Merge from trunk @ 138209
[official-gcc.git] / libgfortran / generated / matmul_r8.c
bloba359ffd8fd3d51d7c98119adeab040579bf8b37a
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
37 #if defined (HAVE_GFC_REAL_8)
39 /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
40 passed to us by the front-end, in which case we'll call it for large
41 matrices. */
43 typedef void (*blas_call)(const char *, const char *, const int *, const int *,
44 const int *, const GFC_REAL_8 *, const GFC_REAL_8 *,
45 const int *, const GFC_REAL_8 *, const int *,
46 const GFC_REAL_8 *, GFC_REAL_8 *, const int *,
47 int, int);
49 /* The order of loops is different in the case of plain matrix
50 multiplication C=MATMUL(A,B), and in the frequent special case where
51 the argument A is the temporary result of a TRANSPOSE intrinsic:
52 C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
53 looking at their strides.
55 The equivalent Fortran pseudo-code is:
57 DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
58 IF (.NOT.IS_TRANSPOSED(A)) THEN
59 C = 0
60 DO J=1,N
61 DO K=1,COUNT
62 DO I=1,M
63 C(I,J) = C(I,J)+A(I,K)*B(K,J)
64 ELSE
65 DO J=1,N
66 DO I=1,M
67 S = 0
68 DO K=1,COUNT
69 S = S+A(I,K)*B(K,J)
70 C(I,J) = S
71 ENDIF
74 /* If try_blas is set to a nonzero value, then the matmul function will
75 see if there is a way to perform the matrix multiplication by a call
76 to the BLAS gemm function. */
78 extern void matmul_r8 (gfc_array_r8 * const restrict retarray,
79 gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
80 int blas_limit, blas_call gemm);
81 export_proto(matmul_r8);
83 void
84 matmul_r8 (gfc_array_r8 * const restrict retarray,
85 gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
86 int blas_limit, blas_call gemm)
88 const GFC_REAL_8 * restrict abase;
89 const GFC_REAL_8 * restrict bbase;
90 GFC_REAL_8 * restrict dest;
92 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
93 index_type x, y, n, count, xcount, ycount;
95 assert (GFC_DESCRIPTOR_RANK (a) == 2
96 || GFC_DESCRIPTOR_RANK (b) == 2);
98 /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
100 Either A or B (but not both) can be rank 1:
102 o One-dimensional argument A is implicitly treated as a row matrix
103 dimensioned [1,count], so xcount=1.
105 o One-dimensional argument B is implicitly treated as a column matrix
106 dimensioned [count, 1], so ycount=1.
109 if (retarray->data == NULL)
111 if (GFC_DESCRIPTOR_RANK (a) == 1)
113 retarray->dim[0].lbound = 0;
114 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
115 retarray->dim[0].stride = 1;
117 else if (GFC_DESCRIPTOR_RANK (b) == 1)
119 retarray->dim[0].lbound = 0;
120 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
121 retarray->dim[0].stride = 1;
123 else
125 retarray->dim[0].lbound = 0;
126 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
127 retarray->dim[0].stride = 1;
129 retarray->dim[1].lbound = 0;
130 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
131 retarray->dim[1].stride = retarray->dim[0].ubound+1;
134 retarray->data
135 = internal_malloc_size (sizeof (GFC_REAL_8) * size0 ((array_t *) retarray));
136 retarray->offset = 0;
138 else if (compile_options.bounds_check)
140 index_type ret_extent, arg_extent;
142 if (GFC_DESCRIPTOR_RANK (a) == 1)
144 arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
145 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
146 if (arg_extent != ret_extent)
147 runtime_error ("Incorrect extent in return array in"
148 " MATMUL intrinsic: is %ld, should be %ld",
149 (long int) ret_extent, (long int) arg_extent);
151 else if (GFC_DESCRIPTOR_RANK (b) == 1)
153 arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
154 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
155 if (arg_extent != ret_extent)
156 runtime_error ("Incorrect extent in return array in"
157 " MATMUL intrinsic: is %ld, should be %ld",
158 (long int) ret_extent, (long int) arg_extent);
160 else
162 arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
163 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
164 if (arg_extent != ret_extent)
165 runtime_error ("Incorrect extent in return array in"
166 " MATMUL intrinsic for dimension 1:"
167 " is %ld, should be %ld",
168 (long int) ret_extent, (long int) arg_extent);
170 arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
171 ret_extent = retarray->dim[1].ubound + 1 - retarray->dim[1].lbound;
172 if (arg_extent != ret_extent)
173 runtime_error ("Incorrect extent in return array in"
174 " MATMUL intrinsic for dimension 2:"
175 " is %ld, should be %ld",
176 (long int) ret_extent, (long int) arg_extent);
181 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
183 /* One-dimensional result may be addressed in the code below
184 either as a row or a column matrix. We want both cases to
185 work. */
186 rxstride = rystride = retarray->dim[0].stride;
188 else
190 rxstride = retarray->dim[0].stride;
191 rystride = retarray->dim[1].stride;
195 if (GFC_DESCRIPTOR_RANK (a) == 1)
197 /* Treat it as a a row matrix A[1,count]. */
198 axstride = a->dim[0].stride;
199 aystride = 1;
201 xcount = 1;
202 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
204 else
206 axstride = a->dim[0].stride;
207 aystride = a->dim[1].stride;
209 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
210 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
213 if (count != b->dim[0].ubound + 1 - b->dim[0].lbound)
215 if (count > 0 || b->dim[0].ubound + 1 - b->dim[0].lbound > 0)
216 runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
219 if (GFC_DESCRIPTOR_RANK (b) == 1)
221 /* Treat it as a column matrix B[count,1] */
222 bxstride = b->dim[0].stride;
224 /* bystride should never be used for 1-dimensional b.
225 in case it is we want it to cause a segfault, rather than
226 an incorrect result. */
227 bystride = 0xDEADBEEF;
228 ycount = 1;
230 else
232 bxstride = b->dim[0].stride;
233 bystride = b->dim[1].stride;
234 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
237 abase = a->data;
238 bbase = b->data;
239 dest = retarray->data;
242 /* Now that everything is set up, we're performing the multiplication
243 itself. */
245 #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
247 if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
248 && (bxstride == 1 || bystride == 1)
249 && (((float) xcount) * ((float) ycount) * ((float) count)
250 > POW3(blas_limit)))
252 const int m = xcount, n = ycount, k = count, ldc = rystride;
253 const GFC_REAL_8 one = 1, zero = 0;
254 const int lda = (axstride == 1) ? aystride : axstride,
255 ldb = (bxstride == 1) ? bystride : bxstride;
257 if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
259 assert (gemm != NULL);
260 gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
261 &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
262 return;
266 if (rxstride == 1 && axstride == 1 && bxstride == 1)
268 const GFC_REAL_8 * restrict bbase_y;
269 GFC_REAL_8 * restrict dest_y;
270 const GFC_REAL_8 * restrict abase_n;
271 GFC_REAL_8 bbase_yn;
273 if (rystride == xcount)
274 memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount));
275 else
277 for (y = 0; y < ycount; y++)
278 for (x = 0; x < xcount; x++)
279 dest[x + y*rystride] = (GFC_REAL_8)0;
282 for (y = 0; y < ycount; y++)
284 bbase_y = bbase + y*bystride;
285 dest_y = dest + y*rystride;
286 for (n = 0; n < count; n++)
288 abase_n = abase + n*aystride;
289 bbase_yn = bbase_y[n];
290 for (x = 0; x < xcount; x++)
292 dest_y[x] += abase_n[x] * bbase_yn;
297 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
299 if (GFC_DESCRIPTOR_RANK (a) != 1)
301 const GFC_REAL_8 *restrict abase_x;
302 const GFC_REAL_8 *restrict bbase_y;
303 GFC_REAL_8 *restrict dest_y;
304 GFC_REAL_8 s;
306 for (y = 0; y < ycount; y++)
308 bbase_y = &bbase[y*bystride];
309 dest_y = &dest[y*rystride];
310 for (x = 0; x < xcount; x++)
312 abase_x = &abase[x*axstride];
313 s = (GFC_REAL_8) 0;
314 for (n = 0; n < count; n++)
315 s += abase_x[n] * bbase_y[n];
316 dest_y[x] = s;
320 else
322 const GFC_REAL_8 *restrict bbase_y;
323 GFC_REAL_8 s;
325 for (y = 0; y < ycount; y++)
327 bbase_y = &bbase[y*bystride];
328 s = (GFC_REAL_8) 0;
329 for (n = 0; n < count; n++)
330 s += abase[n*axstride] * bbase_y[n];
331 dest[y*rystride] = s;
335 else if (axstride < aystride)
337 for (y = 0; y < ycount; y++)
338 for (x = 0; x < xcount; x++)
339 dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
341 for (y = 0; y < ycount; y++)
342 for (n = 0; n < count; n++)
343 for (x = 0; x < xcount; x++)
344 /* dest[x,y] += a[x,n] * b[n,y] */
345 dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
347 else if (GFC_DESCRIPTOR_RANK (a) == 1)
349 const GFC_REAL_8 *restrict bbase_y;
350 GFC_REAL_8 s;
352 for (y = 0; y < ycount; y++)
354 bbase_y = &bbase[y*bystride];
355 s = (GFC_REAL_8) 0;
356 for (n = 0; n < count; n++)
357 s += abase[n*axstride] * bbase_y[n*bxstride];
358 dest[y*rxstride] = s;
361 else
363 const GFC_REAL_8 *restrict abase_x;
364 const GFC_REAL_8 *restrict bbase_y;
365 GFC_REAL_8 *restrict dest_y;
366 GFC_REAL_8 s;
368 for (y = 0; y < ycount; y++)
370 bbase_y = &bbase[y*bystride];
371 dest_y = &dest[y*rystride];
372 for (x = 0; x < xcount; x++)
374 abase_x = &abase[x*axstride];
375 s = (GFC_REAL_8) 0;
376 for (n = 0; n < count; n++)
377 s += abase_x[n*aystride] * bbase_y[n*bxstride];
378 dest_y[x*rxstride] = s;
384 #endif