Merge from trunk @ 138209
[official-gcc.git] / gcc / tree-scalar-evolution.c
blob67fcd08dda0de984413c7d0272af2d80b3d0cc9c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2a: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 2b: Multivariate chains of recurrences.
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (loop_1, loop_3, "j + k"). The result of this
179 call is {{0, +, 1}_1, +, 1}_2.
181 Example 3: Higher degree polynomials.
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
198 Example 4: Lucas, Fibonacci, or mixers in general.
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
207 a -> (1, c)_1
208 c -> {3, +, a}_1
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
219 Example 5: Flip-flops, or exchangers.
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
228 a -> (1, c)_1
229 c -> (3, a)_1
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
234 a -> |1, 3|_1
235 c -> |3, 1|_1
237 This transformation is not yet implemented.
239 Further readings:
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "real.h"
265 /* These RTL headers are needed for basic-block.h. */
266 #include "rtl.h"
267 #include "basic-block.h"
268 #include "diagnostic.h"
269 #include "tree-flow.h"
270 #include "tree-dump.h"
271 #include "timevar.h"
272 #include "cfgloop.h"
273 #include "tree-chrec.h"
274 #include "tree-scalar-evolution.h"
275 #include "tree-pass.h"
276 #include "flags.h"
277 #include "params.h"
279 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
281 /* The cached information about a ssa name VAR, claiming that inside LOOP,
282 the value of VAR can be expressed as CHREC. */
284 struct scev_info_str GTY(())
286 tree var;
287 tree chrec;
290 /* Counters for the scev database. */
291 static unsigned nb_set_scev = 0;
292 static unsigned nb_get_scev = 0;
294 /* The following trees are unique elements. Thus the comparison of
295 another element to these elements should be done on the pointer to
296 these trees, and not on their value. */
298 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
299 tree chrec_not_analyzed_yet;
301 /* Reserved to the cases where the analyzer has detected an
302 undecidable property at compile time. */
303 tree chrec_dont_know;
305 /* When the analyzer has detected that a property will never
306 happen, then it qualifies it with chrec_known. */
307 tree chrec_known;
309 static bitmap already_instantiated;
311 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
314 /* Constructs a new SCEV_INFO_STR structure. */
316 static inline struct scev_info_str *
317 new_scev_info_str (tree var)
319 struct scev_info_str *res;
321 res = GGC_NEW (struct scev_info_str);
322 res->var = var;
323 res->chrec = chrec_not_analyzed_yet;
325 return res;
328 /* Computes a hash function for database element ELT. */
330 static hashval_t
331 hash_scev_info (const void *elt)
333 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
336 /* Compares database elements E1 and E2. */
338 static int
339 eq_scev_info (const void *e1, const void *e2)
341 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
342 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
344 return elt1->var == elt2->var;
347 /* Deletes database element E. */
349 static void
350 del_scev_info (void *e)
352 ggc_free (e);
355 /* Get the index corresponding to VAR in the current LOOP. If
356 it's the first time we ask for this VAR, then we return
357 chrec_not_analyzed_yet for this VAR and return its index. */
359 static tree *
360 find_var_scev_info (tree var)
362 struct scev_info_str *res;
363 struct scev_info_str tmp;
364 PTR *slot;
366 tmp.var = var;
367 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
369 if (!*slot)
370 *slot = new_scev_info_str (var);
371 res = (struct scev_info_str *) *slot;
373 return &res->chrec;
376 /* Return true when CHREC contains symbolic names defined in
377 LOOP_NB. */
379 bool
380 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
382 int i, n;
384 if (chrec == NULL_TREE)
385 return false;
387 if (is_gimple_min_invariant (chrec))
388 return false;
390 if (TREE_CODE (chrec) == VAR_DECL
391 || TREE_CODE (chrec) == PARM_DECL
392 || TREE_CODE (chrec) == FUNCTION_DECL
393 || TREE_CODE (chrec) == LABEL_DECL
394 || TREE_CODE (chrec) == RESULT_DECL
395 || TREE_CODE (chrec) == FIELD_DECL)
396 return true;
398 if (TREE_CODE (chrec) == SSA_NAME)
400 gimple def = SSA_NAME_DEF_STMT (chrec);
401 struct loop *def_loop = loop_containing_stmt (def);
402 struct loop *loop = get_loop (loop_nb);
404 if (def_loop == NULL)
405 return false;
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
410 return false;
413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
416 loop_nb))
417 return true;
418 return false;
421 /* Return true when PHI is a loop-phi-node. */
423 static bool
424 loop_phi_node_p (gimple phi)
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
433 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
438 Example:
440 | for (j = 0; j < 100; j++)
442 | for (k = 0; k < 100; k++)
444 | i = k + j; - Here the value of i is a function of j, k.
446 | ... = i - Here the value of i is a function of j.
448 | ... = i - Here the value of i is a scalar.
450 Example:
452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
461 | i_1 = i_0 + 20
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
465 EVOLUTION_FN = {i_0, +, 2}_1.
468 static tree
469 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
471 bool val = false;
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
483 tree nb_iter = number_of_latch_executions (inner_loop);
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
489 tree res;
491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
495 /* Continue the computation until ending on a parent of LOOP. */
496 return compute_overall_effect_of_inner_loop (loop, res);
499 else
500 return evolution_fn;
503 /* If the evolution function is an invariant, there is nothing to do. */
504 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
505 return evolution_fn;
507 else
508 return chrec_dont_know;
511 /* Determine whether the CHREC is always positive/negative. If the expression
512 cannot be statically analyzed, return false, otherwise set the answer into
513 VALUE. */
515 bool
516 chrec_is_positive (tree chrec, bool *value)
518 bool value0, value1, value2;
519 tree end_value, nb_iter;
521 switch (TREE_CODE (chrec))
523 case POLYNOMIAL_CHREC:
524 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
525 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
526 return false;
528 /* FIXME -- overflows. */
529 if (value0 == value1)
531 *value = value0;
532 return true;
535 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
536 and the proof consists in showing that the sign never
537 changes during the execution of the loop, from 0 to
538 loop->nb_iterations. */
539 if (!evolution_function_is_affine_p (chrec))
540 return false;
542 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
543 if (chrec_contains_undetermined (nb_iter))
544 return false;
546 #if 0
547 /* TODO -- If the test is after the exit, we may decrease the number of
548 iterations by one. */
549 if (after_exit)
550 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
551 #endif
553 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
555 if (!chrec_is_positive (end_value, &value2))
556 return false;
558 *value = value0;
559 return value0 == value1;
561 case INTEGER_CST:
562 *value = (tree_int_cst_sgn (chrec) == 1);
563 return true;
565 default:
566 return false;
570 /* Associate CHREC to SCALAR. */
572 static void
573 set_scalar_evolution (tree scalar, tree chrec)
575 tree *scalar_info;
577 if (TREE_CODE (scalar) != SSA_NAME)
578 return;
580 scalar_info = find_var_scev_info (scalar);
582 if (dump_file)
584 if (dump_flags & TDF_DETAILS)
586 fprintf (dump_file, "(set_scalar_evolution \n");
587 fprintf (dump_file, " (scalar = ");
588 print_generic_expr (dump_file, scalar, 0);
589 fprintf (dump_file, ")\n (scalar_evolution = ");
590 print_generic_expr (dump_file, chrec, 0);
591 fprintf (dump_file, "))\n");
593 if (dump_flags & TDF_STATS)
594 nb_set_scev++;
597 *scalar_info = chrec;
600 /* Retrieve the chrec associated to SCALAR in the LOOP. */
602 static tree
603 get_scalar_evolution (tree scalar)
605 tree res;
607 if (dump_file)
609 if (dump_flags & TDF_DETAILS)
611 fprintf (dump_file, "(get_scalar_evolution \n");
612 fprintf (dump_file, " (scalar = ");
613 print_generic_expr (dump_file, scalar, 0);
614 fprintf (dump_file, ")\n");
616 if (dump_flags & TDF_STATS)
617 nb_get_scev++;
620 switch (TREE_CODE (scalar))
622 case SSA_NAME:
623 res = *find_var_scev_info (scalar);
624 break;
626 case REAL_CST:
627 case FIXED_CST:
628 case INTEGER_CST:
629 res = scalar;
630 break;
632 default:
633 res = chrec_not_analyzed_yet;
634 break;
637 if (dump_file && (dump_flags & TDF_DETAILS))
639 fprintf (dump_file, " (scalar_evolution = ");
640 print_generic_expr (dump_file, res, 0);
641 fprintf (dump_file, "))\n");
644 return res;
647 /* Helper function for add_to_evolution. Returns the evolution
648 function for an assignment of the form "a = b + c", where "a" and
649 "b" are on the strongly connected component. CHREC_BEFORE is the
650 information that we already have collected up to this point.
651 TO_ADD is the evolution of "c".
653 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
654 evolution the expression TO_ADD, otherwise construct an evolution
655 part for this loop. */
657 static tree
658 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
659 gimple at_stmt)
661 tree type, left, right;
662 struct loop *loop = get_loop (loop_nb), *chloop;
664 switch (TREE_CODE (chrec_before))
666 case POLYNOMIAL_CHREC:
667 chloop = get_chrec_loop (chrec_before);
668 if (chloop == loop
669 || flow_loop_nested_p (chloop, loop))
671 unsigned var;
673 type = chrec_type (chrec_before);
675 /* When there is no evolution part in this loop, build it. */
676 if (chloop != loop)
678 var = loop_nb;
679 left = chrec_before;
680 right = SCALAR_FLOAT_TYPE_P (type)
681 ? build_real (type, dconst0)
682 : build_int_cst (type, 0);
684 else
686 var = CHREC_VARIABLE (chrec_before);
687 left = CHREC_LEFT (chrec_before);
688 right = CHREC_RIGHT (chrec_before);
691 to_add = chrec_convert (type, to_add, at_stmt);
692 right = chrec_convert_rhs (type, right, at_stmt);
693 right = chrec_fold_plus (chrec_type (right), right, to_add);
694 return build_polynomial_chrec (var, left, right);
696 else
698 gcc_assert (flow_loop_nested_p (loop, chloop));
700 /* Search the evolution in LOOP_NB. */
701 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
702 to_add, at_stmt);
703 right = CHREC_RIGHT (chrec_before);
704 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
705 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
706 left, right);
709 default:
710 /* These nodes do not depend on a loop. */
711 if (chrec_before == chrec_dont_know)
712 return chrec_dont_know;
714 left = chrec_before;
715 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
716 return build_polynomial_chrec (loop_nb, left, right);
720 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
721 of LOOP_NB.
723 Description (provided for completeness, for those who read code in
724 a plane, and for my poor 62 bytes brain that would have forgotten
725 all this in the next two or three months):
727 The algorithm of translation of programs from the SSA representation
728 into the chrecs syntax is based on a pattern matching. After having
729 reconstructed the overall tree expression for a loop, there are only
730 two cases that can arise:
732 1. a = loop-phi (init, a + expr)
733 2. a = loop-phi (init, expr)
735 where EXPR is either a scalar constant with respect to the analyzed
736 loop (this is a degree 0 polynomial), or an expression containing
737 other loop-phi definitions (these are higher degree polynomials).
739 Examples:
742 | init = ...
743 | loop_1
744 | a = phi (init, a + 5)
745 | endloop
748 | inita = ...
749 | initb = ...
750 | loop_1
751 | a = phi (inita, 2 * b + 3)
752 | b = phi (initb, b + 1)
753 | endloop
755 For the first case, the semantics of the SSA representation is:
757 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
759 that is, there is a loop index "x" that determines the scalar value
760 of the variable during the loop execution. During the first
761 iteration, the value is that of the initial condition INIT, while
762 during the subsequent iterations, it is the sum of the initial
763 condition with the sum of all the values of EXPR from the initial
764 iteration to the before last considered iteration.
766 For the second case, the semantics of the SSA program is:
768 | a (x) = init, if x = 0;
769 | expr (x - 1), otherwise.
771 The second case corresponds to the PEELED_CHREC, whose syntax is
772 close to the syntax of a loop-phi-node:
774 | phi (init, expr) vs. (init, expr)_x
776 The proof of the translation algorithm for the first case is a
777 proof by structural induction based on the degree of EXPR.
779 Degree 0:
780 When EXPR is a constant with respect to the analyzed loop, or in
781 other words when EXPR is a polynomial of degree 0, the evolution of
782 the variable A in the loop is an affine function with an initial
783 condition INIT, and a step EXPR. In order to show this, we start
784 from the semantics of the SSA representation:
786 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
788 and since "expr (j)" is a constant with respect to "j",
790 f (x) = init + x * expr
792 Finally, based on the semantics of the pure sum chrecs, by
793 identification we get the corresponding chrecs syntax:
795 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
796 f (x) -> {init, +, expr}_x
798 Higher degree:
799 Suppose that EXPR is a polynomial of degree N with respect to the
800 analyzed loop_x for which we have already determined that it is
801 written under the chrecs syntax:
803 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
805 We start from the semantics of the SSA program:
807 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
809 | f (x) = init + \sum_{j = 0}^{x - 1}
810 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
812 | f (x) = init + \sum_{j = 0}^{x - 1}
813 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
815 | f (x) = init + \sum_{k = 0}^{n - 1}
816 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
818 | f (x) = init + \sum_{k = 0}^{n - 1}
819 | (b_k * \binom{x}{k + 1})
821 | f (x) = init + b_0 * \binom{x}{1} + ...
822 | + b_{n-1} * \binom{x}{n}
824 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
825 | + b_{n-1} * \binom{x}{n}
828 And finally from the definition of the chrecs syntax, we identify:
829 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
831 This shows the mechanism that stands behind the add_to_evolution
832 function. An important point is that the use of symbolic
833 parameters avoids the need of an analysis schedule.
835 Example:
837 | inita = ...
838 | initb = ...
839 | loop_1
840 | a = phi (inita, a + 2 + b)
841 | b = phi (initb, b + 1)
842 | endloop
844 When analyzing "a", the algorithm keeps "b" symbolically:
846 | a -> {inita, +, 2 + b}_1
848 Then, after instantiation, the analyzer ends on the evolution:
850 | a -> {inita, +, 2 + initb, +, 1}_1
854 static tree
855 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
856 tree to_add, gimple at_stmt)
858 tree type = chrec_type (to_add);
859 tree res = NULL_TREE;
861 if (to_add == NULL_TREE)
862 return chrec_before;
864 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
865 instantiated at this point. */
866 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
867 /* This should not happen. */
868 return chrec_dont_know;
870 if (dump_file && (dump_flags & TDF_DETAILS))
872 fprintf (dump_file, "(add_to_evolution \n");
873 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
874 fprintf (dump_file, " (chrec_before = ");
875 print_generic_expr (dump_file, chrec_before, 0);
876 fprintf (dump_file, ")\n (to_add = ");
877 print_generic_expr (dump_file, to_add, 0);
878 fprintf (dump_file, ")\n");
881 if (code == MINUS_EXPR)
882 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
883 ? build_real (type, dconstm1)
884 : build_int_cst_type (type, -1));
886 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
888 if (dump_file && (dump_flags & TDF_DETAILS))
890 fprintf (dump_file, " (res = ");
891 print_generic_expr (dump_file, res, 0);
892 fprintf (dump_file, "))\n");
895 return res;
898 /* Helper function. */
900 static inline tree
901 set_nb_iterations_in_loop (struct loop *loop,
902 tree res)
904 if (dump_file && (dump_flags & TDF_DETAILS))
906 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
907 print_generic_expr (dump_file, res, 0);
908 fprintf (dump_file, "))\n");
911 loop->nb_iterations = res;
912 return res;
917 /* This section selects the loops that will be good candidates for the
918 scalar evolution analysis. For the moment, greedily select all the
919 loop nests we could analyze. */
921 /* For a loop with a single exit edge, return the COND_EXPR that
922 guards the exit edge. If the expression is too difficult to
923 analyze, then give up. */
925 gimple
926 get_loop_exit_condition (const struct loop *loop)
928 gimple res = NULL;
929 edge exit_edge = single_exit (loop);
931 if (dump_file && (dump_flags & TDF_DETAILS))
932 fprintf (dump_file, "(get_loop_exit_condition \n ");
934 if (exit_edge)
936 gimple stmt;
938 stmt = last_stmt (exit_edge->src);
939 if (gimple_code (stmt) == GIMPLE_COND)
940 res = stmt;
943 if (dump_file && (dump_flags & TDF_DETAILS))
945 print_gimple_stmt (dump_file, res, 0, 0);
946 fprintf (dump_file, ")\n");
949 return res;
952 /* Recursively determine and enqueue the exit conditions for a loop. */
954 static void
955 get_exit_conditions_rec (struct loop *loop,
956 VEC(gimple,heap) **exit_conditions)
958 if (!loop)
959 return;
961 /* Recurse on the inner loops, then on the next (sibling) loops. */
962 get_exit_conditions_rec (loop->inner, exit_conditions);
963 get_exit_conditions_rec (loop->next, exit_conditions);
965 if (single_exit (loop))
967 gimple loop_condition = get_loop_exit_condition (loop);
969 if (loop_condition)
970 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
974 /* Select the candidate loop nests for the analysis. This function
975 initializes the EXIT_CONDITIONS array. */
977 static void
978 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
980 struct loop *function_body = current_loops->tree_root;
982 get_exit_conditions_rec (function_body->inner, exit_conditions);
986 /* Depth first search algorithm. */
988 typedef enum t_bool {
989 t_false,
990 t_true,
991 t_dont_know
992 } t_bool;
995 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
997 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
998 Return true if the strongly connected component has been found. */
1000 static t_bool
1001 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1002 tree type, tree rhs0, enum tree_code code, tree rhs1,
1003 gimple halting_phi, tree *evolution_of_loop, int limit)
1005 t_bool res = t_false;
1006 tree evol;
1008 switch (code)
1010 case POINTER_PLUS_EXPR:
1011 case PLUS_EXPR:
1012 if (TREE_CODE (rhs0) == SSA_NAME)
1014 if (TREE_CODE (rhs1) == SSA_NAME)
1016 /* Match an assignment under the form:
1017 "a = b + c". */
1019 /* We want only assignments of form "name + name" contribute to
1020 LIMIT, as the other cases do not necessarily contribute to
1021 the complexity of the expression. */
1022 limit++;
1024 evol = *evolution_of_loop;
1025 res = follow_ssa_edge
1026 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1028 if (res == t_true)
1029 *evolution_of_loop = add_to_evolution
1030 (loop->num,
1031 chrec_convert (type, evol, at_stmt),
1032 code, rhs1, at_stmt);
1034 else if (res == t_false)
1036 res = follow_ssa_edge
1037 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1038 evolution_of_loop, limit);
1040 if (res == t_true)
1041 *evolution_of_loop = add_to_evolution
1042 (loop->num,
1043 chrec_convert (type, *evolution_of_loop, at_stmt),
1044 code, rhs0, at_stmt);
1046 else if (res == t_dont_know)
1047 *evolution_of_loop = chrec_dont_know;
1050 else if (res == t_dont_know)
1051 *evolution_of_loop = chrec_dont_know;
1054 else
1056 /* Match an assignment under the form:
1057 "a = b + ...". */
1058 res = follow_ssa_edge
1059 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1060 evolution_of_loop, limit);
1061 if (res == t_true)
1062 *evolution_of_loop = add_to_evolution
1063 (loop->num, chrec_convert (type, *evolution_of_loop,
1064 at_stmt),
1065 code, rhs1, at_stmt);
1067 else if (res == t_dont_know)
1068 *evolution_of_loop = chrec_dont_know;
1072 else if (TREE_CODE (rhs1) == SSA_NAME)
1074 /* Match an assignment under the form:
1075 "a = ... + c". */
1076 res = follow_ssa_edge
1077 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1078 evolution_of_loop, limit);
1079 if (res == t_true)
1080 *evolution_of_loop = add_to_evolution
1081 (loop->num, chrec_convert (type, *evolution_of_loop,
1082 at_stmt),
1083 code, rhs0, at_stmt);
1085 else if (res == t_dont_know)
1086 *evolution_of_loop = chrec_dont_know;
1089 else
1090 /* Otherwise, match an assignment under the form:
1091 "a = ... + ...". */
1092 /* And there is nothing to do. */
1093 res = t_false;
1094 break;
1096 case MINUS_EXPR:
1097 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1098 if (TREE_CODE (rhs0) == SSA_NAME)
1100 /* Match an assignment under the form:
1101 "a = b - ...". */
1103 /* We want only assignments of form "name - name" contribute to
1104 LIMIT, as the other cases do not necessarily contribute to
1105 the complexity of the expression. */
1106 if (TREE_CODE (rhs1) == SSA_NAME)
1107 limit++;
1109 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1110 evolution_of_loop, limit);
1111 if (res == t_true)
1112 *evolution_of_loop = add_to_evolution
1113 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1114 MINUS_EXPR, rhs1, at_stmt);
1116 else if (res == t_dont_know)
1117 *evolution_of_loop = chrec_dont_know;
1119 else
1120 /* Otherwise, match an assignment under the form:
1121 "a = ... - ...". */
1122 /* And there is nothing to do. */
1123 res = t_false;
1124 break;
1126 default:
1127 res = t_false;
1130 return res;
1133 /* Follow the ssa edge into the expression EXPR.
1134 Return true if the strongly connected component has been found. */
1136 static t_bool
1137 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1138 gimple halting_phi, tree *evolution_of_loop, int limit)
1140 t_bool res = t_false;
1141 tree rhs0, rhs1;
1142 tree type = TREE_TYPE (expr);
1143 enum tree_code code;
1145 /* The EXPR is one of the following cases:
1146 - an SSA_NAME,
1147 - an INTEGER_CST,
1148 - a PLUS_EXPR,
1149 - a POINTER_PLUS_EXPR,
1150 - a MINUS_EXPR,
1151 - an ASSERT_EXPR,
1152 - other cases are not yet handled. */
1153 code = TREE_CODE (expr);
1154 switch (code)
1156 case NOP_EXPR:
1157 /* This assignment is under the form "a_1 = (cast) rhs. */
1158 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1159 halting_phi, evolution_of_loop, limit);
1160 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1161 break;
1163 case INTEGER_CST:
1164 /* This assignment is under the form "a_1 = 7". */
1165 res = t_false;
1166 break;
1168 case SSA_NAME:
1169 /* This assignment is under the form: "a_1 = b_2". */
1170 res = follow_ssa_edge
1171 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1172 break;
1174 case POINTER_PLUS_EXPR:
1175 case PLUS_EXPR:
1176 case MINUS_EXPR:
1177 /* This case is under the form "rhs0 +- rhs1". */
1178 rhs0 = TREE_OPERAND (expr, 0);
1179 rhs1 = TREE_OPERAND (expr, 1);
1180 STRIP_TYPE_NOPS (rhs0);
1181 STRIP_TYPE_NOPS (rhs1);
1182 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1183 halting_phi, evolution_of_loop, limit);
1185 case ASSERT_EXPR:
1187 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1188 It must be handled as a copy assignment of the form a_1 = a_2. */
1189 tree op0 = ASSERT_EXPR_VAR (expr);
1190 if (TREE_CODE (op0) == SSA_NAME)
1191 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1192 halting_phi, evolution_of_loop, limit);
1193 else
1194 res = t_false;
1195 break;
1199 default:
1200 res = t_false;
1201 break;
1204 return res;
1207 /* Follow the ssa edge into the right hand side of an assignment STMT.
1208 Return true if the strongly connected component has been found. */
1210 static t_bool
1211 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1212 gimple halting_phi, tree *evolution_of_loop, int limit)
1214 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1215 enum tree_code code = gimple_assign_rhs_code (stmt);
1217 switch (get_gimple_rhs_class (code))
1219 case GIMPLE_BINARY_RHS:
1220 return follow_ssa_edge_binary (loop, stmt, type,
1221 gimple_assign_rhs1 (stmt), code,
1222 gimple_assign_rhs2 (stmt),
1223 halting_phi, evolution_of_loop, limit);
1224 case GIMPLE_SINGLE_RHS:
1225 return follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1226 halting_phi, evolution_of_loop, limit);
1227 default:
1228 return t_false;
1232 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1234 static bool
1235 backedge_phi_arg_p (gimple phi, int i)
1237 const_edge e = gimple_phi_arg_edge (phi, i);
1239 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1240 about updating it anywhere, and this should work as well most of the
1241 time. */
1242 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1243 return true;
1245 return false;
1248 /* Helper function for one branch of the condition-phi-node. Return
1249 true if the strongly connected component has been found following
1250 this path. */
1252 static inline t_bool
1253 follow_ssa_edge_in_condition_phi_branch (int i,
1254 struct loop *loop,
1255 gimple condition_phi,
1256 gimple halting_phi,
1257 tree *evolution_of_branch,
1258 tree init_cond, int limit)
1260 tree branch = PHI_ARG_DEF (condition_phi, i);
1261 *evolution_of_branch = chrec_dont_know;
1263 /* Do not follow back edges (they must belong to an irreducible loop, which
1264 we really do not want to worry about). */
1265 if (backedge_phi_arg_p (condition_phi, i))
1266 return t_false;
1268 if (TREE_CODE (branch) == SSA_NAME)
1270 *evolution_of_branch = init_cond;
1271 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1272 evolution_of_branch, limit);
1275 /* This case occurs when one of the condition branches sets
1276 the variable to a constant: i.e. a phi-node like
1277 "a_2 = PHI <a_7(5), 2(6)>;".
1279 FIXME: This case have to be refined correctly:
1280 in some cases it is possible to say something better than
1281 chrec_dont_know, for example using a wrap-around notation. */
1282 return t_false;
1285 /* This function merges the branches of a condition-phi-node in a
1286 loop. */
1288 static t_bool
1289 follow_ssa_edge_in_condition_phi (struct loop *loop,
1290 gimple condition_phi,
1291 gimple halting_phi,
1292 tree *evolution_of_loop, int limit)
1294 int i, n;
1295 tree init = *evolution_of_loop;
1296 tree evolution_of_branch;
1297 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1298 halting_phi,
1299 &evolution_of_branch,
1300 init, limit);
1301 if (res == t_false || res == t_dont_know)
1302 return res;
1304 *evolution_of_loop = evolution_of_branch;
1306 /* If the phi node is just a copy, do not increase the limit. */
1307 n = gimple_phi_num_args (condition_phi);
1308 if (n > 1)
1309 limit++;
1311 for (i = 1; i < n; i++)
1313 /* Quickly give up when the evolution of one of the branches is
1314 not known. */
1315 if (*evolution_of_loop == chrec_dont_know)
1316 return t_true;
1318 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1319 halting_phi,
1320 &evolution_of_branch,
1321 init, limit);
1322 if (res == t_false || res == t_dont_know)
1323 return res;
1325 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1326 evolution_of_branch);
1329 return t_true;
1332 /* Follow an SSA edge in an inner loop. It computes the overall
1333 effect of the loop, and following the symbolic initial conditions,
1334 it follows the edges in the parent loop. The inner loop is
1335 considered as a single statement. */
1337 static t_bool
1338 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1339 gimple loop_phi_node,
1340 gimple halting_phi,
1341 tree *evolution_of_loop, int limit)
1343 struct loop *loop = loop_containing_stmt (loop_phi_node);
1344 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1346 /* Sometimes, the inner loop is too difficult to analyze, and the
1347 result of the analysis is a symbolic parameter. */
1348 if (ev == PHI_RESULT (loop_phi_node))
1350 t_bool res = t_false;
1351 int i, n = gimple_phi_num_args (loop_phi_node);
1353 for (i = 0; i < n; i++)
1355 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1356 basic_block bb;
1358 /* Follow the edges that exit the inner loop. */
1359 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1360 if (!flow_bb_inside_loop_p (loop, bb))
1361 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1362 arg, halting_phi,
1363 evolution_of_loop, limit);
1364 if (res == t_true)
1365 break;
1368 /* If the path crosses this loop-phi, give up. */
1369 if (res == t_true)
1370 *evolution_of_loop = chrec_dont_know;
1372 return res;
1375 /* Otherwise, compute the overall effect of the inner loop. */
1376 ev = compute_overall_effect_of_inner_loop (loop, ev);
1377 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1378 evolution_of_loop, limit);
1381 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1382 path that is analyzed on the return walk. */
1384 static t_bool
1385 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1386 tree *evolution_of_loop, int limit)
1388 struct loop *def_loop;
1390 if (gimple_nop_p (def))
1391 return t_false;
1393 /* Give up if the path is longer than the MAX that we allow. */
1394 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1395 return t_dont_know;
1397 def_loop = loop_containing_stmt (def);
1399 switch (gimple_code (def))
1401 case GIMPLE_PHI:
1402 if (!loop_phi_node_p (def))
1403 /* DEF is a condition-phi-node. Follow the branches, and
1404 record their evolutions. Finally, merge the collected
1405 information and set the approximation to the main
1406 variable. */
1407 return follow_ssa_edge_in_condition_phi
1408 (loop, def, halting_phi, evolution_of_loop, limit);
1410 /* When the analyzed phi is the halting_phi, the
1411 depth-first search is over: we have found a path from
1412 the halting_phi to itself in the loop. */
1413 if (def == halting_phi)
1414 return t_true;
1416 /* Otherwise, the evolution of the HALTING_PHI depends
1417 on the evolution of another loop-phi-node, i.e. the
1418 evolution function is a higher degree polynomial. */
1419 if (def_loop == loop)
1420 return t_false;
1422 /* Inner loop. */
1423 if (flow_loop_nested_p (loop, def_loop))
1424 return follow_ssa_edge_inner_loop_phi
1425 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1427 /* Outer loop. */
1428 return t_false;
1430 case GIMPLE_ASSIGN:
1431 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1432 evolution_of_loop, limit);
1434 default:
1435 /* At this level of abstraction, the program is just a set
1436 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1437 other node to be handled. */
1438 return t_false;
1444 /* Given a LOOP_PHI_NODE, this function determines the evolution
1445 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1447 static tree
1448 analyze_evolution_in_loop (gimple loop_phi_node,
1449 tree init_cond)
1451 int i, n = gimple_phi_num_args (loop_phi_node);
1452 tree evolution_function = chrec_not_analyzed_yet;
1453 struct loop *loop = loop_containing_stmt (loop_phi_node);
1454 basic_block bb;
1456 if (dump_file && (dump_flags & TDF_DETAILS))
1458 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1459 fprintf (dump_file, " (loop_phi_node = ");
1460 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1461 fprintf (dump_file, ")\n");
1464 for (i = 0; i < n; i++)
1466 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1467 gimple ssa_chain;
1468 tree ev_fn;
1469 t_bool res;
1471 /* Select the edges that enter the loop body. */
1472 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1473 if (!flow_bb_inside_loop_p (loop, bb))
1474 continue;
1476 if (TREE_CODE (arg) == SSA_NAME)
1478 ssa_chain = SSA_NAME_DEF_STMT (arg);
1480 /* Pass in the initial condition to the follow edge function. */
1481 ev_fn = init_cond;
1482 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1484 else
1485 res = t_false;
1487 /* When it is impossible to go back on the same
1488 loop_phi_node by following the ssa edges, the
1489 evolution is represented by a peeled chrec, i.e. the
1490 first iteration, EV_FN has the value INIT_COND, then
1491 all the other iterations it has the value of ARG.
1492 For the moment, PEELED_CHREC nodes are not built. */
1493 if (res != t_true)
1494 ev_fn = chrec_dont_know;
1496 /* When there are multiple back edges of the loop (which in fact never
1497 happens currently, but nevertheless), merge their evolutions. */
1498 evolution_function = chrec_merge (evolution_function, ev_fn);
1501 if (dump_file && (dump_flags & TDF_DETAILS))
1503 fprintf (dump_file, " (evolution_function = ");
1504 print_generic_expr (dump_file, evolution_function, 0);
1505 fprintf (dump_file, "))\n");
1508 return evolution_function;
1511 /* Given a loop-phi-node, return the initial conditions of the
1512 variable on entry of the loop. When the CCP has propagated
1513 constants into the loop-phi-node, the initial condition is
1514 instantiated, otherwise the initial condition is kept symbolic.
1515 This analyzer does not analyze the evolution outside the current
1516 loop, and leaves this task to the on-demand tree reconstructor. */
1518 static tree
1519 analyze_initial_condition (gimple loop_phi_node)
1521 int i, n;
1522 tree init_cond = chrec_not_analyzed_yet;
1523 struct loop *loop = loop_containing_stmt (loop_phi_node);
1525 if (dump_file && (dump_flags & TDF_DETAILS))
1527 fprintf (dump_file, "(analyze_initial_condition \n");
1528 fprintf (dump_file, " (loop_phi_node = \n");
1529 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1530 fprintf (dump_file, ")\n");
1533 n = gimple_phi_num_args (loop_phi_node);
1534 for (i = 0; i < n; i++)
1536 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1537 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1539 /* When the branch is oriented to the loop's body, it does
1540 not contribute to the initial condition. */
1541 if (flow_bb_inside_loop_p (loop, bb))
1542 continue;
1544 if (init_cond == chrec_not_analyzed_yet)
1546 init_cond = branch;
1547 continue;
1550 if (TREE_CODE (branch) == SSA_NAME)
1552 init_cond = chrec_dont_know;
1553 break;
1556 init_cond = chrec_merge (init_cond, branch);
1559 /* Ooops -- a loop without an entry??? */
1560 if (init_cond == chrec_not_analyzed_yet)
1561 init_cond = chrec_dont_know;
1563 if (dump_file && (dump_flags & TDF_DETAILS))
1565 fprintf (dump_file, " (init_cond = ");
1566 print_generic_expr (dump_file, init_cond, 0);
1567 fprintf (dump_file, "))\n");
1570 return init_cond;
1573 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1575 static tree
1576 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1578 tree res;
1579 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1580 tree init_cond;
1582 if (phi_loop != loop)
1584 struct loop *subloop;
1585 tree evolution_fn = analyze_scalar_evolution
1586 (phi_loop, PHI_RESULT (loop_phi_node));
1588 /* Dive one level deeper. */
1589 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1591 /* Interpret the subloop. */
1592 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1593 return res;
1596 /* Otherwise really interpret the loop phi. */
1597 init_cond = analyze_initial_condition (loop_phi_node);
1598 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1600 return res;
1603 /* This function merges the branches of a condition-phi-node,
1604 contained in the outermost loop, and whose arguments are already
1605 analyzed. */
1607 static tree
1608 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1610 int i, n = gimple_phi_num_args (condition_phi);
1611 tree res = chrec_not_analyzed_yet;
1613 for (i = 0; i < n; i++)
1615 tree branch_chrec;
1617 if (backedge_phi_arg_p (condition_phi, i))
1619 res = chrec_dont_know;
1620 break;
1623 branch_chrec = analyze_scalar_evolution
1624 (loop, PHI_ARG_DEF (condition_phi, i));
1626 res = chrec_merge (res, branch_chrec);
1629 return res;
1632 /* Interpret the operation RHS1 OP RHS2. If we didn't
1633 analyze this node before, follow the definitions until ending
1634 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1635 return path, this function propagates evolutions (ala constant copy
1636 propagation). OPND1 is not a GIMPLE expression because we could
1637 analyze the effect of an inner loop: see interpret_loop_phi. */
1639 static tree
1640 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1641 tree type, tree rhs1, enum tree_code code, tree rhs2)
1643 tree res, chrec1, chrec2;
1645 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1647 if (is_gimple_min_invariant (rhs1))
1648 return chrec_convert (type, rhs1, at_stmt);
1650 if (code == SSA_NAME)
1651 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1652 at_stmt);
1654 if (code == ASSERT_EXPR)
1656 rhs1 = ASSERT_EXPR_VAR (rhs1);
1657 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1658 at_stmt);
1661 return chrec_dont_know;
1664 switch (code)
1666 case POINTER_PLUS_EXPR:
1667 chrec1 = analyze_scalar_evolution (loop, rhs1);
1668 chrec2 = analyze_scalar_evolution (loop, rhs2);
1669 chrec1 = chrec_convert (type, chrec1, at_stmt);
1670 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1671 res = chrec_fold_plus (type, chrec1, chrec2);
1672 break;
1674 case PLUS_EXPR:
1675 chrec1 = analyze_scalar_evolution (loop, rhs1);
1676 chrec2 = analyze_scalar_evolution (loop, rhs2);
1677 chrec1 = chrec_convert (type, chrec1, at_stmt);
1678 chrec2 = chrec_convert (type, chrec2, at_stmt);
1679 res = chrec_fold_plus (type, chrec1, chrec2);
1680 break;
1682 case MINUS_EXPR:
1683 chrec1 = analyze_scalar_evolution (loop, rhs1);
1684 chrec2 = analyze_scalar_evolution (loop, rhs2);
1685 chrec1 = chrec_convert (type, chrec1, at_stmt);
1686 chrec2 = chrec_convert (type, chrec2, at_stmt);
1687 res = chrec_fold_minus (type, chrec1, chrec2);
1688 break;
1690 case NEGATE_EXPR:
1691 chrec1 = analyze_scalar_evolution (loop, rhs1);
1692 chrec1 = chrec_convert (type, chrec1, at_stmt);
1693 /* TYPE may be integer, real or complex, so use fold_convert. */
1694 res = chrec_fold_multiply (type, chrec1,
1695 fold_convert (type, integer_minus_one_node));
1696 break;
1698 case MULT_EXPR:
1699 chrec1 = analyze_scalar_evolution (loop, rhs1);
1700 chrec2 = analyze_scalar_evolution (loop, rhs2);
1701 chrec1 = chrec_convert (type, chrec1, at_stmt);
1702 chrec2 = chrec_convert (type, chrec2, at_stmt);
1703 res = chrec_fold_multiply (type, chrec1, chrec2);
1704 break;
1706 CASE_CONVERT:
1707 chrec1 = analyze_scalar_evolution (loop, rhs1);
1708 res = chrec_convert (type, chrec1, at_stmt);
1709 break;
1711 default:
1712 res = chrec_dont_know;
1713 break;
1716 return res;
1719 /* Interpret the expression EXPR. */
1721 static tree
1722 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1724 enum tree_code code;
1725 tree type = TREE_TYPE (expr), op0, op1;
1727 if (automatically_generated_chrec_p (expr))
1728 return expr;
1730 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1731 return chrec_dont_know;
1733 extract_ops_from_tree (expr, &code, &op0, &op1);
1735 return interpret_rhs_expr (loop, at_stmt, type,
1736 op0, code, op1);
1739 /* Interpret the rhs of the assignment STMT. */
1741 static tree
1742 interpret_gimple_assign (struct loop *loop, gimple stmt)
1744 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1745 enum tree_code code = gimple_assign_rhs_code (stmt);
1747 return interpret_rhs_expr (loop, stmt, type,
1748 gimple_assign_rhs1 (stmt), code,
1749 gimple_assign_rhs2 (stmt));
1754 /* This section contains all the entry points:
1755 - number_of_iterations_in_loop,
1756 - analyze_scalar_evolution,
1757 - instantiate_parameters.
1760 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1761 common ancestor of DEF_LOOP and USE_LOOP. */
1763 static tree
1764 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1765 struct loop *def_loop,
1766 tree ev)
1768 tree res;
1769 if (def_loop == wrto_loop)
1770 return ev;
1772 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1773 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1775 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1778 /* Helper recursive function. */
1780 static tree
1781 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1783 tree type = TREE_TYPE (var);
1784 gimple def;
1785 basic_block bb;
1786 struct loop *def_loop;
1788 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1789 return chrec_dont_know;
1791 if (TREE_CODE (var) != SSA_NAME)
1792 return interpret_expr (loop, NULL, var);
1794 def = SSA_NAME_DEF_STMT (var);
1795 bb = gimple_bb (def);
1796 def_loop = bb ? bb->loop_father : NULL;
1798 if (bb == NULL
1799 || !flow_bb_inside_loop_p (loop, bb))
1801 /* Keep the symbolic form. */
1802 res = var;
1803 goto set_and_end;
1806 if (res != chrec_not_analyzed_yet)
1808 if (loop != bb->loop_father)
1809 res = compute_scalar_evolution_in_loop
1810 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1812 goto set_and_end;
1815 if (loop != def_loop)
1817 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1818 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1820 goto set_and_end;
1823 switch (gimple_code (def))
1825 case GIMPLE_ASSIGN:
1826 res = interpret_gimple_assign (loop, def);
1827 break;
1829 case GIMPLE_PHI:
1830 if (loop_phi_node_p (def))
1831 res = interpret_loop_phi (loop, def);
1832 else
1833 res = interpret_condition_phi (loop, def);
1834 break;
1836 default:
1837 res = chrec_dont_know;
1838 break;
1841 set_and_end:
1843 /* Keep the symbolic form. */
1844 if (res == chrec_dont_know)
1845 res = var;
1847 if (loop == def_loop)
1848 set_scalar_evolution (var, res);
1850 return res;
1853 /* Entry point for the scalar evolution analyzer.
1854 Analyzes and returns the scalar evolution of the ssa_name VAR.
1855 LOOP_NB is the identifier number of the loop in which the variable
1856 is used.
1858 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1859 pointer to the statement that uses this variable, in order to
1860 determine the evolution function of the variable, use the following
1861 calls:
1863 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1864 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1865 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1868 tree
1869 analyze_scalar_evolution (struct loop *loop, tree var)
1871 tree res;
1873 if (dump_file && (dump_flags & TDF_DETAILS))
1875 fprintf (dump_file, "(analyze_scalar_evolution \n");
1876 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1877 fprintf (dump_file, " (scalar = ");
1878 print_generic_expr (dump_file, var, 0);
1879 fprintf (dump_file, ")\n");
1882 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1885 fprintf (dump_file, ")\n");
1887 return res;
1890 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1891 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1892 of VERSION).
1894 FOLDED_CASTS is set to true if resolve_mixers used
1895 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1896 at the moment in order to keep things simple). */
1898 static tree
1899 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1900 tree version, bool *folded_casts)
1902 bool val = false;
1903 tree ev = version, tmp;
1905 if (folded_casts)
1906 *folded_casts = false;
1907 while (1)
1909 tmp = analyze_scalar_evolution (use_loop, ev);
1910 ev = resolve_mixers (use_loop, tmp);
1912 if (folded_casts && tmp != ev)
1913 *folded_casts = true;
1915 if (use_loop == wrto_loop)
1916 return ev;
1918 /* If the value of the use changes in the inner loop, we cannot express
1919 its value in the outer loop (we might try to return interval chrec,
1920 but we do not have a user for it anyway) */
1921 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1922 || !val)
1923 return chrec_dont_know;
1925 use_loop = loop_outer (use_loop);
1929 /* Returns instantiated value for VERSION in CACHE. */
1931 static tree
1932 get_instantiated_value (htab_t cache, tree version)
1934 struct scev_info_str *info, pattern;
1936 pattern.var = version;
1937 info = (struct scev_info_str *) htab_find (cache, &pattern);
1939 if (info)
1940 return info->chrec;
1941 else
1942 return NULL_TREE;
1945 /* Sets instantiated value for VERSION to VAL in CACHE. */
1947 static void
1948 set_instantiated_value (htab_t cache, tree version, tree val)
1950 struct scev_info_str *info, pattern;
1951 PTR *slot;
1953 pattern.var = version;
1954 slot = htab_find_slot (cache, &pattern, INSERT);
1956 if (!*slot)
1957 *slot = new_scev_info_str (version);
1958 info = (struct scev_info_str *) *slot;
1959 info->chrec = val;
1962 /* Return the closed_loop_phi node for VAR. If there is none, return
1963 NULL_TREE. */
1965 static tree
1966 loop_closed_phi_def (tree var)
1968 struct loop *loop;
1969 edge exit;
1970 gimple phi;
1971 gimple_stmt_iterator psi;
1973 if (var == NULL_TREE
1974 || TREE_CODE (var) != SSA_NAME)
1975 return NULL_TREE;
1977 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
1978 exit = single_exit (loop);
1979 if (!exit)
1980 return NULL_TREE;
1982 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
1984 phi = gsi_stmt (psi);
1985 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
1986 return PHI_RESULT (phi);
1989 return NULL_TREE;
1992 /* Analyze all the parameters of the chrec, between INSTANTIATION_LOOP
1993 and EVOLUTION_LOOP, that were left under a symbolic form.
1995 CHREC is the scalar evolution to instantiate.
1997 CACHE is the cache of already instantiated values.
1999 FOLD_CONVERSIONS should be set to true when the conversions that
2000 may wrap in signed/pointer type are folded, as long as the value of
2001 the chrec is preserved.
2003 SIZE_EXPR is used for computing the size of the expression to be
2004 instantiated, and to stop if it exceeds some limit. */
2006 static tree
2007 instantiate_scev_1 (struct loop *instantiation_loop,
2008 struct loop *evolution_loop, tree chrec,
2009 bool fold_conversions, htab_t cache, int size_expr)
2011 tree res, op0, op1, op2;
2012 basic_block def_bb;
2013 struct loop *def_loop;
2014 tree type = chrec_type (chrec);
2016 /* Give up if the expression is larger than the MAX that we allow. */
2017 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2018 return chrec_dont_know;
2020 if (automatically_generated_chrec_p (chrec)
2021 || is_gimple_min_invariant (chrec))
2022 return chrec;
2024 switch (TREE_CODE (chrec))
2026 case SSA_NAME:
2027 def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2029 /* A parameter (or loop invariant and we do not want to include
2030 evolutions in outer loops), nothing to do. */
2031 if (!def_bb
2032 || loop_depth (def_bb->loop_father) == 0
2033 || !flow_bb_inside_loop_p (instantiation_loop, def_bb))
2034 return chrec;
2036 /* We cache the value of instantiated variable to avoid exponential
2037 time complexity due to reevaluations. We also store the convenient
2038 value in the cache in order to prevent infinite recursion -- we do
2039 not want to instantiate the SSA_NAME if it is in a mixer
2040 structure. This is used for avoiding the instantiation of
2041 recursively defined functions, such as:
2043 | a_2 -> {0, +, 1, +, a_2}_1 */
2045 res = get_instantiated_value (cache, chrec);
2046 if (res)
2047 return res;
2049 /* Store the convenient value for chrec in the structure. If it
2050 is defined outside of the loop, we may just leave it in symbolic
2051 form, otherwise we need to admit that we do not know its behavior
2052 inside the loop. */
2053 res = !flow_bb_inside_loop_p (instantiation_loop, def_bb)
2054 ? chrec : chrec_dont_know;
2055 set_instantiated_value (cache, chrec, res);
2057 /* To make things even more complicated, instantiate_scev_1
2058 calls analyze_scalar_evolution that may call # of iterations
2059 analysis that may in turn call instantiate_scev_1 again.
2060 To prevent the infinite recursion, keep also the bitmap of
2061 ssa names that are being instantiated globally. */
2062 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2063 return res;
2065 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2067 /* If the analysis yields a parametric chrec, instantiate the
2068 result again. */
2069 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2070 res = analyze_scalar_evolution (def_loop, chrec);
2072 /* Don't instantiate loop-closed-ssa phi nodes. */
2073 if (TREE_CODE (res) == SSA_NAME
2074 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2075 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2076 > loop_depth (def_loop))))
2078 if (res == chrec)
2079 res = loop_closed_phi_def (chrec);
2080 else
2081 res = chrec;
2083 if (res == NULL_TREE)
2084 res = chrec_dont_know;
2087 else if (res != chrec_dont_know)
2088 res = instantiate_scev_1 (instantiation_loop, evolution_loop, res,
2089 fold_conversions, cache, size_expr);
2091 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2093 /* Store the correct value to the cache. */
2094 set_instantiated_value (cache, chrec, res);
2095 return res;
2097 case POLYNOMIAL_CHREC:
2098 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2099 CHREC_LEFT (chrec), fold_conversions, cache,
2100 size_expr);
2101 if (op0 == chrec_dont_know)
2102 return chrec_dont_know;
2104 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2105 CHREC_RIGHT (chrec), fold_conversions, cache,
2106 size_expr);
2107 if (op1 == chrec_dont_know)
2108 return chrec_dont_know;
2110 if (CHREC_LEFT (chrec) != op0
2111 || CHREC_RIGHT (chrec) != op1)
2113 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2114 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2116 return chrec;
2118 case POINTER_PLUS_EXPR:
2119 case PLUS_EXPR:
2120 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2121 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2122 size_expr);
2123 if (op0 == chrec_dont_know)
2124 return chrec_dont_know;
2126 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2127 TREE_OPERAND (chrec, 1), fold_conversions, cache,
2128 size_expr);
2129 if (op1 == chrec_dont_know)
2130 return chrec_dont_know;
2132 if (TREE_OPERAND (chrec, 0) != op0
2133 || TREE_OPERAND (chrec, 1) != op1)
2135 op0 = chrec_convert (type, op0, NULL);
2136 op1 = chrec_convert_rhs (type, op1, NULL);
2137 chrec = chrec_fold_plus (type, op0, op1);
2139 return chrec;
2141 case MINUS_EXPR:
2142 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2143 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2144 size_expr);
2145 if (op0 == chrec_dont_know)
2146 return chrec_dont_know;
2148 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2149 TREE_OPERAND (chrec, 1),
2150 fold_conversions, cache, size_expr);
2151 if (op1 == chrec_dont_know)
2152 return chrec_dont_know;
2154 if (TREE_OPERAND (chrec, 0) != op0
2155 || TREE_OPERAND (chrec, 1) != op1)
2157 op0 = chrec_convert (type, op0, NULL);
2158 op1 = chrec_convert (type, op1, NULL);
2159 chrec = chrec_fold_minus (type, op0, op1);
2161 return chrec;
2163 case MULT_EXPR:
2164 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2165 TREE_OPERAND (chrec, 0),
2166 fold_conversions, cache, size_expr);
2167 if (op0 == chrec_dont_know)
2168 return chrec_dont_know;
2170 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2171 TREE_OPERAND (chrec, 1),
2172 fold_conversions, cache, size_expr);
2173 if (op1 == chrec_dont_know)
2174 return chrec_dont_know;
2176 if (TREE_OPERAND (chrec, 0) != op0
2177 || TREE_OPERAND (chrec, 1) != op1)
2179 op0 = chrec_convert (type, op0, NULL);
2180 op1 = chrec_convert (type, op1, NULL);
2181 chrec = chrec_fold_multiply (type, op0, op1);
2183 return chrec;
2185 CASE_CONVERT:
2186 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2187 TREE_OPERAND (chrec, 0),
2188 fold_conversions, cache, size_expr);
2189 if (op0 == chrec_dont_know)
2190 return chrec_dont_know;
2192 if (fold_conversions)
2194 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2195 if (tmp)
2196 return tmp;
2199 if (op0 == TREE_OPERAND (chrec, 0))
2200 return chrec;
2202 /* If we used chrec_convert_aggressive, we can no longer assume that
2203 signed chrecs do not overflow, as chrec_convert does, so avoid
2204 calling it in that case. */
2205 if (fold_conversions)
2206 return fold_convert (TREE_TYPE (chrec), op0);
2208 return chrec_convert (TREE_TYPE (chrec), op0, NULL);
2210 case SCEV_NOT_KNOWN:
2211 return chrec_dont_know;
2213 case SCEV_KNOWN:
2214 return chrec_known;
2216 default:
2217 break;
2220 gcc_assert (!VL_EXP_CLASS_P (chrec));
2221 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2223 case 3:
2224 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2225 TREE_OPERAND (chrec, 0),
2226 fold_conversions, cache, size_expr);
2227 if (op0 == chrec_dont_know)
2228 return chrec_dont_know;
2230 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2231 TREE_OPERAND (chrec, 1),
2232 fold_conversions, cache, size_expr);
2233 if (op1 == chrec_dont_know)
2234 return chrec_dont_know;
2236 op2 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2237 TREE_OPERAND (chrec, 2),
2238 fold_conversions, cache, size_expr);
2239 if (op2 == chrec_dont_know)
2240 return chrec_dont_know;
2242 if (op0 == TREE_OPERAND (chrec, 0)
2243 && op1 == TREE_OPERAND (chrec, 1)
2244 && op2 == TREE_OPERAND (chrec, 2))
2245 return chrec;
2247 return fold_build3 (TREE_CODE (chrec),
2248 TREE_TYPE (chrec), op0, op1, op2);
2250 case 2:
2251 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2252 TREE_OPERAND (chrec, 0),
2253 fold_conversions, cache, size_expr);
2254 if (op0 == chrec_dont_know)
2255 return chrec_dont_know;
2257 op1 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2258 TREE_OPERAND (chrec, 1),
2259 fold_conversions, cache, size_expr);
2260 if (op1 == chrec_dont_know)
2261 return chrec_dont_know;
2263 if (op0 == TREE_OPERAND (chrec, 0)
2264 && op1 == TREE_OPERAND (chrec, 1))
2265 return chrec;
2266 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2268 case 1:
2269 op0 = instantiate_scev_1 (instantiation_loop, evolution_loop,
2270 TREE_OPERAND (chrec, 0),
2271 fold_conversions, cache, size_expr);
2272 if (op0 == chrec_dont_know)
2273 return chrec_dont_know;
2274 if (op0 == TREE_OPERAND (chrec, 0))
2275 return chrec;
2276 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2278 case 0:
2279 return chrec;
2281 default:
2282 break;
2285 /* Too complicated to handle. */
2286 return chrec_dont_know;
2289 /* Analyze all the parameters of the chrec that were left under a
2290 symbolic form. INSTANTIATION_LOOP is the loop in which symbolic
2291 names have to be instantiated, and EVOLUTION_LOOP is the loop in
2292 which the evolution of scalars have to be analyzed. */
2294 tree
2295 instantiate_scev (struct loop *instantiation_loop, struct loop *evolution_loop,
2296 tree chrec)
2298 tree res;
2299 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2301 if (dump_file && (dump_flags & TDF_DETAILS))
2303 fprintf (dump_file, "(instantiate_scev \n");
2304 fprintf (dump_file, " (instantiation_loop = %d)\n", instantiation_loop->num);
2305 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2306 fprintf (dump_file, " (chrec = ");
2307 print_generic_expr (dump_file, chrec, 0);
2308 fprintf (dump_file, ")\n");
2311 res = instantiate_scev_1 (instantiation_loop, evolution_loop, chrec, false,
2312 cache, 0);
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2316 fprintf (dump_file, " (res = ");
2317 print_generic_expr (dump_file, res, 0);
2318 fprintf (dump_file, "))\n");
2321 htab_delete (cache);
2323 return res;
2326 /* Similar to instantiate_parameters, but does not introduce the
2327 evolutions in outer loops for LOOP invariants in CHREC, and does not
2328 care about causing overflows, as long as they do not affect value
2329 of an expression. */
2331 tree
2332 resolve_mixers (struct loop *loop, tree chrec)
2334 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2335 tree ret = instantiate_scev_1 (loop, loop, chrec, true, cache, 0);
2336 htab_delete (cache);
2337 return ret;
2340 /* Entry point for the analysis of the number of iterations pass.
2341 This function tries to safely approximate the number of iterations
2342 the loop will run. When this property is not decidable at compile
2343 time, the result is chrec_dont_know. Otherwise the result is
2344 a scalar or a symbolic parameter.
2346 Example of analysis: suppose that the loop has an exit condition:
2348 "if (b > 49) goto end_loop;"
2350 and that in a previous analysis we have determined that the
2351 variable 'b' has an evolution function:
2353 "EF = {23, +, 5}_2".
2355 When we evaluate the function at the point 5, i.e. the value of the
2356 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2357 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2358 the loop body has been executed 6 times. */
2360 tree
2361 number_of_latch_executions (struct loop *loop)
2363 tree res, type;
2364 edge exit;
2365 struct tree_niter_desc niter_desc;
2367 /* Determine whether the number_of_iterations_in_loop has already
2368 been computed. */
2369 res = loop->nb_iterations;
2370 if (res)
2371 return res;
2372 res = chrec_dont_know;
2374 if (dump_file && (dump_flags & TDF_DETAILS))
2375 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2377 exit = single_exit (loop);
2378 if (!exit)
2379 goto end;
2381 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2382 goto end;
2384 type = TREE_TYPE (niter_desc.niter);
2385 if (integer_nonzerop (niter_desc.may_be_zero))
2386 res = build_int_cst (type, 0);
2387 else if (integer_zerop (niter_desc.may_be_zero))
2388 res = niter_desc.niter;
2389 else
2390 res = chrec_dont_know;
2392 end:
2393 return set_nb_iterations_in_loop (loop, res);
2396 /* Returns the number of executions of the exit condition of LOOP,
2397 i.e., the number by one higher than number_of_latch_executions.
2398 Note that unlike number_of_latch_executions, this number does
2399 not necessarily fit in the unsigned variant of the type of
2400 the control variable -- if the number of iterations is a constant,
2401 we return chrec_dont_know if adding one to number_of_latch_executions
2402 overflows; however, in case the number of iterations is symbolic
2403 expression, the caller is responsible for dealing with this
2404 the possible overflow. */
2406 tree
2407 number_of_exit_cond_executions (struct loop *loop)
2409 tree ret = number_of_latch_executions (loop);
2410 tree type = chrec_type (ret);
2412 if (chrec_contains_undetermined (ret))
2413 return ret;
2415 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2416 if (TREE_CODE (ret) == INTEGER_CST
2417 && TREE_OVERFLOW (ret))
2418 return chrec_dont_know;
2420 return ret;
2423 /* One of the drivers for testing the scalar evolutions analysis.
2424 This function computes the number of iterations for all the loops
2425 from the EXIT_CONDITIONS array. */
2427 static void
2428 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2430 unsigned int i;
2431 unsigned nb_chrec_dont_know_loops = 0;
2432 unsigned nb_static_loops = 0;
2433 gimple cond;
2435 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2437 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2438 if (chrec_contains_undetermined (res))
2439 nb_chrec_dont_know_loops++;
2440 else
2441 nb_static_loops++;
2444 if (dump_file)
2446 fprintf (dump_file, "\n(\n");
2447 fprintf (dump_file, "-----------------------------------------\n");
2448 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2449 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2450 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2451 fprintf (dump_file, "-----------------------------------------\n");
2452 fprintf (dump_file, ")\n\n");
2454 print_loops (dump_file, 3);
2460 /* Counters for the stats. */
2462 struct chrec_stats
2464 unsigned nb_chrecs;
2465 unsigned nb_affine;
2466 unsigned nb_affine_multivar;
2467 unsigned nb_higher_poly;
2468 unsigned nb_chrec_dont_know;
2469 unsigned nb_undetermined;
2472 /* Reset the counters. */
2474 static inline void
2475 reset_chrecs_counters (struct chrec_stats *stats)
2477 stats->nb_chrecs = 0;
2478 stats->nb_affine = 0;
2479 stats->nb_affine_multivar = 0;
2480 stats->nb_higher_poly = 0;
2481 stats->nb_chrec_dont_know = 0;
2482 stats->nb_undetermined = 0;
2485 /* Dump the contents of a CHREC_STATS structure. */
2487 static void
2488 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2490 fprintf (file, "\n(\n");
2491 fprintf (file, "-----------------------------------------\n");
2492 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2493 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2494 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2495 stats->nb_higher_poly);
2496 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2497 fprintf (file, "-----------------------------------------\n");
2498 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2499 fprintf (file, "%d\twith undetermined coefficients\n",
2500 stats->nb_undetermined);
2501 fprintf (file, "-----------------------------------------\n");
2502 fprintf (file, "%d\tchrecs in the scev database\n",
2503 (int) htab_elements (scalar_evolution_info));
2504 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2505 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2506 fprintf (file, "-----------------------------------------\n");
2507 fprintf (file, ")\n\n");
2510 /* Gather statistics about CHREC. */
2512 static void
2513 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2515 if (dump_file && (dump_flags & TDF_STATS))
2517 fprintf (dump_file, "(classify_chrec ");
2518 print_generic_expr (dump_file, chrec, 0);
2519 fprintf (dump_file, "\n");
2522 stats->nb_chrecs++;
2524 if (chrec == NULL_TREE)
2526 stats->nb_undetermined++;
2527 return;
2530 switch (TREE_CODE (chrec))
2532 case POLYNOMIAL_CHREC:
2533 if (evolution_function_is_affine_p (chrec))
2535 if (dump_file && (dump_flags & TDF_STATS))
2536 fprintf (dump_file, " affine_univariate\n");
2537 stats->nb_affine++;
2539 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2541 if (dump_file && (dump_flags & TDF_STATS))
2542 fprintf (dump_file, " affine_multivariate\n");
2543 stats->nb_affine_multivar++;
2545 else
2547 if (dump_file && (dump_flags & TDF_STATS))
2548 fprintf (dump_file, " higher_degree_polynomial\n");
2549 stats->nb_higher_poly++;
2552 break;
2554 default:
2555 break;
2558 if (chrec_contains_undetermined (chrec))
2560 if (dump_file && (dump_flags & TDF_STATS))
2561 fprintf (dump_file, " undetermined\n");
2562 stats->nb_undetermined++;
2565 if (dump_file && (dump_flags & TDF_STATS))
2566 fprintf (dump_file, ")\n");
2569 /* One of the drivers for testing the scalar evolutions analysis.
2570 This function analyzes the scalar evolution of all the scalars
2571 defined as loop phi nodes in one of the loops from the
2572 EXIT_CONDITIONS array.
2574 TODO Optimization: A loop is in canonical form if it contains only
2575 a single scalar loop phi node. All the other scalars that have an
2576 evolution in the loop are rewritten in function of this single
2577 index. This allows the parallelization of the loop. */
2579 static void
2580 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
2582 unsigned int i;
2583 struct chrec_stats stats;
2584 gimple cond, phi;
2585 gimple_stmt_iterator psi;
2587 reset_chrecs_counters (&stats);
2589 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2591 struct loop *loop;
2592 basic_block bb;
2593 tree chrec;
2595 loop = loop_containing_stmt (cond);
2596 bb = loop->header;
2598 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2600 phi = gsi_stmt (psi);
2601 if (is_gimple_reg (PHI_RESULT (phi)))
2603 chrec = instantiate_parameters
2604 (loop,
2605 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2607 if (dump_file && (dump_flags & TDF_STATS))
2608 gather_chrec_stats (chrec, &stats);
2613 if (dump_file && (dump_flags & TDF_STATS))
2614 dump_chrecs_stats (dump_file, &stats);
2617 /* Callback for htab_traverse, gathers information on chrecs in the
2618 hashtable. */
2620 static int
2621 gather_stats_on_scev_database_1 (void **slot, void *stats)
2623 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2625 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2627 return 1;
2630 /* Classify the chrecs of the whole database. */
2632 void
2633 gather_stats_on_scev_database (void)
2635 struct chrec_stats stats;
2637 if (!dump_file)
2638 return;
2640 reset_chrecs_counters (&stats);
2642 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2643 &stats);
2645 dump_chrecs_stats (dump_file, &stats);
2650 /* Initializer. */
2652 static void
2653 initialize_scalar_evolutions_analyzer (void)
2655 /* The elements below are unique. */
2656 if (chrec_dont_know == NULL_TREE)
2658 chrec_not_analyzed_yet = NULL_TREE;
2659 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2660 chrec_known = make_node (SCEV_KNOWN);
2661 TREE_TYPE (chrec_dont_know) = void_type_node;
2662 TREE_TYPE (chrec_known) = void_type_node;
2666 /* Initialize the analysis of scalar evolutions for LOOPS. */
2668 void
2669 scev_initialize (void)
2671 loop_iterator li;
2672 struct loop *loop;
2674 scalar_evolution_info = htab_create_alloc (100,
2675 hash_scev_info,
2676 eq_scev_info,
2677 del_scev_info,
2678 ggc_calloc,
2679 ggc_free);
2680 already_instantiated = BITMAP_ALLOC (NULL);
2682 initialize_scalar_evolutions_analyzer ();
2684 FOR_EACH_LOOP (li, loop, 0)
2686 loop->nb_iterations = NULL_TREE;
2690 /* Cleans up the information cached by the scalar evolutions analysis. */
2692 void
2693 scev_reset (void)
2695 loop_iterator li;
2696 struct loop *loop;
2698 if (!scalar_evolution_info || !current_loops)
2699 return;
2701 htab_empty (scalar_evolution_info);
2702 FOR_EACH_LOOP (li, loop, 0)
2704 loop->nb_iterations = NULL_TREE;
2708 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2709 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2710 want step to be invariant in LOOP. Otherwise we require it to be an
2711 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2712 overflow (e.g. because it is computed in signed arithmetics). */
2714 bool
2715 simple_iv (struct loop *loop, gimple stmt, tree op, affine_iv *iv,
2716 bool allow_nonconstant_step)
2718 basic_block bb = gimple_bb (stmt);
2719 tree type, ev;
2720 bool folded_casts;
2722 iv->base = NULL_TREE;
2723 iv->step = NULL_TREE;
2724 iv->no_overflow = false;
2726 type = TREE_TYPE (op);
2727 if (TREE_CODE (type) != INTEGER_TYPE
2728 && TREE_CODE (type) != POINTER_TYPE)
2729 return false;
2731 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2732 &folded_casts);
2733 if (chrec_contains_undetermined (ev))
2734 return false;
2736 if (tree_does_not_contain_chrecs (ev)
2737 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2739 iv->base = ev;
2740 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2741 iv->no_overflow = true;
2742 return true;
2745 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2746 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2747 return false;
2749 iv->step = CHREC_RIGHT (ev);
2750 if (allow_nonconstant_step)
2752 if (tree_contains_chrecs (iv->step, NULL)
2753 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2754 return false;
2756 else if (TREE_CODE (iv->step) != INTEGER_CST)
2757 return false;
2759 iv->base = CHREC_LEFT (ev);
2760 if (tree_contains_chrecs (iv->base, NULL)
2761 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2762 return false;
2764 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2766 return true;
2769 /* Runs the analysis of scalar evolutions. */
2771 void
2772 scev_analysis (void)
2774 VEC(gimple,heap) *exit_conditions;
2776 exit_conditions = VEC_alloc (gimple, heap, 37);
2777 select_loops_exit_conditions (&exit_conditions);
2779 if (dump_file && (dump_flags & TDF_STATS))
2780 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2782 number_of_iterations_for_all_loops (&exit_conditions);
2783 VEC_free (gimple, heap, exit_conditions);
2786 /* Finalize the scalar evolution analysis. */
2788 void
2789 scev_finalize (void)
2791 if (!scalar_evolution_info)
2792 return;
2793 htab_delete (scalar_evolution_info);
2794 BITMAP_FREE (already_instantiated);
2795 scalar_evolution_info = NULL;
2798 /* Replace ssa names for that scev can prove they are constant by the
2799 appropriate constants. Also perform final value replacement in loops,
2800 in case the replacement expressions are cheap.
2802 We only consider SSA names defined by phi nodes; rest is left to the
2803 ordinary constant propagation pass. */
2805 unsigned int
2806 scev_const_prop (void)
2808 basic_block bb;
2809 tree name, type, ev;
2810 gimple phi, ass;
2811 struct loop *loop, *ex_loop;
2812 bitmap ssa_names_to_remove = NULL;
2813 unsigned i;
2814 loop_iterator li;
2815 gimple_stmt_iterator psi;
2817 if (number_of_loops () <= 1)
2818 return 0;
2820 FOR_EACH_BB (bb)
2822 loop = bb->loop_father;
2824 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2826 phi = gsi_stmt (psi);
2827 name = PHI_RESULT (phi);
2829 if (!is_gimple_reg (name))
2830 continue;
2832 type = TREE_TYPE (name);
2834 if (!POINTER_TYPE_P (type)
2835 && !INTEGRAL_TYPE_P (type))
2836 continue;
2838 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2839 if (!is_gimple_min_invariant (ev)
2840 || !may_propagate_copy (name, ev))
2841 continue;
2843 /* Replace the uses of the name. */
2844 if (name != ev)
2845 replace_uses_by (name, ev);
2847 if (!ssa_names_to_remove)
2848 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2849 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2853 /* Remove the ssa names that were replaced by constants. We do not
2854 remove them directly in the previous cycle, since this
2855 invalidates scev cache. */
2856 if (ssa_names_to_remove)
2858 bitmap_iterator bi;
2860 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2862 gimple_stmt_iterator psi;
2863 name = ssa_name (i);
2864 phi = SSA_NAME_DEF_STMT (name);
2866 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2867 psi = gsi_for_stmt (phi);
2868 remove_phi_node (&psi, true);
2871 BITMAP_FREE (ssa_names_to_remove);
2872 scev_reset ();
2875 /* Now the regular final value replacement. */
2876 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2878 edge exit;
2879 tree def, rslt, niter;
2880 gimple_stmt_iterator bsi;
2882 /* If we do not know exact number of iterations of the loop, we cannot
2883 replace the final value. */
2884 exit = single_exit (loop);
2885 if (!exit)
2886 continue;
2888 niter = number_of_latch_executions (loop);
2889 /* We used to check here whether the computation of NITER is expensive,
2890 and avoided final value elimination if that is the case. The problem
2891 is that it is hard to evaluate whether the expression is too
2892 expensive, as we do not know what optimization opportunities the
2893 elimination of the final value may reveal. Therefore, we now
2894 eliminate the final values of induction variables unconditionally. */
2895 if (niter == chrec_dont_know)
2896 continue;
2898 /* Ensure that it is possible to insert new statements somewhere. */
2899 if (!single_pred_p (exit->dest))
2900 split_loop_exit_edge (exit);
2901 bsi = gsi_after_labels (exit->dest);
2903 ex_loop = superloop_at_depth (loop,
2904 loop_depth (exit->dest->loop_father) + 1);
2906 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
2908 phi = gsi_stmt (psi);
2909 rslt = PHI_RESULT (phi);
2910 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2911 if (!is_gimple_reg (def))
2913 gsi_next (&psi);
2914 continue;
2917 if (!POINTER_TYPE_P (TREE_TYPE (def))
2918 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2920 gsi_next (&psi);
2921 continue;
2924 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2925 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2926 if (!tree_does_not_contain_chrecs (def)
2927 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2928 /* Moving the computation from the loop may prolong life range
2929 of some ssa names, which may cause problems if they appear
2930 on abnormal edges. */
2931 || contains_abnormal_ssa_name_p (def))
2933 gsi_next (&psi);
2934 continue;
2937 /* Eliminate the PHI node and replace it by a computation outside
2938 the loop. */
2939 def = unshare_expr (def);
2940 remove_phi_node (&psi, false);
2942 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
2943 true, GSI_SAME_STMT);
2944 ass = gimple_build_assign (rslt, def);
2945 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
2948 return 0;
2951 #include "gt-tree-scalar-evolution.h"