PR rtl-optimization/27477
[official-gcc.git] / gcc / combine.c
blobc570ea628eec2f7484e1acfb09022c1164387441
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static struct reg_stat *reg_stat;
257 /* Record the cuid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set;
262 /* Record the cuid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_cuid;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn;
275 /* This is the lowest CUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this CUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_cuid;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
291 that location. */
293 static rtx added_links_insn;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block;
298 /* A bitmap indicating which blocks had registers go dead at entry.
299 After combine, we'll need to re-do global life analysis with
300 those blocks as starting points. */
301 static sbitmap refresh_blocks;
303 /* The following array records the insn_rtx_cost for every insn
304 in the instruction stream. */
306 static int *uid_insn_cost;
308 /* Length of the currently allocated uid_insn_cost array. */
310 static int last_insn_cost;
312 /* Incremented for each label. */
314 static int label_tick;
316 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
317 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
319 static enum machine_mode nonzero_bits_mode;
321 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
322 be safely used. It is zero while computing them and after combine has
323 completed. This former test prevents propagating values based on
324 previously set values, which can be incorrect if a variable is modified
325 in a loop. */
327 static int nonzero_sign_valid;
330 /* Record one modification to rtl structure
331 to be undone by storing old_contents into *where. */
333 struct undo
335 struct undo *next;
336 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
337 union { rtx r; int i; enum machine_mode m; } old_contents;
338 union { rtx *r; int *i; } where;
341 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
342 num_undo says how many are currently recorded.
344 other_insn is nonzero if we have modified some other insn in the process
345 of working on subst_insn. It must be verified too. */
347 struct undobuf
349 struct undo *undos;
350 struct undo *frees;
351 rtx other_insn;
354 static struct undobuf undobuf;
356 /* Number of times the pseudo being substituted for
357 was found and replaced. */
359 static int n_occurrences;
361 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
362 enum machine_mode,
363 unsigned HOST_WIDE_INT,
364 unsigned HOST_WIDE_INT *);
365 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
366 enum machine_mode,
367 unsigned int, unsigned int *);
368 static void do_SUBST (rtx *, rtx);
369 static void do_SUBST_INT (int *, int);
370 static void init_reg_last (void);
371 static void setup_incoming_promotions (void);
372 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
373 static int cant_combine_insn_p (rtx);
374 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
375 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
376 static int contains_muldiv (rtx);
377 static rtx try_combine (rtx, rtx, rtx, int *);
378 static void undo_all (void);
379 static void undo_commit (void);
380 static rtx *find_split_point (rtx *, rtx);
381 static rtx subst (rtx, rtx, rtx, int, int);
382 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
383 static rtx simplify_if_then_else (rtx);
384 static rtx simplify_set (rtx);
385 static rtx simplify_logical (rtx);
386 static rtx expand_compound_operation (rtx);
387 static rtx expand_field_assignment (rtx);
388 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
389 rtx, unsigned HOST_WIDE_INT, int, int, int);
390 static rtx extract_left_shift (rtx, int);
391 static rtx make_compound_operation (rtx, enum rtx_code);
392 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
393 unsigned HOST_WIDE_INT *);
394 static rtx canon_reg_for_combine (rtx, rtx);
395 static rtx force_to_mode (rtx, enum machine_mode,
396 unsigned HOST_WIDE_INT, int);
397 static rtx if_then_else_cond (rtx, rtx *, rtx *);
398 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
399 static int rtx_equal_for_field_assignment_p (rtx, rtx);
400 static rtx make_field_assignment (rtx);
401 static rtx apply_distributive_law (rtx);
402 static rtx distribute_and_simplify_rtx (rtx, int);
403 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
404 unsigned HOST_WIDE_INT);
405 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
406 unsigned HOST_WIDE_INT);
407 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
408 HOST_WIDE_INT, enum machine_mode, int *);
409 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
410 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
411 int);
412 static int recog_for_combine (rtx *, rtx, rtx *);
413 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
414 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
415 static void update_table_tick (rtx);
416 static void record_value_for_reg (rtx, rtx, rtx);
417 static void check_conversions (rtx, rtx);
418 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
419 static void record_dead_and_set_regs (rtx);
420 static int get_last_value_validate (rtx *, rtx, int, int);
421 static rtx get_last_value (rtx);
422 static int use_crosses_set_p (rtx, int);
423 static void reg_dead_at_p_1 (rtx, rtx, void *);
424 static int reg_dead_at_p (rtx, rtx);
425 static void move_deaths (rtx, rtx, int, rtx, rtx *);
426 static int reg_bitfield_target_p (rtx, rtx);
427 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
428 static void distribute_links (rtx);
429 static void mark_used_regs_combine (rtx);
430 static int insn_cuid (rtx);
431 static void record_promoted_value (rtx, rtx);
432 static int unmentioned_reg_p_1 (rtx *, void *);
433 static bool unmentioned_reg_p (rtx, rtx);
434 static void record_truncated_value (rtx);
435 static bool reg_truncated_to_mode (enum machine_mode, rtx);
436 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
439 /* It is not safe to use ordinary gen_lowpart in combine.
440 See comments in gen_lowpart_for_combine. */
441 #undef RTL_HOOKS_GEN_LOWPART
442 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
444 /* Our implementation of gen_lowpart never emits a new pseudo. */
445 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
446 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
448 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
449 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
451 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
452 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
454 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
455 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
457 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
460 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
461 insn. The substitution can be undone by undo_all. If INTO is already
462 set to NEWVAL, do not record this change. Because computing NEWVAL might
463 also call SUBST, we have to compute it before we put anything into
464 the undo table. */
466 static void
467 do_SUBST (rtx *into, rtx newval)
469 struct undo *buf;
470 rtx oldval = *into;
472 if (oldval == newval)
473 return;
475 /* We'd like to catch as many invalid transformations here as
476 possible. Unfortunately, there are way too many mode changes
477 that are perfectly valid, so we'd waste too much effort for
478 little gain doing the checks here. Focus on catching invalid
479 transformations involving integer constants. */
480 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
481 && GET_CODE (newval) == CONST_INT)
483 /* Sanity check that we're replacing oldval with a CONST_INT
484 that is a valid sign-extension for the original mode. */
485 gcc_assert (INTVAL (newval)
486 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
488 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
489 CONST_INT is not valid, because after the replacement, the
490 original mode would be gone. Unfortunately, we can't tell
491 when do_SUBST is called to replace the operand thereof, so we
492 perform this test on oldval instead, checking whether an
493 invalid replacement took place before we got here. */
494 gcc_assert (!(GET_CODE (oldval) == SUBREG
495 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
496 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
497 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
500 if (undobuf.frees)
501 buf = undobuf.frees, undobuf.frees = buf->next;
502 else
503 buf = XNEW (struct undo);
505 buf->kind = UNDO_RTX;
506 buf->where.r = into;
507 buf->old_contents.r = oldval;
508 *into = newval;
510 buf->next = undobuf.undos, undobuf.undos = buf;
513 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
515 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
516 for the value of a HOST_WIDE_INT value (including CONST_INT) is
517 not safe. */
519 static void
520 do_SUBST_INT (int *into, int newval)
522 struct undo *buf;
523 int oldval = *into;
525 if (oldval == newval)
526 return;
528 if (undobuf.frees)
529 buf = undobuf.frees, undobuf.frees = buf->next;
530 else
531 buf = XNEW (struct undo);
533 buf->kind = UNDO_INT;
534 buf->where.i = into;
535 buf->old_contents.i = oldval;
536 *into = newval;
538 buf->next = undobuf.undos, undobuf.undos = buf;
541 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
543 /* Similar to SUBST, but just substitute the mode. This is used when
544 changing the mode of a pseudo-register, so that any other
545 references to the entry in the regno_reg_rtx array will change as
546 well. */
548 static void
549 do_SUBST_MODE (rtx *into, enum machine_mode newval)
551 struct undo *buf;
552 enum machine_mode oldval = GET_MODE (*into);
554 if (oldval == newval)
555 return;
557 if (undobuf.frees)
558 buf = undobuf.frees, undobuf.frees = buf->next;
559 else
560 buf = XNEW (struct undo);
562 buf->kind = UNDO_MODE;
563 buf->where.r = into;
564 buf->old_contents.m = oldval;
565 PUT_MODE (*into, newval);
567 buf->next = undobuf.undos, undobuf.undos = buf;
570 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
572 /* Subroutine of try_combine. Determine whether the combine replacement
573 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
574 that the original instruction sequence I1, I2 and I3. Note that I1
575 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
576 costs of all instructions can be estimated, and the replacements are
577 more expensive than the original sequence. */
579 static bool
580 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
582 int i1_cost, i2_cost, i3_cost;
583 int new_i2_cost, new_i3_cost;
584 int old_cost, new_cost;
586 /* Lookup the original insn_rtx_costs. */
587 i2_cost = INSN_UID (i2) <= last_insn_cost
588 ? uid_insn_cost[INSN_UID (i2)] : 0;
589 i3_cost = INSN_UID (i3) <= last_insn_cost
590 ? uid_insn_cost[INSN_UID (i3)] : 0;
592 if (i1)
594 i1_cost = INSN_UID (i1) <= last_insn_cost
595 ? uid_insn_cost[INSN_UID (i1)] : 0;
596 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
597 ? i1_cost + i2_cost + i3_cost : 0;
599 else
601 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
602 i1_cost = 0;
605 /* Calculate the replacement insn_rtx_costs. */
606 new_i3_cost = insn_rtx_cost (newpat);
607 if (newi2pat)
609 new_i2_cost = insn_rtx_cost (newi2pat);
610 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
611 ? new_i2_cost + new_i3_cost : 0;
613 else
615 new_cost = new_i3_cost;
616 new_i2_cost = 0;
619 if (undobuf.other_insn)
621 int old_other_cost, new_other_cost;
623 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
624 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
625 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
626 if (old_other_cost > 0 && new_other_cost > 0)
628 old_cost += old_other_cost;
629 new_cost += new_other_cost;
631 else
632 old_cost = 0;
635 /* Disallow this recombination if both new_cost and old_cost are
636 greater than zero, and new_cost is greater than old cost. */
637 if (old_cost > 0
638 && new_cost > old_cost)
640 if (dump_file)
642 if (i1)
644 fprintf (dump_file,
645 "rejecting combination of insns %d, %d and %d\n",
646 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
647 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
648 i1_cost, i2_cost, i3_cost, old_cost);
650 else
652 fprintf (dump_file,
653 "rejecting combination of insns %d and %d\n",
654 INSN_UID (i2), INSN_UID (i3));
655 fprintf (dump_file, "original costs %d + %d = %d\n",
656 i2_cost, i3_cost, old_cost);
659 if (newi2pat)
661 fprintf (dump_file, "replacement costs %d + %d = %d\n",
662 new_i2_cost, new_i3_cost, new_cost);
664 else
665 fprintf (dump_file, "replacement cost %d\n", new_cost);
668 return false;
671 /* Update the uid_insn_cost array with the replacement costs. */
672 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
673 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
674 if (i1)
675 uid_insn_cost[INSN_UID (i1)] = 0;
677 return true;
680 /* Main entry point for combiner. F is the first insn of the function.
681 NREGS is the first unused pseudo-reg number.
683 Return nonzero if the combiner has turned an indirect jump
684 instruction into a direct jump. */
685 static int
686 combine_instructions (rtx f, unsigned int nregs)
688 rtx insn, next;
689 #ifdef HAVE_cc0
690 rtx prev;
691 #endif
692 int i;
693 unsigned int j = 0;
694 rtx links, nextlinks;
695 sbitmap_iterator sbi;
697 int new_direct_jump_p = 0;
699 combine_attempts = 0;
700 combine_merges = 0;
701 combine_extras = 0;
702 combine_successes = 0;
704 combine_max_regno = nregs;
706 rtl_hooks = combine_rtl_hooks;
708 reg_stat = XCNEWVEC (struct reg_stat, nregs);
710 init_recog_no_volatile ();
712 /* Compute maximum uid value so uid_cuid can be allocated. */
714 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
715 if (INSN_UID (insn) > i)
716 i = INSN_UID (insn);
718 uid_cuid = XNEWVEC (int, i + 1);
719 max_uid_cuid = i;
721 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
723 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
724 problems when, for example, we have j <<= 1 in a loop. */
726 nonzero_sign_valid = 0;
728 /* Compute the mapping from uids to cuids.
729 Cuids are numbers assigned to insns, like uids,
730 except that cuids increase monotonically through the code.
732 Scan all SETs and see if we can deduce anything about what
733 bits are known to be zero for some registers and how many copies
734 of the sign bit are known to exist for those registers.
736 Also set any known values so that we can use it while searching
737 for what bits are known to be set. */
739 label_tick = 1;
741 setup_incoming_promotions ();
743 refresh_blocks = sbitmap_alloc (last_basic_block);
744 sbitmap_zero (refresh_blocks);
746 /* Allocate array of current insn_rtx_costs. */
747 uid_insn_cost = XCNEWVEC (int, max_uid_cuid + 1);
748 last_insn_cost = max_uid_cuid;
750 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
752 uid_cuid[INSN_UID (insn)] = ++i;
753 subst_low_cuid = i;
754 subst_insn = insn;
756 if (INSN_P (insn))
758 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
759 NULL);
760 record_dead_and_set_regs (insn);
762 #ifdef AUTO_INC_DEC
763 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
764 if (REG_NOTE_KIND (links) == REG_INC)
765 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
766 NULL);
767 #endif
769 /* Record the current insn_rtx_cost of this instruction. */
770 if (NONJUMP_INSN_P (insn))
771 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
772 if (dump_file)
773 fprintf(dump_file, "insn_cost %d: %d\n",
774 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
777 if (LABEL_P (insn))
778 label_tick++;
781 nonzero_sign_valid = 1;
783 /* Now scan all the insns in forward order. */
785 label_tick = 1;
786 last_call_cuid = 0;
787 mem_last_set = 0;
788 init_reg_last ();
789 setup_incoming_promotions ();
791 FOR_EACH_BB (this_basic_block)
793 for (insn = BB_HEAD (this_basic_block);
794 insn != NEXT_INSN (BB_END (this_basic_block));
795 insn = next ? next : NEXT_INSN (insn))
797 next = 0;
799 if (LABEL_P (insn))
800 label_tick++;
802 else if (INSN_P (insn))
804 /* See if we know about function return values before this
805 insn based upon SUBREG flags. */
806 check_conversions (insn, PATTERN (insn));
808 /* Try this insn with each insn it links back to. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if ((next = try_combine (insn, XEXP (links, 0),
812 NULL_RTX, &new_direct_jump_p)) != 0)
813 goto retry;
815 /* Try each sequence of three linked insns ending with this one. */
817 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
819 rtx link = XEXP (links, 0);
821 /* If the linked insn has been replaced by a note, then there
822 is no point in pursuing this chain any further. */
823 if (NOTE_P (link))
824 continue;
826 for (nextlinks = LOG_LINKS (link);
827 nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, link,
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
835 #ifdef HAVE_cc0
836 /* Try to combine a jump insn that uses CC0
837 with a preceding insn that sets CC0, and maybe with its
838 logical predecessor as well.
839 This is how we make decrement-and-branch insns.
840 We need this special code because data flow connections
841 via CC0 do not get entered in LOG_LINKS. */
843 if (JUMP_P (insn)
844 && (prev = prev_nonnote_insn (insn)) != 0
845 && NONJUMP_INSN_P (prev)
846 && sets_cc0_p (PATTERN (prev)))
848 if ((next = try_combine (insn, prev,
849 NULL_RTX, &new_direct_jump_p)) != 0)
850 goto retry;
852 for (nextlinks = LOG_LINKS (prev); nextlinks;
853 nextlinks = XEXP (nextlinks, 1))
854 if ((next = try_combine (insn, prev,
855 XEXP (nextlinks, 0),
856 &new_direct_jump_p)) != 0)
857 goto retry;
860 /* Do the same for an insn that explicitly references CC0. */
861 if (NONJUMP_INSN_P (insn)
862 && (prev = prev_nonnote_insn (insn)) != 0
863 && NONJUMP_INSN_P (prev)
864 && sets_cc0_p (PATTERN (prev))
865 && GET_CODE (PATTERN (insn)) == SET
866 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
868 if ((next = try_combine (insn, prev,
869 NULL_RTX, &new_direct_jump_p)) != 0)
870 goto retry;
872 for (nextlinks = LOG_LINKS (prev); nextlinks;
873 nextlinks = XEXP (nextlinks, 1))
874 if ((next = try_combine (insn, prev,
875 XEXP (nextlinks, 0),
876 &new_direct_jump_p)) != 0)
877 goto retry;
880 /* Finally, see if any of the insns that this insn links to
881 explicitly references CC0. If so, try this insn, that insn,
882 and its predecessor if it sets CC0. */
883 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
884 if (NONJUMP_INSN_P (XEXP (links, 0))
885 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
886 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
887 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
888 && NONJUMP_INSN_P (prev)
889 && sets_cc0_p (PATTERN (prev))
890 && (next = try_combine (insn, XEXP (links, 0),
891 prev, &new_direct_jump_p)) != 0)
892 goto retry;
893 #endif
895 /* Try combining an insn with two different insns whose results it
896 uses. */
897 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
898 for (nextlinks = XEXP (links, 1); nextlinks;
899 nextlinks = XEXP (nextlinks, 1))
900 if ((next = try_combine (insn, XEXP (links, 0),
901 XEXP (nextlinks, 0),
902 &new_direct_jump_p)) != 0)
903 goto retry;
905 /* Try this insn with each REG_EQUAL note it links back to. */
906 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
908 rtx set, note;
909 rtx temp = XEXP (links, 0);
910 if ((set = single_set (temp)) != 0
911 && (note = find_reg_equal_equiv_note (temp)) != 0
912 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
913 /* Avoid using a register that may already been marked
914 dead by an earlier instruction. */
915 && ! unmentioned_reg_p (note, SET_SRC (set))
916 && (GET_MODE (note) == VOIDmode
917 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
918 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
920 /* Temporarily replace the set's source with the
921 contents of the REG_EQUAL note. The insn will
922 be deleted or recognized by try_combine. */
923 rtx orig = SET_SRC (set);
924 SET_SRC (set) = note;
925 next = try_combine (insn, temp, NULL_RTX,
926 &new_direct_jump_p);
927 if (next)
928 goto retry;
929 SET_SRC (set) = orig;
933 if (!NOTE_P (insn))
934 record_dead_and_set_regs (insn);
936 retry:
941 clear_bb_flags ();
943 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
944 BASIC_BLOCK (j)->flags |= BB_DIRTY;
945 new_direct_jump_p |= purge_all_dead_edges ();
946 delete_noop_moves ();
948 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
949 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
950 | PROP_KILL_DEAD_CODE);
952 /* Clean up. */
953 sbitmap_free (refresh_blocks);
954 free (uid_insn_cost);
955 free (reg_stat);
956 free (uid_cuid);
959 struct undo *undo, *next;
960 for (undo = undobuf.frees; undo; undo = next)
962 next = undo->next;
963 free (undo);
965 undobuf.frees = 0;
968 total_attempts += combine_attempts;
969 total_merges += combine_merges;
970 total_extras += combine_extras;
971 total_successes += combine_successes;
973 nonzero_sign_valid = 0;
974 rtl_hooks = general_rtl_hooks;
976 /* Make recognizer allow volatile MEMs again. */
977 init_recog ();
979 return new_direct_jump_p;
982 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
984 static void
985 init_reg_last (void)
987 unsigned int i;
988 for (i = 0; i < combine_max_regno; i++)
989 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
992 /* Set up any promoted values for incoming argument registers. */
994 static void
995 setup_incoming_promotions (void)
997 unsigned int regno;
998 rtx reg;
999 enum machine_mode mode;
1000 int unsignedp;
1001 rtx first = get_insns ();
1003 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1005 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1006 /* Check whether this register can hold an incoming pointer
1007 argument. FUNCTION_ARG_REGNO_P tests outgoing register
1008 numbers, so translate if necessary due to register windows. */
1009 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
1010 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
1012 record_value_for_reg
1013 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
1014 : SIGN_EXTEND),
1015 GET_MODE (reg),
1016 gen_rtx_CLOBBER (mode, const0_rtx)));
1021 /* Called via note_stores. If X is a pseudo that is narrower than
1022 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1024 If we are setting only a portion of X and we can't figure out what
1025 portion, assume all bits will be used since we don't know what will
1026 be happening.
1028 Similarly, set how many bits of X are known to be copies of the sign bit
1029 at all locations in the function. This is the smallest number implied
1030 by any set of X. */
1032 static void
1033 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
1034 void *data ATTRIBUTE_UNUSED)
1036 unsigned int num;
1038 if (REG_P (x)
1039 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1040 /* If this register is undefined at the start of the file, we can't
1041 say what its contents were. */
1042 && ! REGNO_REG_SET_P
1043 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1044 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1046 if (set == 0 || GET_CODE (set) == CLOBBER)
1048 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1049 reg_stat[REGNO (x)].sign_bit_copies = 1;
1050 return;
1053 /* If this is a complex assignment, see if we can convert it into a
1054 simple assignment. */
1055 set = expand_field_assignment (set);
1057 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1058 set what we know about X. */
1060 if (SET_DEST (set) == x
1061 || (GET_CODE (SET_DEST (set)) == SUBREG
1062 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1063 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1064 && SUBREG_REG (SET_DEST (set)) == x))
1066 rtx src = SET_SRC (set);
1068 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1069 /* If X is narrower than a word and SRC is a non-negative
1070 constant that would appear negative in the mode of X,
1071 sign-extend it for use in reg_stat[].nonzero_bits because some
1072 machines (maybe most) will actually do the sign-extension
1073 and this is the conservative approach.
1075 ??? For 2.5, try to tighten up the MD files in this regard
1076 instead of this kludge. */
1078 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1079 && GET_CODE (src) == CONST_INT
1080 && INTVAL (src) > 0
1081 && 0 != (INTVAL (src)
1082 & ((HOST_WIDE_INT) 1
1083 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1084 src = GEN_INT (INTVAL (src)
1085 | ((HOST_WIDE_INT) (-1)
1086 << GET_MODE_BITSIZE (GET_MODE (x))));
1087 #endif
1089 /* Don't call nonzero_bits if it cannot change anything. */
1090 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1091 reg_stat[REGNO (x)].nonzero_bits
1092 |= nonzero_bits (src, nonzero_bits_mode);
1093 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1094 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1095 || reg_stat[REGNO (x)].sign_bit_copies > num)
1096 reg_stat[REGNO (x)].sign_bit_copies = num;
1098 else
1100 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1101 reg_stat[REGNO (x)].sign_bit_copies = 1;
1106 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1107 insns that were previously combined into I3 or that will be combined
1108 into the merger of INSN and I3.
1110 Return 0 if the combination is not allowed for any reason.
1112 If the combination is allowed, *PDEST will be set to the single
1113 destination of INSN and *PSRC to the single source, and this function
1114 will return 1. */
1116 static int
1117 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1118 rtx *pdest, rtx *psrc)
1120 int i;
1121 rtx set = 0, src, dest;
1122 rtx p;
1123 #ifdef AUTO_INC_DEC
1124 rtx link;
1125 #endif
1126 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1127 && next_active_insn (succ) == i3)
1128 : next_active_insn (insn) == i3);
1130 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1131 or a PARALLEL consisting of such a SET and CLOBBERs.
1133 If INSN has CLOBBER parallel parts, ignore them for our processing.
1134 By definition, these happen during the execution of the insn. When it
1135 is merged with another insn, all bets are off. If they are, in fact,
1136 needed and aren't also supplied in I3, they may be added by
1137 recog_for_combine. Otherwise, it won't match.
1139 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1140 note.
1142 Get the source and destination of INSN. If more than one, can't
1143 combine. */
1145 if (GET_CODE (PATTERN (insn)) == SET)
1146 set = PATTERN (insn);
1147 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1148 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1150 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1152 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1153 rtx note;
1155 switch (GET_CODE (elt))
1157 /* This is important to combine floating point insns
1158 for the SH4 port. */
1159 case USE:
1160 /* Combining an isolated USE doesn't make sense.
1161 We depend here on combinable_i3pat to reject them. */
1162 /* The code below this loop only verifies that the inputs of
1163 the SET in INSN do not change. We call reg_set_between_p
1164 to verify that the REG in the USE does not change between
1165 I3 and INSN.
1166 If the USE in INSN was for a pseudo register, the matching
1167 insn pattern will likely match any register; combining this
1168 with any other USE would only be safe if we knew that the
1169 used registers have identical values, or if there was
1170 something to tell them apart, e.g. different modes. For
1171 now, we forgo such complicated tests and simply disallow
1172 combining of USES of pseudo registers with any other USE. */
1173 if (REG_P (XEXP (elt, 0))
1174 && GET_CODE (PATTERN (i3)) == PARALLEL)
1176 rtx i3pat = PATTERN (i3);
1177 int i = XVECLEN (i3pat, 0) - 1;
1178 unsigned int regno = REGNO (XEXP (elt, 0));
1182 rtx i3elt = XVECEXP (i3pat, 0, i);
1184 if (GET_CODE (i3elt) == USE
1185 && REG_P (XEXP (i3elt, 0))
1186 && (REGNO (XEXP (i3elt, 0)) == regno
1187 ? reg_set_between_p (XEXP (elt, 0),
1188 PREV_INSN (insn), i3)
1189 : regno >= FIRST_PSEUDO_REGISTER))
1190 return 0;
1192 while (--i >= 0);
1194 break;
1196 /* We can ignore CLOBBERs. */
1197 case CLOBBER:
1198 break;
1200 case SET:
1201 /* Ignore SETs whose result isn't used but not those that
1202 have side-effects. */
1203 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1204 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1205 || INTVAL (XEXP (note, 0)) <= 0)
1206 && ! side_effects_p (elt))
1207 break;
1209 /* If we have already found a SET, this is a second one and
1210 so we cannot combine with this insn. */
1211 if (set)
1212 return 0;
1214 set = elt;
1215 break;
1217 default:
1218 /* Anything else means we can't combine. */
1219 return 0;
1223 if (set == 0
1224 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1225 so don't do anything with it. */
1226 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1227 return 0;
1229 else
1230 return 0;
1232 if (set == 0)
1233 return 0;
1235 set = expand_field_assignment (set);
1236 src = SET_SRC (set), dest = SET_DEST (set);
1238 /* Don't eliminate a store in the stack pointer. */
1239 if (dest == stack_pointer_rtx
1240 /* Don't combine with an insn that sets a register to itself if it has
1241 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1242 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1243 /* Can't merge an ASM_OPERANDS. */
1244 || GET_CODE (src) == ASM_OPERANDS
1245 /* Can't merge a function call. */
1246 || GET_CODE (src) == CALL
1247 /* Don't eliminate a function call argument. */
1248 || (CALL_P (i3)
1249 && (find_reg_fusage (i3, USE, dest)
1250 || (REG_P (dest)
1251 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1252 && global_regs[REGNO (dest)])))
1253 /* Don't substitute into an incremented register. */
1254 || FIND_REG_INC_NOTE (i3, dest)
1255 || (succ && FIND_REG_INC_NOTE (succ, dest))
1256 /* Don't substitute into a non-local goto, this confuses CFG. */
1257 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1258 #if 0
1259 /* Don't combine the end of a libcall into anything. */
1260 /* ??? This gives worse code, and appears to be unnecessary, since no
1261 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1262 use REG_RETVAL notes for noconflict blocks, but other code here
1263 makes sure that those insns don't disappear. */
1264 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1265 #endif
1266 /* Make sure that DEST is not used after SUCC but before I3. */
1267 || (succ && ! all_adjacent
1268 && reg_used_between_p (dest, succ, i3))
1269 /* Make sure that the value that is to be substituted for the register
1270 does not use any registers whose values alter in between. However,
1271 If the insns are adjacent, a use can't cross a set even though we
1272 think it might (this can happen for a sequence of insns each setting
1273 the same destination; last_set of that register might point to
1274 a NOTE). If INSN has a REG_EQUIV note, the register is always
1275 equivalent to the memory so the substitution is valid even if there
1276 are intervening stores. Also, don't move a volatile asm or
1277 UNSPEC_VOLATILE across any other insns. */
1278 || (! all_adjacent
1279 && (((!MEM_P (src)
1280 || ! find_reg_note (insn, REG_EQUIV, src))
1281 && use_crosses_set_p (src, INSN_CUID (insn)))
1282 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1283 || GET_CODE (src) == UNSPEC_VOLATILE))
1284 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1285 better register allocation by not doing the combine. */
1286 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1287 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1288 /* Don't combine across a CALL_INSN, because that would possibly
1289 change whether the life span of some REGs crosses calls or not,
1290 and it is a pain to update that information.
1291 Exception: if source is a constant, moving it later can't hurt.
1292 Accept that special case, because it helps -fforce-addr a lot. */
1293 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1294 return 0;
1296 /* DEST must either be a REG or CC0. */
1297 if (REG_P (dest))
1299 /* If register alignment is being enforced for multi-word items in all
1300 cases except for parameters, it is possible to have a register copy
1301 insn referencing a hard register that is not allowed to contain the
1302 mode being copied and which would not be valid as an operand of most
1303 insns. Eliminate this problem by not combining with such an insn.
1305 Also, on some machines we don't want to extend the life of a hard
1306 register. */
1308 if (REG_P (src)
1309 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1310 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1311 /* Don't extend the life of a hard register unless it is
1312 user variable (if we have few registers) or it can't
1313 fit into the desired register (meaning something special
1314 is going on).
1315 Also avoid substituting a return register into I3, because
1316 reload can't handle a conflict with constraints of other
1317 inputs. */
1318 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1319 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1320 return 0;
1322 else if (GET_CODE (dest) != CC0)
1323 return 0;
1326 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1327 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1328 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1330 /* Don't substitute for a register intended as a clobberable
1331 operand. */
1332 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1333 if (rtx_equal_p (reg, dest))
1334 return 0;
1336 /* If the clobber represents an earlyclobber operand, we must not
1337 substitute an expression containing the clobbered register.
1338 As we do not analyze the constraint strings here, we have to
1339 make the conservative assumption. However, if the register is
1340 a fixed hard reg, the clobber cannot represent any operand;
1341 we leave it up to the machine description to either accept or
1342 reject use-and-clobber patterns. */
1343 if (!REG_P (reg)
1344 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1345 || !fixed_regs[REGNO (reg)])
1346 if (reg_overlap_mentioned_p (reg, src))
1347 return 0;
1350 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1351 or not), reject, unless nothing volatile comes between it and I3 */
1353 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1355 /* Make sure succ doesn't contain a volatile reference. */
1356 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1357 return 0;
1359 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1360 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1361 return 0;
1364 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1365 to be an explicit register variable, and was chosen for a reason. */
1367 if (GET_CODE (src) == ASM_OPERANDS
1368 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1369 return 0;
1371 /* If there are any volatile insns between INSN and I3, reject, because
1372 they might affect machine state. */
1374 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1375 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1376 return 0;
1378 /* If INSN contains an autoincrement or autodecrement, make sure that
1379 register is not used between there and I3, and not already used in
1380 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1381 Also insist that I3 not be a jump; if it were one
1382 and the incremented register were spilled, we would lose. */
1384 #ifdef AUTO_INC_DEC
1385 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1386 if (REG_NOTE_KIND (link) == REG_INC
1387 && (JUMP_P (i3)
1388 || reg_used_between_p (XEXP (link, 0), insn, i3)
1389 || (pred != NULL_RTX
1390 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1391 || (succ != NULL_RTX
1392 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1393 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1394 return 0;
1395 #endif
1397 #ifdef HAVE_cc0
1398 /* Don't combine an insn that follows a CC0-setting insn.
1399 An insn that uses CC0 must not be separated from the one that sets it.
1400 We do, however, allow I2 to follow a CC0-setting insn if that insn
1401 is passed as I1; in that case it will be deleted also.
1402 We also allow combining in this case if all the insns are adjacent
1403 because that would leave the two CC0 insns adjacent as well.
1404 It would be more logical to test whether CC0 occurs inside I1 or I2,
1405 but that would be much slower, and this ought to be equivalent. */
1407 p = prev_nonnote_insn (insn);
1408 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1409 && ! all_adjacent)
1410 return 0;
1411 #endif
1413 /* If we get here, we have passed all the tests and the combination is
1414 to be allowed. */
1416 *pdest = dest;
1417 *psrc = src;
1419 return 1;
1422 /* LOC is the location within I3 that contains its pattern or the component
1423 of a PARALLEL of the pattern. We validate that it is valid for combining.
1425 One problem is if I3 modifies its output, as opposed to replacing it
1426 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1427 so would produce an insn that is not equivalent to the original insns.
1429 Consider:
1431 (set (reg:DI 101) (reg:DI 100))
1432 (set (subreg:SI (reg:DI 101) 0) <foo>)
1434 This is NOT equivalent to:
1436 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1437 (set (reg:DI 101) (reg:DI 100))])
1439 Not only does this modify 100 (in which case it might still be valid
1440 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1442 We can also run into a problem if I2 sets a register that I1
1443 uses and I1 gets directly substituted into I3 (not via I2). In that
1444 case, we would be getting the wrong value of I2DEST into I3, so we
1445 must reject the combination. This case occurs when I2 and I1 both
1446 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1447 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1448 of a SET must prevent combination from occurring.
1450 Before doing the above check, we first try to expand a field assignment
1451 into a set of logical operations.
1453 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1454 we place a register that is both set and used within I3. If more than one
1455 such register is detected, we fail.
1457 Return 1 if the combination is valid, zero otherwise. */
1459 static int
1460 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1461 int i1_not_in_src, rtx *pi3dest_killed)
1463 rtx x = *loc;
1465 if (GET_CODE (x) == SET)
1467 rtx set = x ;
1468 rtx dest = SET_DEST (set);
1469 rtx src = SET_SRC (set);
1470 rtx inner_dest = dest;
1471 rtx subdest;
1473 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1474 || GET_CODE (inner_dest) == SUBREG
1475 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1476 inner_dest = XEXP (inner_dest, 0);
1478 /* Check for the case where I3 modifies its output, as discussed
1479 above. We don't want to prevent pseudos from being combined
1480 into the address of a MEM, so only prevent the combination if
1481 i1 or i2 set the same MEM. */
1482 if ((inner_dest != dest &&
1483 (!MEM_P (inner_dest)
1484 || rtx_equal_p (i2dest, inner_dest)
1485 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1486 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1487 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1489 /* This is the same test done in can_combine_p except we can't test
1490 all_adjacent; we don't have to, since this instruction will stay
1491 in place, thus we are not considering increasing the lifetime of
1492 INNER_DEST.
1494 Also, if this insn sets a function argument, combining it with
1495 something that might need a spill could clobber a previous
1496 function argument; the all_adjacent test in can_combine_p also
1497 checks this; here, we do a more specific test for this case. */
1499 || (REG_P (inner_dest)
1500 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1501 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1502 GET_MODE (inner_dest))))
1503 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1504 return 0;
1506 /* If DEST is used in I3, it is being killed in this insn, so
1507 record that for later. We have to consider paradoxical
1508 subregs here, since they kill the whole register, but we
1509 ignore partial subregs, STRICT_LOW_PART, etc.
1510 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1511 STACK_POINTER_REGNUM, since these are always considered to be
1512 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1513 subdest = dest;
1514 if (GET_CODE (subdest) == SUBREG
1515 && (GET_MODE_SIZE (GET_MODE (subdest))
1516 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1517 subdest = SUBREG_REG (subdest);
1518 if (pi3dest_killed
1519 && REG_P (subdest)
1520 && reg_referenced_p (subdest, PATTERN (i3))
1521 && REGNO (subdest) != FRAME_POINTER_REGNUM
1522 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1523 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1524 #endif
1525 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1526 && (REGNO (subdest) != ARG_POINTER_REGNUM
1527 || ! fixed_regs [REGNO (subdest)])
1528 #endif
1529 && REGNO (subdest) != STACK_POINTER_REGNUM)
1531 if (*pi3dest_killed)
1532 return 0;
1534 *pi3dest_killed = subdest;
1538 else if (GET_CODE (x) == PARALLEL)
1540 int i;
1542 for (i = 0; i < XVECLEN (x, 0); i++)
1543 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1544 i1_not_in_src, pi3dest_killed))
1545 return 0;
1548 return 1;
1551 /* Return 1 if X is an arithmetic expression that contains a multiplication
1552 and division. We don't count multiplications by powers of two here. */
1554 static int
1555 contains_muldiv (rtx x)
1557 switch (GET_CODE (x))
1559 case MOD: case DIV: case UMOD: case UDIV:
1560 return 1;
1562 case MULT:
1563 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1564 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1565 default:
1566 if (BINARY_P (x))
1567 return contains_muldiv (XEXP (x, 0))
1568 || contains_muldiv (XEXP (x, 1));
1570 if (UNARY_P (x))
1571 return contains_muldiv (XEXP (x, 0));
1573 return 0;
1577 /* Determine whether INSN can be used in a combination. Return nonzero if
1578 not. This is used in try_combine to detect early some cases where we
1579 can't perform combinations. */
1581 static int
1582 cant_combine_insn_p (rtx insn)
1584 rtx set;
1585 rtx src, dest;
1587 /* If this isn't really an insn, we can't do anything.
1588 This can occur when flow deletes an insn that it has merged into an
1589 auto-increment address. */
1590 if (! INSN_P (insn))
1591 return 1;
1593 /* Never combine loads and stores involving hard regs that are likely
1594 to be spilled. The register allocator can usually handle such
1595 reg-reg moves by tying. If we allow the combiner to make
1596 substitutions of likely-spilled regs, reload might die.
1597 As an exception, we allow combinations involving fixed regs; these are
1598 not available to the register allocator so there's no risk involved. */
1600 set = single_set (insn);
1601 if (! set)
1602 return 0;
1603 src = SET_SRC (set);
1604 dest = SET_DEST (set);
1605 if (GET_CODE (src) == SUBREG)
1606 src = SUBREG_REG (src);
1607 if (GET_CODE (dest) == SUBREG)
1608 dest = SUBREG_REG (dest);
1609 if (REG_P (src) && REG_P (dest)
1610 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1611 && ! fixed_regs[REGNO (src)]
1612 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1613 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1614 && ! fixed_regs[REGNO (dest)]
1615 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1616 return 1;
1618 return 0;
1621 struct likely_spilled_retval_info
1623 unsigned regno, nregs;
1624 unsigned mask;
1627 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1628 hard registers that are known to be written to / clobbered in full. */
1629 static void
1630 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1632 struct likely_spilled_retval_info *info = data;
1633 unsigned regno, nregs;
1634 unsigned new_mask;
1636 if (!REG_P (XEXP (set, 0)))
1637 return;
1638 regno = REGNO (x);
1639 if (regno >= info->regno + info->nregs)
1640 return;
1641 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1642 if (regno + nregs <= info->regno)
1643 return;
1644 new_mask = (2U << (nregs - 1)) - 1;
1645 if (regno < info->regno)
1646 new_mask >>= info->regno - regno;
1647 else
1648 new_mask <<= regno - info->regno;
1649 info->mask &= new_mask;
1652 /* Return nonzero iff part of the return value is live during INSN, and
1653 it is likely spilled. This can happen when more than one insn is needed
1654 to copy the return value, e.g. when we consider to combine into the
1655 second copy insn for a complex value. */
1657 static int
1658 likely_spilled_retval_p (rtx insn)
1660 rtx use = BB_END (this_basic_block);
1661 rtx reg, p;
1662 unsigned regno, nregs;
1663 /* We assume here that no machine mode needs more than
1664 32 hard registers when the value overlaps with a register
1665 for which FUNCTION_VALUE_REGNO_P is true. */
1666 unsigned mask;
1667 struct likely_spilled_retval_info info;
1669 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1670 return 0;
1671 reg = XEXP (PATTERN (use), 0);
1672 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1673 return 0;
1674 regno = REGNO (reg);
1675 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1676 if (nregs == 1)
1677 return 0;
1678 mask = (2U << (nregs - 1)) - 1;
1680 /* Disregard parts of the return value that are set later. */
1681 info.regno = regno;
1682 info.nregs = nregs;
1683 info.mask = mask;
1684 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1685 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1686 mask = info.mask;
1688 /* Check if any of the (probably) live return value registers is
1689 likely spilled. */
1690 nregs --;
1693 if ((mask & 1 << nregs)
1694 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1695 return 1;
1696 } while (nregs--);
1697 return 0;
1700 /* Adjust INSN after we made a change to its destination.
1702 Changing the destination can invalidate notes that say something about
1703 the results of the insn and a LOG_LINK pointing to the insn. */
1705 static void
1706 adjust_for_new_dest (rtx insn)
1708 rtx *loc;
1710 /* For notes, be conservative and simply remove them. */
1711 loc = &REG_NOTES (insn);
1712 while (*loc)
1714 enum reg_note kind = REG_NOTE_KIND (*loc);
1715 if (kind == REG_EQUAL || kind == REG_EQUIV)
1716 *loc = XEXP (*loc, 1);
1717 else
1718 loc = &XEXP (*loc, 1);
1721 /* The new insn will have a destination that was previously the destination
1722 of an insn just above it. Call distribute_links to make a LOG_LINK from
1723 the next use of that destination. */
1724 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1727 /* Return TRUE if combine can reuse reg X in mode MODE.
1728 ADDED_SETS is nonzero if the original set is still required. */
1729 static bool
1730 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1732 unsigned int regno;
1734 if (!REG_P(x))
1735 return false;
1737 regno = REGNO (x);
1738 /* Allow hard registers if the new mode is legal, and occupies no more
1739 registers than the old mode. */
1740 if (regno < FIRST_PSEUDO_REGISTER)
1741 return (HARD_REGNO_MODE_OK (regno, mode)
1742 && (hard_regno_nregs[regno][GET_MODE (x)]
1743 >= hard_regno_nregs[regno][mode]));
1745 /* Or a pseudo that is only used once. */
1746 return (REG_N_SETS (regno) == 1 && !added_sets
1747 && !REG_USERVAR_P (x));
1751 /* Check whether X, the destination of a set, refers to part of
1752 the register specified by REG. */
1754 static bool
1755 reg_subword_p (rtx x, rtx reg)
1757 /* Check that reg is an integer mode register. */
1758 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
1759 return false;
1761 if (GET_CODE (x) == STRICT_LOW_PART
1762 || GET_CODE (x) == ZERO_EXTRACT)
1763 x = XEXP (x, 0);
1765 return GET_CODE (x) == SUBREG
1766 && SUBREG_REG (x) == reg
1767 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
1771 /* Try to combine the insns I1 and I2 into I3.
1772 Here I1 and I2 appear earlier than I3.
1773 I1 can be zero; then we combine just I2 into I3.
1775 If we are combining three insns and the resulting insn is not recognized,
1776 try splitting it into two insns. If that happens, I2 and I3 are retained
1777 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1778 are pseudo-deleted.
1780 Return 0 if the combination does not work. Then nothing is changed.
1781 If we did the combination, return the insn at which combine should
1782 resume scanning.
1784 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1785 new direct jump instruction. */
1787 static rtx
1788 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1790 /* New patterns for I3 and I2, respectively. */
1791 rtx newpat, newi2pat = 0;
1792 rtvec newpat_vec_with_clobbers = 0;
1793 int substed_i2 = 0, substed_i1 = 0;
1794 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1795 int added_sets_1, added_sets_2;
1796 /* Total number of SETs to put into I3. */
1797 int total_sets;
1798 /* Nonzero if I2's body now appears in I3. */
1799 int i2_is_used;
1800 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1801 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1802 /* Contains I3 if the destination of I3 is used in its source, which means
1803 that the old life of I3 is being killed. If that usage is placed into
1804 I2 and not in I3, a REG_DEAD note must be made. */
1805 rtx i3dest_killed = 0;
1806 /* SET_DEST and SET_SRC of I2 and I1. */
1807 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1808 /* PATTERN (I2), or a copy of it in certain cases. */
1809 rtx i2pat;
1810 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1811 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1812 int i2dest_killed = 0, i1dest_killed = 0;
1813 int i1_feeds_i3 = 0;
1814 /* Notes that must be added to REG_NOTES in I3 and I2. */
1815 rtx new_i3_notes, new_i2_notes;
1816 /* Notes that we substituted I3 into I2 instead of the normal case. */
1817 int i3_subst_into_i2 = 0;
1818 /* Notes that I1, I2 or I3 is a MULT operation. */
1819 int have_mult = 0;
1820 int swap_i2i3 = 0;
1822 int maxreg;
1823 rtx temp;
1824 rtx link;
1825 int i;
1827 /* Exit early if one of the insns involved can't be used for
1828 combinations. */
1829 if (cant_combine_insn_p (i3)
1830 || cant_combine_insn_p (i2)
1831 || (i1 && cant_combine_insn_p (i1))
1832 || likely_spilled_retval_p (i3)
1833 /* We also can't do anything if I3 has a
1834 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1835 libcall. */
1836 #if 0
1837 /* ??? This gives worse code, and appears to be unnecessary, since no
1838 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1839 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1840 #endif
1842 return 0;
1844 combine_attempts++;
1845 undobuf.other_insn = 0;
1847 /* Reset the hard register usage information. */
1848 CLEAR_HARD_REG_SET (newpat_used_regs);
1850 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1851 code below, set I1 to be the earlier of the two insns. */
1852 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1853 temp = i1, i1 = i2, i2 = temp;
1855 added_links_insn = 0;
1857 /* First check for one important special-case that the code below will
1858 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1859 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1860 we may be able to replace that destination with the destination of I3.
1861 This occurs in the common code where we compute both a quotient and
1862 remainder into a structure, in which case we want to do the computation
1863 directly into the structure to avoid register-register copies.
1865 Note that this case handles both multiple sets in I2 and also
1866 cases where I2 has a number of CLOBBER or PARALLELs.
1868 We make very conservative checks below and only try to handle the
1869 most common cases of this. For example, we only handle the case
1870 where I2 and I3 are adjacent to avoid making difficult register
1871 usage tests. */
1873 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1874 && REG_P (SET_SRC (PATTERN (i3)))
1875 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1876 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1877 && GET_CODE (PATTERN (i2)) == PARALLEL
1878 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1879 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1880 below would need to check what is inside (and reg_overlap_mentioned_p
1881 doesn't support those codes anyway). Don't allow those destinations;
1882 the resulting insn isn't likely to be recognized anyway. */
1883 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1884 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1885 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1886 SET_DEST (PATTERN (i3)))
1887 && next_real_insn (i2) == i3)
1889 rtx p2 = PATTERN (i2);
1891 /* Make sure that the destination of I3,
1892 which we are going to substitute into one output of I2,
1893 is not used within another output of I2. We must avoid making this:
1894 (parallel [(set (mem (reg 69)) ...)
1895 (set (reg 69) ...)])
1896 which is not well-defined as to order of actions.
1897 (Besides, reload can't handle output reloads for this.)
1899 The problem can also happen if the dest of I3 is a memory ref,
1900 if another dest in I2 is an indirect memory ref. */
1901 for (i = 0; i < XVECLEN (p2, 0); i++)
1902 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1903 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1904 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1905 SET_DEST (XVECEXP (p2, 0, i))))
1906 break;
1908 if (i == XVECLEN (p2, 0))
1909 for (i = 0; i < XVECLEN (p2, 0); i++)
1910 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1911 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1912 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1914 combine_merges++;
1916 subst_insn = i3;
1917 subst_low_cuid = INSN_CUID (i2);
1919 added_sets_2 = added_sets_1 = 0;
1920 i2dest = SET_SRC (PATTERN (i3));
1921 i2dest_killed = dead_or_set_p (i2, i2dest);
1923 /* Replace the dest in I2 with our dest and make the resulting
1924 insn the new pattern for I3. Then skip to where we
1925 validate the pattern. Everything was set up above. */
1926 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1927 SET_DEST (PATTERN (i3)));
1929 newpat = p2;
1930 i3_subst_into_i2 = 1;
1931 goto validate_replacement;
1935 /* If I2 is setting a pseudo to a constant and I3 is setting some
1936 sub-part of it to another constant, merge them by making a new
1937 constant. */
1938 if (i1 == 0
1939 && (temp = single_set (i2)) != 0
1940 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1941 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1942 && GET_CODE (PATTERN (i3)) == SET
1943 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
1944 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
1945 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
1947 rtx dest = SET_DEST (PATTERN (i3));
1948 int offset = -1;
1949 int width = 0;
1951 if (GET_CODE (dest) == ZERO_EXTRACT)
1953 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
1954 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
1956 width = INTVAL (XEXP (dest, 1));
1957 offset = INTVAL (XEXP (dest, 2));
1958 dest = XEXP (dest, 0);
1959 if (BITS_BIG_ENDIAN)
1960 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
1963 else
1965 if (GET_CODE (dest) == STRICT_LOW_PART)
1966 dest = XEXP (dest, 0);
1967 width = GET_MODE_BITSIZE (GET_MODE (dest));
1968 offset = 0;
1971 if (offset >= 0)
1973 /* If this is the low part, we're done. */
1974 if (subreg_lowpart_p (dest))
1976 /* Handle the case where inner is twice the size of outer. */
1977 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
1978 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
1979 offset += GET_MODE_BITSIZE (GET_MODE (dest));
1980 /* Otherwise give up for now. */
1981 else
1982 offset = -1;
1985 if (offset >= 0)
1987 HOST_WIDE_INT mhi, ohi, ihi;
1988 HOST_WIDE_INT mlo, olo, ilo;
1989 rtx inner = SET_SRC (PATTERN (i3));
1990 rtx outer = SET_SRC (temp);
1992 if (GET_CODE (outer) == CONST_INT)
1994 olo = INTVAL (outer);
1995 ohi = olo < 0 ? -1 : 0;
1997 else
1999 olo = CONST_DOUBLE_LOW (outer);
2000 ohi = CONST_DOUBLE_HIGH (outer);
2003 if (GET_CODE (inner) == CONST_INT)
2005 ilo = INTVAL (inner);
2006 ihi = ilo < 0 ? -1 : 0;
2008 else
2010 ilo = CONST_DOUBLE_LOW (inner);
2011 ihi = CONST_DOUBLE_HIGH (inner);
2014 if (width < HOST_BITS_PER_WIDE_INT)
2016 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2017 mhi = 0;
2019 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2021 mhi = ((unsigned HOST_WIDE_INT) 1
2022 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2023 mlo = -1;
2025 else
2027 mlo = -1;
2028 mhi = -1;
2031 ilo &= mlo;
2032 ihi &= mhi;
2034 if (offset >= HOST_BITS_PER_WIDE_INT)
2036 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2037 mlo = 0;
2038 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2039 ilo = 0;
2041 else if (offset > 0)
2043 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2044 >> (HOST_BITS_PER_WIDE_INT - offset));
2045 mlo = mlo << offset;
2046 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2047 >> (HOST_BITS_PER_WIDE_INT - offset));
2048 ilo = ilo << offset;
2051 olo = (olo & ~mlo) | ilo;
2052 ohi = (ohi & ~mhi) | ihi;
2054 combine_merges++;
2055 subst_insn = i3;
2056 subst_low_cuid = INSN_CUID (i2);
2057 added_sets_2 = added_sets_1 = 0;
2058 i2dest = SET_DEST (temp);
2059 i2dest_killed = dead_or_set_p (i2, i2dest);
2061 SUBST (SET_SRC (temp),
2062 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2064 newpat = PATTERN (i2);
2065 goto validate_replacement;
2069 #ifndef HAVE_cc0
2070 /* If we have no I1 and I2 looks like:
2071 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2072 (set Y OP)])
2073 make up a dummy I1 that is
2074 (set Y OP)
2075 and change I2 to be
2076 (set (reg:CC X) (compare:CC Y (const_int 0)))
2078 (We can ignore any trailing CLOBBERs.)
2080 This undoes a previous combination and allows us to match a branch-and-
2081 decrement insn. */
2083 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2084 && XVECLEN (PATTERN (i2), 0) >= 2
2085 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2086 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2087 == MODE_CC)
2088 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2089 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2090 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2091 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2092 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2093 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2095 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2096 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2097 break;
2099 if (i == 1)
2101 /* We make I1 with the same INSN_UID as I2. This gives it
2102 the same INSN_CUID for value tracking. Our fake I1 will
2103 never appear in the insn stream so giving it the same INSN_UID
2104 as I2 will not cause a problem. */
2106 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2107 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2108 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
2109 NULL_RTX);
2111 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2112 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2113 SET_DEST (PATTERN (i1)));
2116 #endif
2118 /* Verify that I2 and I1 are valid for combining. */
2119 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2120 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2122 undo_all ();
2123 return 0;
2126 /* Record whether I2DEST is used in I2SRC and similarly for the other
2127 cases. Knowing this will help in register status updating below. */
2128 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2129 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2130 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2131 i2dest_killed = dead_or_set_p (i2, i2dest);
2132 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2134 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2135 in I2SRC. */
2136 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2138 /* Ensure that I3's pattern can be the destination of combines. */
2139 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2140 i1 && i2dest_in_i1src && i1_feeds_i3,
2141 &i3dest_killed))
2143 undo_all ();
2144 return 0;
2147 /* See if any of the insns is a MULT operation. Unless one is, we will
2148 reject a combination that is, since it must be slower. Be conservative
2149 here. */
2150 if (GET_CODE (i2src) == MULT
2151 || (i1 != 0 && GET_CODE (i1src) == MULT)
2152 || (GET_CODE (PATTERN (i3)) == SET
2153 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2154 have_mult = 1;
2156 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2157 We used to do this EXCEPT in one case: I3 has a post-inc in an
2158 output operand. However, that exception can give rise to insns like
2159 mov r3,(r3)+
2160 which is a famous insn on the PDP-11 where the value of r3 used as the
2161 source was model-dependent. Avoid this sort of thing. */
2163 #if 0
2164 if (!(GET_CODE (PATTERN (i3)) == SET
2165 && REG_P (SET_SRC (PATTERN (i3)))
2166 && MEM_P (SET_DEST (PATTERN (i3)))
2167 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2168 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2169 /* It's not the exception. */
2170 #endif
2171 #ifdef AUTO_INC_DEC
2172 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2173 if (REG_NOTE_KIND (link) == REG_INC
2174 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2175 || (i1 != 0
2176 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2178 undo_all ();
2179 return 0;
2181 #endif
2183 /* See if the SETs in I1 or I2 need to be kept around in the merged
2184 instruction: whenever the value set there is still needed past I3.
2185 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2187 For the SET in I1, we have two cases: If I1 and I2 independently
2188 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2189 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2190 in I1 needs to be kept around unless I1DEST dies or is set in either
2191 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2192 I1DEST. If so, we know I1 feeds into I2. */
2194 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2196 added_sets_1
2197 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2198 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2200 /* If the set in I2 needs to be kept around, we must make a copy of
2201 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2202 PATTERN (I2), we are only substituting for the original I1DEST, not into
2203 an already-substituted copy. This also prevents making self-referential
2204 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2205 I2DEST. */
2207 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2208 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2209 : PATTERN (i2));
2211 if (added_sets_2)
2212 i2pat = copy_rtx (i2pat);
2214 combine_merges++;
2216 /* Substitute in the latest insn for the regs set by the earlier ones. */
2218 maxreg = max_reg_num ();
2220 subst_insn = i3;
2222 #ifndef HAVE_cc0
2223 /* Many machines that don't use CC0 have insns that can both perform an
2224 arithmetic operation and set the condition code. These operations will
2225 be represented as a PARALLEL with the first element of the vector
2226 being a COMPARE of an arithmetic operation with the constant zero.
2227 The second element of the vector will set some pseudo to the result
2228 of the same arithmetic operation. If we simplify the COMPARE, we won't
2229 match such a pattern and so will generate an extra insn. Here we test
2230 for this case, where both the comparison and the operation result are
2231 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2232 I2SRC. Later we will make the PARALLEL that contains I2. */
2234 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2235 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2236 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2237 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2239 #ifdef SELECT_CC_MODE
2240 rtx *cc_use;
2241 enum machine_mode compare_mode;
2242 #endif
2244 newpat = PATTERN (i3);
2245 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2247 i2_is_used = 1;
2249 #ifdef SELECT_CC_MODE
2250 /* See if a COMPARE with the operand we substituted in should be done
2251 with the mode that is currently being used. If not, do the same
2252 processing we do in `subst' for a SET; namely, if the destination
2253 is used only once, try to replace it with a register of the proper
2254 mode and also replace the COMPARE. */
2255 if (undobuf.other_insn == 0
2256 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2257 &undobuf.other_insn))
2258 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2259 i2src, const0_rtx))
2260 != GET_MODE (SET_DEST (newpat))))
2262 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2263 compare_mode))
2265 unsigned int regno = REGNO (SET_DEST (newpat));
2266 rtx new_dest;
2268 if (regno < FIRST_PSEUDO_REGISTER)
2269 new_dest = gen_rtx_REG (compare_mode, regno);
2270 else
2272 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2273 new_dest = regno_reg_rtx[regno];
2276 SUBST (SET_DEST (newpat), new_dest);
2277 SUBST (XEXP (*cc_use, 0), new_dest);
2278 SUBST (SET_SRC (newpat),
2279 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2281 else
2282 undobuf.other_insn = 0;
2284 #endif
2286 else
2287 #endif
2289 /* It is possible that the source of I2 or I1 may be performing
2290 an unneeded operation, such as a ZERO_EXTEND of something
2291 that is known to have the high part zero. Handle that case
2292 by letting subst look at the innermost one of them.
2294 Another way to do this would be to have a function that tries
2295 to simplify a single insn instead of merging two or more
2296 insns. We don't do this because of the potential of infinite
2297 loops and because of the potential extra memory required.
2298 However, doing it the way we are is a bit of a kludge and
2299 doesn't catch all cases.
2301 But only do this if -fexpensive-optimizations since it slows
2302 things down and doesn't usually win.
2304 This is not done in the COMPARE case above because the
2305 unmodified I2PAT is used in the PARALLEL and so a pattern
2306 with a modified I2SRC would not match. */
2308 if (flag_expensive_optimizations)
2310 /* Pass pc_rtx so no substitutions are done, just
2311 simplifications. */
2312 if (i1)
2314 subst_low_cuid = INSN_CUID (i1);
2315 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2317 else
2319 subst_low_cuid = INSN_CUID (i2);
2320 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2324 n_occurrences = 0; /* `subst' counts here */
2326 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2327 need to make a unique copy of I2SRC each time we substitute it
2328 to avoid self-referential rtl. */
2330 subst_low_cuid = INSN_CUID (i2);
2331 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2332 ! i1_feeds_i3 && i1dest_in_i1src);
2333 substed_i2 = 1;
2335 /* Record whether i2's body now appears within i3's body. */
2336 i2_is_used = n_occurrences;
2339 /* If we already got a failure, don't try to do more. Otherwise,
2340 try to substitute in I1 if we have it. */
2342 if (i1 && GET_CODE (newpat) != CLOBBER)
2344 /* Before we can do this substitution, we must redo the test done
2345 above (see detailed comments there) that ensures that I1DEST
2346 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2348 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2349 0, (rtx*) 0))
2351 undo_all ();
2352 return 0;
2355 n_occurrences = 0;
2356 subst_low_cuid = INSN_CUID (i1);
2357 newpat = subst (newpat, i1dest, i1src, 0, 0);
2358 substed_i1 = 1;
2361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2362 to count all the ways that I2SRC and I1SRC can be used. */
2363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2364 && i2_is_used + added_sets_2 > 1)
2365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2366 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2367 > 1))
2368 /* Fail if we tried to make a new register. */
2369 || max_reg_num () != maxreg
2370 /* Fail if we couldn't do something and have a CLOBBER. */
2371 || GET_CODE (newpat) == CLOBBER
2372 /* Fail if this new pattern is a MULT and we didn't have one before
2373 at the outer level. */
2374 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2375 && ! have_mult))
2377 undo_all ();
2378 return 0;
2381 /* If the actions of the earlier insns must be kept
2382 in addition to substituting them into the latest one,
2383 we must make a new PARALLEL for the latest insn
2384 to hold additional the SETs. */
2386 if (added_sets_1 || added_sets_2)
2388 combine_extras++;
2390 if (GET_CODE (newpat) == PARALLEL)
2392 rtvec old = XVEC (newpat, 0);
2393 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2394 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2395 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2396 sizeof (old->elem[0]) * old->num_elem);
2398 else
2400 rtx old = newpat;
2401 total_sets = 1 + added_sets_1 + added_sets_2;
2402 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2403 XVECEXP (newpat, 0, 0) = old;
2406 if (added_sets_1)
2407 XVECEXP (newpat, 0, --total_sets)
2408 = (GET_CODE (PATTERN (i1)) == PARALLEL
2409 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2411 if (added_sets_2)
2413 /* If there is no I1, use I2's body as is. We used to also not do
2414 the subst call below if I2 was substituted into I3,
2415 but that could lose a simplification. */
2416 if (i1 == 0)
2417 XVECEXP (newpat, 0, --total_sets) = i2pat;
2418 else
2419 /* See comment where i2pat is assigned. */
2420 XVECEXP (newpat, 0, --total_sets)
2421 = subst (i2pat, i1dest, i1src, 0, 0);
2425 /* We come here when we are replacing a destination in I2 with the
2426 destination of I3. */
2427 validate_replacement:
2429 /* Note which hard regs this insn has as inputs. */
2430 mark_used_regs_combine (newpat);
2432 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2433 consider splitting this pattern, we might need these clobbers. */
2434 if (i1 && GET_CODE (newpat) == PARALLEL
2435 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2437 int len = XVECLEN (newpat, 0);
2439 newpat_vec_with_clobbers = rtvec_alloc (len);
2440 for (i = 0; i < len; i++)
2441 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2444 /* Is the result of combination a valid instruction? */
2445 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2447 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2448 the second SET's destination is a register that is unused and isn't
2449 marked as an instruction that might trap in an EH region. In that case,
2450 we just need the first SET. This can occur when simplifying a divmod
2451 insn. We *must* test for this case here because the code below that
2452 splits two independent SETs doesn't handle this case correctly when it
2453 updates the register status.
2455 It's pointless doing this if we originally had two sets, one from
2456 i3, and one from i2. Combining then splitting the parallel results
2457 in the original i2 again plus an invalid insn (which we delete).
2458 The net effect is only to move instructions around, which makes
2459 debug info less accurate.
2461 Also check the case where the first SET's destination is unused.
2462 That would not cause incorrect code, but does cause an unneeded
2463 insn to remain. */
2465 if (insn_code_number < 0
2466 && !(added_sets_2 && i1 == 0)
2467 && GET_CODE (newpat) == PARALLEL
2468 && XVECLEN (newpat, 0) == 2
2469 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2470 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2471 && asm_noperands (newpat) < 0)
2473 rtx set0 = XVECEXP (newpat, 0, 0);
2474 rtx set1 = XVECEXP (newpat, 0, 1);
2475 rtx note;
2477 if (((REG_P (SET_DEST (set1))
2478 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2479 || (GET_CODE (SET_DEST (set1)) == SUBREG
2480 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2481 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2482 || INTVAL (XEXP (note, 0)) <= 0)
2483 && ! side_effects_p (SET_SRC (set1)))
2485 newpat = set0;
2486 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2489 else if (((REG_P (SET_DEST (set0))
2490 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2491 || (GET_CODE (SET_DEST (set0)) == SUBREG
2492 && find_reg_note (i3, REG_UNUSED,
2493 SUBREG_REG (SET_DEST (set0)))))
2494 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2495 || INTVAL (XEXP (note, 0)) <= 0)
2496 && ! side_effects_p (SET_SRC (set0)))
2498 newpat = set1;
2499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2501 if (insn_code_number >= 0)
2503 /* If we will be able to accept this, we have made a
2504 change to the destination of I3. This requires us to
2505 do a few adjustments. */
2507 PATTERN (i3) = newpat;
2508 adjust_for_new_dest (i3);
2513 /* If we were combining three insns and the result is a simple SET
2514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2515 insns. There are two ways to do this. It can be split using a
2516 machine-specific method (like when you have an addition of a large
2517 constant) or by combine in the function find_split_point. */
2519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2520 && asm_noperands (newpat) < 0)
2522 rtx m_split, *split;
2524 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2525 use I2DEST as a scratch register will help. In the latter case,
2526 convert I2DEST to the mode of the source of NEWPAT if we can. */
2528 m_split = split_insns (newpat, i3);
2530 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2531 inputs of NEWPAT. */
2533 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2534 possible to try that as a scratch reg. This would require adding
2535 more code to make it work though. */
2537 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2539 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2541 /* First try to split using the original register as a
2542 scratch register. */
2543 m_split = split_insns (gen_rtx_PARALLEL
2544 (VOIDmode,
2545 gen_rtvec (2, newpat,
2546 gen_rtx_CLOBBER (VOIDmode,
2547 i2dest))),
2548 i3);
2550 /* If that didn't work, try changing the mode of I2DEST if
2551 we can. */
2552 if (m_split == 0
2553 && new_mode != GET_MODE (i2dest)
2554 && new_mode != VOIDmode
2555 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2557 enum machine_mode old_mode = GET_MODE (i2dest);
2558 rtx ni2dest;
2560 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2561 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2562 else
2564 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2565 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2568 m_split = split_insns (gen_rtx_PARALLEL
2569 (VOIDmode,
2570 gen_rtvec (2, newpat,
2571 gen_rtx_CLOBBER (VOIDmode,
2572 ni2dest))),
2573 i3);
2575 if (m_split == 0
2576 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2578 struct undo *buf;
2580 PUT_MODE (regno_reg_rtx[REGNO (i2dest)], old_mode);
2581 buf = undobuf.undos;
2582 undobuf.undos = buf->next;
2583 buf->next = undobuf.frees;
2584 undobuf.frees = buf;
2589 /* If recog_for_combine has discarded clobbers, try to use them
2590 again for the split. */
2591 if (m_split == 0 && newpat_vec_with_clobbers)
2592 m_split
2593 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2594 newpat_vec_with_clobbers), i3);
2596 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2598 m_split = PATTERN (m_split);
2599 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2600 if (insn_code_number >= 0)
2601 newpat = m_split;
2603 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2604 && (next_real_insn (i2) == i3
2605 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2607 rtx i2set, i3set;
2608 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2609 newi2pat = PATTERN (m_split);
2611 i3set = single_set (NEXT_INSN (m_split));
2612 i2set = single_set (m_split);
2614 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2616 /* If I2 or I3 has multiple SETs, we won't know how to track
2617 register status, so don't use these insns. If I2's destination
2618 is used between I2 and I3, we also can't use these insns. */
2620 if (i2_code_number >= 0 && i2set && i3set
2621 && (next_real_insn (i2) == i3
2622 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2623 insn_code_number = recog_for_combine (&newi3pat, i3,
2624 &new_i3_notes);
2625 if (insn_code_number >= 0)
2626 newpat = newi3pat;
2628 /* It is possible that both insns now set the destination of I3.
2629 If so, we must show an extra use of it. */
2631 if (insn_code_number >= 0)
2633 rtx new_i3_dest = SET_DEST (i3set);
2634 rtx new_i2_dest = SET_DEST (i2set);
2636 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2637 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2638 || GET_CODE (new_i3_dest) == SUBREG)
2639 new_i3_dest = XEXP (new_i3_dest, 0);
2641 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2642 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2643 || GET_CODE (new_i2_dest) == SUBREG)
2644 new_i2_dest = XEXP (new_i2_dest, 0);
2646 if (REG_P (new_i3_dest)
2647 && REG_P (new_i2_dest)
2648 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2649 REG_N_SETS (REGNO (new_i2_dest))++;
2653 /* If we can split it and use I2DEST, go ahead and see if that
2654 helps things be recognized. Verify that none of the registers
2655 are set between I2 and I3. */
2656 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2657 #ifdef HAVE_cc0
2658 && REG_P (i2dest)
2659 #endif
2660 /* We need I2DEST in the proper mode. If it is a hard register
2661 or the only use of a pseudo, we can change its mode.
2662 Make sure we don't change a hard register to have a mode that
2663 isn't valid for it, or change the number of registers. */
2664 && (GET_MODE (*split) == GET_MODE (i2dest)
2665 || GET_MODE (*split) == VOIDmode
2666 || can_change_dest_mode (i2dest, added_sets_2,
2667 GET_MODE (*split)))
2668 && (next_real_insn (i2) == i3
2669 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2670 /* We can't overwrite I2DEST if its value is still used by
2671 NEWPAT. */
2672 && ! reg_referenced_p (i2dest, newpat))
2674 rtx newdest = i2dest;
2675 enum rtx_code split_code = GET_CODE (*split);
2676 enum machine_mode split_mode = GET_MODE (*split);
2677 bool subst_done = false;
2678 newi2pat = NULL_RTX;
2680 /* Get NEWDEST as a register in the proper mode. We have already
2681 validated that we can do this. */
2682 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2684 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2685 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2686 else
2688 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
2689 newdest = regno_reg_rtx[REGNO (i2dest)];
2693 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2694 an ASHIFT. This can occur if it was inside a PLUS and hence
2695 appeared to be a memory address. This is a kludge. */
2696 if (split_code == MULT
2697 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2698 && INTVAL (XEXP (*split, 1)) > 0
2699 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2701 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2702 XEXP (*split, 0), GEN_INT (i)));
2703 /* Update split_code because we may not have a multiply
2704 anymore. */
2705 split_code = GET_CODE (*split);
2708 #ifdef INSN_SCHEDULING
2709 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2710 be written as a ZERO_EXTEND. */
2711 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2713 #ifdef LOAD_EXTEND_OP
2714 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2715 what it really is. */
2716 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2717 == SIGN_EXTEND)
2718 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2719 SUBREG_REG (*split)));
2720 else
2721 #endif
2722 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2723 SUBREG_REG (*split)));
2725 #endif
2727 /* Attempt to split binary operators using arithmetic identities. */
2728 if (BINARY_P (SET_SRC (newpat))
2729 && split_mode == GET_MODE (SET_SRC (newpat))
2730 && ! side_effects_p (SET_SRC (newpat)))
2732 rtx setsrc = SET_SRC (newpat);
2733 enum machine_mode mode = GET_MODE (setsrc);
2734 enum rtx_code code = GET_CODE (setsrc);
2735 rtx src_op0 = XEXP (setsrc, 0);
2736 rtx src_op1 = XEXP (setsrc, 1);
2738 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2739 if (rtx_equal_p (src_op0, src_op1))
2741 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2742 SUBST (XEXP (setsrc, 0), newdest);
2743 SUBST (XEXP (setsrc, 1), newdest);
2744 subst_done = true;
2746 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2747 else if ((code == PLUS || code == MULT)
2748 && GET_CODE (src_op0) == code
2749 && GET_CODE (XEXP (src_op0, 0)) == code
2750 && (INTEGRAL_MODE_P (mode)
2751 || (FLOAT_MODE_P (mode)
2752 && flag_unsafe_math_optimizations)))
2754 rtx p = XEXP (XEXP (src_op0, 0), 0);
2755 rtx q = XEXP (XEXP (src_op0, 0), 1);
2756 rtx r = XEXP (src_op0, 1);
2757 rtx s = src_op1;
2759 /* Split both "((X op Y) op X) op Y" and
2760 "((X op Y) op Y) op X" as "T op T" where T is
2761 "X op Y". */
2762 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2763 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2765 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2766 XEXP (src_op0, 0));
2767 SUBST (XEXP (setsrc, 0), newdest);
2768 SUBST (XEXP (setsrc, 1), newdest);
2769 subst_done = true;
2771 /* Split "((X op X) op Y) op Y)" as "T op T" where
2772 T is "X op Y". */
2773 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2775 rtx tmp = simplify_gen_binary (code, mode, p, r);
2776 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2777 SUBST (XEXP (setsrc, 0), newdest);
2778 SUBST (XEXP (setsrc, 1), newdest);
2779 subst_done = true;
2784 if (!subst_done)
2786 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2787 SUBST (*split, newdest);
2790 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2792 /* recog_for_combine might have added CLOBBERs to newi2pat.
2793 Make sure NEWPAT does not depend on the clobbered regs. */
2794 if (GET_CODE (newi2pat) == PARALLEL)
2795 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2796 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2798 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2799 if (reg_overlap_mentioned_p (reg, newpat))
2801 undo_all ();
2802 return 0;
2806 /* If the split point was a MULT and we didn't have one before,
2807 don't use one now. */
2808 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2809 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2813 /* Check for a case where we loaded from memory in a narrow mode and
2814 then sign extended it, but we need both registers. In that case,
2815 we have a PARALLEL with both loads from the same memory location.
2816 We can split this into a load from memory followed by a register-register
2817 copy. This saves at least one insn, more if register allocation can
2818 eliminate the copy.
2820 We cannot do this if the destination of the first assignment is a
2821 condition code register or cc0. We eliminate this case by making sure
2822 the SET_DEST and SET_SRC have the same mode.
2824 We cannot do this if the destination of the second assignment is
2825 a register that we have already assumed is zero-extended. Similarly
2826 for a SUBREG of such a register. */
2828 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2829 && GET_CODE (newpat) == PARALLEL
2830 && XVECLEN (newpat, 0) == 2
2831 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2832 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2833 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2834 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2835 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2836 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2837 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2838 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2839 INSN_CUID (i2))
2840 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2841 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2842 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2843 (REG_P (temp)
2844 && reg_stat[REGNO (temp)].nonzero_bits != 0
2845 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2846 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2847 && (reg_stat[REGNO (temp)].nonzero_bits
2848 != GET_MODE_MASK (word_mode))))
2849 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2850 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2851 (REG_P (temp)
2852 && reg_stat[REGNO (temp)].nonzero_bits != 0
2853 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2854 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2855 && (reg_stat[REGNO (temp)].nonzero_bits
2856 != GET_MODE_MASK (word_mode)))))
2857 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2858 SET_SRC (XVECEXP (newpat, 0, 1)))
2859 && ! find_reg_note (i3, REG_UNUSED,
2860 SET_DEST (XVECEXP (newpat, 0, 0))))
2862 rtx ni2dest;
2864 newi2pat = XVECEXP (newpat, 0, 0);
2865 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2866 newpat = XVECEXP (newpat, 0, 1);
2867 SUBST (SET_SRC (newpat),
2868 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2869 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2871 if (i2_code_number >= 0)
2872 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2874 if (insn_code_number >= 0)
2875 swap_i2i3 = 1;
2878 /* Similarly, check for a case where we have a PARALLEL of two independent
2879 SETs but we started with three insns. In this case, we can do the sets
2880 as two separate insns. This case occurs when some SET allows two
2881 other insns to combine, but the destination of that SET is still live. */
2883 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2884 && GET_CODE (newpat) == PARALLEL
2885 && XVECLEN (newpat, 0) == 2
2886 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2887 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2888 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2889 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2890 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2891 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2892 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2893 INSN_CUID (i2))
2894 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2895 XVECEXP (newpat, 0, 0))
2896 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2897 XVECEXP (newpat, 0, 1))
2898 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2899 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
2900 #ifdef HAVE_cc0
2901 /* We cannot split the parallel into two sets if both sets
2902 reference cc0. */
2903 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
2904 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
2905 #endif
2908 /* Normally, it doesn't matter which of the two is done first,
2909 but it does if one references cc0. In that case, it has to
2910 be first. */
2911 #ifdef HAVE_cc0
2912 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2914 newi2pat = XVECEXP (newpat, 0, 0);
2915 newpat = XVECEXP (newpat, 0, 1);
2917 else
2918 #endif
2920 newi2pat = XVECEXP (newpat, 0, 1);
2921 newpat = XVECEXP (newpat, 0, 0);
2924 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2926 if (i2_code_number >= 0)
2927 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2930 /* If it still isn't recognized, fail and change things back the way they
2931 were. */
2932 if ((insn_code_number < 0
2933 /* Is the result a reasonable ASM_OPERANDS? */
2934 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2936 undo_all ();
2937 return 0;
2940 /* If we had to change another insn, make sure it is valid also. */
2941 if (undobuf.other_insn)
2943 rtx other_pat = PATTERN (undobuf.other_insn);
2944 rtx new_other_notes;
2945 rtx note, next;
2947 CLEAR_HARD_REG_SET (newpat_used_regs);
2949 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2950 &new_other_notes);
2952 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2954 undo_all ();
2955 return 0;
2958 PATTERN (undobuf.other_insn) = other_pat;
2960 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2961 are still valid. Then add any non-duplicate notes added by
2962 recog_for_combine. */
2963 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2965 next = XEXP (note, 1);
2967 if (REG_NOTE_KIND (note) == REG_UNUSED
2968 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2970 if (REG_P (XEXP (note, 0)))
2971 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2973 remove_note (undobuf.other_insn, note);
2977 for (note = new_other_notes; note; note = XEXP (note, 1))
2978 if (REG_P (XEXP (note, 0)))
2979 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2981 distribute_notes (new_other_notes, undobuf.other_insn,
2982 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2984 #ifdef HAVE_cc0
2985 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2986 they are adjacent to each other or not. */
2988 rtx p = prev_nonnote_insn (i3);
2989 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2990 && sets_cc0_p (newi2pat))
2992 undo_all ();
2993 return 0;
2996 #endif
2998 /* Only allow this combination if insn_rtx_costs reports that the
2999 replacement instructions are cheaper than the originals. */
3000 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
3002 undo_all ();
3003 return 0;
3006 /* We now know that we can do this combination. Merge the insns and
3007 update the status of registers and LOG_LINKS. */
3009 if (swap_i2i3)
3011 rtx insn;
3012 rtx link;
3013 rtx ni2dest;
3015 /* I3 now uses what used to be its destination and which is now
3016 I2's destination. This requires us to do a few adjustments. */
3017 PATTERN (i3) = newpat;
3018 adjust_for_new_dest (i3);
3020 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3021 so we still will.
3023 However, some later insn might be using I2's dest and have
3024 a LOG_LINK pointing at I3. We must remove this link.
3025 The simplest way to remove the link is to point it at I1,
3026 which we know will be a NOTE. */
3028 /* newi2pat is usually a SET here; however, recog_for_combine might
3029 have added some clobbers. */
3030 if (GET_CODE (newi2pat) == PARALLEL)
3031 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3032 else
3033 ni2dest = SET_DEST (newi2pat);
3035 for (insn = NEXT_INSN (i3);
3036 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3037 || insn != BB_HEAD (this_basic_block->next_bb));
3038 insn = NEXT_INSN (insn))
3040 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3042 for (link = LOG_LINKS (insn); link;
3043 link = XEXP (link, 1))
3044 if (XEXP (link, 0) == i3)
3045 XEXP (link, 0) = i1;
3047 break;
3053 rtx i3notes, i2notes, i1notes = 0;
3054 rtx i3links, i2links, i1links = 0;
3055 rtx midnotes = 0;
3056 unsigned int regno;
3057 /* Compute which registers we expect to eliminate. newi2pat may be setting
3058 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3059 same as i3dest, in which case newi2pat may be setting i1dest. */
3060 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3061 || i2dest_in_i2src || i2dest_in_i1src
3062 || !i2dest_killed
3063 ? 0 : i2dest);
3064 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3065 || (newi2pat && reg_set_p (i1dest, newi2pat))
3066 || !i1dest_killed
3067 ? 0 : i1dest);
3069 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3070 clear them. */
3071 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3072 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3073 if (i1)
3074 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3076 /* Ensure that we do not have something that should not be shared but
3077 occurs multiple times in the new insns. Check this by first
3078 resetting all the `used' flags and then copying anything is shared. */
3080 reset_used_flags (i3notes);
3081 reset_used_flags (i2notes);
3082 reset_used_flags (i1notes);
3083 reset_used_flags (newpat);
3084 reset_used_flags (newi2pat);
3085 if (undobuf.other_insn)
3086 reset_used_flags (PATTERN (undobuf.other_insn));
3088 i3notes = copy_rtx_if_shared (i3notes);
3089 i2notes = copy_rtx_if_shared (i2notes);
3090 i1notes = copy_rtx_if_shared (i1notes);
3091 newpat = copy_rtx_if_shared (newpat);
3092 newi2pat = copy_rtx_if_shared (newi2pat);
3093 if (undobuf.other_insn)
3094 reset_used_flags (PATTERN (undobuf.other_insn));
3096 INSN_CODE (i3) = insn_code_number;
3097 PATTERN (i3) = newpat;
3099 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3101 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3103 reset_used_flags (call_usage);
3104 call_usage = copy_rtx (call_usage);
3106 if (substed_i2)
3107 replace_rtx (call_usage, i2dest, i2src);
3109 if (substed_i1)
3110 replace_rtx (call_usage, i1dest, i1src);
3112 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3115 if (undobuf.other_insn)
3116 INSN_CODE (undobuf.other_insn) = other_code_number;
3118 /* We had one special case above where I2 had more than one set and
3119 we replaced a destination of one of those sets with the destination
3120 of I3. In that case, we have to update LOG_LINKS of insns later
3121 in this basic block. Note that this (expensive) case is rare.
3123 Also, in this case, we must pretend that all REG_NOTEs for I2
3124 actually came from I3, so that REG_UNUSED notes from I2 will be
3125 properly handled. */
3127 if (i3_subst_into_i2)
3129 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3130 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3131 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3132 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3133 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3134 && ! find_reg_note (i2, REG_UNUSED,
3135 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3136 for (temp = NEXT_INSN (i2);
3137 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3138 || BB_HEAD (this_basic_block) != temp);
3139 temp = NEXT_INSN (temp))
3140 if (temp != i3 && INSN_P (temp))
3141 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3142 if (XEXP (link, 0) == i2)
3143 XEXP (link, 0) = i3;
3145 if (i3notes)
3147 rtx link = i3notes;
3148 while (XEXP (link, 1))
3149 link = XEXP (link, 1);
3150 XEXP (link, 1) = i2notes;
3152 else
3153 i3notes = i2notes;
3154 i2notes = 0;
3157 LOG_LINKS (i3) = 0;
3158 REG_NOTES (i3) = 0;
3159 LOG_LINKS (i2) = 0;
3160 REG_NOTES (i2) = 0;
3162 if (newi2pat)
3164 INSN_CODE (i2) = i2_code_number;
3165 PATTERN (i2) = newi2pat;
3167 else
3168 SET_INSN_DELETED (i2);
3170 if (i1)
3172 LOG_LINKS (i1) = 0;
3173 REG_NOTES (i1) = 0;
3174 SET_INSN_DELETED (i1);
3177 /* Get death notes for everything that is now used in either I3 or
3178 I2 and used to die in a previous insn. If we built two new
3179 patterns, move from I1 to I2 then I2 to I3 so that we get the
3180 proper movement on registers that I2 modifies. */
3182 if (newi2pat)
3184 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3185 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3187 else
3188 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3189 i3, &midnotes);
3191 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3192 if (i3notes)
3193 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3194 elim_i2, elim_i1);
3195 if (i2notes)
3196 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3197 elim_i2, elim_i1);
3198 if (i1notes)
3199 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3200 elim_i2, elim_i1);
3201 if (midnotes)
3202 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3203 elim_i2, elim_i1);
3205 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3206 know these are REG_UNUSED and want them to go to the desired insn,
3207 so we always pass it as i3. We have not counted the notes in
3208 reg_n_deaths yet, so we need to do so now. */
3210 if (newi2pat && new_i2_notes)
3212 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3213 if (REG_P (XEXP (temp, 0)))
3214 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3216 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3219 if (new_i3_notes)
3221 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3222 if (REG_P (XEXP (temp, 0)))
3223 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3225 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3228 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3229 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3230 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3231 in that case, it might delete I2. Similarly for I2 and I1.
3232 Show an additional death due to the REG_DEAD note we make here. If
3233 we discard it in distribute_notes, we will decrement it again. */
3235 if (i3dest_killed)
3237 if (REG_P (i3dest_killed))
3238 REG_N_DEATHS (REGNO (i3dest_killed))++;
3240 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3241 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3242 NULL_RTX),
3243 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3244 else
3245 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3246 NULL_RTX),
3247 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3248 elim_i2, elim_i1);
3251 if (i2dest_in_i2src)
3253 if (REG_P (i2dest))
3254 REG_N_DEATHS (REGNO (i2dest))++;
3256 if (newi2pat && reg_set_p (i2dest, newi2pat))
3257 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3258 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3259 else
3260 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3261 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3262 NULL_RTX, NULL_RTX);
3265 if (i1dest_in_i1src)
3267 if (REG_P (i1dest))
3268 REG_N_DEATHS (REGNO (i1dest))++;
3270 if (newi2pat && reg_set_p (i1dest, newi2pat))
3271 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3272 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3273 else
3274 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3275 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3276 NULL_RTX, NULL_RTX);
3279 distribute_links (i3links);
3280 distribute_links (i2links);
3281 distribute_links (i1links);
3283 if (REG_P (i2dest))
3285 rtx link;
3286 rtx i2_insn = 0, i2_val = 0, set;
3288 /* The insn that used to set this register doesn't exist, and
3289 this life of the register may not exist either. See if one of
3290 I3's links points to an insn that sets I2DEST. If it does,
3291 that is now the last known value for I2DEST. If we don't update
3292 this and I2 set the register to a value that depended on its old
3293 contents, we will get confused. If this insn is used, thing
3294 will be set correctly in combine_instructions. */
3296 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3297 if ((set = single_set (XEXP (link, 0))) != 0
3298 && rtx_equal_p (i2dest, SET_DEST (set)))
3299 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3301 record_value_for_reg (i2dest, i2_insn, i2_val);
3303 /* If the reg formerly set in I2 died only once and that was in I3,
3304 zero its use count so it won't make `reload' do any work. */
3305 if (! added_sets_2
3306 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3307 && ! i2dest_in_i2src)
3309 regno = REGNO (i2dest);
3310 REG_N_SETS (regno)--;
3314 if (i1 && REG_P (i1dest))
3316 rtx link;
3317 rtx i1_insn = 0, i1_val = 0, set;
3319 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3320 if ((set = single_set (XEXP (link, 0))) != 0
3321 && rtx_equal_p (i1dest, SET_DEST (set)))
3322 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3324 record_value_for_reg (i1dest, i1_insn, i1_val);
3326 regno = REGNO (i1dest);
3327 if (! added_sets_1 && ! i1dest_in_i1src)
3328 REG_N_SETS (regno)--;
3331 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3332 been made to this insn. The order of
3333 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3334 can affect nonzero_bits of newpat */
3335 if (newi2pat)
3336 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3337 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3339 /* Set new_direct_jump_p if a new return or simple jump instruction
3340 has been created.
3342 If I3 is now an unconditional jump, ensure that it has a
3343 BARRIER following it since it may have initially been a
3344 conditional jump. It may also be the last nonnote insn. */
3346 if (returnjump_p (i3) || any_uncondjump_p (i3))
3348 *new_direct_jump_p = 1;
3349 mark_jump_label (PATTERN (i3), i3, 0);
3351 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3352 || !BARRIER_P (temp))
3353 emit_barrier_after (i3);
3356 if (undobuf.other_insn != NULL_RTX
3357 && (returnjump_p (undobuf.other_insn)
3358 || any_uncondjump_p (undobuf.other_insn)))
3360 *new_direct_jump_p = 1;
3362 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3363 || !BARRIER_P (temp))
3364 emit_barrier_after (undobuf.other_insn);
3367 /* An NOOP jump does not need barrier, but it does need cleaning up
3368 of CFG. */
3369 if (GET_CODE (newpat) == SET
3370 && SET_SRC (newpat) == pc_rtx
3371 && SET_DEST (newpat) == pc_rtx)
3372 *new_direct_jump_p = 1;
3375 combine_successes++;
3376 undo_commit ();
3378 if (added_links_insn
3379 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3380 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3381 return added_links_insn;
3382 else
3383 return newi2pat ? i2 : i3;
3386 /* Undo all the modifications recorded in undobuf. */
3388 static void
3389 undo_all (void)
3391 struct undo *undo, *next;
3393 for (undo = undobuf.undos; undo; undo = next)
3395 next = undo->next;
3396 switch (undo->kind)
3398 case UNDO_RTX:
3399 *undo->where.r = undo->old_contents.r;
3400 break;
3401 case UNDO_INT:
3402 *undo->where.i = undo->old_contents.i;
3403 break;
3404 case UNDO_MODE:
3405 PUT_MODE (*undo->where.r, undo->old_contents.m);
3406 break;
3407 default:
3408 gcc_unreachable ();
3411 undo->next = undobuf.frees;
3412 undobuf.frees = undo;
3415 undobuf.undos = 0;
3418 /* We've committed to accepting the changes we made. Move all
3419 of the undos to the free list. */
3421 static void
3422 undo_commit (void)
3424 struct undo *undo, *next;
3426 for (undo = undobuf.undos; undo; undo = next)
3428 next = undo->next;
3429 undo->next = undobuf.frees;
3430 undobuf.frees = undo;
3432 undobuf.undos = 0;
3436 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3437 where we have an arithmetic expression and return that point. LOC will
3438 be inside INSN.
3440 try_combine will call this function to see if an insn can be split into
3441 two insns. */
3443 static rtx *
3444 find_split_point (rtx *loc, rtx insn)
3446 rtx x = *loc;
3447 enum rtx_code code = GET_CODE (x);
3448 rtx *split;
3449 unsigned HOST_WIDE_INT len = 0;
3450 HOST_WIDE_INT pos = 0;
3451 int unsignedp = 0;
3452 rtx inner = NULL_RTX;
3454 /* First special-case some codes. */
3455 switch (code)
3457 case SUBREG:
3458 #ifdef INSN_SCHEDULING
3459 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3460 point. */
3461 if (MEM_P (SUBREG_REG (x)))
3462 return loc;
3463 #endif
3464 return find_split_point (&SUBREG_REG (x), insn);
3466 case MEM:
3467 #ifdef HAVE_lo_sum
3468 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3469 using LO_SUM and HIGH. */
3470 if (GET_CODE (XEXP (x, 0)) == CONST
3471 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3473 SUBST (XEXP (x, 0),
3474 gen_rtx_LO_SUM (Pmode,
3475 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3476 XEXP (x, 0)));
3477 return &XEXP (XEXP (x, 0), 0);
3479 #endif
3481 /* If we have a PLUS whose second operand is a constant and the
3482 address is not valid, perhaps will can split it up using
3483 the machine-specific way to split large constants. We use
3484 the first pseudo-reg (one of the virtual regs) as a placeholder;
3485 it will not remain in the result. */
3486 if (GET_CODE (XEXP (x, 0)) == PLUS
3487 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3488 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3490 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3491 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3492 subst_insn);
3494 /* This should have produced two insns, each of which sets our
3495 placeholder. If the source of the second is a valid address,
3496 we can make put both sources together and make a split point
3497 in the middle. */
3499 if (seq
3500 && NEXT_INSN (seq) != NULL_RTX
3501 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3502 && NONJUMP_INSN_P (seq)
3503 && GET_CODE (PATTERN (seq)) == SET
3504 && SET_DEST (PATTERN (seq)) == reg
3505 && ! reg_mentioned_p (reg,
3506 SET_SRC (PATTERN (seq)))
3507 && NONJUMP_INSN_P (NEXT_INSN (seq))
3508 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3509 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3510 && memory_address_p (GET_MODE (x),
3511 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3513 rtx src1 = SET_SRC (PATTERN (seq));
3514 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3516 /* Replace the placeholder in SRC2 with SRC1. If we can
3517 find where in SRC2 it was placed, that can become our
3518 split point and we can replace this address with SRC2.
3519 Just try two obvious places. */
3521 src2 = replace_rtx (src2, reg, src1);
3522 split = 0;
3523 if (XEXP (src2, 0) == src1)
3524 split = &XEXP (src2, 0);
3525 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3526 && XEXP (XEXP (src2, 0), 0) == src1)
3527 split = &XEXP (XEXP (src2, 0), 0);
3529 if (split)
3531 SUBST (XEXP (x, 0), src2);
3532 return split;
3536 /* If that didn't work, perhaps the first operand is complex and
3537 needs to be computed separately, so make a split point there.
3538 This will occur on machines that just support REG + CONST
3539 and have a constant moved through some previous computation. */
3541 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3542 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3543 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3544 return &XEXP (XEXP (x, 0), 0);
3546 break;
3548 case SET:
3549 #ifdef HAVE_cc0
3550 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3551 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3552 we need to put the operand into a register. So split at that
3553 point. */
3555 if (SET_DEST (x) == cc0_rtx
3556 && GET_CODE (SET_SRC (x)) != COMPARE
3557 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3558 && !OBJECT_P (SET_SRC (x))
3559 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3560 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3561 return &SET_SRC (x);
3562 #endif
3564 /* See if we can split SET_SRC as it stands. */
3565 split = find_split_point (&SET_SRC (x), insn);
3566 if (split && split != &SET_SRC (x))
3567 return split;
3569 /* See if we can split SET_DEST as it stands. */
3570 split = find_split_point (&SET_DEST (x), insn);
3571 if (split && split != &SET_DEST (x))
3572 return split;
3574 /* See if this is a bitfield assignment with everything constant. If
3575 so, this is an IOR of an AND, so split it into that. */
3576 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3577 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3578 <= HOST_BITS_PER_WIDE_INT)
3579 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3580 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3581 && GET_CODE (SET_SRC (x)) == CONST_INT
3582 && ((INTVAL (XEXP (SET_DEST (x), 1))
3583 + INTVAL (XEXP (SET_DEST (x), 2)))
3584 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3585 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3587 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3588 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3589 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3590 rtx dest = XEXP (SET_DEST (x), 0);
3591 enum machine_mode mode = GET_MODE (dest);
3592 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3593 rtx or_mask;
3595 if (BITS_BIG_ENDIAN)
3596 pos = GET_MODE_BITSIZE (mode) - len - pos;
3598 or_mask = gen_int_mode (src << pos, mode);
3599 if (src == mask)
3600 SUBST (SET_SRC (x),
3601 simplify_gen_binary (IOR, mode, dest, or_mask));
3602 else
3604 rtx negmask = gen_int_mode (~(mask << pos), mode);
3605 SUBST (SET_SRC (x),
3606 simplify_gen_binary (IOR, mode,
3607 simplify_gen_binary (AND, mode,
3608 dest, negmask),
3609 or_mask));
3612 SUBST (SET_DEST (x), dest);
3614 split = find_split_point (&SET_SRC (x), insn);
3615 if (split && split != &SET_SRC (x))
3616 return split;
3619 /* Otherwise, see if this is an operation that we can split into two.
3620 If so, try to split that. */
3621 code = GET_CODE (SET_SRC (x));
3623 switch (code)
3625 case AND:
3626 /* If we are AND'ing with a large constant that is only a single
3627 bit and the result is only being used in a context where we
3628 need to know if it is zero or nonzero, replace it with a bit
3629 extraction. This will avoid the large constant, which might
3630 have taken more than one insn to make. If the constant were
3631 not a valid argument to the AND but took only one insn to make,
3632 this is no worse, but if it took more than one insn, it will
3633 be better. */
3635 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3636 && REG_P (XEXP (SET_SRC (x), 0))
3637 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3638 && REG_P (SET_DEST (x))
3639 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3640 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3641 && XEXP (*split, 0) == SET_DEST (x)
3642 && XEXP (*split, 1) == const0_rtx)
3644 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3645 XEXP (SET_SRC (x), 0),
3646 pos, NULL_RTX, 1, 1, 0, 0);
3647 if (extraction != 0)
3649 SUBST (SET_SRC (x), extraction);
3650 return find_split_point (loc, insn);
3653 break;
3655 case NE:
3656 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3657 is known to be on, this can be converted into a NEG of a shift. */
3658 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3659 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3660 && 1 <= (pos = exact_log2
3661 (nonzero_bits (XEXP (SET_SRC (x), 0),
3662 GET_MODE (XEXP (SET_SRC (x), 0))))))
3664 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3666 SUBST (SET_SRC (x),
3667 gen_rtx_NEG (mode,
3668 gen_rtx_LSHIFTRT (mode,
3669 XEXP (SET_SRC (x), 0),
3670 GEN_INT (pos))));
3672 split = find_split_point (&SET_SRC (x), insn);
3673 if (split && split != &SET_SRC (x))
3674 return split;
3676 break;
3678 case SIGN_EXTEND:
3679 inner = XEXP (SET_SRC (x), 0);
3681 /* We can't optimize if either mode is a partial integer
3682 mode as we don't know how many bits are significant
3683 in those modes. */
3684 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3685 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3686 break;
3688 pos = 0;
3689 len = GET_MODE_BITSIZE (GET_MODE (inner));
3690 unsignedp = 0;
3691 break;
3693 case SIGN_EXTRACT:
3694 case ZERO_EXTRACT:
3695 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3696 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3698 inner = XEXP (SET_SRC (x), 0);
3699 len = INTVAL (XEXP (SET_SRC (x), 1));
3700 pos = INTVAL (XEXP (SET_SRC (x), 2));
3702 if (BITS_BIG_ENDIAN)
3703 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3704 unsignedp = (code == ZERO_EXTRACT);
3706 break;
3708 default:
3709 break;
3712 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3714 enum machine_mode mode = GET_MODE (SET_SRC (x));
3716 /* For unsigned, we have a choice of a shift followed by an
3717 AND or two shifts. Use two shifts for field sizes where the
3718 constant might be too large. We assume here that we can
3719 always at least get 8-bit constants in an AND insn, which is
3720 true for every current RISC. */
3722 if (unsignedp && len <= 8)
3724 SUBST (SET_SRC (x),
3725 gen_rtx_AND (mode,
3726 gen_rtx_LSHIFTRT
3727 (mode, gen_lowpart (mode, inner),
3728 GEN_INT (pos)),
3729 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3731 split = find_split_point (&SET_SRC (x), insn);
3732 if (split && split != &SET_SRC (x))
3733 return split;
3735 else
3737 SUBST (SET_SRC (x),
3738 gen_rtx_fmt_ee
3739 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3740 gen_rtx_ASHIFT (mode,
3741 gen_lowpart (mode, inner),
3742 GEN_INT (GET_MODE_BITSIZE (mode)
3743 - len - pos)),
3744 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3746 split = find_split_point (&SET_SRC (x), insn);
3747 if (split && split != &SET_SRC (x))
3748 return split;
3752 /* See if this is a simple operation with a constant as the second
3753 operand. It might be that this constant is out of range and hence
3754 could be used as a split point. */
3755 if (BINARY_P (SET_SRC (x))
3756 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3757 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3758 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3759 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3760 return &XEXP (SET_SRC (x), 1);
3762 /* Finally, see if this is a simple operation with its first operand
3763 not in a register. The operation might require this operand in a
3764 register, so return it as a split point. We can always do this
3765 because if the first operand were another operation, we would have
3766 already found it as a split point. */
3767 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3768 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3769 return &XEXP (SET_SRC (x), 0);
3771 return 0;
3773 case AND:
3774 case IOR:
3775 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3776 it is better to write this as (not (ior A B)) so we can split it.
3777 Similarly for IOR. */
3778 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3780 SUBST (*loc,
3781 gen_rtx_NOT (GET_MODE (x),
3782 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3783 GET_MODE (x),
3784 XEXP (XEXP (x, 0), 0),
3785 XEXP (XEXP (x, 1), 0))));
3786 return find_split_point (loc, insn);
3789 /* Many RISC machines have a large set of logical insns. If the
3790 second operand is a NOT, put it first so we will try to split the
3791 other operand first. */
3792 if (GET_CODE (XEXP (x, 1)) == NOT)
3794 rtx tem = XEXP (x, 0);
3795 SUBST (XEXP (x, 0), XEXP (x, 1));
3796 SUBST (XEXP (x, 1), tem);
3798 break;
3800 default:
3801 break;
3804 /* Otherwise, select our actions depending on our rtx class. */
3805 switch (GET_RTX_CLASS (code))
3807 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3808 case RTX_TERNARY:
3809 split = find_split_point (&XEXP (x, 2), insn);
3810 if (split)
3811 return split;
3812 /* ... fall through ... */
3813 case RTX_BIN_ARITH:
3814 case RTX_COMM_ARITH:
3815 case RTX_COMPARE:
3816 case RTX_COMM_COMPARE:
3817 split = find_split_point (&XEXP (x, 1), insn);
3818 if (split)
3819 return split;
3820 /* ... fall through ... */
3821 case RTX_UNARY:
3822 /* Some machines have (and (shift ...) ...) insns. If X is not
3823 an AND, but XEXP (X, 0) is, use it as our split point. */
3824 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3825 return &XEXP (x, 0);
3827 split = find_split_point (&XEXP (x, 0), insn);
3828 if (split)
3829 return split;
3830 return loc;
3832 default:
3833 /* Otherwise, we don't have a split point. */
3834 return 0;
3838 /* Throughout X, replace FROM with TO, and return the result.
3839 The result is TO if X is FROM;
3840 otherwise the result is X, but its contents may have been modified.
3841 If they were modified, a record was made in undobuf so that
3842 undo_all will (among other things) return X to its original state.
3844 If the number of changes necessary is too much to record to undo,
3845 the excess changes are not made, so the result is invalid.
3846 The changes already made can still be undone.
3847 undobuf.num_undo is incremented for such changes, so by testing that
3848 the caller can tell whether the result is valid.
3850 `n_occurrences' is incremented each time FROM is replaced.
3852 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3854 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3855 by copying if `n_occurrences' is nonzero. */
3857 static rtx
3858 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3860 enum rtx_code code = GET_CODE (x);
3861 enum machine_mode op0_mode = VOIDmode;
3862 const char *fmt;
3863 int len, i;
3864 rtx new;
3866 /* Two expressions are equal if they are identical copies of a shared
3867 RTX or if they are both registers with the same register number
3868 and mode. */
3870 #define COMBINE_RTX_EQUAL_P(X,Y) \
3871 ((X) == (Y) \
3872 || (REG_P (X) && REG_P (Y) \
3873 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3875 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3877 n_occurrences++;
3878 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3881 /* If X and FROM are the same register but different modes, they will
3882 not have been seen as equal above. However, flow.c will make a
3883 LOG_LINKS entry for that case. If we do nothing, we will try to
3884 rerecognize our original insn and, when it succeeds, we will
3885 delete the feeding insn, which is incorrect.
3887 So force this insn not to match in this (rare) case. */
3888 if (! in_dest && code == REG && REG_P (from)
3889 && REGNO (x) == REGNO (from))
3890 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3892 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3893 of which may contain things that can be combined. */
3894 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3895 return x;
3897 /* It is possible to have a subexpression appear twice in the insn.
3898 Suppose that FROM is a register that appears within TO.
3899 Then, after that subexpression has been scanned once by `subst',
3900 the second time it is scanned, TO may be found. If we were
3901 to scan TO here, we would find FROM within it and create a
3902 self-referent rtl structure which is completely wrong. */
3903 if (COMBINE_RTX_EQUAL_P (x, to))
3904 return to;
3906 /* Parallel asm_operands need special attention because all of the
3907 inputs are shared across the arms. Furthermore, unsharing the
3908 rtl results in recognition failures. Failure to handle this case
3909 specially can result in circular rtl.
3911 Solve this by doing a normal pass across the first entry of the
3912 parallel, and only processing the SET_DESTs of the subsequent
3913 entries. Ug. */
3915 if (code == PARALLEL
3916 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3917 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3919 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3921 /* If this substitution failed, this whole thing fails. */
3922 if (GET_CODE (new) == CLOBBER
3923 && XEXP (new, 0) == const0_rtx)
3924 return new;
3926 SUBST (XVECEXP (x, 0, 0), new);
3928 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3930 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3932 if (!REG_P (dest)
3933 && GET_CODE (dest) != CC0
3934 && GET_CODE (dest) != PC)
3936 new = subst (dest, from, to, 0, unique_copy);
3938 /* If this substitution failed, this whole thing fails. */
3939 if (GET_CODE (new) == CLOBBER
3940 && XEXP (new, 0) == const0_rtx)
3941 return new;
3943 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3947 else
3949 len = GET_RTX_LENGTH (code);
3950 fmt = GET_RTX_FORMAT (code);
3952 /* We don't need to process a SET_DEST that is a register, CC0,
3953 or PC, so set up to skip this common case. All other cases
3954 where we want to suppress replacing something inside a
3955 SET_SRC are handled via the IN_DEST operand. */
3956 if (code == SET
3957 && (REG_P (SET_DEST (x))
3958 || GET_CODE (SET_DEST (x)) == CC0
3959 || GET_CODE (SET_DEST (x)) == PC))
3960 fmt = "ie";
3962 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3963 constant. */
3964 if (fmt[0] == 'e')
3965 op0_mode = GET_MODE (XEXP (x, 0));
3967 for (i = 0; i < len; i++)
3969 if (fmt[i] == 'E')
3971 int j;
3972 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3974 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3976 new = (unique_copy && n_occurrences
3977 ? copy_rtx (to) : to);
3978 n_occurrences++;
3980 else
3982 new = subst (XVECEXP (x, i, j), from, to, 0,
3983 unique_copy);
3985 /* If this substitution failed, this whole thing
3986 fails. */
3987 if (GET_CODE (new) == CLOBBER
3988 && XEXP (new, 0) == const0_rtx)
3989 return new;
3992 SUBST (XVECEXP (x, i, j), new);
3995 else if (fmt[i] == 'e')
3997 /* If this is a register being set, ignore it. */
3998 new = XEXP (x, i);
3999 if (in_dest
4000 && i == 0
4001 && (((code == SUBREG || code == ZERO_EXTRACT)
4002 && REG_P (new))
4003 || code == STRICT_LOW_PART))
4006 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4008 /* In general, don't install a subreg involving two
4009 modes not tieable. It can worsen register
4010 allocation, and can even make invalid reload
4011 insns, since the reg inside may need to be copied
4012 from in the outside mode, and that may be invalid
4013 if it is an fp reg copied in integer mode.
4015 We allow two exceptions to this: It is valid if
4016 it is inside another SUBREG and the mode of that
4017 SUBREG and the mode of the inside of TO is
4018 tieable and it is valid if X is a SET that copies
4019 FROM to CC0. */
4021 if (GET_CODE (to) == SUBREG
4022 && ! MODES_TIEABLE_P (GET_MODE (to),
4023 GET_MODE (SUBREG_REG (to)))
4024 && ! (code == SUBREG
4025 && MODES_TIEABLE_P (GET_MODE (x),
4026 GET_MODE (SUBREG_REG (to))))
4027 #ifdef HAVE_cc0
4028 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4029 #endif
4031 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4033 #ifdef CANNOT_CHANGE_MODE_CLASS
4034 if (code == SUBREG
4035 && REG_P (to)
4036 && REGNO (to) < FIRST_PSEUDO_REGISTER
4037 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4038 GET_MODE (to),
4039 GET_MODE (x)))
4040 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4041 #endif
4043 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4044 n_occurrences++;
4046 else
4047 /* If we are in a SET_DEST, suppress most cases unless we
4048 have gone inside a MEM, in which case we want to
4049 simplify the address. We assume here that things that
4050 are actually part of the destination have their inner
4051 parts in the first expression. This is true for SUBREG,
4052 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4053 things aside from REG and MEM that should appear in a
4054 SET_DEST. */
4055 new = subst (XEXP (x, i), from, to,
4056 (((in_dest
4057 && (code == SUBREG || code == STRICT_LOW_PART
4058 || code == ZERO_EXTRACT))
4059 || code == SET)
4060 && i == 0), unique_copy);
4062 /* If we found that we will have to reject this combination,
4063 indicate that by returning the CLOBBER ourselves, rather than
4064 an expression containing it. This will speed things up as
4065 well as prevent accidents where two CLOBBERs are considered
4066 to be equal, thus producing an incorrect simplification. */
4068 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
4069 return new;
4071 if (GET_CODE (x) == SUBREG
4072 && (GET_CODE (new) == CONST_INT
4073 || GET_CODE (new) == CONST_DOUBLE))
4075 enum machine_mode mode = GET_MODE (x);
4077 x = simplify_subreg (GET_MODE (x), new,
4078 GET_MODE (SUBREG_REG (x)),
4079 SUBREG_BYTE (x));
4080 if (! x)
4081 x = gen_rtx_CLOBBER (mode, const0_rtx);
4083 else if (GET_CODE (new) == CONST_INT
4084 && GET_CODE (x) == ZERO_EXTEND)
4086 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4087 new, GET_MODE (XEXP (x, 0)));
4088 gcc_assert (x);
4090 else
4091 SUBST (XEXP (x, i), new);
4096 /* Try to simplify X. If the simplification changed the code, it is likely
4097 that further simplification will help, so loop, but limit the number
4098 of repetitions that will be performed. */
4100 for (i = 0; i < 4; i++)
4102 /* If X is sufficiently simple, don't bother trying to do anything
4103 with it. */
4104 if (code != CONST_INT && code != REG && code != CLOBBER)
4105 x = combine_simplify_rtx (x, op0_mode, in_dest);
4107 if (GET_CODE (x) == code)
4108 break;
4110 code = GET_CODE (x);
4112 /* We no longer know the original mode of operand 0 since we
4113 have changed the form of X) */
4114 op0_mode = VOIDmode;
4117 return x;
4120 /* Simplify X, a piece of RTL. We just operate on the expression at the
4121 outer level; call `subst' to simplify recursively. Return the new
4122 expression.
4124 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4125 if we are inside a SET_DEST. */
4127 static rtx
4128 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4130 enum rtx_code code = GET_CODE (x);
4131 enum machine_mode mode = GET_MODE (x);
4132 rtx temp;
4133 int i;
4135 /* If this is a commutative operation, put a constant last and a complex
4136 expression first. We don't need to do this for comparisons here. */
4137 if (COMMUTATIVE_ARITH_P (x)
4138 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4140 temp = XEXP (x, 0);
4141 SUBST (XEXP (x, 0), XEXP (x, 1));
4142 SUBST (XEXP (x, 1), temp);
4145 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4146 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4147 things. Check for cases where both arms are testing the same
4148 condition.
4150 Don't do anything if all operands are very simple. */
4152 if ((BINARY_P (x)
4153 && ((!OBJECT_P (XEXP (x, 0))
4154 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4155 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4156 || (!OBJECT_P (XEXP (x, 1))
4157 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4158 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4159 || (UNARY_P (x)
4160 && (!OBJECT_P (XEXP (x, 0))
4161 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4162 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4164 rtx cond, true_rtx, false_rtx;
4166 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4167 if (cond != 0
4168 /* If everything is a comparison, what we have is highly unlikely
4169 to be simpler, so don't use it. */
4170 && ! (COMPARISON_P (x)
4171 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4173 rtx cop1 = const0_rtx;
4174 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4176 if (cond_code == NE && COMPARISON_P (cond))
4177 return x;
4179 /* Simplify the alternative arms; this may collapse the true and
4180 false arms to store-flag values. Be careful to use copy_rtx
4181 here since true_rtx or false_rtx might share RTL with x as a
4182 result of the if_then_else_cond call above. */
4183 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4184 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4186 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4187 is unlikely to be simpler. */
4188 if (general_operand (true_rtx, VOIDmode)
4189 && general_operand (false_rtx, VOIDmode))
4191 enum rtx_code reversed;
4193 /* Restarting if we generate a store-flag expression will cause
4194 us to loop. Just drop through in this case. */
4196 /* If the result values are STORE_FLAG_VALUE and zero, we can
4197 just make the comparison operation. */
4198 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4199 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4200 cond, cop1);
4201 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4202 && ((reversed = reversed_comparison_code_parts
4203 (cond_code, cond, cop1, NULL))
4204 != UNKNOWN))
4205 x = simplify_gen_relational (reversed, mode, VOIDmode,
4206 cond, cop1);
4208 /* Likewise, we can make the negate of a comparison operation
4209 if the result values are - STORE_FLAG_VALUE and zero. */
4210 else if (GET_CODE (true_rtx) == CONST_INT
4211 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4212 && false_rtx == const0_rtx)
4213 x = simplify_gen_unary (NEG, mode,
4214 simplify_gen_relational (cond_code,
4215 mode, VOIDmode,
4216 cond, cop1),
4217 mode);
4218 else if (GET_CODE (false_rtx) == CONST_INT
4219 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4220 && true_rtx == const0_rtx
4221 && ((reversed = reversed_comparison_code_parts
4222 (cond_code, cond, cop1, NULL))
4223 != UNKNOWN))
4224 x = simplify_gen_unary (NEG, mode,
4225 simplify_gen_relational (reversed,
4226 mode, VOIDmode,
4227 cond, cop1),
4228 mode);
4229 else
4230 return gen_rtx_IF_THEN_ELSE (mode,
4231 simplify_gen_relational (cond_code,
4232 mode,
4233 VOIDmode,
4234 cond,
4235 cop1),
4236 true_rtx, false_rtx);
4238 code = GET_CODE (x);
4239 op0_mode = VOIDmode;
4244 /* Try to fold this expression in case we have constants that weren't
4245 present before. */
4246 temp = 0;
4247 switch (GET_RTX_CLASS (code))
4249 case RTX_UNARY:
4250 if (op0_mode == VOIDmode)
4251 op0_mode = GET_MODE (XEXP (x, 0));
4252 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4253 break;
4254 case RTX_COMPARE:
4255 case RTX_COMM_COMPARE:
4257 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4258 if (cmp_mode == VOIDmode)
4260 cmp_mode = GET_MODE (XEXP (x, 1));
4261 if (cmp_mode == VOIDmode)
4262 cmp_mode = op0_mode;
4264 temp = simplify_relational_operation (code, mode, cmp_mode,
4265 XEXP (x, 0), XEXP (x, 1));
4267 break;
4268 case RTX_COMM_ARITH:
4269 case RTX_BIN_ARITH:
4270 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4271 break;
4272 case RTX_BITFIELD_OPS:
4273 case RTX_TERNARY:
4274 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4275 XEXP (x, 1), XEXP (x, 2));
4276 break;
4277 default:
4278 break;
4281 if (temp)
4283 x = temp;
4284 code = GET_CODE (temp);
4285 op0_mode = VOIDmode;
4286 mode = GET_MODE (temp);
4289 /* First see if we can apply the inverse distributive law. */
4290 if (code == PLUS || code == MINUS
4291 || code == AND || code == IOR || code == XOR)
4293 x = apply_distributive_law (x);
4294 code = GET_CODE (x);
4295 op0_mode = VOIDmode;
4298 /* If CODE is an associative operation not otherwise handled, see if we
4299 can associate some operands. This can win if they are constants or
4300 if they are logically related (i.e. (a & b) & a). */
4301 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4302 || code == AND || code == IOR || code == XOR
4303 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4304 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4305 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4307 if (GET_CODE (XEXP (x, 0)) == code)
4309 rtx other = XEXP (XEXP (x, 0), 0);
4310 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4311 rtx inner_op1 = XEXP (x, 1);
4312 rtx inner;
4314 /* Make sure we pass the constant operand if any as the second
4315 one if this is a commutative operation. */
4316 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4318 rtx tem = inner_op0;
4319 inner_op0 = inner_op1;
4320 inner_op1 = tem;
4322 inner = simplify_binary_operation (code == MINUS ? PLUS
4323 : code == DIV ? MULT
4324 : code,
4325 mode, inner_op0, inner_op1);
4327 /* For commutative operations, try the other pair if that one
4328 didn't simplify. */
4329 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4331 other = XEXP (XEXP (x, 0), 1);
4332 inner = simplify_binary_operation (code, mode,
4333 XEXP (XEXP (x, 0), 0),
4334 XEXP (x, 1));
4337 if (inner)
4338 return simplify_gen_binary (code, mode, other, inner);
4342 /* A little bit of algebraic simplification here. */
4343 switch (code)
4345 case MEM:
4346 /* Ensure that our address has any ASHIFTs converted to MULT in case
4347 address-recognizing predicates are called later. */
4348 temp = make_compound_operation (XEXP (x, 0), MEM);
4349 SUBST (XEXP (x, 0), temp);
4350 break;
4352 case SUBREG:
4353 if (op0_mode == VOIDmode)
4354 op0_mode = GET_MODE (SUBREG_REG (x));
4356 /* See if this can be moved to simplify_subreg. */
4357 if (CONSTANT_P (SUBREG_REG (x))
4358 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4359 /* Don't call gen_lowpart if the inner mode
4360 is VOIDmode and we cannot simplify it, as SUBREG without
4361 inner mode is invalid. */
4362 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4363 || gen_lowpart_common (mode, SUBREG_REG (x))))
4364 return gen_lowpart (mode, SUBREG_REG (x));
4366 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4367 break;
4369 rtx temp;
4370 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4371 SUBREG_BYTE (x));
4372 if (temp)
4373 return temp;
4376 /* Don't change the mode of the MEM if that would change the meaning
4377 of the address. */
4378 if (MEM_P (SUBREG_REG (x))
4379 && (MEM_VOLATILE_P (SUBREG_REG (x))
4380 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4381 return gen_rtx_CLOBBER (mode, const0_rtx);
4383 /* Note that we cannot do any narrowing for non-constants since
4384 we might have been counting on using the fact that some bits were
4385 zero. We now do this in the SET. */
4387 break;
4389 case NEG:
4390 temp = expand_compound_operation (XEXP (x, 0));
4392 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4393 replaced by (lshiftrt X C). This will convert
4394 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4396 if (GET_CODE (temp) == ASHIFTRT
4397 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4398 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4399 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4400 INTVAL (XEXP (temp, 1)));
4402 /* If X has only a single bit that might be nonzero, say, bit I, convert
4403 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4404 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4405 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4406 or a SUBREG of one since we'd be making the expression more
4407 complex if it was just a register. */
4409 if (!REG_P (temp)
4410 && ! (GET_CODE (temp) == SUBREG
4411 && REG_P (SUBREG_REG (temp)))
4412 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4414 rtx temp1 = simplify_shift_const
4415 (NULL_RTX, ASHIFTRT, mode,
4416 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4417 GET_MODE_BITSIZE (mode) - 1 - i),
4418 GET_MODE_BITSIZE (mode) - 1 - i);
4420 /* If all we did was surround TEMP with the two shifts, we
4421 haven't improved anything, so don't use it. Otherwise,
4422 we are better off with TEMP1. */
4423 if (GET_CODE (temp1) != ASHIFTRT
4424 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4425 || XEXP (XEXP (temp1, 0), 0) != temp)
4426 return temp1;
4428 break;
4430 case TRUNCATE:
4431 /* We can't handle truncation to a partial integer mode here
4432 because we don't know the real bitsize of the partial
4433 integer mode. */
4434 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4435 break;
4437 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4438 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4439 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4440 SUBST (XEXP (x, 0),
4441 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4442 GET_MODE_MASK (mode), 0));
4444 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4445 whose value is a comparison can be replaced with a subreg if
4446 STORE_FLAG_VALUE permits. */
4447 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4448 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4449 && (temp = get_last_value (XEXP (x, 0)))
4450 && COMPARISON_P (temp))
4451 return gen_lowpart (mode, XEXP (x, 0));
4452 break;
4454 #ifdef HAVE_cc0
4455 case COMPARE:
4456 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4457 using cc0, in which case we want to leave it as a COMPARE
4458 so we can distinguish it from a register-register-copy. */
4459 if (XEXP (x, 1) == const0_rtx)
4460 return XEXP (x, 0);
4462 /* x - 0 is the same as x unless x's mode has signed zeros and
4463 allows rounding towards -infinity. Under those conditions,
4464 0 - 0 is -0. */
4465 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4466 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4467 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4468 return XEXP (x, 0);
4469 break;
4470 #endif
4472 case CONST:
4473 /* (const (const X)) can become (const X). Do it this way rather than
4474 returning the inner CONST since CONST can be shared with a
4475 REG_EQUAL note. */
4476 if (GET_CODE (XEXP (x, 0)) == CONST)
4477 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4478 break;
4480 #ifdef HAVE_lo_sum
4481 case LO_SUM:
4482 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4483 can add in an offset. find_split_point will split this address up
4484 again if it doesn't match. */
4485 if (GET_CODE (XEXP (x, 0)) == HIGH
4486 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4487 return XEXP (x, 1);
4488 break;
4489 #endif
4491 case PLUS:
4492 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4493 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4494 bit-field and can be replaced by either a sign_extend or a
4495 sign_extract. The `and' may be a zero_extend and the two
4496 <c>, -<c> constants may be reversed. */
4497 if (GET_CODE (XEXP (x, 0)) == XOR
4498 && GET_CODE (XEXP (x, 1)) == CONST_INT
4499 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4500 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4501 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4502 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4504 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4505 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4506 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4507 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4508 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4509 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4510 == (unsigned int) i + 1))))
4511 return simplify_shift_const
4512 (NULL_RTX, ASHIFTRT, mode,
4513 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4514 XEXP (XEXP (XEXP (x, 0), 0), 0),
4515 GET_MODE_BITSIZE (mode) - (i + 1)),
4516 GET_MODE_BITSIZE (mode) - (i + 1));
4518 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4519 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4520 the bitsize of the mode - 1. This allows simplification of
4521 "a = (b & 8) == 0;" */
4522 if (XEXP (x, 1) == constm1_rtx
4523 && !REG_P (XEXP (x, 0))
4524 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4525 && REG_P (SUBREG_REG (XEXP (x, 0))))
4526 && nonzero_bits (XEXP (x, 0), mode) == 1)
4527 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4528 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4529 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4530 GET_MODE_BITSIZE (mode) - 1),
4531 GET_MODE_BITSIZE (mode) - 1);
4533 /* If we are adding two things that have no bits in common, convert
4534 the addition into an IOR. This will often be further simplified,
4535 for example in cases like ((a & 1) + (a & 2)), which can
4536 become a & 3. */
4538 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4539 && (nonzero_bits (XEXP (x, 0), mode)
4540 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4542 /* Try to simplify the expression further. */
4543 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4544 temp = combine_simplify_rtx (tor, mode, in_dest);
4546 /* If we could, great. If not, do not go ahead with the IOR
4547 replacement, since PLUS appears in many special purpose
4548 address arithmetic instructions. */
4549 if (GET_CODE (temp) != CLOBBER && temp != tor)
4550 return temp;
4552 break;
4554 case MINUS:
4555 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4556 (and <foo> (const_int pow2-1)) */
4557 if (GET_CODE (XEXP (x, 1)) == AND
4558 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4559 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4560 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4561 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4562 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4563 break;
4565 case MULT:
4566 /* If we have (mult (plus A B) C), apply the distributive law and then
4567 the inverse distributive law to see if things simplify. This
4568 occurs mostly in addresses, often when unrolling loops. */
4570 if (GET_CODE (XEXP (x, 0)) == PLUS)
4572 rtx result = distribute_and_simplify_rtx (x, 0);
4573 if (result)
4574 return result;
4577 /* Try simplify a*(b/c) as (a*b)/c. */
4578 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4579 && GET_CODE (XEXP (x, 0)) == DIV)
4581 rtx tem = simplify_binary_operation (MULT, mode,
4582 XEXP (XEXP (x, 0), 0),
4583 XEXP (x, 1));
4584 if (tem)
4585 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4587 break;
4589 case UDIV:
4590 /* If this is a divide by a power of two, treat it as a shift if
4591 its first operand is a shift. */
4592 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4593 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4594 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4595 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4596 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4597 || GET_CODE (XEXP (x, 0)) == ROTATE
4598 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4599 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4600 break;
4602 case EQ: case NE:
4603 case GT: case GTU: case GE: case GEU:
4604 case LT: case LTU: case LE: case LEU:
4605 case UNEQ: case LTGT:
4606 case UNGT: case UNGE:
4607 case UNLT: case UNLE:
4608 case UNORDERED: case ORDERED:
4609 /* If the first operand is a condition code, we can't do anything
4610 with it. */
4611 if (GET_CODE (XEXP (x, 0)) == COMPARE
4612 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4613 && ! CC0_P (XEXP (x, 0))))
4615 rtx op0 = XEXP (x, 0);
4616 rtx op1 = XEXP (x, 1);
4617 enum rtx_code new_code;
4619 if (GET_CODE (op0) == COMPARE)
4620 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4622 /* Simplify our comparison, if possible. */
4623 new_code = simplify_comparison (code, &op0, &op1);
4625 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4626 if only the low-order bit is possibly nonzero in X (such as when
4627 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4628 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4629 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4630 (plus X 1).
4632 Remove any ZERO_EXTRACT we made when thinking this was a
4633 comparison. It may now be simpler to use, e.g., an AND. If a
4634 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4635 the call to make_compound_operation in the SET case. */
4637 if (STORE_FLAG_VALUE == 1
4638 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4639 && op1 == const0_rtx
4640 && mode == GET_MODE (op0)
4641 && nonzero_bits (op0, mode) == 1)
4642 return gen_lowpart (mode,
4643 expand_compound_operation (op0));
4645 else if (STORE_FLAG_VALUE == 1
4646 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4647 && op1 == const0_rtx
4648 && mode == GET_MODE (op0)
4649 && (num_sign_bit_copies (op0, mode)
4650 == GET_MODE_BITSIZE (mode)))
4652 op0 = expand_compound_operation (op0);
4653 return simplify_gen_unary (NEG, mode,
4654 gen_lowpart (mode, op0),
4655 mode);
4658 else if (STORE_FLAG_VALUE == 1
4659 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4660 && op1 == const0_rtx
4661 && mode == GET_MODE (op0)
4662 && nonzero_bits (op0, mode) == 1)
4664 op0 = expand_compound_operation (op0);
4665 return simplify_gen_binary (XOR, mode,
4666 gen_lowpart (mode, op0),
4667 const1_rtx);
4670 else if (STORE_FLAG_VALUE == 1
4671 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4672 && op1 == const0_rtx
4673 && mode == GET_MODE (op0)
4674 && (num_sign_bit_copies (op0, mode)
4675 == GET_MODE_BITSIZE (mode)))
4677 op0 = expand_compound_operation (op0);
4678 return plus_constant (gen_lowpart (mode, op0), 1);
4681 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4682 those above. */
4683 if (STORE_FLAG_VALUE == -1
4684 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && (num_sign_bit_copies (op0, mode)
4687 == GET_MODE_BITSIZE (mode)))
4688 return gen_lowpart (mode,
4689 expand_compound_operation (op0));
4691 else if (STORE_FLAG_VALUE == -1
4692 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4693 && op1 == const0_rtx
4694 && mode == GET_MODE (op0)
4695 && nonzero_bits (op0, mode) == 1)
4697 op0 = expand_compound_operation (op0);
4698 return simplify_gen_unary (NEG, mode,
4699 gen_lowpart (mode, op0),
4700 mode);
4703 else if (STORE_FLAG_VALUE == -1
4704 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4705 && op1 == const0_rtx
4706 && mode == GET_MODE (op0)
4707 && (num_sign_bit_copies (op0, mode)
4708 == GET_MODE_BITSIZE (mode)))
4710 op0 = expand_compound_operation (op0);
4711 return simplify_gen_unary (NOT, mode,
4712 gen_lowpart (mode, op0),
4713 mode);
4716 /* If X is 0/1, (eq X 0) is X-1. */
4717 else if (STORE_FLAG_VALUE == -1
4718 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4719 && op1 == const0_rtx
4720 && mode == GET_MODE (op0)
4721 && nonzero_bits (op0, mode) == 1)
4723 op0 = expand_compound_operation (op0);
4724 return plus_constant (gen_lowpart (mode, op0), -1);
4727 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4728 one bit that might be nonzero, we can convert (ne x 0) to
4729 (ashift x c) where C puts the bit in the sign bit. Remove any
4730 AND with STORE_FLAG_VALUE when we are done, since we are only
4731 going to test the sign bit. */
4732 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4733 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4734 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4735 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4736 && op1 == const0_rtx
4737 && mode == GET_MODE (op0)
4738 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4740 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4741 expand_compound_operation (op0),
4742 GET_MODE_BITSIZE (mode) - 1 - i);
4743 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4744 return XEXP (x, 0);
4745 else
4746 return x;
4749 /* If the code changed, return a whole new comparison. */
4750 if (new_code != code)
4751 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4753 /* Otherwise, keep this operation, but maybe change its operands.
4754 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4755 SUBST (XEXP (x, 0), op0);
4756 SUBST (XEXP (x, 1), op1);
4758 break;
4760 case IF_THEN_ELSE:
4761 return simplify_if_then_else (x);
4763 case ZERO_EXTRACT:
4764 case SIGN_EXTRACT:
4765 case ZERO_EXTEND:
4766 case SIGN_EXTEND:
4767 /* If we are processing SET_DEST, we are done. */
4768 if (in_dest)
4769 return x;
4771 return expand_compound_operation (x);
4773 case SET:
4774 return simplify_set (x);
4776 case AND:
4777 case IOR:
4778 return simplify_logical (x);
4780 case ASHIFT:
4781 case LSHIFTRT:
4782 case ASHIFTRT:
4783 case ROTATE:
4784 case ROTATERT:
4785 /* If this is a shift by a constant amount, simplify it. */
4786 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4787 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4788 INTVAL (XEXP (x, 1)));
4790 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4791 SUBST (XEXP (x, 1),
4792 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4793 ((HOST_WIDE_INT) 1
4794 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4795 - 1,
4796 0));
4797 break;
4799 default:
4800 break;
4803 return x;
4806 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4808 static rtx
4809 simplify_if_then_else (rtx x)
4811 enum machine_mode mode = GET_MODE (x);
4812 rtx cond = XEXP (x, 0);
4813 rtx true_rtx = XEXP (x, 1);
4814 rtx false_rtx = XEXP (x, 2);
4815 enum rtx_code true_code = GET_CODE (cond);
4816 int comparison_p = COMPARISON_P (cond);
4817 rtx temp;
4818 int i;
4819 enum rtx_code false_code;
4820 rtx reversed;
4822 /* Simplify storing of the truth value. */
4823 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4824 return simplify_gen_relational (true_code, mode, VOIDmode,
4825 XEXP (cond, 0), XEXP (cond, 1));
4827 /* Also when the truth value has to be reversed. */
4828 if (comparison_p
4829 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4830 && (reversed = reversed_comparison (cond, mode)))
4831 return reversed;
4833 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4834 in it is being compared against certain values. Get the true and false
4835 comparisons and see if that says anything about the value of each arm. */
4837 if (comparison_p
4838 && ((false_code = reversed_comparison_code (cond, NULL))
4839 != UNKNOWN)
4840 && REG_P (XEXP (cond, 0)))
4842 HOST_WIDE_INT nzb;
4843 rtx from = XEXP (cond, 0);
4844 rtx true_val = XEXP (cond, 1);
4845 rtx false_val = true_val;
4846 int swapped = 0;
4848 /* If FALSE_CODE is EQ, swap the codes and arms. */
4850 if (false_code == EQ)
4852 swapped = 1, true_code = EQ, false_code = NE;
4853 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4856 /* If we are comparing against zero and the expression being tested has
4857 only a single bit that might be nonzero, that is its value when it is
4858 not equal to zero. Similarly if it is known to be -1 or 0. */
4860 if (true_code == EQ && true_val == const0_rtx
4861 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4862 false_code = EQ, false_val = GEN_INT (nzb);
4863 else if (true_code == EQ && true_val == const0_rtx
4864 && (num_sign_bit_copies (from, GET_MODE (from))
4865 == GET_MODE_BITSIZE (GET_MODE (from))))
4866 false_code = EQ, false_val = constm1_rtx;
4868 /* Now simplify an arm if we know the value of the register in the
4869 branch and it is used in the arm. Be careful due to the potential
4870 of locally-shared RTL. */
4872 if (reg_mentioned_p (from, true_rtx))
4873 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4874 from, true_val),
4875 pc_rtx, pc_rtx, 0, 0);
4876 if (reg_mentioned_p (from, false_rtx))
4877 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4878 from, false_val),
4879 pc_rtx, pc_rtx, 0, 0);
4881 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4882 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4884 true_rtx = XEXP (x, 1);
4885 false_rtx = XEXP (x, 2);
4886 true_code = GET_CODE (cond);
4889 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4890 reversed, do so to avoid needing two sets of patterns for
4891 subtract-and-branch insns. Similarly if we have a constant in the true
4892 arm, the false arm is the same as the first operand of the comparison, or
4893 the false arm is more complicated than the true arm. */
4895 if (comparison_p
4896 && reversed_comparison_code (cond, NULL) != UNKNOWN
4897 && (true_rtx == pc_rtx
4898 || (CONSTANT_P (true_rtx)
4899 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4900 || true_rtx == const0_rtx
4901 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4902 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4903 && !OBJECT_P (false_rtx))
4904 || reg_mentioned_p (true_rtx, false_rtx)
4905 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4907 true_code = reversed_comparison_code (cond, NULL);
4908 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4909 SUBST (XEXP (x, 1), false_rtx);
4910 SUBST (XEXP (x, 2), true_rtx);
4912 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4913 cond = XEXP (x, 0);
4915 /* It is possible that the conditional has been simplified out. */
4916 true_code = GET_CODE (cond);
4917 comparison_p = COMPARISON_P (cond);
4920 /* If the two arms are identical, we don't need the comparison. */
4922 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4923 return true_rtx;
4925 /* Convert a == b ? b : a to "a". */
4926 if (true_code == EQ && ! side_effects_p (cond)
4927 && !HONOR_NANS (mode)
4928 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4929 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4930 return false_rtx;
4931 else if (true_code == NE && ! side_effects_p (cond)
4932 && !HONOR_NANS (mode)
4933 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4934 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4935 return true_rtx;
4937 /* Look for cases where we have (abs x) or (neg (abs X)). */
4939 if (GET_MODE_CLASS (mode) == MODE_INT
4940 && GET_CODE (false_rtx) == NEG
4941 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4942 && comparison_p
4943 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4944 && ! side_effects_p (true_rtx))
4945 switch (true_code)
4947 case GT:
4948 case GE:
4949 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4950 case LT:
4951 case LE:
4952 return
4953 simplify_gen_unary (NEG, mode,
4954 simplify_gen_unary (ABS, mode, true_rtx, mode),
4955 mode);
4956 default:
4957 break;
4960 /* Look for MIN or MAX. */
4962 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4963 && comparison_p
4964 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4965 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4966 && ! side_effects_p (cond))
4967 switch (true_code)
4969 case GE:
4970 case GT:
4971 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4972 case LE:
4973 case LT:
4974 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4975 case GEU:
4976 case GTU:
4977 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4978 case LEU:
4979 case LTU:
4980 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4981 default:
4982 break;
4985 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4986 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4987 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4988 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4989 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4990 neither 1 or -1, but it isn't worth checking for. */
4992 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4993 && comparison_p
4994 && GET_MODE_CLASS (mode) == MODE_INT
4995 && ! side_effects_p (x))
4997 rtx t = make_compound_operation (true_rtx, SET);
4998 rtx f = make_compound_operation (false_rtx, SET);
4999 rtx cond_op0 = XEXP (cond, 0);
5000 rtx cond_op1 = XEXP (cond, 1);
5001 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5002 enum machine_mode m = mode;
5003 rtx z = 0, c1 = NULL_RTX;
5005 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5006 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5007 || GET_CODE (t) == ASHIFT
5008 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5009 && rtx_equal_p (XEXP (t, 0), f))
5010 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5012 /* If an identity-zero op is commutative, check whether there
5013 would be a match if we swapped the operands. */
5014 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5015 || GET_CODE (t) == XOR)
5016 && rtx_equal_p (XEXP (t, 1), f))
5017 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5018 else if (GET_CODE (t) == SIGN_EXTEND
5019 && (GET_CODE (XEXP (t, 0)) == PLUS
5020 || GET_CODE (XEXP (t, 0)) == MINUS
5021 || GET_CODE (XEXP (t, 0)) == IOR
5022 || GET_CODE (XEXP (t, 0)) == XOR
5023 || GET_CODE (XEXP (t, 0)) == ASHIFT
5024 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5025 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5026 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5027 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5028 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5029 && (num_sign_bit_copies (f, GET_MODE (f))
5030 > (unsigned int)
5031 (GET_MODE_BITSIZE (mode)
5032 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5034 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5035 extend_op = SIGN_EXTEND;
5036 m = GET_MODE (XEXP (t, 0));
5038 else if (GET_CODE (t) == SIGN_EXTEND
5039 && (GET_CODE (XEXP (t, 0)) == PLUS
5040 || GET_CODE (XEXP (t, 0)) == IOR
5041 || GET_CODE (XEXP (t, 0)) == XOR)
5042 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5043 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5044 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5045 && (num_sign_bit_copies (f, GET_MODE (f))
5046 > (unsigned int)
5047 (GET_MODE_BITSIZE (mode)
5048 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5050 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5051 extend_op = SIGN_EXTEND;
5052 m = GET_MODE (XEXP (t, 0));
5054 else if (GET_CODE (t) == ZERO_EXTEND
5055 && (GET_CODE (XEXP (t, 0)) == PLUS
5056 || GET_CODE (XEXP (t, 0)) == MINUS
5057 || GET_CODE (XEXP (t, 0)) == IOR
5058 || GET_CODE (XEXP (t, 0)) == XOR
5059 || GET_CODE (XEXP (t, 0)) == ASHIFT
5060 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5061 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5062 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5063 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5064 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5065 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5066 && ((nonzero_bits (f, GET_MODE (f))
5067 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5068 == 0))
5070 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5071 extend_op = ZERO_EXTEND;
5072 m = GET_MODE (XEXP (t, 0));
5074 else if (GET_CODE (t) == ZERO_EXTEND
5075 && (GET_CODE (XEXP (t, 0)) == PLUS
5076 || GET_CODE (XEXP (t, 0)) == IOR
5077 || GET_CODE (XEXP (t, 0)) == XOR)
5078 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5079 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5080 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5081 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5082 && ((nonzero_bits (f, GET_MODE (f))
5083 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5084 == 0))
5086 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5087 extend_op = ZERO_EXTEND;
5088 m = GET_MODE (XEXP (t, 0));
5091 if (z)
5093 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5094 cond_op0, cond_op1),
5095 pc_rtx, pc_rtx, 0, 0);
5096 temp = simplify_gen_binary (MULT, m, temp,
5097 simplify_gen_binary (MULT, m, c1,
5098 const_true_rtx));
5099 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5100 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5102 if (extend_op != UNKNOWN)
5103 temp = simplify_gen_unary (extend_op, mode, temp, m);
5105 return temp;
5109 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5110 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5111 negation of a single bit, we can convert this operation to a shift. We
5112 can actually do this more generally, but it doesn't seem worth it. */
5114 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5115 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5116 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5117 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5118 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5119 == GET_MODE_BITSIZE (mode))
5120 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5121 return
5122 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5123 gen_lowpart (mode, XEXP (cond, 0)), i);
5125 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5126 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5127 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5128 && GET_MODE (XEXP (cond, 0)) == mode
5129 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5130 == nonzero_bits (XEXP (cond, 0), mode)
5131 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5132 return XEXP (cond, 0);
5134 return x;
5137 /* Simplify X, a SET expression. Return the new expression. */
5139 static rtx
5140 simplify_set (rtx x)
5142 rtx src = SET_SRC (x);
5143 rtx dest = SET_DEST (x);
5144 enum machine_mode mode
5145 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5146 rtx other_insn;
5147 rtx *cc_use;
5149 /* (set (pc) (return)) gets written as (return). */
5150 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5151 return src;
5153 /* Now that we know for sure which bits of SRC we are using, see if we can
5154 simplify the expression for the object knowing that we only need the
5155 low-order bits. */
5157 if (GET_MODE_CLASS (mode) == MODE_INT
5158 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5160 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5161 SUBST (SET_SRC (x), src);
5164 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5165 the comparison result and try to simplify it unless we already have used
5166 undobuf.other_insn. */
5167 if ((GET_MODE_CLASS (mode) == MODE_CC
5168 || GET_CODE (src) == COMPARE
5169 || CC0_P (dest))
5170 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5171 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5172 && COMPARISON_P (*cc_use)
5173 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5175 enum rtx_code old_code = GET_CODE (*cc_use);
5176 enum rtx_code new_code;
5177 rtx op0, op1, tmp;
5178 int other_changed = 0;
5179 enum machine_mode compare_mode = GET_MODE (dest);
5181 if (GET_CODE (src) == COMPARE)
5182 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5183 else
5184 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5186 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5187 op0, op1);
5188 if (!tmp)
5189 new_code = old_code;
5190 else if (!CONSTANT_P (tmp))
5192 new_code = GET_CODE (tmp);
5193 op0 = XEXP (tmp, 0);
5194 op1 = XEXP (tmp, 1);
5196 else
5198 rtx pat = PATTERN (other_insn);
5199 undobuf.other_insn = other_insn;
5200 SUBST (*cc_use, tmp);
5202 /* Attempt to simplify CC user. */
5203 if (GET_CODE (pat) == SET)
5205 rtx new = simplify_rtx (SET_SRC (pat));
5206 if (new != NULL_RTX)
5207 SUBST (SET_SRC (pat), new);
5210 /* Convert X into a no-op move. */
5211 SUBST (SET_DEST (x), pc_rtx);
5212 SUBST (SET_SRC (x), pc_rtx);
5213 return x;
5216 /* Simplify our comparison, if possible. */
5217 new_code = simplify_comparison (new_code, &op0, &op1);
5219 #ifdef SELECT_CC_MODE
5220 /* If this machine has CC modes other than CCmode, check to see if we
5221 need to use a different CC mode here. */
5222 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5223 compare_mode = GET_MODE (op0);
5224 else
5225 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5227 #ifndef HAVE_cc0
5228 /* If the mode changed, we have to change SET_DEST, the mode in the
5229 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5230 a hard register, just build new versions with the proper mode. If it
5231 is a pseudo, we lose unless it is only time we set the pseudo, in
5232 which case we can safely change its mode. */
5233 if (compare_mode != GET_MODE (dest))
5235 if (can_change_dest_mode (dest, 0, compare_mode))
5237 unsigned int regno = REGNO (dest);
5238 rtx new_dest;
5240 if (regno < FIRST_PSEUDO_REGISTER)
5241 new_dest = gen_rtx_REG (compare_mode, regno);
5242 else
5244 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5245 new_dest = regno_reg_rtx[regno];
5248 SUBST (SET_DEST (x), new_dest);
5249 SUBST (XEXP (*cc_use, 0), new_dest);
5250 other_changed = 1;
5252 dest = new_dest;
5255 #endif /* cc0 */
5256 #endif /* SELECT_CC_MODE */
5258 /* If the code changed, we have to build a new comparison in
5259 undobuf.other_insn. */
5260 if (new_code != old_code)
5262 int other_changed_previously = other_changed;
5263 unsigned HOST_WIDE_INT mask;
5265 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5266 dest, const0_rtx));
5267 other_changed = 1;
5269 /* If the only change we made was to change an EQ into an NE or
5270 vice versa, OP0 has only one bit that might be nonzero, and OP1
5271 is zero, check if changing the user of the condition code will
5272 produce a valid insn. If it won't, we can keep the original code
5273 in that insn by surrounding our operation with an XOR. */
5275 if (((old_code == NE && new_code == EQ)
5276 || (old_code == EQ && new_code == NE))
5277 && ! other_changed_previously && op1 == const0_rtx
5278 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5279 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5281 rtx pat = PATTERN (other_insn), note = 0;
5283 if ((recog_for_combine (&pat, other_insn, &note) < 0
5284 && ! check_asm_operands (pat)))
5286 PUT_CODE (*cc_use, old_code);
5287 other_changed = 0;
5289 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5290 op0, GEN_INT (mask));
5295 if (other_changed)
5296 undobuf.other_insn = other_insn;
5298 #ifdef HAVE_cc0
5299 /* If we are now comparing against zero, change our source if
5300 needed. If we do not use cc0, we always have a COMPARE. */
5301 if (op1 == const0_rtx && dest == cc0_rtx)
5303 SUBST (SET_SRC (x), op0);
5304 src = op0;
5306 else
5307 #endif
5309 /* Otherwise, if we didn't previously have a COMPARE in the
5310 correct mode, we need one. */
5311 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5313 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5314 src = SET_SRC (x);
5316 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5318 SUBST(SET_SRC (x), op0);
5319 src = SET_SRC (x);
5321 else
5323 /* Otherwise, update the COMPARE if needed. */
5324 SUBST (XEXP (src, 0), op0);
5325 SUBST (XEXP (src, 1), op1);
5328 else
5330 /* Get SET_SRC in a form where we have placed back any
5331 compound expressions. Then do the checks below. */
5332 src = make_compound_operation (src, SET);
5333 SUBST (SET_SRC (x), src);
5336 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5337 and X being a REG or (subreg (reg)), we may be able to convert this to
5338 (set (subreg:m2 x) (op)).
5340 We can always do this if M1 is narrower than M2 because that means that
5341 we only care about the low bits of the result.
5343 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5344 perform a narrower operation than requested since the high-order bits will
5345 be undefined. On machine where it is defined, this transformation is safe
5346 as long as M1 and M2 have the same number of words. */
5348 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5349 && !OBJECT_P (SUBREG_REG (src))
5350 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5351 / UNITS_PER_WORD)
5352 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5353 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5354 #ifndef WORD_REGISTER_OPERATIONS
5355 && (GET_MODE_SIZE (GET_MODE (src))
5356 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5357 #endif
5358 #ifdef CANNOT_CHANGE_MODE_CLASS
5359 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5360 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5361 GET_MODE (SUBREG_REG (src)),
5362 GET_MODE (src)))
5363 #endif
5364 && (REG_P (dest)
5365 || (GET_CODE (dest) == SUBREG
5366 && REG_P (SUBREG_REG (dest)))))
5368 SUBST (SET_DEST (x),
5369 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5370 dest));
5371 SUBST (SET_SRC (x), SUBREG_REG (src));
5373 src = SET_SRC (x), dest = SET_DEST (x);
5376 #ifdef HAVE_cc0
5377 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5378 in SRC. */
5379 if (dest == cc0_rtx
5380 && GET_CODE (src) == SUBREG
5381 && subreg_lowpart_p (src)
5382 && (GET_MODE_BITSIZE (GET_MODE (src))
5383 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5385 rtx inner = SUBREG_REG (src);
5386 enum machine_mode inner_mode = GET_MODE (inner);
5388 /* Here we make sure that we don't have a sign bit on. */
5389 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5390 && (nonzero_bits (inner, inner_mode)
5391 < ((unsigned HOST_WIDE_INT) 1
5392 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5394 SUBST (SET_SRC (x), inner);
5395 src = SET_SRC (x);
5398 #endif
5400 #ifdef LOAD_EXTEND_OP
5401 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5402 would require a paradoxical subreg. Replace the subreg with a
5403 zero_extend to avoid the reload that would otherwise be required. */
5405 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5406 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5407 && SUBREG_BYTE (src) == 0
5408 && (GET_MODE_SIZE (GET_MODE (src))
5409 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5410 && MEM_P (SUBREG_REG (src)))
5412 SUBST (SET_SRC (x),
5413 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5414 GET_MODE (src), SUBREG_REG (src)));
5416 src = SET_SRC (x);
5418 #endif
5420 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5421 are comparing an item known to be 0 or -1 against 0, use a logical
5422 operation instead. Check for one of the arms being an IOR of the other
5423 arm with some value. We compute three terms to be IOR'ed together. In
5424 practice, at most two will be nonzero. Then we do the IOR's. */
5426 if (GET_CODE (dest) != PC
5427 && GET_CODE (src) == IF_THEN_ELSE
5428 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5429 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5430 && XEXP (XEXP (src, 0), 1) == const0_rtx
5431 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5432 #ifdef HAVE_conditional_move
5433 && ! can_conditionally_move_p (GET_MODE (src))
5434 #endif
5435 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5436 GET_MODE (XEXP (XEXP (src, 0), 0)))
5437 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5438 && ! side_effects_p (src))
5440 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5441 ? XEXP (src, 1) : XEXP (src, 2));
5442 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5443 ? XEXP (src, 2) : XEXP (src, 1));
5444 rtx term1 = const0_rtx, term2, term3;
5446 if (GET_CODE (true_rtx) == IOR
5447 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5448 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5449 else if (GET_CODE (true_rtx) == IOR
5450 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5451 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5452 else if (GET_CODE (false_rtx) == IOR
5453 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5454 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5455 else if (GET_CODE (false_rtx) == IOR
5456 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5457 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5459 term2 = simplify_gen_binary (AND, GET_MODE (src),
5460 XEXP (XEXP (src, 0), 0), true_rtx);
5461 term3 = simplify_gen_binary (AND, GET_MODE (src),
5462 simplify_gen_unary (NOT, GET_MODE (src),
5463 XEXP (XEXP (src, 0), 0),
5464 GET_MODE (src)),
5465 false_rtx);
5467 SUBST (SET_SRC (x),
5468 simplify_gen_binary (IOR, GET_MODE (src),
5469 simplify_gen_binary (IOR, GET_MODE (src),
5470 term1, term2),
5471 term3));
5473 src = SET_SRC (x);
5476 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5477 whole thing fail. */
5478 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5479 return src;
5480 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5481 return dest;
5482 else
5483 /* Convert this into a field assignment operation, if possible. */
5484 return make_field_assignment (x);
5487 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5488 result. */
5490 static rtx
5491 simplify_logical (rtx x)
5493 enum machine_mode mode = GET_MODE (x);
5494 rtx op0 = XEXP (x, 0);
5495 rtx op1 = XEXP (x, 1);
5497 switch (GET_CODE (x))
5499 case AND:
5500 /* We can call simplify_and_const_int only if we don't lose
5501 any (sign) bits when converting INTVAL (op1) to
5502 "unsigned HOST_WIDE_INT". */
5503 if (GET_CODE (op1) == CONST_INT
5504 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5505 || INTVAL (op1) > 0))
5507 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5508 if (GET_CODE (x) != AND)
5509 return x;
5511 op0 = XEXP (x, 0);
5512 op1 = XEXP (x, 1);
5515 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5516 apply the distributive law and then the inverse distributive
5517 law to see if things simplify. */
5518 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5520 rtx result = distribute_and_simplify_rtx (x, 0);
5521 if (result)
5522 return result;
5524 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5526 rtx result = distribute_and_simplify_rtx (x, 1);
5527 if (result)
5528 return result;
5530 break;
5532 case IOR:
5533 /* If we have (ior (and A B) C), apply the distributive law and then
5534 the inverse distributive law to see if things simplify. */
5536 if (GET_CODE (op0) == AND)
5538 rtx result = distribute_and_simplify_rtx (x, 0);
5539 if (result)
5540 return result;
5543 if (GET_CODE (op1) == AND)
5545 rtx result = distribute_and_simplify_rtx (x, 1);
5546 if (result)
5547 return result;
5549 break;
5551 default:
5552 gcc_unreachable ();
5555 return x;
5558 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5559 operations" because they can be replaced with two more basic operations.
5560 ZERO_EXTEND is also considered "compound" because it can be replaced with
5561 an AND operation, which is simpler, though only one operation.
5563 The function expand_compound_operation is called with an rtx expression
5564 and will convert it to the appropriate shifts and AND operations,
5565 simplifying at each stage.
5567 The function make_compound_operation is called to convert an expression
5568 consisting of shifts and ANDs into the equivalent compound expression.
5569 It is the inverse of this function, loosely speaking. */
5571 static rtx
5572 expand_compound_operation (rtx x)
5574 unsigned HOST_WIDE_INT pos = 0, len;
5575 int unsignedp = 0;
5576 unsigned int modewidth;
5577 rtx tem;
5579 switch (GET_CODE (x))
5581 case ZERO_EXTEND:
5582 unsignedp = 1;
5583 case SIGN_EXTEND:
5584 /* We can't necessarily use a const_int for a multiword mode;
5585 it depends on implicitly extending the value.
5586 Since we don't know the right way to extend it,
5587 we can't tell whether the implicit way is right.
5589 Even for a mode that is no wider than a const_int,
5590 we can't win, because we need to sign extend one of its bits through
5591 the rest of it, and we don't know which bit. */
5592 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5593 return x;
5595 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5596 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5597 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5598 reloaded. If not for that, MEM's would very rarely be safe.
5600 Reject MODEs bigger than a word, because we might not be able
5601 to reference a two-register group starting with an arbitrary register
5602 (and currently gen_lowpart might crash for a SUBREG). */
5604 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5605 return x;
5607 /* Reject MODEs that aren't scalar integers because turning vector
5608 or complex modes into shifts causes problems. */
5610 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5611 return x;
5613 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5614 /* If the inner object has VOIDmode (the only way this can happen
5615 is if it is an ASM_OPERANDS), we can't do anything since we don't
5616 know how much masking to do. */
5617 if (len == 0)
5618 return x;
5620 break;
5622 case ZERO_EXTRACT:
5623 unsignedp = 1;
5625 /* ... fall through ... */
5627 case SIGN_EXTRACT:
5628 /* If the operand is a CLOBBER, just return it. */
5629 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5630 return XEXP (x, 0);
5632 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5633 || GET_CODE (XEXP (x, 2)) != CONST_INT
5634 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5635 return x;
5637 /* Reject MODEs that aren't scalar integers because turning vector
5638 or complex modes into shifts causes problems. */
5640 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5641 return x;
5643 len = INTVAL (XEXP (x, 1));
5644 pos = INTVAL (XEXP (x, 2));
5646 /* This should stay within the object being extracted, fail otherwise. */
5647 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5648 return x;
5650 if (BITS_BIG_ENDIAN)
5651 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5653 break;
5655 default:
5656 return x;
5658 /* Convert sign extension to zero extension, if we know that the high
5659 bit is not set, as this is easier to optimize. It will be converted
5660 back to cheaper alternative in make_extraction. */
5661 if (GET_CODE (x) == SIGN_EXTEND
5662 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5663 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5664 & ~(((unsigned HOST_WIDE_INT)
5665 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5666 >> 1))
5667 == 0)))
5669 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5670 rtx temp2 = expand_compound_operation (temp);
5672 /* Make sure this is a profitable operation. */
5673 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5674 return temp2;
5675 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5676 return temp;
5677 else
5678 return x;
5681 /* We can optimize some special cases of ZERO_EXTEND. */
5682 if (GET_CODE (x) == ZERO_EXTEND)
5684 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5685 know that the last value didn't have any inappropriate bits
5686 set. */
5687 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5688 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5689 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5690 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5691 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5692 return XEXP (XEXP (x, 0), 0);
5694 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5695 if (GET_CODE (XEXP (x, 0)) == SUBREG
5696 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5697 && subreg_lowpart_p (XEXP (x, 0))
5698 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5699 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5700 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5701 return SUBREG_REG (XEXP (x, 0));
5703 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5704 is a comparison and STORE_FLAG_VALUE permits. This is like
5705 the first case, but it works even when GET_MODE (x) is larger
5706 than HOST_WIDE_INT. */
5707 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5708 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5709 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5710 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5711 <= HOST_BITS_PER_WIDE_INT)
5712 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5713 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5714 return XEXP (XEXP (x, 0), 0);
5716 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5717 if (GET_CODE (XEXP (x, 0)) == SUBREG
5718 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5719 && subreg_lowpart_p (XEXP (x, 0))
5720 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5721 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5722 <= HOST_BITS_PER_WIDE_INT)
5723 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5724 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5725 return SUBREG_REG (XEXP (x, 0));
5729 /* If we reach here, we want to return a pair of shifts. The inner
5730 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5731 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5732 logical depending on the value of UNSIGNEDP.
5734 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5735 converted into an AND of a shift.
5737 We must check for the case where the left shift would have a negative
5738 count. This can happen in a case like (x >> 31) & 255 on machines
5739 that can't shift by a constant. On those machines, we would first
5740 combine the shift with the AND to produce a variable-position
5741 extraction. Then the constant of 31 would be substituted in to produce
5742 a such a position. */
5744 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5745 if (modewidth + len >= pos)
5747 enum machine_mode mode = GET_MODE (x);
5748 tem = gen_lowpart (mode, XEXP (x, 0));
5749 if (!tem || GET_CODE (tem) == CLOBBER)
5750 return x;
5751 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5752 tem, modewidth - pos - len);
5753 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5754 mode, tem, modewidth - len);
5756 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5757 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5758 simplify_shift_const (NULL_RTX, LSHIFTRT,
5759 GET_MODE (x),
5760 XEXP (x, 0), pos),
5761 ((HOST_WIDE_INT) 1 << len) - 1);
5762 else
5763 /* Any other cases we can't handle. */
5764 return x;
5766 /* If we couldn't do this for some reason, return the original
5767 expression. */
5768 if (GET_CODE (tem) == CLOBBER)
5769 return x;
5771 return tem;
5774 /* X is a SET which contains an assignment of one object into
5775 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5776 or certain SUBREGS). If possible, convert it into a series of
5777 logical operations.
5779 We half-heartedly support variable positions, but do not at all
5780 support variable lengths. */
5782 static rtx
5783 expand_field_assignment (rtx x)
5785 rtx inner;
5786 rtx pos; /* Always counts from low bit. */
5787 int len;
5788 rtx mask, cleared, masked;
5789 enum machine_mode compute_mode;
5791 /* Loop until we find something we can't simplify. */
5792 while (1)
5794 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5795 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5797 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5798 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5799 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5801 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5802 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5804 inner = XEXP (SET_DEST (x), 0);
5805 len = INTVAL (XEXP (SET_DEST (x), 1));
5806 pos = XEXP (SET_DEST (x), 2);
5808 /* A constant position should stay within the width of INNER. */
5809 if (GET_CODE (pos) == CONST_INT
5810 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5811 break;
5813 if (BITS_BIG_ENDIAN)
5815 if (GET_CODE (pos) == CONST_INT)
5816 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5817 - INTVAL (pos));
5818 else if (GET_CODE (pos) == MINUS
5819 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5820 && (INTVAL (XEXP (pos, 1))
5821 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5822 /* If position is ADJUST - X, new position is X. */
5823 pos = XEXP (pos, 0);
5824 else
5825 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5826 GEN_INT (GET_MODE_BITSIZE (
5827 GET_MODE (inner))
5828 - len),
5829 pos);
5833 /* A SUBREG between two modes that occupy the same numbers of words
5834 can be done by moving the SUBREG to the source. */
5835 else if (GET_CODE (SET_DEST (x)) == SUBREG
5836 /* We need SUBREGs to compute nonzero_bits properly. */
5837 && nonzero_sign_valid
5838 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5839 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5840 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5841 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5843 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5844 gen_lowpart
5845 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5846 SET_SRC (x)));
5847 continue;
5849 else
5850 break;
5852 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5853 inner = SUBREG_REG (inner);
5855 compute_mode = GET_MODE (inner);
5857 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5858 if (! SCALAR_INT_MODE_P (compute_mode))
5860 enum machine_mode imode;
5862 /* Don't do anything for vector or complex integral types. */
5863 if (! FLOAT_MODE_P (compute_mode))
5864 break;
5866 /* Try to find an integral mode to pun with. */
5867 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5868 if (imode == BLKmode)
5869 break;
5871 compute_mode = imode;
5872 inner = gen_lowpart (imode, inner);
5875 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5876 if (len >= HOST_BITS_PER_WIDE_INT)
5877 break;
5879 /* Now compute the equivalent expression. Make a copy of INNER
5880 for the SET_DEST in case it is a MEM into which we will substitute;
5881 we don't want shared RTL in that case. */
5882 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5883 cleared = simplify_gen_binary (AND, compute_mode,
5884 simplify_gen_unary (NOT, compute_mode,
5885 simplify_gen_binary (ASHIFT,
5886 compute_mode,
5887 mask, pos),
5888 compute_mode),
5889 inner);
5890 masked = simplify_gen_binary (ASHIFT, compute_mode,
5891 simplify_gen_binary (
5892 AND, compute_mode,
5893 gen_lowpart (compute_mode, SET_SRC (x)),
5894 mask),
5895 pos);
5897 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5898 simplify_gen_binary (IOR, compute_mode,
5899 cleared, masked));
5902 return x;
5905 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5906 it is an RTX that represents a variable starting position; otherwise,
5907 POS is the (constant) starting bit position (counted from the LSB).
5909 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5910 signed reference.
5912 IN_DEST is nonzero if this is a reference in the destination of a
5913 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5914 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5915 be used.
5917 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5918 ZERO_EXTRACT should be built even for bits starting at bit 0.
5920 MODE is the desired mode of the result (if IN_DEST == 0).
5922 The result is an RTX for the extraction or NULL_RTX if the target
5923 can't handle it. */
5925 static rtx
5926 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5927 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5928 int in_dest, int in_compare)
5930 /* This mode describes the size of the storage area
5931 to fetch the overall value from. Within that, we
5932 ignore the POS lowest bits, etc. */
5933 enum machine_mode is_mode = GET_MODE (inner);
5934 enum machine_mode inner_mode;
5935 enum machine_mode wanted_inner_mode;
5936 enum machine_mode wanted_inner_reg_mode = word_mode;
5937 enum machine_mode pos_mode = word_mode;
5938 enum machine_mode extraction_mode = word_mode;
5939 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5940 rtx new = 0;
5941 rtx orig_pos_rtx = pos_rtx;
5942 HOST_WIDE_INT orig_pos;
5944 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5946 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5947 consider just the QI as the memory to extract from.
5948 The subreg adds or removes high bits; its mode is
5949 irrelevant to the meaning of this extraction,
5950 since POS and LEN count from the lsb. */
5951 if (MEM_P (SUBREG_REG (inner)))
5952 is_mode = GET_MODE (SUBREG_REG (inner));
5953 inner = SUBREG_REG (inner);
5955 else if (GET_CODE (inner) == ASHIFT
5956 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5957 && pos_rtx == 0 && pos == 0
5958 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5960 /* We're extracting the least significant bits of an rtx
5961 (ashift X (const_int C)), where LEN > C. Extract the
5962 least significant (LEN - C) bits of X, giving an rtx
5963 whose mode is MODE, then shift it left C times. */
5964 new = make_extraction (mode, XEXP (inner, 0),
5965 0, 0, len - INTVAL (XEXP (inner, 1)),
5966 unsignedp, in_dest, in_compare);
5967 if (new != 0)
5968 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5971 inner_mode = GET_MODE (inner);
5973 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5974 pos = INTVAL (pos_rtx), pos_rtx = 0;
5976 /* See if this can be done without an extraction. We never can if the
5977 width of the field is not the same as that of some integer mode. For
5978 registers, we can only avoid the extraction if the position is at the
5979 low-order bit and this is either not in the destination or we have the
5980 appropriate STRICT_LOW_PART operation available.
5982 For MEM, we can avoid an extract if the field starts on an appropriate
5983 boundary and we can change the mode of the memory reference. */
5985 if (tmode != BLKmode
5986 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5987 && !MEM_P (inner)
5988 && (inner_mode == tmode
5989 || !REG_P (inner)
5990 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
5991 GET_MODE_BITSIZE (inner_mode))
5992 || reg_truncated_to_mode (tmode, inner))
5993 && (! in_dest
5994 || (REG_P (inner)
5995 && have_insn_for (STRICT_LOW_PART, tmode))))
5996 || (MEM_P (inner) && pos_rtx == 0
5997 && (pos
5998 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5999 : BITS_PER_UNIT)) == 0
6000 /* We can't do this if we are widening INNER_MODE (it
6001 may not be aligned, for one thing). */
6002 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6003 && (inner_mode == tmode
6004 || (! mode_dependent_address_p (XEXP (inner, 0))
6005 && ! MEM_VOLATILE_P (inner))))))
6007 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6008 field. If the original and current mode are the same, we need not
6009 adjust the offset. Otherwise, we do if bytes big endian.
6011 If INNER is not a MEM, get a piece consisting of just the field
6012 of interest (in this case POS % BITS_PER_WORD must be 0). */
6014 if (MEM_P (inner))
6016 HOST_WIDE_INT offset;
6018 /* POS counts from lsb, but make OFFSET count in memory order. */
6019 if (BYTES_BIG_ENDIAN)
6020 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6021 else
6022 offset = pos / BITS_PER_UNIT;
6024 new = adjust_address_nv (inner, tmode, offset);
6026 else if (REG_P (inner))
6028 if (tmode != inner_mode)
6030 /* We can't call gen_lowpart in a DEST since we
6031 always want a SUBREG (see below) and it would sometimes
6032 return a new hard register. */
6033 if (pos || in_dest)
6035 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6037 if (WORDS_BIG_ENDIAN
6038 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6039 final_word = ((GET_MODE_SIZE (inner_mode)
6040 - GET_MODE_SIZE (tmode))
6041 / UNITS_PER_WORD) - final_word;
6043 final_word *= UNITS_PER_WORD;
6044 if (BYTES_BIG_ENDIAN &&
6045 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6046 final_word += (GET_MODE_SIZE (inner_mode)
6047 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6049 /* Avoid creating invalid subregs, for example when
6050 simplifying (x>>32)&255. */
6051 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6052 return NULL_RTX;
6054 new = gen_rtx_SUBREG (tmode, inner, final_word);
6056 else
6057 new = gen_lowpart (tmode, inner);
6059 else
6060 new = inner;
6062 else
6063 new = force_to_mode (inner, tmode,
6064 len >= HOST_BITS_PER_WIDE_INT
6065 ? ~(unsigned HOST_WIDE_INT) 0
6066 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6069 /* If this extraction is going into the destination of a SET,
6070 make a STRICT_LOW_PART unless we made a MEM. */
6072 if (in_dest)
6073 return (MEM_P (new) ? new
6074 : (GET_CODE (new) != SUBREG
6075 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6076 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6078 if (mode == tmode)
6079 return new;
6081 if (GET_CODE (new) == CONST_INT)
6082 return gen_int_mode (INTVAL (new), mode);
6084 /* If we know that no extraneous bits are set, and that the high
6085 bit is not set, convert the extraction to the cheaper of
6086 sign and zero extension, that are equivalent in these cases. */
6087 if (flag_expensive_optimizations
6088 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6089 && ((nonzero_bits (new, tmode)
6090 & ~(((unsigned HOST_WIDE_INT)
6091 GET_MODE_MASK (tmode))
6092 >> 1))
6093 == 0)))
6095 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6096 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6098 /* Prefer ZERO_EXTENSION, since it gives more information to
6099 backends. */
6100 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6101 return temp;
6102 return temp1;
6105 /* Otherwise, sign- or zero-extend unless we already are in the
6106 proper mode. */
6108 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6109 mode, new));
6112 /* Unless this is a COMPARE or we have a funny memory reference,
6113 don't do anything with zero-extending field extracts starting at
6114 the low-order bit since they are simple AND operations. */
6115 if (pos_rtx == 0 && pos == 0 && ! in_dest
6116 && ! in_compare && unsignedp)
6117 return 0;
6119 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6120 if the position is not a constant and the length is not 1. In all
6121 other cases, we would only be going outside our object in cases when
6122 an original shift would have been undefined. */
6123 if (MEM_P (inner)
6124 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6125 || (pos_rtx != 0 && len != 1)))
6126 return 0;
6128 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6129 and the mode for the result. */
6130 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6132 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6133 pos_mode = mode_for_extraction (EP_insv, 2);
6134 extraction_mode = mode_for_extraction (EP_insv, 3);
6137 if (! in_dest && unsignedp
6138 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6140 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6141 pos_mode = mode_for_extraction (EP_extzv, 3);
6142 extraction_mode = mode_for_extraction (EP_extzv, 0);
6145 if (! in_dest && ! unsignedp
6146 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6148 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6149 pos_mode = mode_for_extraction (EP_extv, 3);
6150 extraction_mode = mode_for_extraction (EP_extv, 0);
6153 /* Never narrow an object, since that might not be safe. */
6155 if (mode != VOIDmode
6156 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6157 extraction_mode = mode;
6159 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6160 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6161 pos_mode = GET_MODE (pos_rtx);
6163 /* If this is not from memory, the desired mode is the preferred mode
6164 for an extraction pattern's first input operand, or word_mode if there
6165 is none. */
6166 if (!MEM_P (inner))
6167 wanted_inner_mode = wanted_inner_reg_mode;
6168 else
6170 /* Be careful not to go beyond the extracted object and maintain the
6171 natural alignment of the memory. */
6172 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6173 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6174 > GET_MODE_BITSIZE (wanted_inner_mode))
6176 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6177 gcc_assert (wanted_inner_mode != VOIDmode);
6180 /* If we have to change the mode of memory and cannot, the desired mode
6181 is EXTRACTION_MODE. */
6182 if (inner_mode != wanted_inner_mode
6183 && (mode_dependent_address_p (XEXP (inner, 0))
6184 || MEM_VOLATILE_P (inner)
6185 || pos_rtx))
6186 wanted_inner_mode = extraction_mode;
6189 orig_pos = pos;
6191 if (BITS_BIG_ENDIAN)
6193 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6194 BITS_BIG_ENDIAN style. If position is constant, compute new
6195 position. Otherwise, build subtraction.
6196 Note that POS is relative to the mode of the original argument.
6197 If it's a MEM we need to recompute POS relative to that.
6198 However, if we're extracting from (or inserting into) a register,
6199 we want to recompute POS relative to wanted_inner_mode. */
6200 int width = (MEM_P (inner)
6201 ? GET_MODE_BITSIZE (is_mode)
6202 : GET_MODE_BITSIZE (wanted_inner_mode));
6204 if (pos_rtx == 0)
6205 pos = width - len - pos;
6206 else
6207 pos_rtx
6208 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6209 /* POS may be less than 0 now, but we check for that below.
6210 Note that it can only be less than 0 if !MEM_P (inner). */
6213 /* If INNER has a wider mode, and this is a constant extraction, try to
6214 make it smaller and adjust the byte to point to the byte containing
6215 the value. */
6216 if (wanted_inner_mode != VOIDmode
6217 && inner_mode != wanted_inner_mode
6218 && ! pos_rtx
6219 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6220 && MEM_P (inner)
6221 && ! mode_dependent_address_p (XEXP (inner, 0))
6222 && ! MEM_VOLATILE_P (inner))
6224 int offset = 0;
6226 /* The computations below will be correct if the machine is big
6227 endian in both bits and bytes or little endian in bits and bytes.
6228 If it is mixed, we must adjust. */
6230 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6231 adjust OFFSET to compensate. */
6232 if (BYTES_BIG_ENDIAN
6233 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6234 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6236 /* We can now move to the desired byte. */
6237 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6238 * GET_MODE_SIZE (wanted_inner_mode);
6239 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6241 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6242 && is_mode != wanted_inner_mode)
6243 offset = (GET_MODE_SIZE (is_mode)
6244 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6246 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6249 /* If INNER is not memory, we can always get it into the proper mode. If we
6250 are changing its mode, POS must be a constant and smaller than the size
6251 of the new mode. */
6252 else if (!MEM_P (inner))
6254 if (GET_MODE (inner) != wanted_inner_mode
6255 && (pos_rtx != 0
6256 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6257 return 0;
6259 if (orig_pos < 0)
6260 return 0;
6262 inner = force_to_mode (inner, wanted_inner_mode,
6263 pos_rtx
6264 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6265 ? ~(unsigned HOST_WIDE_INT) 0
6266 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6267 << orig_pos),
6271 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6272 have to zero extend. Otherwise, we can just use a SUBREG. */
6273 if (pos_rtx != 0
6274 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6276 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6278 /* If we know that no extraneous bits are set, and that the high
6279 bit is not set, convert extraction to cheaper one - either
6280 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6281 cases. */
6282 if (flag_expensive_optimizations
6283 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6284 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6285 & ~(((unsigned HOST_WIDE_INT)
6286 GET_MODE_MASK (GET_MODE (pos_rtx)))
6287 >> 1))
6288 == 0)))
6290 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6292 /* Prefer ZERO_EXTENSION, since it gives more information to
6293 backends. */
6294 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6295 temp = temp1;
6297 pos_rtx = temp;
6299 else if (pos_rtx != 0
6300 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6301 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6303 /* Make POS_RTX unless we already have it and it is correct. If we don't
6304 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6305 be a CONST_INT. */
6306 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6307 pos_rtx = orig_pos_rtx;
6309 else if (pos_rtx == 0)
6310 pos_rtx = GEN_INT (pos);
6312 /* Make the required operation. See if we can use existing rtx. */
6313 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6314 extraction_mode, inner, GEN_INT (len), pos_rtx);
6315 if (! in_dest)
6316 new = gen_lowpart (mode, new);
6318 return new;
6321 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6322 with any other operations in X. Return X without that shift if so. */
6324 static rtx
6325 extract_left_shift (rtx x, int count)
6327 enum rtx_code code = GET_CODE (x);
6328 enum machine_mode mode = GET_MODE (x);
6329 rtx tem;
6331 switch (code)
6333 case ASHIFT:
6334 /* This is the shift itself. If it is wide enough, we will return
6335 either the value being shifted if the shift count is equal to
6336 COUNT or a shift for the difference. */
6337 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6338 && INTVAL (XEXP (x, 1)) >= count)
6339 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6340 INTVAL (XEXP (x, 1)) - count);
6341 break;
6343 case NEG: case NOT:
6344 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6345 return simplify_gen_unary (code, mode, tem, mode);
6347 break;
6349 case PLUS: case IOR: case XOR: case AND:
6350 /* If we can safely shift this constant and we find the inner shift,
6351 make a new operation. */
6352 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6353 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6354 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6355 return simplify_gen_binary (code, mode, tem,
6356 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6358 break;
6360 default:
6361 break;
6364 return 0;
6367 /* Look at the expression rooted at X. Look for expressions
6368 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6369 Form these expressions.
6371 Return the new rtx, usually just X.
6373 Also, for machines like the VAX that don't have logical shift insns,
6374 try to convert logical to arithmetic shift operations in cases where
6375 they are equivalent. This undoes the canonicalizations to logical
6376 shifts done elsewhere.
6378 We try, as much as possible, to re-use rtl expressions to save memory.
6380 IN_CODE says what kind of expression we are processing. Normally, it is
6381 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6382 being kludges), it is MEM. When processing the arguments of a comparison
6383 or a COMPARE against zero, it is COMPARE. */
6385 static rtx
6386 make_compound_operation (rtx x, enum rtx_code in_code)
6388 enum rtx_code code = GET_CODE (x);
6389 enum machine_mode mode = GET_MODE (x);
6390 int mode_width = GET_MODE_BITSIZE (mode);
6391 rtx rhs, lhs;
6392 enum rtx_code next_code;
6393 int i;
6394 rtx new = 0;
6395 rtx tem;
6396 const char *fmt;
6398 /* Select the code to be used in recursive calls. Once we are inside an
6399 address, we stay there. If we have a comparison, set to COMPARE,
6400 but once inside, go back to our default of SET. */
6402 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6403 : ((code == COMPARE || COMPARISON_P (x))
6404 && XEXP (x, 1) == const0_rtx) ? COMPARE
6405 : in_code == COMPARE ? SET : in_code);
6407 /* Process depending on the code of this operation. If NEW is set
6408 nonzero, it will be returned. */
6410 switch (code)
6412 case ASHIFT:
6413 /* Convert shifts by constants into multiplications if inside
6414 an address. */
6415 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6416 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6417 && INTVAL (XEXP (x, 1)) >= 0)
6419 new = make_compound_operation (XEXP (x, 0), next_code);
6420 new = gen_rtx_MULT (mode, new,
6421 GEN_INT ((HOST_WIDE_INT) 1
6422 << INTVAL (XEXP (x, 1))));
6424 break;
6426 case AND:
6427 /* If the second operand is not a constant, we can't do anything
6428 with it. */
6429 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6430 break;
6432 /* If the constant is a power of two minus one and the first operand
6433 is a logical right shift, make an extraction. */
6434 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6435 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6437 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6438 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6439 0, in_code == COMPARE);
6442 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6443 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6444 && subreg_lowpart_p (XEXP (x, 0))
6445 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6446 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6448 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6449 next_code);
6450 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6451 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6452 0, in_code == COMPARE);
6454 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6455 else if ((GET_CODE (XEXP (x, 0)) == XOR
6456 || GET_CODE (XEXP (x, 0)) == IOR)
6457 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6458 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6459 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6461 /* Apply the distributive law, and then try to make extractions. */
6462 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6463 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6464 XEXP (x, 1)),
6465 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6466 XEXP (x, 1)));
6467 new = make_compound_operation (new, in_code);
6470 /* If we are have (and (rotate X C) M) and C is larger than the number
6471 of bits in M, this is an extraction. */
6473 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6474 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6475 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6476 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6478 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6479 new = make_extraction (mode, new,
6480 (GET_MODE_BITSIZE (mode)
6481 - INTVAL (XEXP (XEXP (x, 0), 1))),
6482 NULL_RTX, i, 1, 0, in_code == COMPARE);
6485 /* On machines without logical shifts, if the operand of the AND is
6486 a logical shift and our mask turns off all the propagated sign
6487 bits, we can replace the logical shift with an arithmetic shift. */
6488 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6489 && !have_insn_for (LSHIFTRT, mode)
6490 && have_insn_for (ASHIFTRT, mode)
6491 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6492 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6493 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6494 && mode_width <= HOST_BITS_PER_WIDE_INT)
6496 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6498 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6499 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6500 SUBST (XEXP (x, 0),
6501 gen_rtx_ASHIFTRT (mode,
6502 make_compound_operation
6503 (XEXP (XEXP (x, 0), 0), next_code),
6504 XEXP (XEXP (x, 0), 1)));
6507 /* If the constant is one less than a power of two, this might be
6508 representable by an extraction even if no shift is present.
6509 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6510 we are in a COMPARE. */
6511 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6512 new = make_extraction (mode,
6513 make_compound_operation (XEXP (x, 0),
6514 next_code),
6515 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6517 /* If we are in a comparison and this is an AND with a power of two,
6518 convert this into the appropriate bit extract. */
6519 else if (in_code == COMPARE
6520 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6521 new = make_extraction (mode,
6522 make_compound_operation (XEXP (x, 0),
6523 next_code),
6524 i, NULL_RTX, 1, 1, 0, 1);
6526 break;
6528 case LSHIFTRT:
6529 /* If the sign bit is known to be zero, replace this with an
6530 arithmetic shift. */
6531 if (have_insn_for (ASHIFTRT, mode)
6532 && ! have_insn_for (LSHIFTRT, mode)
6533 && mode_width <= HOST_BITS_PER_WIDE_INT
6534 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6536 new = gen_rtx_ASHIFTRT (mode,
6537 make_compound_operation (XEXP (x, 0),
6538 next_code),
6539 XEXP (x, 1));
6540 break;
6543 /* ... fall through ... */
6545 case ASHIFTRT:
6546 lhs = XEXP (x, 0);
6547 rhs = XEXP (x, 1);
6549 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6550 this is a SIGN_EXTRACT. */
6551 if (GET_CODE (rhs) == CONST_INT
6552 && GET_CODE (lhs) == ASHIFT
6553 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6554 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6556 new = make_compound_operation (XEXP (lhs, 0), next_code);
6557 new = make_extraction (mode, new,
6558 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6559 NULL_RTX, mode_width - INTVAL (rhs),
6560 code == LSHIFTRT, 0, in_code == COMPARE);
6561 break;
6564 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6565 If so, try to merge the shifts into a SIGN_EXTEND. We could
6566 also do this for some cases of SIGN_EXTRACT, but it doesn't
6567 seem worth the effort; the case checked for occurs on Alpha. */
6569 if (!OBJECT_P (lhs)
6570 && ! (GET_CODE (lhs) == SUBREG
6571 && (OBJECT_P (SUBREG_REG (lhs))))
6572 && GET_CODE (rhs) == CONST_INT
6573 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6574 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6575 new = make_extraction (mode, make_compound_operation (new, next_code),
6576 0, NULL_RTX, mode_width - INTVAL (rhs),
6577 code == LSHIFTRT, 0, in_code == COMPARE);
6579 break;
6581 case SUBREG:
6582 /* Call ourselves recursively on the inner expression. If we are
6583 narrowing the object and it has a different RTL code from
6584 what it originally did, do this SUBREG as a force_to_mode. */
6586 tem = make_compound_operation (SUBREG_REG (x), in_code);
6589 rtx simplified;
6590 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6591 SUBREG_BYTE (x));
6593 if (simplified)
6594 tem = simplified;
6596 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6597 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6598 && subreg_lowpart_p (x))
6600 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6603 /* If we have something other than a SUBREG, we might have
6604 done an expansion, so rerun ourselves. */
6605 if (GET_CODE (newer) != SUBREG)
6606 newer = make_compound_operation (newer, in_code);
6608 return newer;
6611 if (simplified)
6612 return tem;
6614 break;
6616 default:
6617 break;
6620 if (new)
6622 x = gen_lowpart (mode, new);
6623 code = GET_CODE (x);
6626 /* Now recursively process each operand of this operation. */
6627 fmt = GET_RTX_FORMAT (code);
6628 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6629 if (fmt[i] == 'e')
6631 new = make_compound_operation (XEXP (x, i), next_code);
6632 SUBST (XEXP (x, i), new);
6635 /* If this is a commutative operation, the changes to the operands
6636 may have made it noncanonical. */
6637 if (COMMUTATIVE_ARITH_P (x)
6638 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6640 tem = XEXP (x, 0);
6641 SUBST (XEXP (x, 0), XEXP (x, 1));
6642 SUBST (XEXP (x, 1), tem);
6645 return x;
6648 /* Given M see if it is a value that would select a field of bits
6649 within an item, but not the entire word. Return -1 if not.
6650 Otherwise, return the starting position of the field, where 0 is the
6651 low-order bit.
6653 *PLEN is set to the length of the field. */
6655 static int
6656 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6658 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6659 int pos = exact_log2 (m & -m);
6660 int len = 0;
6662 if (pos >= 0)
6663 /* Now shift off the low-order zero bits and see if we have a
6664 power of two minus 1. */
6665 len = exact_log2 ((m >> pos) + 1);
6667 if (len <= 0)
6668 pos = -1;
6670 *plen = len;
6671 return pos;
6674 /* If X refers to a register that equals REG in value, replace these
6675 references with REG. */
6676 static rtx
6677 canon_reg_for_combine (rtx x, rtx reg)
6679 rtx op0, op1, op2;
6680 const char *fmt;
6681 int i;
6682 bool copied;
6684 enum rtx_code code = GET_CODE (x);
6685 switch (GET_RTX_CLASS (code))
6687 case RTX_UNARY:
6688 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6689 if (op0 != XEXP (x, 0))
6690 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6691 GET_MODE (reg));
6692 break;
6694 case RTX_BIN_ARITH:
6695 case RTX_COMM_ARITH:
6696 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6697 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6698 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6699 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6700 break;
6702 case RTX_COMPARE:
6703 case RTX_COMM_COMPARE:
6704 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6705 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6706 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6707 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6708 GET_MODE (op0), op0, op1);
6709 break;
6711 case RTX_TERNARY:
6712 case RTX_BITFIELD_OPS:
6713 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6714 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6715 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6716 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6717 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6718 GET_MODE (op0), op0, op1, op2);
6720 case RTX_OBJ:
6721 if (REG_P (x))
6723 if (rtx_equal_p (get_last_value (reg), x)
6724 || rtx_equal_p (reg, get_last_value (x)))
6725 return reg;
6726 else
6727 break;
6730 /* fall through */
6732 default:
6733 fmt = GET_RTX_FORMAT (code);
6734 copied = false;
6735 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6736 if (fmt[i] == 'e')
6738 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6739 if (op != XEXP (x, i))
6741 if (!copied)
6743 copied = true;
6744 x = copy_rtx (x);
6746 XEXP (x, i) = op;
6749 else if (fmt[i] == 'E')
6751 int j;
6752 for (j = 0; j < XVECLEN (x, i); j++)
6754 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6755 if (op != XVECEXP (x, i, j))
6757 if (!copied)
6759 copied = true;
6760 x = copy_rtx (x);
6762 XVECEXP (x, i, j) = op;
6767 break;
6770 return x;
6773 /* Return X converted to MODE. If the value is already truncated to
6774 MODE we can just return a subreg even though in the general case we
6775 would need an explicit truncation. */
6777 static rtx
6778 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
6780 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
6781 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
6782 GET_MODE_BITSIZE (GET_MODE (x)))
6783 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
6784 return gen_lowpart (mode, x);
6785 else
6786 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
6789 /* See if X can be simplified knowing that we will only refer to it in
6790 MODE and will only refer to those bits that are nonzero in MASK.
6791 If other bits are being computed or if masking operations are done
6792 that select a superset of the bits in MASK, they can sometimes be
6793 ignored.
6795 Return a possibly simplified expression, but always convert X to
6796 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6798 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6799 are all off in X. This is used when X will be complemented, by either
6800 NOT, NEG, or XOR. */
6802 static rtx
6803 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6804 int just_select)
6806 enum rtx_code code = GET_CODE (x);
6807 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6808 enum machine_mode op_mode;
6809 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6810 rtx op0, op1, temp;
6812 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6813 code below will do the wrong thing since the mode of such an
6814 expression is VOIDmode.
6816 Also do nothing if X is a CLOBBER; this can happen if X was
6817 the return value from a call to gen_lowpart. */
6818 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6819 return x;
6821 /* We want to perform the operation is its present mode unless we know
6822 that the operation is valid in MODE, in which case we do the operation
6823 in MODE. */
6824 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6825 && have_insn_for (code, mode))
6826 ? mode : GET_MODE (x));
6828 /* It is not valid to do a right-shift in a narrower mode
6829 than the one it came in with. */
6830 if ((code == LSHIFTRT || code == ASHIFTRT)
6831 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6832 op_mode = GET_MODE (x);
6834 /* Truncate MASK to fit OP_MODE. */
6835 if (op_mode)
6836 mask &= GET_MODE_MASK (op_mode);
6838 /* When we have an arithmetic operation, or a shift whose count we
6839 do not know, we need to assume that all bits up to the highest-order
6840 bit in MASK will be needed. This is how we form such a mask. */
6841 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6842 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6843 else
6844 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6845 - 1);
6847 /* Determine what bits of X are guaranteed to be (non)zero. */
6848 nonzero = nonzero_bits (x, mode);
6850 /* If none of the bits in X are needed, return a zero. */
6851 if (! just_select && (nonzero & mask) == 0)
6852 x = const0_rtx;
6854 /* If X is a CONST_INT, return a new one. Do this here since the
6855 test below will fail. */
6856 if (GET_CODE (x) == CONST_INT)
6858 if (SCALAR_INT_MODE_P (mode))
6859 return gen_int_mode (INTVAL (x) & mask, mode);
6860 else
6862 x = GEN_INT (INTVAL (x) & mask);
6863 return gen_lowpart_common (mode, x);
6867 /* If X is narrower than MODE and we want all the bits in X's mode, just
6868 get X in the proper mode. */
6869 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6870 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6871 return gen_lowpart (mode, x);
6873 switch (code)
6875 case CLOBBER:
6876 /* If X is a (clobber (const_int)), return it since we know we are
6877 generating something that won't match. */
6878 return x;
6880 case SIGN_EXTEND:
6881 case ZERO_EXTEND:
6882 case ZERO_EXTRACT:
6883 case SIGN_EXTRACT:
6884 x = expand_compound_operation (x);
6885 if (GET_CODE (x) != code)
6886 return force_to_mode (x, mode, mask, next_select);
6887 break;
6889 case SUBREG:
6890 if (subreg_lowpart_p (x)
6891 /* We can ignore the effect of this SUBREG if it narrows the mode or
6892 if the constant masks to zero all the bits the mode doesn't
6893 have. */
6894 && ((GET_MODE_SIZE (GET_MODE (x))
6895 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6896 || (0 == (mask
6897 & GET_MODE_MASK (GET_MODE (x))
6898 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6899 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6900 break;
6902 case AND:
6903 /* If this is an AND with a constant, convert it into an AND
6904 whose constant is the AND of that constant with MASK. If it
6905 remains an AND of MASK, delete it since it is redundant. */
6907 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6909 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6910 mask & INTVAL (XEXP (x, 1)));
6912 /* If X is still an AND, see if it is an AND with a mask that
6913 is just some low-order bits. If so, and it is MASK, we don't
6914 need it. */
6916 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6917 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6918 == mask))
6919 x = XEXP (x, 0);
6921 /* If it remains an AND, try making another AND with the bits
6922 in the mode mask that aren't in MASK turned on. If the
6923 constant in the AND is wide enough, this might make a
6924 cheaper constant. */
6926 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6927 && GET_MODE_MASK (GET_MODE (x)) != mask
6928 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6930 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6931 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6932 int width = GET_MODE_BITSIZE (GET_MODE (x));
6933 rtx y;
6935 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6936 number, sign extend it. */
6937 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6938 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6939 cval |= (HOST_WIDE_INT) -1 << width;
6941 y = simplify_gen_binary (AND, GET_MODE (x),
6942 XEXP (x, 0), GEN_INT (cval));
6943 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6944 x = y;
6947 break;
6950 goto binop;
6952 case PLUS:
6953 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6954 low-order bits (as in an alignment operation) and FOO is already
6955 aligned to that boundary, mask C1 to that boundary as well.
6956 This may eliminate that PLUS and, later, the AND. */
6959 unsigned int width = GET_MODE_BITSIZE (mode);
6960 unsigned HOST_WIDE_INT smask = mask;
6962 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6963 number, sign extend it. */
6965 if (width < HOST_BITS_PER_WIDE_INT
6966 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6967 smask |= (HOST_WIDE_INT) -1 << width;
6969 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6970 && exact_log2 (- smask) >= 0
6971 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6972 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6973 return force_to_mode (plus_constant (XEXP (x, 0),
6974 (INTVAL (XEXP (x, 1)) & smask)),
6975 mode, smask, next_select);
6978 /* ... fall through ... */
6980 case MULT:
6981 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6982 most significant bit in MASK since carries from those bits will
6983 affect the bits we are interested in. */
6984 mask = fuller_mask;
6985 goto binop;
6987 case MINUS:
6988 /* If X is (minus C Y) where C's least set bit is larger than any bit
6989 in the mask, then we may replace with (neg Y). */
6990 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6991 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6992 & -INTVAL (XEXP (x, 0))))
6993 > mask))
6995 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6996 GET_MODE (x));
6997 return force_to_mode (x, mode, mask, next_select);
7000 /* Similarly, if C contains every bit in the fuller_mask, then we may
7001 replace with (not Y). */
7002 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7003 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7004 == INTVAL (XEXP (x, 0))))
7006 x = simplify_gen_unary (NOT, GET_MODE (x),
7007 XEXP (x, 1), GET_MODE (x));
7008 return force_to_mode (x, mode, mask, next_select);
7011 mask = fuller_mask;
7012 goto binop;
7014 case IOR:
7015 case XOR:
7016 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7017 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7018 operation which may be a bitfield extraction. Ensure that the
7019 constant we form is not wider than the mode of X. */
7021 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7022 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7023 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7024 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7025 && GET_CODE (XEXP (x, 1)) == CONST_INT
7026 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7027 + floor_log2 (INTVAL (XEXP (x, 1))))
7028 < GET_MODE_BITSIZE (GET_MODE (x)))
7029 && (INTVAL (XEXP (x, 1))
7030 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7032 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7033 << INTVAL (XEXP (XEXP (x, 0), 1)));
7034 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7035 XEXP (XEXP (x, 0), 0), temp);
7036 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7037 XEXP (XEXP (x, 0), 1));
7038 return force_to_mode (x, mode, mask, next_select);
7041 binop:
7042 /* For most binary operations, just propagate into the operation and
7043 change the mode if we have an operation of that mode. */
7045 op0 = gen_lowpart_or_truncate (op_mode,
7046 force_to_mode (XEXP (x, 0), mode, mask,
7047 next_select));
7048 op1 = gen_lowpart_or_truncate (op_mode,
7049 force_to_mode (XEXP (x, 1), mode, mask,
7050 next_select));
7052 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7053 x = simplify_gen_binary (code, op_mode, op0, op1);
7054 break;
7056 case ASHIFT:
7057 /* For left shifts, do the same, but just for the first operand.
7058 However, we cannot do anything with shifts where we cannot
7059 guarantee that the counts are smaller than the size of the mode
7060 because such a count will have a different meaning in a
7061 wider mode. */
7063 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7064 && INTVAL (XEXP (x, 1)) >= 0
7065 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7066 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7067 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7068 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7069 break;
7071 /* If the shift count is a constant and we can do arithmetic in
7072 the mode of the shift, refine which bits we need. Otherwise, use the
7073 conservative form of the mask. */
7074 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7075 && INTVAL (XEXP (x, 1)) >= 0
7076 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7077 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7078 mask >>= INTVAL (XEXP (x, 1));
7079 else
7080 mask = fuller_mask;
7082 op0 = gen_lowpart_or_truncate (op_mode,
7083 force_to_mode (XEXP (x, 0), op_mode,
7084 mask, next_select));
7086 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7087 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7088 break;
7090 case LSHIFTRT:
7091 /* Here we can only do something if the shift count is a constant,
7092 this shift constant is valid for the host, and we can do arithmetic
7093 in OP_MODE. */
7095 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7096 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7097 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7099 rtx inner = XEXP (x, 0);
7100 unsigned HOST_WIDE_INT inner_mask;
7102 /* Select the mask of the bits we need for the shift operand. */
7103 inner_mask = mask << INTVAL (XEXP (x, 1));
7105 /* We can only change the mode of the shift if we can do arithmetic
7106 in the mode of the shift and INNER_MASK is no wider than the
7107 width of X's mode. */
7108 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7109 op_mode = GET_MODE (x);
7111 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7113 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7114 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7117 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7118 shift and AND produces only copies of the sign bit (C2 is one less
7119 than a power of two), we can do this with just a shift. */
7121 if (GET_CODE (x) == LSHIFTRT
7122 && GET_CODE (XEXP (x, 1)) == CONST_INT
7123 /* The shift puts one of the sign bit copies in the least significant
7124 bit. */
7125 && ((INTVAL (XEXP (x, 1))
7126 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7127 >= GET_MODE_BITSIZE (GET_MODE (x)))
7128 && exact_log2 (mask + 1) >= 0
7129 /* Number of bits left after the shift must be more than the mask
7130 needs. */
7131 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7132 <= GET_MODE_BITSIZE (GET_MODE (x)))
7133 /* Must be more sign bit copies than the mask needs. */
7134 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7135 >= exact_log2 (mask + 1)))
7136 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7137 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7138 - exact_log2 (mask + 1)));
7140 goto shiftrt;
7142 case ASHIFTRT:
7143 /* If we are just looking for the sign bit, we don't need this shift at
7144 all, even if it has a variable count. */
7145 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7146 && (mask == ((unsigned HOST_WIDE_INT) 1
7147 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7148 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7150 /* If this is a shift by a constant, get a mask that contains those bits
7151 that are not copies of the sign bit. We then have two cases: If
7152 MASK only includes those bits, this can be a logical shift, which may
7153 allow simplifications. If MASK is a single-bit field not within
7154 those bits, we are requesting a copy of the sign bit and hence can
7155 shift the sign bit to the appropriate location. */
7157 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7158 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7160 int i;
7162 /* If the considered data is wider than HOST_WIDE_INT, we can't
7163 represent a mask for all its bits in a single scalar.
7164 But we only care about the lower bits, so calculate these. */
7166 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7168 nonzero = ~(HOST_WIDE_INT) 0;
7170 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7171 is the number of bits a full-width mask would have set.
7172 We need only shift if these are fewer than nonzero can
7173 hold. If not, we must keep all bits set in nonzero. */
7175 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7176 < HOST_BITS_PER_WIDE_INT)
7177 nonzero >>= INTVAL (XEXP (x, 1))
7178 + HOST_BITS_PER_WIDE_INT
7179 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7181 else
7183 nonzero = GET_MODE_MASK (GET_MODE (x));
7184 nonzero >>= INTVAL (XEXP (x, 1));
7187 if ((mask & ~nonzero) == 0)
7189 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7190 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7191 if (GET_CODE (x) != ASHIFTRT)
7192 return force_to_mode (x, mode, mask, next_select);
7195 else if ((i = exact_log2 (mask)) >= 0)
7197 x = simplify_shift_const
7198 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7199 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7201 if (GET_CODE (x) != ASHIFTRT)
7202 return force_to_mode (x, mode, mask, next_select);
7206 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7207 even if the shift count isn't a constant. */
7208 if (mask == 1)
7209 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7210 XEXP (x, 0), XEXP (x, 1));
7212 shiftrt:
7214 /* If this is a zero- or sign-extension operation that just affects bits
7215 we don't care about, remove it. Be sure the call above returned
7216 something that is still a shift. */
7218 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7219 && GET_CODE (XEXP (x, 1)) == CONST_INT
7220 && INTVAL (XEXP (x, 1)) >= 0
7221 && (INTVAL (XEXP (x, 1))
7222 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7223 && GET_CODE (XEXP (x, 0)) == ASHIFT
7224 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7225 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7226 next_select);
7228 break;
7230 case ROTATE:
7231 case ROTATERT:
7232 /* If the shift count is constant and we can do computations
7233 in the mode of X, compute where the bits we care about are.
7234 Otherwise, we can't do anything. Don't change the mode of
7235 the shift or propagate MODE into the shift, though. */
7236 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7237 && INTVAL (XEXP (x, 1)) >= 0)
7239 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7240 GET_MODE (x), GEN_INT (mask),
7241 XEXP (x, 1));
7242 if (temp && GET_CODE (temp) == CONST_INT)
7243 SUBST (XEXP (x, 0),
7244 force_to_mode (XEXP (x, 0), GET_MODE (x),
7245 INTVAL (temp), next_select));
7247 break;
7249 case NEG:
7250 /* If we just want the low-order bit, the NEG isn't needed since it
7251 won't change the low-order bit. */
7252 if (mask == 1)
7253 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7255 /* We need any bits less significant than the most significant bit in
7256 MASK since carries from those bits will affect the bits we are
7257 interested in. */
7258 mask = fuller_mask;
7259 goto unop;
7261 case NOT:
7262 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7263 same as the XOR case above. Ensure that the constant we form is not
7264 wider than the mode of X. */
7266 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7267 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7268 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7269 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7270 < GET_MODE_BITSIZE (GET_MODE (x)))
7271 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7273 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7274 GET_MODE (x));
7275 temp = simplify_gen_binary (XOR, GET_MODE (x),
7276 XEXP (XEXP (x, 0), 0), temp);
7277 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7278 temp, XEXP (XEXP (x, 0), 1));
7280 return force_to_mode (x, mode, mask, next_select);
7283 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7284 use the full mask inside the NOT. */
7285 mask = fuller_mask;
7287 unop:
7288 op0 = gen_lowpart_or_truncate (op_mode,
7289 force_to_mode (XEXP (x, 0), mode, mask,
7290 next_select));
7291 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7292 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7293 break;
7295 case NE:
7296 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7297 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7298 which is equal to STORE_FLAG_VALUE. */
7299 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7300 && GET_MODE (XEXP (x, 0)) == mode
7301 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7302 && (nonzero_bits (XEXP (x, 0), mode)
7303 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7304 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7306 break;
7308 case IF_THEN_ELSE:
7309 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7310 written in a narrower mode. We play it safe and do not do so. */
7312 SUBST (XEXP (x, 1),
7313 gen_lowpart_or_truncate (GET_MODE (x),
7314 force_to_mode (XEXP (x, 1), mode,
7315 mask, next_select)));
7316 SUBST (XEXP (x, 2),
7317 gen_lowpart_or_truncate (GET_MODE (x),
7318 force_to_mode (XEXP (x, 2), mode,
7319 mask, next_select)));
7320 break;
7322 default:
7323 break;
7326 /* Ensure we return a value of the proper mode. */
7327 return gen_lowpart_or_truncate (mode, x);
7330 /* Return nonzero if X is an expression that has one of two values depending on
7331 whether some other value is zero or nonzero. In that case, we return the
7332 value that is being tested, *PTRUE is set to the value if the rtx being
7333 returned has a nonzero value, and *PFALSE is set to the other alternative.
7335 If we return zero, we set *PTRUE and *PFALSE to X. */
7337 static rtx
7338 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7340 enum machine_mode mode = GET_MODE (x);
7341 enum rtx_code code = GET_CODE (x);
7342 rtx cond0, cond1, true0, true1, false0, false1;
7343 unsigned HOST_WIDE_INT nz;
7345 /* If we are comparing a value against zero, we are done. */
7346 if ((code == NE || code == EQ)
7347 && XEXP (x, 1) == const0_rtx)
7349 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7350 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7351 return XEXP (x, 0);
7354 /* If this is a unary operation whose operand has one of two values, apply
7355 our opcode to compute those values. */
7356 else if (UNARY_P (x)
7357 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7359 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7360 *pfalse = simplify_gen_unary (code, mode, false0,
7361 GET_MODE (XEXP (x, 0)));
7362 return cond0;
7365 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7366 make can't possibly match and would suppress other optimizations. */
7367 else if (code == COMPARE)
7370 /* If this is a binary operation, see if either side has only one of two
7371 values. If either one does or if both do and they are conditional on
7372 the same value, compute the new true and false values. */
7373 else if (BINARY_P (x))
7375 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7376 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7378 if ((cond0 != 0 || cond1 != 0)
7379 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7381 /* If if_then_else_cond returned zero, then true/false are the
7382 same rtl. We must copy one of them to prevent invalid rtl
7383 sharing. */
7384 if (cond0 == 0)
7385 true0 = copy_rtx (true0);
7386 else if (cond1 == 0)
7387 true1 = copy_rtx (true1);
7389 if (COMPARISON_P (x))
7391 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7392 true0, true1);
7393 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7394 false0, false1);
7396 else
7398 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7399 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7402 return cond0 ? cond0 : cond1;
7405 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7406 operands is zero when the other is nonzero, and vice-versa,
7407 and STORE_FLAG_VALUE is 1 or -1. */
7409 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7410 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7411 || code == UMAX)
7412 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7414 rtx op0 = XEXP (XEXP (x, 0), 1);
7415 rtx op1 = XEXP (XEXP (x, 1), 1);
7417 cond0 = XEXP (XEXP (x, 0), 0);
7418 cond1 = XEXP (XEXP (x, 1), 0);
7420 if (COMPARISON_P (cond0)
7421 && COMPARISON_P (cond1)
7422 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7423 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7424 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7425 || ((swap_condition (GET_CODE (cond0))
7426 == reversed_comparison_code (cond1, NULL))
7427 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7428 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7429 && ! side_effects_p (x))
7431 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7432 *pfalse = simplify_gen_binary (MULT, mode,
7433 (code == MINUS
7434 ? simplify_gen_unary (NEG, mode,
7435 op1, mode)
7436 : op1),
7437 const_true_rtx);
7438 return cond0;
7442 /* Similarly for MULT, AND and UMIN, except that for these the result
7443 is always zero. */
7444 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7445 && (code == MULT || code == AND || code == UMIN)
7446 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7448 cond0 = XEXP (XEXP (x, 0), 0);
7449 cond1 = XEXP (XEXP (x, 1), 0);
7451 if (COMPARISON_P (cond0)
7452 && COMPARISON_P (cond1)
7453 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7454 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7455 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7456 || ((swap_condition (GET_CODE (cond0))
7457 == reversed_comparison_code (cond1, NULL))
7458 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7459 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7460 && ! side_effects_p (x))
7462 *ptrue = *pfalse = const0_rtx;
7463 return cond0;
7468 else if (code == IF_THEN_ELSE)
7470 /* If we have IF_THEN_ELSE already, extract the condition and
7471 canonicalize it if it is NE or EQ. */
7472 cond0 = XEXP (x, 0);
7473 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7474 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7475 return XEXP (cond0, 0);
7476 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7478 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7479 return XEXP (cond0, 0);
7481 else
7482 return cond0;
7485 /* If X is a SUBREG, we can narrow both the true and false values
7486 if the inner expression, if there is a condition. */
7487 else if (code == SUBREG
7488 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7489 &true0, &false0)))
7491 true0 = simplify_gen_subreg (mode, true0,
7492 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7493 false0 = simplify_gen_subreg (mode, false0,
7494 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7495 if (true0 && false0)
7497 *ptrue = true0;
7498 *pfalse = false0;
7499 return cond0;
7503 /* If X is a constant, this isn't special and will cause confusions
7504 if we treat it as such. Likewise if it is equivalent to a constant. */
7505 else if (CONSTANT_P (x)
7506 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7509 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7510 will be least confusing to the rest of the compiler. */
7511 else if (mode == BImode)
7513 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7514 return x;
7517 /* If X is known to be either 0 or -1, those are the true and
7518 false values when testing X. */
7519 else if (x == constm1_rtx || x == const0_rtx
7520 || (mode != VOIDmode
7521 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7523 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7524 return x;
7527 /* Likewise for 0 or a single bit. */
7528 else if (SCALAR_INT_MODE_P (mode)
7529 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7530 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7532 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7533 return x;
7536 /* Otherwise fail; show no condition with true and false values the same. */
7537 *ptrue = *pfalse = x;
7538 return 0;
7541 /* Return the value of expression X given the fact that condition COND
7542 is known to be true when applied to REG as its first operand and VAL
7543 as its second. X is known to not be shared and so can be modified in
7544 place.
7546 We only handle the simplest cases, and specifically those cases that
7547 arise with IF_THEN_ELSE expressions. */
7549 static rtx
7550 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7552 enum rtx_code code = GET_CODE (x);
7553 rtx temp;
7554 const char *fmt;
7555 int i, j;
7557 if (side_effects_p (x))
7558 return x;
7560 /* If either operand of the condition is a floating point value,
7561 then we have to avoid collapsing an EQ comparison. */
7562 if (cond == EQ
7563 && rtx_equal_p (x, reg)
7564 && ! FLOAT_MODE_P (GET_MODE (x))
7565 && ! FLOAT_MODE_P (GET_MODE (val)))
7566 return val;
7568 if (cond == UNEQ && rtx_equal_p (x, reg))
7569 return val;
7571 /* If X is (abs REG) and we know something about REG's relationship
7572 with zero, we may be able to simplify this. */
7574 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7575 switch (cond)
7577 case GE: case GT: case EQ:
7578 return XEXP (x, 0);
7579 case LT: case LE:
7580 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7581 XEXP (x, 0),
7582 GET_MODE (XEXP (x, 0)));
7583 default:
7584 break;
7587 /* The only other cases we handle are MIN, MAX, and comparisons if the
7588 operands are the same as REG and VAL. */
7590 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7592 if (rtx_equal_p (XEXP (x, 0), val))
7593 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7595 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7597 if (COMPARISON_P (x))
7599 if (comparison_dominates_p (cond, code))
7600 return const_true_rtx;
7602 code = reversed_comparison_code (x, NULL);
7603 if (code != UNKNOWN
7604 && comparison_dominates_p (cond, code))
7605 return const0_rtx;
7606 else
7607 return x;
7609 else if (code == SMAX || code == SMIN
7610 || code == UMIN || code == UMAX)
7612 int unsignedp = (code == UMIN || code == UMAX);
7614 /* Do not reverse the condition when it is NE or EQ.
7615 This is because we cannot conclude anything about
7616 the value of 'SMAX (x, y)' when x is not equal to y,
7617 but we can when x equals y. */
7618 if ((code == SMAX || code == UMAX)
7619 && ! (cond == EQ || cond == NE))
7620 cond = reverse_condition (cond);
7622 switch (cond)
7624 case GE: case GT:
7625 return unsignedp ? x : XEXP (x, 1);
7626 case LE: case LT:
7627 return unsignedp ? x : XEXP (x, 0);
7628 case GEU: case GTU:
7629 return unsignedp ? XEXP (x, 1) : x;
7630 case LEU: case LTU:
7631 return unsignedp ? XEXP (x, 0) : x;
7632 default:
7633 break;
7638 else if (code == SUBREG)
7640 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7641 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7643 if (SUBREG_REG (x) != r)
7645 /* We must simplify subreg here, before we lose track of the
7646 original inner_mode. */
7647 new = simplify_subreg (GET_MODE (x), r,
7648 inner_mode, SUBREG_BYTE (x));
7649 if (new)
7650 return new;
7651 else
7652 SUBST (SUBREG_REG (x), r);
7655 return x;
7657 /* We don't have to handle SIGN_EXTEND here, because even in the
7658 case of replacing something with a modeless CONST_INT, a
7659 CONST_INT is already (supposed to be) a valid sign extension for
7660 its narrower mode, which implies it's already properly
7661 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7662 story is different. */
7663 else if (code == ZERO_EXTEND)
7665 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7666 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7668 if (XEXP (x, 0) != r)
7670 /* We must simplify the zero_extend here, before we lose
7671 track of the original inner_mode. */
7672 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7673 r, inner_mode);
7674 if (new)
7675 return new;
7676 else
7677 SUBST (XEXP (x, 0), r);
7680 return x;
7683 fmt = GET_RTX_FORMAT (code);
7684 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7686 if (fmt[i] == 'e')
7687 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7688 else if (fmt[i] == 'E')
7689 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7690 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7691 cond, reg, val));
7694 return x;
7697 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7698 assignment as a field assignment. */
7700 static int
7701 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7703 if (x == y || rtx_equal_p (x, y))
7704 return 1;
7706 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7707 return 0;
7709 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7710 Note that all SUBREGs of MEM are paradoxical; otherwise they
7711 would have been rewritten. */
7712 if (MEM_P (x) && GET_CODE (y) == SUBREG
7713 && MEM_P (SUBREG_REG (y))
7714 && rtx_equal_p (SUBREG_REG (y),
7715 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7716 return 1;
7718 if (MEM_P (y) && GET_CODE (x) == SUBREG
7719 && MEM_P (SUBREG_REG (x))
7720 && rtx_equal_p (SUBREG_REG (x),
7721 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7722 return 1;
7724 /* We used to see if get_last_value of X and Y were the same but that's
7725 not correct. In one direction, we'll cause the assignment to have
7726 the wrong destination and in the case, we'll import a register into this
7727 insn that might have already have been dead. So fail if none of the
7728 above cases are true. */
7729 return 0;
7732 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7733 Return that assignment if so.
7735 We only handle the most common cases. */
7737 static rtx
7738 make_field_assignment (rtx x)
7740 rtx dest = SET_DEST (x);
7741 rtx src = SET_SRC (x);
7742 rtx assign;
7743 rtx rhs, lhs;
7744 HOST_WIDE_INT c1;
7745 HOST_WIDE_INT pos;
7746 unsigned HOST_WIDE_INT len;
7747 rtx other;
7748 enum machine_mode mode;
7750 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7751 a clear of a one-bit field. We will have changed it to
7752 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7753 for a SUBREG. */
7755 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7756 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7757 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7758 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7760 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7761 1, 1, 1, 0);
7762 if (assign != 0)
7763 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7764 return x;
7767 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7768 && subreg_lowpart_p (XEXP (src, 0))
7769 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7770 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7771 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7772 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7773 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7774 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7776 assign = make_extraction (VOIDmode, dest, 0,
7777 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7778 1, 1, 1, 0);
7779 if (assign != 0)
7780 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7781 return x;
7784 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7785 one-bit field. */
7786 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7787 && XEXP (XEXP (src, 0), 0) == const1_rtx
7788 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7790 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7791 1, 1, 1, 0);
7792 if (assign != 0)
7793 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7794 return x;
7797 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7798 SRC is an AND with all bits of that field set, then we can discard
7799 the AND. */
7800 if (GET_CODE (dest) == ZERO_EXTRACT
7801 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7802 && GET_CODE (src) == AND
7803 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7805 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7806 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7807 unsigned HOST_WIDE_INT ze_mask;
7809 if (width >= HOST_BITS_PER_WIDE_INT)
7810 ze_mask = -1;
7811 else
7812 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7814 /* Complete overlap. We can remove the source AND. */
7815 if ((and_mask & ze_mask) == ze_mask)
7816 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7818 /* Partial overlap. We can reduce the source AND. */
7819 if ((and_mask & ze_mask) != and_mask)
7821 mode = GET_MODE (src);
7822 src = gen_rtx_AND (mode, XEXP (src, 0),
7823 gen_int_mode (and_mask & ze_mask, mode));
7824 return gen_rtx_SET (VOIDmode, dest, src);
7828 /* The other case we handle is assignments into a constant-position
7829 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7830 a mask that has all one bits except for a group of zero bits and
7831 OTHER is known to have zeros where C1 has ones, this is such an
7832 assignment. Compute the position and length from C1. Shift OTHER
7833 to the appropriate position, force it to the required mode, and
7834 make the extraction. Check for the AND in both operands. */
7836 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7837 return x;
7839 rhs = expand_compound_operation (XEXP (src, 0));
7840 lhs = expand_compound_operation (XEXP (src, 1));
7842 if (GET_CODE (rhs) == AND
7843 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7844 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7845 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7846 else if (GET_CODE (lhs) == AND
7847 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7848 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7849 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7850 else
7851 return x;
7853 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7854 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7855 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7856 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7857 return x;
7859 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7860 if (assign == 0)
7861 return x;
7863 /* The mode to use for the source is the mode of the assignment, or of
7864 what is inside a possible STRICT_LOW_PART. */
7865 mode = (GET_CODE (assign) == STRICT_LOW_PART
7866 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7868 /* Shift OTHER right POS places and make it the source, restricting it
7869 to the proper length and mode. */
7871 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7872 GET_MODE (src),
7873 other, pos),
7874 dest);
7875 src = force_to_mode (src, mode,
7876 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7877 ? ~(unsigned HOST_WIDE_INT) 0
7878 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7881 /* If SRC is masked by an AND that does not make a difference in
7882 the value being stored, strip it. */
7883 if (GET_CODE (assign) == ZERO_EXTRACT
7884 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7885 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7886 && GET_CODE (src) == AND
7887 && GET_CODE (XEXP (src, 1)) == CONST_INT
7888 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7889 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7890 src = XEXP (src, 0);
7892 return gen_rtx_SET (VOIDmode, assign, src);
7895 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7896 if so. */
7898 static rtx
7899 apply_distributive_law (rtx x)
7901 enum rtx_code code = GET_CODE (x);
7902 enum rtx_code inner_code;
7903 rtx lhs, rhs, other;
7904 rtx tem;
7906 /* Distributivity is not true for floating point as it can change the
7907 value. So we don't do it unless -funsafe-math-optimizations. */
7908 if (FLOAT_MODE_P (GET_MODE (x))
7909 && ! flag_unsafe_math_optimizations)
7910 return x;
7912 /* The outer operation can only be one of the following: */
7913 if (code != IOR && code != AND && code != XOR
7914 && code != PLUS && code != MINUS)
7915 return x;
7917 lhs = XEXP (x, 0);
7918 rhs = XEXP (x, 1);
7920 /* If either operand is a primitive we can't do anything, so get out
7921 fast. */
7922 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7923 return x;
7925 lhs = expand_compound_operation (lhs);
7926 rhs = expand_compound_operation (rhs);
7927 inner_code = GET_CODE (lhs);
7928 if (inner_code != GET_CODE (rhs))
7929 return x;
7931 /* See if the inner and outer operations distribute. */
7932 switch (inner_code)
7934 case LSHIFTRT:
7935 case ASHIFTRT:
7936 case AND:
7937 case IOR:
7938 /* These all distribute except over PLUS. */
7939 if (code == PLUS || code == MINUS)
7940 return x;
7941 break;
7943 case MULT:
7944 if (code != PLUS && code != MINUS)
7945 return x;
7946 break;
7948 case ASHIFT:
7949 /* This is also a multiply, so it distributes over everything. */
7950 break;
7952 case SUBREG:
7953 /* Non-paradoxical SUBREGs distributes over all operations,
7954 provided the inner modes and byte offsets are the same, this
7955 is an extraction of a low-order part, we don't convert an fp
7956 operation to int or vice versa, this is not a vector mode,
7957 and we would not be converting a single-word operation into a
7958 multi-word operation. The latter test is not required, but
7959 it prevents generating unneeded multi-word operations. Some
7960 of the previous tests are redundant given the latter test,
7961 but are retained because they are required for correctness.
7963 We produce the result slightly differently in this case. */
7965 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7966 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7967 || ! subreg_lowpart_p (lhs)
7968 || (GET_MODE_CLASS (GET_MODE (lhs))
7969 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7970 || (GET_MODE_SIZE (GET_MODE (lhs))
7971 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7972 || VECTOR_MODE_P (GET_MODE (lhs))
7973 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
7974 /* Result might need to be truncated. Don't change mode if
7975 explicit truncation is needed. */
7976 || !TRULY_NOOP_TRUNCATION
7977 (GET_MODE_BITSIZE (GET_MODE (x)),
7978 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
7979 return x;
7981 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7982 SUBREG_REG (lhs), SUBREG_REG (rhs));
7983 return gen_lowpart (GET_MODE (x), tem);
7985 default:
7986 return x;
7989 /* Set LHS and RHS to the inner operands (A and B in the example
7990 above) and set OTHER to the common operand (C in the example).
7991 There is only one way to do this unless the inner operation is
7992 commutative. */
7993 if (COMMUTATIVE_ARITH_P (lhs)
7994 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7995 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7996 else if (COMMUTATIVE_ARITH_P (lhs)
7997 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7998 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7999 else if (COMMUTATIVE_ARITH_P (lhs)
8000 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8001 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8002 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8003 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8004 else
8005 return x;
8007 /* Form the new inner operation, seeing if it simplifies first. */
8008 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8010 /* There is one exception to the general way of distributing:
8011 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8012 if (code == XOR && inner_code == IOR)
8014 inner_code = AND;
8015 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8018 /* We may be able to continuing distributing the result, so call
8019 ourselves recursively on the inner operation before forming the
8020 outer operation, which we return. */
8021 return simplify_gen_binary (inner_code, GET_MODE (x),
8022 apply_distributive_law (tem), other);
8025 /* See if X is of the form (* (+ A B) C), and if so convert to
8026 (+ (* A C) (* B C)) and try to simplify.
8028 Most of the time, this results in no change. However, if some of
8029 the operands are the same or inverses of each other, simplifications
8030 will result.
8032 For example, (and (ior A B) (not B)) can occur as the result of
8033 expanding a bit field assignment. When we apply the distributive
8034 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8035 which then simplifies to (and (A (not B))).
8037 Note that no checks happen on the validity of applying the inverse
8038 distributive law. This is pointless since we can do it in the
8039 few places where this routine is called.
8041 N is the index of the term that is decomposed (the arithmetic operation,
8042 i.e. (+ A B) in the first example above). !N is the index of the term that
8043 is distributed, i.e. of C in the first example above. */
8044 static rtx
8045 distribute_and_simplify_rtx (rtx x, int n)
8047 enum machine_mode mode;
8048 enum rtx_code outer_code, inner_code;
8049 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8051 decomposed = XEXP (x, n);
8052 if (!ARITHMETIC_P (decomposed))
8053 return NULL_RTX;
8055 mode = GET_MODE (x);
8056 outer_code = GET_CODE (x);
8057 distributed = XEXP (x, !n);
8059 inner_code = GET_CODE (decomposed);
8060 inner_op0 = XEXP (decomposed, 0);
8061 inner_op1 = XEXP (decomposed, 1);
8063 /* Special case (and (xor B C) (not A)), which is equivalent to
8064 (xor (ior A B) (ior A C)) */
8065 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8067 distributed = XEXP (distributed, 0);
8068 outer_code = IOR;
8071 if (n == 0)
8073 /* Distribute the second term. */
8074 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8075 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8077 else
8079 /* Distribute the first term. */
8080 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8081 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8084 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8085 new_op0, new_op1));
8086 if (GET_CODE (tmp) != outer_code
8087 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8088 return tmp;
8090 return NULL_RTX;
8093 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8094 in MODE. Return an equivalent form, if different from (and VAROP
8095 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8097 static rtx
8098 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8099 unsigned HOST_WIDE_INT constop)
8101 unsigned HOST_WIDE_INT nonzero;
8102 unsigned HOST_WIDE_INT orig_constop;
8103 rtx orig_varop;
8104 int i;
8106 orig_varop = varop;
8107 orig_constop = constop;
8108 if (GET_CODE (varop) == CLOBBER)
8109 return NULL_RTX;
8111 /* Simplify VAROP knowing that we will be only looking at some of the
8112 bits in it.
8114 Note by passing in CONSTOP, we guarantee that the bits not set in
8115 CONSTOP are not significant and will never be examined. We must
8116 ensure that is the case by explicitly masking out those bits
8117 before returning. */
8118 varop = force_to_mode (varop, mode, constop, 0);
8120 /* If VAROP is a CLOBBER, we will fail so return it. */
8121 if (GET_CODE (varop) == CLOBBER)
8122 return varop;
8124 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8125 to VAROP and return the new constant. */
8126 if (GET_CODE (varop) == CONST_INT)
8127 return gen_int_mode (INTVAL (varop) & constop, mode);
8129 /* See what bits may be nonzero in VAROP. Unlike the general case of
8130 a call to nonzero_bits, here we don't care about bits outside
8131 MODE. */
8133 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8135 /* Turn off all bits in the constant that are known to already be zero.
8136 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8137 which is tested below. */
8139 constop &= nonzero;
8141 /* If we don't have any bits left, return zero. */
8142 if (constop == 0)
8143 return const0_rtx;
8145 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8146 a power of two, we can replace this with an ASHIFT. */
8147 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8148 && (i = exact_log2 (constop)) >= 0)
8149 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8151 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8152 or XOR, then try to apply the distributive law. This may eliminate
8153 operations if either branch can be simplified because of the AND.
8154 It may also make some cases more complex, but those cases probably
8155 won't match a pattern either with or without this. */
8157 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8158 return
8159 gen_lowpart
8160 (mode,
8161 apply_distributive_law
8162 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8163 simplify_and_const_int (NULL_RTX,
8164 GET_MODE (varop),
8165 XEXP (varop, 0),
8166 constop),
8167 simplify_and_const_int (NULL_RTX,
8168 GET_MODE (varop),
8169 XEXP (varop, 1),
8170 constop))));
8172 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8173 the AND and see if one of the operands simplifies to zero. If so, we
8174 may eliminate it. */
8176 if (GET_CODE (varop) == PLUS
8177 && exact_log2 (constop + 1) >= 0)
8179 rtx o0, o1;
8181 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8182 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8183 if (o0 == const0_rtx)
8184 return o1;
8185 if (o1 == const0_rtx)
8186 return o0;
8189 /* Make a SUBREG if necessary. If we can't make it, fail. */
8190 varop = gen_lowpart (mode, varop);
8191 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8192 return NULL_RTX;
8194 /* If we are only masking insignificant bits, return VAROP. */
8195 if (constop == nonzero)
8196 return varop;
8198 if (varop == orig_varop && constop == orig_constop)
8199 return NULL_RTX;
8201 /* Otherwise, return an AND. */
8202 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8206 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8207 in MODE.
8209 Return an equivalent form, if different from X. Otherwise, return X. If
8210 X is zero, we are to always construct the equivalent form. */
8212 static rtx
8213 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8214 unsigned HOST_WIDE_INT constop)
8216 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8217 if (tem)
8218 return tem;
8220 if (!x)
8221 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8222 gen_int_mode (constop, mode));
8223 if (GET_MODE (x) != mode)
8224 x = gen_lowpart (mode, x);
8225 return x;
8228 /* Given a REG, X, compute which bits in X can be nonzero.
8229 We don't care about bits outside of those defined in MODE.
8231 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8232 a shift, AND, or zero_extract, we can do better. */
8234 static rtx
8235 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8236 rtx known_x ATTRIBUTE_UNUSED,
8237 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8238 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8239 unsigned HOST_WIDE_INT *nonzero)
8241 rtx tem;
8243 /* If X is a register whose nonzero bits value is current, use it.
8244 Otherwise, if X is a register whose value we can find, use that
8245 value. Otherwise, use the previously-computed global nonzero bits
8246 for this register. */
8248 if (reg_stat[REGNO (x)].last_set_value != 0
8249 && (reg_stat[REGNO (x)].last_set_mode == mode
8250 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8251 && GET_MODE_CLASS (mode) == MODE_INT))
8252 && (reg_stat[REGNO (x)].last_set_label == label_tick
8253 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8254 && REG_N_SETS (REGNO (x)) == 1
8255 && ! REGNO_REG_SET_P
8256 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8257 REGNO (x))))
8258 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8260 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8261 return NULL;
8264 tem = get_last_value (x);
8266 if (tem)
8268 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8269 /* If X is narrower than MODE and TEM is a non-negative
8270 constant that would appear negative in the mode of X,
8271 sign-extend it for use in reg_nonzero_bits because some
8272 machines (maybe most) will actually do the sign-extension
8273 and this is the conservative approach.
8275 ??? For 2.5, try to tighten up the MD files in this regard
8276 instead of this kludge. */
8278 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8279 && GET_CODE (tem) == CONST_INT
8280 && INTVAL (tem) > 0
8281 && 0 != (INTVAL (tem)
8282 & ((HOST_WIDE_INT) 1
8283 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8284 tem = GEN_INT (INTVAL (tem)
8285 | ((HOST_WIDE_INT) (-1)
8286 << GET_MODE_BITSIZE (GET_MODE (x))));
8287 #endif
8288 return tem;
8290 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8292 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8294 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8295 /* We don't know anything about the upper bits. */
8296 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8297 *nonzero &= mask;
8300 return NULL;
8303 /* Return the number of bits at the high-order end of X that are known to
8304 be equal to the sign bit. X will be used in mode MODE; if MODE is
8305 VOIDmode, X will be used in its own mode. The returned value will always
8306 be between 1 and the number of bits in MODE. */
8308 static rtx
8309 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8310 rtx known_x ATTRIBUTE_UNUSED,
8311 enum machine_mode known_mode
8312 ATTRIBUTE_UNUSED,
8313 unsigned int known_ret ATTRIBUTE_UNUSED,
8314 unsigned int *result)
8316 rtx tem;
8318 if (reg_stat[REGNO (x)].last_set_value != 0
8319 && reg_stat[REGNO (x)].last_set_mode == mode
8320 && (reg_stat[REGNO (x)].last_set_label == label_tick
8321 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8322 && REG_N_SETS (REGNO (x)) == 1
8323 && ! REGNO_REG_SET_P
8324 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8325 REGNO (x))))
8326 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8328 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8329 return NULL;
8332 tem = get_last_value (x);
8333 if (tem != 0)
8334 return tem;
8336 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8337 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8338 *result = reg_stat[REGNO (x)].sign_bit_copies;
8340 return NULL;
8343 /* Return the number of "extended" bits there are in X, when interpreted
8344 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8345 unsigned quantities, this is the number of high-order zero bits.
8346 For signed quantities, this is the number of copies of the sign bit
8347 minus 1. In both case, this function returns the number of "spare"
8348 bits. For example, if two quantities for which this function returns
8349 at least 1 are added, the addition is known not to overflow.
8351 This function will always return 0 unless called during combine, which
8352 implies that it must be called from a define_split. */
8354 unsigned int
8355 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8357 if (nonzero_sign_valid == 0)
8358 return 0;
8360 return (unsignedp
8361 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8362 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8363 - floor_log2 (nonzero_bits (x, mode)))
8364 : 0)
8365 : num_sign_bit_copies (x, mode) - 1);
8368 /* This function is called from `simplify_shift_const' to merge two
8369 outer operations. Specifically, we have already found that we need
8370 to perform operation *POP0 with constant *PCONST0 at the outermost
8371 position. We would now like to also perform OP1 with constant CONST1
8372 (with *POP0 being done last).
8374 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8375 the resulting operation. *PCOMP_P is set to 1 if we would need to
8376 complement the innermost operand, otherwise it is unchanged.
8378 MODE is the mode in which the operation will be done. No bits outside
8379 the width of this mode matter. It is assumed that the width of this mode
8380 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8382 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8383 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8384 result is simply *PCONST0.
8386 If the resulting operation cannot be expressed as one operation, we
8387 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8389 static int
8390 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8392 enum rtx_code op0 = *pop0;
8393 HOST_WIDE_INT const0 = *pconst0;
8395 const0 &= GET_MODE_MASK (mode);
8396 const1 &= GET_MODE_MASK (mode);
8398 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8399 if (op0 == AND)
8400 const1 &= const0;
8402 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8403 if OP0 is SET. */
8405 if (op1 == UNKNOWN || op0 == SET)
8406 return 1;
8408 else if (op0 == UNKNOWN)
8409 op0 = op1, const0 = const1;
8411 else if (op0 == op1)
8413 switch (op0)
8415 case AND:
8416 const0 &= const1;
8417 break;
8418 case IOR:
8419 const0 |= const1;
8420 break;
8421 case XOR:
8422 const0 ^= const1;
8423 break;
8424 case PLUS:
8425 const0 += const1;
8426 break;
8427 case NEG:
8428 op0 = UNKNOWN;
8429 break;
8430 default:
8431 break;
8435 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8436 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8437 return 0;
8439 /* If the two constants aren't the same, we can't do anything. The
8440 remaining six cases can all be done. */
8441 else if (const0 != const1)
8442 return 0;
8444 else
8445 switch (op0)
8447 case IOR:
8448 if (op1 == AND)
8449 /* (a & b) | b == b */
8450 op0 = SET;
8451 else /* op1 == XOR */
8452 /* (a ^ b) | b == a | b */
8454 break;
8456 case XOR:
8457 if (op1 == AND)
8458 /* (a & b) ^ b == (~a) & b */
8459 op0 = AND, *pcomp_p = 1;
8460 else /* op1 == IOR */
8461 /* (a | b) ^ b == a & ~b */
8462 op0 = AND, const0 = ~const0;
8463 break;
8465 case AND:
8466 if (op1 == IOR)
8467 /* (a | b) & b == b */
8468 op0 = SET;
8469 else /* op1 == XOR */
8470 /* (a ^ b) & b) == (~a) & b */
8471 *pcomp_p = 1;
8472 break;
8473 default:
8474 break;
8477 /* Check for NO-OP cases. */
8478 const0 &= GET_MODE_MASK (mode);
8479 if (const0 == 0
8480 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8481 op0 = UNKNOWN;
8482 else if (const0 == 0 && op0 == AND)
8483 op0 = SET;
8484 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8485 && op0 == AND)
8486 op0 = UNKNOWN;
8488 /* ??? Slightly redundant with the above mask, but not entirely.
8489 Moving this above means we'd have to sign-extend the mode mask
8490 for the final test. */
8491 const0 = trunc_int_for_mode (const0, mode);
8493 *pop0 = op0;
8494 *pconst0 = const0;
8496 return 1;
8499 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8500 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8501 simplify it. Otherwise, return a simplified value.
8503 The shift is normally computed in the widest mode we find in VAROP, as
8504 long as it isn't a different number of words than RESULT_MODE. Exceptions
8505 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8507 static rtx
8508 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8509 rtx varop, int orig_count)
8511 enum rtx_code orig_code = code;
8512 rtx orig_varop = varop;
8513 int count;
8514 enum machine_mode mode = result_mode;
8515 enum machine_mode shift_mode, tmode;
8516 unsigned int mode_words
8517 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8518 /* We form (outer_op (code varop count) (outer_const)). */
8519 enum rtx_code outer_op = UNKNOWN;
8520 HOST_WIDE_INT outer_const = 0;
8521 int complement_p = 0;
8522 rtx new, x;
8524 /* Make sure and truncate the "natural" shift on the way in. We don't
8525 want to do this inside the loop as it makes it more difficult to
8526 combine shifts. */
8527 if (SHIFT_COUNT_TRUNCATED)
8528 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8530 /* If we were given an invalid count, don't do anything except exactly
8531 what was requested. */
8533 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8534 return NULL_RTX;
8536 count = orig_count;
8538 /* Unless one of the branches of the `if' in this loop does a `continue',
8539 we will `break' the loop after the `if'. */
8541 while (count != 0)
8543 /* If we have an operand of (clobber (const_int 0)), fail. */
8544 if (GET_CODE (varop) == CLOBBER)
8545 return NULL_RTX;
8547 /* If we discovered we had to complement VAROP, leave. Making a NOT
8548 here would cause an infinite loop. */
8549 if (complement_p)
8550 break;
8552 /* Convert ROTATERT to ROTATE. */
8553 if (code == ROTATERT)
8555 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8556 code = ROTATE;
8557 if (VECTOR_MODE_P (result_mode))
8558 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8559 else
8560 count = bitsize - count;
8563 /* We need to determine what mode we will do the shift in. If the
8564 shift is a right shift or a ROTATE, we must always do it in the mode
8565 it was originally done in. Otherwise, we can do it in MODE, the
8566 widest mode encountered. */
8567 shift_mode
8568 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8569 ? result_mode : mode);
8571 /* Handle cases where the count is greater than the size of the mode
8572 minus 1. For ASHIFT, use the size minus one as the count (this can
8573 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8574 take the count modulo the size. For other shifts, the result is
8575 zero.
8577 Since these shifts are being produced by the compiler by combining
8578 multiple operations, each of which are defined, we know what the
8579 result is supposed to be. */
8581 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8583 if (code == ASHIFTRT)
8584 count = GET_MODE_BITSIZE (shift_mode) - 1;
8585 else if (code == ROTATE || code == ROTATERT)
8586 count %= GET_MODE_BITSIZE (shift_mode);
8587 else
8589 /* We can't simply return zero because there may be an
8590 outer op. */
8591 varop = const0_rtx;
8592 count = 0;
8593 break;
8597 /* An arithmetic right shift of a quantity known to be -1 or 0
8598 is a no-op. */
8599 if (code == ASHIFTRT
8600 && (num_sign_bit_copies (varop, shift_mode)
8601 == GET_MODE_BITSIZE (shift_mode)))
8603 count = 0;
8604 break;
8607 /* If we are doing an arithmetic right shift and discarding all but
8608 the sign bit copies, this is equivalent to doing a shift by the
8609 bitsize minus one. Convert it into that shift because it will often
8610 allow other simplifications. */
8612 if (code == ASHIFTRT
8613 && (count + num_sign_bit_copies (varop, shift_mode)
8614 >= GET_MODE_BITSIZE (shift_mode)))
8615 count = GET_MODE_BITSIZE (shift_mode) - 1;
8617 /* We simplify the tests below and elsewhere by converting
8618 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8619 `make_compound_operation' will convert it to an ASHIFTRT for
8620 those machines (such as VAX) that don't have an LSHIFTRT. */
8621 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8622 && code == ASHIFTRT
8623 && ((nonzero_bits (varop, shift_mode)
8624 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8625 == 0))
8626 code = LSHIFTRT;
8628 if (code == LSHIFTRT
8629 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8630 && !(nonzero_bits (varop, shift_mode) >> count))
8631 varop = const0_rtx;
8632 if (code == ASHIFT
8633 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8634 && !((nonzero_bits (varop, shift_mode) << count)
8635 & GET_MODE_MASK (shift_mode)))
8636 varop = const0_rtx;
8638 switch (GET_CODE (varop))
8640 case SIGN_EXTEND:
8641 case ZERO_EXTEND:
8642 case SIGN_EXTRACT:
8643 case ZERO_EXTRACT:
8644 new = expand_compound_operation (varop);
8645 if (new != varop)
8647 varop = new;
8648 continue;
8650 break;
8652 case MEM:
8653 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8654 minus the width of a smaller mode, we can do this with a
8655 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8656 if ((code == ASHIFTRT || code == LSHIFTRT)
8657 && ! mode_dependent_address_p (XEXP (varop, 0))
8658 && ! MEM_VOLATILE_P (varop)
8659 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8660 MODE_INT, 1)) != BLKmode)
8662 new = adjust_address_nv (varop, tmode,
8663 BYTES_BIG_ENDIAN ? 0
8664 : count / BITS_PER_UNIT);
8666 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8667 : ZERO_EXTEND, mode, new);
8668 count = 0;
8669 continue;
8671 break;
8673 case SUBREG:
8674 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8675 the same number of words as what we've seen so far. Then store
8676 the widest mode in MODE. */
8677 if (subreg_lowpart_p (varop)
8678 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8679 > GET_MODE_SIZE (GET_MODE (varop)))
8680 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8681 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8682 == mode_words)
8684 varop = SUBREG_REG (varop);
8685 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8686 mode = GET_MODE (varop);
8687 continue;
8689 break;
8691 case MULT:
8692 /* Some machines use MULT instead of ASHIFT because MULT
8693 is cheaper. But it is still better on those machines to
8694 merge two shifts into one. */
8695 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8696 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8698 varop
8699 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8700 XEXP (varop, 0),
8701 GEN_INT (exact_log2 (
8702 INTVAL (XEXP (varop, 1)))));
8703 continue;
8705 break;
8707 case UDIV:
8708 /* Similar, for when divides are cheaper. */
8709 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8710 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8712 varop
8713 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8714 XEXP (varop, 0),
8715 GEN_INT (exact_log2 (
8716 INTVAL (XEXP (varop, 1)))));
8717 continue;
8719 break;
8721 case ASHIFTRT:
8722 /* If we are extracting just the sign bit of an arithmetic
8723 right shift, that shift is not needed. However, the sign
8724 bit of a wider mode may be different from what would be
8725 interpreted as the sign bit in a narrower mode, so, if
8726 the result is narrower, don't discard the shift. */
8727 if (code == LSHIFTRT
8728 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8729 && (GET_MODE_BITSIZE (result_mode)
8730 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8732 varop = XEXP (varop, 0);
8733 continue;
8736 /* ... fall through ... */
8738 case LSHIFTRT:
8739 case ASHIFT:
8740 case ROTATE:
8741 /* Here we have two nested shifts. The result is usually the
8742 AND of a new shift with a mask. We compute the result below. */
8743 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8744 && INTVAL (XEXP (varop, 1)) >= 0
8745 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8746 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8748 && !VECTOR_MODE_P (result_mode))
8750 enum rtx_code first_code = GET_CODE (varop);
8751 unsigned int first_count = INTVAL (XEXP (varop, 1));
8752 unsigned HOST_WIDE_INT mask;
8753 rtx mask_rtx;
8755 /* We have one common special case. We can't do any merging if
8756 the inner code is an ASHIFTRT of a smaller mode. However, if
8757 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8758 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8759 we can convert it to
8760 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8761 This simplifies certain SIGN_EXTEND operations. */
8762 if (code == ASHIFT && first_code == ASHIFTRT
8763 && count == (GET_MODE_BITSIZE (result_mode)
8764 - GET_MODE_BITSIZE (GET_MODE (varop))))
8766 /* C3 has the low-order C1 bits zero. */
8768 mask = (GET_MODE_MASK (mode)
8769 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8771 varop = simplify_and_const_int (NULL_RTX, result_mode,
8772 XEXP (varop, 0), mask);
8773 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8774 varop, count);
8775 count = first_count;
8776 code = ASHIFTRT;
8777 continue;
8780 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8781 than C1 high-order bits equal to the sign bit, we can convert
8782 this to either an ASHIFT or an ASHIFTRT depending on the
8783 two counts.
8785 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8787 if (code == ASHIFTRT && first_code == ASHIFT
8788 && GET_MODE (varop) == shift_mode
8789 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8790 > first_count))
8792 varop = XEXP (varop, 0);
8793 count -= first_count;
8794 if (count < 0)
8796 count = -count;
8797 code = ASHIFT;
8800 continue;
8803 /* There are some cases we can't do. If CODE is ASHIFTRT,
8804 we can only do this if FIRST_CODE is also ASHIFTRT.
8806 We can't do the case when CODE is ROTATE and FIRST_CODE is
8807 ASHIFTRT.
8809 If the mode of this shift is not the mode of the outer shift,
8810 we can't do this if either shift is a right shift or ROTATE.
8812 Finally, we can't do any of these if the mode is too wide
8813 unless the codes are the same.
8815 Handle the case where the shift codes are the same
8816 first. */
8818 if (code == first_code)
8820 if (GET_MODE (varop) != result_mode
8821 && (code == ASHIFTRT || code == LSHIFTRT
8822 || code == ROTATE))
8823 break;
8825 count += first_count;
8826 varop = XEXP (varop, 0);
8827 continue;
8830 if (code == ASHIFTRT
8831 || (code == ROTATE && first_code == ASHIFTRT)
8832 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8833 || (GET_MODE (varop) != result_mode
8834 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8835 || first_code == ROTATE
8836 || code == ROTATE)))
8837 break;
8839 /* To compute the mask to apply after the shift, shift the
8840 nonzero bits of the inner shift the same way the
8841 outer shift will. */
8843 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8845 mask_rtx
8846 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8847 GEN_INT (count));
8849 /* Give up if we can't compute an outer operation to use. */
8850 if (mask_rtx == 0
8851 || GET_CODE (mask_rtx) != CONST_INT
8852 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8853 INTVAL (mask_rtx),
8854 result_mode, &complement_p))
8855 break;
8857 /* If the shifts are in the same direction, we add the
8858 counts. Otherwise, we subtract them. */
8859 if ((code == ASHIFTRT || code == LSHIFTRT)
8860 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8861 count += first_count;
8862 else
8863 count -= first_count;
8865 /* If COUNT is positive, the new shift is usually CODE,
8866 except for the two exceptions below, in which case it is
8867 FIRST_CODE. If the count is negative, FIRST_CODE should
8868 always be used */
8869 if (count > 0
8870 && ((first_code == ROTATE && code == ASHIFT)
8871 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8872 code = first_code;
8873 else if (count < 0)
8874 code = first_code, count = -count;
8876 varop = XEXP (varop, 0);
8877 continue;
8880 /* If we have (A << B << C) for any shift, we can convert this to
8881 (A << C << B). This wins if A is a constant. Only try this if
8882 B is not a constant. */
8884 else if (GET_CODE (varop) == code
8885 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8886 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8888 rtx new = simplify_const_binary_operation (code, mode,
8889 XEXP (varop, 0),
8890 GEN_INT (count));
8891 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8892 count = 0;
8893 continue;
8895 break;
8897 case NOT:
8898 /* Make this fit the case below. */
8899 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8900 GEN_INT (GET_MODE_MASK (mode)));
8901 continue;
8903 case IOR:
8904 case AND:
8905 case XOR:
8906 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8907 with C the size of VAROP - 1 and the shift is logical if
8908 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8909 we have an (le X 0) operation. If we have an arithmetic shift
8910 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8911 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8913 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8914 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8915 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8916 && (code == LSHIFTRT || code == ASHIFTRT)
8917 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8918 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8920 count = 0;
8921 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8922 const0_rtx);
8924 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8925 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8927 continue;
8930 /* If we have (shift (logical)), move the logical to the outside
8931 to allow it to possibly combine with another logical and the
8932 shift to combine with another shift. This also canonicalizes to
8933 what a ZERO_EXTRACT looks like. Also, some machines have
8934 (and (shift)) insns. */
8936 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8937 /* We can't do this if we have (ashiftrt (xor)) and the
8938 constant has its sign bit set in shift_mode. */
8939 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8940 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8941 shift_mode))
8942 && (new = simplify_const_binary_operation (code, result_mode,
8943 XEXP (varop, 1),
8944 GEN_INT (count))) != 0
8945 && GET_CODE (new) == CONST_INT
8946 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8947 INTVAL (new), result_mode, &complement_p))
8949 varop = XEXP (varop, 0);
8950 continue;
8953 /* If we can't do that, try to simplify the shift in each arm of the
8954 logical expression, make a new logical expression, and apply
8955 the inverse distributive law. This also can't be done
8956 for some (ashiftrt (xor)). */
8957 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8958 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8959 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8960 shift_mode)))
8962 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8963 XEXP (varop, 0), count);
8964 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8965 XEXP (varop, 1), count);
8967 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8968 lhs, rhs);
8969 varop = apply_distributive_law (varop);
8971 count = 0;
8972 continue;
8974 break;
8976 case EQ:
8977 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8978 says that the sign bit can be tested, FOO has mode MODE, C is
8979 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8980 that may be nonzero. */
8981 if (code == LSHIFTRT
8982 && XEXP (varop, 1) == const0_rtx
8983 && GET_MODE (XEXP (varop, 0)) == result_mode
8984 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8985 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8986 && STORE_FLAG_VALUE == -1
8987 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8988 && merge_outer_ops (&outer_op, &outer_const, XOR,
8989 (HOST_WIDE_INT) 1, result_mode,
8990 &complement_p))
8992 varop = XEXP (varop, 0);
8993 count = 0;
8994 continue;
8996 break;
8998 case NEG:
8999 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9000 than the number of bits in the mode is equivalent to A. */
9001 if (code == LSHIFTRT
9002 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9003 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9005 varop = XEXP (varop, 0);
9006 count = 0;
9007 continue;
9010 /* NEG commutes with ASHIFT since it is multiplication. Move the
9011 NEG outside to allow shifts to combine. */
9012 if (code == ASHIFT
9013 && merge_outer_ops (&outer_op, &outer_const, NEG,
9014 (HOST_WIDE_INT) 0, result_mode,
9015 &complement_p))
9017 varop = XEXP (varop, 0);
9018 continue;
9020 break;
9022 case PLUS:
9023 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9024 is one less than the number of bits in the mode is
9025 equivalent to (xor A 1). */
9026 if (code == LSHIFTRT
9027 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9028 && XEXP (varop, 1) == constm1_rtx
9029 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9030 && merge_outer_ops (&outer_op, &outer_const, XOR,
9031 (HOST_WIDE_INT) 1, result_mode,
9032 &complement_p))
9034 count = 0;
9035 varop = XEXP (varop, 0);
9036 continue;
9039 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9040 that might be nonzero in BAR are those being shifted out and those
9041 bits are known zero in FOO, we can replace the PLUS with FOO.
9042 Similarly in the other operand order. This code occurs when
9043 we are computing the size of a variable-size array. */
9045 if ((code == ASHIFTRT || code == LSHIFTRT)
9046 && count < HOST_BITS_PER_WIDE_INT
9047 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9048 && (nonzero_bits (XEXP (varop, 1), result_mode)
9049 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9051 varop = XEXP (varop, 0);
9052 continue;
9054 else if ((code == ASHIFTRT || code == LSHIFTRT)
9055 && count < HOST_BITS_PER_WIDE_INT
9056 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9057 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9058 >> count)
9059 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9060 & nonzero_bits (XEXP (varop, 1),
9061 result_mode)))
9063 varop = XEXP (varop, 1);
9064 continue;
9067 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9068 if (code == ASHIFT
9069 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9070 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
9071 XEXP (varop, 1),
9072 GEN_INT (count))) != 0
9073 && GET_CODE (new) == CONST_INT
9074 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9075 INTVAL (new), result_mode, &complement_p))
9077 varop = XEXP (varop, 0);
9078 continue;
9081 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9082 signbit', and attempt to change the PLUS to an XOR and move it to
9083 the outer operation as is done above in the AND/IOR/XOR case
9084 leg for shift(logical). See details in logical handling above
9085 for reasoning in doing so. */
9086 if (code == LSHIFTRT
9087 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9088 && mode_signbit_p (result_mode, XEXP (varop, 1))
9089 && (new = simplify_const_binary_operation (code, result_mode,
9090 XEXP (varop, 1),
9091 GEN_INT (count))) != 0
9092 && GET_CODE (new) == CONST_INT
9093 && merge_outer_ops (&outer_op, &outer_const, XOR,
9094 INTVAL (new), result_mode, &complement_p))
9096 varop = XEXP (varop, 0);
9097 continue;
9100 break;
9102 case MINUS:
9103 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9104 with C the size of VAROP - 1 and the shift is logical if
9105 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9106 we have a (gt X 0) operation. If the shift is arithmetic with
9107 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9108 we have a (neg (gt X 0)) operation. */
9110 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9111 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9112 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9113 && (code == LSHIFTRT || code == ASHIFTRT)
9114 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9115 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9116 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9118 count = 0;
9119 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9120 const0_rtx);
9122 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9123 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9125 continue;
9127 break;
9129 case TRUNCATE:
9130 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9131 if the truncate does not affect the value. */
9132 if (code == LSHIFTRT
9133 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9134 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9135 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9136 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9137 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9139 rtx varop_inner = XEXP (varop, 0);
9141 varop_inner
9142 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9143 XEXP (varop_inner, 0),
9144 GEN_INT
9145 (count + INTVAL (XEXP (varop_inner, 1))));
9146 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9147 count = 0;
9148 continue;
9150 break;
9152 default:
9153 break;
9156 break;
9159 /* We need to determine what mode to do the shift in. If the shift is
9160 a right shift or ROTATE, we must always do it in the mode it was
9161 originally done in. Otherwise, we can do it in MODE, the widest mode
9162 encountered. The code we care about is that of the shift that will
9163 actually be done, not the shift that was originally requested. */
9164 shift_mode
9165 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9166 ? result_mode : mode);
9168 /* We have now finished analyzing the shift. The result should be
9169 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9170 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9171 to the result of the shift. OUTER_CONST is the relevant constant,
9172 but we must turn off all bits turned off in the shift. */
9174 if (outer_op == UNKNOWN
9175 && orig_code == code && orig_count == count
9176 && varop == orig_varop
9177 && shift_mode == GET_MODE (varop))
9178 return NULL_RTX;
9180 /* Make a SUBREG if necessary. If we can't make it, fail. */
9181 varop = gen_lowpart (shift_mode, varop);
9182 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9183 return NULL_RTX;
9185 /* If we have an outer operation and we just made a shift, it is
9186 possible that we could have simplified the shift were it not
9187 for the outer operation. So try to do the simplification
9188 recursively. */
9190 if (outer_op != UNKNOWN)
9191 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9192 else
9193 x = NULL_RTX;
9195 if (x == NULL_RTX)
9196 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9198 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9199 turn off all the bits that the shift would have turned off. */
9200 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9201 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9202 GET_MODE_MASK (result_mode) >> orig_count);
9204 /* Do the remainder of the processing in RESULT_MODE. */
9205 x = gen_lowpart_or_truncate (result_mode, x);
9207 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9208 operation. */
9209 if (complement_p)
9210 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9212 if (outer_op != UNKNOWN)
9214 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9215 outer_const = trunc_int_for_mode (outer_const, result_mode);
9217 if (outer_op == AND)
9218 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9219 else if (outer_op == SET)
9220 /* This means that we have determined that the result is
9221 equivalent to a constant. This should be rare. */
9222 x = GEN_INT (outer_const);
9223 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9224 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9225 else
9226 x = simplify_gen_binary (outer_op, result_mode, x,
9227 GEN_INT (outer_const));
9230 return x;
9233 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9234 The result of the shift is RESULT_MODE. If we cannot simplify it,
9235 return X or, if it is NULL, synthesize the expression with
9236 simplify_gen_binary. Otherwise, return a simplified value.
9238 The shift is normally computed in the widest mode we find in VAROP, as
9239 long as it isn't a different number of words than RESULT_MODE. Exceptions
9240 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9242 static rtx
9243 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9244 rtx varop, int count)
9246 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9247 if (tem)
9248 return tem;
9250 if (!x)
9251 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9252 if (GET_MODE (x) != result_mode)
9253 x = gen_lowpart (result_mode, x);
9254 return x;
9258 /* Like recog, but we receive the address of a pointer to a new pattern.
9259 We try to match the rtx that the pointer points to.
9260 If that fails, we may try to modify or replace the pattern,
9261 storing the replacement into the same pointer object.
9263 Modifications include deletion or addition of CLOBBERs.
9265 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9266 the CLOBBERs are placed.
9268 The value is the final insn code from the pattern ultimately matched,
9269 or -1. */
9271 static int
9272 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9274 rtx pat = *pnewpat;
9275 int insn_code_number;
9276 int num_clobbers_to_add = 0;
9277 int i;
9278 rtx notes = 0;
9279 rtx old_notes, old_pat;
9281 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9282 we use to indicate that something didn't match. If we find such a
9283 thing, force rejection. */
9284 if (GET_CODE (pat) == PARALLEL)
9285 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9286 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9287 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9288 return -1;
9290 old_pat = PATTERN (insn);
9291 old_notes = REG_NOTES (insn);
9292 PATTERN (insn) = pat;
9293 REG_NOTES (insn) = 0;
9295 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9297 /* If it isn't, there is the possibility that we previously had an insn
9298 that clobbered some register as a side effect, but the combined
9299 insn doesn't need to do that. So try once more without the clobbers
9300 unless this represents an ASM insn. */
9302 if (insn_code_number < 0 && ! check_asm_operands (pat)
9303 && GET_CODE (pat) == PARALLEL)
9305 int pos;
9307 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9308 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9310 if (i != pos)
9311 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9312 pos++;
9315 SUBST_INT (XVECLEN (pat, 0), pos);
9317 if (pos == 1)
9318 pat = XVECEXP (pat, 0, 0);
9320 PATTERN (insn) = pat;
9321 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9323 PATTERN (insn) = old_pat;
9324 REG_NOTES (insn) = old_notes;
9326 /* Recognize all noop sets, these will be killed by followup pass. */
9327 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9328 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9330 /* If we had any clobbers to add, make a new pattern than contains
9331 them. Then check to make sure that all of them are dead. */
9332 if (num_clobbers_to_add)
9334 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9335 rtvec_alloc (GET_CODE (pat) == PARALLEL
9336 ? (XVECLEN (pat, 0)
9337 + num_clobbers_to_add)
9338 : num_clobbers_to_add + 1));
9340 if (GET_CODE (pat) == PARALLEL)
9341 for (i = 0; i < XVECLEN (pat, 0); i++)
9342 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9343 else
9344 XVECEXP (newpat, 0, 0) = pat;
9346 add_clobbers (newpat, insn_code_number);
9348 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9349 i < XVECLEN (newpat, 0); i++)
9351 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9352 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9353 return -1;
9354 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9355 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9357 pat = newpat;
9360 *pnewpat = pat;
9361 *pnotes = notes;
9363 return insn_code_number;
9366 /* Like gen_lowpart_general but for use by combine. In combine it
9367 is not possible to create any new pseudoregs. However, it is
9368 safe to create invalid memory addresses, because combine will
9369 try to recognize them and all they will do is make the combine
9370 attempt fail.
9372 If for some reason this cannot do its job, an rtx
9373 (clobber (const_int 0)) is returned.
9374 An insn containing that will not be recognized. */
9376 static rtx
9377 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9379 enum machine_mode imode = GET_MODE (x);
9380 unsigned int osize = GET_MODE_SIZE (omode);
9381 unsigned int isize = GET_MODE_SIZE (imode);
9382 rtx result;
9384 if (omode == imode)
9385 return x;
9387 /* Return identity if this is a CONST or symbolic reference. */
9388 if (omode == Pmode
9389 && (GET_CODE (x) == CONST
9390 || GET_CODE (x) == SYMBOL_REF
9391 || GET_CODE (x) == LABEL_REF))
9392 return x;
9394 /* We can only support MODE being wider than a word if X is a
9395 constant integer or has a mode the same size. */
9396 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9397 && ! ((imode == VOIDmode
9398 && (GET_CODE (x) == CONST_INT
9399 || GET_CODE (x) == CONST_DOUBLE))
9400 || isize == osize))
9401 goto fail;
9403 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9404 won't know what to do. So we will strip off the SUBREG here and
9405 process normally. */
9406 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9408 x = SUBREG_REG (x);
9410 /* For use in case we fall down into the address adjustments
9411 further below, we need to adjust the known mode and size of
9412 x; imode and isize, since we just adjusted x. */
9413 imode = GET_MODE (x);
9415 if (imode == omode)
9416 return x;
9418 isize = GET_MODE_SIZE (imode);
9421 result = gen_lowpart_common (omode, x);
9423 #ifdef CANNOT_CHANGE_MODE_CLASS
9424 if (result != 0 && GET_CODE (result) == SUBREG)
9425 record_subregs_of_mode (result);
9426 #endif
9428 if (result)
9429 return result;
9431 if (MEM_P (x))
9433 int offset = 0;
9435 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9436 address. */
9437 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9438 goto fail;
9440 /* If we want to refer to something bigger than the original memref,
9441 generate a paradoxical subreg instead. That will force a reload
9442 of the original memref X. */
9443 if (isize < osize)
9444 return gen_rtx_SUBREG (omode, x, 0);
9446 if (WORDS_BIG_ENDIAN)
9447 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9449 /* Adjust the address so that the address-after-the-data is
9450 unchanged. */
9451 if (BYTES_BIG_ENDIAN)
9452 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9454 return adjust_address_nv (x, omode, offset);
9457 /* If X is a comparison operator, rewrite it in a new mode. This
9458 probably won't match, but may allow further simplifications. */
9459 else if (COMPARISON_P (x))
9460 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9462 /* If we couldn't simplify X any other way, just enclose it in a
9463 SUBREG. Normally, this SUBREG won't match, but some patterns may
9464 include an explicit SUBREG or we may simplify it further in combine. */
9465 else
9467 int offset = 0;
9468 rtx res;
9470 offset = subreg_lowpart_offset (omode, imode);
9471 if (imode == VOIDmode)
9473 imode = int_mode_for_mode (omode);
9474 x = gen_lowpart_common (imode, x);
9475 if (x == NULL)
9476 goto fail;
9478 res = simplify_gen_subreg (omode, x, imode, offset);
9479 if (res)
9480 return res;
9483 fail:
9484 return gen_rtx_CLOBBER (imode, const0_rtx);
9487 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9488 comparison code that will be tested.
9490 The result is a possibly different comparison code to use. *POP0 and
9491 *POP1 may be updated.
9493 It is possible that we might detect that a comparison is either always
9494 true or always false. However, we do not perform general constant
9495 folding in combine, so this knowledge isn't useful. Such tautologies
9496 should have been detected earlier. Hence we ignore all such cases. */
9498 static enum rtx_code
9499 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9501 rtx op0 = *pop0;
9502 rtx op1 = *pop1;
9503 rtx tem, tem1;
9504 int i;
9505 enum machine_mode mode, tmode;
9507 /* Try a few ways of applying the same transformation to both operands. */
9508 while (1)
9510 #ifndef WORD_REGISTER_OPERATIONS
9511 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9512 so check specially. */
9513 if (code != GTU && code != GEU && code != LTU && code != LEU
9514 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9515 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9516 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9517 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9518 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9519 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9520 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9521 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9522 && XEXP (op0, 1) == XEXP (op1, 1)
9523 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9524 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9525 && (INTVAL (XEXP (op0, 1))
9526 == (GET_MODE_BITSIZE (GET_MODE (op0))
9527 - (GET_MODE_BITSIZE
9528 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9530 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9531 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9533 #endif
9535 /* If both operands are the same constant shift, see if we can ignore the
9536 shift. We can if the shift is a rotate or if the bits shifted out of
9537 this shift are known to be zero for both inputs and if the type of
9538 comparison is compatible with the shift. */
9539 if (GET_CODE (op0) == GET_CODE (op1)
9540 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9541 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9542 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9543 && (code != GT && code != LT && code != GE && code != LE))
9544 || (GET_CODE (op0) == ASHIFTRT
9545 && (code != GTU && code != LTU
9546 && code != GEU && code != LEU)))
9547 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9548 && INTVAL (XEXP (op0, 1)) >= 0
9549 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9550 && XEXP (op0, 1) == XEXP (op1, 1))
9552 enum machine_mode mode = GET_MODE (op0);
9553 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9554 int shift_count = INTVAL (XEXP (op0, 1));
9556 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9557 mask &= (mask >> shift_count) << shift_count;
9558 else if (GET_CODE (op0) == ASHIFT)
9559 mask = (mask & (mask << shift_count)) >> shift_count;
9561 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9562 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9563 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9564 else
9565 break;
9568 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9569 SUBREGs are of the same mode, and, in both cases, the AND would
9570 be redundant if the comparison was done in the narrower mode,
9571 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9572 and the operand's possibly nonzero bits are 0xffffff01; in that case
9573 if we only care about QImode, we don't need the AND). This case
9574 occurs if the output mode of an scc insn is not SImode and
9575 STORE_FLAG_VALUE == 1 (e.g., the 386).
9577 Similarly, check for a case where the AND's are ZERO_EXTEND
9578 operations from some narrower mode even though a SUBREG is not
9579 present. */
9581 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9582 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9583 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9585 rtx inner_op0 = XEXP (op0, 0);
9586 rtx inner_op1 = XEXP (op1, 0);
9587 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9588 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9589 int changed = 0;
9591 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9592 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9593 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9594 && (GET_MODE (SUBREG_REG (inner_op0))
9595 == GET_MODE (SUBREG_REG (inner_op1)))
9596 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9597 <= HOST_BITS_PER_WIDE_INT)
9598 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9599 GET_MODE (SUBREG_REG (inner_op0)))))
9600 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9601 GET_MODE (SUBREG_REG (inner_op1))))))
9603 op0 = SUBREG_REG (inner_op0);
9604 op1 = SUBREG_REG (inner_op1);
9606 /* The resulting comparison is always unsigned since we masked
9607 off the original sign bit. */
9608 code = unsigned_condition (code);
9610 changed = 1;
9613 else if (c0 == c1)
9614 for (tmode = GET_CLASS_NARROWEST_MODE
9615 (GET_MODE_CLASS (GET_MODE (op0)));
9616 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9617 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9619 op0 = gen_lowpart (tmode, inner_op0);
9620 op1 = gen_lowpart (tmode, inner_op1);
9621 code = unsigned_condition (code);
9622 changed = 1;
9623 break;
9626 if (! changed)
9627 break;
9630 /* If both operands are NOT, we can strip off the outer operation
9631 and adjust the comparison code for swapped operands; similarly for
9632 NEG, except that this must be an equality comparison. */
9633 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9634 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9635 && (code == EQ || code == NE)))
9636 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9638 else
9639 break;
9642 /* If the first operand is a constant, swap the operands and adjust the
9643 comparison code appropriately, but don't do this if the second operand
9644 is already a constant integer. */
9645 if (swap_commutative_operands_p (op0, op1))
9647 tem = op0, op0 = op1, op1 = tem;
9648 code = swap_condition (code);
9651 /* We now enter a loop during which we will try to simplify the comparison.
9652 For the most part, we only are concerned with comparisons with zero,
9653 but some things may really be comparisons with zero but not start
9654 out looking that way. */
9656 while (GET_CODE (op1) == CONST_INT)
9658 enum machine_mode mode = GET_MODE (op0);
9659 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9660 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9661 int equality_comparison_p;
9662 int sign_bit_comparison_p;
9663 int unsigned_comparison_p;
9664 HOST_WIDE_INT const_op;
9666 /* We only want to handle integral modes. This catches VOIDmode,
9667 CCmode, and the floating-point modes. An exception is that we
9668 can handle VOIDmode if OP0 is a COMPARE or a comparison
9669 operation. */
9671 if (GET_MODE_CLASS (mode) != MODE_INT
9672 && ! (mode == VOIDmode
9673 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9674 break;
9676 /* Get the constant we are comparing against and turn off all bits
9677 not on in our mode. */
9678 const_op = INTVAL (op1);
9679 if (mode != VOIDmode)
9680 const_op = trunc_int_for_mode (const_op, mode);
9681 op1 = GEN_INT (const_op);
9683 /* If we are comparing against a constant power of two and the value
9684 being compared can only have that single bit nonzero (e.g., it was
9685 `and'ed with that bit), we can replace this with a comparison
9686 with zero. */
9687 if (const_op
9688 && (code == EQ || code == NE || code == GE || code == GEU
9689 || code == LT || code == LTU)
9690 && mode_width <= HOST_BITS_PER_WIDE_INT
9691 && exact_log2 (const_op) >= 0
9692 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9694 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9695 op1 = const0_rtx, const_op = 0;
9698 /* Similarly, if we are comparing a value known to be either -1 or
9699 0 with -1, change it to the opposite comparison against zero. */
9701 if (const_op == -1
9702 && (code == EQ || code == NE || code == GT || code == LE
9703 || code == GEU || code == LTU)
9704 && num_sign_bit_copies (op0, mode) == mode_width)
9706 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9707 op1 = const0_rtx, const_op = 0;
9710 /* Do some canonicalizations based on the comparison code. We prefer
9711 comparisons against zero and then prefer equality comparisons.
9712 If we can reduce the size of a constant, we will do that too. */
9714 switch (code)
9716 case LT:
9717 /* < C is equivalent to <= (C - 1) */
9718 if (const_op > 0)
9720 const_op -= 1;
9721 op1 = GEN_INT (const_op);
9722 code = LE;
9723 /* ... fall through to LE case below. */
9725 else
9726 break;
9728 case LE:
9729 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9730 if (const_op < 0)
9732 const_op += 1;
9733 op1 = GEN_INT (const_op);
9734 code = LT;
9737 /* If we are doing a <= 0 comparison on a value known to have
9738 a zero sign bit, we can replace this with == 0. */
9739 else if (const_op == 0
9740 && mode_width <= HOST_BITS_PER_WIDE_INT
9741 && (nonzero_bits (op0, mode)
9742 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9743 code = EQ;
9744 break;
9746 case GE:
9747 /* >= C is equivalent to > (C - 1). */
9748 if (const_op > 0)
9750 const_op -= 1;
9751 op1 = GEN_INT (const_op);
9752 code = GT;
9753 /* ... fall through to GT below. */
9755 else
9756 break;
9758 case GT:
9759 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9760 if (const_op < 0)
9762 const_op += 1;
9763 op1 = GEN_INT (const_op);
9764 code = GE;
9767 /* If we are doing a > 0 comparison on a value known to have
9768 a zero sign bit, we can replace this with != 0. */
9769 else if (const_op == 0
9770 && mode_width <= HOST_BITS_PER_WIDE_INT
9771 && (nonzero_bits (op0, mode)
9772 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9773 code = NE;
9774 break;
9776 case LTU:
9777 /* < C is equivalent to <= (C - 1). */
9778 if (const_op > 0)
9780 const_op -= 1;
9781 op1 = GEN_INT (const_op);
9782 code = LEU;
9783 /* ... fall through ... */
9786 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9787 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9788 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9790 const_op = 0, op1 = const0_rtx;
9791 code = GE;
9792 break;
9794 else
9795 break;
9797 case LEU:
9798 /* unsigned <= 0 is equivalent to == 0 */
9799 if (const_op == 0)
9800 code = EQ;
9802 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9803 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9804 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9806 const_op = 0, op1 = const0_rtx;
9807 code = GE;
9809 break;
9811 case GEU:
9812 /* >= C is equivalent to > (C - 1). */
9813 if (const_op > 1)
9815 const_op -= 1;
9816 op1 = GEN_INT (const_op);
9817 code = GTU;
9818 /* ... fall through ... */
9821 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9822 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9823 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9825 const_op = 0, op1 = const0_rtx;
9826 code = LT;
9827 break;
9829 else
9830 break;
9832 case GTU:
9833 /* unsigned > 0 is equivalent to != 0 */
9834 if (const_op == 0)
9835 code = NE;
9837 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9838 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9839 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9841 const_op = 0, op1 = const0_rtx;
9842 code = LT;
9844 break;
9846 default:
9847 break;
9850 /* Compute some predicates to simplify code below. */
9852 equality_comparison_p = (code == EQ || code == NE);
9853 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9854 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9855 || code == GEU);
9857 /* If this is a sign bit comparison and we can do arithmetic in
9858 MODE, say that we will only be needing the sign bit of OP0. */
9859 if (sign_bit_comparison_p
9860 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9861 op0 = force_to_mode (op0, mode,
9862 ((HOST_WIDE_INT) 1
9863 << (GET_MODE_BITSIZE (mode) - 1)),
9866 /* Now try cases based on the opcode of OP0. If none of the cases
9867 does a "continue", we exit this loop immediately after the
9868 switch. */
9870 switch (GET_CODE (op0))
9872 case ZERO_EXTRACT:
9873 /* If we are extracting a single bit from a variable position in
9874 a constant that has only a single bit set and are comparing it
9875 with zero, we can convert this into an equality comparison
9876 between the position and the location of the single bit. */
9877 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9878 have already reduced the shift count modulo the word size. */
9879 if (!SHIFT_COUNT_TRUNCATED
9880 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9881 && XEXP (op0, 1) == const1_rtx
9882 && equality_comparison_p && const_op == 0
9883 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9885 if (BITS_BIG_ENDIAN)
9887 enum machine_mode new_mode
9888 = mode_for_extraction (EP_extzv, 1);
9889 if (new_mode == MAX_MACHINE_MODE)
9890 i = BITS_PER_WORD - 1 - i;
9891 else
9893 mode = new_mode;
9894 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9898 op0 = XEXP (op0, 2);
9899 op1 = GEN_INT (i);
9900 const_op = i;
9902 /* Result is nonzero iff shift count is equal to I. */
9903 code = reverse_condition (code);
9904 continue;
9907 /* ... fall through ... */
9909 case SIGN_EXTRACT:
9910 tem = expand_compound_operation (op0);
9911 if (tem != op0)
9913 op0 = tem;
9914 continue;
9916 break;
9918 case NOT:
9919 /* If testing for equality, we can take the NOT of the constant. */
9920 if (equality_comparison_p
9921 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9923 op0 = XEXP (op0, 0);
9924 op1 = tem;
9925 continue;
9928 /* If just looking at the sign bit, reverse the sense of the
9929 comparison. */
9930 if (sign_bit_comparison_p)
9932 op0 = XEXP (op0, 0);
9933 code = (code == GE ? LT : GE);
9934 continue;
9936 break;
9938 case NEG:
9939 /* If testing for equality, we can take the NEG of the constant. */
9940 if (equality_comparison_p
9941 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9943 op0 = XEXP (op0, 0);
9944 op1 = tem;
9945 continue;
9948 /* The remaining cases only apply to comparisons with zero. */
9949 if (const_op != 0)
9950 break;
9952 /* When X is ABS or is known positive,
9953 (neg X) is < 0 if and only if X != 0. */
9955 if (sign_bit_comparison_p
9956 && (GET_CODE (XEXP (op0, 0)) == ABS
9957 || (mode_width <= HOST_BITS_PER_WIDE_INT
9958 && (nonzero_bits (XEXP (op0, 0), mode)
9959 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9961 op0 = XEXP (op0, 0);
9962 code = (code == LT ? NE : EQ);
9963 continue;
9966 /* If we have NEG of something whose two high-order bits are the
9967 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9968 if (num_sign_bit_copies (op0, mode) >= 2)
9970 op0 = XEXP (op0, 0);
9971 code = swap_condition (code);
9972 continue;
9974 break;
9976 case ROTATE:
9977 /* If we are testing equality and our count is a constant, we
9978 can perform the inverse operation on our RHS. */
9979 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9980 && (tem = simplify_binary_operation (ROTATERT, mode,
9981 op1, XEXP (op0, 1))) != 0)
9983 op0 = XEXP (op0, 0);
9984 op1 = tem;
9985 continue;
9988 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9989 a particular bit. Convert it to an AND of a constant of that
9990 bit. This will be converted into a ZERO_EXTRACT. */
9991 if (const_op == 0 && sign_bit_comparison_p
9992 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9993 && mode_width <= HOST_BITS_PER_WIDE_INT)
9995 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9996 ((HOST_WIDE_INT) 1
9997 << (mode_width - 1
9998 - INTVAL (XEXP (op0, 1)))));
9999 code = (code == LT ? NE : EQ);
10000 continue;
10003 /* Fall through. */
10005 case ABS:
10006 /* ABS is ignorable inside an equality comparison with zero. */
10007 if (const_op == 0 && equality_comparison_p)
10009 op0 = XEXP (op0, 0);
10010 continue;
10012 break;
10014 case SIGN_EXTEND:
10015 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10016 (compare FOO CONST) if CONST fits in FOO's mode and we
10017 are either testing inequality or have an unsigned
10018 comparison with ZERO_EXTEND or a signed comparison with
10019 SIGN_EXTEND. But don't do it if we don't have a compare
10020 insn of the given mode, since we'd have to revert it
10021 later on, and then we wouldn't know whether to sign- or
10022 zero-extend. */
10023 mode = GET_MODE (XEXP (op0, 0));
10024 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10025 && ! unsigned_comparison_p
10026 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10027 && ((unsigned HOST_WIDE_INT) const_op
10028 < (((unsigned HOST_WIDE_INT) 1
10029 << (GET_MODE_BITSIZE (mode) - 1))))
10030 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10032 op0 = XEXP (op0, 0);
10033 continue;
10035 break;
10037 case SUBREG:
10038 /* Check for the case where we are comparing A - C1 with C2, that is
10040 (subreg:MODE (plus (A) (-C1))) op (C2)
10042 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10043 comparison in the wider mode. One of the following two conditions
10044 must be true in order for this to be valid:
10046 1. The mode extension results in the same bit pattern being added
10047 on both sides and the comparison is equality or unsigned. As
10048 C2 has been truncated to fit in MODE, the pattern can only be
10049 all 0s or all 1s.
10051 2. The mode extension results in the sign bit being copied on
10052 each side.
10054 The difficulty here is that we have predicates for A but not for
10055 (A - C1) so we need to check that C1 is within proper bounds so
10056 as to perturbate A as little as possible. */
10058 if (mode_width <= HOST_BITS_PER_WIDE_INT
10059 && subreg_lowpart_p (op0)
10060 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10061 && GET_CODE (SUBREG_REG (op0)) == PLUS
10062 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10064 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10065 rtx a = XEXP (SUBREG_REG (op0), 0);
10066 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10068 if ((c1 > 0
10069 && (unsigned HOST_WIDE_INT) c1
10070 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10071 && (equality_comparison_p || unsigned_comparison_p)
10072 /* (A - C1) zero-extends if it is positive and sign-extends
10073 if it is negative, C2 both zero- and sign-extends. */
10074 && ((0 == (nonzero_bits (a, inner_mode)
10075 & ~GET_MODE_MASK (mode))
10076 && const_op >= 0)
10077 /* (A - C1) sign-extends if it is positive and 1-extends
10078 if it is negative, C2 both sign- and 1-extends. */
10079 || (num_sign_bit_copies (a, inner_mode)
10080 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10081 - mode_width)
10082 && const_op < 0)))
10083 || ((unsigned HOST_WIDE_INT) c1
10084 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10085 /* (A - C1) always sign-extends, like C2. */
10086 && num_sign_bit_copies (a, inner_mode)
10087 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10088 - (mode_width - 1))))
10090 op0 = SUBREG_REG (op0);
10091 continue;
10095 /* If the inner mode is narrower and we are extracting the low part,
10096 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10097 if (subreg_lowpart_p (op0)
10098 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10099 /* Fall through */ ;
10100 else
10101 break;
10103 /* ... fall through ... */
10105 case ZERO_EXTEND:
10106 mode = GET_MODE (XEXP (op0, 0));
10107 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10108 && (unsigned_comparison_p || equality_comparison_p)
10109 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10110 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10111 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10113 op0 = XEXP (op0, 0);
10114 continue;
10116 break;
10118 case PLUS:
10119 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10120 this for equality comparisons due to pathological cases involving
10121 overflows. */
10122 if (equality_comparison_p
10123 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10124 op1, XEXP (op0, 1))))
10126 op0 = XEXP (op0, 0);
10127 op1 = tem;
10128 continue;
10131 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10132 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10133 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10135 op0 = XEXP (XEXP (op0, 0), 0);
10136 code = (code == LT ? EQ : NE);
10137 continue;
10139 break;
10141 case MINUS:
10142 /* We used to optimize signed comparisons against zero, but that
10143 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10144 arrive here as equality comparisons, or (GEU, LTU) are
10145 optimized away. No need to special-case them. */
10147 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10148 (eq B (minus A C)), whichever simplifies. We can only do
10149 this for equality comparisons due to pathological cases involving
10150 overflows. */
10151 if (equality_comparison_p
10152 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10153 XEXP (op0, 1), op1)))
10155 op0 = XEXP (op0, 0);
10156 op1 = tem;
10157 continue;
10160 if (equality_comparison_p
10161 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10162 XEXP (op0, 0), op1)))
10164 op0 = XEXP (op0, 1);
10165 op1 = tem;
10166 continue;
10169 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10170 of bits in X minus 1, is one iff X > 0. */
10171 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10172 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10173 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10174 == mode_width - 1
10175 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10177 op0 = XEXP (op0, 1);
10178 code = (code == GE ? LE : GT);
10179 continue;
10181 break;
10183 case XOR:
10184 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10185 if C is zero or B is a constant. */
10186 if (equality_comparison_p
10187 && 0 != (tem = simplify_binary_operation (XOR, mode,
10188 XEXP (op0, 1), op1)))
10190 op0 = XEXP (op0, 0);
10191 op1 = tem;
10192 continue;
10194 break;
10196 case EQ: case NE:
10197 case UNEQ: case LTGT:
10198 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10199 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10200 case UNORDERED: case ORDERED:
10201 /* We can't do anything if OP0 is a condition code value, rather
10202 than an actual data value. */
10203 if (const_op != 0
10204 || CC0_P (XEXP (op0, 0))
10205 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10206 break;
10208 /* Get the two operands being compared. */
10209 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10210 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10211 else
10212 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10214 /* Check for the cases where we simply want the result of the
10215 earlier test or the opposite of that result. */
10216 if (code == NE || code == EQ
10217 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10218 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10219 && (STORE_FLAG_VALUE
10220 & (((HOST_WIDE_INT) 1
10221 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10222 && (code == LT || code == GE)))
10224 enum rtx_code new_code;
10225 if (code == LT || code == NE)
10226 new_code = GET_CODE (op0);
10227 else
10228 new_code = reversed_comparison_code (op0, NULL);
10230 if (new_code != UNKNOWN)
10232 code = new_code;
10233 op0 = tem;
10234 op1 = tem1;
10235 continue;
10238 break;
10240 case IOR:
10241 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10242 iff X <= 0. */
10243 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10244 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10245 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10247 op0 = XEXP (op0, 1);
10248 code = (code == GE ? GT : LE);
10249 continue;
10251 break;
10253 case AND:
10254 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10255 will be converted to a ZERO_EXTRACT later. */
10256 if (const_op == 0 && equality_comparison_p
10257 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10258 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10260 op0 = simplify_and_const_int
10261 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10262 XEXP (op0, 1),
10263 XEXP (XEXP (op0, 0), 1)),
10264 (HOST_WIDE_INT) 1);
10265 continue;
10268 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10269 zero and X is a comparison and C1 and C2 describe only bits set
10270 in STORE_FLAG_VALUE, we can compare with X. */
10271 if (const_op == 0 && equality_comparison_p
10272 && mode_width <= HOST_BITS_PER_WIDE_INT
10273 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10274 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10275 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10276 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10277 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10279 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10280 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10281 if ((~STORE_FLAG_VALUE & mask) == 0
10282 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10283 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10284 && COMPARISON_P (tem))))
10286 op0 = XEXP (XEXP (op0, 0), 0);
10287 continue;
10291 /* If we are doing an equality comparison of an AND of a bit equal
10292 to the sign bit, replace this with a LT or GE comparison of
10293 the underlying value. */
10294 if (equality_comparison_p
10295 && const_op == 0
10296 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10297 && mode_width <= HOST_BITS_PER_WIDE_INT
10298 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10299 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10301 op0 = XEXP (op0, 0);
10302 code = (code == EQ ? GE : LT);
10303 continue;
10306 /* If this AND operation is really a ZERO_EXTEND from a narrower
10307 mode, the constant fits within that mode, and this is either an
10308 equality or unsigned comparison, try to do this comparison in
10309 the narrower mode.
10311 Note that in:
10313 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10314 -> (ne:DI (reg:SI 4) (const_int 0))
10316 unless TRULY_NOOP_TRUNCATION allows it or the register is
10317 known to hold a value of the required mode the
10318 transformation is invalid. */
10319 if ((equality_comparison_p || unsigned_comparison_p)
10320 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10321 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10322 & GET_MODE_MASK (mode))
10323 + 1)) >= 0
10324 && const_op >> i == 0
10325 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10326 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10327 GET_MODE_BITSIZE (GET_MODE (op0)))
10328 || (REG_P (XEXP (op0, 0))
10329 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10331 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10332 continue;
10335 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10336 fits in both M1 and M2 and the SUBREG is either paradoxical
10337 or represents the low part, permute the SUBREG and the AND
10338 and try again. */
10339 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10341 unsigned HOST_WIDE_INT c1;
10342 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10343 /* Require an integral mode, to avoid creating something like
10344 (AND:SF ...). */
10345 if (SCALAR_INT_MODE_P (tmode)
10346 /* It is unsafe to commute the AND into the SUBREG if the
10347 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10348 not defined. As originally written the upper bits
10349 have a defined value due to the AND operation.
10350 However, if we commute the AND inside the SUBREG then
10351 they no longer have defined values and the meaning of
10352 the code has been changed. */
10353 && (0
10354 #ifdef WORD_REGISTER_OPERATIONS
10355 || (mode_width > GET_MODE_BITSIZE (tmode)
10356 && mode_width <= BITS_PER_WORD)
10357 #endif
10358 || (mode_width <= GET_MODE_BITSIZE (tmode)
10359 && subreg_lowpart_p (XEXP (op0, 0))))
10360 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10361 && mode_width <= HOST_BITS_PER_WIDE_INT
10362 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10363 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10364 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10365 && c1 != mask
10366 && c1 != GET_MODE_MASK (tmode))
10368 op0 = simplify_gen_binary (AND, tmode,
10369 SUBREG_REG (XEXP (op0, 0)),
10370 gen_int_mode (c1, tmode));
10371 op0 = gen_lowpart (mode, op0);
10372 continue;
10376 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10377 if (const_op == 0 && equality_comparison_p
10378 && XEXP (op0, 1) == const1_rtx
10379 && GET_CODE (XEXP (op0, 0)) == NOT)
10381 op0 = simplify_and_const_int
10382 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10383 code = (code == NE ? EQ : NE);
10384 continue;
10387 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10388 (eq (and (lshiftrt X) 1) 0).
10389 Also handle the case where (not X) is expressed using xor. */
10390 if (const_op == 0 && equality_comparison_p
10391 && XEXP (op0, 1) == const1_rtx
10392 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10394 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10395 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10397 if (GET_CODE (shift_op) == NOT
10398 || (GET_CODE (shift_op) == XOR
10399 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10400 && GET_CODE (shift_count) == CONST_INT
10401 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10402 && (INTVAL (XEXP (shift_op, 1))
10403 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10405 op0 = simplify_and_const_int
10406 (NULL_RTX, mode,
10407 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10408 (HOST_WIDE_INT) 1);
10409 code = (code == NE ? EQ : NE);
10410 continue;
10413 break;
10415 case ASHIFT:
10416 /* If we have (compare (ashift FOO N) (const_int C)) and
10417 the high order N bits of FOO (N+1 if an inequality comparison)
10418 are known to be zero, we can do this by comparing FOO with C
10419 shifted right N bits so long as the low-order N bits of C are
10420 zero. */
10421 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10422 && INTVAL (XEXP (op0, 1)) >= 0
10423 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10424 < HOST_BITS_PER_WIDE_INT)
10425 && ((const_op
10426 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10427 && mode_width <= HOST_BITS_PER_WIDE_INT
10428 && (nonzero_bits (XEXP (op0, 0), mode)
10429 & ~(mask >> (INTVAL (XEXP (op0, 1))
10430 + ! equality_comparison_p))) == 0)
10432 /* We must perform a logical shift, not an arithmetic one,
10433 as we want the top N bits of C to be zero. */
10434 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10436 temp >>= INTVAL (XEXP (op0, 1));
10437 op1 = gen_int_mode (temp, mode);
10438 op0 = XEXP (op0, 0);
10439 continue;
10442 /* If we are doing a sign bit comparison, it means we are testing
10443 a particular bit. Convert it to the appropriate AND. */
10444 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10445 && mode_width <= HOST_BITS_PER_WIDE_INT)
10447 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10448 ((HOST_WIDE_INT) 1
10449 << (mode_width - 1
10450 - INTVAL (XEXP (op0, 1)))));
10451 code = (code == LT ? NE : EQ);
10452 continue;
10455 /* If this an equality comparison with zero and we are shifting
10456 the low bit to the sign bit, we can convert this to an AND of the
10457 low-order bit. */
10458 if (const_op == 0 && equality_comparison_p
10459 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10460 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10461 == mode_width - 1)
10463 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10464 (HOST_WIDE_INT) 1);
10465 continue;
10467 break;
10469 case ASHIFTRT:
10470 /* If this is an equality comparison with zero, we can do this
10471 as a logical shift, which might be much simpler. */
10472 if (equality_comparison_p && const_op == 0
10473 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10475 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10476 XEXP (op0, 0),
10477 INTVAL (XEXP (op0, 1)));
10478 continue;
10481 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10482 do the comparison in a narrower mode. */
10483 if (! unsigned_comparison_p
10484 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10485 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10486 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10487 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10488 MODE_INT, 1)) != BLKmode
10489 && (((unsigned HOST_WIDE_INT) const_op
10490 + (GET_MODE_MASK (tmode) >> 1) + 1)
10491 <= GET_MODE_MASK (tmode)))
10493 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10494 continue;
10497 /* Likewise if OP0 is a PLUS of a sign extension with a
10498 constant, which is usually represented with the PLUS
10499 between the shifts. */
10500 if (! unsigned_comparison_p
10501 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10502 && GET_CODE (XEXP (op0, 0)) == PLUS
10503 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10504 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10505 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10506 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10507 MODE_INT, 1)) != BLKmode
10508 && (((unsigned HOST_WIDE_INT) const_op
10509 + (GET_MODE_MASK (tmode) >> 1) + 1)
10510 <= GET_MODE_MASK (tmode)))
10512 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10513 rtx add_const = XEXP (XEXP (op0, 0), 1);
10514 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10515 add_const, XEXP (op0, 1));
10517 op0 = simplify_gen_binary (PLUS, tmode,
10518 gen_lowpart (tmode, inner),
10519 new_const);
10520 continue;
10523 /* ... fall through ... */
10524 case LSHIFTRT:
10525 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10526 the low order N bits of FOO are known to be zero, we can do this
10527 by comparing FOO with C shifted left N bits so long as no
10528 overflow occurs. */
10529 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10530 && INTVAL (XEXP (op0, 1)) >= 0
10531 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10532 && mode_width <= HOST_BITS_PER_WIDE_INT
10533 && (nonzero_bits (XEXP (op0, 0), mode)
10534 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10535 && (((unsigned HOST_WIDE_INT) const_op
10536 + (GET_CODE (op0) != LSHIFTRT
10537 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10538 + 1)
10539 : 0))
10540 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10542 /* If the shift was logical, then we must make the condition
10543 unsigned. */
10544 if (GET_CODE (op0) == LSHIFTRT)
10545 code = unsigned_condition (code);
10547 const_op <<= INTVAL (XEXP (op0, 1));
10548 op1 = GEN_INT (const_op);
10549 op0 = XEXP (op0, 0);
10550 continue;
10553 /* If we are using this shift to extract just the sign bit, we
10554 can replace this with an LT or GE comparison. */
10555 if (const_op == 0
10556 && (equality_comparison_p || sign_bit_comparison_p)
10557 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10558 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10559 == mode_width - 1)
10561 op0 = XEXP (op0, 0);
10562 code = (code == NE || code == GT ? LT : GE);
10563 continue;
10565 break;
10567 default:
10568 break;
10571 break;
10574 /* Now make any compound operations involved in this comparison. Then,
10575 check for an outmost SUBREG on OP0 that is not doing anything or is
10576 paradoxical. The latter transformation must only be performed when
10577 it is known that the "extra" bits will be the same in op0 and op1 or
10578 that they don't matter. There are three cases to consider:
10580 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10581 care bits and we can assume they have any convenient value. So
10582 making the transformation is safe.
10584 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10585 In this case the upper bits of op0 are undefined. We should not make
10586 the simplification in that case as we do not know the contents of
10587 those bits.
10589 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10590 UNKNOWN. In that case we know those bits are zeros or ones. We must
10591 also be sure that they are the same as the upper bits of op1.
10593 We can never remove a SUBREG for a non-equality comparison because
10594 the sign bit is in a different place in the underlying object. */
10596 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10597 op1 = make_compound_operation (op1, SET);
10599 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10600 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10601 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10602 && (code == NE || code == EQ))
10604 if (GET_MODE_SIZE (GET_MODE (op0))
10605 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10607 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10608 implemented. */
10609 if (REG_P (SUBREG_REG (op0)))
10611 op0 = SUBREG_REG (op0);
10612 op1 = gen_lowpart (GET_MODE (op0), op1);
10615 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10616 <= HOST_BITS_PER_WIDE_INT)
10617 && (nonzero_bits (SUBREG_REG (op0),
10618 GET_MODE (SUBREG_REG (op0)))
10619 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10621 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10623 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10624 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10625 op0 = SUBREG_REG (op0), op1 = tem;
10629 /* We now do the opposite procedure: Some machines don't have compare
10630 insns in all modes. If OP0's mode is an integer mode smaller than a
10631 word and we can't do a compare in that mode, see if there is a larger
10632 mode for which we can do the compare. There are a number of cases in
10633 which we can use the wider mode. */
10635 mode = GET_MODE (op0);
10636 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10637 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10638 && ! have_insn_for (COMPARE, mode))
10639 for (tmode = GET_MODE_WIDER_MODE (mode);
10640 (tmode != VOIDmode
10641 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10642 tmode = GET_MODE_WIDER_MODE (tmode))
10643 if (have_insn_for (COMPARE, tmode))
10645 int zero_extended;
10647 /* If the only nonzero bits in OP0 and OP1 are those in the
10648 narrower mode and this is an equality or unsigned comparison,
10649 we can use the wider mode. Similarly for sign-extended
10650 values, in which case it is true for all comparisons. */
10651 zero_extended = ((code == EQ || code == NE
10652 || code == GEU || code == GTU
10653 || code == LEU || code == LTU)
10654 && (nonzero_bits (op0, tmode)
10655 & ~GET_MODE_MASK (mode)) == 0
10656 && ((GET_CODE (op1) == CONST_INT
10657 || (nonzero_bits (op1, tmode)
10658 & ~GET_MODE_MASK (mode)) == 0)));
10660 if (zero_extended
10661 || ((num_sign_bit_copies (op0, tmode)
10662 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10663 - GET_MODE_BITSIZE (mode)))
10664 && (num_sign_bit_copies (op1, tmode)
10665 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10666 - GET_MODE_BITSIZE (mode)))))
10668 /* If OP0 is an AND and we don't have an AND in MODE either,
10669 make a new AND in the proper mode. */
10670 if (GET_CODE (op0) == AND
10671 && !have_insn_for (AND, mode))
10672 op0 = simplify_gen_binary (AND, tmode,
10673 gen_lowpart (tmode,
10674 XEXP (op0, 0)),
10675 gen_lowpart (tmode,
10676 XEXP (op0, 1)));
10678 op0 = gen_lowpart (tmode, op0);
10679 if (zero_extended && GET_CODE (op1) == CONST_INT)
10680 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10681 op1 = gen_lowpart (tmode, op1);
10682 break;
10685 /* If this is a test for negative, we can make an explicit
10686 test of the sign bit. */
10688 if (op1 == const0_rtx && (code == LT || code == GE)
10689 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10691 op0 = simplify_gen_binary (AND, tmode,
10692 gen_lowpart (tmode, op0),
10693 GEN_INT ((HOST_WIDE_INT) 1
10694 << (GET_MODE_BITSIZE (mode)
10695 - 1)));
10696 code = (code == LT) ? NE : EQ;
10697 break;
10701 #ifdef CANONICALIZE_COMPARISON
10702 /* If this machine only supports a subset of valid comparisons, see if we
10703 can convert an unsupported one into a supported one. */
10704 CANONICALIZE_COMPARISON (code, op0, op1);
10705 #endif
10707 *pop0 = op0;
10708 *pop1 = op1;
10710 return code;
10713 /* Utility function for record_value_for_reg. Count number of
10714 rtxs in X. */
10715 static int
10716 count_rtxs (rtx x)
10718 enum rtx_code code = GET_CODE (x);
10719 const char *fmt;
10720 int i, ret = 1;
10722 if (GET_RTX_CLASS (code) == '2'
10723 || GET_RTX_CLASS (code) == 'c')
10725 rtx x0 = XEXP (x, 0);
10726 rtx x1 = XEXP (x, 1);
10728 if (x0 == x1)
10729 return 1 + 2 * count_rtxs (x0);
10731 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10732 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10733 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10734 return 2 + 2 * count_rtxs (x0)
10735 + count_rtxs (x == XEXP (x1, 0)
10736 ? XEXP (x1, 1) : XEXP (x1, 0));
10738 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10739 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10740 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10741 return 2 + 2 * count_rtxs (x1)
10742 + count_rtxs (x == XEXP (x0, 0)
10743 ? XEXP (x0, 1) : XEXP (x0, 0));
10746 fmt = GET_RTX_FORMAT (code);
10747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10748 if (fmt[i] == 'e')
10749 ret += count_rtxs (XEXP (x, i));
10751 return ret;
10754 /* Utility function for following routine. Called when X is part of a value
10755 being stored into last_set_value. Sets last_set_table_tick
10756 for each register mentioned. Similar to mention_regs in cse.c */
10758 static void
10759 update_table_tick (rtx x)
10761 enum rtx_code code = GET_CODE (x);
10762 const char *fmt = GET_RTX_FORMAT (code);
10763 int i;
10765 if (code == REG)
10767 unsigned int regno = REGNO (x);
10768 unsigned int endregno
10769 = regno + (regno < FIRST_PSEUDO_REGISTER
10770 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10771 unsigned int r;
10773 for (r = regno; r < endregno; r++)
10774 reg_stat[r].last_set_table_tick = label_tick;
10776 return;
10779 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10780 /* Note that we can't have an "E" in values stored; see
10781 get_last_value_validate. */
10782 if (fmt[i] == 'e')
10784 /* Check for identical subexpressions. If x contains
10785 identical subexpression we only have to traverse one of
10786 them. */
10787 if (i == 0 && ARITHMETIC_P (x))
10789 /* Note that at this point x1 has already been
10790 processed. */
10791 rtx x0 = XEXP (x, 0);
10792 rtx x1 = XEXP (x, 1);
10794 /* If x0 and x1 are identical then there is no need to
10795 process x0. */
10796 if (x0 == x1)
10797 break;
10799 /* If x0 is identical to a subexpression of x1 then while
10800 processing x1, x0 has already been processed. Thus we
10801 are done with x. */
10802 if (ARITHMETIC_P (x1)
10803 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10804 break;
10806 /* If x1 is identical to a subexpression of x0 then we
10807 still have to process the rest of x0. */
10808 if (ARITHMETIC_P (x0)
10809 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10811 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10812 break;
10816 update_table_tick (XEXP (x, i));
10820 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10821 are saying that the register is clobbered and we no longer know its
10822 value. If INSN is zero, don't update reg_stat[].last_set; this is
10823 only permitted with VALUE also zero and is used to invalidate the
10824 register. */
10826 static void
10827 record_value_for_reg (rtx reg, rtx insn, rtx value)
10829 unsigned int regno = REGNO (reg);
10830 unsigned int endregno
10831 = regno + (regno < FIRST_PSEUDO_REGISTER
10832 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10833 unsigned int i;
10835 /* If VALUE contains REG and we have a previous value for REG, substitute
10836 the previous value. */
10837 if (value && insn && reg_overlap_mentioned_p (reg, value))
10839 rtx tem;
10841 /* Set things up so get_last_value is allowed to see anything set up to
10842 our insn. */
10843 subst_low_cuid = INSN_CUID (insn);
10844 tem = get_last_value (reg);
10846 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10847 it isn't going to be useful and will take a lot of time to process,
10848 so just use the CLOBBER. */
10850 if (tem)
10852 if (ARITHMETIC_P (tem)
10853 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10854 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10855 tem = XEXP (tem, 0);
10856 else if (count_occurrences (value, reg, 1) >= 2)
10858 /* If there are two or more occurrences of REG in VALUE,
10859 prevent the value from growing too much. */
10860 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10861 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10864 value = replace_rtx (copy_rtx (value), reg, tem);
10868 /* For each register modified, show we don't know its value, that
10869 we don't know about its bitwise content, that its value has been
10870 updated, and that we don't know the location of the death of the
10871 register. */
10872 for (i = regno; i < endregno; i++)
10874 if (insn)
10875 reg_stat[i].last_set = insn;
10877 reg_stat[i].last_set_value = 0;
10878 reg_stat[i].last_set_mode = 0;
10879 reg_stat[i].last_set_nonzero_bits = 0;
10880 reg_stat[i].last_set_sign_bit_copies = 0;
10881 reg_stat[i].last_death = 0;
10882 reg_stat[i].truncated_to_mode = 0;
10885 /* Mark registers that are being referenced in this value. */
10886 if (value)
10887 update_table_tick (value);
10889 /* Now update the status of each register being set.
10890 If someone is using this register in this block, set this register
10891 to invalid since we will get confused between the two lives in this
10892 basic block. This makes using this register always invalid. In cse, we
10893 scan the table to invalidate all entries using this register, but this
10894 is too much work for us. */
10896 for (i = regno; i < endregno; i++)
10898 reg_stat[i].last_set_label = label_tick;
10899 if (!insn || (value && reg_stat[i].last_set_table_tick == label_tick))
10900 reg_stat[i].last_set_invalid = 1;
10901 else
10902 reg_stat[i].last_set_invalid = 0;
10905 /* The value being assigned might refer to X (like in "x++;"). In that
10906 case, we must replace it with (clobber (const_int 0)) to prevent
10907 infinite loops. */
10908 if (value && ! get_last_value_validate (&value, insn,
10909 reg_stat[regno].last_set_label, 0))
10911 value = copy_rtx (value);
10912 if (! get_last_value_validate (&value, insn,
10913 reg_stat[regno].last_set_label, 1))
10914 value = 0;
10917 /* For the main register being modified, update the value, the mode, the
10918 nonzero bits, and the number of sign bit copies. */
10920 reg_stat[regno].last_set_value = value;
10922 if (value)
10924 enum machine_mode mode = GET_MODE (reg);
10925 subst_low_cuid = INSN_CUID (insn);
10926 reg_stat[regno].last_set_mode = mode;
10927 if (GET_MODE_CLASS (mode) == MODE_INT
10928 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10929 mode = nonzero_bits_mode;
10930 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10931 reg_stat[regno].last_set_sign_bit_copies
10932 = num_sign_bit_copies (value, GET_MODE (reg));
10936 /* Called via note_stores from record_dead_and_set_regs to handle one
10937 SET or CLOBBER in an insn. DATA is the instruction in which the
10938 set is occurring. */
10940 static void
10941 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10943 rtx record_dead_insn = (rtx) data;
10945 if (GET_CODE (dest) == SUBREG)
10946 dest = SUBREG_REG (dest);
10948 if (!record_dead_insn)
10950 if (REG_P (dest))
10951 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
10952 return;
10955 if (REG_P (dest))
10957 /* If we are setting the whole register, we know its value. Otherwise
10958 show that we don't know the value. We can handle SUBREG in
10959 some cases. */
10960 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10961 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10962 else if (GET_CODE (setter) == SET
10963 && GET_CODE (SET_DEST (setter)) == SUBREG
10964 && SUBREG_REG (SET_DEST (setter)) == dest
10965 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10966 && subreg_lowpart_p (SET_DEST (setter)))
10967 record_value_for_reg (dest, record_dead_insn,
10968 gen_lowpart (GET_MODE (dest),
10969 SET_SRC (setter)));
10970 else
10971 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10973 else if (MEM_P (dest)
10974 /* Ignore pushes, they clobber nothing. */
10975 && ! push_operand (dest, GET_MODE (dest)))
10976 mem_last_set = INSN_CUID (record_dead_insn);
10979 /* Update the records of when each REG was most recently set or killed
10980 for the things done by INSN. This is the last thing done in processing
10981 INSN in the combiner loop.
10983 We update reg_stat[], in particular fields last_set, last_set_value,
10984 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10985 last_death, and also the similar information mem_last_set (which insn
10986 most recently modified memory) and last_call_cuid (which insn was the
10987 most recent subroutine call). */
10989 static void
10990 record_dead_and_set_regs (rtx insn)
10992 rtx link;
10993 unsigned int i;
10995 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10997 if (REG_NOTE_KIND (link) == REG_DEAD
10998 && REG_P (XEXP (link, 0)))
11000 unsigned int regno = REGNO (XEXP (link, 0));
11001 unsigned int endregno
11002 = regno + (regno < FIRST_PSEUDO_REGISTER
11003 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11004 : 1);
11006 for (i = regno; i < endregno; i++)
11007 reg_stat[i].last_death = insn;
11009 else if (REG_NOTE_KIND (link) == REG_INC)
11010 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11013 if (CALL_P (insn))
11015 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11016 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11018 reg_stat[i].last_set_value = 0;
11019 reg_stat[i].last_set_mode = 0;
11020 reg_stat[i].last_set_nonzero_bits = 0;
11021 reg_stat[i].last_set_sign_bit_copies = 0;
11022 reg_stat[i].last_death = 0;
11023 reg_stat[i].truncated_to_mode = 0;
11026 last_call_cuid = mem_last_set = INSN_CUID (insn);
11028 /* We can't combine into a call pattern. Remember, though, that
11029 the return value register is set at this CUID. We could
11030 still replace a register with the return value from the
11031 wrong subroutine call! */
11032 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11034 else
11035 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11038 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11039 register present in the SUBREG, so for each such SUBREG go back and
11040 adjust nonzero and sign bit information of the registers that are
11041 known to have some zero/sign bits set.
11043 This is needed because when combine blows the SUBREGs away, the
11044 information on zero/sign bits is lost and further combines can be
11045 missed because of that. */
11047 static void
11048 record_promoted_value (rtx insn, rtx subreg)
11050 rtx links, set;
11051 unsigned int regno = REGNO (SUBREG_REG (subreg));
11052 enum machine_mode mode = GET_MODE (subreg);
11054 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11055 return;
11057 for (links = LOG_LINKS (insn); links;)
11059 insn = XEXP (links, 0);
11060 set = single_set (insn);
11062 if (! set || !REG_P (SET_DEST (set))
11063 || REGNO (SET_DEST (set)) != regno
11064 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11066 links = XEXP (links, 1);
11067 continue;
11070 if (reg_stat[regno].last_set == insn)
11072 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11073 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11076 if (REG_P (SET_SRC (set)))
11078 regno = REGNO (SET_SRC (set));
11079 links = LOG_LINKS (insn);
11081 else
11082 break;
11086 /* Check if X, a register, is known to contain a value already
11087 truncated to MODE. In this case we can use a subreg to refer to
11088 the truncated value even though in the generic case we would need
11089 an explicit truncation. */
11091 static bool
11092 reg_truncated_to_mode (enum machine_mode mode, rtx x)
11094 enum machine_mode truncated = reg_stat[REGNO (x)].truncated_to_mode;
11096 if (truncated == 0 || reg_stat[REGNO (x)].truncation_label != label_tick)
11097 return false;
11098 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11099 return true;
11100 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11101 GET_MODE_BITSIZE (truncated)))
11102 return true;
11103 return false;
11106 /* X is a REG or a SUBREG. If X is some sort of a truncation record
11107 it. For non-TRULY_NOOP_TRUNCATION targets we might be able to turn
11108 a truncate into a subreg using this information. */
11110 static void
11111 record_truncated_value (rtx x)
11113 enum machine_mode truncated_mode;
11115 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11117 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11118 truncated_mode = GET_MODE (x);
11120 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11121 return;
11123 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11124 GET_MODE_BITSIZE (original_mode)))
11125 return;
11127 x = SUBREG_REG (x);
11129 /* ??? For hard-regs we now record everything. We might be able to
11130 optimize this using last_set_mode. */
11131 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11132 truncated_mode = GET_MODE (x);
11133 else
11134 return;
11136 if (reg_stat[REGNO (x)].truncated_to_mode == 0
11137 || reg_stat[REGNO (x)].truncation_label < label_tick
11138 || (GET_MODE_SIZE (truncated_mode)
11139 < GET_MODE_SIZE (reg_stat[REGNO (x)].truncated_to_mode)))
11141 reg_stat[REGNO (x)].truncated_to_mode = truncated_mode;
11142 reg_stat[REGNO (x)].truncation_label = label_tick;
11146 /* Scan X for promoted SUBREGs and truncated REGs. For each one
11147 found, note what it implies to the registers used in it. */
11149 static void
11150 check_conversions (rtx insn, rtx x)
11152 if (GET_CODE (x) == SUBREG || REG_P (x))
11154 if (GET_CODE (x) == SUBREG
11155 && SUBREG_PROMOTED_VAR_P (x)
11156 && REG_P (SUBREG_REG (x)))
11157 record_promoted_value (insn, x);
11159 record_truncated_value (x);
11161 else
11163 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11164 int i, j;
11166 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11167 switch (format[i])
11169 case 'e':
11170 check_conversions (insn, XEXP (x, i));
11171 break;
11172 case 'V':
11173 case 'E':
11174 if (XVEC (x, i) != 0)
11175 for (j = 0; j < XVECLEN (x, i); j++)
11176 check_conversions (insn, XVECEXP (x, i, j));
11177 break;
11182 /* Utility routine for the following function. Verify that all the registers
11183 mentioned in *LOC are valid when *LOC was part of a value set when
11184 label_tick == TICK. Return 0 if some are not.
11186 If REPLACE is nonzero, replace the invalid reference with
11187 (clobber (const_int 0)) and return 1. This replacement is useful because
11188 we often can get useful information about the form of a value (e.g., if
11189 it was produced by a shift that always produces -1 or 0) even though
11190 we don't know exactly what registers it was produced from. */
11192 static int
11193 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11195 rtx x = *loc;
11196 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11197 int len = GET_RTX_LENGTH (GET_CODE (x));
11198 int i;
11200 if (REG_P (x))
11202 unsigned int regno = REGNO (x);
11203 unsigned int endregno
11204 = regno + (regno < FIRST_PSEUDO_REGISTER
11205 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11206 unsigned int j;
11208 for (j = regno; j < endregno; j++)
11209 if (reg_stat[j].last_set_invalid
11210 /* If this is a pseudo-register that was only set once and not
11211 live at the beginning of the function, it is always valid. */
11212 || (! (regno >= FIRST_PSEUDO_REGISTER
11213 && REG_N_SETS (regno) == 1
11214 && (! REGNO_REG_SET_P
11215 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11216 regno)))
11217 && reg_stat[j].last_set_label > tick))
11219 if (replace)
11220 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11221 return replace;
11224 return 1;
11226 /* If this is a memory reference, make sure that there were
11227 no stores after it that might have clobbered the value. We don't
11228 have alias info, so we assume any store invalidates it. */
11229 else if (MEM_P (x) && !MEM_READONLY_P (x)
11230 && INSN_CUID (insn) <= mem_last_set)
11232 if (replace)
11233 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11234 return replace;
11237 for (i = 0; i < len; i++)
11239 if (fmt[i] == 'e')
11241 /* Check for identical subexpressions. If x contains
11242 identical subexpression we only have to traverse one of
11243 them. */
11244 if (i == 1 && ARITHMETIC_P (x))
11246 /* Note that at this point x0 has already been checked
11247 and found valid. */
11248 rtx x0 = XEXP (x, 0);
11249 rtx x1 = XEXP (x, 1);
11251 /* If x0 and x1 are identical then x is also valid. */
11252 if (x0 == x1)
11253 return 1;
11255 /* If x1 is identical to a subexpression of x0 then
11256 while checking x0, x1 has already been checked. Thus
11257 it is valid and so as x. */
11258 if (ARITHMETIC_P (x0)
11259 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11260 return 1;
11262 /* If x0 is identical to a subexpression of x1 then x is
11263 valid iff the rest of x1 is valid. */
11264 if (ARITHMETIC_P (x1)
11265 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11266 return
11267 get_last_value_validate (&XEXP (x1,
11268 x0 == XEXP (x1, 0) ? 1 : 0),
11269 insn, tick, replace);
11272 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11273 replace) == 0)
11274 return 0;
11276 /* Don't bother with these. They shouldn't occur anyway. */
11277 else if (fmt[i] == 'E')
11278 return 0;
11281 /* If we haven't found a reason for it to be invalid, it is valid. */
11282 return 1;
11285 /* Get the last value assigned to X, if known. Some registers
11286 in the value may be replaced with (clobber (const_int 0)) if their value
11287 is known longer known reliably. */
11289 static rtx
11290 get_last_value (rtx x)
11292 unsigned int regno;
11293 rtx value;
11295 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11296 then convert it to the desired mode. If this is a paradoxical SUBREG,
11297 we cannot predict what values the "extra" bits might have. */
11298 if (GET_CODE (x) == SUBREG
11299 && subreg_lowpart_p (x)
11300 && (GET_MODE_SIZE (GET_MODE (x))
11301 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11302 && (value = get_last_value (SUBREG_REG (x))) != 0)
11303 return gen_lowpart (GET_MODE (x), value);
11305 if (!REG_P (x))
11306 return 0;
11308 regno = REGNO (x);
11309 value = reg_stat[regno].last_set_value;
11311 /* If we don't have a value, or if it isn't for this basic block and
11312 it's either a hard register, set more than once, or it's a live
11313 at the beginning of the function, return 0.
11315 Because if it's not live at the beginning of the function then the reg
11316 is always set before being used (is never used without being set).
11317 And, if it's set only once, and it's always set before use, then all
11318 uses must have the same last value, even if it's not from this basic
11319 block. */
11321 if (value == 0
11322 || (reg_stat[regno].last_set_label != label_tick
11323 && (regno < FIRST_PSEUDO_REGISTER
11324 || REG_N_SETS (regno) != 1
11325 || (REGNO_REG_SET_P
11326 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11327 regno)))))
11328 return 0;
11330 /* If the value was set in a later insn than the ones we are processing,
11331 we can't use it even if the register was only set once. */
11332 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11333 return 0;
11335 /* If the value has all its registers valid, return it. */
11336 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11337 reg_stat[regno].last_set_label, 0))
11338 return value;
11340 /* Otherwise, make a copy and replace any invalid register with
11341 (clobber (const_int 0)). If that fails for some reason, return 0. */
11343 value = copy_rtx (value);
11344 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11345 reg_stat[regno].last_set_label, 1))
11346 return value;
11348 return 0;
11351 /* Return nonzero if expression X refers to a REG or to memory
11352 that is set in an instruction more recent than FROM_CUID. */
11354 static int
11355 use_crosses_set_p (rtx x, int from_cuid)
11357 const char *fmt;
11358 int i;
11359 enum rtx_code code = GET_CODE (x);
11361 if (code == REG)
11363 unsigned int regno = REGNO (x);
11364 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11365 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11367 #ifdef PUSH_ROUNDING
11368 /* Don't allow uses of the stack pointer to be moved,
11369 because we don't know whether the move crosses a push insn. */
11370 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11371 return 1;
11372 #endif
11373 for (; regno < endreg; regno++)
11374 if (reg_stat[regno].last_set
11375 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11376 return 1;
11377 return 0;
11380 if (code == MEM && mem_last_set > from_cuid)
11381 return 1;
11383 fmt = GET_RTX_FORMAT (code);
11385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11387 if (fmt[i] == 'E')
11389 int j;
11390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11391 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11392 return 1;
11394 else if (fmt[i] == 'e'
11395 && use_crosses_set_p (XEXP (x, i), from_cuid))
11396 return 1;
11398 return 0;
11401 /* Define three variables used for communication between the following
11402 routines. */
11404 static unsigned int reg_dead_regno, reg_dead_endregno;
11405 static int reg_dead_flag;
11407 /* Function called via note_stores from reg_dead_at_p.
11409 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11410 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11412 static void
11413 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11415 unsigned int regno, endregno;
11417 if (!REG_P (dest))
11418 return;
11420 regno = REGNO (dest);
11421 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11422 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11424 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11425 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11428 /* Return nonzero if REG is known to be dead at INSN.
11430 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11431 referencing REG, it is dead. If we hit a SET referencing REG, it is
11432 live. Otherwise, see if it is live or dead at the start of the basic
11433 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11434 must be assumed to be always live. */
11436 static int
11437 reg_dead_at_p (rtx reg, rtx insn)
11439 basic_block block;
11440 unsigned int i;
11442 /* Set variables for reg_dead_at_p_1. */
11443 reg_dead_regno = REGNO (reg);
11444 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11445 ? hard_regno_nregs[reg_dead_regno]
11446 [GET_MODE (reg)]
11447 : 1);
11449 reg_dead_flag = 0;
11451 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11452 we allow the machine description to decide whether use-and-clobber
11453 patterns are OK. */
11454 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11456 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11457 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11458 return 0;
11461 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11462 beginning of function. */
11463 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11464 insn = prev_nonnote_insn (insn))
11466 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11467 if (reg_dead_flag)
11468 return reg_dead_flag == 1 ? 1 : 0;
11470 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11471 return 1;
11474 /* Get the basic block that we were in. */
11475 if (insn == 0)
11476 block = ENTRY_BLOCK_PTR->next_bb;
11477 else
11479 FOR_EACH_BB (block)
11480 if (insn == BB_HEAD (block))
11481 break;
11483 if (block == EXIT_BLOCK_PTR)
11484 return 0;
11487 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11488 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11489 return 0;
11491 return 1;
11494 /* Note hard registers in X that are used. This code is similar to
11495 that in flow.c, but much simpler since we don't care about pseudos. */
11497 static void
11498 mark_used_regs_combine (rtx x)
11500 RTX_CODE code = GET_CODE (x);
11501 unsigned int regno;
11502 int i;
11504 switch (code)
11506 case LABEL_REF:
11507 case SYMBOL_REF:
11508 case CONST_INT:
11509 case CONST:
11510 case CONST_DOUBLE:
11511 case CONST_VECTOR:
11512 case PC:
11513 case ADDR_VEC:
11514 case ADDR_DIFF_VEC:
11515 case ASM_INPUT:
11516 #ifdef HAVE_cc0
11517 /* CC0 must die in the insn after it is set, so we don't need to take
11518 special note of it here. */
11519 case CC0:
11520 #endif
11521 return;
11523 case CLOBBER:
11524 /* If we are clobbering a MEM, mark any hard registers inside the
11525 address as used. */
11526 if (MEM_P (XEXP (x, 0)))
11527 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11528 return;
11530 case REG:
11531 regno = REGNO (x);
11532 /* A hard reg in a wide mode may really be multiple registers.
11533 If so, mark all of them just like the first. */
11534 if (regno < FIRST_PSEUDO_REGISTER)
11536 unsigned int endregno, r;
11538 /* None of this applies to the stack, frame or arg pointers. */
11539 if (regno == STACK_POINTER_REGNUM
11540 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11541 || regno == HARD_FRAME_POINTER_REGNUM
11542 #endif
11543 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11544 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11545 #endif
11546 || regno == FRAME_POINTER_REGNUM)
11547 return;
11549 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11550 for (r = regno; r < endregno; r++)
11551 SET_HARD_REG_BIT (newpat_used_regs, r);
11553 return;
11555 case SET:
11557 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11558 the address. */
11559 rtx testreg = SET_DEST (x);
11561 while (GET_CODE (testreg) == SUBREG
11562 || GET_CODE (testreg) == ZERO_EXTRACT
11563 || GET_CODE (testreg) == STRICT_LOW_PART)
11564 testreg = XEXP (testreg, 0);
11566 if (MEM_P (testreg))
11567 mark_used_regs_combine (XEXP (testreg, 0));
11569 mark_used_regs_combine (SET_SRC (x));
11571 return;
11573 default:
11574 break;
11577 /* Recursively scan the operands of this expression. */
11580 const char *fmt = GET_RTX_FORMAT (code);
11582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11584 if (fmt[i] == 'e')
11585 mark_used_regs_combine (XEXP (x, i));
11586 else if (fmt[i] == 'E')
11588 int j;
11590 for (j = 0; j < XVECLEN (x, i); j++)
11591 mark_used_regs_combine (XVECEXP (x, i, j));
11597 /* Remove register number REGNO from the dead registers list of INSN.
11599 Return the note used to record the death, if there was one. */
11602 remove_death (unsigned int regno, rtx insn)
11604 rtx note = find_regno_note (insn, REG_DEAD, regno);
11606 if (note)
11608 REG_N_DEATHS (regno)--;
11609 remove_note (insn, note);
11612 return note;
11615 /* For each register (hardware or pseudo) used within expression X, if its
11616 death is in an instruction with cuid between FROM_CUID (inclusive) and
11617 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11618 list headed by PNOTES.
11620 That said, don't move registers killed by maybe_kill_insn.
11622 This is done when X is being merged by combination into TO_INSN. These
11623 notes will then be distributed as needed. */
11625 static void
11626 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11627 rtx *pnotes)
11629 const char *fmt;
11630 int len, i;
11631 enum rtx_code code = GET_CODE (x);
11633 if (code == REG)
11635 unsigned int regno = REGNO (x);
11636 rtx where_dead = reg_stat[regno].last_death;
11637 rtx before_dead, after_dead;
11639 /* Don't move the register if it gets killed in between from and to. */
11640 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11641 && ! reg_referenced_p (x, maybe_kill_insn))
11642 return;
11644 /* WHERE_DEAD could be a USE insn made by combine, so first we
11645 make sure that we have insns with valid INSN_CUID values. */
11646 before_dead = where_dead;
11647 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11648 before_dead = PREV_INSN (before_dead);
11650 after_dead = where_dead;
11651 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11652 after_dead = NEXT_INSN (after_dead);
11654 if (before_dead && after_dead
11655 && INSN_CUID (before_dead) >= from_cuid
11656 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11657 || (where_dead != after_dead
11658 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11660 rtx note = remove_death (regno, where_dead);
11662 /* It is possible for the call above to return 0. This can occur
11663 when last_death points to I2 or I1 that we combined with.
11664 In that case make a new note.
11666 We must also check for the case where X is a hard register
11667 and NOTE is a death note for a range of hard registers
11668 including X. In that case, we must put REG_DEAD notes for
11669 the remaining registers in place of NOTE. */
11671 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11672 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11673 > GET_MODE_SIZE (GET_MODE (x))))
11675 unsigned int deadregno = REGNO (XEXP (note, 0));
11676 unsigned int deadend
11677 = (deadregno + hard_regno_nregs[deadregno]
11678 [GET_MODE (XEXP (note, 0))]);
11679 unsigned int ourend
11680 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11681 unsigned int i;
11683 for (i = deadregno; i < deadend; i++)
11684 if (i < regno || i >= ourend)
11685 REG_NOTES (where_dead)
11686 = gen_rtx_EXPR_LIST (REG_DEAD,
11687 regno_reg_rtx[i],
11688 REG_NOTES (where_dead));
11691 /* If we didn't find any note, or if we found a REG_DEAD note that
11692 covers only part of the given reg, and we have a multi-reg hard
11693 register, then to be safe we must check for REG_DEAD notes
11694 for each register other than the first. They could have
11695 their own REG_DEAD notes lying around. */
11696 else if ((note == 0
11697 || (note != 0
11698 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11699 < GET_MODE_SIZE (GET_MODE (x)))))
11700 && regno < FIRST_PSEUDO_REGISTER
11701 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11703 unsigned int ourend
11704 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11705 unsigned int i, offset;
11706 rtx oldnotes = 0;
11708 if (note)
11709 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11710 else
11711 offset = 1;
11713 for (i = regno + offset; i < ourend; i++)
11714 move_deaths (regno_reg_rtx[i],
11715 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11718 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11720 XEXP (note, 1) = *pnotes;
11721 *pnotes = note;
11723 else
11724 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11726 REG_N_DEATHS (regno)++;
11729 return;
11732 else if (GET_CODE (x) == SET)
11734 rtx dest = SET_DEST (x);
11736 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11738 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11739 that accesses one word of a multi-word item, some
11740 piece of everything register in the expression is used by
11741 this insn, so remove any old death. */
11742 /* ??? So why do we test for equality of the sizes? */
11744 if (GET_CODE (dest) == ZERO_EXTRACT
11745 || GET_CODE (dest) == STRICT_LOW_PART
11746 || (GET_CODE (dest) == SUBREG
11747 && (((GET_MODE_SIZE (GET_MODE (dest))
11748 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11749 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11750 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11752 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11753 return;
11756 /* If this is some other SUBREG, we know it replaces the entire
11757 value, so use that as the destination. */
11758 if (GET_CODE (dest) == SUBREG)
11759 dest = SUBREG_REG (dest);
11761 /* If this is a MEM, adjust deaths of anything used in the address.
11762 For a REG (the only other possibility), the entire value is
11763 being replaced so the old value is not used in this insn. */
11765 if (MEM_P (dest))
11766 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11767 to_insn, pnotes);
11768 return;
11771 else if (GET_CODE (x) == CLOBBER)
11772 return;
11774 len = GET_RTX_LENGTH (code);
11775 fmt = GET_RTX_FORMAT (code);
11777 for (i = 0; i < len; i++)
11779 if (fmt[i] == 'E')
11781 int j;
11782 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11783 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11784 to_insn, pnotes);
11786 else if (fmt[i] == 'e')
11787 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11791 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11792 pattern of an insn. X must be a REG. */
11794 static int
11795 reg_bitfield_target_p (rtx x, rtx body)
11797 int i;
11799 if (GET_CODE (body) == SET)
11801 rtx dest = SET_DEST (body);
11802 rtx target;
11803 unsigned int regno, tregno, endregno, endtregno;
11805 if (GET_CODE (dest) == ZERO_EXTRACT)
11806 target = XEXP (dest, 0);
11807 else if (GET_CODE (dest) == STRICT_LOW_PART)
11808 target = SUBREG_REG (XEXP (dest, 0));
11809 else
11810 return 0;
11812 if (GET_CODE (target) == SUBREG)
11813 target = SUBREG_REG (target);
11815 if (!REG_P (target))
11816 return 0;
11818 tregno = REGNO (target), regno = REGNO (x);
11819 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11820 return target == x;
11822 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11823 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11825 return endregno > tregno && regno < endtregno;
11828 else if (GET_CODE (body) == PARALLEL)
11829 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11830 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11831 return 1;
11833 return 0;
11836 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11837 as appropriate. I3 and I2 are the insns resulting from the combination
11838 insns including FROM (I2 may be zero).
11840 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11841 not need REG_DEAD notes because they are being substituted for. This
11842 saves searching in the most common cases.
11844 Each note in the list is either ignored or placed on some insns, depending
11845 on the type of note. */
11847 static void
11848 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11849 rtx elim_i1)
11851 rtx note, next_note;
11852 rtx tem;
11854 for (note = notes; note; note = next_note)
11856 rtx place = 0, place2 = 0;
11858 next_note = XEXP (note, 1);
11859 switch (REG_NOTE_KIND (note))
11861 case REG_BR_PROB:
11862 case REG_BR_PRED:
11863 /* Doesn't matter much where we put this, as long as it's somewhere.
11864 It is preferable to keep these notes on branches, which is most
11865 likely to be i3. */
11866 place = i3;
11867 break;
11869 case REG_VALUE_PROFILE:
11870 /* Just get rid of this note, as it is unused later anyway. */
11871 break;
11873 case REG_NON_LOCAL_GOTO:
11874 if (JUMP_P (i3))
11875 place = i3;
11876 else
11878 gcc_assert (i2 && JUMP_P (i2));
11879 place = i2;
11881 break;
11883 case REG_EH_REGION:
11884 /* These notes must remain with the call or trapping instruction. */
11885 if (CALL_P (i3))
11886 place = i3;
11887 else if (i2 && CALL_P (i2))
11888 place = i2;
11889 else
11891 gcc_assert (flag_non_call_exceptions);
11892 if (may_trap_p (i3))
11893 place = i3;
11894 else if (i2 && may_trap_p (i2))
11895 place = i2;
11896 /* ??? Otherwise assume we've combined things such that we
11897 can now prove that the instructions can't trap. Drop the
11898 note in this case. */
11900 break;
11902 case REG_NORETURN:
11903 case REG_SETJMP:
11904 /* These notes must remain with the call. It should not be
11905 possible for both I2 and I3 to be a call. */
11906 if (CALL_P (i3))
11907 place = i3;
11908 else
11910 gcc_assert (i2 && CALL_P (i2));
11911 place = i2;
11913 break;
11915 case REG_UNUSED:
11916 /* Any clobbers for i3 may still exist, and so we must process
11917 REG_UNUSED notes from that insn.
11919 Any clobbers from i2 or i1 can only exist if they were added by
11920 recog_for_combine. In that case, recog_for_combine created the
11921 necessary REG_UNUSED notes. Trying to keep any original
11922 REG_UNUSED notes from these insns can cause incorrect output
11923 if it is for the same register as the original i3 dest.
11924 In that case, we will notice that the register is set in i3,
11925 and then add a REG_UNUSED note for the destination of i3, which
11926 is wrong. However, it is possible to have REG_UNUSED notes from
11927 i2 or i1 for register which were both used and clobbered, so
11928 we keep notes from i2 or i1 if they will turn into REG_DEAD
11929 notes. */
11931 /* If this register is set or clobbered in I3, put the note there
11932 unless there is one already. */
11933 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11935 if (from_insn != i3)
11936 break;
11938 if (! (REG_P (XEXP (note, 0))
11939 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11940 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11941 place = i3;
11943 /* Otherwise, if this register is used by I3, then this register
11944 now dies here, so we must put a REG_DEAD note here unless there
11945 is one already. */
11946 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11947 && ! (REG_P (XEXP (note, 0))
11948 ? find_regno_note (i3, REG_DEAD,
11949 REGNO (XEXP (note, 0)))
11950 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11952 PUT_REG_NOTE_KIND (note, REG_DEAD);
11953 place = i3;
11955 break;
11957 case REG_EQUAL:
11958 case REG_EQUIV:
11959 case REG_NOALIAS:
11960 /* These notes say something about results of an insn. We can
11961 only support them if they used to be on I3 in which case they
11962 remain on I3. Otherwise they are ignored.
11964 If the note refers to an expression that is not a constant, we
11965 must also ignore the note since we cannot tell whether the
11966 equivalence is still true. It might be possible to do
11967 slightly better than this (we only have a problem if I2DEST
11968 or I1DEST is present in the expression), but it doesn't
11969 seem worth the trouble. */
11971 if (from_insn == i3
11972 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11973 place = i3;
11974 break;
11976 case REG_INC:
11977 case REG_NO_CONFLICT:
11978 /* These notes say something about how a register is used. They must
11979 be present on any use of the register in I2 or I3. */
11980 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11981 place = i3;
11983 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11985 if (place)
11986 place2 = i2;
11987 else
11988 place = i2;
11990 break;
11992 case REG_LABEL:
11993 /* This can show up in several ways -- either directly in the
11994 pattern, or hidden off in the constant pool with (or without?)
11995 a REG_EQUAL note. */
11996 /* ??? Ignore the without-reg_equal-note problem for now. */
11997 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11998 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11999 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12000 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12001 place = i3;
12003 if (i2
12004 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12005 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12006 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12007 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12009 if (place)
12010 place2 = i2;
12011 else
12012 place = i2;
12015 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12016 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12017 if (place && JUMP_P (place))
12019 rtx label = JUMP_LABEL (place);
12021 if (!label)
12022 JUMP_LABEL (place) = XEXP (note, 0);
12023 else
12025 gcc_assert (label == XEXP (note, 0));
12026 if (LABEL_P (label))
12027 LABEL_NUSES (label)--;
12029 place = 0;
12031 if (place2 && JUMP_P (place2))
12033 rtx label = JUMP_LABEL (place2);
12035 if (!label)
12036 JUMP_LABEL (place2) = XEXP (note, 0);
12037 else
12039 gcc_assert (label == XEXP (note, 0));
12040 if (LABEL_P (label))
12041 LABEL_NUSES (label)--;
12043 place2 = 0;
12045 break;
12047 case REG_NONNEG:
12048 /* This note says something about the value of a register prior
12049 to the execution of an insn. It is too much trouble to see
12050 if the note is still correct in all situations. It is better
12051 to simply delete it. */
12052 break;
12054 case REG_RETVAL:
12055 /* If the insn previously containing this note still exists,
12056 put it back where it was. Otherwise move it to the previous
12057 insn. Adjust the corresponding REG_LIBCALL note. */
12058 if (!NOTE_P (from_insn))
12059 place = from_insn;
12060 else
12062 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12063 place = prev_real_insn (from_insn);
12064 if (tem && place)
12065 XEXP (tem, 0) = place;
12066 /* If we're deleting the last remaining instruction of a
12067 libcall sequence, don't add the notes. */
12068 else if (XEXP (note, 0) == from_insn)
12069 tem = place = 0;
12070 /* Don't add the dangling REG_RETVAL note. */
12071 else if (! tem)
12072 place = 0;
12074 break;
12076 case REG_LIBCALL:
12077 /* This is handled similarly to REG_RETVAL. */
12078 if (!NOTE_P (from_insn))
12079 place = from_insn;
12080 else
12082 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12083 place = next_real_insn (from_insn);
12084 if (tem && place)
12085 XEXP (tem, 0) = place;
12086 /* If we're deleting the last remaining instruction of a
12087 libcall sequence, don't add the notes. */
12088 else if (XEXP (note, 0) == from_insn)
12089 tem = place = 0;
12090 /* Don't add the dangling REG_LIBCALL note. */
12091 else if (! tem)
12092 place = 0;
12094 break;
12096 case REG_DEAD:
12097 /* If the register is used as an input in I3, it dies there.
12098 Similarly for I2, if it is nonzero and adjacent to I3.
12100 If the register is not used as an input in either I3 or I2
12101 and it is not one of the registers we were supposed to eliminate,
12102 there are two possibilities. We might have a non-adjacent I2
12103 or we might have somehow eliminated an additional register
12104 from a computation. For example, we might have had A & B where
12105 we discover that B will always be zero. In this case we will
12106 eliminate the reference to A.
12108 In both cases, we must search to see if we can find a previous
12109 use of A and put the death note there. */
12111 if (from_insn
12112 && CALL_P (from_insn)
12113 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12114 place = from_insn;
12115 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12116 place = i3;
12117 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12118 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12119 place = i2;
12121 if (place == 0
12122 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12123 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12124 break;
12126 if (place == 0)
12128 basic_block bb = this_basic_block;
12130 /* You might think you could search back from FROM_INSN
12131 rather than from I3, but combine tries to split invalid
12132 combined instructions. This can result in the old I2
12133 or I1 moving later in the insn sequence. */
12134 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12136 if (! INSN_P (tem))
12138 if (tem == BB_HEAD (bb))
12139 break;
12140 continue;
12143 /* If the register is being set at TEM, see if that is all
12144 TEM is doing. If so, delete TEM. Otherwise, make this
12145 into a REG_UNUSED note instead. Don't delete sets to
12146 global register vars. */
12147 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12148 || !global_regs[REGNO (XEXP (note, 0))])
12149 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12151 rtx set = single_set (tem);
12152 rtx inner_dest = 0;
12153 #ifdef HAVE_cc0
12154 rtx cc0_setter = NULL_RTX;
12155 #endif
12157 if (set != 0)
12158 for (inner_dest = SET_DEST (set);
12159 (GET_CODE (inner_dest) == STRICT_LOW_PART
12160 || GET_CODE (inner_dest) == SUBREG
12161 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12162 inner_dest = XEXP (inner_dest, 0))
12165 /* Verify that it was the set, and not a clobber that
12166 modified the register.
12168 CC0 targets must be careful to maintain setter/user
12169 pairs. If we cannot delete the setter due to side
12170 effects, mark the user with an UNUSED note instead
12171 of deleting it. */
12173 if (set != 0 && ! side_effects_p (SET_SRC (set))
12174 && rtx_equal_p (XEXP (note, 0), inner_dest)
12175 #ifdef HAVE_cc0
12176 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12177 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12178 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12179 #endif
12182 /* Move the notes and links of TEM elsewhere.
12183 This might delete other dead insns recursively.
12184 First set the pattern to something that won't use
12185 any register. */
12186 rtx old_notes = REG_NOTES (tem);
12188 PATTERN (tem) = pc_rtx;
12189 REG_NOTES (tem) = NULL;
12191 distribute_notes (old_notes, tem, tem, NULL_RTX,
12192 NULL_RTX, NULL_RTX);
12193 distribute_links (LOG_LINKS (tem));
12195 SET_INSN_DELETED (tem);
12197 #ifdef HAVE_cc0
12198 /* Delete the setter too. */
12199 if (cc0_setter)
12201 PATTERN (cc0_setter) = pc_rtx;
12202 old_notes = REG_NOTES (cc0_setter);
12203 REG_NOTES (cc0_setter) = NULL;
12205 distribute_notes (old_notes, cc0_setter,
12206 cc0_setter, NULL_RTX,
12207 NULL_RTX, NULL_RTX);
12208 distribute_links (LOG_LINKS (cc0_setter));
12210 SET_INSN_DELETED (cc0_setter);
12212 #endif
12214 else
12216 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12218 /* If there isn't already a REG_UNUSED note, put one
12219 here. Do not place a REG_DEAD note, even if
12220 the register is also used here; that would not
12221 match the algorithm used in lifetime analysis
12222 and can cause the consistency check in the
12223 scheduler to fail. */
12224 if (! find_regno_note (tem, REG_UNUSED,
12225 REGNO (XEXP (note, 0))))
12226 place = tem;
12227 break;
12230 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12231 || (CALL_P (tem)
12232 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12234 /* This may not be the correct place for the death
12235 note if FROM_INSN is before TEM, and the reg is
12236 set between FROM_INSN and TEM. The reg might
12237 die two or more times. An existing death note
12238 means we are looking at the wrong live range. */
12239 if (from_insn
12240 && INSN_CUID (from_insn) < INSN_CUID (tem)
12241 && find_regno_note (tem, REG_DEAD,
12242 REGNO (XEXP (note, 0))))
12244 tem = from_insn;
12245 if (tem == BB_HEAD (bb))
12246 break;
12247 continue;
12250 place = tem;
12252 /* If we are doing a 3->2 combination, and we have a
12253 register which formerly died in i3 and was not used
12254 by i2, which now no longer dies in i3 and is used in
12255 i2 but does not die in i2, and place is between i2
12256 and i3, then we may need to move a link from place to
12257 i2. */
12258 if (i2 && INSN_UID (place) <= max_uid_cuid
12259 && INSN_CUID (place) > INSN_CUID (i2)
12260 && from_insn
12261 && INSN_CUID (from_insn) > INSN_CUID (i2)
12262 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12264 rtx links = LOG_LINKS (place);
12265 LOG_LINKS (place) = 0;
12266 distribute_links (links);
12268 break;
12271 if (tem == BB_HEAD (bb))
12272 break;
12275 /* We haven't found an insn for the death note and it
12276 is still a REG_DEAD note, but we have hit the beginning
12277 of the block. If the existing life info says the reg
12278 was dead, there's nothing left to do. Otherwise, we'll
12279 need to do a global life update after combine. */
12280 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12281 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12282 REGNO (XEXP (note, 0))))
12283 SET_BIT (refresh_blocks, this_basic_block->index);
12286 /* If the register is set or already dead at PLACE, we needn't do
12287 anything with this note if it is still a REG_DEAD note.
12288 We check here if it is set at all, not if is it totally replaced,
12289 which is what `dead_or_set_p' checks, so also check for it being
12290 set partially. */
12292 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12294 unsigned int regno = REGNO (XEXP (note, 0));
12296 /* Similarly, if the instruction on which we want to place
12297 the note is a noop, we'll need do a global live update
12298 after we remove them in delete_noop_moves. */
12299 if (noop_move_p (place))
12300 SET_BIT (refresh_blocks, this_basic_block->index);
12302 if (dead_or_set_p (place, XEXP (note, 0))
12303 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12305 /* Unless the register previously died in PLACE, clear
12306 last_death. [I no longer understand why this is
12307 being done.] */
12308 if (reg_stat[regno].last_death != place)
12309 reg_stat[regno].last_death = 0;
12310 place = 0;
12312 else
12313 reg_stat[regno].last_death = place;
12315 /* If this is a death note for a hard reg that is occupying
12316 multiple registers, ensure that we are still using all
12317 parts of the object. If we find a piece of the object
12318 that is unused, we must arrange for an appropriate REG_DEAD
12319 note to be added for it. However, we can't just emit a USE
12320 and tag the note to it, since the register might actually
12321 be dead; so we recourse, and the recursive call then finds
12322 the previous insn that used this register. */
12324 if (place && regno < FIRST_PSEUDO_REGISTER
12325 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12327 unsigned int endregno
12328 = regno + hard_regno_nregs[regno]
12329 [GET_MODE (XEXP (note, 0))];
12330 int all_used = 1;
12331 unsigned int i;
12333 for (i = regno; i < endregno; i++)
12334 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12335 && ! find_regno_fusage (place, USE, i))
12336 || dead_or_set_regno_p (place, i))
12337 all_used = 0;
12339 if (! all_used)
12341 /* Put only REG_DEAD notes for pieces that are
12342 not already dead or set. */
12344 for (i = regno; i < endregno;
12345 i += hard_regno_nregs[i][reg_raw_mode[i]])
12347 rtx piece = regno_reg_rtx[i];
12348 basic_block bb = this_basic_block;
12350 if (! dead_or_set_p (place, piece)
12351 && ! reg_bitfield_target_p (piece,
12352 PATTERN (place)))
12354 rtx new_note
12355 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12357 distribute_notes (new_note, place, place,
12358 NULL_RTX, NULL_RTX, NULL_RTX);
12360 else if (! refers_to_regno_p (i, i + 1,
12361 PATTERN (place), 0)
12362 && ! find_regno_fusage (place, USE, i))
12363 for (tem = PREV_INSN (place); ;
12364 tem = PREV_INSN (tem))
12366 if (! INSN_P (tem))
12368 if (tem == BB_HEAD (bb))
12370 SET_BIT (refresh_blocks,
12371 this_basic_block->index);
12372 break;
12374 continue;
12376 if (dead_or_set_p (tem, piece)
12377 || reg_bitfield_target_p (piece,
12378 PATTERN (tem)))
12380 REG_NOTES (tem)
12381 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12382 REG_NOTES (tem));
12383 break;
12389 place = 0;
12393 break;
12395 default:
12396 /* Any other notes should not be present at this point in the
12397 compilation. */
12398 gcc_unreachable ();
12401 if (place)
12403 XEXP (note, 1) = REG_NOTES (place);
12404 REG_NOTES (place) = note;
12406 else if ((REG_NOTE_KIND (note) == REG_DEAD
12407 || REG_NOTE_KIND (note) == REG_UNUSED)
12408 && REG_P (XEXP (note, 0)))
12409 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12411 if (place2)
12413 if ((REG_NOTE_KIND (note) == REG_DEAD
12414 || REG_NOTE_KIND (note) == REG_UNUSED)
12415 && REG_P (XEXP (note, 0)))
12416 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12418 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12419 REG_NOTE_KIND (note),
12420 XEXP (note, 0),
12421 REG_NOTES (place2));
12426 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12427 I3, I2, and I1 to new locations. This is also called to add a link
12428 pointing at I3 when I3's destination is changed. */
12430 static void
12431 distribute_links (rtx links)
12433 rtx link, next_link;
12435 for (link = links; link; link = next_link)
12437 rtx place = 0;
12438 rtx insn;
12439 rtx set, reg;
12441 next_link = XEXP (link, 1);
12443 /* If the insn that this link points to is a NOTE or isn't a single
12444 set, ignore it. In the latter case, it isn't clear what we
12445 can do other than ignore the link, since we can't tell which
12446 register it was for. Such links wouldn't be used by combine
12447 anyway.
12449 It is not possible for the destination of the target of the link to
12450 have been changed by combine. The only potential of this is if we
12451 replace I3, I2, and I1 by I3 and I2. But in that case the
12452 destination of I2 also remains unchanged. */
12454 if (NOTE_P (XEXP (link, 0))
12455 || (set = single_set (XEXP (link, 0))) == 0)
12456 continue;
12458 reg = SET_DEST (set);
12459 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12460 || GET_CODE (reg) == STRICT_LOW_PART)
12461 reg = XEXP (reg, 0);
12463 /* A LOG_LINK is defined as being placed on the first insn that uses
12464 a register and points to the insn that sets the register. Start
12465 searching at the next insn after the target of the link and stop
12466 when we reach a set of the register or the end of the basic block.
12468 Note that this correctly handles the link that used to point from
12469 I3 to I2. Also note that not much searching is typically done here
12470 since most links don't point very far away. */
12472 for (insn = NEXT_INSN (XEXP (link, 0));
12473 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12474 || BB_HEAD (this_basic_block->next_bb) != insn));
12475 insn = NEXT_INSN (insn))
12476 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12478 if (reg_referenced_p (reg, PATTERN (insn)))
12479 place = insn;
12480 break;
12482 else if (CALL_P (insn)
12483 && find_reg_fusage (insn, USE, reg))
12485 place = insn;
12486 break;
12488 else if (INSN_P (insn) && reg_set_p (reg, insn))
12489 break;
12491 /* If we found a place to put the link, place it there unless there
12492 is already a link to the same insn as LINK at that point. */
12494 if (place)
12496 rtx link2;
12498 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12499 if (XEXP (link2, 0) == XEXP (link, 0))
12500 break;
12502 if (link2 == 0)
12504 XEXP (link, 1) = LOG_LINKS (place);
12505 LOG_LINKS (place) = link;
12507 /* Set added_links_insn to the earliest insn we added a
12508 link to. */
12509 if (added_links_insn == 0
12510 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12511 added_links_insn = place;
12517 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12518 Check whether the expression pointer to by LOC is a register or
12519 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12520 Otherwise return zero. */
12522 static int
12523 unmentioned_reg_p_1 (rtx *loc, void *expr)
12525 rtx x = *loc;
12527 if (x != NULL_RTX
12528 && (REG_P (x) || MEM_P (x))
12529 && ! reg_mentioned_p (x, (rtx) expr))
12530 return 1;
12531 return 0;
12534 /* Check for any register or memory mentioned in EQUIV that is not
12535 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12536 of EXPR where some registers may have been replaced by constants. */
12538 static bool
12539 unmentioned_reg_p (rtx equiv, rtx expr)
12541 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12544 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12546 static int
12547 insn_cuid (rtx insn)
12549 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12550 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12551 insn = NEXT_INSN (insn);
12553 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12555 return INSN_CUID (insn);
12558 void
12559 dump_combine_stats (FILE *file)
12561 fprintf
12562 (file,
12563 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12564 combine_attempts, combine_merges, combine_extras, combine_successes);
12567 void
12568 dump_combine_total_stats (FILE *file)
12570 fprintf
12571 (file,
12572 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12573 total_attempts, total_merges, total_extras, total_successes);
12577 static bool
12578 gate_handle_combine (void)
12580 return (optimize > 0);
12583 /* Try combining insns through substitution. */
12584 static unsigned int
12585 rest_of_handle_combine (void)
12587 int rebuild_jump_labels_after_combine
12588 = combine_instructions (get_insns (), max_reg_num ());
12590 /* Combining insns may have turned an indirect jump into a
12591 direct jump. Rebuild the JUMP_LABEL fields of jumping
12592 instructions. */
12593 if (rebuild_jump_labels_after_combine)
12595 timevar_push (TV_JUMP);
12596 rebuild_jump_labels (get_insns ());
12597 timevar_pop (TV_JUMP);
12599 delete_dead_jumptables ();
12600 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12602 return 0;
12605 struct tree_opt_pass pass_combine =
12607 "combine", /* name */
12608 gate_handle_combine, /* gate */
12609 rest_of_handle_combine, /* execute */
12610 NULL, /* sub */
12611 NULL, /* next */
12612 0, /* static_pass_number */
12613 TV_COMBINE, /* tv_id */
12614 0, /* properties_required */
12615 0, /* properties_provided */
12616 0, /* properties_destroyed */
12617 0, /* todo_flags_start */
12618 TODO_dump_func |
12619 TODO_ggc_collect, /* todo_flags_finish */
12620 'c' /* letter */