[41/46] Add vec_info::remove_stmt
[official-gcc.git] / gcc / tree-vectorizer.h
blob8aa485eb9175247fb6c2641b059b9bef5b5993d7
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 class stmt_vec_info {
25 public:
26 stmt_vec_info () {}
27 stmt_vec_info (struct _stmt_vec_info *ptr) : m_ptr (ptr) {}
28 struct _stmt_vec_info *operator-> () const { return m_ptr; }
29 struct _stmt_vec_info &operator* () const;
30 operator struct _stmt_vec_info * () const { return m_ptr; }
31 operator gimple * () const;
32 operator void * () const { return m_ptr; }
33 operator bool () const { return m_ptr; }
34 bool operator == (const stmt_vec_info &x) { return x.m_ptr == m_ptr; }
35 bool operator == (_stmt_vec_info *x) { return x == m_ptr; }
36 bool operator != (const stmt_vec_info &x) { return x.m_ptr != m_ptr; }
37 bool operator != (_stmt_vec_info *x) { return x != m_ptr; }
39 private:
40 struct _stmt_vec_info *m_ptr;
43 #define NULL_STMT_VEC_INFO (stmt_vec_info (NULL))
45 #include "tree-data-ref.h"
46 #include "tree-hash-traits.h"
47 #include "target.h"
49 /* Used for naming of new temporaries. */
50 enum vect_var_kind {
51 vect_simple_var,
52 vect_pointer_var,
53 vect_scalar_var,
54 vect_mask_var
57 /* Defines type of operation. */
58 enum operation_type {
59 unary_op = 1,
60 binary_op,
61 ternary_op
64 /* Define type of available alignment support. */
65 enum dr_alignment_support {
66 dr_unaligned_unsupported,
67 dr_unaligned_supported,
68 dr_explicit_realign,
69 dr_explicit_realign_optimized,
70 dr_aligned
73 /* Define type of def-use cross-iteration cycle. */
74 enum vect_def_type {
75 vect_uninitialized_def = 0,
76 vect_constant_def = 1,
77 vect_external_def,
78 vect_internal_def,
79 vect_induction_def,
80 vect_reduction_def,
81 vect_double_reduction_def,
82 vect_nested_cycle,
83 vect_unknown_def_type
86 /* Define type of reduction. */
87 enum vect_reduction_type {
88 TREE_CODE_REDUCTION,
89 COND_REDUCTION,
90 INTEGER_INDUC_COND_REDUCTION,
91 CONST_COND_REDUCTION,
93 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
94 to implement:
96 for (int i = 0; i < VF; ++i)
97 res = cond[i] ? val[i] : res; */
98 EXTRACT_LAST_REDUCTION,
100 /* Use a folding reduction within the loop to implement:
102 for (int i = 0; i < VF; ++i)
103 res = res OP val[i];
105 (with no reassocation). */
106 FOLD_LEFT_REDUCTION
109 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
110 || ((D) == vect_double_reduction_def) \
111 || ((D) == vect_nested_cycle))
113 /* Structure to encapsulate information about a group of like
114 instructions to be presented to the target cost model. */
115 struct stmt_info_for_cost {
116 int count;
117 enum vect_cost_for_stmt kind;
118 enum vect_cost_model_location where;
119 stmt_vec_info stmt_info;
120 int misalign;
123 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
125 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
126 known alignment for that base. */
127 typedef hash_map<tree_operand_hash,
128 innermost_loop_behavior *> vec_base_alignments;
130 /************************************************************************
132 ************************************************************************/
133 typedef struct _slp_tree *slp_tree;
135 /* A computation tree of an SLP instance. Each node corresponds to a group of
136 stmts to be packed in a SIMD stmt. */
137 struct _slp_tree {
138 /* Nodes that contain def-stmts of this node statements operands. */
139 vec<slp_tree> children;
140 /* A group of scalar stmts to be vectorized together. */
141 vec<stmt_vec_info> stmts;
142 /* Load permutation relative to the stores, NULL if there is no
143 permutation. */
144 vec<unsigned> load_permutation;
145 /* Vectorized stmt/s. */
146 vec<stmt_vec_info> vec_stmts;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
152 /* Whether the scalar computations use two different operators. */
153 bool two_operators;
154 /* The DEF type of this node. */
155 enum vect_def_type def_type;
159 /* SLP instance is a sequence of stmts in a loop that can be packed into
160 SIMD stmts. */
161 typedef struct _slp_instance {
162 /* The root of SLP tree. */
163 slp_tree root;
165 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
166 unsigned int group_size;
168 /* The unrolling factor required to vectorized this SLP instance. */
169 poly_uint64 unrolling_factor;
171 /* The group of nodes that contain loads of this SLP instance. */
172 vec<slp_tree> loads;
174 /* The SLP node containing the reduction PHIs. */
175 slp_tree reduc_phis;
176 } *slp_instance;
179 /* Access Functions. */
180 #define SLP_INSTANCE_TREE(S) (S)->root
181 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
182 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
183 #define SLP_INSTANCE_LOADS(S) (S)->loads
185 #define SLP_TREE_CHILDREN(S) (S)->children
186 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
187 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
188 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
189 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
190 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
191 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
195 /* Describes two objects whose addresses must be unequal for the vectorized
196 loop to be valid. */
197 typedef std::pair<tree, tree> vec_object_pair;
199 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
200 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
201 struct vec_lower_bound {
202 vec_lower_bound () {}
203 vec_lower_bound (tree e, bool u, poly_uint64 m)
204 : expr (e), unsigned_p (u), min_value (m) {}
206 tree expr;
207 bool unsigned_p;
208 poly_uint64 min_value;
211 /* Vectorizer state shared between different analyses like vector sizes
212 of the same CFG region. */
213 struct vec_info_shared {
214 vec_info_shared();
215 ~vec_info_shared();
217 void save_datarefs();
218 void check_datarefs();
220 /* All data references. Freed by free_data_refs, so not an auto_vec. */
221 vec<data_reference_p> datarefs;
222 vec<data_reference> datarefs_copy;
224 /* The loop nest in which the data dependences are computed. */
225 auto_vec<loop_p> loop_nest;
227 /* All data dependences. Freed by free_dependence_relations, so not
228 an auto_vec. */
229 vec<ddr_p> ddrs;
232 /* Vectorizer state common between loop and basic-block vectorization. */
233 struct vec_info {
234 enum vec_kind { bb, loop };
236 vec_info (vec_kind, void *, vec_info_shared *);
237 ~vec_info ();
239 stmt_vec_info add_stmt (gimple *);
240 stmt_vec_info lookup_stmt (gimple *);
241 stmt_vec_info lookup_def (tree);
242 stmt_vec_info lookup_single_use (tree);
243 struct dr_vec_info *lookup_dr (data_reference *);
244 void move_dr (stmt_vec_info, stmt_vec_info);
245 void remove_stmt (stmt_vec_info);
247 /* The type of vectorization. */
248 vec_kind kind;
250 /* Shared vectorizer state. */
251 vec_info_shared *shared;
253 /* The mapping of GIMPLE UID to stmt_vec_info. */
254 vec<stmt_vec_info> stmt_vec_infos;
256 /* All SLP instances. */
257 auto_vec<slp_instance> slp_instances;
259 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
260 known alignment for that base. */
261 vec_base_alignments base_alignments;
263 /* All interleaving chains of stores, represented by the first
264 stmt in the chain. */
265 auto_vec<stmt_vec_info> grouped_stores;
267 /* Cost data used by the target cost model. */
268 void *target_cost_data;
271 struct _loop_vec_info;
272 struct _bb_vec_info;
274 template<>
275 template<>
276 inline bool
277 is_a_helper <_loop_vec_info *>::test (vec_info *i)
279 return i->kind == vec_info::loop;
282 template<>
283 template<>
284 inline bool
285 is_a_helper <_bb_vec_info *>::test (vec_info *i)
287 return i->kind == vec_info::bb;
291 /* In general, we can divide the vector statements in a vectorized loop
292 into related groups ("rgroups") and say that for each rgroup there is
293 some nS such that the rgroup operates on nS values from one scalar
294 iteration followed by nS values from the next. That is, if VF is the
295 vectorization factor of the loop, the rgroup operates on a sequence:
297 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
299 where (i,j) represents a scalar value with index j in a scalar
300 iteration with index i.
302 [ We use the term "rgroup" to emphasise that this grouping isn't
303 necessarily the same as the grouping of statements used elsewhere.
304 For example, if we implement a group of scalar loads using gather
305 loads, we'll use a separate gather load for each scalar load, and
306 thus each gather load will belong to its own rgroup. ]
308 In general this sequence will occupy nV vectors concatenated
309 together. If these vectors have nL lanes each, the total number
310 of scalar values N is given by:
312 N = nS * VF = nV * nL
314 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
315 are compile-time constants but VF and nL can be variable (if the target
316 supports variable-length vectors).
318 In classical vectorization, each iteration of the vector loop would
319 handle exactly VF iterations of the original scalar loop. However,
320 in a fully-masked loop, a particular iteration of the vector loop
321 might handle fewer than VF iterations of the scalar loop. The vector
322 lanes that correspond to iterations of the scalar loop are said to be
323 "active" and the other lanes are said to be "inactive".
325 In a fully-masked loop, many rgroups need to be masked to ensure that
326 they have no effect for the inactive lanes. Each such rgroup needs a
327 sequence of booleans in the same order as above, but with each (i,j)
328 replaced by a boolean that indicates whether iteration i is active.
329 This sequence occupies nV vector masks that again have nL lanes each.
330 Thus the mask sequence as a whole consists of VF independent booleans
331 that are each repeated nS times.
333 We make the simplifying assumption that if a sequence of nV masks is
334 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
335 VIEW_CONVERTing it. This holds for all current targets that support
336 fully-masked loops. For example, suppose the scalar loop is:
338 float *f;
339 double *d;
340 for (int i = 0; i < n; ++i)
342 f[i * 2 + 0] += 1.0f;
343 f[i * 2 + 1] += 2.0f;
344 d[i] += 3.0;
347 and suppose that vectors have 256 bits. The vectorized f accesses
348 will belong to one rgroup and the vectorized d access to another:
350 f rgroup: nS = 2, nV = 1, nL = 8
351 d rgroup: nS = 1, nV = 1, nL = 4
352 VF = 4
354 [ In this simple example the rgroups do correspond to the normal
355 SLP grouping scheme. ]
357 If only the first three lanes are active, the masks we need are:
359 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
360 d rgroup: 1 | 1 | 1 | 0
362 Here we can use a mask calculated for f's rgroup for d's, but not
363 vice versa.
365 Thus for each value of nV, it is enough to provide nV masks, with the
366 mask being calculated based on the highest nL (or, equivalently, based
367 on the highest nS) required by any rgroup with that nV. We therefore
368 represent the entire collection of masks as a two-level table, with the
369 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
370 the second being indexed by the mask index 0 <= i < nV. */
372 /* The masks needed by rgroups with nV vectors, according to the
373 description above. */
374 struct rgroup_masks {
375 /* The largest nS for all rgroups that use these masks. */
376 unsigned int max_nscalars_per_iter;
378 /* The type of mask to use, based on the highest nS recorded above. */
379 tree mask_type;
381 /* A vector of nV masks, in iteration order. */
382 vec<tree> masks;
385 typedef auto_vec<rgroup_masks> vec_loop_masks;
387 /*-----------------------------------------------------------------*/
388 /* Info on vectorized loops. */
389 /*-----------------------------------------------------------------*/
390 typedef struct _loop_vec_info : public vec_info {
391 _loop_vec_info (struct loop *, vec_info_shared *);
392 ~_loop_vec_info ();
394 /* The loop to which this info struct refers to. */
395 struct loop *loop;
397 /* The loop basic blocks. */
398 basic_block *bbs;
400 /* Number of latch executions. */
401 tree num_itersm1;
402 /* Number of iterations. */
403 tree num_iters;
404 /* Number of iterations of the original loop. */
405 tree num_iters_unchanged;
406 /* Condition under which this loop is analyzed and versioned. */
407 tree num_iters_assumptions;
409 /* Threshold of number of iterations below which vectorzation will not be
410 performed. It is calculated from MIN_PROFITABLE_ITERS and
411 PARAM_MIN_VECT_LOOP_BOUND. */
412 unsigned int th;
414 /* When applying loop versioning, the vector form should only be used
415 if the number of scalar iterations is >= this value, on top of all
416 the other requirements. Ignored when loop versioning is not being
417 used. */
418 poly_uint64 versioning_threshold;
420 /* Unrolling factor */
421 poly_uint64 vectorization_factor;
423 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
424 if there is no particular limit. */
425 unsigned HOST_WIDE_INT max_vectorization_factor;
427 /* The masks that a fully-masked loop should use to avoid operating
428 on inactive scalars. */
429 vec_loop_masks masks;
431 /* If we are using a loop mask to align memory addresses, this variable
432 contains the number of vector elements that we should skip in the
433 first iteration of the vector loop (i.e. the number of leading
434 elements that should be false in the first mask). */
435 tree mask_skip_niters;
437 /* Type of the variables to use in the WHILE_ULT call for fully-masked
438 loops. */
439 tree mask_compare_type;
441 /* Unknown DRs according to which loop was peeled. */
442 struct dr_vec_info *unaligned_dr;
444 /* peeling_for_alignment indicates whether peeling for alignment will take
445 place, and what the peeling factor should be:
446 peeling_for_alignment = X means:
447 If X=0: Peeling for alignment will not be applied.
448 If X>0: Peel first X iterations.
449 If X=-1: Generate a runtime test to calculate the number of iterations
450 to be peeled, using the dataref recorded in the field
451 unaligned_dr. */
452 int peeling_for_alignment;
454 /* The mask used to check the alignment of pointers or arrays. */
455 int ptr_mask;
457 /* Data Dependence Relations defining address ranges that are candidates
458 for a run-time aliasing check. */
459 auto_vec<ddr_p> may_alias_ddrs;
461 /* Data Dependence Relations defining address ranges together with segment
462 lengths from which the run-time aliasing check is built. */
463 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
465 /* Check that the addresses of each pair of objects is unequal. */
466 auto_vec<vec_object_pair> check_unequal_addrs;
468 /* List of values that are required to be nonzero. This is used to check
469 whether things like "x[i * n] += 1;" are safe and eventually gets added
470 to the checks for lower bounds below. */
471 auto_vec<tree> check_nonzero;
473 /* List of values that need to be checked for a minimum value. */
474 auto_vec<vec_lower_bound> lower_bounds;
476 /* Statements in the loop that have data references that are candidates for a
477 runtime (loop versioning) misalignment check. */
478 auto_vec<stmt_vec_info> may_misalign_stmts;
480 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
481 auto_vec<stmt_vec_info> reductions;
483 /* All reduction chains in the loop, represented by the first
484 stmt in the chain. */
485 auto_vec<stmt_vec_info> reduction_chains;
487 /* Cost vector for a single scalar iteration. */
488 auto_vec<stmt_info_for_cost> scalar_cost_vec;
490 /* Map of IV base/step expressions to inserted name in the preheader. */
491 hash_map<tree_operand_hash, tree> *ivexpr_map;
493 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
494 applied to the loop, i.e., no unrolling is needed, this is 1. */
495 poly_uint64 slp_unrolling_factor;
497 /* Cost of a single scalar iteration. */
498 int single_scalar_iteration_cost;
500 /* Is the loop vectorizable? */
501 bool vectorizable;
503 /* Records whether we still have the option of using a fully-masked loop. */
504 bool can_fully_mask_p;
506 /* True if have decided to use a fully-masked loop. */
507 bool fully_masked_p;
509 /* When we have grouped data accesses with gaps, we may introduce invalid
510 memory accesses. We peel the last iteration of the loop to prevent
511 this. */
512 bool peeling_for_gaps;
514 /* When the number of iterations is not a multiple of the vector size
515 we need to peel off iterations at the end to form an epilogue loop. */
516 bool peeling_for_niter;
518 /* Reductions are canonicalized so that the last operand is the reduction
519 operand. If this places a constant into RHS1, this decanonicalizes
520 GIMPLE for other phases, so we must track when this has occurred and
521 fix it up. */
522 bool operands_swapped;
524 /* True if there are no loop carried data dependencies in the loop.
525 If loop->safelen <= 1, then this is always true, either the loop
526 didn't have any loop carried data dependencies, or the loop is being
527 vectorized guarded with some runtime alias checks, or couldn't
528 be vectorized at all, but then this field shouldn't be used.
529 For loop->safelen >= 2, the user has asserted that there are no
530 backward dependencies, but there still could be loop carried forward
531 dependencies in such loops. This flag will be false if normal
532 vectorizer data dependency analysis would fail or require versioning
533 for alias, but because of loop->safelen >= 2 it has been vectorized
534 even without versioning for alias. E.g. in:
535 #pragma omp simd
536 for (int i = 0; i < m; i++)
537 a[i] = a[i + k] * c;
538 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
539 DTRT even for k > 0 && k < m, but without safelen we would not
540 vectorize this, so this field would be false. */
541 bool no_data_dependencies;
543 /* Mark loops having masked stores. */
544 bool has_mask_store;
546 /* If if-conversion versioned this loop before conversion, this is the
547 loop version without if-conversion. */
548 struct loop *scalar_loop;
550 /* For loops being epilogues of already vectorized loops
551 this points to the original vectorized loop. Otherwise NULL. */
552 _loop_vec_info *orig_loop_info;
554 } *loop_vec_info;
556 /* Access Functions. */
557 #define LOOP_VINFO_LOOP(L) (L)->loop
558 #define LOOP_VINFO_BBS(L) (L)->bbs
559 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
560 #define LOOP_VINFO_NITERS(L) (L)->num_iters
561 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
562 prologue peeling retain total unchanged scalar loop iterations for
563 cost model. */
564 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
565 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
566 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
567 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
568 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
569 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
570 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
571 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
572 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
573 #define LOOP_VINFO_MASKS(L) (L)->masks
574 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
575 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
576 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
577 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
578 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
579 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
580 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
581 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
582 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
583 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
584 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
585 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
586 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
587 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
588 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
589 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
590 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
591 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
592 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
593 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
594 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
595 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
596 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
597 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
598 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
599 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
600 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
601 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
602 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
603 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
605 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
606 ((L)->may_misalign_stmts.length () > 0)
607 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
608 ((L)->comp_alias_ddrs.length () > 0 \
609 || (L)->check_unequal_addrs.length () > 0 \
610 || (L)->lower_bounds.length () > 0)
611 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
612 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
613 #define LOOP_REQUIRES_VERSIONING(L) \
614 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
615 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
616 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
618 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
619 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
621 #define LOOP_VINFO_EPILOGUE_P(L) \
622 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
624 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
625 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
627 static inline loop_vec_info
628 loop_vec_info_for_loop (struct loop *loop)
630 return (loop_vec_info) loop->aux;
633 typedef struct _bb_vec_info : public vec_info
635 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
636 ~_bb_vec_info ();
638 basic_block bb;
639 gimple_stmt_iterator region_begin;
640 gimple_stmt_iterator region_end;
641 } *bb_vec_info;
643 #define BB_VINFO_BB(B) (B)->bb
644 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
645 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
646 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
647 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
648 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
650 static inline bb_vec_info
651 vec_info_for_bb (basic_block bb)
653 return (bb_vec_info) bb->aux;
656 /*-----------------------------------------------------------------*/
657 /* Info on vectorized defs. */
658 /*-----------------------------------------------------------------*/
659 enum stmt_vec_info_type {
660 undef_vec_info_type = 0,
661 load_vec_info_type,
662 store_vec_info_type,
663 shift_vec_info_type,
664 op_vec_info_type,
665 call_vec_info_type,
666 call_simd_clone_vec_info_type,
667 assignment_vec_info_type,
668 condition_vec_info_type,
669 comparison_vec_info_type,
670 reduc_vec_info_type,
671 induc_vec_info_type,
672 type_promotion_vec_info_type,
673 type_demotion_vec_info_type,
674 type_conversion_vec_info_type,
675 loop_exit_ctrl_vec_info_type
678 /* Indicates whether/how a variable is used in the scope of loop/basic
679 block. */
680 enum vect_relevant {
681 vect_unused_in_scope = 0,
683 /* The def is only used outside the loop. */
684 vect_used_only_live,
685 /* The def is in the inner loop, and the use is in the outer loop, and the
686 use is a reduction stmt. */
687 vect_used_in_outer_by_reduction,
688 /* The def is in the inner loop, and the use is in the outer loop (and is
689 not part of reduction). */
690 vect_used_in_outer,
692 /* defs that feed computations that end up (only) in a reduction. These
693 defs may be used by non-reduction stmts, but eventually, any
694 computations/values that are affected by these defs are used to compute
695 a reduction (i.e. don't get stored to memory, for example). We use this
696 to identify computations that we can change the order in which they are
697 computed. */
698 vect_used_by_reduction,
700 vect_used_in_scope
703 /* The type of vectorization that can be applied to the stmt: regular loop-based
704 vectorization; pure SLP - the stmt is a part of SLP instances and does not
705 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
706 a part of SLP instance and also must be loop-based vectorized, since it has
707 uses outside SLP sequences.
709 In the loop context the meanings of pure and hybrid SLP are slightly
710 different. By saying that pure SLP is applied to the loop, we mean that we
711 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
712 vectorized without doing any conceptual unrolling, cause we don't pack
713 together stmts from different iterations, only within a single iteration.
714 Loop hybrid SLP means that we exploit both intra-iteration and
715 inter-iteration parallelism (e.g., number of elements in the vector is 4
716 and the slp-group-size is 2, in which case we don't have enough parallelism
717 within an iteration, so we obtain the rest of the parallelism from subsequent
718 iterations by unrolling the loop by 2). */
719 enum slp_vect_type {
720 loop_vect = 0,
721 pure_slp,
722 hybrid
725 /* Says whether a statement is a load, a store of a vectorized statement
726 result, or a store of an invariant value. */
727 enum vec_load_store_type {
728 VLS_LOAD,
729 VLS_STORE,
730 VLS_STORE_INVARIANT
733 /* Describes how we're going to vectorize an individual load or store,
734 or a group of loads or stores. */
735 enum vect_memory_access_type {
736 /* An access to an invariant address. This is used only for loads. */
737 VMAT_INVARIANT,
739 /* A simple contiguous access. */
740 VMAT_CONTIGUOUS,
742 /* A contiguous access that goes down in memory rather than up,
743 with no additional permutation. This is used only for stores
744 of invariants. */
745 VMAT_CONTIGUOUS_DOWN,
747 /* A simple contiguous access in which the elements need to be permuted
748 after loading or before storing. Only used for loop vectorization;
749 SLP uses separate permutes. */
750 VMAT_CONTIGUOUS_PERMUTE,
752 /* A simple contiguous access in which the elements need to be reversed
753 after loading or before storing. */
754 VMAT_CONTIGUOUS_REVERSE,
756 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
757 VMAT_LOAD_STORE_LANES,
759 /* An access in which each scalar element is loaded or stored
760 individually. */
761 VMAT_ELEMENTWISE,
763 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
764 SLP accesses. Each unrolled iteration uses a contiguous load
765 or store for the whole group, but the groups from separate iterations
766 are combined in the same way as for VMAT_ELEMENTWISE. */
767 VMAT_STRIDED_SLP,
769 /* The access uses gather loads or scatter stores. */
770 VMAT_GATHER_SCATTER
773 struct dr_vec_info {
774 /* The data reference itself. */
775 data_reference *dr;
776 /* The statement that contains the data reference. */
777 stmt_vec_info stmt;
778 /* The misalignment in bytes of the reference, or -1 if not known. */
779 int misalignment;
780 /* The byte alignment that we'd ideally like the reference to have,
781 and the value that misalignment is measured against. */
782 int target_alignment;
783 /* If true the alignment of base_decl needs to be increased. */
784 bool base_misaligned;
785 tree base_decl;
788 typedef struct data_reference *dr_p;
790 struct _stmt_vec_info {
792 enum stmt_vec_info_type type;
794 /* Indicates whether this stmts is part of a computation whose result is
795 used outside the loop. */
796 bool live;
798 /* Stmt is part of some pattern (computation idiom) */
799 bool in_pattern_p;
801 /* True if the statement was created during pattern recognition as
802 part of the replacement for RELATED_STMT. This implies that the
803 statement isn't part of any basic block, although for convenience
804 its gimple_bb is the same as for RELATED_STMT. */
805 bool pattern_stmt_p;
807 /* Is this statement vectorizable or should it be skipped in (partial)
808 vectorization. */
809 bool vectorizable;
811 /* The stmt to which this info struct refers to. */
812 gimple *stmt;
814 /* The vec_info with respect to which STMT is vectorized. */
815 vec_info *vinfo;
817 /* The vector type to be used for the LHS of this statement. */
818 tree vectype;
820 /* The vectorized version of the stmt. */
821 stmt_vec_info vectorized_stmt;
824 /* The following is relevant only for stmts that contain a non-scalar
825 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
826 at most one such data-ref. */
828 dr_vec_info dr_aux;
830 /* Information about the data-ref relative to this loop
831 nest (the loop that is being considered for vectorization). */
832 innermost_loop_behavior dr_wrt_vec_loop;
834 /* For loop PHI nodes, the base and evolution part of it. This makes sure
835 this information is still available in vect_update_ivs_after_vectorizer
836 where we may not be able to re-analyze the PHI nodes evolution as
837 peeling for the prologue loop can make it unanalyzable. The evolution
838 part is still correct after peeling, but the base may have changed from
839 the version here. */
840 tree loop_phi_evolution_base_unchanged;
841 tree loop_phi_evolution_part;
843 /* Used for various bookkeeping purposes, generally holding a pointer to
844 some other stmt S that is in some way "related" to this stmt.
845 Current use of this field is:
846 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
847 true): S is the "pattern stmt" that represents (and replaces) the
848 sequence of stmts that constitutes the pattern. Similarly, the
849 related_stmt of the "pattern stmt" points back to this stmt (which is
850 the last stmt in the original sequence of stmts that constitutes the
851 pattern). */
852 stmt_vec_info related_stmt;
854 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
855 The sequence is attached to the original statement rather than the
856 pattern statement. */
857 gimple_seq pattern_def_seq;
859 /* List of datarefs that are known to have the same alignment as the dataref
860 of this stmt. */
861 vec<dr_p> same_align_refs;
863 /* Selected SIMD clone's function info. First vector element
864 is SIMD clone's function decl, followed by a pair of trees (base + step)
865 for linear arguments (pair of NULLs for other arguments). */
866 vec<tree> simd_clone_info;
868 /* Classify the def of this stmt. */
869 enum vect_def_type def_type;
871 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
872 enum slp_vect_type slp_type;
874 /* Interleaving and reduction chains info. */
875 /* First element in the group. */
876 stmt_vec_info first_element;
877 /* Pointer to the next element in the group. */
878 stmt_vec_info next_element;
879 /* For data-refs, in case that two or more stmts share data-ref, this is the
880 pointer to the previously detected stmt with the same dr. */
881 stmt_vec_info same_dr_stmt;
882 /* The size of the group. */
883 unsigned int size;
884 /* For stores, number of stores from this group seen. We vectorize the last
885 one. */
886 unsigned int store_count;
887 /* For loads only, the gap from the previous load. For consecutive loads, GAP
888 is 1. */
889 unsigned int gap;
891 /* The minimum negative dependence distance this stmt participates in
892 or zero if none. */
893 unsigned int min_neg_dist;
895 /* Not all stmts in the loop need to be vectorized. e.g, the increment
896 of the loop induction variable and computation of array indexes. relevant
897 indicates whether the stmt needs to be vectorized. */
898 enum vect_relevant relevant;
900 /* For loads if this is a gather, for stores if this is a scatter. */
901 bool gather_scatter_p;
903 /* True if this is an access with loop-invariant stride. */
904 bool strided_p;
906 /* For both loads and stores. */
907 bool simd_lane_access_p;
909 /* Classifies how the load or store is going to be implemented
910 for loop vectorization. */
911 vect_memory_access_type memory_access_type;
913 /* For reduction loops, this is the type of reduction. */
914 enum vect_reduction_type v_reduc_type;
916 /* For CONST_COND_REDUCTION, record the reduc code. */
917 enum tree_code const_cond_reduc_code;
919 /* On a reduction PHI the reduction type as detected by
920 vect_force_simple_reduction. */
921 enum vect_reduction_type reduc_type;
923 /* On a reduction PHI the def returned by vect_force_simple_reduction.
924 On the def returned by vect_force_simple_reduction the
925 corresponding PHI. */
926 stmt_vec_info reduc_def;
928 /* The number of scalar stmt references from active SLP instances. */
929 unsigned int num_slp_uses;
931 /* If nonzero, the lhs of the statement could be truncated to this
932 many bits without affecting any users of the result. */
933 unsigned int min_output_precision;
935 /* If nonzero, all non-boolean input operands have the same precision,
936 and they could each be truncated to this many bits without changing
937 the result. */
938 unsigned int min_input_precision;
940 /* If OPERATION_BITS is nonzero, the statement could be performed on
941 an integer with the sign and number of bits given by OPERATION_SIGN
942 and OPERATION_BITS without changing the result. */
943 unsigned int operation_precision;
944 signop operation_sign;
947 /* Information about a gather/scatter call. */
948 struct gather_scatter_info {
949 /* The internal function to use for the gather/scatter operation,
950 or IFN_LAST if a built-in function should be used instead. */
951 internal_fn ifn;
953 /* The FUNCTION_DECL for the built-in gather/scatter function,
954 or null if an internal function should be used instead. */
955 tree decl;
957 /* The loop-invariant base value. */
958 tree base;
960 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
961 tree offset;
963 /* Each offset element should be multiplied by this amount before
964 being added to the base. */
965 int scale;
967 /* The definition type for the vectorized offset. */
968 enum vect_def_type offset_dt;
970 /* The type of the vectorized offset. */
971 tree offset_vectype;
973 /* The type of the scalar elements after loading or before storing. */
974 tree element_type;
976 /* The type of the scalar elements being loaded or stored. */
977 tree memory_type;
980 /* Access Functions. */
981 #define STMT_VINFO_TYPE(S) (S)->type
982 #define STMT_VINFO_STMT(S) (S)->stmt
983 inline loop_vec_info
984 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
986 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
987 return loop_vinfo;
988 return NULL;
990 inline bb_vec_info
991 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
993 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
994 return bb_vinfo;
995 return NULL;
997 #define STMT_VINFO_RELEVANT(S) (S)->relevant
998 #define STMT_VINFO_LIVE_P(S) (S)->live
999 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1000 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1001 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1002 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1003 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1004 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1005 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1006 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1007 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1008 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1010 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1011 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1012 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1013 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1014 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1015 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1016 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1017 (S)->dr_wrt_vec_loop.base_misalignment
1018 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1019 (S)->dr_wrt_vec_loop.offset_alignment
1020 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1021 (S)->dr_wrt_vec_loop.step_alignment
1023 #define STMT_VINFO_DR_INFO(S) \
1024 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1026 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1027 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1028 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1029 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1030 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1031 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1032 #define STMT_VINFO_GROUPED_ACCESS(S) \
1033 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1034 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1035 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1036 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1037 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1038 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1039 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1041 #define DR_GROUP_FIRST_ELEMENT(S) \
1042 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1043 #define DR_GROUP_NEXT_ELEMENT(S) \
1044 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1045 #define DR_GROUP_SIZE(S) \
1046 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1047 #define DR_GROUP_STORE_COUNT(S) \
1048 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1049 #define DR_GROUP_GAP(S) \
1050 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1051 #define DR_GROUP_SAME_DR_STMT(S) \
1052 (gcc_checking_assert ((S)->dr_aux.dr), (S)->same_dr_stmt)
1054 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1055 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1056 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1057 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1058 #define REDUC_GROUP_SIZE(S) \
1059 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1061 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1063 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1064 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1065 #define STMT_SLP_TYPE(S) (S)->slp_type
1067 #define VECT_MAX_COST 1000
1069 /* The maximum number of intermediate steps required in multi-step type
1070 conversion. */
1071 #define MAX_INTERM_CVT_STEPS 3
1073 #define MAX_VECTORIZATION_FACTOR INT_MAX
1075 /* Nonzero if TYPE represents a (scalar) boolean type or type
1076 in the middle-end compatible with it (unsigned precision 1 integral
1077 types). Used to determine which types should be vectorized as
1078 VECTOR_BOOLEAN_TYPE_P. */
1080 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1081 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1082 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1083 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1084 && TYPE_PRECISION (TYPE) == 1 \
1085 && TYPE_UNSIGNED (TYPE)))
1087 inline _stmt_vec_info &
1088 stmt_vec_info::operator* () const
1090 return *m_ptr;
1093 inline stmt_vec_info::operator gimple * () const
1095 return m_ptr ? m_ptr->stmt : NULL;
1098 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1100 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1101 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1103 /* Return a stmt_vec_info corresponding to STMT. */
1105 static inline stmt_vec_info
1106 vinfo_for_stmt (gimple *stmt)
1108 int uid = gimple_uid (stmt);
1109 if (uid <= 0)
1110 return NULL;
1112 return (*stmt_vec_info_vec)[uid - 1];
1115 /* Set vectorizer information INFO for STMT. */
1117 static inline void
1118 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1120 unsigned int uid = gimple_uid (stmt);
1121 if (uid == 0)
1123 gcc_checking_assert (info);
1124 uid = stmt_vec_info_vec->length () + 1;
1125 gimple_set_uid (stmt, uid);
1126 stmt_vec_info_vec->safe_push (info);
1128 else
1130 gcc_checking_assert (info == NULL_STMT_VEC_INFO);
1131 (*stmt_vec_info_vec)[uid - 1] = info;
1135 static inline bool
1136 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1138 return (loop->inner
1139 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1142 /* Return the earlier statement between STMT1_INFO and STMT2_INFO. */
1144 static inline stmt_vec_info
1145 get_earlier_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1147 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1148 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1149 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1150 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1152 if (gimple_uid (stmt1_info->stmt) < gimple_uid (stmt2_info->stmt))
1153 return stmt1_info;
1154 else
1155 return stmt2_info;
1158 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1160 static inline stmt_vec_info
1161 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1163 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1164 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1165 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1166 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1168 if (gimple_uid (stmt1_info->stmt) > gimple_uid (stmt2_info->stmt))
1169 return stmt1_info;
1170 else
1171 return stmt2_info;
1174 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1175 pattern. */
1177 static inline bool
1178 is_pattern_stmt_p (stmt_vec_info stmt_info)
1180 return stmt_info->pattern_stmt_p;
1183 /* Return true if BB is a loop header. */
1185 static inline bool
1186 is_loop_header_bb_p (basic_block bb)
1188 if (bb == (bb->loop_father)->header)
1189 return true;
1190 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1191 return false;
1194 /* Return pow2 (X). */
1196 static inline int
1197 vect_pow2 (int x)
1199 int i, res = 1;
1201 for (i = 0; i < x; i++)
1202 res *= 2;
1204 return res;
1207 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1209 static inline int
1210 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1211 tree vectype, int misalign)
1213 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1214 vectype, misalign);
1217 /* Get cost by calling cost target builtin. */
1219 static inline
1220 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1222 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1225 /* Alias targetm.vectorize.init_cost. */
1227 static inline void *
1228 init_cost (struct loop *loop_info)
1230 return targetm.vectorize.init_cost (loop_info);
1233 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1234 stmt_vec_info, int, enum vect_cost_model_location);
1236 /* Alias targetm.vectorize.add_stmt_cost. */
1238 static inline unsigned
1239 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1240 stmt_vec_info stmt_info, int misalign,
1241 enum vect_cost_model_location where)
1243 if (dump_file && (dump_flags & TDF_DETAILS))
1244 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1245 return targetm.vectorize.add_stmt_cost (data, count, kind,
1246 stmt_info, misalign, where);
1249 /* Alias targetm.vectorize.finish_cost. */
1251 static inline void
1252 finish_cost (void *data, unsigned *prologue_cost,
1253 unsigned *body_cost, unsigned *epilogue_cost)
1255 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1258 /* Alias targetm.vectorize.destroy_cost_data. */
1260 static inline void
1261 destroy_cost_data (void *data)
1263 targetm.vectorize.destroy_cost_data (data);
1266 inline void
1267 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1269 stmt_info_for_cost *cost;
1270 unsigned i;
1271 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1272 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1273 cost->misalign, cost->where);
1276 /*-----------------------------------------------------------------*/
1277 /* Info on data references alignment. */
1278 /*-----------------------------------------------------------------*/
1279 #define DR_MISALIGNMENT_UNKNOWN (-1)
1280 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1282 inline void
1283 set_dr_misalignment (dr_vec_info *dr_info, int val)
1285 dr_info->misalignment = val;
1288 inline int
1289 dr_misalignment (dr_vec_info *dr_info)
1291 int misalign = dr_info->misalignment;
1292 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1293 return misalign;
1296 /* Reflects actual alignment of first access in the vectorized loop,
1297 taking into account peeling/versioning if applied. */
1298 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1299 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1301 /* Only defined once DR_MISALIGNMENT is defined. */
1302 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1304 /* Return true if data access DR_INFO is aligned to its target alignment
1305 (which may be less than a full vector). */
1307 static inline bool
1308 aligned_access_p (dr_vec_info *dr_info)
1310 return (DR_MISALIGNMENT (dr_info) == 0);
1313 /* Return TRUE if the alignment of the data access is known, and FALSE
1314 otherwise. */
1316 static inline bool
1317 known_alignment_for_access_p (dr_vec_info *dr_info)
1319 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1322 /* Return the minimum alignment in bytes that the vectorized version
1323 of DR_INFO is guaranteed to have. */
1325 static inline unsigned int
1326 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1328 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1329 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1330 if (DR_MISALIGNMENT (dr_info) == 0)
1331 return DR_TARGET_ALIGNMENT (dr_info);
1332 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1335 /* Return the behavior of DR_INFO with respect to the vectorization context
1336 (which for outer loop vectorization might not be the behavior recorded
1337 in DR_INFO itself). */
1339 static inline innermost_loop_behavior *
1340 vect_dr_behavior (dr_vec_info *dr_info)
1342 stmt_vec_info stmt_info = dr_info->stmt;
1343 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1344 if (loop_vinfo == NULL
1345 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1346 return &DR_INNERMOST (dr_info->dr);
1347 else
1348 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1351 /* Return true if the vect cost model is unlimited. */
1352 static inline bool
1353 unlimited_cost_model (loop_p loop)
1355 if (loop != NULL && loop->force_vectorize
1356 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1357 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1358 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1361 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1362 if the first iteration should use a partial mask in order to achieve
1363 alignment. */
1365 static inline bool
1366 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1368 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1369 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1372 /* Return the number of vectors of type VECTYPE that are needed to get
1373 NUNITS elements. NUNITS should be based on the vectorization factor,
1374 so it is always a known multiple of the number of elements in VECTYPE. */
1376 static inline unsigned int
1377 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1379 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1382 /* Return the number of copies needed for loop vectorization when
1383 a statement operates on vectors of type VECTYPE. This is the
1384 vectorization factor divided by the number of elements in
1385 VECTYPE and is always known at compile time. */
1387 static inline unsigned int
1388 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1390 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1393 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1394 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1395 if we haven't yet recorded any vector types. */
1397 static inline void
1398 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1400 /* All unit counts have the form current_vector_size * X for some
1401 rational X, so two unit sizes must have a common multiple.
1402 Everything is a multiple of the initial value of 1. */
1403 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1404 *max_nunits = force_common_multiple (*max_nunits, nunits);
1407 /* Return the vectorization factor that should be used for costing
1408 purposes while vectorizing the loop described by LOOP_VINFO.
1409 Pick a reasonable estimate if the vectorization factor isn't
1410 known at compile time. */
1412 static inline unsigned int
1413 vect_vf_for_cost (loop_vec_info loop_vinfo)
1415 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1418 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1419 Pick a reasonable estimate if the exact number isn't known at
1420 compile time. */
1422 static inline unsigned int
1423 vect_nunits_for_cost (tree vec_type)
1425 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1428 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1430 static inline unsigned HOST_WIDE_INT
1431 vect_max_vf (loop_vec_info loop_vinfo)
1433 unsigned HOST_WIDE_INT vf;
1434 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1435 return vf;
1436 return MAX_VECTORIZATION_FACTOR;
1439 /* Return the size of the value accessed by unvectorized data reference
1440 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1441 for the associated gimple statement, since that guarantees that DR_INFO
1442 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1443 here includes things like V1SI, which can be vectorized in the same way
1444 as a plain SI.) */
1446 inline unsigned int
1447 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1449 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1452 /* Source location + hotness information. */
1453 extern dump_user_location_t vect_location;
1455 /* A macro for calling:
1456 dump_begin_scope (MSG, vect_location);
1457 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1458 and then calling
1459 dump_end_scope ();
1460 once the object goes out of scope, thus capturing the nesting of
1461 the scopes. */
1463 #define DUMP_VECT_SCOPE(MSG) \
1464 AUTO_DUMP_SCOPE (MSG, vect_location)
1466 /*-----------------------------------------------------------------*/
1467 /* Function prototypes. */
1468 /*-----------------------------------------------------------------*/
1470 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1471 in tree-vect-loop-manip.c. */
1472 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1473 tree, tree, tree, bool);
1474 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1475 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1476 struct loop *, edge);
1477 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1478 poly_uint64);
1479 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1480 tree *, tree *, tree *, int, bool, bool);
1481 extern void vect_prepare_for_masked_peels (loop_vec_info);
1482 extern dump_user_location_t find_loop_location (struct loop *);
1483 extern bool vect_can_advance_ivs_p (loop_vec_info);
1485 /* In tree-vect-stmts.c. */
1486 extern poly_uint64 current_vector_size;
1487 extern tree get_vectype_for_scalar_type (tree);
1488 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1489 extern tree get_mask_type_for_scalar_type (tree);
1490 extern tree get_same_sized_vectype (tree, tree);
1491 extern bool vect_get_loop_mask_type (loop_vec_info);
1492 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1493 stmt_vec_info * = NULL, gimple ** = NULL);
1494 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1495 tree *, stmt_vec_info * = NULL,
1496 gimple ** = NULL);
1497 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1498 tree, tree, enum tree_code *,
1499 enum tree_code *, int *,
1500 vec<tree> *);
1501 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1502 enum tree_code *,
1503 int *, vec<tree> *);
1504 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1505 extern void free_stmt_vec_info (gimple *stmt);
1506 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1507 enum vect_cost_for_stmt, stmt_vec_info,
1508 int, enum vect_cost_model_location);
1509 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1510 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1511 gimple_stmt_iterator *);
1512 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1513 extern tree vect_get_store_rhs (stmt_vec_info);
1514 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1515 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1516 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1517 vec<tree> *, slp_tree);
1518 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1519 vec<tree> *, vec<tree> *);
1520 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1521 gimple_stmt_iterator *);
1522 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1523 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1524 bool *, slp_tree, slp_instance);
1525 extern void vect_remove_stores (stmt_vec_info);
1526 extern bool vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, slp_instance,
1527 stmt_vector_for_cost *);
1528 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1529 stmt_vec_info *, tree, int, slp_tree,
1530 stmt_vector_for_cost *);
1531 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1532 unsigned int *, unsigned int *,
1533 stmt_vector_for_cost *,
1534 stmt_vector_for_cost *, bool);
1535 extern void vect_get_store_cost (stmt_vec_info, int,
1536 unsigned int *, stmt_vector_for_cost *);
1537 extern bool vect_supportable_shift (enum tree_code, tree);
1538 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1539 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1540 extern void optimize_mask_stores (struct loop*);
1541 extern gcall *vect_gen_while (tree, tree, tree);
1542 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1543 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1544 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1546 /* In tree-vect-data-refs.c. */
1547 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1548 extern enum dr_alignment_support vect_supportable_dr_alignment
1549 (dr_vec_info *, bool);
1550 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1551 HOST_WIDE_INT *);
1552 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1553 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1554 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1555 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1556 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1557 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1558 extern bool vect_analyze_data_ref_accesses (vec_info *);
1559 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1560 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1561 signop, int, internal_fn *, tree *);
1562 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1563 gather_scatter_info *);
1564 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1565 vec<data_reference_p> *);
1566 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1567 extern void vect_record_base_alignments (vec_info *);
1568 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1569 tree *, gimple_stmt_iterator *,
1570 gimple **, bool, bool *,
1571 tree = NULL_TREE, tree = NULL_TREE);
1572 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1573 stmt_vec_info, tree);
1574 extern void vect_copy_ref_info (tree, tree);
1575 extern tree vect_create_destination_var (tree, tree);
1576 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1577 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1578 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1579 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1580 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1581 gimple_stmt_iterator *, vec<tree> *);
1582 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1583 tree *, enum dr_alignment_support, tree,
1584 struct loop **);
1585 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1586 gimple_stmt_iterator *);
1587 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1588 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1589 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1590 const char * = NULL);
1591 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1592 tree, tree = NULL_TREE);
1594 /* In tree-vect-loop.c. */
1595 /* FORNOW: Used in tree-parloops.c. */
1596 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1597 bool *, bool);
1598 /* Used in gimple-loop-interchange.c. */
1599 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1600 enum tree_code);
1601 /* Drive for loop analysis stage. */
1602 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1603 vec_info_shared *);
1604 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1605 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1606 tree *, bool);
1607 extern tree vect_halve_mask_nunits (tree);
1608 extern tree vect_double_mask_nunits (tree);
1609 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1610 unsigned int, tree);
1611 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1612 unsigned int, tree, unsigned int);
1614 /* Drive for loop transformation stage. */
1615 extern struct loop *vect_transform_loop (loop_vec_info);
1616 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1617 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1618 slp_tree, int, stmt_vec_info *,
1619 stmt_vector_for_cost *);
1620 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1621 stmt_vec_info *, slp_tree, slp_instance,
1622 stmt_vector_for_cost *);
1623 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1624 stmt_vec_info *, slp_tree,
1625 stmt_vector_for_cost *);
1626 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1627 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1628 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1629 stmt_vector_for_cost *,
1630 stmt_vector_for_cost *,
1631 stmt_vector_for_cost *);
1632 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1634 /* In tree-vect-slp.c. */
1635 extern void vect_free_slp_instance (slp_instance, bool);
1636 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1637 gimple_stmt_iterator *, poly_uint64,
1638 slp_instance, bool, unsigned *);
1639 extern bool vect_slp_analyze_operations (vec_info *);
1640 extern bool vect_schedule_slp (vec_info *);
1641 extern bool vect_analyze_slp (vec_info *, unsigned);
1642 extern bool vect_make_slp_decision (loop_vec_info);
1643 extern void vect_detect_hybrid_slp (loop_vec_info);
1644 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1645 extern bool vect_slp_bb (basic_block);
1646 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1647 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1648 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1649 unsigned int * = NULL,
1650 tree * = NULL, tree * = NULL);
1651 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1652 unsigned int, vec<tree> &);
1653 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1655 /* In tree-vect-patterns.c. */
1656 /* Pattern recognition functions.
1657 Additional pattern recognition functions can (and will) be added
1658 in the future. */
1659 void vect_pattern_recog (vec_info *);
1661 /* In tree-vectorizer.c. */
1662 unsigned vectorize_loops (void);
1663 bool vect_stmt_in_region_p (vec_info *, gimple *);
1664 void vect_free_loop_info_assumptions (struct loop *);
1666 #endif /* GCC_TREE_VECTORIZER_H */