. So, another
5425 visit to i_14 is scheduled. In this second visit, we compute the
5426 exact same range and equivalence set for i_14, namely ~[0, 0] and
5427 { i_5 }. But we did not have the previous range for i_5
5428 registered, so vrp_visit_assignment thinks that the range for
5429 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5430 is not visited again, which stops propagation from visiting
5431 statements in the THEN clause of that if().
5433 To properly fix this we would need to keep the previous range
5434 value for the names in the equivalence set. This way we would've
5435 discovered that from one visit to the other i_5 changed from
5436 range [8, 8] to VR_VARYING.
5438 However, fixing this apparent limitation may not be worth the
5439 additional checking. Testing on several code bases (GCC, DLV,
5440 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5441 4 more predicates folded in SPEC. */
5442 sop = false;
5444 if (TREE_CODE (cond) == SSA_NAME)
5445 val = vrp_evaluate_conditional_warnv_with_ops (EQ_EXPR,
5446 cond,
5447 boolean_true_node,
5448 false,
5449 &sop);
5450 else
5451 val = vrp_evaluate_conditional_warnv_with_ops (TREE_CODE (cond),
5452 TREE_OPERAND (cond, 0),
5453 TREE_OPERAND (cond, 1),
5454 false,
5455 &sop);
5456 if (val)
5458 if (!sop)
5459 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5460 else
5462 if (dump_file && (dump_flags & TDF_DETAILS))
5463 fprintf (dump_file,
5464 "\nIgnoring predicate evaluation because "
5465 "it assumes that signed overflow is undefined");
5466 val = NULL_TREE;
5470 if (dump_file && (dump_flags & TDF_DETAILS))
5472 fprintf (dump_file, "\nPredicate evaluates to: ");
5473 if (val == NULL_TREE)
5474 fprintf (dump_file, "DON'T KNOW\n");
5475 else
5476 print_generic_stmt (dump_file, val, 0);
5479 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5482 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5483 that includes the value VAL. The search is restricted to the range
5484 [START_IDX, n - 2] where n is the size of VEC (n - 1 is the default label).
5486 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5487 returned.
5489 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5490 it is placed in IDX and false is returned.
5492 If VAL is larger than any CASE_LABEL, n - 1 is placed on IDX and false is
5493 returned. */
5495 static bool
5496 find_case_label_index (tree vec, size_t start_idx, tree val, size_t *idx)
5498 size_t n = TREE_VEC_LENGTH (vec);
5499 size_t low, high;
5501 /* Find case label for minimum of the value range or the next one.
5502 At each iteration we are searching in [low, high - 1]. */
5504 for (low = start_idx, high = n - 1; high != low; )
5506 tree t;
5507 int cmp;
5508 /* Note that i != high, so we never ask for n - 1. */
5509 size_t i = (high + low) / 2;
5510 t = TREE_VEC_ELT (vec, i);
5512 /* Cache the result of comparing CASE_LOW and val. */
5513 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5515 if (cmp == 0)
5517 /* Ranges cannot be empty. */
5518 *idx = i;
5519 return true;
5521 else if (cmp > 0)
5522 high = i;
5523 else
5525 low = i + 1;
5526 if (CASE_HIGH (t) != NULL
5527 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5529 *idx = i;
5530 return true;
5535 *idx = high;
5536 return false;
5539 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5540 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5541 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5542 then MAX_IDX < MIN_IDX.
5543 Returns true if the default label is not needed. */
5545 static bool
5546 find_case_label_range (tree vec, tree min, tree max, size_t *min_idx, size_t *max_idx)
5548 size_t i, j;
5549 bool min_take_default = !find_case_label_index (vec, 0, min, &i);
5550 bool max_take_default = !find_case_label_index (vec, i, max, &j);
5552 if (i == j
5553 && min_take_default
5554 && max_take_default)
5556 /* Only the default case label reached.
5557 Return an empty range. */
5558 *min_idx = 1;
5559 *max_idx = 0;
5560 return false;
5562 else
5564 bool take_default = min_take_default || max_take_default;
5565 tree low, high;
5566 size_t k;
5568 if (max_take_default)
5569 j--;
5571 /* If the case label range is continuous, we do not need
5572 the default case label. Verify that. */
5573 high = CASE_LOW (TREE_VEC_ELT (vec, i));
5574 if (CASE_HIGH (TREE_VEC_ELT (vec, i)))
5575 high = CASE_HIGH (TREE_VEC_ELT (vec, i));
5576 for (k = i + 1; k <= j; ++k)
5578 low = CASE_LOW (TREE_VEC_ELT (vec, k));
5579 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5581 take_default = true;
5582 break;
5584 high = low;
5585 if (CASE_HIGH (TREE_VEC_ELT (vec, k)))
5586 high = CASE_HIGH (TREE_VEC_ELT (vec, k));
5589 *min_idx = i;
5590 *max_idx = j;
5591 return !take_default;
5595 /* Visit switch statement STMT. If we can determine which edge
5596 will be taken out of STMT's basic block, record it in
5597 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5598 SSA_PROP_VARYING. */
5600 static enum ssa_prop_result
5601 vrp_visit_switch_stmt (tree stmt, edge *taken_edge_p)
5603 tree op, val;
5604 value_range_t *vr;
5605 size_t i = 0, j = 0, n;
5606 tree vec;
5607 bool take_default;
5609 *taken_edge_p = NULL;
5610 op = TREE_OPERAND (stmt, 0);
5611 if (TREE_CODE (op) != SSA_NAME)
5612 return SSA_PROP_VARYING;
5614 vr = get_value_range (op);
5615 if (dump_file && (dump_flags & TDF_DETAILS))
5617 fprintf (dump_file, "\nVisiting switch expression with operand ");
5618 print_generic_expr (dump_file, op, 0);
5619 fprintf (dump_file, " with known range ");
5620 dump_value_range (dump_file, vr);
5621 fprintf (dump_file, "\n");
5624 if (vr->type != VR_RANGE
5625 || symbolic_range_p (vr))
5626 return SSA_PROP_VARYING;
5628 /* Find the single edge that is taken from the switch expression. */
5629 vec = SWITCH_LABELS (stmt);
5630 n = TREE_VEC_LENGTH (vec);
5632 take_default = !find_case_label_range (vec, vr->min, vr->max, &i, &j);
5634 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
5635 label */
5636 if (j < i)
5638 gcc_assert (take_default);
5639 val = TREE_VEC_ELT (vec, n - 1);
5641 else
5643 /* Check if labels with index i to j and maybe the default label
5644 are all reaching the same label. */
5646 val = TREE_VEC_ELT (vec, i);
5647 if (take_default
5648 && CASE_LABEL (TREE_VEC_ELT (vec, n - 1)) != CASE_LABEL (val))
5650 if (dump_file && (dump_flags & TDF_DETAILS))
5651 fprintf (dump_file, " not a single destination for this "
5652 "range\n");
5653 return SSA_PROP_VARYING;
5655 for (++i; i <= j; ++i)
5657 if (CASE_LABEL (TREE_VEC_ELT (vec, i)) != CASE_LABEL (val))
5659 if (dump_file && (dump_flags & TDF_DETAILS))
5660 fprintf (dump_file, " not a single destination for this "
5661 "range\n");
5662 return SSA_PROP_VARYING;
5667 *taken_edge_p = find_edge (bb_for_stmt (stmt),
5668 label_to_block (CASE_LABEL (val)));
5670 if (dump_file && (dump_flags & TDF_DETAILS))
5672 fprintf (dump_file, " will take edge to ");
5673 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
5676 return SSA_PROP_INTERESTING;
5680 /* Evaluate statement STMT. If the statement produces a useful range,
5681 return SSA_PROP_INTERESTING and record the SSA name with the
5682 interesting range into *OUTPUT_P.
5684 If STMT is a conditional branch and we can determine its truth
5685 value, the taken edge is recorded in *TAKEN_EDGE_P.
5687 If STMT produces a varying value, return SSA_PROP_VARYING. */
5689 static enum ssa_prop_result
5690 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5692 tree def;
5693 ssa_op_iter iter;
5694 stmt_ann_t ann;
5696 if (dump_file && (dump_flags & TDF_DETAILS))
5698 fprintf (dump_file, "\nVisiting statement:\n");
5699 print_generic_stmt (dump_file, stmt, dump_flags);
5700 fprintf (dump_file, "\n");
5703 ann = stmt_ann (stmt);
5704 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5706 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5708 /* In general, assignments with virtual operands are not useful
5709 for deriving ranges, with the obvious exception of calls to
5710 builtin functions. */
5711 if ((TREE_CODE (rhs) == CALL_EXPR
5712 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5713 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5714 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5715 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5716 return vrp_visit_assignment (stmt, output_p);
5718 else if (TREE_CODE (stmt) == COND_EXPR)
5719 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5720 else if (TREE_CODE (stmt) == SWITCH_EXPR)
5721 return vrp_visit_switch_stmt (stmt, taken_edge_p);
5723 /* All other statements produce nothing of interest for VRP, so mark
5724 their outputs varying and prevent further simulation. */
5725 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5726 set_value_range_to_varying (get_value_range (def));
5728 return SSA_PROP_VARYING;
5732 /* Meet operation for value ranges. Given two value ranges VR0 and
5733 VR1, store in VR0 a range that contains both VR0 and VR1. This
5734 may not be the smallest possible such range. */
5736 static void
5737 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5739 if (vr0->type == VR_UNDEFINED)
5741 copy_value_range (vr0, vr1);
5742 return;
5745 if (vr1->type == VR_UNDEFINED)
5747 /* Nothing to do. VR0 already has the resulting range. */
5748 return;
5751 if (vr0->type == VR_VARYING)
5753 /* Nothing to do. VR0 already has the resulting range. */
5754 return;
5757 if (vr1->type == VR_VARYING)
5759 set_value_range_to_varying (vr0);
5760 return;
5763 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5765 int cmp;
5766 tree min, max;
5768 /* Compute the convex hull of the ranges. The lower limit of
5769 the new range is the minimum of the two ranges. If they
5770 cannot be compared, then give up. */
5771 cmp = compare_values (vr0->min, vr1->min);
5772 if (cmp == 0 || cmp == 1)
5773 min = vr1->min;
5774 else if (cmp == -1)
5775 min = vr0->min;
5776 else
5777 goto give_up;
5779 /* Similarly, the upper limit of the new range is the maximum
5780 of the two ranges. If they cannot be compared, then
5781 give up. */
5782 cmp = compare_values (vr0->max, vr1->max);
5783 if (cmp == 0 || cmp == -1)
5784 max = vr1->max;
5785 else if (cmp == 1)
5786 max = vr0->max;
5787 else
5788 goto give_up;
5790 /* Check for useless ranges. */
5791 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5792 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5793 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5794 goto give_up;
5796 /* The resulting set of equivalences is the intersection of
5797 the two sets. */
5798 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5799 bitmap_and_into (vr0->equiv, vr1->equiv);
5800 else if (vr0->equiv && !vr1->equiv)
5801 bitmap_clear (vr0->equiv);
5803 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5805 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5807 /* Two anti-ranges meet only if their complements intersect.
5808 Only handle the case of identical ranges. */
5809 if (compare_values (vr0->min, vr1->min) == 0
5810 && compare_values (vr0->max, vr1->max) == 0
5811 && compare_values (vr0->min, vr0->max) == 0)
5813 /* The resulting set of equivalences is the intersection of
5814 the two sets. */
5815 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5816 bitmap_and_into (vr0->equiv, vr1->equiv);
5817 else if (vr0->equiv && !vr1->equiv)
5818 bitmap_clear (vr0->equiv);
5820 else
5821 goto give_up;
5823 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5825 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5826 only handle the case where the ranges have an empty intersection.
5827 The result of the meet operation is the anti-range. */
5828 if (!symbolic_range_p (vr0)
5829 && !symbolic_range_p (vr1)
5830 && !value_ranges_intersect_p (vr0, vr1))
5832 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5833 set. We need to compute the intersection of the two
5834 equivalence sets. */
5835 if (vr1->type == VR_ANTI_RANGE)
5836 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5838 /* The resulting set of equivalences is the intersection of
5839 the two sets. */
5840 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5841 bitmap_and_into (vr0->equiv, vr1->equiv);
5842 else if (vr0->equiv && !vr1->equiv)
5843 bitmap_clear (vr0->equiv);
5845 else
5846 goto give_up;
5848 else
5849 gcc_unreachable ();
5851 return;
5853 give_up:
5854 /* Failed to find an efficient meet. Before giving up and setting
5855 the result to VARYING, see if we can at least derive a useful
5856 anti-range. FIXME, all this nonsense about distinguishing
5857 anti-ranges from ranges is necessary because of the odd
5858 semantics of range_includes_zero_p and friends. */
5859 if (!symbolic_range_p (vr0)
5860 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5861 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5862 && !symbolic_range_p (vr1)
5863 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5864 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5866 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5868 /* Since this meet operation did not result from the meeting of
5869 two equivalent names, VR0 cannot have any equivalences. */
5870 if (vr0->equiv)
5871 bitmap_clear (vr0->equiv);
5873 else
5874 set_value_range_to_varying (vr0);
5878 /* Visit all arguments for PHI node PHI that flow through executable
5879 edges. If a valid value range can be derived from all the incoming
5880 value ranges, set a new range for the LHS of PHI. */
5882 static enum ssa_prop_result
5883 vrp_visit_phi_node (tree phi)
5885 int i;
5886 tree lhs = PHI_RESULT (phi);
5887 value_range_t *lhs_vr = get_value_range (lhs);
5888 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5889 int edges, old_edges;
5891 copy_value_range (&vr_result, lhs_vr);
5893 if (dump_file && (dump_flags & TDF_DETAILS))
5895 fprintf (dump_file, "\nVisiting PHI node: ");
5896 print_generic_expr (dump_file, phi, dump_flags);
5899 edges = 0;
5900 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5902 edge e = PHI_ARG_EDGE (phi, i);
5904 if (dump_file && (dump_flags & TDF_DETAILS))
5906 fprintf (dump_file,
5907 "\n Argument #%d (%d -> %d %sexecutable)\n",
5908 i, e->src->index, e->dest->index,
5909 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5912 if (e->flags & EDGE_EXECUTABLE)
5914 tree arg = PHI_ARG_DEF (phi, i);
5915 value_range_t vr_arg;
5917 ++edges;
5919 if (TREE_CODE (arg) == SSA_NAME)
5921 vr_arg = *(get_value_range (arg));
5923 else
5925 if (is_overflow_infinity (arg))
5927 arg = copy_node (arg);
5928 TREE_OVERFLOW (arg) = 0;
5931 vr_arg.type = VR_RANGE;
5932 vr_arg.min = arg;
5933 vr_arg.max = arg;
5934 vr_arg.equiv = NULL;
5937 if (dump_file && (dump_flags & TDF_DETAILS))
5939 fprintf (dump_file, "\t");
5940 print_generic_expr (dump_file, arg, dump_flags);
5941 fprintf (dump_file, "\n\tValue: ");
5942 dump_value_range (dump_file, &vr_arg);
5943 fprintf (dump_file, "\n");
5946 vrp_meet (&vr_result, &vr_arg);
5948 if (vr_result.type == VR_VARYING)
5949 break;
5953 if (vr_result.type == VR_VARYING)
5954 goto varying;
5956 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5957 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5959 /* To prevent infinite iterations in the algorithm, derive ranges
5960 when the new value is slightly bigger or smaller than the
5961 previous one. We don't do this if we have seen a new executable
5962 edge; this helps us avoid an overflow infinity for conditionals
5963 which are not in a loop. */
5964 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5965 && edges <= old_edges)
5967 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5969 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5970 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5972 /* If the new minimum is smaller or larger than the previous
5973 one, go all the way to -INF. In the first case, to avoid
5974 iterating millions of times to reach -INF, and in the
5975 other case to avoid infinite bouncing between different
5976 minimums. */
5977 if (cmp_min > 0 || cmp_min < 0)
5979 /* If we will end up with a (-INF, +INF) range, set it
5980 to VARYING. */
5981 if (vrp_val_is_max (vr_result.max))
5982 goto varying;
5984 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5985 || !vrp_var_may_overflow (lhs, phi))
5986 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5987 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5988 vr_result.min =
5989 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5990 else
5991 goto varying;
5994 /* Similarly, if the new maximum is smaller or larger than
5995 the previous one, go all the way to +INF. */
5996 if (cmp_max < 0 || cmp_max > 0)
5998 /* If we will end up with a (-INF, +INF) range, set it
5999 to VARYING. */
6000 if (vrp_val_is_min (vr_result.min))
6001 goto varying;
6003 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6004 || !vrp_var_may_overflow (lhs, phi))
6005 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6006 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6007 vr_result.max =
6008 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6009 else
6010 goto varying;
6015 /* If the new range is different than the previous value, keep
6016 iterating. */
6017 if (update_value_range (lhs, &vr_result))
6018 return SSA_PROP_INTERESTING;
6020 /* Nothing changed, don't add outgoing edges. */
6021 return SSA_PROP_NOT_INTERESTING;
6023 /* No match found. Set the LHS to VARYING. */
6024 varying:
6025 set_value_range_to_varying (lhs_vr);
6026 return SSA_PROP_VARYING;
6029 /* Simplify a division or modulo operator to a right shift or
6030 bitwise and if the first operand is unsigned or is greater
6031 than zero and the second operand is an exact power of two. */
6033 static void
6034 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
6036 tree val = NULL;
6037 tree op = TREE_OPERAND (rhs, 0);
6038 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6040 if (TYPE_UNSIGNED (TREE_TYPE (op)))
6042 val = integer_one_node;
6044 else
6046 bool sop = false;
6048 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6050 if (val
6051 && sop
6052 && integer_onep (val)
6053 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6055 location_t locus;
6057 if (!EXPR_HAS_LOCATION (stmt))
6058 locus = input_location;
6059 else
6060 locus = EXPR_LOCATION (stmt);
6061 warning (OPT_Wstrict_overflow,
6062 ("%Hassuming signed overflow does not occur when "
6063 "simplifying / or %% to >> or &"),
6064 &locus);
6068 if (val && integer_onep (val))
6070 tree t;
6071 tree op0 = TREE_OPERAND (rhs, 0);
6072 tree op1 = TREE_OPERAND (rhs, 1);
6074 if (rhs_code == TRUNC_DIV_EXPR)
6076 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6077 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
6079 else
6081 t = build_int_cst (TREE_TYPE (op1), 1);
6082 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6083 t = fold_convert (TREE_TYPE (op0), t);
6084 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
6087 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6088 update_stmt (stmt);
6092 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6093 ABS_EXPR. If the operand is <= 0, then simplify the
6094 ABS_EXPR into a NEGATE_EXPR. */
6096 static void
6097 simplify_abs_using_ranges (tree stmt, tree rhs)
6099 tree val = NULL;
6100 tree op = TREE_OPERAND (rhs, 0);
6101 tree type = TREE_TYPE (op);
6102 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
6104 if (TYPE_UNSIGNED (type))
6106 val = integer_zero_node;
6108 else if (vr)
6110 bool sop = false;
6112 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6113 if (!val)
6115 sop = false;
6116 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6117 &sop);
6119 if (val)
6121 if (integer_zerop (val))
6122 val = integer_one_node;
6123 else if (integer_onep (val))
6124 val = integer_zero_node;
6128 if (val
6129 && (integer_onep (val) || integer_zerop (val)))
6131 tree t;
6133 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6135 location_t locus;
6137 if (!EXPR_HAS_LOCATION (stmt))
6138 locus = input_location;
6139 else
6140 locus = EXPR_LOCATION (stmt);
6141 warning (OPT_Wstrict_overflow,
6142 ("%Hassuming signed overflow does not occur when "
6143 "simplifying abs (X) to X or -X"),
6144 &locus);
6147 if (integer_onep (val))
6148 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
6149 else
6150 t = op;
6152 GIMPLE_STMT_OPERAND (stmt, 1) = t;
6153 update_stmt (stmt);
6158 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6159 a known value range VR.
6161 If there is one and only one value which will satisfy the
6162 conditional, then return that value. Else return NULL. */
6164 static tree
6165 test_for_singularity (enum tree_code cond_code, tree op0,
6166 tree op1, value_range_t *vr)
6168 tree min = NULL;
6169 tree max = NULL;
6171 /* Extract minimum/maximum values which satisfy the
6172 the conditional as it was written. */
6173 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6175 /* This should not be negative infinity; there is no overflow
6176 here. */
6177 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6179 max = op1;
6180 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6182 tree one = build_int_cst (TREE_TYPE (op0), 1);
6183 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6184 if (EXPR_P (max))
6185 TREE_NO_WARNING (max) = 1;
6188 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6190 /* This should not be positive infinity; there is no overflow
6191 here. */
6192 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6194 min = op1;
6195 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6197 tree one = build_int_cst (TREE_TYPE (op0), 1);
6198 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6199 if (EXPR_P (min))
6200 TREE_NO_WARNING (min) = 1;
6204 /* Now refine the minimum and maximum values using any
6205 value range information we have for op0. */
6206 if (min && max)
6208 if (compare_values (vr->min, min) == -1)
6209 min = min;
6210 else
6211 min = vr->min;
6212 if (compare_values (vr->max, max) == 1)
6213 max = max;
6214 else
6215 max = vr->max;
6217 /* If the new min/max values have converged to a single value,
6218 then there is only one value which can satisfy the condition,
6219 return that value. */
6220 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6221 return min;
6223 return NULL;
6226 /* Simplify a conditional using a relational operator to an equality
6227 test if the range information indicates only one value can satisfy
6228 the original conditional. */
6230 static void
6231 simplify_cond_using_ranges (tree stmt)
6233 tree cond = COND_EXPR_COND (stmt);
6234 tree op0 = TREE_OPERAND (cond, 0);
6235 tree op1 = TREE_OPERAND (cond, 1);
6236 enum tree_code cond_code = TREE_CODE (cond);
6238 if (cond_code != NE_EXPR
6239 && cond_code != EQ_EXPR
6240 && TREE_CODE (op0) == SSA_NAME
6241 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6242 && is_gimple_min_invariant (op1))
6244 value_range_t *vr = get_value_range (op0);
6246 /* If we have range information for OP0, then we might be
6247 able to simplify this conditional. */
6248 if (vr->type == VR_RANGE)
6250 tree new = test_for_singularity (cond_code, op0, op1, vr);
6252 if (new)
6254 if (dump_file)
6256 fprintf (dump_file, "Simplified relational ");
6257 print_generic_expr (dump_file, cond, 0);
6258 fprintf (dump_file, " into ");
6261 COND_EXPR_COND (stmt)
6262 = build2 (EQ_EXPR, boolean_type_node, op0, new);
6263 update_stmt (stmt);
6265 if (dump_file)
6267 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6268 fprintf (dump_file, "\n");
6270 return;
6274 /* Try again after inverting the condition. We only deal
6275 with integral types here, so no need to worry about
6276 issues with inverting FP comparisons. */
6277 cond_code = invert_tree_comparison (cond_code, false);
6278 new = test_for_singularity (cond_code, op0, op1, vr);
6280 if (new)
6282 if (dump_file)
6284 fprintf (dump_file, "Simplified relational ");
6285 print_generic_expr (dump_file, cond, 0);
6286 fprintf (dump_file, " into ");
6289 COND_EXPR_COND (stmt)
6290 = build2 (NE_EXPR, boolean_type_node, op0, new);
6291 update_stmt (stmt);
6293 if (dump_file)
6295 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
6296 fprintf (dump_file, "\n");
6298 return;
6305 /* Simplify a switch statement using the value range of the switch
6306 argument. */
6308 static void
6309 simplify_switch_using_ranges (tree stmt)
6311 tree op = TREE_OPERAND (stmt, 0);
6312 value_range_t *vr;
6313 bool take_default;
6314 edge e;
6315 edge_iterator ei;
6316 size_t i = 0, j = 0, n, n2;
6317 tree vec, vec2;
6318 switch_update su;
6320 if (TREE_CODE (op) != SSA_NAME)
6321 return;
6323 vr = get_value_range (op);
6325 /* We can only handle integer ranges. */
6326 if (vr->type != VR_RANGE
6327 || symbolic_range_p (vr))
6328 return;
6330 /* Find case label for min/max of the value range. */
6331 vec = SWITCH_LABELS (stmt);
6332 n = TREE_VEC_LENGTH (vec);
6333 take_default = !find_case_label_range (vec, vr->min, vr->max, &i, &j);
6335 /* Bail out if this is just all edges taken. */
6336 if (i == 0
6337 && j == n - 2
6338 && take_default)
6339 return;
6341 /* Build a new vector of taken case labels. */
6342 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6343 for (n2 = 0; i <= j; ++i, ++n2)
6344 TREE_VEC_ELT (vec2, n2) = TREE_VEC_ELT (vec, i);
6346 /* Add the default edge, if necessary. */
6347 if (take_default)
6348 TREE_VEC_ELT (vec2, n2++) = TREE_VEC_ELT (vec, n - 1);
6350 /* Mark needed edges. */
6351 for (i = 0; i < n2; ++i)
6353 e = find_edge (bb_for_stmt (stmt),
6354 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6355 e->aux = (void *)-1;
6358 /* Queue not needed edges for later removal. */
6359 FOR_EACH_EDGE (e, ei, bb_for_stmt (stmt)->succs)
6361 if (e->aux == (void *)-1)
6363 e->aux = NULL;
6364 continue;
6367 if (dump_file && (dump_flags & TDF_DETAILS))
6369 fprintf (dump_file, "removing unreachable case label\n");
6371 VEC_safe_push (edge, heap, to_remove_edges, e);
6374 /* And queue an update for the stmt. */
6375 su.stmt = stmt;
6376 su.vec = vec2;
6377 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6380 /* Simplify STMT using ranges if possible. */
6382 void
6383 simplify_stmt_using_ranges (tree stmt)
6385 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
6387 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
6388 enum tree_code rhs_code = TREE_CODE (rhs);
6390 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6391 and BIT_AND_EXPR respectively if the first operand is greater
6392 than zero and the second operand is an exact power of two. */
6393 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
6394 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
6395 && integer_pow2p (TREE_OPERAND (rhs, 1)))
6396 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
6398 /* Transform ABS (X) into X or -X as appropriate. */
6399 if (rhs_code == ABS_EXPR
6400 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
6401 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
6402 simplify_abs_using_ranges (stmt, rhs);
6404 else if (TREE_CODE (stmt) == COND_EXPR
6405 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
6406 simplify_cond_using_ranges (stmt);
6407 else if (TREE_CODE (stmt) == SWITCH_EXPR)
6408 simplify_switch_using_ranges (stmt);
6411 /* Stack of dest,src equivalency pairs that need to be restored after
6412 each attempt to thread a block's incoming edge to an outgoing edge.
6414 A NULL entry is used to mark the end of pairs which need to be
6415 restored. */
6416 static VEC(tree,heap) *stack;
6418 /* A trivial wrapper so that we can present the generic jump threading
6419 code with a simple API for simplifying statements. STMT is the
6420 statement we want to simplify, WITHIN_STMT provides the location
6421 for any overflow warnings. */
6423 static tree
6424 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
6426 tree conditional;
6427 /* We only use VRP information to simplify conditionals. This is
6428 overly conservative, but it's unclear if doing more would be
6429 worth the compile time cost. */
6430 if (TREE_CODE (stmt) != COND_EXPR)
6431 return NULL;
6433 conditional = COND_EXPR_COND (stmt);
6434 if (TREE_CODE (conditional) == SSA_NAME)
6435 return vrp_evaluate_conditional (EQ_EXPR,
6436 conditional,
6437 boolean_true_node,
6438 within_stmt);
6439 else
6440 return vrp_evaluate_conditional (TREE_CODE (conditional),
6441 TREE_OPERAND (conditional, 0),
6442 TREE_OPERAND (conditional, 1),
6443 within_stmt);
6446 /* Blocks which have more than one predecessor and more than
6447 one successor present jump threading opportunities. ie,
6448 when the block is reached from a specific predecessor, we
6449 may be able to determine which of the outgoing edges will
6450 be traversed. When this optimization applies, we are able
6451 to avoid conditionals at runtime and we may expose secondary
6452 optimization opportunities.
6454 This routine is effectively a driver for the generic jump
6455 threading code. It basically just presents the generic code
6456 with edges that may be suitable for jump threading.
6458 Unlike DOM, we do not iterate VRP if jump threading was successful.
6459 While iterating may expose new opportunities for VRP, it is expected
6460 those opportunities would be very limited and the compile time cost
6461 to expose those opportunities would be significant.
6463 As jump threading opportunities are discovered, they are registered
6464 for later realization. */
6466 static void
6467 identify_jump_threads (void)
6469 basic_block bb;
6470 tree dummy;
6471 int i;
6472 edge e;
6474 /* Ugh. When substituting values earlier in this pass we can
6475 wipe the dominance information. So rebuild the dominator
6476 information as we need it within the jump threading code. */
6477 calculate_dominance_info (CDI_DOMINATORS);
6479 /* We do not allow VRP information to be used for jump threading
6480 across a back edge in the CFG. Otherwise it becomes too
6481 difficult to avoid eliminating loop exit tests. Of course
6482 EDGE_DFS_BACK is not accurate at this time so we have to
6483 recompute it. */
6484 mark_dfs_back_edges ();
6486 /* Do not thread across edges we are about to remove. Just marking
6487 them as EDGE_DFS_BACK will do. */
6488 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6489 e->flags |= EDGE_DFS_BACK;
6491 /* Allocate our unwinder stack to unwind any temporary equivalences
6492 that might be recorded. */
6493 stack = VEC_alloc (tree, heap, 20);
6495 /* To avoid lots of silly node creation, we create a single
6496 conditional and just modify it in-place when attempting to
6497 thread jumps. */
6498 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
6499 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
6501 /* Walk through all the blocks finding those which present a
6502 potential jump threading opportunity. We could set this up
6503 as a dominator walker and record data during the walk, but
6504 I doubt it's worth the effort for the classes of jump
6505 threading opportunities we are trying to identify at this
6506 point in compilation. */
6507 FOR_EACH_BB (bb)
6509 tree last, cond;
6511 /* If the generic jump threading code does not find this block
6512 interesting, then there is nothing to do. */
6513 if (! potentially_threadable_block (bb))
6514 continue;
6516 /* We only care about blocks ending in a COND_EXPR. While there
6517 may be some value in handling SWITCH_EXPR here, I doubt it's
6518 terribly important. */
6519 last = bsi_stmt (bsi_last (bb));
6520 if (TREE_CODE (last) != COND_EXPR)
6521 continue;
6523 /* We're basically looking for any kind of conditional with
6524 integral type arguments. */
6525 cond = COND_EXPR_COND (last);
6526 if ((TREE_CODE (cond) == SSA_NAME
6527 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
6528 || (COMPARISON_CLASS_P (cond)
6529 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
6530 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
6531 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
6532 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
6533 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
6535 edge_iterator ei;
6537 /* We've got a block with multiple predecessors and multiple
6538 successors which also ends in a suitable conditional. For
6539 each predecessor, see if we can thread it to a specific
6540 successor. */
6541 FOR_EACH_EDGE (e, ei, bb->preds)
6543 /* Do not thread across back edges or abnormal edges
6544 in the CFG. */
6545 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6546 continue;
6548 thread_across_edge (dummy, e, true,
6549 &stack,
6550 simplify_stmt_for_jump_threading);
6555 /* We do not actually update the CFG or SSA graphs at this point as
6556 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6557 handle ASSERT_EXPRs gracefully. */
6560 /* We identified all the jump threading opportunities earlier, but could
6561 not transform the CFG at that time. This routine transforms the
6562 CFG and arranges for the dominator tree to be rebuilt if necessary.
6564 Note the SSA graph update will occur during the normal TODO
6565 processing by the pass manager. */
6566 static void
6567 finalize_jump_threads (void)
6569 thread_through_all_blocks (false);
6570 VEC_free (tree, heap, stack);
6574 /* Traverse all the blocks folding conditionals with known ranges. */
6576 static void
6577 vrp_finalize (void)
6579 size_t i;
6580 prop_value_t *single_val_range;
6581 bool do_value_subst_p;
6583 if (dump_file)
6585 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6586 dump_all_value_ranges (dump_file);
6587 fprintf (dump_file, "\n");
6590 /* We may have ended with ranges that have exactly one value. Those
6591 values can be substituted as any other copy/const propagated
6592 value using substitute_and_fold. */
6593 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6595 do_value_subst_p = false;
6596 for (i = 0; i < num_ssa_names; i++)
6597 if (vr_value[i]
6598 && vr_value[i]->type == VR_RANGE
6599 && vr_value[i]->min == vr_value[i]->max)
6601 single_val_range[i].value = vr_value[i]->min;
6602 do_value_subst_p = true;
6605 if (!do_value_subst_p)
6607 /* We found no single-valued ranges, don't waste time trying to
6608 do single value substitution in substitute_and_fold. */
6609 free (single_val_range);
6610 single_val_range = NULL;
6613 substitute_and_fold (single_val_range, true);
6615 if (warn_array_bounds)
6616 check_all_array_refs ();
6618 /* We must identify jump threading opportunities before we release
6619 the datastructures built by VRP. */
6620 identify_jump_threads ();
6622 /* Free allocated memory. */
6623 for (i = 0; i < num_ssa_names; i++)
6624 if (vr_value[i])
6626 BITMAP_FREE (vr_value[i]->equiv);
6627 free (vr_value[i]);
6630 free (single_val_range);
6631 free (vr_value);
6632 free (vr_phi_edge_counts);
6634 /* So that we can distinguish between VRP data being available
6635 and not available. */
6636 vr_value = NULL;
6637 vr_phi_edge_counts = NULL;
6640 /* Calculates number of iterations for all loops, to ensure that they are
6641 cached. */
6643 static void
6644 record_numbers_of_iterations (void)
6646 loop_iterator li;
6647 struct loop *loop;
6649 FOR_EACH_LOOP (li, loop, 0)
6651 number_of_latch_executions (loop);
6655 /* Main entry point to VRP (Value Range Propagation). This pass is
6656 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6657 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6658 Programming Language Design and Implementation, pp. 67-78, 1995.
6659 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6661 This is essentially an SSA-CCP pass modified to deal with ranges
6662 instead of constants.
6664 While propagating ranges, we may find that two or more SSA name
6665 have equivalent, though distinct ranges. For instance,
6667 1 x_9 = p_3->a;
6668 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6669 3 if (p_4 == q_2)
6670 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6671 5 endif
6672 6 if (q_2)
6674 In the code above, pointer p_5 has range [q_2, q_2], but from the
6675 code we can also determine that p_5 cannot be NULL and, if q_2 had
6676 a non-varying range, p_5's range should also be compatible with it.
6678 These equivalences are created by two expressions: ASSERT_EXPR and
6679 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6680 result of another assertion, then we can use the fact that p_5 and
6681 p_4 are equivalent when evaluating p_5's range.
6683 Together with value ranges, we also propagate these equivalences
6684 between names so that we can take advantage of information from
6685 multiple ranges when doing final replacement. Note that this
6686 equivalency relation is transitive but not symmetric.
6688 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6689 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6690 in contexts where that assertion does not hold (e.g., in line 6).
6692 TODO, the main difference between this pass and Patterson's is that
6693 we do not propagate edge probabilities. We only compute whether
6694 edges can be taken or not. That is, instead of having a spectrum
6695 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6696 DON'T KNOW. In the future, it may be worthwhile to propagate
6697 probabilities to aid branch prediction. */
6699 static unsigned int
6700 execute_vrp (void)
6702 int i;
6703 edge e;
6704 switch_update *su;
6706 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6707 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6708 scev_initialize ();
6710 insert_range_assertions ();
6712 /* Compute the # of iterations for each loop before we start the VRP
6713 analysis. The value ranges determined by VRP are used in expression
6714 simplification, that is also used by the # of iterations analysis.
6715 However, in the middle of the VRP analysis, the value ranges do not take
6716 all the possible paths in CFG into account, so they do not have to be
6717 correct, and the # of iterations analysis can obtain wrong results.
6718 This is a problem, since the results of the # of iterations analysis
6719 are cached, so these mistakes would not be corrected when the value
6720 ranges are corrected. */
6721 record_numbers_of_iterations ();
6723 to_remove_edges = VEC_alloc (edge, heap, 10);
6724 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
6726 vrp_initialize ();
6727 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6728 vrp_finalize ();
6730 /* ASSERT_EXPRs must be removed before finalizing jump threads
6731 as finalizing jump threads calls the CFG cleanup code which
6732 does not properly handle ASSERT_EXPRs. */
6733 remove_range_assertions ();
6735 /* If we exposed any new variables, go ahead and put them into
6736 SSA form now, before we handle jump threading. This simplifies
6737 interactions between rewriting of _DECL nodes into SSA form
6738 and rewriting SSA_NAME nodes into SSA form after block
6739 duplication and CFG manipulation. */
6740 update_ssa (TODO_update_ssa);
6742 finalize_jump_threads ();
6744 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
6745 CFG in a broken state and requires a cfg_cleanup run. */
6746 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6747 remove_edge (e);
6748 /* Update SWITCH_EXPR case label vector. */
6749 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
6750 SWITCH_LABELS (su->stmt) = su->vec;
6752 if (VEC_length (edge, to_remove_edges) > 0)
6753 free_dominance_info (CDI_DOMINATORS);
6755 VEC_free (edge, heap, to_remove_edges);
6756 VEC_free (switch_update, heap, to_update_switch_stmts);
6758 scev_finalize ();
6759 loop_optimizer_finalize ();
6761 return 0;
6764 static bool
6765 gate_vrp (void)
6767 return flag_tree_vrp != 0;
6770 struct gimple_opt_pass pass_vrp =
6773 GIMPLE_PASS,
6774 "vrp", /* name */
6775 gate_vrp, /* gate */
6776 execute_vrp, /* execute */
6777 NULL, /* sub */
6778 NULL, /* next */
6779 0, /* static_pass_number */
6780 TV_TREE_VRP, /* tv_id */
6781 PROP_ssa | PROP_alias, /* properties_required */
6782 0, /* properties_provided */
6783 0, /* properties_destroyed */
6784 0, /* todo_flags_start */
6785 TODO_cleanup_cfg
6786 | TODO_ggc_collect
6787 | TODO_verify_ssa
6788 | TODO_dump_func
6789 | TODO_update_ssa /* todo_flags_finish */