Check in tree-dce enh to trunk
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blobef1ebcab4a97142c124d619f7cd2f1c4b5a51c0e
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "diagnostic.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "hashtab.h"
31 #include "tree-dump.h"
32 #include "tree-ssa-live.h"
33 #include "toplev.h"
36 /* This set of routines implements a coalesce_list. This is an object which
37 is used to track pairs of ssa_names which are desirable to coalesce
38 together to avoid copies. Costs are associated with each pair, and when
39 all desired information has been collected, the object can be used to
40 order the pairs for processing. */
42 /* This structure defines a pair entry. */
44 typedef struct coalesce_pair
46 int first_element;
47 int second_element;
48 int cost;
49 } * coalesce_pair_p;
50 typedef const struct coalesce_pair *const_coalesce_pair_p;
52 typedef struct cost_one_pair_d
54 int first_element;
55 int second_element;
56 struct cost_one_pair_d *next;
57 } * cost_one_pair_p;
59 /* This structure maintains the list of coalesce pairs. */
61 typedef struct coalesce_list_d
63 htab_t list; /* Hash table. */
64 coalesce_pair_p *sorted; /* List when sorted. */
65 int num_sorted; /* Number in the sorted list. */
66 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
67 } *coalesce_list_p;
69 #define NO_BEST_COALESCE -1
70 #define MUST_COALESCE_COST INT_MAX
73 /* Return cost of execution of copy instruction with FREQUENCY
74 possibly on CRITICAL edge and in HOT basic block. */
76 static inline int
77 coalesce_cost (int frequency, bool hot, bool critical)
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
82 if (!cost)
83 cost = 1;
85 if (optimize_size)
86 cost = 1;
87 else
88 /* It is more important to coalesce in HOT blocks. */
89 if (hot)
90 cost *= 2;
92 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
93 if (critical)
94 cost *= 2;
95 return cost;
99 /* Return the cost of executing a copy instruction in basic block BB. */
101 static inline int
102 coalesce_cost_bb (basic_block bb)
104 return coalesce_cost (bb->frequency, maybe_hot_bb_p (bb), false);
108 /* Return the cost of executing a copy instruction on edge E. */
110 static inline int
111 coalesce_cost_edge (edge e)
113 if (e->flags & EDGE_ABNORMAL)
114 return MUST_COALESCE_COST;
116 return coalesce_cost (EDGE_FREQUENCY (e),
117 maybe_hot_bb_p (e->src),
118 EDGE_CRITICAL_P (e));
122 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
123 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
124 NO_BEST_COALESCE is returned if there aren't any. */
126 static inline int
127 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
129 cost_one_pair_p ptr;
131 ptr = cl->cost_one_list;
132 if (!ptr)
133 return NO_BEST_COALESCE;
135 *p1 = ptr->first_element;
136 *p2 = ptr->second_element;
137 cl->cost_one_list = ptr->next;
139 free (ptr);
141 return 1;
144 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
145 2 elements via P1 and P2. Their calculated cost is returned by the function.
146 NO_BEST_COALESCE is returned if the coalesce list is empty. */
148 static inline int
149 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
151 coalesce_pair_p node;
152 int ret;
154 if (cl->sorted == NULL)
155 return pop_cost_one_pair (cl, p1, p2);
157 if (cl->num_sorted == 0)
158 return pop_cost_one_pair (cl, p1, p2);
160 node = cl->sorted[--(cl->num_sorted)];
161 *p1 = node->first_element;
162 *p2 = node->second_element;
163 ret = node->cost;
164 free (node);
166 return ret;
170 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
172 /* Hash function for coalesce list. Calculate hash for PAIR. */
174 static unsigned int
175 coalesce_pair_map_hash (const void *pair)
177 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
178 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
180 return COALESCE_HASH_FN (a,b);
184 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
185 returning TRUE if the two pairs are equivalent. */
187 static int
188 coalesce_pair_map_eq (const void *pair1, const void *pair2)
190 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
191 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
193 return (p1->first_element == p2->first_element
194 && p1->second_element == p2->second_element);
198 /* Create a new empty coalesce list object and return it. */
200 static inline coalesce_list_p
201 create_coalesce_list (void)
203 coalesce_list_p list;
204 unsigned size = num_ssa_names * 3;
206 if (size < 40)
207 size = 40;
209 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
210 list->list = htab_create (size, coalesce_pair_map_hash,
211 coalesce_pair_map_eq, NULL);
212 list->sorted = NULL;
213 list->num_sorted = 0;
214 list->cost_one_list = NULL;
215 return list;
219 /* Delete coalesce list CL. */
221 static inline void
222 delete_coalesce_list (coalesce_list_p cl)
224 gcc_assert (cl->cost_one_list == NULL);
225 htab_delete (cl->list);
226 if (cl->sorted)
227 free (cl->sorted);
228 gcc_assert (cl->num_sorted == 0);
229 free (cl);
233 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
234 one isn't found, return NULL if CREATE is false, otherwise create a new
235 coalesce pair object and return it. */
237 static coalesce_pair_p
238 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
240 struct coalesce_pair p, *pair;
241 void **slot;
242 unsigned int hash;
244 /* Normalize so that p1 is the smaller value. */
245 if (p2 < p1)
247 p.first_element = p2;
248 p.second_element = p1;
250 else
252 p.first_element = p1;
253 p.second_element = p2;
257 hash = coalesce_pair_map_hash (&p);
258 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
260 if (create && !pair)
262 gcc_assert (cl->sorted == NULL);
263 pair = XNEW (struct coalesce_pair);
264 pair->first_element = p.first_element;
265 pair->second_element = p.second_element;
266 pair->cost = 0;
267 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
268 *(struct coalesce_pair **)slot = pair;
271 return pair;
274 static inline void
275 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
277 cost_one_pair_p pair;
279 pair = XNEW (struct cost_one_pair_d);
280 pair->first_element = p1;
281 pair->second_element = p2;
282 pair->next = cl->cost_one_list;
283 cl->cost_one_list = pair;
287 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
289 static inline void
290 add_coalesce (coalesce_list_p cl, int p1, int p2,
291 int value)
293 coalesce_pair_p node;
295 gcc_assert (cl->sorted == NULL);
296 if (p1 == p2)
297 return;
299 node = find_coalesce_pair (cl, p1, p2, true);
301 /* Once the value is MUST_COALESCE_COST, leave it that way. */
302 if (node->cost != MUST_COALESCE_COST)
304 if (value == MUST_COALESCE_COST)
305 node->cost = value;
306 else
307 node->cost += value;
312 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
314 static int
315 compare_pairs (const void *p1, const void *p2)
317 const_coalesce_pair_p const * pp1 = p1;
318 const_coalesce_pair_p const * pp2 = p2;
319 int result;
321 result = (* pp2)->cost - (* pp1)->cost;
322 /* Since qsort does not guarantee stability we use the elements
323 as a secondary key. This provides us with independence from
324 the host's implementation of the sorting algorithm. */
325 if (result == 0)
327 result = (* pp2)->first_element - (* pp1)->first_element;
328 if (result == 0)
329 result = (* pp2)->second_element - (* pp1)->second_element;
332 return result;
336 /* Return the number of unique coalesce pairs in CL. */
338 static inline int
339 num_coalesce_pairs (coalesce_list_p cl)
341 return htab_elements (cl->list);
345 /* Iterator over hash table pairs. */
346 typedef struct
348 htab_iterator hti;
349 } coalesce_pair_iterator;
352 /* Return first partition pair from list CL, initializing iterator ITER. */
354 static inline coalesce_pair_p
355 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
357 coalesce_pair_p pair;
359 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
360 return pair;
364 /* Return TRUE if there are no more partitions in for ITER to process. */
366 static inline bool
367 end_coalesce_pair_p (coalesce_pair_iterator *iter)
369 return end_htab_p (&(iter->hti));
373 /* Return the next partition pair to be visited by ITER. */
375 static inline coalesce_pair_p
376 next_coalesce_pair (coalesce_pair_iterator *iter)
378 coalesce_pair_p pair;
380 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
381 return pair;
385 /* Iterate over CL using ITER, returning values in PAIR. */
387 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
388 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
389 !end_coalesce_pair_p (&(ITER)); \
390 (PAIR) = next_coalesce_pair (&(ITER)))
393 /* Prepare CL for removal of preferred pairs. When finished they are sorted
394 in order from most important coalesce to least important. */
396 static void
397 sort_coalesce_list (coalesce_list_p cl)
399 unsigned x, num;
400 coalesce_pair_p p;
401 coalesce_pair_iterator ppi;
403 gcc_assert (cl->sorted == NULL);
405 num = num_coalesce_pairs (cl);
406 cl->num_sorted = num;
407 if (num == 0)
408 return;
410 /* Allocate a vector for the pair pointers. */
411 cl->sorted = XNEWVEC (coalesce_pair_p, num);
413 /* Populate the vector with pointers to the pairs. */
414 x = 0;
415 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
416 cl->sorted[x++] = p;
417 gcc_assert (x == num);
419 /* Already sorted. */
420 if (num == 1)
421 return;
423 /* If there are only 2, just pick swap them if the order isn't correct. */
424 if (num == 2)
426 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
428 p = cl->sorted[0];
429 cl->sorted[0] = cl->sorted[1];
430 cl->sorted[1] = p;
432 return;
435 /* Only call qsort if there are more than 2 items. */
436 if (num > 2)
437 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
441 /* Send debug info for coalesce list CL to file F. */
443 static void
444 dump_coalesce_list (FILE *f, coalesce_list_p cl)
446 coalesce_pair_p node;
447 coalesce_pair_iterator ppi;
448 int x;
449 tree var;
451 if (cl->sorted == NULL)
453 fprintf (f, "Coalesce List:\n");
454 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
456 tree var1 = ssa_name (node->first_element);
457 tree var2 = ssa_name (node->second_element);
458 print_generic_expr (f, var1, TDF_SLIM);
459 fprintf (f, " <-> ");
460 print_generic_expr (f, var2, TDF_SLIM);
461 fprintf (f, " (%1d), ", node->cost);
462 fprintf (f, "\n");
465 else
467 fprintf (f, "Sorted Coalesce list:\n");
468 for (x = cl->num_sorted - 1 ; x >=0; x--)
470 node = cl->sorted[x];
471 fprintf (f, "(%d) ", node->cost);
472 var = ssa_name (node->first_element);
473 print_generic_expr (f, var, TDF_SLIM);
474 fprintf (f, " <-> ");
475 var = ssa_name (node->second_element);
476 print_generic_expr (f, var, TDF_SLIM);
477 fprintf (f, "\n");
483 /* This represents a conflict graph. Implemented as an array of bitmaps.
484 A full matrix is used for conflicts rather than just upper triangular form.
485 this make sit much simpler and faster to perform conflict merges. */
487 typedef struct ssa_conflicts_d
489 unsigned size;
490 bitmap *conflicts;
491 } * ssa_conflicts_p;
494 /* Return an empty new conflict graph for SIZE elements. */
496 static inline ssa_conflicts_p
497 ssa_conflicts_new (unsigned size)
499 ssa_conflicts_p ptr;
501 ptr = XNEW (struct ssa_conflicts_d);
502 ptr->conflicts = XCNEWVEC (bitmap, size);
503 ptr->size = size;
504 return ptr;
508 /* Free storage for conflict graph PTR. */
510 static inline void
511 ssa_conflicts_delete (ssa_conflicts_p ptr)
513 unsigned x;
514 for (x = 0; x < ptr->size; x++)
515 if (ptr->conflicts[x])
516 BITMAP_FREE (ptr->conflicts[x]);
518 free (ptr->conflicts);
519 free (ptr);
523 /* Test if elements X and Y conflict in graph PTR. */
525 static inline bool
526 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
528 bitmap b;
530 #ifdef ENABLE_CHECKING
531 gcc_assert (x < ptr->size);
532 gcc_assert (y < ptr->size);
533 gcc_assert (x != y);
534 #endif
536 b = ptr->conflicts[x];
537 if (b)
538 /* Avoid the lookup if Y has no conflicts. */
539 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
540 else
541 return false;
545 /* Add a conflict with Y to the bitmap for X in graph PTR. */
547 static inline void
548 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
550 /* If there are no conflicts yet, allocate the bitmap and set bit. */
551 if (!ptr->conflicts[x])
552 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
553 bitmap_set_bit (ptr->conflicts[x], y);
557 /* Add conflicts between X and Y in graph PTR. */
559 static inline void
560 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
562 #ifdef ENABLE_CHECKING
563 gcc_assert (x < ptr->size);
564 gcc_assert (y < ptr->size);
565 gcc_assert (x != y);
566 #endif
567 ssa_conflicts_add_one (ptr, x, y);
568 ssa_conflicts_add_one (ptr, y, x);
572 /* Merge all Y's conflict into X in graph PTR. */
574 static inline void
575 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
577 unsigned z;
578 bitmap_iterator bi;
580 gcc_assert (x != y);
581 if (!(ptr->conflicts[y]))
582 return;
584 /* Add a conflict between X and every one Y has. If the bitmap doesn't
585 exist, then it has already been coalesced, and we dont need to add a
586 conflict. */
587 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
588 if (ptr->conflicts[z])
589 bitmap_set_bit (ptr->conflicts[z], x);
591 if (ptr->conflicts[x])
593 /* If X has conflicts, add Y's to X. */
594 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
595 BITMAP_FREE (ptr->conflicts[y]);
597 else
599 /* If X has no conflicts, simply use Y's. */
600 ptr->conflicts[x] = ptr->conflicts[y];
601 ptr->conflicts[y] = NULL;
606 /* Dump a conflicts graph. */
608 static void
609 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
611 unsigned x;
613 fprintf (file, "\nConflict graph:\n");
615 for (x = 0; x < ptr->size; x++)
616 if (ptr->conflicts[x])
618 fprintf (dump_file, "%d: ", x);
619 dump_bitmap (file, ptr->conflicts[x]);
624 /* This structure is used to efficiently record the current status of live
625 SSA_NAMES when building a conflict graph.
626 LIVE_BASE_VAR has a bit set for each base variable which has at least one
627 ssa version live.
628 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
629 index, and is used to track what partitions of each base variable are
630 live. This makes it easy to add conflicts between just live partitions
631 with the same base variable.
632 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
633 marked as being live. This delays clearing of these bitmaps until
634 they are actually needed again. */
636 typedef struct live_track_d
638 bitmap live_base_var; /* Indicates if a basevar is live. */
639 bitmap *live_base_partitions; /* Live partitions for each basevar. */
640 var_map map; /* Var_map being used for partition mapping. */
641 } * live_track_p;
644 /* This routine will create a new live track structure based on the partitions
645 in MAP. */
647 static live_track_p
648 new_live_track (var_map map)
650 live_track_p ptr;
651 int lim, x;
653 /* Make sure there is a partition view in place. */
654 gcc_assert (map->partition_to_base_index != NULL);
656 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
657 ptr->map = map;
658 lim = num_basevars (map);
659 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
660 ptr->live_base_var = BITMAP_ALLOC (NULL);
661 for (x = 0; x < lim; x++)
662 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
663 return ptr;
667 /* This routine will free the memory associated with PTR. */
669 static void
670 delete_live_track (live_track_p ptr)
672 int x, lim;
674 lim = num_basevars (ptr->map);
675 for (x = 0; x < lim; x++)
676 BITMAP_FREE (ptr->live_base_partitions[x]);
677 BITMAP_FREE (ptr->live_base_var);
678 free (ptr->live_base_partitions);
679 free (ptr);
683 /* This function will remove PARTITION from the live list in PTR. */
685 static inline void
686 live_track_remove_partition (live_track_p ptr, int partition)
688 int root;
690 root = basevar_index (ptr->map, partition);
691 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
692 /* If the element list is empty, make the base variable not live either. */
693 if (bitmap_empty_p (ptr->live_base_partitions[root]))
694 bitmap_clear_bit (ptr->live_base_var, root);
698 /* This function will adds PARTITION to the live list in PTR. */
700 static inline void
701 live_track_add_partition (live_track_p ptr, int partition)
703 int root;
705 root = basevar_index (ptr->map, partition);
706 /* If this base var wasn't live before, it is now. Clear the element list
707 since it was delayed until needed. */
708 if (!bitmap_bit_p (ptr->live_base_var, root))
710 bitmap_set_bit (ptr->live_base_var, root);
711 bitmap_clear (ptr->live_base_partitions[root]);
713 bitmap_set_bit (ptr->live_base_partitions[root], partition);
718 /* Clear the live bit for VAR in PTR. */
720 static inline void
721 live_track_clear_var (live_track_p ptr, tree var)
723 int p;
725 p = var_to_partition (ptr->map, var);
726 if (p != NO_PARTITION)
727 live_track_remove_partition (ptr, p);
731 /* Return TRUE if VAR is live in PTR. */
733 static inline bool
734 live_track_live_p (live_track_p ptr, tree var)
736 int p, root;
738 p = var_to_partition (ptr->map, var);
739 if (p != NO_PARTITION)
741 root = basevar_index (ptr->map, p);
742 if (bitmap_bit_p (ptr->live_base_var, root))
743 return bitmap_bit_p (ptr->live_base_partitions[root], p);
745 return false;
749 /* This routine will add USE to PTR. USE will be marked as live in both the
750 ssa live map and the live bitmap for the root of USE. */
752 static inline void
753 live_track_process_use (live_track_p ptr, tree use)
755 int p;
757 p = var_to_partition (ptr->map, use);
758 if (p == NO_PARTITION)
759 return;
761 /* Mark as live in the appropriate live list. */
762 live_track_add_partition (ptr, p);
766 /* This routine will process a DEF in PTR. DEF will be removed from the live
767 lists, and if there are any other live partitions with the same base
768 variable, conflicts will be added to GRAPH. */
770 static inline void
771 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
773 int p, root;
774 bitmap b;
775 unsigned x;
776 bitmap_iterator bi;
778 p = var_to_partition (ptr->map, def);
779 if (p == NO_PARTITION)
780 return;
782 /* Clear the liveness bit. */
783 live_track_remove_partition (ptr, p);
785 /* If the bitmap isn't empty now, conflicts need to be added. */
786 root = basevar_index (ptr->map, p);
787 if (bitmap_bit_p (ptr->live_base_var, root))
789 b = ptr->live_base_partitions[root];
790 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
791 ssa_conflicts_add (graph, p, x);
796 /* Initialize PTR with the partitions set in INIT. */
798 static inline void
799 live_track_init (live_track_p ptr, bitmap init)
801 unsigned p;
802 bitmap_iterator bi;
804 /* Mark all live on exit partitions. */
805 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
806 live_track_add_partition (ptr, p);
810 /* This routine will clear all live partitions in PTR. */
812 static inline void
813 live_track_clear_base_vars (live_track_p ptr)
815 /* Simply clear the live base list. Anything marked as live in the element
816 lists will be cleared later if/when the base variable ever comes alive
817 again. */
818 bitmap_clear (ptr->live_base_var);
822 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
823 partition view of the var_map liveinfo is based on get entries in the
824 conflict graph. Only conflicts between ssa_name partitions with the same
825 base variable are added. */
827 static ssa_conflicts_p
828 build_ssa_conflict_graph (tree_live_info_p liveinfo)
830 ssa_conflicts_p graph;
831 var_map map;
832 basic_block bb;
833 ssa_op_iter iter;
834 live_track_p live;
836 map = live_var_map (liveinfo);
837 graph = ssa_conflicts_new (num_var_partitions (map));
839 live = new_live_track (map);
841 FOR_EACH_BB (bb)
843 block_stmt_iterator bsi;
844 tree phi;
846 /* Start with live on exit temporaries. */
847 live_track_init (live, live_on_exit (liveinfo, bb));
849 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
851 tree var;
852 tree stmt = bsi_stmt (bsi);
854 /* A copy between 2 partitions does not introduce an interference
855 by itself. If they did, you would never be able to coalesce
856 two things which are copied. If the two variables really do
857 conflict, they will conflict elsewhere in the program.
859 This is handled by simply removing the SRC of the copy from the
860 live list, and processing the stmt normally. */
861 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
863 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
864 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
865 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
866 live_track_clear_var (live, rhs);
869 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
870 live_track_process_def (live, var, graph);
872 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
873 live_track_process_use (live, var);
876 /* If result of a PHI is unused, looping over the statements will not
877 record any conflicts since the def was never live. Since the PHI node
878 is going to be translated out of SSA form, it will insert a copy.
879 There must be a conflict recorded between the result of the PHI and
880 any variables that are live. Otherwise the out-of-ssa translation
881 may create incorrect code. */
882 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
884 tree result = PHI_RESULT (phi);
885 if (live_track_live_p (live, result))
886 live_track_process_def (live, result, graph);
889 live_track_clear_base_vars (live);
892 delete_live_track (live);
893 return graph;
897 /* Shortcut routine to print messages to file F of the form:
898 "STR1 EXPR1 STR2 EXPR2 STR3." */
900 static inline void
901 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
902 tree expr2, const char *str3)
904 fprintf (f, "%s", str1);
905 print_generic_expr (f, expr1, TDF_SLIM);
906 fprintf (f, "%s", str2);
907 print_generic_expr (f, expr2, TDF_SLIM);
908 fprintf (f, "%s", str3);
912 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
913 the phi node at fault, I is the argument index at fault. A message is
914 printed and compilation is then terminated. */
916 static inline void
917 abnormal_corrupt (tree phi, int i)
919 edge e = PHI_ARG_EDGE (phi, i);
920 tree res = PHI_RESULT (phi);
921 tree arg = PHI_ARG_DEF (phi, i);
923 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
924 e->src->index, e->dest->index);
925 fprintf (stderr, "Argument %d (", i);
926 print_generic_expr (stderr, arg, TDF_SLIM);
927 if (TREE_CODE (arg) != SSA_NAME)
928 fprintf (stderr, ") is not an SSA_NAME.\n");
929 else
931 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
932 fprintf (stderr, ") does not have the same base variable as the result ");
933 print_generic_stmt (stderr, res, TDF_SLIM);
936 internal_error ("SSA corruption");
940 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
942 static inline void
943 fail_abnormal_edge_coalesce (int x, int y)
945 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
946 fprintf (stderr, " which are marked as MUST COALESCE.\n");
947 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
948 fprintf (stderr, " and ");
949 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
951 internal_error ("SSA corruption");
955 /* This function creates a var_map for the current function as well as creating
956 a coalesce list for use later in the out of ssa process. */
958 static var_map
959 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
961 block_stmt_iterator bsi;
962 basic_block bb;
963 tree var;
964 tree stmt;
965 tree first;
966 var_map map;
967 ssa_op_iter iter;
968 int v1, v2, cost;
969 unsigned i;
971 #ifdef ENABLE_CHECKING
972 bitmap used_in_real_ops;
973 bitmap used_in_virtual_ops;
975 used_in_real_ops = BITMAP_ALLOC (NULL);
976 used_in_virtual_ops = BITMAP_ALLOC (NULL);
977 #endif
979 map = init_var_map (num_ssa_names + 1);
981 FOR_EACH_BB (bb)
983 tree phi, arg;
985 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
987 int i;
988 int ver;
989 tree res;
990 bool saw_copy = false;
992 res = PHI_RESULT (phi);
993 ver = SSA_NAME_VERSION (res);
994 register_ssa_partition (map, res);
996 /* Register ssa_names and coalesces between the args and the result
997 of all PHI. */
998 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1000 edge e = PHI_ARG_EDGE (phi, i);
1001 arg = PHI_ARG_DEF (phi, i);
1002 if (TREE_CODE (arg) == SSA_NAME)
1003 register_ssa_partition (map, arg);
1004 if (TREE_CODE (arg) == SSA_NAME
1005 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1007 saw_copy = true;
1008 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1009 if ((e->flags & EDGE_ABNORMAL) == 0)
1011 int cost = coalesce_cost_edge (e);
1012 if (cost == 1 && has_single_use (arg))
1013 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1014 else
1015 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1018 else
1019 if (e->flags & EDGE_ABNORMAL)
1020 abnormal_corrupt (phi, i);
1022 if (saw_copy)
1023 bitmap_set_bit (used_in_copy, ver);
1026 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1028 stmt = bsi_stmt (bsi);
1030 /* Register USE and DEF operands in each statement. */
1031 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1032 register_ssa_partition (map, var);
1034 /* Check for copy coalesces. */
1035 switch (TREE_CODE (stmt))
1037 case GIMPLE_MODIFY_STMT:
1039 tree op1 = GIMPLE_STMT_OPERAND (stmt, 0);
1040 tree op2 = GIMPLE_STMT_OPERAND (stmt, 1);
1041 if (TREE_CODE (op1) == SSA_NAME
1042 && TREE_CODE (op2) == SSA_NAME
1043 && SSA_NAME_VAR (op1) == SSA_NAME_VAR (op2))
1045 v1 = SSA_NAME_VERSION (op1);
1046 v2 = SSA_NAME_VERSION (op2);
1047 cost = coalesce_cost_bb (bb);
1048 add_coalesce (cl, v1, v2, cost);
1049 bitmap_set_bit (used_in_copy, v1);
1050 bitmap_set_bit (used_in_copy, v2);
1053 break;
1055 case ASM_EXPR:
1057 unsigned long noutputs, i;
1058 tree *outputs, link;
1059 noutputs = list_length (ASM_OUTPUTS (stmt));
1060 outputs = (tree *) alloca (noutputs * sizeof (tree));
1061 for (i = 0, link = ASM_OUTPUTS (stmt); link;
1062 ++i, link = TREE_CHAIN (link))
1063 outputs[i] = TREE_VALUE (link);
1065 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1067 const char *constraint
1068 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1069 tree input = TREE_VALUE (link);
1070 char *end;
1071 unsigned long match;
1073 if (TREE_CODE (input) != SSA_NAME)
1074 continue;
1076 match = strtoul (constraint, &end, 10);
1077 if (match >= noutputs || end == constraint)
1078 continue;
1080 if (TREE_CODE (outputs[match]) != SSA_NAME)
1081 continue;
1083 v1 = SSA_NAME_VERSION (outputs[match]);
1084 v2 = SSA_NAME_VERSION (input);
1086 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1088 cost = coalesce_cost (REG_BR_PROB_BASE,
1089 maybe_hot_bb_p (bb),
1090 false);
1091 add_coalesce (cl, v1, v2, cost);
1092 bitmap_set_bit (used_in_copy, v1);
1093 bitmap_set_bit (used_in_copy, v2);
1096 break;
1099 default:
1100 break;
1103 #ifdef ENABLE_CHECKING
1104 /* Mark real uses and defs. */
1105 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1106 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1108 /* Validate that virtual ops don't get used in funny ways. */
1109 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
1111 bitmap_set_bit (used_in_virtual_ops,
1112 DECL_UID (SSA_NAME_VAR (var)));
1115 #endif /* ENABLE_CHECKING */
1119 /* Now process result decls and live on entry variables for entry into
1120 the coalesce list. */
1121 first = NULL_TREE;
1122 for (i = 1; i < num_ssa_names; i++)
1124 var = map->partition_to_var[i];
1125 if (var != NULL_TREE)
1127 /* Add coalesces between all the result decls. */
1128 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1130 if (first == NULL_TREE)
1131 first = var;
1132 else
1134 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1135 v1 = SSA_NAME_VERSION (first);
1136 v2 = SSA_NAME_VERSION (var);
1137 bitmap_set_bit (used_in_copy, v1);
1138 bitmap_set_bit (used_in_copy, v2);
1139 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1140 add_coalesce (cl, v1, v2, cost);
1143 /* Mark any default_def variables as being in the coalesce list
1144 since they will have to be coalesced with the base variable. If
1145 not marked as present, they won't be in the coalesce view. */
1146 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var)
1147 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1151 #if defined ENABLE_CHECKING
1153 unsigned i;
1154 bitmap both = BITMAP_ALLOC (NULL);
1155 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1156 if (!bitmap_empty_p (both))
1158 bitmap_iterator bi;
1160 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1161 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1162 get_name (referenced_var (i)));
1163 internal_error ("SSA corruption");
1166 BITMAP_FREE (used_in_real_ops);
1167 BITMAP_FREE (used_in_virtual_ops);
1168 BITMAP_FREE (both);
1170 #endif
1172 return map;
1176 /* Attempt to coalesce ssa versions X and Y together using the partition
1177 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1178 DEBUG, if it is nun-NULL. */
1180 static inline bool
1181 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1182 FILE *debug)
1184 int z;
1185 tree var1, var2;
1186 int p1, p2;
1188 p1 = var_to_partition (map, ssa_name (x));
1189 p2 = var_to_partition (map, ssa_name (y));
1191 if (debug)
1193 fprintf (debug, "(%d)", x);
1194 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1195 fprintf (debug, " & (%d)", y);
1196 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1199 if (p1 == p2)
1201 if (debug)
1202 fprintf (debug, ": Already Coalesced.\n");
1203 return true;
1206 if (debug)
1207 fprintf (debug, " [map: %d, %d] ", p1, p2);
1210 if (!ssa_conflicts_test_p (graph, p1, p2))
1212 var1 = partition_to_var (map, p1);
1213 var2 = partition_to_var (map, p2);
1214 z = var_union (map, var1, var2);
1215 if (z == NO_PARTITION)
1217 if (debug)
1218 fprintf (debug, ": Unable to perform partition union.\n");
1219 return false;
1222 /* z is the new combined partition. Remove the other partition from
1223 the list, and merge the conflicts. */
1224 if (z == p1)
1225 ssa_conflicts_merge (graph, p1, p2);
1226 else
1227 ssa_conflicts_merge (graph, p2, p1);
1229 if (debug)
1230 fprintf (debug, ": Success -> %d\n", z);
1231 return true;
1234 if (debug)
1235 fprintf (debug, ": Fail due to conflict\n");
1237 return false;
1241 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1242 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1244 static void
1245 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1246 FILE *debug)
1248 int x = 0, y = 0;
1249 tree var1, var2, phi;
1250 int cost;
1251 basic_block bb;
1252 edge e;
1253 edge_iterator ei;
1255 /* First, coalesce all the copies across abnormal edges. These are not placed
1256 in the coalesce list because they do not need to be sorted, and simply
1257 consume extra memory/compilation time in large programs. */
1259 FOR_EACH_BB (bb)
1261 FOR_EACH_EDGE (e, ei, bb->preds)
1262 if (e->flags & EDGE_ABNORMAL)
1264 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1266 tree res = PHI_RESULT (phi);
1267 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1268 int v1 = SSA_NAME_VERSION (res);
1269 int v2 = SSA_NAME_VERSION (arg);
1271 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1272 abnormal_corrupt (phi, e->dest_idx);
1274 if (debug)
1275 fprintf (debug, "Abnormal coalesce: ");
1277 if (!attempt_coalesce (map, graph, v1, v2, debug))
1278 fail_abnormal_edge_coalesce (v1, v2);
1283 /* Now process the items in the coalesce list. */
1285 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1287 var1 = ssa_name (x);
1288 var2 = ssa_name (y);
1290 /* Assert the coalesces have the same base variable. */
1291 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1293 if (debug)
1294 fprintf (debug, "Coalesce list: ");
1295 attempt_coalesce (map, graph, x, y, debug);
1300 /* Reduce the number of copies by coalescing variables in the function. Return
1301 a partition map with the resulting coalesces. */
1303 extern var_map
1304 coalesce_ssa_name (void)
1306 unsigned num, x;
1307 tree_live_info_p liveinfo;
1308 ssa_conflicts_p graph;
1309 coalesce_list_p cl;
1310 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1311 var_map map;
1313 cl = create_coalesce_list ();
1314 map = create_outofssa_var_map (cl, used_in_copies);
1316 /* Don't calculate live ranges for variables not in the coalesce list. */
1317 partition_view_bitmap (map, used_in_copies, true);
1318 BITMAP_FREE (used_in_copies);
1320 if (num_var_partitions (map) < 1)
1322 delete_coalesce_list (cl);
1323 return map;
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1327 dump_var_map (dump_file, map);
1329 liveinfo = calculate_live_ranges (map);
1331 if (dump_file && (dump_flags & TDF_DETAILS))
1332 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1334 /* Build a conflict graph. */
1335 graph = build_ssa_conflict_graph (liveinfo);
1336 delete_tree_live_info (liveinfo);
1337 if (dump_file && (dump_flags & TDF_DETAILS))
1338 ssa_conflicts_dump (dump_file, graph);
1340 sort_coalesce_list (cl);
1342 if (dump_file && (dump_flags & TDF_DETAILS))
1344 fprintf (dump_file, "\nAfter sorting:\n");
1345 dump_coalesce_list (dump_file, cl);
1348 /* First, coalesce all live on entry variables to their base variable.
1349 This will ensure the first use is coming from the correct location. */
1351 num = num_var_partitions (map);
1352 for (x = 0 ; x < num; x++)
1354 tree var = partition_to_var (map, x);
1355 tree root;
1357 if (TREE_CODE (var) != SSA_NAME)
1358 continue;
1360 root = SSA_NAME_VAR (var);
1361 if (gimple_default_def (cfun, root) == var)
1363 /* This root variable should have not already been assigned
1364 to another partition which is not coalesced with this one. */
1365 gcc_assert (!var_ann (root)->out_of_ssa_tag);
1367 if (dump_file && (dump_flags & TDF_DETAILS))
1369 print_exprs (dump_file, "Must coalesce ", var,
1370 " with the root variable ", root, ".\n");
1372 change_partition_var (map, root, x);
1376 if (dump_file && (dump_flags & TDF_DETAILS))
1377 dump_var_map (dump_file, map);
1379 /* Now coalesce everything in the list. */
1380 coalesce_partitions (map, graph, cl,
1381 ((dump_flags & TDF_DETAILS) ? dump_file
1382 : NULL));
1384 delete_coalesce_list (cl);
1385 ssa_conflicts_delete (graph);
1387 return map;