Merge from trunk @ 138209
[official-gcc.git] / gcc / reload.c
blob8bbadc38f8d4385cfac730d5ad5e70edb3e4f0ba
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
91 #undef DEBUG_RELOAD
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
116 /* True if X is a constant that can be forced into the constant pool. */
117 #define CONST_POOL_OK_P(X) \
118 (CONSTANT_P (X) \
119 && GET_CODE (X) != HIGH \
120 && !targetm.cannot_force_const_mem (X))
122 /* True if C is a non-empty register class that has too few registers
123 to be safely used as a reload target class. */
124 #define SMALL_REGISTER_CLASS_P(C) \
125 (reg_class_size [(C)] == 1 \
126 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
129 /* All reloads of the current insn are recorded here. See reload.h for
130 comments. */
131 int n_reloads;
132 struct reload rld[MAX_RELOADS];
134 /* All the "earlyclobber" operands of the current insn
135 are recorded here. */
136 int n_earlyclobbers;
137 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 int reload_n_operands;
141 /* Replacing reloads.
143 If `replace_reloads' is nonzero, then as each reload is recorded
144 an entry is made for it in the table `replacements'.
145 Then later `subst_reloads' can look through that table and
146 perform all the replacements needed. */
148 /* Nonzero means record the places to replace. */
149 static int replace_reloads;
151 /* Each replacement is recorded with a structure like this. */
152 struct replacement
154 rtx *where; /* Location to store in */
155 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
156 a SUBREG; 0 otherwise. */
157 int what; /* which reload this is for */
158 enum machine_mode mode; /* mode it must have */
161 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 /* Number of replacements currently recorded. */
164 static int n_replacements;
166 /* Used to track what is modified by an operand. */
167 struct decomposition
169 int reg_flag; /* Nonzero if referencing a register. */
170 int safe; /* Nonzero if this can't conflict with anything. */
171 rtx base; /* Base address for MEM. */
172 HOST_WIDE_INT start; /* Starting offset or register number. */
173 HOST_WIDE_INT end; /* Ending offset or register number. */
176 #ifdef SECONDARY_MEMORY_NEEDED
178 /* Save MEMs needed to copy from one class of registers to another. One MEM
179 is used per mode, but normally only one or two modes are ever used.
181 We keep two versions, before and after register elimination. The one
182 after register elimination is record separately for each operand. This
183 is done in case the address is not valid to be sure that we separately
184 reload each. */
186 static rtx secondary_memlocs[NUM_MACHINE_MODES];
187 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
188 static int secondary_memlocs_elim_used = 0;
189 #endif
191 /* The instruction we are doing reloads for;
192 so we can test whether a register dies in it. */
193 static rtx this_insn;
195 /* Nonzero if this instruction is a user-specified asm with operands. */
196 static int this_insn_is_asm;
198 /* If hard_regs_live_known is nonzero,
199 we can tell which hard regs are currently live,
200 at least enough to succeed in choosing dummy reloads. */
201 static int hard_regs_live_known;
203 /* Indexed by hard reg number,
204 element is nonnegative if hard reg has been spilled.
205 This vector is passed to `find_reloads' as an argument
206 and is not changed here. */
207 static short *static_reload_reg_p;
209 /* Set to 1 in subst_reg_equivs if it changes anything. */
210 static int subst_reg_equivs_changed;
212 /* On return from push_reload, holds the reload-number for the OUT
213 operand, which can be different for that from the input operand. */
214 static int output_reloadnum;
216 /* Compare two RTX's. */
217 #define MATCHES(x, y) \
218 (x == y || (x != 0 && (REG_P (x) \
219 ? REG_P (y) && REGNO (x) == REGNO (y) \
220 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222 /* Indicates if two reloads purposes are for similar enough things that we
223 can merge their reloads. */
224 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
225 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
226 || ((when1) == (when2) && (op1) == (op2)) \
227 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
228 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
229 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
230 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
231 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
234 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
235 ((when1) != (when2) \
236 || ! ((op1) == (op2) \
237 || (when1) == RELOAD_FOR_INPUT \
238 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 /* If we are going to reload an address, compute the reload type to
242 use. */
243 #define ADDR_TYPE(type) \
244 ((type) == RELOAD_FOR_INPUT_ADDRESS \
245 ? RELOAD_FOR_INPADDR_ADDRESS \
246 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
247 ? RELOAD_FOR_OUTADDR_ADDRESS \
248 : (type)))
250 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
251 enum machine_mode, enum reload_type,
252 enum insn_code *, secondary_reload_info *);
253 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
254 int, unsigned int);
255 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, enum reg_class, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
271 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
272 int, enum reload_type, int, rtx);
273 static rtx subst_reg_equivs (rtx, rtx);
274 static rtx subst_indexed_address (rtx);
275 static void update_auto_inc_notes (rtx, int, int);
276 static int find_reloads_address_1 (enum machine_mode, rtx, int,
277 enum rtx_code, enum rtx_code, rtx *,
278 int, enum reload_type,int, rtx);
279 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
280 enum machine_mode, int,
281 enum reload_type, int);
282 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
283 int, rtx);
284 static void copy_replacements_1 (rtx *, rtx *, int);
285 static int find_inc_amount (rtx, rtx);
286 static int refers_to_mem_for_reload_p (rtx);
287 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
288 rtx, rtx *);
290 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
291 list yet. */
293 static void
294 push_reg_equiv_alt_mem (int regno, rtx mem)
296 rtx it;
298 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
299 if (rtx_equal_p (XEXP (it, 0), mem))
300 return;
302 reg_equiv_alt_mem_list [regno]
303 = alloc_EXPR_LIST (REG_EQUIV, mem,
304 reg_equiv_alt_mem_list [regno]);
307 /* Determine if any secondary reloads are needed for loading (if IN_P is
308 nonzero) or storing (if IN_P is zero) X to or from a reload register of
309 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
310 are needed, push them.
312 Return the reload number of the secondary reload we made, or -1 if
313 we didn't need one. *PICODE is set to the insn_code to use if we do
314 need a secondary reload. */
316 static int
317 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
318 enum reg_class reload_class,
319 enum machine_mode reload_mode, enum reload_type type,
320 enum insn_code *picode, secondary_reload_info *prev_sri)
322 enum reg_class rclass = NO_REGS;
323 enum reg_class scratch_class;
324 enum machine_mode mode = reload_mode;
325 enum insn_code icode = CODE_FOR_nothing;
326 enum insn_code t_icode = CODE_FOR_nothing;
327 enum reload_type secondary_type;
328 int s_reload, t_reload = -1;
329 const char *scratch_constraint;
330 char letter;
331 secondary_reload_info sri;
333 if (type == RELOAD_FOR_INPUT_ADDRESS
334 || type == RELOAD_FOR_OUTPUT_ADDRESS
335 || type == RELOAD_FOR_INPADDR_ADDRESS
336 || type == RELOAD_FOR_OUTADDR_ADDRESS)
337 secondary_type = type;
338 else
339 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341 *picode = CODE_FOR_nothing;
343 /* If X is a paradoxical SUBREG, use the inner value to determine both the
344 mode and object being reloaded. */
345 if (GET_CODE (x) == SUBREG
346 && (GET_MODE_SIZE (GET_MODE (x))
347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
349 x = SUBREG_REG (x);
350 reload_mode = GET_MODE (x);
353 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
354 is still a pseudo-register by now, it *must* have an equivalent MEM
355 but we don't want to assume that), use that equivalent when seeing if
356 a secondary reload is needed since whether or not a reload is needed
357 might be sensitive to the form of the MEM. */
359 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
360 && reg_equiv_mem[REGNO (x)] != 0)
361 x = reg_equiv_mem[REGNO (x)];
363 sri.icode = CODE_FOR_nothing;
364 sri.prev_sri = prev_sri;
365 rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
366 icode = sri.icode;
368 /* If we don't need any secondary registers, done. */
369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 reload_mode, type, &t_icode, &sri);
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
379 if (icode != CODE_FOR_nothing)
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (rclass == NO_REGS);
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
405 scratch_constraint));
407 rclass = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
440 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
441 opnum, rld[s_reload].opnum))
443 if (in_p)
444 rld[s_reload].inmode = mode;
445 if (! in_p)
446 rld[s_reload].outmode = mode;
448 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
449 rld[s_reload].rclass = rclass;
451 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
452 rld[s_reload].optional &= optional;
453 rld[s_reload].secondary_p = 1;
454 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
455 opnum, rld[s_reload].opnum))
456 rld[s_reload].when_needed = RELOAD_OTHER;
458 break;
461 if (s_reload == n_reloads)
463 #ifdef SECONDARY_MEMORY_NEEDED
464 /* If we need a memory location to copy between the two reload regs,
465 set it up now. Note that we do the input case before making
466 the reload and the output case after. This is due to the
467 way reloads are output. */
469 if (in_p && icode == CODE_FOR_nothing
470 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
472 get_secondary_mem (x, reload_mode, opnum, type);
474 /* We may have just added new reloads. Make sure we add
475 the new reload at the end. */
476 s_reload = n_reloads;
478 #endif
480 /* We need to make a new secondary reload for this register class. */
481 rld[s_reload].in = rld[s_reload].out = 0;
482 rld[s_reload].rclass = rclass;
484 rld[s_reload].inmode = in_p ? mode : VOIDmode;
485 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
486 rld[s_reload].reg_rtx = 0;
487 rld[s_reload].optional = optional;
488 rld[s_reload].inc = 0;
489 /* Maybe we could combine these, but it seems too tricky. */
490 rld[s_reload].nocombine = 1;
491 rld[s_reload].in_reg = 0;
492 rld[s_reload].out_reg = 0;
493 rld[s_reload].opnum = opnum;
494 rld[s_reload].when_needed = secondary_type;
495 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
496 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
497 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
498 rld[s_reload].secondary_out_icode
499 = ! in_p ? t_icode : CODE_FOR_nothing;
500 rld[s_reload].secondary_p = 1;
502 n_reloads++;
504 #ifdef SECONDARY_MEMORY_NEEDED
505 if (! in_p && icode == CODE_FOR_nothing
506 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
507 get_secondary_mem (x, mode, opnum, type);
508 #endif
511 *picode = icode;
512 return s_reload;
515 /* If a secondary reload is needed, return its class. If both an intermediate
516 register and a scratch register is needed, we return the class of the
517 intermediate register. */
518 enum reg_class
519 secondary_reload_class (bool in_p, enum reg_class rclass,
520 enum machine_mode mode, rtx x)
522 enum insn_code icode;
523 secondary_reload_info sri;
525 sri.icode = CODE_FOR_nothing;
526 sri.prev_sri = NULL;
527 rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
528 icode = sri.icode;
530 /* If there are no secondary reloads at all, we return NO_REGS.
531 If an intermediate register is needed, we return its class. */
532 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
533 return rclass;
535 /* No intermediate register is needed, but we have a special reload
536 pattern, which we assume for now needs a scratch register. */
537 return scratch_reload_class (icode);
540 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
541 three operands, verify that operand 2 is an output operand, and return
542 its register class.
543 ??? We'd like to be able to handle any pattern with at least 2 operands,
544 for zero or more scratch registers, but that needs more infrastructure. */
545 enum reg_class
546 scratch_reload_class (enum insn_code icode)
548 const char *scratch_constraint;
549 char scratch_letter;
550 enum reg_class rclass;
552 gcc_assert (insn_data[(int) icode].n_operands == 3);
553 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
554 gcc_assert (*scratch_constraint == '=');
555 scratch_constraint++;
556 if (*scratch_constraint == '&')
557 scratch_constraint++;
558 scratch_letter = *scratch_constraint;
559 if (scratch_letter == 'r')
560 return GENERAL_REGS;
561 rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
562 scratch_constraint);
563 gcc_assert (rclass != NO_REGS);
564 return rclass;
567 #ifdef SECONDARY_MEMORY_NEEDED
569 /* Return a memory location that will be used to copy X in mode MODE.
570 If we haven't already made a location for this mode in this insn,
571 call find_reloads_address on the location being returned. */
574 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
575 int opnum, enum reload_type type)
577 rtx loc;
578 int mem_valid;
580 /* By default, if MODE is narrower than a word, widen it to a word.
581 This is required because most machines that require these memory
582 locations do not support short load and stores from all registers
583 (e.g., FP registers). */
585 #ifdef SECONDARY_MEMORY_NEEDED_MODE
586 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
587 #else
588 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
589 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
590 #endif
592 /* If we already have made a MEM for this operand in MODE, return it. */
593 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
594 return secondary_memlocs_elim[(int) mode][opnum];
596 /* If this is the first time we've tried to get a MEM for this mode,
597 allocate a new one. `something_changed' in reload will get set
598 by noticing that the frame size has changed. */
600 if (secondary_memlocs[(int) mode] == 0)
602 #ifdef SECONDARY_MEMORY_NEEDED_RTX
603 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
604 #else
605 secondary_memlocs[(int) mode]
606 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
607 #endif
610 /* Get a version of the address doing any eliminations needed. If that
611 didn't give us a new MEM, make a new one if it isn't valid. */
613 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
614 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
616 if (! mem_valid && loc == secondary_memlocs[(int) mode])
617 loc = copy_rtx (loc);
619 /* The only time the call below will do anything is if the stack
620 offset is too large. In that case IND_LEVELS doesn't matter, so we
621 can just pass a zero. Adjust the type to be the address of the
622 corresponding object. If the address was valid, save the eliminated
623 address. If it wasn't valid, we need to make a reload each time, so
624 don't save it. */
626 if (! mem_valid)
628 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
629 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
630 : RELOAD_OTHER);
632 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
633 opnum, type, 0, 0);
636 secondary_memlocs_elim[(int) mode][opnum] = loc;
637 if (secondary_memlocs_elim_used <= (int)mode)
638 secondary_memlocs_elim_used = (int)mode + 1;
639 return loc;
642 /* Clear any secondary memory locations we've made. */
644 void
645 clear_secondary_mem (void)
647 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
649 #endif /* SECONDARY_MEMORY_NEEDED */
652 /* Find the largest class which has at least one register valid in
653 mode INNER, and which for every such register, that register number
654 plus N is also valid in OUTER (if in range) and is cheap to move
655 into REGNO. Such a class must exist. */
657 static enum reg_class
658 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
659 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
660 unsigned int dest_regno ATTRIBUTE_UNUSED)
662 int best_cost = -1;
663 int rclass;
664 int regno;
665 enum reg_class best_class = NO_REGS;
666 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
667 unsigned int best_size = 0;
668 int cost;
670 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
672 int bad = 0;
673 int good = 0;
674 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
675 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
677 if (HARD_REGNO_MODE_OK (regno, inner))
679 good = 1;
680 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
681 || ! HARD_REGNO_MODE_OK (regno + n, outer))
682 bad = 1;
686 if (bad || !good)
687 continue;
688 cost = REGISTER_MOVE_COST (outer, rclass, dest_class);
690 if ((reg_class_size[rclass] > best_size
691 && (best_cost < 0 || best_cost >= cost))
692 || best_cost > cost)
694 best_class = rclass;
695 best_size = reg_class_size[rclass];
696 best_cost = REGISTER_MOVE_COST (outer, rclass, dest_class);
700 gcc_assert (best_size != 0);
702 return best_class;
705 /* Return the number of a previously made reload that can be combined with
706 a new one, or n_reloads if none of the existing reloads can be used.
707 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
708 push_reload, they determine the kind of the new reload that we try to
709 combine. P_IN points to the corresponding value of IN, which can be
710 modified by this function.
711 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
713 static int
714 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
715 enum reload_type type, int opnum, int dont_share)
717 rtx in = *p_in;
718 int i;
719 /* We can't merge two reloads if the output of either one is
720 earlyclobbered. */
722 if (earlyclobber_operand_p (out))
723 return n_reloads;
725 /* We can use an existing reload if the class is right
726 and at least one of IN and OUT is a match
727 and the other is at worst neutral.
728 (A zero compared against anything is neutral.)
730 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
731 for the same thing since that can cause us to need more reload registers
732 than we otherwise would. */
734 for (i = 0; i < n_reloads; i++)
735 if ((reg_class_subset_p (rclass, rld[i].rclass)
736 || reg_class_subset_p (rld[i].rclass, rclass))
737 /* If the existing reload has a register, it must fit our class. */
738 && (rld[i].reg_rtx == 0
739 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
740 true_regnum (rld[i].reg_rtx)))
741 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
742 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
743 || (out != 0 && MATCHES (rld[i].out, out)
744 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
745 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
746 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
747 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
748 return i;
750 /* Reloading a plain reg for input can match a reload to postincrement
751 that reg, since the postincrement's value is the right value.
752 Likewise, it can match a preincrement reload, since we regard
753 the preincrementation as happening before any ref in this insn
754 to that register. */
755 for (i = 0; i < n_reloads; i++)
756 if ((reg_class_subset_p (rclass, rld[i].rclass)
757 || reg_class_subset_p (rld[i].rclass, rclass))
758 /* If the existing reload has a register, it must fit our
759 class. */
760 && (rld[i].reg_rtx == 0
761 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
762 true_regnum (rld[i].reg_rtx)))
763 && out == 0 && rld[i].out == 0 && rld[i].in != 0
764 && ((REG_P (in)
765 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
766 && MATCHES (XEXP (rld[i].in, 0), in))
767 || (REG_P (rld[i].in)
768 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
769 && MATCHES (XEXP (in, 0), rld[i].in)))
770 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
771 && (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
772 && MERGABLE_RELOADS (type, rld[i].when_needed,
773 opnum, rld[i].opnum))
775 /* Make sure reload_in ultimately has the increment,
776 not the plain register. */
777 if (REG_P (in))
778 *p_in = rld[i].in;
779 return i;
781 return n_reloads;
784 /* Return nonzero if X is a SUBREG which will require reloading of its
785 SUBREG_REG expression. */
787 static int
788 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
790 rtx inner;
792 /* Only SUBREGs are problematical. */
793 if (GET_CODE (x) != SUBREG)
794 return 0;
796 inner = SUBREG_REG (x);
798 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
799 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
800 return 1;
802 /* If INNER is not a hard register, then INNER will not need to
803 be reloaded. */
804 if (!REG_P (inner)
805 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
806 return 0;
808 /* If INNER is not ok for MODE, then INNER will need reloading. */
809 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
810 return 1;
812 /* If the outer part is a word or smaller, INNER larger than a
813 word and the number of regs for INNER is not the same as the
814 number of words in INNER, then INNER will need reloading. */
815 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
816 && output
817 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
818 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
819 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
822 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
823 requiring an extra reload register. The caller has already found that
824 IN contains some reference to REGNO, so check that we can produce the
825 new value in a single step. E.g. if we have
826 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
827 instruction that adds one to a register, this should succeed.
828 However, if we have something like
829 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
830 needs to be loaded into a register first, we need a separate reload
831 register.
832 Such PLUS reloads are generated by find_reload_address_part.
833 The out-of-range PLUS expressions are usually introduced in the instruction
834 patterns by register elimination and substituting pseudos without a home
835 by their function-invariant equivalences. */
836 static int
837 can_reload_into (rtx in, int regno, enum machine_mode mode)
839 rtx dst, test_insn;
840 int r = 0;
841 struct recog_data save_recog_data;
843 /* For matching constraints, we often get notional input reloads where
844 we want to use the original register as the reload register. I.e.
845 technically this is a non-optional input-output reload, but IN is
846 already a valid register, and has been chosen as the reload register.
847 Speed this up, since it trivially works. */
848 if (REG_P (in))
849 return 1;
851 /* To test MEMs properly, we'd have to take into account all the reloads
852 that are already scheduled, which can become quite complicated.
853 And since we've already handled address reloads for this MEM, it
854 should always succeed anyway. */
855 if (MEM_P (in))
856 return 1;
858 /* If we can make a simple SET insn that does the job, everything should
859 be fine. */
860 dst = gen_rtx_REG (mode, regno);
861 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
862 save_recog_data = recog_data;
863 if (recog_memoized (test_insn) >= 0)
865 extract_insn (test_insn);
866 r = constrain_operands (1);
868 recog_data = save_recog_data;
869 return r;
872 /* Record one reload that needs to be performed.
873 IN is an rtx saying where the data are to be found before this instruction.
874 OUT says where they must be stored after the instruction.
875 (IN is zero for data not read, and OUT is zero for data not written.)
876 INLOC and OUTLOC point to the places in the instructions where
877 IN and OUT were found.
878 If IN and OUT are both nonzero, it means the same register must be used
879 to reload both IN and OUT.
881 RCLASS is a register class required for the reloaded data.
882 INMODE is the machine mode that the instruction requires
883 for the reg that replaces IN and OUTMODE is likewise for OUT.
885 If IN is zero, then OUT's location and mode should be passed as
886 INLOC and INMODE.
888 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
890 OPTIONAL nonzero means this reload does not need to be performed:
891 it can be discarded if that is more convenient.
893 OPNUM and TYPE say what the purpose of this reload is.
895 The return value is the reload-number for this reload.
897 If both IN and OUT are nonzero, in some rare cases we might
898 want to make two separate reloads. (Actually we never do this now.)
899 Therefore, the reload-number for OUT is stored in
900 output_reloadnum when we return; the return value applies to IN.
901 Usually (presently always), when IN and OUT are nonzero,
902 the two reload-numbers are equal, but the caller should be careful to
903 distinguish them. */
906 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
907 enum reg_class rclass, enum machine_mode inmode,
908 enum machine_mode outmode, int strict_low, int optional,
909 int opnum, enum reload_type type)
911 int i;
912 int dont_share = 0;
913 int dont_remove_subreg = 0;
914 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
915 int secondary_in_reload = -1, secondary_out_reload = -1;
916 enum insn_code secondary_in_icode = CODE_FOR_nothing;
917 enum insn_code secondary_out_icode = CODE_FOR_nothing;
919 /* INMODE and/or OUTMODE could be VOIDmode if no mode
920 has been specified for the operand. In that case,
921 use the operand's mode as the mode to reload. */
922 if (inmode == VOIDmode && in != 0)
923 inmode = GET_MODE (in);
924 if (outmode == VOIDmode && out != 0)
925 outmode = GET_MODE (out);
927 /* If find_reloads and friends until now missed to replace a pseudo
928 with a constant of reg_equiv_constant something went wrong
929 beforehand.
930 Note that it can't simply be done here if we missed it earlier
931 since the constant might need to be pushed into the literal pool
932 and the resulting memref would probably need further
933 reloading. */
934 if (in != 0 && REG_P (in))
936 int regno = REGNO (in);
938 gcc_assert (regno < FIRST_PSEUDO_REGISTER
939 || reg_renumber[regno] >= 0
940 || reg_equiv_constant[regno] == NULL_RTX);
943 /* reg_equiv_constant only contains constants which are obviously
944 not appropriate as destination. So if we would need to replace
945 the destination pseudo with a constant we are in real
946 trouble. */
947 if (out != 0 && REG_P (out))
949 int regno = REGNO (out);
951 gcc_assert (regno < FIRST_PSEUDO_REGISTER
952 || reg_renumber[regno] >= 0
953 || reg_equiv_constant[regno] == NULL_RTX);
956 /* If we have a read-write operand with an address side-effect,
957 change either IN or OUT so the side-effect happens only once. */
958 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
959 switch (GET_CODE (XEXP (in, 0)))
961 case POST_INC: case POST_DEC: case POST_MODIFY:
962 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
963 break;
965 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
966 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
967 break;
969 default:
970 break;
973 /* If we are reloading a (SUBREG constant ...), really reload just the
974 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
975 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
976 a pseudo and hence will become a MEM) with M1 wider than M2 and the
977 register is a pseudo, also reload the inside expression.
978 For machines that extend byte loads, do this for any SUBREG of a pseudo
979 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
980 M2 is an integral mode that gets extended when loaded.
981 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
982 either M1 is not valid for R or M2 is wider than a word but we only
983 need one word to store an M2-sized quantity in R.
984 (However, if OUT is nonzero, we need to reload the reg *and*
985 the subreg, so do nothing here, and let following statement handle it.)
987 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
988 we can't handle it here because CONST_INT does not indicate a mode.
990 Similarly, we must reload the inside expression if we have a
991 STRICT_LOW_PART (presumably, in == out in this case).
993 Also reload the inner expression if it does not require a secondary
994 reload but the SUBREG does.
996 Finally, reload the inner expression if it is a register that is in
997 the class whose registers cannot be referenced in a different size
998 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
999 cannot reload just the inside since we might end up with the wrong
1000 register class. But if it is inside a STRICT_LOW_PART, we have
1001 no choice, so we hope we do get the right register class there. */
1003 if (in != 0 && GET_CODE (in) == SUBREG
1004 && (subreg_lowpart_p (in) || strict_low)
1005 #ifdef CANNOT_CHANGE_MODE_CLASS
1006 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1007 #endif
1008 && (CONSTANT_P (SUBREG_REG (in))
1009 || GET_CODE (SUBREG_REG (in)) == PLUS
1010 || strict_low
1011 || (((REG_P (SUBREG_REG (in))
1012 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1013 || MEM_P (SUBREG_REG (in)))
1014 && ((GET_MODE_SIZE (inmode)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 #ifdef LOAD_EXTEND_OP
1017 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1018 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1019 <= UNITS_PER_WORD)
1020 && (GET_MODE_SIZE (inmode)
1021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1023 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1024 #endif
1025 #ifdef WORD_REGISTER_OPERATIONS
1026 || ((GET_MODE_SIZE (inmode)
1027 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1029 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1030 / UNITS_PER_WORD)))
1031 #endif
1033 || (REG_P (SUBREG_REG (in))
1034 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1035 /* The case where out is nonzero
1036 is handled differently in the following statement. */
1037 && (out == 0 || subreg_lowpart_p (in))
1038 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1039 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1040 > UNITS_PER_WORD)
1041 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1042 / UNITS_PER_WORD)
1043 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1044 [GET_MODE (SUBREG_REG (in))]))
1045 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1046 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1047 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1048 SUBREG_REG (in))
1049 == NO_REGS))
1050 #ifdef CANNOT_CHANGE_MODE_CLASS
1051 || (REG_P (SUBREG_REG (in))
1052 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1053 && REG_CANNOT_CHANGE_MODE_P
1054 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1055 #endif
1058 in_subreg_loc = inloc;
1059 inloc = &SUBREG_REG (in);
1060 in = *inloc;
1061 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1062 if (MEM_P (in))
1063 /* This is supposed to happen only for paradoxical subregs made by
1064 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1065 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1066 #endif
1067 inmode = GET_MODE (in);
1070 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1071 either M1 is not valid for R or M2 is wider than a word but we only
1072 need one word to store an M2-sized quantity in R.
1074 However, we must reload the inner reg *as well as* the subreg in
1075 that case. */
1077 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1078 code above. This can happen if SUBREG_BYTE != 0. */
1080 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1082 enum reg_class in_class = rclass;
1084 if (REG_P (SUBREG_REG (in)))
1085 in_class
1086 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1087 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1088 GET_MODE (SUBREG_REG (in)),
1089 SUBREG_BYTE (in),
1090 GET_MODE (in)),
1091 REGNO (SUBREG_REG (in)));
1093 /* This relies on the fact that emit_reload_insns outputs the
1094 instructions for input reloads of type RELOAD_OTHER in the same
1095 order as the reloads. Thus if the outer reload is also of type
1096 RELOAD_OTHER, we are guaranteed that this inner reload will be
1097 output before the outer reload. */
1098 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1099 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1100 dont_remove_subreg = 1;
1103 /* Similarly for paradoxical and problematical SUBREGs on the output.
1104 Note that there is no reason we need worry about the previous value
1105 of SUBREG_REG (out); even if wider than out,
1106 storing in a subreg is entitled to clobber it all
1107 (except in the case of STRICT_LOW_PART,
1108 and in that case the constraint should label it input-output.) */
1109 if (out != 0 && GET_CODE (out) == SUBREG
1110 && (subreg_lowpart_p (out) || strict_low)
1111 #ifdef CANNOT_CHANGE_MODE_CLASS
1112 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1113 #endif
1114 && (CONSTANT_P (SUBREG_REG (out))
1115 || strict_low
1116 || (((REG_P (SUBREG_REG (out))
1117 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1118 || MEM_P (SUBREG_REG (out)))
1119 && ((GET_MODE_SIZE (outmode)
1120 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1121 #ifdef WORD_REGISTER_OPERATIONS
1122 || ((GET_MODE_SIZE (outmode)
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1124 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1125 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1126 / UNITS_PER_WORD)))
1127 #endif
1129 || (REG_P (SUBREG_REG (out))
1130 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1131 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1132 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1133 > UNITS_PER_WORD)
1134 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1135 / UNITS_PER_WORD)
1136 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1137 [GET_MODE (SUBREG_REG (out))]))
1138 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1139 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1140 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1141 SUBREG_REG (out))
1142 == NO_REGS))
1143 #ifdef CANNOT_CHANGE_MODE_CLASS
1144 || (REG_P (SUBREG_REG (out))
1145 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1146 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1147 GET_MODE (SUBREG_REG (out)),
1148 outmode))
1149 #endif
1152 out_subreg_loc = outloc;
1153 outloc = &SUBREG_REG (out);
1154 out = *outloc;
1155 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1156 gcc_assert (!MEM_P (out)
1157 || GET_MODE_SIZE (GET_MODE (out))
1158 <= GET_MODE_SIZE (outmode));
1159 #endif
1160 outmode = GET_MODE (out);
1163 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1164 either M1 is not valid for R or M2 is wider than a word but we only
1165 need one word to store an M2-sized quantity in R.
1167 However, we must reload the inner reg *as well as* the subreg in
1168 that case. In this case, the inner reg is an in-out reload. */
1170 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1172 /* This relies on the fact that emit_reload_insns outputs the
1173 instructions for output reloads of type RELOAD_OTHER in reverse
1174 order of the reloads. Thus if the outer reload is also of type
1175 RELOAD_OTHER, we are guaranteed that this inner reload will be
1176 output after the outer reload. */
1177 dont_remove_subreg = 1;
1178 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1179 &SUBREG_REG (out),
1180 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1181 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1182 GET_MODE (SUBREG_REG (out)),
1183 SUBREG_BYTE (out),
1184 GET_MODE (out)),
1185 REGNO (SUBREG_REG (out))),
1186 VOIDmode, VOIDmode, 0, 0,
1187 opnum, RELOAD_OTHER);
1190 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1191 if (in != 0 && out != 0 && MEM_P (out)
1192 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1193 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1194 dont_share = 1;
1196 /* If IN is a SUBREG of a hard register, make a new REG. This
1197 simplifies some of the cases below. */
1199 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1200 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1201 && ! dont_remove_subreg)
1202 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1204 /* Similarly for OUT. */
1205 if (out != 0 && GET_CODE (out) == SUBREG
1206 && REG_P (SUBREG_REG (out))
1207 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1208 && ! dont_remove_subreg)
1209 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1211 /* Narrow down the class of register wanted if that is
1212 desirable on this machine for efficiency. */
1214 enum reg_class preferred_class = rclass;
1216 if (in != 0)
1217 preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1219 /* Output reloads may need analogous treatment, different in detail. */
1220 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1221 if (out != 0)
1222 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1223 #endif
1225 /* Discard what the target said if we cannot do it. */
1226 if (preferred_class != NO_REGS
1227 || (optional && type == RELOAD_FOR_OUTPUT))
1228 rclass = preferred_class;
1231 /* Make sure we use a class that can handle the actual pseudo
1232 inside any subreg. For example, on the 386, QImode regs
1233 can appear within SImode subregs. Although GENERAL_REGS
1234 can handle SImode, QImode needs a smaller class. */
1235 #ifdef LIMIT_RELOAD_CLASS
1236 if (in_subreg_loc)
1237 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1238 else if (in != 0 && GET_CODE (in) == SUBREG)
1239 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1241 if (out_subreg_loc)
1242 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1243 if (out != 0 && GET_CODE (out) == SUBREG)
1244 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1245 #endif
1247 /* Verify that this class is at least possible for the mode that
1248 is specified. */
1249 if (this_insn_is_asm)
1251 enum machine_mode mode;
1252 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1253 mode = inmode;
1254 else
1255 mode = outmode;
1256 if (mode == VOIDmode)
1258 error_for_asm (this_insn, "cannot reload integer constant "
1259 "operand in %<asm%>");
1260 mode = word_mode;
1261 if (in != 0)
1262 inmode = word_mode;
1263 if (out != 0)
1264 outmode = word_mode;
1266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1267 if (HARD_REGNO_MODE_OK (i, mode)
1268 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1269 break;
1270 if (i == FIRST_PSEUDO_REGISTER)
1272 error_for_asm (this_insn, "impossible register constraint "
1273 "in %<asm%>");
1274 /* Avoid further trouble with this insn. */
1275 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1276 /* We used to continue here setting class to ALL_REGS, but it triggers
1277 sanity check on i386 for:
1278 void foo(long double d)
1280 asm("" :: "a" (d));
1282 Returning zero here ought to be safe as we take care in
1283 find_reloads to not process the reloads when instruction was
1284 replaced by USE. */
1286 return 0;
1290 /* Optional output reloads are always OK even if we have no register class,
1291 since the function of these reloads is only to have spill_reg_store etc.
1292 set, so that the storing insn can be deleted later. */
1293 gcc_assert (rclass != NO_REGS
1294 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1296 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 if (in != 0)
1305 secondary_in_reload
1306 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1307 &secondary_in_icode, NULL);
1308 if (out != 0 && GET_CODE (out) != SCRATCH)
1309 secondary_out_reload
1310 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1311 type, &secondary_out_icode, NULL);
1313 /* We found no existing reload suitable for re-use.
1314 So add an additional reload. */
1316 #ifdef SECONDARY_MEMORY_NEEDED
1317 /* If a memory location is needed for the copy, make one. */
1318 if (in != 0
1319 && (REG_P (in)
1320 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1321 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1323 rclass, inmode))
1324 get_secondary_mem (in, inmode, opnum, type);
1325 #endif
1327 i = n_reloads;
1328 rld[i].in = in;
1329 rld[i].out = out;
1330 rld[i].rclass = rclass;
1331 rld[i].inmode = inmode;
1332 rld[i].outmode = outmode;
1333 rld[i].reg_rtx = 0;
1334 rld[i].optional = optional;
1335 rld[i].inc = 0;
1336 rld[i].nocombine = 0;
1337 rld[i].in_reg = inloc ? *inloc : 0;
1338 rld[i].out_reg = outloc ? *outloc : 0;
1339 rld[i].opnum = opnum;
1340 rld[i].when_needed = type;
1341 rld[i].secondary_in_reload = secondary_in_reload;
1342 rld[i].secondary_out_reload = secondary_out_reload;
1343 rld[i].secondary_in_icode = secondary_in_icode;
1344 rld[i].secondary_out_icode = secondary_out_icode;
1345 rld[i].secondary_p = 0;
1347 n_reloads++;
1349 #ifdef SECONDARY_MEMORY_NEEDED
1350 if (out != 0
1351 && (REG_P (out)
1352 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1353 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1354 && SECONDARY_MEMORY_NEEDED (rclass,
1355 REGNO_REG_CLASS (reg_or_subregno (out)),
1356 outmode))
1357 get_secondary_mem (out, outmode, opnum, type);
1358 #endif
1360 else
1362 /* We are reusing an existing reload,
1363 but we may have additional information for it.
1364 For example, we may now have both IN and OUT
1365 while the old one may have just one of them. */
1367 /* The modes can be different. If they are, we want to reload in
1368 the larger mode, so that the value is valid for both modes. */
1369 if (inmode != VOIDmode
1370 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1371 rld[i].inmode = inmode;
1372 if (outmode != VOIDmode
1373 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1374 rld[i].outmode = outmode;
1375 if (in != 0)
1377 rtx in_reg = inloc ? *inloc : 0;
1378 /* If we merge reloads for two distinct rtl expressions that
1379 are identical in content, there might be duplicate address
1380 reloads. Remove the extra set now, so that if we later find
1381 that we can inherit this reload, we can get rid of the
1382 address reloads altogether.
1384 Do not do this if both reloads are optional since the result
1385 would be an optional reload which could potentially leave
1386 unresolved address replacements.
1388 It is not sufficient to call transfer_replacements since
1389 choose_reload_regs will remove the replacements for address
1390 reloads of inherited reloads which results in the same
1391 problem. */
1392 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1393 && ! (rld[i].optional && optional))
1395 /* We must keep the address reload with the lower operand
1396 number alive. */
1397 if (opnum > rld[i].opnum)
1399 remove_address_replacements (in);
1400 in = rld[i].in;
1401 in_reg = rld[i].in_reg;
1403 else
1404 remove_address_replacements (rld[i].in);
1406 rld[i].in = in;
1407 rld[i].in_reg = in_reg;
1409 if (out != 0)
1411 rld[i].out = out;
1412 rld[i].out_reg = outloc ? *outloc : 0;
1414 if (reg_class_subset_p (rclass, rld[i].rclass))
1415 rld[i].rclass = rclass;
1416 rld[i].optional &= optional;
1417 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1418 opnum, rld[i].opnum))
1419 rld[i].when_needed = RELOAD_OTHER;
1420 rld[i].opnum = MIN (rld[i].opnum, opnum);
1423 /* If the ostensible rtx being reloaded differs from the rtx found
1424 in the location to substitute, this reload is not safe to combine
1425 because we cannot reliably tell whether it appears in the insn. */
1427 if (in != 0 && in != *inloc)
1428 rld[i].nocombine = 1;
1430 #if 0
1431 /* This was replaced by changes in find_reloads_address_1 and the new
1432 function inc_for_reload, which go with a new meaning of reload_inc. */
1434 /* If this is an IN/OUT reload in an insn that sets the CC,
1435 it must be for an autoincrement. It doesn't work to store
1436 the incremented value after the insn because that would clobber the CC.
1437 So we must do the increment of the value reloaded from,
1438 increment it, store it back, then decrement again. */
1439 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1441 out = 0;
1442 rld[i].out = 0;
1443 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1444 /* If we did not find a nonzero amount-to-increment-by,
1445 that contradicts the belief that IN is being incremented
1446 in an address in this insn. */
1447 gcc_assert (rld[i].inc != 0);
1449 #endif
1451 /* If we will replace IN and OUT with the reload-reg,
1452 record where they are located so that substitution need
1453 not do a tree walk. */
1455 if (replace_reloads)
1457 if (inloc != 0)
1459 struct replacement *r = &replacements[n_replacements++];
1460 r->what = i;
1461 r->subreg_loc = in_subreg_loc;
1462 r->where = inloc;
1463 r->mode = inmode;
1465 if (outloc != 0 && outloc != inloc)
1467 struct replacement *r = &replacements[n_replacements++];
1468 r->what = i;
1469 r->where = outloc;
1470 r->subreg_loc = out_subreg_loc;
1471 r->mode = outmode;
1475 /* If this reload is just being introduced and it has both
1476 an incoming quantity and an outgoing quantity that are
1477 supposed to be made to match, see if either one of the two
1478 can serve as the place to reload into.
1480 If one of them is acceptable, set rld[i].reg_rtx
1481 to that one. */
1483 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1485 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1486 inmode, outmode,
1487 rld[i].rclass, i,
1488 earlyclobber_operand_p (out));
1490 /* If the outgoing register already contains the same value
1491 as the incoming one, we can dispense with loading it.
1492 The easiest way to tell the caller that is to give a phony
1493 value for the incoming operand (same as outgoing one). */
1494 if (rld[i].reg_rtx == out
1495 && (REG_P (in) || CONSTANT_P (in))
1496 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1497 static_reload_reg_p, i, inmode))
1498 rld[i].in = out;
1501 /* If this is an input reload and the operand contains a register that
1502 dies in this insn and is used nowhere else, see if it is the right class
1503 to be used for this reload. Use it if so. (This occurs most commonly
1504 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1505 this if it is also an output reload that mentions the register unless
1506 the output is a SUBREG that clobbers an entire register.
1508 Note that the operand might be one of the spill regs, if it is a
1509 pseudo reg and we are in a block where spilling has not taken place.
1510 But if there is no spilling in this block, that is OK.
1511 An explicitly used hard reg cannot be a spill reg. */
1513 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1515 rtx note;
1516 int regno;
1517 enum machine_mode rel_mode = inmode;
1519 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1520 rel_mode = outmode;
1522 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1523 if (REG_NOTE_KIND (note) == REG_DEAD
1524 && REG_P (XEXP (note, 0))
1525 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1526 && reg_mentioned_p (XEXP (note, 0), in)
1527 /* Check that a former pseudo is valid; see find_dummy_reload. */
1528 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1529 || (! bitmap_bit_p (flag_ira
1530 ? DF_LR_OUT (ENTRY_BLOCK_PTR)
1531 : DF_LIVE_OUT (ENTRY_BLOCK_PTR),
1532 ORIGINAL_REGNO (XEXP (note, 0)))
1533 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1534 && ! refers_to_regno_for_reload_p (regno,
1535 end_hard_regno (rel_mode,
1536 regno),
1537 PATTERN (this_insn), inloc)
1538 /* If this is also an output reload, IN cannot be used as
1539 the reload register if it is set in this insn unless IN
1540 is also OUT. */
1541 && (out == 0 || in == out
1542 || ! hard_reg_set_here_p (regno,
1543 end_hard_regno (rel_mode, regno),
1544 PATTERN (this_insn)))
1545 /* ??? Why is this code so different from the previous?
1546 Is there any simple coherent way to describe the two together?
1547 What's going on here. */
1548 && (in != out
1549 || (GET_CODE (in) == SUBREG
1550 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1551 / UNITS_PER_WORD)
1552 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1553 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1554 /* Make sure the operand fits in the reg that dies. */
1555 && (GET_MODE_SIZE (rel_mode)
1556 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1557 && HARD_REGNO_MODE_OK (regno, inmode)
1558 && HARD_REGNO_MODE_OK (regno, outmode))
1560 unsigned int offs;
1561 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1562 hard_regno_nregs[regno][outmode]);
1564 for (offs = 0; offs < nregs; offs++)
1565 if (fixed_regs[regno + offs]
1566 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1567 regno + offs))
1568 break;
1570 if (offs == nregs
1571 && (! (refers_to_regno_for_reload_p
1572 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1573 || can_reload_into (in, regno, inmode)))
1575 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1576 break;
1581 if (out)
1582 output_reloadnum = i;
1584 return i;
1587 /* Record an additional place we must replace a value
1588 for which we have already recorded a reload.
1589 RELOADNUM is the value returned by push_reload
1590 when the reload was recorded.
1591 This is used in insn patterns that use match_dup. */
1593 static void
1594 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1596 if (replace_reloads)
1598 struct replacement *r = &replacements[n_replacements++];
1599 r->what = reloadnum;
1600 r->where = loc;
1601 r->subreg_loc = 0;
1602 r->mode = mode;
1606 /* Duplicate any replacement we have recorded to apply at
1607 location ORIG_LOC to also be performed at DUP_LOC.
1608 This is used in insn patterns that use match_dup. */
1610 static void
1611 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1613 int i, n = n_replacements;
1615 for (i = 0; i < n; i++)
1617 struct replacement *r = &replacements[i];
1618 if (r->where == orig_loc)
1619 push_replacement (dup_loc, r->what, r->mode);
1623 /* Transfer all replacements that used to be in reload FROM to be in
1624 reload TO. */
1626 void
1627 transfer_replacements (int to, int from)
1629 int i;
1631 for (i = 0; i < n_replacements; i++)
1632 if (replacements[i].what == from)
1633 replacements[i].what = to;
1636 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1637 or a subpart of it. If we have any replacements registered for IN_RTX,
1638 cancel the reloads that were supposed to load them.
1639 Return nonzero if we canceled any reloads. */
1641 remove_address_replacements (rtx in_rtx)
1643 int i, j;
1644 char reload_flags[MAX_RELOADS];
1645 int something_changed = 0;
1647 memset (reload_flags, 0, sizeof reload_flags);
1648 for (i = 0, j = 0; i < n_replacements; i++)
1650 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1651 reload_flags[replacements[i].what] |= 1;
1652 else
1654 replacements[j++] = replacements[i];
1655 reload_flags[replacements[i].what] |= 2;
1658 /* Note that the following store must be done before the recursive calls. */
1659 n_replacements = j;
1661 for (i = n_reloads - 1; i >= 0; i--)
1663 if (reload_flags[i] == 1)
1665 deallocate_reload_reg (i);
1666 remove_address_replacements (rld[i].in);
1667 rld[i].in = 0;
1668 something_changed = 1;
1671 return something_changed;
1674 /* If there is only one output reload, and it is not for an earlyclobber
1675 operand, try to combine it with a (logically unrelated) input reload
1676 to reduce the number of reload registers needed.
1678 This is safe if the input reload does not appear in
1679 the value being output-reloaded, because this implies
1680 it is not needed any more once the original insn completes.
1682 If that doesn't work, see we can use any of the registers that
1683 die in this insn as a reload register. We can if it is of the right
1684 class and does not appear in the value being output-reloaded. */
1686 static void
1687 combine_reloads (void)
1689 int i, regno;
1690 int output_reload = -1;
1691 int secondary_out = -1;
1692 rtx note;
1694 /* Find the output reload; return unless there is exactly one
1695 and that one is mandatory. */
1697 for (i = 0; i < n_reloads; i++)
1698 if (rld[i].out != 0)
1700 if (output_reload >= 0)
1701 return;
1702 output_reload = i;
1705 if (output_reload < 0 || rld[output_reload].optional)
1706 return;
1708 /* An input-output reload isn't combinable. */
1710 if (rld[output_reload].in != 0)
1711 return;
1713 /* If this reload is for an earlyclobber operand, we can't do anything. */
1714 if (earlyclobber_operand_p (rld[output_reload].out))
1715 return;
1717 /* If there is a reload for part of the address of this operand, we would
1718 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1719 its life to the point where doing this combine would not lower the
1720 number of spill registers needed. */
1721 for (i = 0; i < n_reloads; i++)
1722 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1723 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1724 && rld[i].opnum == rld[output_reload].opnum)
1725 return;
1727 /* Check each input reload; can we combine it? */
1729 for (i = 0; i < n_reloads; i++)
1730 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1731 /* Life span of this reload must not extend past main insn. */
1732 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1733 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1734 && rld[i].when_needed != RELOAD_OTHER
1735 && (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1736 == CLASS_MAX_NREGS (rld[output_reload].rclass,
1737 rld[output_reload].outmode))
1738 && rld[i].inc == 0
1739 && rld[i].reg_rtx == 0
1740 #ifdef SECONDARY_MEMORY_NEEDED
1741 /* Don't combine two reloads with different secondary
1742 memory locations. */
1743 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1744 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1745 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1746 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1747 #endif
1748 && (SMALL_REGISTER_CLASSES
1749 ? (rld[i].rclass == rld[output_reload].rclass)
1750 : (reg_class_subset_p (rld[i].rclass,
1751 rld[output_reload].rclass)
1752 || reg_class_subset_p (rld[output_reload].rclass,
1753 rld[i].rclass)))
1754 && (MATCHES (rld[i].in, rld[output_reload].out)
1755 /* Args reversed because the first arg seems to be
1756 the one that we imagine being modified
1757 while the second is the one that might be affected. */
1758 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1759 rld[i].in)
1760 /* However, if the input is a register that appears inside
1761 the output, then we also can't share.
1762 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1763 If the same reload reg is used for both reg 69 and the
1764 result to be stored in memory, then that result
1765 will clobber the address of the memory ref. */
1766 && ! (REG_P (rld[i].in)
1767 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1768 rld[output_reload].out))))
1769 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1770 rld[i].when_needed != RELOAD_FOR_INPUT)
1771 && (reg_class_size[(int) rld[i].rclass]
1772 || SMALL_REGISTER_CLASSES)
1773 /* We will allow making things slightly worse by combining an
1774 input and an output, but no worse than that. */
1775 && (rld[i].when_needed == RELOAD_FOR_INPUT
1776 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1778 int j;
1780 /* We have found a reload to combine with! */
1781 rld[i].out = rld[output_reload].out;
1782 rld[i].out_reg = rld[output_reload].out_reg;
1783 rld[i].outmode = rld[output_reload].outmode;
1784 /* Mark the old output reload as inoperative. */
1785 rld[output_reload].out = 0;
1786 /* The combined reload is needed for the entire insn. */
1787 rld[i].when_needed = RELOAD_OTHER;
1788 /* If the output reload had a secondary reload, copy it. */
1789 if (rld[output_reload].secondary_out_reload != -1)
1791 rld[i].secondary_out_reload
1792 = rld[output_reload].secondary_out_reload;
1793 rld[i].secondary_out_icode
1794 = rld[output_reload].secondary_out_icode;
1797 #ifdef SECONDARY_MEMORY_NEEDED
1798 /* Copy any secondary MEM. */
1799 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1800 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1801 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1802 #endif
1803 /* If required, minimize the register class. */
1804 if (reg_class_subset_p (rld[output_reload].rclass,
1805 rld[i].rclass))
1806 rld[i].rclass = rld[output_reload].rclass;
1808 /* Transfer all replacements from the old reload to the combined. */
1809 for (j = 0; j < n_replacements; j++)
1810 if (replacements[j].what == output_reload)
1811 replacements[j].what = i;
1813 return;
1816 /* If this insn has only one operand that is modified or written (assumed
1817 to be the first), it must be the one corresponding to this reload. It
1818 is safe to use anything that dies in this insn for that output provided
1819 that it does not occur in the output (we already know it isn't an
1820 earlyclobber. If this is an asm insn, give up. */
1822 if (INSN_CODE (this_insn) == -1)
1823 return;
1825 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1826 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1827 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1828 return;
1830 /* See if some hard register that dies in this insn and is not used in
1831 the output is the right class. Only works if the register we pick
1832 up can fully hold our output reload. */
1833 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1834 if (REG_NOTE_KIND (note) == REG_DEAD
1835 && REG_P (XEXP (note, 0))
1836 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1837 rld[output_reload].out)
1838 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1839 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1840 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1841 regno)
1842 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1843 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1844 /* Ensure that a secondary or tertiary reload for this output
1845 won't want this register. */
1846 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1847 || (!(TEST_HARD_REG_BIT
1848 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1849 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1850 || !(TEST_HARD_REG_BIT
1851 (reg_class_contents[(int) rld[secondary_out].rclass],
1852 regno)))))
1853 && !fixed_regs[regno]
1854 /* Check that a former pseudo is valid; see find_dummy_reload. */
1855 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1856 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1857 ORIGINAL_REGNO (XEXP (note, 0)))
1858 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1860 rld[output_reload].reg_rtx
1861 = gen_rtx_REG (rld[output_reload].outmode, regno);
1862 return;
1866 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1867 See if one of IN and OUT is a register that may be used;
1868 this is desirable since a spill-register won't be needed.
1869 If so, return the register rtx that proves acceptable.
1871 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1872 RCLASS is the register class required for the reload.
1874 If FOR_REAL is >= 0, it is the number of the reload,
1875 and in some cases when it can be discovered that OUT doesn't need
1876 to be computed, clear out rld[FOR_REAL].out.
1878 If FOR_REAL is -1, this should not be done, because this call
1879 is just to see if a register can be found, not to find and install it.
1881 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1882 puts an additional constraint on being able to use IN for OUT since
1883 IN must not appear elsewhere in the insn (it is assumed that IN itself
1884 is safe from the earlyclobber). */
1886 static rtx
1887 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1888 enum machine_mode inmode, enum machine_mode outmode,
1889 enum reg_class rclass, int for_real, int earlyclobber)
1891 rtx in = real_in;
1892 rtx out = real_out;
1893 int in_offset = 0;
1894 int out_offset = 0;
1895 rtx value = 0;
1897 /* If operands exceed a word, we can't use either of them
1898 unless they have the same size. */
1899 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1900 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1901 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1902 return 0;
1904 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1905 respectively refers to a hard register. */
1907 /* Find the inside of any subregs. */
1908 while (GET_CODE (out) == SUBREG)
1910 if (REG_P (SUBREG_REG (out))
1911 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1912 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1913 GET_MODE (SUBREG_REG (out)),
1914 SUBREG_BYTE (out),
1915 GET_MODE (out));
1916 out = SUBREG_REG (out);
1918 while (GET_CODE (in) == SUBREG)
1920 if (REG_P (SUBREG_REG (in))
1921 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1922 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1923 GET_MODE (SUBREG_REG (in)),
1924 SUBREG_BYTE (in),
1925 GET_MODE (in));
1926 in = SUBREG_REG (in);
1929 /* Narrow down the reg class, the same way push_reload will;
1930 otherwise we might find a dummy now, but push_reload won't. */
1932 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1933 if (preferred_class != NO_REGS)
1934 rclass = preferred_class;
1937 /* See if OUT will do. */
1938 if (REG_P (out)
1939 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1941 unsigned int regno = REGNO (out) + out_offset;
1942 unsigned int nwords = hard_regno_nregs[regno][outmode];
1943 rtx saved_rtx;
1945 /* When we consider whether the insn uses OUT,
1946 ignore references within IN. They don't prevent us
1947 from copying IN into OUT, because those refs would
1948 move into the insn that reloads IN.
1950 However, we only ignore IN in its role as this reload.
1951 If the insn uses IN elsewhere and it contains OUT,
1952 that counts. We can't be sure it's the "same" operand
1953 so it might not go through this reload. */
1954 saved_rtx = *inloc;
1955 *inloc = const0_rtx;
1957 if (regno < FIRST_PSEUDO_REGISTER
1958 && HARD_REGNO_MODE_OK (regno, outmode)
1959 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1960 PATTERN (this_insn), outloc))
1962 unsigned int i;
1964 for (i = 0; i < nwords; i++)
1965 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1966 regno + i))
1967 break;
1969 if (i == nwords)
1971 if (REG_P (real_out))
1972 value = real_out;
1973 else
1974 value = gen_rtx_REG (outmode, regno);
1978 *inloc = saved_rtx;
1981 /* Consider using IN if OUT was not acceptable
1982 or if OUT dies in this insn (like the quotient in a divmod insn).
1983 We can't use IN unless it is dies in this insn,
1984 which means we must know accurately which hard regs are live.
1985 Also, the result can't go in IN if IN is used within OUT,
1986 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1987 if (hard_regs_live_known
1988 && REG_P (in)
1989 && REGNO (in) < FIRST_PSEUDO_REGISTER
1990 && (value == 0
1991 || find_reg_note (this_insn, REG_UNUSED, real_out))
1992 && find_reg_note (this_insn, REG_DEAD, real_in)
1993 && !fixed_regs[REGNO (in)]
1994 && HARD_REGNO_MODE_OK (REGNO (in),
1995 /* The only case where out and real_out might
1996 have different modes is where real_out
1997 is a subreg, and in that case, out
1998 has a real mode. */
1999 (GET_MODE (out) != VOIDmode
2000 ? GET_MODE (out) : outmode))
2001 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2002 /* However only do this if we can be sure that this input
2003 operand doesn't correspond with an uninitialized pseudo.
2004 global can assign some hardreg to it that is the same as
2005 the one assigned to a different, also live pseudo (as it
2006 can ignore the conflict). We must never introduce writes
2007 to such hardregs, as they would clobber the other live
2008 pseudo. See PR 20973. */
2009 || (!bitmap_bit_p (flag_ira
2010 ? DF_LR_OUT (ENTRY_BLOCK_PTR)
2011 : DF_LIVE_OUT (ENTRY_BLOCK_PTR),
2012 ORIGINAL_REGNO (in))
2013 /* Similarly, only do this if we can be sure that the death
2014 note is still valid. global can assign some hardreg to
2015 the pseudo referenced in the note and simultaneously a
2016 subword of this hardreg to a different, also live pseudo,
2017 because only another subword of the hardreg is actually
2018 used in the insn. This cannot happen if the pseudo has
2019 been assigned exactly one hardreg. See PR 33732. */
2020 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2022 unsigned int regno = REGNO (in) + in_offset;
2023 unsigned int nwords = hard_regno_nregs[regno][inmode];
2025 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2026 && ! hard_reg_set_here_p (regno, regno + nwords,
2027 PATTERN (this_insn))
2028 && (! earlyclobber
2029 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2030 PATTERN (this_insn), inloc)))
2032 unsigned int i;
2034 for (i = 0; i < nwords; i++)
2035 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2036 regno + i))
2037 break;
2039 if (i == nwords)
2041 /* If we were going to use OUT as the reload reg
2042 and changed our mind, it means OUT is a dummy that
2043 dies here. So don't bother copying value to it. */
2044 if (for_real >= 0 && value == real_out)
2045 rld[for_real].out = 0;
2046 if (REG_P (real_in))
2047 value = real_in;
2048 else
2049 value = gen_rtx_REG (inmode, regno);
2054 return value;
2057 /* This page contains subroutines used mainly for determining
2058 whether the IN or an OUT of a reload can serve as the
2059 reload register. */
2061 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2064 earlyclobber_operand_p (rtx x)
2066 int i;
2068 for (i = 0; i < n_earlyclobbers; i++)
2069 if (reload_earlyclobbers[i] == x)
2070 return 1;
2072 return 0;
2075 /* Return 1 if expression X alters a hard reg in the range
2076 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2077 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2078 X should be the body of an instruction. */
2080 static int
2081 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2083 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2085 rtx op0 = SET_DEST (x);
2087 while (GET_CODE (op0) == SUBREG)
2088 op0 = SUBREG_REG (op0);
2089 if (REG_P (op0))
2091 unsigned int r = REGNO (op0);
2093 /* See if this reg overlaps range under consideration. */
2094 if (r < end_regno
2095 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2096 return 1;
2099 else if (GET_CODE (x) == PARALLEL)
2101 int i = XVECLEN (x, 0) - 1;
2103 for (; i >= 0; i--)
2104 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2105 return 1;
2108 return 0;
2111 /* Return 1 if ADDR is a valid memory address for mode MODE,
2112 and check that each pseudo reg has the proper kind of
2113 hard reg. */
2116 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2118 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2119 return 0;
2121 win:
2122 return 1;
2125 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2126 if they are the same hard reg, and has special hacks for
2127 autoincrement and autodecrement.
2128 This is specifically intended for find_reloads to use
2129 in determining whether two operands match.
2130 X is the operand whose number is the lower of the two.
2132 The value is 2 if Y contains a pre-increment that matches
2133 a non-incrementing address in X. */
2135 /* ??? To be completely correct, we should arrange to pass
2136 for X the output operand and for Y the input operand.
2137 For now, we assume that the output operand has the lower number
2138 because that is natural in (SET output (... input ...)). */
2141 operands_match_p (rtx x, rtx y)
2143 int i;
2144 RTX_CODE code = GET_CODE (x);
2145 const char *fmt;
2146 int success_2;
2148 if (x == y)
2149 return 1;
2150 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2151 && (REG_P (y) || (GET_CODE (y) == SUBREG
2152 && REG_P (SUBREG_REG (y)))))
2154 int j;
2156 if (code == SUBREG)
2158 i = REGNO (SUBREG_REG (x));
2159 if (i >= FIRST_PSEUDO_REGISTER)
2160 goto slow;
2161 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2162 GET_MODE (SUBREG_REG (x)),
2163 SUBREG_BYTE (x),
2164 GET_MODE (x));
2166 else
2167 i = REGNO (x);
2169 if (GET_CODE (y) == SUBREG)
2171 j = REGNO (SUBREG_REG (y));
2172 if (j >= FIRST_PSEUDO_REGISTER)
2173 goto slow;
2174 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2175 GET_MODE (SUBREG_REG (y)),
2176 SUBREG_BYTE (y),
2177 GET_MODE (y));
2179 else
2180 j = REGNO (y);
2182 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2183 multiple hard register group of scalar integer registers, so that
2184 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2185 register. */
2186 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2187 && SCALAR_INT_MODE_P (GET_MODE (x))
2188 && i < FIRST_PSEUDO_REGISTER)
2189 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2190 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2191 && SCALAR_INT_MODE_P (GET_MODE (y))
2192 && j < FIRST_PSEUDO_REGISTER)
2193 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2195 return i == j;
2197 /* If two operands must match, because they are really a single
2198 operand of an assembler insn, then two postincrements are invalid
2199 because the assembler insn would increment only once.
2200 On the other hand, a postincrement matches ordinary indexing
2201 if the postincrement is the output operand. */
2202 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2203 return operands_match_p (XEXP (x, 0), y);
2204 /* Two preincrements are invalid
2205 because the assembler insn would increment only once.
2206 On the other hand, a preincrement matches ordinary indexing
2207 if the preincrement is the input operand.
2208 In this case, return 2, since some callers need to do special
2209 things when this happens. */
2210 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2211 || GET_CODE (y) == PRE_MODIFY)
2212 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2214 slow:
2216 /* Now we have disposed of all the cases in which different rtx codes
2217 can match. */
2218 if (code != GET_CODE (y))
2219 return 0;
2221 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2222 if (GET_MODE (x) != GET_MODE (y))
2223 return 0;
2225 switch (code)
2227 case CONST_INT:
2228 case CONST_DOUBLE:
2229 case CONST_FIXED:
2230 return 0;
2232 case LABEL_REF:
2233 return XEXP (x, 0) == XEXP (y, 0);
2234 case SYMBOL_REF:
2235 return XSTR (x, 0) == XSTR (y, 0);
2237 default:
2238 break;
2241 /* Compare the elements. If any pair of corresponding elements
2242 fail to match, return 0 for the whole things. */
2244 success_2 = 0;
2245 fmt = GET_RTX_FORMAT (code);
2246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2248 int val, j;
2249 switch (fmt[i])
2251 case 'w':
2252 if (XWINT (x, i) != XWINT (y, i))
2253 return 0;
2254 break;
2256 case 'i':
2257 if (XINT (x, i) != XINT (y, i))
2258 return 0;
2259 break;
2261 case 'e':
2262 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2263 if (val == 0)
2264 return 0;
2265 /* If any subexpression returns 2,
2266 we should return 2 if we are successful. */
2267 if (val == 2)
2268 success_2 = 1;
2269 break;
2271 case '0':
2272 break;
2274 case 'E':
2275 if (XVECLEN (x, i) != XVECLEN (y, i))
2276 return 0;
2277 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2279 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2280 if (val == 0)
2281 return 0;
2282 if (val == 2)
2283 success_2 = 1;
2285 break;
2287 /* It is believed that rtx's at this level will never
2288 contain anything but integers and other rtx's,
2289 except for within LABEL_REFs and SYMBOL_REFs. */
2290 default:
2291 gcc_unreachable ();
2294 return 1 + success_2;
2297 /* Describe the range of registers or memory referenced by X.
2298 If X is a register, set REG_FLAG and put the first register
2299 number into START and the last plus one into END.
2300 If X is a memory reference, put a base address into BASE
2301 and a range of integer offsets into START and END.
2302 If X is pushing on the stack, we can assume it causes no trouble,
2303 so we set the SAFE field. */
2305 static struct decomposition
2306 decompose (rtx x)
2308 struct decomposition val;
2309 int all_const = 0;
2311 memset (&val, 0, sizeof (val));
2313 switch (GET_CODE (x))
2315 case MEM:
2317 rtx base = NULL_RTX, offset = 0;
2318 rtx addr = XEXP (x, 0);
2320 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2321 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2323 val.base = XEXP (addr, 0);
2324 val.start = -GET_MODE_SIZE (GET_MODE (x));
2325 val.end = GET_MODE_SIZE (GET_MODE (x));
2326 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2327 return val;
2330 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2332 if (GET_CODE (XEXP (addr, 1)) == PLUS
2333 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2334 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2336 val.base = XEXP (addr, 0);
2337 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2338 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2339 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2340 return val;
2344 if (GET_CODE (addr) == CONST)
2346 addr = XEXP (addr, 0);
2347 all_const = 1;
2349 if (GET_CODE (addr) == PLUS)
2351 if (CONSTANT_P (XEXP (addr, 0)))
2353 base = XEXP (addr, 1);
2354 offset = XEXP (addr, 0);
2356 else if (CONSTANT_P (XEXP (addr, 1)))
2358 base = XEXP (addr, 0);
2359 offset = XEXP (addr, 1);
2363 if (offset == 0)
2365 base = addr;
2366 offset = const0_rtx;
2368 if (GET_CODE (offset) == CONST)
2369 offset = XEXP (offset, 0);
2370 if (GET_CODE (offset) == PLUS)
2372 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2374 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2375 offset = XEXP (offset, 0);
2377 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2379 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2380 offset = XEXP (offset, 1);
2382 else
2384 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2385 offset = const0_rtx;
2388 else if (GET_CODE (offset) != CONST_INT)
2390 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2391 offset = const0_rtx;
2394 if (all_const && GET_CODE (base) == PLUS)
2395 base = gen_rtx_CONST (GET_MODE (base), base);
2397 gcc_assert (GET_CODE (offset) == CONST_INT);
2399 val.start = INTVAL (offset);
2400 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2401 val.base = base;
2403 break;
2405 case REG:
2406 val.reg_flag = 1;
2407 val.start = true_regnum (x);
2408 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2410 /* A pseudo with no hard reg. */
2411 val.start = REGNO (x);
2412 val.end = val.start + 1;
2414 else
2415 /* A hard reg. */
2416 val.end = end_hard_regno (GET_MODE (x), val.start);
2417 break;
2419 case SUBREG:
2420 if (!REG_P (SUBREG_REG (x)))
2421 /* This could be more precise, but it's good enough. */
2422 return decompose (SUBREG_REG (x));
2423 val.reg_flag = 1;
2424 val.start = true_regnum (x);
2425 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2426 return decompose (SUBREG_REG (x));
2427 else
2428 /* A hard reg. */
2429 val.end = val.start + subreg_nregs (x);
2430 break;
2432 case SCRATCH:
2433 /* This hasn't been assigned yet, so it can't conflict yet. */
2434 val.safe = 1;
2435 break;
2437 default:
2438 gcc_assert (CONSTANT_P (x));
2439 val.safe = 1;
2440 break;
2442 return val;
2445 /* Return 1 if altering Y will not modify the value of X.
2446 Y is also described by YDATA, which should be decompose (Y). */
2448 static int
2449 immune_p (rtx x, rtx y, struct decomposition ydata)
2451 struct decomposition xdata;
2453 if (ydata.reg_flag)
2454 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2455 if (ydata.safe)
2456 return 1;
2458 gcc_assert (MEM_P (y));
2459 /* If Y is memory and X is not, Y can't affect X. */
2460 if (!MEM_P (x))
2461 return 1;
2463 xdata = decompose (x);
2465 if (! rtx_equal_p (xdata.base, ydata.base))
2467 /* If bases are distinct symbolic constants, there is no overlap. */
2468 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2469 return 1;
2470 /* Constants and stack slots never overlap. */
2471 if (CONSTANT_P (xdata.base)
2472 && (ydata.base == frame_pointer_rtx
2473 || ydata.base == hard_frame_pointer_rtx
2474 || ydata.base == stack_pointer_rtx))
2475 return 1;
2476 if (CONSTANT_P (ydata.base)
2477 && (xdata.base == frame_pointer_rtx
2478 || xdata.base == hard_frame_pointer_rtx
2479 || xdata.base == stack_pointer_rtx))
2480 return 1;
2481 /* If either base is variable, we don't know anything. */
2482 return 0;
2485 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2488 /* Similar, but calls decompose. */
2491 safe_from_earlyclobber (rtx op, rtx clobber)
2493 struct decomposition early_data;
2495 early_data = decompose (clobber);
2496 return immune_p (op, clobber, early_data);
2499 /* Main entry point of this file: search the body of INSN
2500 for values that need reloading and record them with push_reload.
2501 REPLACE nonzero means record also where the values occur
2502 so that subst_reloads can be used.
2504 IND_LEVELS says how many levels of indirection are supported by this
2505 machine; a value of zero means that a memory reference is not a valid
2506 memory address.
2508 LIVE_KNOWN says we have valid information about which hard
2509 regs are live at each point in the program; this is true when
2510 we are called from global_alloc but false when stupid register
2511 allocation has been done.
2513 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2514 which is nonnegative if the reg has been commandeered for reloading into.
2515 It is copied into STATIC_RELOAD_REG_P and referenced from there
2516 by various subroutines.
2518 Return TRUE if some operands need to be changed, because of swapping
2519 commutative operands, reg_equiv_address substitution, or whatever. */
2522 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2523 short *reload_reg_p)
2525 int insn_code_number;
2526 int i, j;
2527 int noperands;
2528 /* These start out as the constraints for the insn
2529 and they are chewed up as we consider alternatives. */
2530 const char *constraints[MAX_RECOG_OPERANDS];
2531 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2532 a register. */
2533 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2534 char pref_or_nothing[MAX_RECOG_OPERANDS];
2535 /* Nonzero for a MEM operand whose entire address needs a reload.
2536 May be -1 to indicate the entire address may or may not need a reload. */
2537 int address_reloaded[MAX_RECOG_OPERANDS];
2538 /* Nonzero for an address operand that needs to be completely reloaded.
2539 May be -1 to indicate the entire operand may or may not need a reload. */
2540 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2541 /* Value of enum reload_type to use for operand. */
2542 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2543 /* Value of enum reload_type to use within address of operand. */
2544 enum reload_type address_type[MAX_RECOG_OPERANDS];
2545 /* Save the usage of each operand. */
2546 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2547 int no_input_reloads = 0, no_output_reloads = 0;
2548 int n_alternatives;
2549 int this_alternative[MAX_RECOG_OPERANDS];
2550 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2551 char this_alternative_win[MAX_RECOG_OPERANDS];
2552 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2553 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2554 int this_alternative_matches[MAX_RECOG_OPERANDS];
2555 int swapped;
2556 int goal_alternative[MAX_RECOG_OPERANDS];
2557 int this_alternative_number;
2558 int goal_alternative_number = 0;
2559 int operand_reloadnum[MAX_RECOG_OPERANDS];
2560 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2561 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2562 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2563 char goal_alternative_win[MAX_RECOG_OPERANDS];
2564 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2565 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2566 int goal_alternative_swapped;
2567 int best;
2568 int commutative;
2569 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2570 rtx substed_operand[MAX_RECOG_OPERANDS];
2571 rtx body = PATTERN (insn);
2572 rtx set = single_set (insn);
2573 int goal_earlyclobber = 0, this_earlyclobber;
2574 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2575 int retval = 0;
2577 this_insn = insn;
2578 n_reloads = 0;
2579 n_replacements = 0;
2580 n_earlyclobbers = 0;
2581 replace_reloads = replace;
2582 hard_regs_live_known = live_known;
2583 static_reload_reg_p = reload_reg_p;
2585 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2586 neither are insns that SET cc0. Insns that use CC0 are not allowed
2587 to have any input reloads. */
2588 if (JUMP_P (insn) || CALL_P (insn))
2589 no_output_reloads = 1;
2591 #ifdef HAVE_cc0
2592 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2593 no_input_reloads = 1;
2594 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2595 no_output_reloads = 1;
2596 #endif
2598 #ifdef SECONDARY_MEMORY_NEEDED
2599 /* The eliminated forms of any secondary memory locations are per-insn, so
2600 clear them out here. */
2602 if (secondary_memlocs_elim_used)
2604 memset (secondary_memlocs_elim, 0,
2605 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2606 secondary_memlocs_elim_used = 0;
2608 #endif
2610 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2611 is cheap to move between them. If it is not, there may not be an insn
2612 to do the copy, so we may need a reload. */
2613 if (GET_CODE (body) == SET
2614 && REG_P (SET_DEST (body))
2615 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2616 && REG_P (SET_SRC (body))
2617 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2618 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2619 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2620 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2621 return 0;
2623 extract_insn (insn);
2625 noperands = reload_n_operands = recog_data.n_operands;
2626 n_alternatives = recog_data.n_alternatives;
2628 /* Just return "no reloads" if insn has no operands with constraints. */
2629 if (noperands == 0 || n_alternatives == 0)
2630 return 0;
2632 insn_code_number = INSN_CODE (insn);
2633 this_insn_is_asm = insn_code_number < 0;
2635 memcpy (operand_mode, recog_data.operand_mode,
2636 noperands * sizeof (enum machine_mode));
2637 memcpy (constraints, recog_data.constraints,
2638 noperands * sizeof (const char *));
2640 commutative = -1;
2642 /* If we will need to know, later, whether some pair of operands
2643 are the same, we must compare them now and save the result.
2644 Reloading the base and index registers will clobber them
2645 and afterward they will fail to match. */
2647 for (i = 0; i < noperands; i++)
2649 const char *p;
2650 int c;
2651 char *end;
2653 substed_operand[i] = recog_data.operand[i];
2654 p = constraints[i];
2656 modified[i] = RELOAD_READ;
2658 /* Scan this operand's constraint to see if it is an output operand,
2659 an in-out operand, is commutative, or should match another. */
2661 while ((c = *p))
2663 p += CONSTRAINT_LEN (c, p);
2664 switch (c)
2666 case '=':
2667 modified[i] = RELOAD_WRITE;
2668 break;
2669 case '+':
2670 modified[i] = RELOAD_READ_WRITE;
2671 break;
2672 case '%':
2674 /* The last operand should not be marked commutative. */
2675 gcc_assert (i != noperands - 1);
2677 /* We currently only support one commutative pair of
2678 operands. Some existing asm code currently uses more
2679 than one pair. Previously, that would usually work,
2680 but sometimes it would crash the compiler. We
2681 continue supporting that case as well as we can by
2682 silently ignoring all but the first pair. In the
2683 future we may handle it correctly. */
2684 if (commutative < 0)
2685 commutative = i;
2686 else
2687 gcc_assert (this_insn_is_asm);
2689 break;
2690 /* Use of ISDIGIT is tempting here, but it may get expensive because
2691 of locale support we don't want. */
2692 case '0': case '1': case '2': case '3': case '4':
2693 case '5': case '6': case '7': case '8': case '9':
2695 c = strtoul (p - 1, &end, 10);
2696 p = end;
2698 operands_match[c][i]
2699 = operands_match_p (recog_data.operand[c],
2700 recog_data.operand[i]);
2702 /* An operand may not match itself. */
2703 gcc_assert (c != i);
2705 /* If C can be commuted with C+1, and C might need to match I,
2706 then C+1 might also need to match I. */
2707 if (commutative >= 0)
2709 if (c == commutative || c == commutative + 1)
2711 int other = c + (c == commutative ? 1 : -1);
2712 operands_match[other][i]
2713 = operands_match_p (recog_data.operand[other],
2714 recog_data.operand[i]);
2716 if (i == commutative || i == commutative + 1)
2718 int other = i + (i == commutative ? 1 : -1);
2719 operands_match[c][other]
2720 = operands_match_p (recog_data.operand[c],
2721 recog_data.operand[other]);
2723 /* Note that C is supposed to be less than I.
2724 No need to consider altering both C and I because in
2725 that case we would alter one into the other. */
2732 /* Examine each operand that is a memory reference or memory address
2733 and reload parts of the addresses into index registers.
2734 Also here any references to pseudo regs that didn't get hard regs
2735 but are equivalent to constants get replaced in the insn itself
2736 with those constants. Nobody will ever see them again.
2738 Finally, set up the preferred classes of each operand. */
2740 for (i = 0; i < noperands; i++)
2742 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2744 address_reloaded[i] = 0;
2745 address_operand_reloaded[i] = 0;
2746 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2747 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2748 : RELOAD_OTHER);
2749 address_type[i]
2750 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2751 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2752 : RELOAD_OTHER);
2754 if (*constraints[i] == 0)
2755 /* Ignore things like match_operator operands. */
2757 else if (constraints[i][0] == 'p'
2758 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2760 address_operand_reloaded[i]
2761 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2762 recog_data.operand[i],
2763 recog_data.operand_loc[i],
2764 i, operand_type[i], ind_levels, insn);
2766 /* If we now have a simple operand where we used to have a
2767 PLUS or MULT, re-recognize and try again. */
2768 if ((OBJECT_P (*recog_data.operand_loc[i])
2769 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2770 && (GET_CODE (recog_data.operand[i]) == MULT
2771 || GET_CODE (recog_data.operand[i]) == PLUS))
2773 INSN_CODE (insn) = -1;
2774 retval = find_reloads (insn, replace, ind_levels, live_known,
2775 reload_reg_p);
2776 return retval;
2779 recog_data.operand[i] = *recog_data.operand_loc[i];
2780 substed_operand[i] = recog_data.operand[i];
2782 /* Address operands are reloaded in their existing mode,
2783 no matter what is specified in the machine description. */
2784 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2786 else if (code == MEM)
2788 address_reloaded[i]
2789 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2790 recog_data.operand_loc[i],
2791 XEXP (recog_data.operand[i], 0),
2792 &XEXP (recog_data.operand[i], 0),
2793 i, address_type[i], ind_levels, insn);
2794 recog_data.operand[i] = *recog_data.operand_loc[i];
2795 substed_operand[i] = recog_data.operand[i];
2797 else if (code == SUBREG)
2799 rtx reg = SUBREG_REG (recog_data.operand[i]);
2800 rtx op
2801 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2802 ind_levels,
2803 set != 0
2804 && &SET_DEST (set) == recog_data.operand_loc[i],
2805 insn,
2806 &address_reloaded[i]);
2808 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2809 that didn't get a hard register, emit a USE with a REG_EQUAL
2810 note in front so that we might inherit a previous, possibly
2811 wider reload. */
2813 if (replace
2814 && MEM_P (op)
2815 && REG_P (reg)
2816 && (GET_MODE_SIZE (GET_MODE (reg))
2817 >= GET_MODE_SIZE (GET_MODE (op)))
2818 && reg_equiv_constant[REGNO (reg)] == 0)
2819 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2820 insn),
2821 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2823 substed_operand[i] = recog_data.operand[i] = op;
2825 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2826 /* We can get a PLUS as an "operand" as a result of register
2827 elimination. See eliminate_regs and gen_reload. We handle
2828 a unary operator by reloading the operand. */
2829 substed_operand[i] = recog_data.operand[i]
2830 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2831 ind_levels, 0, insn,
2832 &address_reloaded[i]);
2833 else if (code == REG)
2835 /* This is equivalent to calling find_reloads_toplev.
2836 The code is duplicated for speed.
2837 When we find a pseudo always equivalent to a constant,
2838 we replace it by the constant. We must be sure, however,
2839 that we don't try to replace it in the insn in which it
2840 is being set. */
2841 int regno = REGNO (recog_data.operand[i]);
2842 if (reg_equiv_constant[regno] != 0
2843 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2845 /* Record the existing mode so that the check if constants are
2846 allowed will work when operand_mode isn't specified. */
2848 if (operand_mode[i] == VOIDmode)
2849 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2851 substed_operand[i] = recog_data.operand[i]
2852 = reg_equiv_constant[regno];
2854 if (reg_equiv_memory_loc[regno] != 0
2855 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2856 /* We need not give a valid is_set_dest argument since the case
2857 of a constant equivalence was checked above. */
2858 substed_operand[i] = recog_data.operand[i]
2859 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2860 ind_levels, 0, insn,
2861 &address_reloaded[i]);
2863 /* If the operand is still a register (we didn't replace it with an
2864 equivalent), get the preferred class to reload it into. */
2865 code = GET_CODE (recog_data.operand[i]);
2866 preferred_class[i]
2867 = ((code == REG && REGNO (recog_data.operand[i])
2868 >= FIRST_PSEUDO_REGISTER)
2869 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2870 : NO_REGS);
2871 pref_or_nothing[i]
2872 = (code == REG
2873 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2874 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2877 /* If this is simply a copy from operand 1 to operand 0, merge the
2878 preferred classes for the operands. */
2879 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2880 && recog_data.operand[1] == SET_SRC (set))
2882 preferred_class[0] = preferred_class[1]
2883 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2884 pref_or_nothing[0] |= pref_or_nothing[1];
2885 pref_or_nothing[1] |= pref_or_nothing[0];
2888 /* Now see what we need for pseudo-regs that didn't get hard regs
2889 or got the wrong kind of hard reg. For this, we must consider
2890 all the operands together against the register constraints. */
2892 best = MAX_RECOG_OPERANDS * 2 + 600;
2894 swapped = 0;
2895 goal_alternative_swapped = 0;
2896 try_swapped:
2898 /* The constraints are made of several alternatives.
2899 Each operand's constraint looks like foo,bar,... with commas
2900 separating the alternatives. The first alternatives for all
2901 operands go together, the second alternatives go together, etc.
2903 First loop over alternatives. */
2905 for (this_alternative_number = 0;
2906 this_alternative_number < n_alternatives;
2907 this_alternative_number++)
2909 /* Loop over operands for one constraint alternative. */
2910 /* LOSERS counts those that don't fit this alternative
2911 and would require loading. */
2912 int losers = 0;
2913 /* BAD is set to 1 if it some operand can't fit this alternative
2914 even after reloading. */
2915 int bad = 0;
2916 /* REJECT is a count of how undesirable this alternative says it is
2917 if any reloading is required. If the alternative matches exactly
2918 then REJECT is ignored, but otherwise it gets this much
2919 counted against it in addition to the reloading needed. Each
2920 ? counts three times here since we want the disparaging caused by
2921 a bad register class to only count 1/3 as much. */
2922 int reject = 0;
2924 if (!recog_data.alternative_enabled_p[this_alternative_number])
2926 int i;
2928 for (i = 0; i < recog_data.n_operands; i++)
2929 constraints[i] = skip_alternative (constraints[i]);
2931 continue;
2934 this_earlyclobber = 0;
2936 for (i = 0; i < noperands; i++)
2938 const char *p = constraints[i];
2939 char *end;
2940 int len;
2941 int win = 0;
2942 int did_match = 0;
2943 /* 0 => this operand can be reloaded somehow for this alternative. */
2944 int badop = 1;
2945 /* 0 => this operand can be reloaded if the alternative allows regs. */
2946 int winreg = 0;
2947 int c;
2948 int m;
2949 rtx operand = recog_data.operand[i];
2950 int offset = 0;
2951 /* Nonzero means this is a MEM that must be reloaded into a reg
2952 regardless of what the constraint says. */
2953 int force_reload = 0;
2954 int offmemok = 0;
2955 /* Nonzero if a constant forced into memory would be OK for this
2956 operand. */
2957 int constmemok = 0;
2958 int earlyclobber = 0;
2960 /* If the predicate accepts a unary operator, it means that
2961 we need to reload the operand, but do not do this for
2962 match_operator and friends. */
2963 if (UNARY_P (operand) && *p != 0)
2964 operand = XEXP (operand, 0);
2966 /* If the operand is a SUBREG, extract
2967 the REG or MEM (or maybe even a constant) within.
2968 (Constants can occur as a result of reg_equiv_constant.) */
2970 while (GET_CODE (operand) == SUBREG)
2972 /* Offset only matters when operand is a REG and
2973 it is a hard reg. This is because it is passed
2974 to reg_fits_class_p if it is a REG and all pseudos
2975 return 0 from that function. */
2976 if (REG_P (SUBREG_REG (operand))
2977 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2979 if (!subreg_offset_representable_p
2980 (REGNO (SUBREG_REG (operand)),
2981 GET_MODE (SUBREG_REG (operand)),
2982 SUBREG_BYTE (operand),
2983 GET_MODE (operand)))
2984 force_reload = 1;
2985 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2986 GET_MODE (SUBREG_REG (operand)),
2987 SUBREG_BYTE (operand),
2988 GET_MODE (operand));
2990 operand = SUBREG_REG (operand);
2991 /* Force reload if this is a constant or PLUS or if there may
2992 be a problem accessing OPERAND in the outer mode. */
2993 if (CONSTANT_P (operand)
2994 || GET_CODE (operand) == PLUS
2995 /* We must force a reload of paradoxical SUBREGs
2996 of a MEM because the alignment of the inner value
2997 may not be enough to do the outer reference. On
2998 big-endian machines, it may also reference outside
2999 the object.
3001 On machines that extend byte operations and we have a
3002 SUBREG where both the inner and outer modes are no wider
3003 than a word and the inner mode is narrower, is integral,
3004 and gets extended when loaded from memory, combine.c has
3005 made assumptions about the behavior of the machine in such
3006 register access. If the data is, in fact, in memory we
3007 must always load using the size assumed to be in the
3008 register and let the insn do the different-sized
3009 accesses.
3011 This is doubly true if WORD_REGISTER_OPERATIONS. In
3012 this case eliminate_regs has left non-paradoxical
3013 subregs for push_reload to see. Make sure it does
3014 by forcing the reload.
3016 ??? When is it right at this stage to have a subreg
3017 of a mem that is _not_ to be handled specially? IMO
3018 those should have been reduced to just a mem. */
3019 || ((MEM_P (operand)
3020 || (REG_P (operand)
3021 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3022 #ifndef WORD_REGISTER_OPERATIONS
3023 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3024 < BIGGEST_ALIGNMENT)
3025 && (GET_MODE_SIZE (operand_mode[i])
3026 > GET_MODE_SIZE (GET_MODE (operand))))
3027 || BYTES_BIG_ENDIAN
3028 #ifdef LOAD_EXTEND_OP
3029 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3030 && (GET_MODE_SIZE (GET_MODE (operand))
3031 <= UNITS_PER_WORD)
3032 && (GET_MODE_SIZE (operand_mode[i])
3033 > GET_MODE_SIZE (GET_MODE (operand)))
3034 && INTEGRAL_MODE_P (GET_MODE (operand))
3035 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3036 #endif
3038 #endif
3041 force_reload = 1;
3044 this_alternative[i] = (int) NO_REGS;
3045 this_alternative_win[i] = 0;
3046 this_alternative_match_win[i] = 0;
3047 this_alternative_offmemok[i] = 0;
3048 this_alternative_earlyclobber[i] = 0;
3049 this_alternative_matches[i] = -1;
3051 /* An empty constraint or empty alternative
3052 allows anything which matched the pattern. */
3053 if (*p == 0 || *p == ',')
3054 win = 1, badop = 0;
3056 /* Scan this alternative's specs for this operand;
3057 set WIN if the operand fits any letter in this alternative.
3058 Otherwise, clear BADOP if this operand could
3059 fit some letter after reloads,
3060 or set WINREG if this operand could fit after reloads
3061 provided the constraint allows some registers. */
3064 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3066 case '\0':
3067 len = 0;
3068 break;
3069 case ',':
3070 c = '\0';
3071 break;
3073 case '=': case '+': case '*':
3074 break;
3076 case '%':
3077 /* We only support one commutative marker, the first
3078 one. We already set commutative above. */
3079 break;
3081 case '?':
3082 reject += 6;
3083 break;
3085 case '!':
3086 reject = 600;
3087 break;
3089 case '#':
3090 /* Ignore rest of this alternative as far as
3091 reloading is concerned. */
3093 p++;
3094 while (*p && *p != ',');
3095 len = 0;
3096 break;
3098 case '0': case '1': case '2': case '3': case '4':
3099 case '5': case '6': case '7': case '8': case '9':
3100 m = strtoul (p, &end, 10);
3101 p = end;
3102 len = 0;
3104 this_alternative_matches[i] = m;
3105 /* We are supposed to match a previous operand.
3106 If we do, we win if that one did.
3107 If we do not, count both of the operands as losers.
3108 (This is too conservative, since most of the time
3109 only a single reload insn will be needed to make
3110 the two operands win. As a result, this alternative
3111 may be rejected when it is actually desirable.) */
3112 if ((swapped && (m != commutative || i != commutative + 1))
3113 /* If we are matching as if two operands were swapped,
3114 also pretend that operands_match had been computed
3115 with swapped.
3116 But if I is the second of those and C is the first,
3117 don't exchange them, because operands_match is valid
3118 only on one side of its diagonal. */
3119 ? (operands_match
3120 [(m == commutative || m == commutative + 1)
3121 ? 2 * commutative + 1 - m : m]
3122 [(i == commutative || i == commutative + 1)
3123 ? 2 * commutative + 1 - i : i])
3124 : operands_match[m][i])
3126 /* If we are matching a non-offsettable address where an
3127 offsettable address was expected, then we must reject
3128 this combination, because we can't reload it. */
3129 if (this_alternative_offmemok[m]
3130 && MEM_P (recog_data.operand[m])
3131 && this_alternative[m] == (int) NO_REGS
3132 && ! this_alternative_win[m])
3133 bad = 1;
3135 did_match = this_alternative_win[m];
3137 else
3139 /* Operands don't match. */
3140 rtx value;
3141 int loc1, loc2;
3142 /* Retroactively mark the operand we had to match
3143 as a loser, if it wasn't already. */
3144 if (this_alternative_win[m])
3145 losers++;
3146 this_alternative_win[m] = 0;
3147 if (this_alternative[m] == (int) NO_REGS)
3148 bad = 1;
3149 /* But count the pair only once in the total badness of
3150 this alternative, if the pair can be a dummy reload.
3151 The pointers in operand_loc are not swapped; swap
3152 them by hand if necessary. */
3153 if (swapped && i == commutative)
3154 loc1 = commutative + 1;
3155 else if (swapped && i == commutative + 1)
3156 loc1 = commutative;
3157 else
3158 loc1 = i;
3159 if (swapped && m == commutative)
3160 loc2 = commutative + 1;
3161 else if (swapped && m == commutative + 1)
3162 loc2 = commutative;
3163 else
3164 loc2 = m;
3165 value
3166 = find_dummy_reload (recog_data.operand[i],
3167 recog_data.operand[m],
3168 recog_data.operand_loc[loc1],
3169 recog_data.operand_loc[loc2],
3170 operand_mode[i], operand_mode[m],
3171 this_alternative[m], -1,
3172 this_alternative_earlyclobber[m]);
3174 if (value != 0)
3175 losers--;
3177 /* This can be fixed with reloads if the operand
3178 we are supposed to match can be fixed with reloads. */
3179 badop = 0;
3180 this_alternative[i] = this_alternative[m];
3182 /* If we have to reload this operand and some previous
3183 operand also had to match the same thing as this
3184 operand, we don't know how to do that. So reject this
3185 alternative. */
3186 if (! did_match || force_reload)
3187 for (j = 0; j < i; j++)
3188 if (this_alternative_matches[j]
3189 == this_alternative_matches[i])
3190 badop = 1;
3191 break;
3193 case 'p':
3194 /* All necessary reloads for an address_operand
3195 were handled in find_reloads_address. */
3196 this_alternative[i]
3197 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3198 win = 1;
3199 badop = 0;
3200 break;
3202 case TARGET_MEM_CONSTRAINT:
3203 if (force_reload)
3204 break;
3205 if (MEM_P (operand)
3206 || (REG_P (operand)
3207 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3208 && reg_renumber[REGNO (operand)] < 0))
3209 win = 1;
3210 if (CONST_POOL_OK_P (operand))
3211 badop = 0;
3212 constmemok = 1;
3213 break;
3215 case '<':
3216 if (MEM_P (operand)
3217 && ! address_reloaded[i]
3218 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3219 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3220 win = 1;
3221 break;
3223 case '>':
3224 if (MEM_P (operand)
3225 && ! address_reloaded[i]
3226 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3227 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3228 win = 1;
3229 break;
3231 /* Memory operand whose address is not offsettable. */
3232 case 'V':
3233 if (force_reload)
3234 break;
3235 if (MEM_P (operand)
3236 && ! (ind_levels ? offsettable_memref_p (operand)
3237 : offsettable_nonstrict_memref_p (operand))
3238 /* Certain mem addresses will become offsettable
3239 after they themselves are reloaded. This is important;
3240 we don't want our own handling of unoffsettables
3241 to override the handling of reg_equiv_address. */
3242 && !(REG_P (XEXP (operand, 0))
3243 && (ind_levels == 0
3244 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3245 win = 1;
3246 break;
3248 /* Memory operand whose address is offsettable. */
3249 case 'o':
3250 if (force_reload)
3251 break;
3252 if ((MEM_P (operand)
3253 /* If IND_LEVELS, find_reloads_address won't reload a
3254 pseudo that didn't get a hard reg, so we have to
3255 reject that case. */
3256 && ((ind_levels ? offsettable_memref_p (operand)
3257 : offsettable_nonstrict_memref_p (operand))
3258 /* A reloaded address is offsettable because it is now
3259 just a simple register indirect. */
3260 || address_reloaded[i] == 1))
3261 || (REG_P (operand)
3262 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3263 && reg_renumber[REGNO (operand)] < 0
3264 /* If reg_equiv_address is nonzero, we will be
3265 loading it into a register; hence it will be
3266 offsettable, but we cannot say that reg_equiv_mem
3267 is offsettable without checking. */
3268 && ((reg_equiv_mem[REGNO (operand)] != 0
3269 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3270 || (reg_equiv_address[REGNO (operand)] != 0))))
3271 win = 1;
3272 if (CONST_POOL_OK_P (operand)
3273 || MEM_P (operand))
3274 badop = 0;
3275 constmemok = 1;
3276 offmemok = 1;
3277 break;
3279 case '&':
3280 /* Output operand that is stored before the need for the
3281 input operands (and their index registers) is over. */
3282 earlyclobber = 1, this_earlyclobber = 1;
3283 break;
3285 case 'E':
3286 case 'F':
3287 if (GET_CODE (operand) == CONST_DOUBLE
3288 || (GET_CODE (operand) == CONST_VECTOR
3289 && (GET_MODE_CLASS (GET_MODE (operand))
3290 == MODE_VECTOR_FLOAT)))
3291 win = 1;
3292 break;
3294 case 'G':
3295 case 'H':
3296 if (GET_CODE (operand) == CONST_DOUBLE
3297 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3298 win = 1;
3299 break;
3301 case 's':
3302 if (GET_CODE (operand) == CONST_INT
3303 || (GET_CODE (operand) == CONST_DOUBLE
3304 && GET_MODE (operand) == VOIDmode))
3305 break;
3306 case 'i':
3307 if (CONSTANT_P (operand)
3308 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3309 win = 1;
3310 break;
3312 case 'n':
3313 if (GET_CODE (operand) == CONST_INT
3314 || (GET_CODE (operand) == CONST_DOUBLE
3315 && GET_MODE (operand) == VOIDmode))
3316 win = 1;
3317 break;
3319 case 'I':
3320 case 'J':
3321 case 'K':
3322 case 'L':
3323 case 'M':
3324 case 'N':
3325 case 'O':
3326 case 'P':
3327 if (GET_CODE (operand) == CONST_INT
3328 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3329 win = 1;
3330 break;
3332 case 'X':
3333 force_reload = 0;
3334 win = 1;
3335 break;
3337 case 'g':
3338 if (! force_reload
3339 /* A PLUS is never a valid operand, but reload can make
3340 it from a register when eliminating registers. */
3341 && GET_CODE (operand) != PLUS
3342 /* A SCRATCH is not a valid operand. */
3343 && GET_CODE (operand) != SCRATCH
3344 && (! CONSTANT_P (operand)
3345 || ! flag_pic
3346 || LEGITIMATE_PIC_OPERAND_P (operand))
3347 && (GENERAL_REGS == ALL_REGS
3348 || !REG_P (operand)
3349 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3350 && reg_renumber[REGNO (operand)] < 0)))
3351 win = 1;
3352 /* Drop through into 'r' case. */
3354 case 'r':
3355 this_alternative[i]
3356 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3357 goto reg;
3359 default:
3360 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3362 #ifdef EXTRA_CONSTRAINT_STR
3363 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3365 if (force_reload)
3366 break;
3367 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3368 win = 1;
3369 /* If the address was already reloaded,
3370 we win as well. */
3371 else if (MEM_P (operand)
3372 && address_reloaded[i] == 1)
3373 win = 1;
3374 /* Likewise if the address will be reloaded because
3375 reg_equiv_address is nonzero. For reg_equiv_mem
3376 we have to check. */
3377 else if (REG_P (operand)
3378 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3379 && reg_renumber[REGNO (operand)] < 0
3380 && ((reg_equiv_mem[REGNO (operand)] != 0
3381 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3382 || (reg_equiv_address[REGNO (operand)] != 0)))
3383 win = 1;
3385 /* If we didn't already win, we can reload
3386 constants via force_const_mem, and other
3387 MEMs by reloading the address like for 'o'. */
3388 if (CONST_POOL_OK_P (operand)
3389 || MEM_P (operand))
3390 badop = 0;
3391 constmemok = 1;
3392 offmemok = 1;
3393 break;
3395 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3397 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3398 win = 1;
3400 /* If we didn't already win, we can reload
3401 the address into a base register. */
3402 this_alternative[i]
3403 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3404 badop = 0;
3405 break;
3408 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3409 win = 1;
3410 #endif
3411 break;
3414 this_alternative[i]
3415 = (int) (reg_class_subunion
3416 [this_alternative[i]]
3417 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3418 reg:
3419 if (GET_MODE (operand) == BLKmode)
3420 break;
3421 winreg = 1;
3422 if (REG_P (operand)
3423 && reg_fits_class_p (operand, this_alternative[i],
3424 offset, GET_MODE (recog_data.operand[i])))
3425 win = 1;
3426 break;
3428 while ((p += len), c);
3430 constraints[i] = p;
3432 /* If this operand could be handled with a reg,
3433 and some reg is allowed, then this operand can be handled. */
3434 if (winreg && this_alternative[i] != (int) NO_REGS)
3435 badop = 0;
3437 /* Record which operands fit this alternative. */
3438 this_alternative_earlyclobber[i] = earlyclobber;
3439 if (win && ! force_reload)
3440 this_alternative_win[i] = 1;
3441 else if (did_match && ! force_reload)
3442 this_alternative_match_win[i] = 1;
3443 else
3445 int const_to_mem = 0;
3447 this_alternative_offmemok[i] = offmemok;
3448 losers++;
3449 if (badop)
3450 bad = 1;
3451 /* Alternative loses if it has no regs for a reg operand. */
3452 if (REG_P (operand)
3453 && this_alternative[i] == (int) NO_REGS
3454 && this_alternative_matches[i] < 0)
3455 bad = 1;
3457 /* If this is a constant that is reloaded into the desired
3458 class by copying it to memory first, count that as another
3459 reload. This is consistent with other code and is
3460 required to avoid choosing another alternative when
3461 the constant is moved into memory by this function on
3462 an early reload pass. Note that the test here is
3463 precisely the same as in the code below that calls
3464 force_const_mem. */
3465 if (CONST_POOL_OK_P (operand)
3466 && ((PREFERRED_RELOAD_CLASS (operand,
3467 (enum reg_class) this_alternative[i])
3468 == NO_REGS)
3469 || no_input_reloads)
3470 && operand_mode[i] != VOIDmode)
3472 const_to_mem = 1;
3473 if (this_alternative[i] != (int) NO_REGS)
3474 losers++;
3477 /* Alternative loses if it requires a type of reload not
3478 permitted for this insn. We can always reload SCRATCH
3479 and objects with a REG_UNUSED note. */
3480 if (GET_CODE (operand) != SCRATCH
3481 && modified[i] != RELOAD_READ && no_output_reloads
3482 && ! find_reg_note (insn, REG_UNUSED, operand))
3483 bad = 1;
3484 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3485 && ! const_to_mem)
3486 bad = 1;
3488 /* If we can't reload this value at all, reject this
3489 alternative. Note that we could also lose due to
3490 LIMIT_RELOAD_CLASS, but we don't check that
3491 here. */
3493 if (! CONSTANT_P (operand)
3494 && (enum reg_class) this_alternative[i] != NO_REGS)
3496 if (PREFERRED_RELOAD_CLASS
3497 (operand, (enum reg_class) this_alternative[i])
3498 == NO_REGS)
3499 reject = 600;
3501 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3502 if (operand_type[i] == RELOAD_FOR_OUTPUT
3503 && PREFERRED_OUTPUT_RELOAD_CLASS
3504 (operand, (enum reg_class) this_alternative[i])
3505 == NO_REGS)
3506 reject = 600;
3507 #endif
3510 /* We prefer to reload pseudos over reloading other things,
3511 since such reloads may be able to be eliminated later.
3512 If we are reloading a SCRATCH, we won't be generating any
3513 insns, just using a register, so it is also preferred.
3514 So bump REJECT in other cases. Don't do this in the
3515 case where we are forcing a constant into memory and
3516 it will then win since we don't want to have a different
3517 alternative match then. */
3518 if (! (REG_P (operand)
3519 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3520 && GET_CODE (operand) != SCRATCH
3521 && ! (const_to_mem && constmemok))
3522 reject += 2;
3524 /* Input reloads can be inherited more often than output
3525 reloads can be removed, so penalize output reloads. */
3526 if (operand_type[i] != RELOAD_FOR_INPUT
3527 && GET_CODE (operand) != SCRATCH)
3528 reject++;
3531 /* If this operand is a pseudo register that didn't get a hard
3532 reg and this alternative accepts some register, see if the
3533 class that we want is a subset of the preferred class for this
3534 register. If not, but it intersects that class, use the
3535 preferred class instead. If it does not intersect the preferred
3536 class, show that usage of this alternative should be discouraged;
3537 it will be discouraged more still if the register is `preferred
3538 or nothing'. We do this because it increases the chance of
3539 reusing our spill register in a later insn and avoiding a pair
3540 of memory stores and loads.
3542 Don't bother with this if this alternative will accept this
3543 operand.
3545 Don't do this for a multiword operand, since it is only a
3546 small win and has the risk of requiring more spill registers,
3547 which could cause a large loss.
3549 Don't do this if the preferred class has only one register
3550 because we might otherwise exhaust the class. */
3552 if (! win && ! did_match
3553 && this_alternative[i] != (int) NO_REGS
3554 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3555 && reg_class_size [(int) preferred_class[i]] > 0
3556 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3558 if (! reg_class_subset_p (this_alternative[i],
3559 preferred_class[i]))
3561 /* Since we don't have a way of forming the intersection,
3562 we just do something special if the preferred class
3563 is a subset of the class we have; that's the most
3564 common case anyway. */
3565 if (reg_class_subset_p (preferred_class[i],
3566 this_alternative[i]))
3567 this_alternative[i] = (int) preferred_class[i];
3568 else
3569 reject += (2 + 2 * pref_or_nothing[i]);
3574 /* Now see if any output operands that are marked "earlyclobber"
3575 in this alternative conflict with any input operands
3576 or any memory addresses. */
3578 for (i = 0; i < noperands; i++)
3579 if (this_alternative_earlyclobber[i]
3580 && (this_alternative_win[i] || this_alternative_match_win[i]))
3582 struct decomposition early_data;
3584 early_data = decompose (recog_data.operand[i]);
3586 gcc_assert (modified[i] != RELOAD_READ);
3588 if (this_alternative[i] == NO_REGS)
3590 this_alternative_earlyclobber[i] = 0;
3591 gcc_assert (this_insn_is_asm);
3592 error_for_asm (this_insn,
3593 "%<&%> constraint used with no register class");
3596 for (j = 0; j < noperands; j++)
3597 /* Is this an input operand or a memory ref? */
3598 if ((MEM_P (recog_data.operand[j])
3599 || modified[j] != RELOAD_WRITE)
3600 && j != i
3601 /* Ignore things like match_operator operands. */
3602 && *recog_data.constraints[j] != 0
3603 /* Don't count an input operand that is constrained to match
3604 the early clobber operand. */
3605 && ! (this_alternative_matches[j] == i
3606 && rtx_equal_p (recog_data.operand[i],
3607 recog_data.operand[j]))
3608 /* Is it altered by storing the earlyclobber operand? */
3609 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3610 early_data))
3612 /* If the output is in a non-empty few-regs class,
3613 it's costly to reload it, so reload the input instead. */
3614 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3615 && (REG_P (recog_data.operand[j])
3616 || GET_CODE (recog_data.operand[j]) == SUBREG))
3618 losers++;
3619 this_alternative_win[j] = 0;
3620 this_alternative_match_win[j] = 0;
3622 else
3623 break;
3625 /* If an earlyclobber operand conflicts with something,
3626 it must be reloaded, so request this and count the cost. */
3627 if (j != noperands)
3629 losers++;
3630 this_alternative_win[i] = 0;
3631 this_alternative_match_win[j] = 0;
3632 for (j = 0; j < noperands; j++)
3633 if (this_alternative_matches[j] == i
3634 && this_alternative_match_win[j])
3636 this_alternative_win[j] = 0;
3637 this_alternative_match_win[j] = 0;
3638 losers++;
3643 /* If one alternative accepts all the operands, no reload required,
3644 choose that alternative; don't consider the remaining ones. */
3645 if (losers == 0)
3647 /* Unswap these so that they are never swapped at `finish'. */
3648 if (commutative >= 0)
3650 recog_data.operand[commutative] = substed_operand[commutative];
3651 recog_data.operand[commutative + 1]
3652 = substed_operand[commutative + 1];
3654 for (i = 0; i < noperands; i++)
3656 goal_alternative_win[i] = this_alternative_win[i];
3657 goal_alternative_match_win[i] = this_alternative_match_win[i];
3658 goal_alternative[i] = this_alternative[i];
3659 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3660 goal_alternative_matches[i] = this_alternative_matches[i];
3661 goal_alternative_earlyclobber[i]
3662 = this_alternative_earlyclobber[i];
3664 goal_alternative_number = this_alternative_number;
3665 goal_alternative_swapped = swapped;
3666 goal_earlyclobber = this_earlyclobber;
3667 goto finish;
3670 /* REJECT, set by the ! and ? constraint characters and when a register
3671 would be reloaded into a non-preferred class, discourages the use of
3672 this alternative for a reload goal. REJECT is incremented by six
3673 for each ? and two for each non-preferred class. */
3674 losers = losers * 6 + reject;
3676 /* If this alternative can be made to work by reloading,
3677 and it needs less reloading than the others checked so far,
3678 record it as the chosen goal for reloading. */
3679 if (! bad && best > losers)
3681 for (i = 0; i < noperands; i++)
3683 goal_alternative[i] = this_alternative[i];
3684 goal_alternative_win[i] = this_alternative_win[i];
3685 goal_alternative_match_win[i] = this_alternative_match_win[i];
3686 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3687 goal_alternative_matches[i] = this_alternative_matches[i];
3688 goal_alternative_earlyclobber[i]
3689 = this_alternative_earlyclobber[i];
3691 goal_alternative_swapped = swapped;
3692 best = losers;
3693 goal_alternative_number = this_alternative_number;
3694 goal_earlyclobber = this_earlyclobber;
3698 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3699 then we need to try each alternative twice,
3700 the second time matching those two operands
3701 as if we had exchanged them.
3702 To do this, really exchange them in operands.
3704 If we have just tried the alternatives the second time,
3705 return operands to normal and drop through. */
3707 if (commutative >= 0)
3709 swapped = !swapped;
3710 if (swapped)
3712 enum reg_class tclass;
3713 int t;
3715 recog_data.operand[commutative] = substed_operand[commutative + 1];
3716 recog_data.operand[commutative + 1] = substed_operand[commutative];
3717 /* Swap the duplicates too. */
3718 for (i = 0; i < recog_data.n_dups; i++)
3719 if (recog_data.dup_num[i] == commutative
3720 || recog_data.dup_num[i] == commutative + 1)
3721 *recog_data.dup_loc[i]
3722 = recog_data.operand[(int) recog_data.dup_num[i]];
3724 tclass = preferred_class[commutative];
3725 preferred_class[commutative] = preferred_class[commutative + 1];
3726 preferred_class[commutative + 1] = tclass;
3728 t = pref_or_nothing[commutative];
3729 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3730 pref_or_nothing[commutative + 1] = t;
3732 t = address_reloaded[commutative];
3733 address_reloaded[commutative] = address_reloaded[commutative + 1];
3734 address_reloaded[commutative + 1] = t;
3736 memcpy (constraints, recog_data.constraints,
3737 noperands * sizeof (const char *));
3738 goto try_swapped;
3740 else
3742 recog_data.operand[commutative] = substed_operand[commutative];
3743 recog_data.operand[commutative + 1]
3744 = substed_operand[commutative + 1];
3745 /* Unswap the duplicates too. */
3746 for (i = 0; i < recog_data.n_dups; i++)
3747 if (recog_data.dup_num[i] == commutative
3748 || recog_data.dup_num[i] == commutative + 1)
3749 *recog_data.dup_loc[i]
3750 = recog_data.operand[(int) recog_data.dup_num[i]];
3754 /* The operands don't meet the constraints.
3755 goal_alternative describes the alternative
3756 that we could reach by reloading the fewest operands.
3757 Reload so as to fit it. */
3759 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3761 /* No alternative works with reloads?? */
3762 if (insn_code_number >= 0)
3763 fatal_insn ("unable to generate reloads for:", insn);
3764 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3765 /* Avoid further trouble with this insn. */
3766 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3767 n_reloads = 0;
3768 return 0;
3771 /* Jump to `finish' from above if all operands are valid already.
3772 In that case, goal_alternative_win is all 1. */
3773 finish:
3775 /* Right now, for any pair of operands I and J that are required to match,
3776 with I < J,
3777 goal_alternative_matches[J] is I.
3778 Set up goal_alternative_matched as the inverse function:
3779 goal_alternative_matched[I] = J. */
3781 for (i = 0; i < noperands; i++)
3782 goal_alternative_matched[i] = -1;
3784 for (i = 0; i < noperands; i++)
3785 if (! goal_alternative_win[i]
3786 && goal_alternative_matches[i] >= 0)
3787 goal_alternative_matched[goal_alternative_matches[i]] = i;
3789 for (i = 0; i < noperands; i++)
3790 goal_alternative_win[i] |= goal_alternative_match_win[i];
3792 /* If the best alternative is with operands 1 and 2 swapped,
3793 consider them swapped before reporting the reloads. Update the
3794 operand numbers of any reloads already pushed. */
3796 if (goal_alternative_swapped)
3798 rtx tem;
3800 tem = substed_operand[commutative];
3801 substed_operand[commutative] = substed_operand[commutative + 1];
3802 substed_operand[commutative + 1] = tem;
3803 tem = recog_data.operand[commutative];
3804 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3805 recog_data.operand[commutative + 1] = tem;
3806 tem = *recog_data.operand_loc[commutative];
3807 *recog_data.operand_loc[commutative]
3808 = *recog_data.operand_loc[commutative + 1];
3809 *recog_data.operand_loc[commutative + 1] = tem;
3811 for (i = 0; i < n_reloads; i++)
3813 if (rld[i].opnum == commutative)
3814 rld[i].opnum = commutative + 1;
3815 else if (rld[i].opnum == commutative + 1)
3816 rld[i].opnum = commutative;
3820 for (i = 0; i < noperands; i++)
3822 operand_reloadnum[i] = -1;
3824 /* If this is an earlyclobber operand, we need to widen the scope.
3825 The reload must remain valid from the start of the insn being
3826 reloaded until after the operand is stored into its destination.
3827 We approximate this with RELOAD_OTHER even though we know that we
3828 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3830 One special case that is worth checking is when we have an
3831 output that is earlyclobber but isn't used past the insn (typically
3832 a SCRATCH). In this case, we only need have the reload live
3833 through the insn itself, but not for any of our input or output
3834 reloads.
3835 But we must not accidentally narrow the scope of an existing
3836 RELOAD_OTHER reload - leave these alone.
3838 In any case, anything needed to address this operand can remain
3839 however they were previously categorized. */
3841 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3842 operand_type[i]
3843 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3844 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3847 /* Any constants that aren't allowed and can't be reloaded
3848 into registers are here changed into memory references. */
3849 for (i = 0; i < noperands; i++)
3850 if (! goal_alternative_win[i]
3851 && CONST_POOL_OK_P (recog_data.operand[i])
3852 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3853 (enum reg_class) goal_alternative[i])
3854 == NO_REGS)
3855 || no_input_reloads)
3856 && operand_mode[i] != VOIDmode)
3858 int this_address_reloaded;
3860 this_address_reloaded = 0;
3861 substed_operand[i] = recog_data.operand[i]
3862 = find_reloads_toplev (force_const_mem (operand_mode[i],
3863 recog_data.operand[i]),
3864 i, address_type[i], ind_levels, 0, insn,
3865 &this_address_reloaded);
3866 if (alternative_allows_const_pool_ref (this_address_reloaded == 0
3867 ? substed_operand[i]
3868 : NULL,
3869 recog_data.constraints[i],
3870 goal_alternative_number))
3871 goal_alternative_win[i] = 1;
3874 /* Likewise any invalid constants appearing as operand of a PLUS
3875 that is to be reloaded. */
3876 for (i = 0; i < noperands; i++)
3877 if (! goal_alternative_win[i]
3878 && GET_CODE (recog_data.operand[i]) == PLUS
3879 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3880 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3881 (enum reg_class) goal_alternative[i])
3882 == NO_REGS)
3883 && operand_mode[i] != VOIDmode)
3885 rtx tem = force_const_mem (operand_mode[i],
3886 XEXP (recog_data.operand[i], 1));
3887 tem = gen_rtx_PLUS (operand_mode[i],
3888 XEXP (recog_data.operand[i], 0), tem);
3890 substed_operand[i] = recog_data.operand[i]
3891 = find_reloads_toplev (tem, i, address_type[i],
3892 ind_levels, 0, insn, NULL);
3895 /* Record the values of the earlyclobber operands for the caller. */
3896 if (goal_earlyclobber)
3897 for (i = 0; i < noperands; i++)
3898 if (goal_alternative_earlyclobber[i])
3899 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3901 /* Now record reloads for all the operands that need them. */
3902 for (i = 0; i < noperands; i++)
3903 if (! goal_alternative_win[i])
3905 /* Operands that match previous ones have already been handled. */
3906 if (goal_alternative_matches[i] >= 0)
3908 /* Handle an operand with a nonoffsettable address
3909 appearing where an offsettable address will do
3910 by reloading the address into a base register.
3912 ??? We can also do this when the operand is a register and
3913 reg_equiv_mem is not offsettable, but this is a bit tricky,
3914 so we don't bother with it. It may not be worth doing. */
3915 else if (goal_alternative_matched[i] == -1
3916 && goal_alternative_offmemok[i]
3917 && MEM_P (recog_data.operand[i]))
3919 /* If the address to be reloaded is a VOIDmode constant,
3920 use Pmode as mode of the reload register, as would have
3921 been done by find_reloads_address. */
3922 enum machine_mode address_mode;
3923 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3924 if (address_mode == VOIDmode)
3925 address_mode = Pmode;
3927 operand_reloadnum[i]
3928 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3929 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3930 base_reg_class (VOIDmode, MEM, SCRATCH),
3931 address_mode,
3932 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3933 rld[operand_reloadnum[i]].inc
3934 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3936 /* If this operand is an output, we will have made any
3937 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3938 now we are treating part of the operand as an input, so
3939 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3941 if (modified[i] == RELOAD_WRITE)
3943 for (j = 0; j < n_reloads; j++)
3945 if (rld[j].opnum == i)
3947 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3948 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3949 else if (rld[j].when_needed
3950 == RELOAD_FOR_OUTADDR_ADDRESS)
3951 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3956 else if (goal_alternative_matched[i] == -1)
3958 operand_reloadnum[i]
3959 = push_reload ((modified[i] != RELOAD_WRITE
3960 ? recog_data.operand[i] : 0),
3961 (modified[i] != RELOAD_READ
3962 ? recog_data.operand[i] : 0),
3963 (modified[i] != RELOAD_WRITE
3964 ? recog_data.operand_loc[i] : 0),
3965 (modified[i] != RELOAD_READ
3966 ? recog_data.operand_loc[i] : 0),
3967 (enum reg_class) goal_alternative[i],
3968 (modified[i] == RELOAD_WRITE
3969 ? VOIDmode : operand_mode[i]),
3970 (modified[i] == RELOAD_READ
3971 ? VOIDmode : operand_mode[i]),
3972 (insn_code_number < 0 ? 0
3973 : insn_data[insn_code_number].operand[i].strict_low),
3974 0, i, operand_type[i]);
3976 /* In a matching pair of operands, one must be input only
3977 and the other must be output only.
3978 Pass the input operand as IN and the other as OUT. */
3979 else if (modified[i] == RELOAD_READ
3980 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3982 operand_reloadnum[i]
3983 = push_reload (recog_data.operand[i],
3984 recog_data.operand[goal_alternative_matched[i]],
3985 recog_data.operand_loc[i],
3986 recog_data.operand_loc[goal_alternative_matched[i]],
3987 (enum reg_class) goal_alternative[i],
3988 operand_mode[i],
3989 operand_mode[goal_alternative_matched[i]],
3990 0, 0, i, RELOAD_OTHER);
3991 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3993 else if (modified[i] == RELOAD_WRITE
3994 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3996 operand_reloadnum[goal_alternative_matched[i]]
3997 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3998 recog_data.operand[i],
3999 recog_data.operand_loc[goal_alternative_matched[i]],
4000 recog_data.operand_loc[i],
4001 (enum reg_class) goal_alternative[i],
4002 operand_mode[goal_alternative_matched[i]],
4003 operand_mode[i],
4004 0, 0, i, RELOAD_OTHER);
4005 operand_reloadnum[i] = output_reloadnum;
4007 else
4009 gcc_assert (insn_code_number < 0);
4010 error_for_asm (insn, "inconsistent operand constraints "
4011 "in an %<asm%>");
4012 /* Avoid further trouble with this insn. */
4013 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4014 n_reloads = 0;
4015 return 0;
4018 else if (goal_alternative_matched[i] < 0
4019 && goal_alternative_matches[i] < 0
4020 && address_operand_reloaded[i] != 1
4021 && optimize)
4023 /* For each non-matching operand that's a MEM or a pseudo-register
4024 that didn't get a hard register, make an optional reload.
4025 This may get done even if the insn needs no reloads otherwise. */
4027 rtx operand = recog_data.operand[i];
4029 while (GET_CODE (operand) == SUBREG)
4030 operand = SUBREG_REG (operand);
4031 if ((MEM_P (operand)
4032 || (REG_P (operand)
4033 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4034 /* If this is only for an output, the optional reload would not
4035 actually cause us to use a register now, just note that
4036 something is stored here. */
4037 && ((enum reg_class) goal_alternative[i] != NO_REGS
4038 || modified[i] == RELOAD_WRITE)
4039 && ! no_input_reloads
4040 /* An optional output reload might allow to delete INSN later.
4041 We mustn't make in-out reloads on insns that are not permitted
4042 output reloads.
4043 If this is an asm, we can't delete it; we must not even call
4044 push_reload for an optional output reload in this case,
4045 because we can't be sure that the constraint allows a register,
4046 and push_reload verifies the constraints for asms. */
4047 && (modified[i] == RELOAD_READ
4048 || (! no_output_reloads && ! this_insn_is_asm)))
4049 operand_reloadnum[i]
4050 = push_reload ((modified[i] != RELOAD_WRITE
4051 ? recog_data.operand[i] : 0),
4052 (modified[i] != RELOAD_READ
4053 ? recog_data.operand[i] : 0),
4054 (modified[i] != RELOAD_WRITE
4055 ? recog_data.operand_loc[i] : 0),
4056 (modified[i] != RELOAD_READ
4057 ? recog_data.operand_loc[i] : 0),
4058 (enum reg_class) goal_alternative[i],
4059 (modified[i] == RELOAD_WRITE
4060 ? VOIDmode : operand_mode[i]),
4061 (modified[i] == RELOAD_READ
4062 ? VOIDmode : operand_mode[i]),
4063 (insn_code_number < 0 ? 0
4064 : insn_data[insn_code_number].operand[i].strict_low),
4065 1, i, operand_type[i]);
4066 /* If a memory reference remains (either as a MEM or a pseudo that
4067 did not get a hard register), yet we can't make an optional
4068 reload, check if this is actually a pseudo register reference;
4069 we then need to emit a USE and/or a CLOBBER so that reload
4070 inheritance will do the right thing. */
4071 else if (replace
4072 && (MEM_P (operand)
4073 || (REG_P (operand)
4074 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4075 && reg_renumber [REGNO (operand)] < 0)))
4077 operand = *recog_data.operand_loc[i];
4079 while (GET_CODE (operand) == SUBREG)
4080 operand = SUBREG_REG (operand);
4081 if (REG_P (operand))
4083 if (modified[i] != RELOAD_WRITE)
4084 /* We mark the USE with QImode so that we recognize
4085 it as one that can be safely deleted at the end
4086 of reload. */
4087 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4088 insn), QImode);
4089 if (modified[i] != RELOAD_READ)
4090 emit_insn_after (gen_clobber (operand), insn);
4094 else if (goal_alternative_matches[i] >= 0
4095 && goal_alternative_win[goal_alternative_matches[i]]
4096 && modified[i] == RELOAD_READ
4097 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4098 && ! no_input_reloads && ! no_output_reloads
4099 && optimize)
4101 /* Similarly, make an optional reload for a pair of matching
4102 objects that are in MEM or a pseudo that didn't get a hard reg. */
4104 rtx operand = recog_data.operand[i];
4106 while (GET_CODE (operand) == SUBREG)
4107 operand = SUBREG_REG (operand);
4108 if ((MEM_P (operand)
4109 || (REG_P (operand)
4110 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4111 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4112 != NO_REGS))
4113 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4114 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4115 recog_data.operand[i],
4116 recog_data.operand_loc[goal_alternative_matches[i]],
4117 recog_data.operand_loc[i],
4118 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4119 operand_mode[goal_alternative_matches[i]],
4120 operand_mode[i],
4121 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4124 /* Perform whatever substitutions on the operands we are supposed
4125 to make due to commutativity or replacement of registers
4126 with equivalent constants or memory slots. */
4128 for (i = 0; i < noperands; i++)
4130 /* We only do this on the last pass through reload, because it is
4131 possible for some data (like reg_equiv_address) to be changed during
4132 later passes. Moreover, we lose the opportunity to get a useful
4133 reload_{in,out}_reg when we do these replacements. */
4135 if (replace)
4137 rtx substitution = substed_operand[i];
4139 *recog_data.operand_loc[i] = substitution;
4141 /* If we're replacing an operand with a LABEL_REF, we need to
4142 make sure that there's a REG_LABEL_OPERAND note attached to
4143 this instruction. */
4144 if (GET_CODE (substitution) == LABEL_REF
4145 && !find_reg_note (insn, REG_LABEL_OPERAND,
4146 XEXP (substitution, 0))
4147 /* For a JUMP_P, if it was a branch target it must have
4148 already been recorded as such. */
4149 && (!JUMP_P (insn)
4150 || !label_is_jump_target_p (XEXP (substitution, 0),
4151 insn)))
4152 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4154 else
4155 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4158 /* If this insn pattern contains any MATCH_DUP's, make sure that
4159 they will be substituted if the operands they match are substituted.
4160 Also do now any substitutions we already did on the operands.
4162 Don't do this if we aren't making replacements because we might be
4163 propagating things allocated by frame pointer elimination into places
4164 it doesn't expect. */
4166 if (insn_code_number >= 0 && replace)
4167 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4169 int opno = recog_data.dup_num[i];
4170 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4171 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4174 #if 0
4175 /* This loses because reloading of prior insns can invalidate the equivalence
4176 (or at least find_equiv_reg isn't smart enough to find it any more),
4177 causing this insn to need more reload regs than it needed before.
4178 It may be too late to make the reload regs available.
4179 Now this optimization is done safely in choose_reload_regs. */
4181 /* For each reload of a reg into some other class of reg,
4182 search for an existing equivalent reg (same value now) in the right class.
4183 We can use it as long as we don't need to change its contents. */
4184 for (i = 0; i < n_reloads; i++)
4185 if (rld[i].reg_rtx == 0
4186 && rld[i].in != 0
4187 && REG_P (rld[i].in)
4188 && rld[i].out == 0)
4190 rld[i].reg_rtx
4191 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4192 static_reload_reg_p, 0, rld[i].inmode);
4193 /* Prevent generation of insn to load the value
4194 because the one we found already has the value. */
4195 if (rld[i].reg_rtx)
4196 rld[i].in = rld[i].reg_rtx;
4198 #endif
4200 /* If we detected error and replaced asm instruction by USE, forget about the
4201 reloads. */
4202 if (GET_CODE (PATTERN (insn)) == USE
4203 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4204 n_reloads = 0;
4206 /* Perhaps an output reload can be combined with another
4207 to reduce needs by one. */
4208 if (!goal_earlyclobber)
4209 combine_reloads ();
4211 /* If we have a pair of reloads for parts of an address, they are reloading
4212 the same object, the operands themselves were not reloaded, and they
4213 are for two operands that are supposed to match, merge the reloads and
4214 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4216 for (i = 0; i < n_reloads; i++)
4218 int k;
4220 for (j = i + 1; j < n_reloads; j++)
4221 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4222 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4223 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4224 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4225 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4226 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4227 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4228 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4229 && rtx_equal_p (rld[i].in, rld[j].in)
4230 && (operand_reloadnum[rld[i].opnum] < 0
4231 || rld[operand_reloadnum[rld[i].opnum]].optional)
4232 && (operand_reloadnum[rld[j].opnum] < 0
4233 || rld[operand_reloadnum[rld[j].opnum]].optional)
4234 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4235 || (goal_alternative_matches[rld[j].opnum]
4236 == rld[i].opnum)))
4238 for (k = 0; k < n_replacements; k++)
4239 if (replacements[k].what == j)
4240 replacements[k].what = i;
4242 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4243 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4244 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4245 else
4246 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4247 rld[j].in = 0;
4251 /* Scan all the reloads and update their type.
4252 If a reload is for the address of an operand and we didn't reload
4253 that operand, change the type. Similarly, change the operand number
4254 of a reload when two operands match. If a reload is optional, treat it
4255 as though the operand isn't reloaded.
4257 ??? This latter case is somewhat odd because if we do the optional
4258 reload, it means the object is hanging around. Thus we need only
4259 do the address reload if the optional reload was NOT done.
4261 Change secondary reloads to be the address type of their operand, not
4262 the normal type.
4264 If an operand's reload is now RELOAD_OTHER, change any
4265 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4266 RELOAD_FOR_OTHER_ADDRESS. */
4268 for (i = 0; i < n_reloads; i++)
4270 if (rld[i].secondary_p
4271 && rld[i].when_needed == operand_type[rld[i].opnum])
4272 rld[i].when_needed = address_type[rld[i].opnum];
4274 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4275 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4276 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4277 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4278 && (operand_reloadnum[rld[i].opnum] < 0
4279 || rld[operand_reloadnum[rld[i].opnum]].optional))
4281 /* If we have a secondary reload to go along with this reload,
4282 change its type to RELOAD_FOR_OPADDR_ADDR. */
4284 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4285 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4286 && rld[i].secondary_in_reload != -1)
4288 int secondary_in_reload = rld[i].secondary_in_reload;
4290 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4292 /* If there's a tertiary reload we have to change it also. */
4293 if (secondary_in_reload > 0
4294 && rld[secondary_in_reload].secondary_in_reload != -1)
4295 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4296 = RELOAD_FOR_OPADDR_ADDR;
4299 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4300 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4301 && rld[i].secondary_out_reload != -1)
4303 int secondary_out_reload = rld[i].secondary_out_reload;
4305 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4307 /* If there's a tertiary reload we have to change it also. */
4308 if (secondary_out_reload
4309 && rld[secondary_out_reload].secondary_out_reload != -1)
4310 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4311 = RELOAD_FOR_OPADDR_ADDR;
4314 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4315 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4316 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4317 else
4318 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4321 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4322 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4323 && operand_reloadnum[rld[i].opnum] >= 0
4324 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4325 == RELOAD_OTHER))
4326 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4328 if (goal_alternative_matches[rld[i].opnum] >= 0)
4329 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4332 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4333 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4334 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4336 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4337 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4338 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4339 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4340 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4341 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4342 This is complicated by the fact that a single operand can have more
4343 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4344 choose_reload_regs without affecting code quality, and cases that
4345 actually fail are extremely rare, so it turns out to be better to fix
4346 the problem here by not generating cases that choose_reload_regs will
4347 fail for. */
4348 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4349 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4350 a single operand.
4351 We can reduce the register pressure by exploiting that a
4352 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4353 does not conflict with any of them, if it is only used for the first of
4354 the RELOAD_FOR_X_ADDRESS reloads. */
4356 int first_op_addr_num = -2;
4357 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4358 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4359 int need_change = 0;
4360 /* We use last_op_addr_reload and the contents of the above arrays
4361 first as flags - -2 means no instance encountered, -1 means exactly
4362 one instance encountered.
4363 If more than one instance has been encountered, we store the reload
4364 number of the first reload of the kind in question; reload numbers
4365 are known to be non-negative. */
4366 for (i = 0; i < noperands; i++)
4367 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4368 for (i = n_reloads - 1; i >= 0; i--)
4370 switch (rld[i].when_needed)
4372 case RELOAD_FOR_OPERAND_ADDRESS:
4373 if (++first_op_addr_num >= 0)
4375 first_op_addr_num = i;
4376 need_change = 1;
4378 break;
4379 case RELOAD_FOR_INPUT_ADDRESS:
4380 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4382 first_inpaddr_num[rld[i].opnum] = i;
4383 need_change = 1;
4385 break;
4386 case RELOAD_FOR_OUTPUT_ADDRESS:
4387 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4389 first_outpaddr_num[rld[i].opnum] = i;
4390 need_change = 1;
4392 break;
4393 default:
4394 break;
4398 if (need_change)
4400 for (i = 0; i < n_reloads; i++)
4402 int first_num;
4403 enum reload_type type;
4405 switch (rld[i].when_needed)
4407 case RELOAD_FOR_OPADDR_ADDR:
4408 first_num = first_op_addr_num;
4409 type = RELOAD_FOR_OPERAND_ADDRESS;
4410 break;
4411 case RELOAD_FOR_INPADDR_ADDRESS:
4412 first_num = first_inpaddr_num[rld[i].opnum];
4413 type = RELOAD_FOR_INPUT_ADDRESS;
4414 break;
4415 case RELOAD_FOR_OUTADDR_ADDRESS:
4416 first_num = first_outpaddr_num[rld[i].opnum];
4417 type = RELOAD_FOR_OUTPUT_ADDRESS;
4418 break;
4419 default:
4420 continue;
4422 if (first_num < 0)
4423 continue;
4424 else if (i > first_num)
4425 rld[i].when_needed = type;
4426 else
4428 /* Check if the only TYPE reload that uses reload I is
4429 reload FIRST_NUM. */
4430 for (j = n_reloads - 1; j > first_num; j--)
4432 if (rld[j].when_needed == type
4433 && (rld[i].secondary_p
4434 ? rld[j].secondary_in_reload == i
4435 : reg_mentioned_p (rld[i].in, rld[j].in)))
4437 rld[i].when_needed = type;
4438 break;
4446 /* See if we have any reloads that are now allowed to be merged
4447 because we've changed when the reload is needed to
4448 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4449 check for the most common cases. */
4451 for (i = 0; i < n_reloads; i++)
4452 if (rld[i].in != 0 && rld[i].out == 0
4453 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4454 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4455 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4456 for (j = 0; j < n_reloads; j++)
4457 if (i != j && rld[j].in != 0 && rld[j].out == 0
4458 && rld[j].when_needed == rld[i].when_needed
4459 && MATCHES (rld[i].in, rld[j].in)
4460 && rld[i].rclass == rld[j].rclass
4461 && !rld[i].nocombine && !rld[j].nocombine
4462 && rld[i].reg_rtx == rld[j].reg_rtx)
4464 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4465 transfer_replacements (i, j);
4466 rld[j].in = 0;
4469 #ifdef HAVE_cc0
4470 /* If we made any reloads for addresses, see if they violate a
4471 "no input reloads" requirement for this insn. But loads that we
4472 do after the insn (such as for output addresses) are fine. */
4473 if (no_input_reloads)
4474 for (i = 0; i < n_reloads; i++)
4475 gcc_assert (rld[i].in == 0
4476 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4477 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4478 #endif
4480 /* Compute reload_mode and reload_nregs. */
4481 for (i = 0; i < n_reloads; i++)
4483 rld[i].mode
4484 = (rld[i].inmode == VOIDmode
4485 || (GET_MODE_SIZE (rld[i].outmode)
4486 > GET_MODE_SIZE (rld[i].inmode)))
4487 ? rld[i].outmode : rld[i].inmode;
4489 rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4492 /* Special case a simple move with an input reload and a
4493 destination of a hard reg, if the hard reg is ok, use it. */
4494 for (i = 0; i < n_reloads; i++)
4495 if (rld[i].when_needed == RELOAD_FOR_INPUT
4496 && GET_CODE (PATTERN (insn)) == SET
4497 && REG_P (SET_DEST (PATTERN (insn)))
4498 && (SET_SRC (PATTERN (insn)) == rld[i].in
4499 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4500 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4502 rtx dest = SET_DEST (PATTERN (insn));
4503 unsigned int regno = REGNO (dest);
4505 if (regno < FIRST_PSEUDO_REGISTER
4506 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4507 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4509 int nr = hard_regno_nregs[regno][rld[i].mode];
4510 int ok = 1, nri;
4512 for (nri = 1; nri < nr; nri ++)
4513 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4514 ok = 0;
4516 if (ok)
4517 rld[i].reg_rtx = dest;
4521 return retval;
4524 /* Return true if alternative number ALTNUM in constraint-string
4525 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4526 MEM gives the reference if it didn't need any reloads, otherwise it
4527 is null. */
4529 static bool
4530 alternative_allows_const_pool_ref (rtx mem, const char *constraint, int altnum)
4532 int c;
4534 /* Skip alternatives before the one requested. */
4535 while (altnum > 0)
4537 while (*constraint++ != ',');
4538 altnum--;
4540 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4541 If one of them is present, this alternative accepts the result of
4542 passing a constant-pool reference through find_reloads_toplev.
4544 The same is true of extra memory constraints if the address
4545 was reloaded into a register. However, the target may elect
4546 to disallow the original constant address, forcing it to be
4547 reloaded into a register instead. */
4548 for (; (c = *constraint) && c != ',' && c != '#';
4549 constraint += CONSTRAINT_LEN (c, constraint))
4551 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4552 return true;
4553 #ifdef EXTRA_CONSTRAINT_STR
4554 if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4555 && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4556 return true;
4557 #endif
4559 return false;
4562 /* Scan X for memory references and scan the addresses for reloading.
4563 Also checks for references to "constant" regs that we want to eliminate
4564 and replaces them with the values they stand for.
4565 We may alter X destructively if it contains a reference to such.
4566 If X is just a constant reg, we return the equivalent value
4567 instead of X.
4569 IND_LEVELS says how many levels of indirect addressing this machine
4570 supports.
4572 OPNUM and TYPE identify the purpose of the reload.
4574 IS_SET_DEST is true if X is the destination of a SET, which is not
4575 appropriate to be replaced by a constant.
4577 INSN, if nonzero, is the insn in which we do the reload. It is used
4578 to determine if we may generate output reloads, and where to put USEs
4579 for pseudos that we have to replace with stack slots.
4581 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4582 result of find_reloads_address. */
4584 static rtx
4585 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4586 int ind_levels, int is_set_dest, rtx insn,
4587 int *address_reloaded)
4589 RTX_CODE code = GET_CODE (x);
4591 const char *fmt = GET_RTX_FORMAT (code);
4592 int i;
4593 int copied;
4595 if (code == REG)
4597 /* This code is duplicated for speed in find_reloads. */
4598 int regno = REGNO (x);
4599 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4600 x = reg_equiv_constant[regno];
4601 #if 0
4602 /* This creates (subreg (mem...)) which would cause an unnecessary
4603 reload of the mem. */
4604 else if (reg_equiv_mem[regno] != 0)
4605 x = reg_equiv_mem[regno];
4606 #endif
4607 else if (reg_equiv_memory_loc[regno]
4608 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4610 rtx mem = make_memloc (x, regno);
4611 if (reg_equiv_address[regno]
4612 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4614 /* If this is not a toplevel operand, find_reloads doesn't see
4615 this substitution. We have to emit a USE of the pseudo so
4616 that delete_output_reload can see it. */
4617 if (replace_reloads && recog_data.operand[opnum] != x)
4618 /* We mark the USE with QImode so that we recognize it
4619 as one that can be safely deleted at the end of
4620 reload. */
4621 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4622 QImode);
4623 x = mem;
4624 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4625 opnum, type, ind_levels, insn);
4626 if (!rtx_equal_p (x, mem))
4627 push_reg_equiv_alt_mem (regno, x);
4628 if (address_reloaded)
4629 *address_reloaded = i;
4632 return x;
4634 if (code == MEM)
4636 rtx tem = x;
4638 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4639 opnum, type, ind_levels, insn);
4640 if (address_reloaded)
4641 *address_reloaded = i;
4643 return tem;
4646 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4648 /* Check for SUBREG containing a REG that's equivalent to a
4649 constant. If the constant has a known value, truncate it
4650 right now. Similarly if we are extracting a single-word of a
4651 multi-word constant. If the constant is symbolic, allow it
4652 to be substituted normally. push_reload will strip the
4653 subreg later. The constant must not be VOIDmode, because we
4654 will lose the mode of the register (this should never happen
4655 because one of the cases above should handle it). */
4657 int regno = REGNO (SUBREG_REG (x));
4658 rtx tem;
4660 if (regno >= FIRST_PSEUDO_REGISTER
4661 && reg_renumber[regno] < 0
4662 && reg_equiv_constant[regno] != 0)
4664 tem =
4665 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4666 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4667 gcc_assert (tem);
4668 if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4670 tem = force_const_mem (GET_MODE (x), tem);
4671 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4672 &XEXP (tem, 0), opnum, type,
4673 ind_levels, insn);
4674 if (address_reloaded)
4675 *address_reloaded = i;
4677 return tem;
4680 /* If the subreg contains a reg that will be converted to a mem,
4681 convert the subreg to a narrower memref now.
4682 Otherwise, we would get (subreg (mem ...) ...),
4683 which would force reload of the mem.
4685 We also need to do this if there is an equivalent MEM that is
4686 not offsettable. In that case, alter_subreg would produce an
4687 invalid address on big-endian machines.
4689 For machines that extend byte loads, we must not reload using
4690 a wider mode if we have a paradoxical SUBREG. find_reloads will
4691 force a reload in that case. So we should not do anything here. */
4693 if (regno >= FIRST_PSEUDO_REGISTER
4694 #ifdef LOAD_EXTEND_OP
4695 && (GET_MODE_SIZE (GET_MODE (x))
4696 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4697 #endif
4698 && (reg_equiv_address[regno] != 0
4699 || (reg_equiv_mem[regno] != 0
4700 && (! strict_memory_address_p (GET_MODE (x),
4701 XEXP (reg_equiv_mem[regno], 0))
4702 || ! offsettable_memref_p (reg_equiv_mem[regno])
4703 || num_not_at_initial_offset))))
4704 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4705 insn);
4708 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4710 if (fmt[i] == 'e')
4712 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4713 ind_levels, is_set_dest, insn,
4714 address_reloaded);
4715 /* If we have replaced a reg with it's equivalent memory loc -
4716 that can still be handled here e.g. if it's in a paradoxical
4717 subreg - we must make the change in a copy, rather than using
4718 a destructive change. This way, find_reloads can still elect
4719 not to do the change. */
4720 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4722 x = shallow_copy_rtx (x);
4723 copied = 1;
4725 XEXP (x, i) = new_part;
4728 return x;
4731 /* Return a mem ref for the memory equivalent of reg REGNO.
4732 This mem ref is not shared with anything. */
4734 static rtx
4735 make_memloc (rtx ad, int regno)
4737 /* We must rerun eliminate_regs, in case the elimination
4738 offsets have changed. */
4739 rtx tem
4740 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4742 /* If TEM might contain a pseudo, we must copy it to avoid
4743 modifying it when we do the substitution for the reload. */
4744 if (rtx_varies_p (tem, 0))
4745 tem = copy_rtx (tem);
4747 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4748 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4750 /* Copy the result if it's still the same as the equivalence, to avoid
4751 modifying it when we do the substitution for the reload. */
4752 if (tem == reg_equiv_memory_loc[regno])
4753 tem = copy_rtx (tem);
4754 return tem;
4757 /* Returns true if AD could be turned into a valid memory reference
4758 to mode MODE by reloading the part pointed to by PART into a
4759 register. */
4761 static int
4762 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4764 int retv;
4765 rtx tem = *part;
4766 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4768 *part = reg;
4769 retv = memory_address_p (mode, ad);
4770 *part = tem;
4772 return retv;
4775 /* Record all reloads needed for handling memory address AD
4776 which appears in *LOC in a memory reference to mode MODE
4777 which itself is found in location *MEMREFLOC.
4778 Note that we take shortcuts assuming that no multi-reg machine mode
4779 occurs as part of an address.
4781 OPNUM and TYPE specify the purpose of this reload.
4783 IND_LEVELS says how many levels of indirect addressing this machine
4784 supports.
4786 INSN, if nonzero, is the insn in which we do the reload. It is used
4787 to determine if we may generate output reloads, and where to put USEs
4788 for pseudos that we have to replace with stack slots.
4790 Value is one if this address is reloaded or replaced as a whole; it is
4791 zero if the top level of this address was not reloaded or replaced, and
4792 it is -1 if it may or may not have been reloaded or replaced.
4794 Note that there is no verification that the address will be valid after
4795 this routine does its work. Instead, we rely on the fact that the address
4796 was valid when reload started. So we need only undo things that reload
4797 could have broken. These are wrong register types, pseudos not allocated
4798 to a hard register, and frame pointer elimination. */
4800 static int
4801 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4802 rtx *loc, int opnum, enum reload_type type,
4803 int ind_levels, rtx insn)
4805 int regno;
4806 int removed_and = 0;
4807 int op_index;
4808 rtx tem;
4810 /* If the address is a register, see if it is a legitimate address and
4811 reload if not. We first handle the cases where we need not reload
4812 or where we must reload in a non-standard way. */
4814 if (REG_P (ad))
4816 regno = REGNO (ad);
4818 if (reg_equiv_constant[regno] != 0)
4820 find_reloads_address_part (reg_equiv_constant[regno], loc,
4821 base_reg_class (mode, MEM, SCRATCH),
4822 GET_MODE (ad), opnum, type, ind_levels);
4823 return 1;
4826 tem = reg_equiv_memory_loc[regno];
4827 if (tem != 0)
4829 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4831 tem = make_memloc (ad, regno);
4832 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4834 rtx orig = tem;
4836 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4837 &XEXP (tem, 0), opnum,
4838 ADDR_TYPE (type), ind_levels, insn);
4839 if (!rtx_equal_p (tem, orig))
4840 push_reg_equiv_alt_mem (regno, tem);
4842 /* We can avoid a reload if the register's equivalent memory
4843 expression is valid as an indirect memory address.
4844 But not all addresses are valid in a mem used as an indirect
4845 address: only reg or reg+constant. */
4847 if (ind_levels > 0
4848 && strict_memory_address_p (mode, tem)
4849 && (REG_P (XEXP (tem, 0))
4850 || (GET_CODE (XEXP (tem, 0)) == PLUS
4851 && REG_P (XEXP (XEXP (tem, 0), 0))
4852 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4854 /* TEM is not the same as what we'll be replacing the
4855 pseudo with after reload, put a USE in front of INSN
4856 in the final reload pass. */
4857 if (replace_reloads
4858 && num_not_at_initial_offset
4859 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4861 *loc = tem;
4862 /* We mark the USE with QImode so that we
4863 recognize it as one that can be safely
4864 deleted at the end of reload. */
4865 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4866 insn), QImode);
4868 /* This doesn't really count as replacing the address
4869 as a whole, since it is still a memory access. */
4871 return 0;
4873 ad = tem;
4877 /* The only remaining case where we can avoid a reload is if this is a
4878 hard register that is valid as a base register and which is not the
4879 subject of a CLOBBER in this insn. */
4881 else if (regno < FIRST_PSEUDO_REGISTER
4882 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4883 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4884 return 0;
4886 /* If we do not have one of the cases above, we must do the reload. */
4887 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4888 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4889 return 1;
4892 if (strict_memory_address_p (mode, ad))
4894 /* The address appears valid, so reloads are not needed.
4895 But the address may contain an eliminable register.
4896 This can happen because a machine with indirect addressing
4897 may consider a pseudo register by itself a valid address even when
4898 it has failed to get a hard reg.
4899 So do a tree-walk to find and eliminate all such regs. */
4901 /* But first quickly dispose of a common case. */
4902 if (GET_CODE (ad) == PLUS
4903 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4904 && REG_P (XEXP (ad, 0))
4905 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4906 return 0;
4908 subst_reg_equivs_changed = 0;
4909 *loc = subst_reg_equivs (ad, insn);
4911 if (! subst_reg_equivs_changed)
4912 return 0;
4914 /* Check result for validity after substitution. */
4915 if (strict_memory_address_p (mode, ad))
4916 return 0;
4919 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4922 if (memrefloc)
4924 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4925 ind_levels, win);
4927 break;
4928 win:
4929 *memrefloc = copy_rtx (*memrefloc);
4930 XEXP (*memrefloc, 0) = ad;
4931 move_replacements (&ad, &XEXP (*memrefloc, 0));
4932 return -1;
4934 while (0);
4935 #endif
4937 /* The address is not valid. We have to figure out why. First see if
4938 we have an outer AND and remove it if so. Then analyze what's inside. */
4940 if (GET_CODE (ad) == AND)
4942 removed_and = 1;
4943 loc = &XEXP (ad, 0);
4944 ad = *loc;
4947 /* One possibility for why the address is invalid is that it is itself
4948 a MEM. This can happen when the frame pointer is being eliminated, a
4949 pseudo is not allocated to a hard register, and the offset between the
4950 frame and stack pointers is not its initial value. In that case the
4951 pseudo will have been replaced by a MEM referring to the
4952 stack pointer. */
4953 if (MEM_P (ad))
4955 /* First ensure that the address in this MEM is valid. Then, unless
4956 indirect addresses are valid, reload the MEM into a register. */
4957 tem = ad;
4958 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4959 opnum, ADDR_TYPE (type),
4960 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4962 /* If tem was changed, then we must create a new memory reference to
4963 hold it and store it back into memrefloc. */
4964 if (tem != ad && memrefloc)
4966 *memrefloc = copy_rtx (*memrefloc);
4967 copy_replacements (tem, XEXP (*memrefloc, 0));
4968 loc = &XEXP (*memrefloc, 0);
4969 if (removed_and)
4970 loc = &XEXP (*loc, 0);
4973 /* Check similar cases as for indirect addresses as above except
4974 that we can allow pseudos and a MEM since they should have been
4975 taken care of above. */
4977 if (ind_levels == 0
4978 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4979 || MEM_P (XEXP (tem, 0))
4980 || ! (REG_P (XEXP (tem, 0))
4981 || (GET_CODE (XEXP (tem, 0)) == PLUS
4982 && REG_P (XEXP (XEXP (tem, 0), 0))
4983 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4985 /* Must use TEM here, not AD, since it is the one that will
4986 have any subexpressions reloaded, if needed. */
4987 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4988 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4989 VOIDmode, 0,
4990 0, opnum, type);
4991 return ! removed_and;
4993 else
4994 return 0;
4997 /* If we have address of a stack slot but it's not valid because the
4998 displacement is too large, compute the sum in a register.
4999 Handle all base registers here, not just fp/ap/sp, because on some
5000 targets (namely SH) we can also get too large displacements from
5001 big-endian corrections. */
5002 else if (GET_CODE (ad) == PLUS
5003 && REG_P (XEXP (ad, 0))
5004 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5005 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5006 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5007 CONST_INT))
5010 /* Unshare the MEM rtx so we can safely alter it. */
5011 if (memrefloc)
5013 *memrefloc = copy_rtx (*memrefloc);
5014 loc = &XEXP (*memrefloc, 0);
5015 if (removed_and)
5016 loc = &XEXP (*loc, 0);
5019 if (double_reg_address_ok)
5021 /* Unshare the sum as well. */
5022 *loc = ad = copy_rtx (ad);
5024 /* Reload the displacement into an index reg.
5025 We assume the frame pointer or arg pointer is a base reg. */
5026 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5027 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5028 type, ind_levels);
5029 return 0;
5031 else
5033 /* If the sum of two regs is not necessarily valid,
5034 reload the sum into a base reg.
5035 That will at least work. */
5036 find_reloads_address_part (ad, loc,
5037 base_reg_class (mode, MEM, SCRATCH),
5038 Pmode, opnum, type, ind_levels);
5040 return ! removed_and;
5043 /* If we have an indexed stack slot, there are three possible reasons why
5044 it might be invalid: The index might need to be reloaded, the address
5045 might have been made by frame pointer elimination and hence have a
5046 constant out of range, or both reasons might apply.
5048 We can easily check for an index needing reload, but even if that is the
5049 case, we might also have an invalid constant. To avoid making the
5050 conservative assumption and requiring two reloads, we see if this address
5051 is valid when not interpreted strictly. If it is, the only problem is
5052 that the index needs a reload and find_reloads_address_1 will take care
5053 of it.
5055 Handle all base registers here, not just fp/ap/sp, because on some
5056 targets (namely SPARC) we can also get invalid addresses from preventive
5057 subreg big-endian corrections made by find_reloads_toplev. We
5058 can also get expressions involving LO_SUM (rather than PLUS) from
5059 find_reloads_subreg_address.
5061 If we decide to do something, it must be that `double_reg_address_ok'
5062 is true. We generate a reload of the base register + constant and
5063 rework the sum so that the reload register will be added to the index.
5064 This is safe because we know the address isn't shared.
5066 We check for the base register as both the first and second operand of
5067 the innermost PLUS and/or LO_SUM. */
5069 for (op_index = 0; op_index < 2; ++op_index)
5071 rtx operand, addend;
5072 enum rtx_code inner_code;
5074 if (GET_CODE (ad) != PLUS)
5075 continue;
5077 inner_code = GET_CODE (XEXP (ad, 0));
5078 if (!(GET_CODE (ad) == PLUS
5079 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5080 && (inner_code == PLUS || inner_code == LO_SUM)))
5081 continue;
5083 operand = XEXP (XEXP (ad, 0), op_index);
5084 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5085 continue;
5087 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5089 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5090 GET_CODE (addend))
5091 || operand == frame_pointer_rtx
5092 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5093 || operand == hard_frame_pointer_rtx
5094 #endif
5095 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5096 || operand == arg_pointer_rtx
5097 #endif
5098 || operand == stack_pointer_rtx)
5099 && ! maybe_memory_address_p (mode, ad,
5100 &XEXP (XEXP (ad, 0), 1 - op_index)))
5102 rtx offset_reg;
5103 enum reg_class cls;
5105 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5107 /* Form the adjusted address. */
5108 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5109 ad = gen_rtx_PLUS (GET_MODE (ad),
5110 op_index == 0 ? offset_reg : addend,
5111 op_index == 0 ? addend : offset_reg);
5112 else
5113 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5114 op_index == 0 ? offset_reg : addend,
5115 op_index == 0 ? addend : offset_reg);
5116 *loc = ad;
5118 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5119 find_reloads_address_part (XEXP (ad, op_index),
5120 &XEXP (ad, op_index), cls,
5121 GET_MODE (ad), opnum, type, ind_levels);
5122 find_reloads_address_1 (mode,
5123 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5124 GET_CODE (XEXP (ad, op_index)),
5125 &XEXP (ad, 1 - op_index), opnum,
5126 type, 0, insn);
5128 return 0;
5132 /* See if address becomes valid when an eliminable register
5133 in a sum is replaced. */
5135 tem = ad;
5136 if (GET_CODE (ad) == PLUS)
5137 tem = subst_indexed_address (ad);
5138 if (tem != ad && strict_memory_address_p (mode, tem))
5140 /* Ok, we win that way. Replace any additional eliminable
5141 registers. */
5143 subst_reg_equivs_changed = 0;
5144 tem = subst_reg_equivs (tem, insn);
5146 /* Make sure that didn't make the address invalid again. */
5148 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5150 *loc = tem;
5151 return 0;
5155 /* If constants aren't valid addresses, reload the constant address
5156 into a register. */
5157 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5159 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5160 Unshare it so we can safely alter it. */
5161 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5162 && CONSTANT_POOL_ADDRESS_P (ad))
5164 *memrefloc = copy_rtx (*memrefloc);
5165 loc = &XEXP (*memrefloc, 0);
5166 if (removed_and)
5167 loc = &XEXP (*loc, 0);
5170 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5171 Pmode, opnum, type, ind_levels);
5172 return ! removed_and;
5175 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5176 ind_levels, insn);
5179 /* Find all pseudo regs appearing in AD
5180 that are eliminable in favor of equivalent values
5181 and do not have hard regs; replace them by their equivalents.
5182 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5183 front of it for pseudos that we have to replace with stack slots. */
5185 static rtx
5186 subst_reg_equivs (rtx ad, rtx insn)
5188 RTX_CODE code = GET_CODE (ad);
5189 int i;
5190 const char *fmt;
5192 switch (code)
5194 case HIGH:
5195 case CONST_INT:
5196 case CONST:
5197 case CONST_DOUBLE:
5198 case CONST_FIXED:
5199 case CONST_VECTOR:
5200 case SYMBOL_REF:
5201 case LABEL_REF:
5202 case PC:
5203 case CC0:
5204 return ad;
5206 case REG:
5208 int regno = REGNO (ad);
5210 if (reg_equiv_constant[regno] != 0)
5212 subst_reg_equivs_changed = 1;
5213 return reg_equiv_constant[regno];
5215 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5217 rtx mem = make_memloc (ad, regno);
5218 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5220 subst_reg_equivs_changed = 1;
5221 /* We mark the USE with QImode so that we recognize it
5222 as one that can be safely deleted at the end of
5223 reload. */
5224 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5225 QImode);
5226 return mem;
5230 return ad;
5232 case PLUS:
5233 /* Quickly dispose of a common case. */
5234 if (XEXP (ad, 0) == frame_pointer_rtx
5235 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5236 return ad;
5237 break;
5239 default:
5240 break;
5243 fmt = GET_RTX_FORMAT (code);
5244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5245 if (fmt[i] == 'e')
5246 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5247 return ad;
5250 /* Compute the sum of X and Y, making canonicalizations assumed in an
5251 address, namely: sum constant integers, surround the sum of two
5252 constants with a CONST, put the constant as the second operand, and
5253 group the constant on the outermost sum.
5255 This routine assumes both inputs are already in canonical form. */
5258 form_sum (rtx x, rtx y)
5260 rtx tem;
5261 enum machine_mode mode = GET_MODE (x);
5263 if (mode == VOIDmode)
5264 mode = GET_MODE (y);
5266 if (mode == VOIDmode)
5267 mode = Pmode;
5269 if (GET_CODE (x) == CONST_INT)
5270 return plus_constant (y, INTVAL (x));
5271 else if (GET_CODE (y) == CONST_INT)
5272 return plus_constant (x, INTVAL (y));
5273 else if (CONSTANT_P (x))
5274 tem = x, x = y, y = tem;
5276 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5277 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5279 /* Note that if the operands of Y are specified in the opposite
5280 order in the recursive calls below, infinite recursion will occur. */
5281 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5282 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5284 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5285 constant will have been placed second. */
5286 if (CONSTANT_P (x) && CONSTANT_P (y))
5288 if (GET_CODE (x) == CONST)
5289 x = XEXP (x, 0);
5290 if (GET_CODE (y) == CONST)
5291 y = XEXP (y, 0);
5293 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5296 return gen_rtx_PLUS (mode, x, y);
5299 /* If ADDR is a sum containing a pseudo register that should be
5300 replaced with a constant (from reg_equiv_constant),
5301 return the result of doing so, and also apply the associative
5302 law so that the result is more likely to be a valid address.
5303 (But it is not guaranteed to be one.)
5305 Note that at most one register is replaced, even if more are
5306 replaceable. Also, we try to put the result into a canonical form
5307 so it is more likely to be a valid address.
5309 In all other cases, return ADDR. */
5311 static rtx
5312 subst_indexed_address (rtx addr)
5314 rtx op0 = 0, op1 = 0, op2 = 0;
5315 rtx tem;
5316 int regno;
5318 if (GET_CODE (addr) == PLUS)
5320 /* Try to find a register to replace. */
5321 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5322 if (REG_P (op0)
5323 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5324 && reg_renumber[regno] < 0
5325 && reg_equiv_constant[regno] != 0)
5326 op0 = reg_equiv_constant[regno];
5327 else if (REG_P (op1)
5328 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5329 && reg_renumber[regno] < 0
5330 && reg_equiv_constant[regno] != 0)
5331 op1 = reg_equiv_constant[regno];
5332 else if (GET_CODE (op0) == PLUS
5333 && (tem = subst_indexed_address (op0)) != op0)
5334 op0 = tem;
5335 else if (GET_CODE (op1) == PLUS
5336 && (tem = subst_indexed_address (op1)) != op1)
5337 op1 = tem;
5338 else
5339 return addr;
5341 /* Pick out up to three things to add. */
5342 if (GET_CODE (op1) == PLUS)
5343 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5344 else if (GET_CODE (op0) == PLUS)
5345 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5347 /* Compute the sum. */
5348 if (op2 != 0)
5349 op1 = form_sum (op1, op2);
5350 if (op1 != 0)
5351 op0 = form_sum (op0, op1);
5353 return op0;
5355 return addr;
5358 /* Update the REG_INC notes for an insn. It updates all REG_INC
5359 notes for the instruction which refer to REGNO the to refer
5360 to the reload number.
5362 INSN is the insn for which any REG_INC notes need updating.
5364 REGNO is the register number which has been reloaded.
5366 RELOADNUM is the reload number. */
5368 static void
5369 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5370 int reloadnum ATTRIBUTE_UNUSED)
5372 #ifdef AUTO_INC_DEC
5373 rtx link;
5375 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5376 if (REG_NOTE_KIND (link) == REG_INC
5377 && (int) REGNO (XEXP (link, 0)) == regno)
5378 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5379 #endif
5382 /* Record the pseudo registers we must reload into hard registers in a
5383 subexpression of a would-be memory address, X referring to a value
5384 in mode MODE. (This function is not called if the address we find
5385 is strictly valid.)
5387 CONTEXT = 1 means we are considering regs as index regs,
5388 = 0 means we are considering them as base regs.
5389 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5390 or an autoinc code.
5391 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5392 is the code of the index part of the address. Otherwise, pass SCRATCH
5393 for this argument.
5394 OPNUM and TYPE specify the purpose of any reloads made.
5396 IND_LEVELS says how many levels of indirect addressing are
5397 supported at this point in the address.
5399 INSN, if nonzero, is the insn in which we do the reload. It is used
5400 to determine if we may generate output reloads.
5402 We return nonzero if X, as a whole, is reloaded or replaced. */
5404 /* Note that we take shortcuts assuming that no multi-reg machine mode
5405 occurs as part of an address.
5406 Also, this is not fully machine-customizable; it works for machines
5407 such as VAXen and 68000's and 32000's, but other possible machines
5408 could have addressing modes that this does not handle right.
5409 If you add push_reload calls here, you need to make sure gen_reload
5410 handles those cases gracefully. */
5412 static int
5413 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5414 enum rtx_code outer_code, enum rtx_code index_code,
5415 rtx *loc, int opnum, enum reload_type type,
5416 int ind_levels, rtx insn)
5418 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5419 ((CONTEXT) == 0 \
5420 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5421 : REGNO_OK_FOR_INDEX_P (REGNO))
5423 enum reg_class context_reg_class;
5424 RTX_CODE code = GET_CODE (x);
5426 if (context == 1)
5427 context_reg_class = INDEX_REG_CLASS;
5428 else
5429 context_reg_class = base_reg_class (mode, outer_code, index_code);
5431 switch (code)
5433 case PLUS:
5435 rtx orig_op0 = XEXP (x, 0);
5436 rtx orig_op1 = XEXP (x, 1);
5437 RTX_CODE code0 = GET_CODE (orig_op0);
5438 RTX_CODE code1 = GET_CODE (orig_op1);
5439 rtx op0 = orig_op0;
5440 rtx op1 = orig_op1;
5442 if (GET_CODE (op0) == SUBREG)
5444 op0 = SUBREG_REG (op0);
5445 code0 = GET_CODE (op0);
5446 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5447 op0 = gen_rtx_REG (word_mode,
5448 (REGNO (op0) +
5449 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5450 GET_MODE (SUBREG_REG (orig_op0)),
5451 SUBREG_BYTE (orig_op0),
5452 GET_MODE (orig_op0))));
5455 if (GET_CODE (op1) == SUBREG)
5457 op1 = SUBREG_REG (op1);
5458 code1 = GET_CODE (op1);
5459 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5460 /* ??? Why is this given op1's mode and above for
5461 ??? op0 SUBREGs we use word_mode? */
5462 op1 = gen_rtx_REG (GET_MODE (op1),
5463 (REGNO (op1) +
5464 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5465 GET_MODE (SUBREG_REG (orig_op1)),
5466 SUBREG_BYTE (orig_op1),
5467 GET_MODE (orig_op1))));
5469 /* Plus in the index register may be created only as a result of
5470 register rematerialization for expression like &localvar*4. Reload it.
5471 It may be possible to combine the displacement on the outer level,
5472 but it is probably not worthwhile to do so. */
5473 if (context == 1)
5475 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5476 opnum, ADDR_TYPE (type), ind_levels, insn);
5477 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5478 context_reg_class,
5479 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5480 return 1;
5483 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5484 || code0 == ZERO_EXTEND || code1 == MEM)
5486 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5487 &XEXP (x, 0), opnum, type, ind_levels,
5488 insn);
5489 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5490 &XEXP (x, 1), opnum, type, ind_levels,
5491 insn);
5494 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5495 || code1 == ZERO_EXTEND || code0 == MEM)
5497 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5498 &XEXP (x, 0), opnum, type, ind_levels,
5499 insn);
5500 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5501 &XEXP (x, 1), opnum, type, ind_levels,
5502 insn);
5505 else if (code0 == CONST_INT || code0 == CONST
5506 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5507 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5508 &XEXP (x, 1), opnum, type, ind_levels,
5509 insn);
5511 else if (code1 == CONST_INT || code1 == CONST
5512 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5513 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5514 &XEXP (x, 0), opnum, type, ind_levels,
5515 insn);
5517 else if (code0 == REG && code1 == REG)
5519 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5520 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5521 return 0;
5522 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5523 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5524 return 0;
5525 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5526 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5527 &XEXP (x, 1), opnum, type, ind_levels,
5528 insn);
5529 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5530 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5531 &XEXP (x, 0), opnum, type, ind_levels,
5532 insn);
5533 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5534 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5535 &XEXP (x, 0), opnum, type, ind_levels,
5536 insn);
5537 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5538 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5539 &XEXP (x, 1), opnum, type, ind_levels,
5540 insn);
5541 else
5543 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5544 &XEXP (x, 0), opnum, type, ind_levels,
5545 insn);
5546 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5547 &XEXP (x, 1), opnum, type, ind_levels,
5548 insn);
5552 else if (code0 == REG)
5554 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5555 &XEXP (x, 0), opnum, type, ind_levels,
5556 insn);
5557 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5558 &XEXP (x, 1), opnum, type, ind_levels,
5559 insn);
5562 else if (code1 == REG)
5564 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5565 &XEXP (x, 1), opnum, type, ind_levels,
5566 insn);
5567 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5568 &XEXP (x, 0), opnum, type, ind_levels,
5569 insn);
5573 return 0;
5575 case POST_MODIFY:
5576 case PRE_MODIFY:
5578 rtx op0 = XEXP (x, 0);
5579 rtx op1 = XEXP (x, 1);
5580 enum rtx_code index_code;
5581 int regno;
5582 int reloadnum;
5584 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5585 return 0;
5587 /* Currently, we only support {PRE,POST}_MODIFY constructs
5588 where a base register is {inc,dec}remented by the contents
5589 of another register or by a constant value. Thus, these
5590 operands must match. */
5591 gcc_assert (op0 == XEXP (op1, 0));
5593 /* Require index register (or constant). Let's just handle the
5594 register case in the meantime... If the target allows
5595 auto-modify by a constant then we could try replacing a pseudo
5596 register with its equivalent constant where applicable.
5598 We also handle the case where the register was eliminated
5599 resulting in a PLUS subexpression.
5601 If we later decide to reload the whole PRE_MODIFY or
5602 POST_MODIFY, inc_for_reload might clobber the reload register
5603 before reading the index. The index register might therefore
5604 need to live longer than a TYPE reload normally would, so be
5605 conservative and class it as RELOAD_OTHER. */
5606 if ((REG_P (XEXP (op1, 1))
5607 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5608 || GET_CODE (XEXP (op1, 1)) == PLUS)
5609 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5610 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5611 ind_levels, insn);
5613 gcc_assert (REG_P (XEXP (op1, 0)));
5615 regno = REGNO (XEXP (op1, 0));
5616 index_code = GET_CODE (XEXP (op1, 1));
5618 /* A register that is incremented cannot be constant! */
5619 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5620 || reg_equiv_constant[regno] == 0);
5622 /* Handle a register that is equivalent to a memory location
5623 which cannot be addressed directly. */
5624 if (reg_equiv_memory_loc[regno] != 0
5625 && (reg_equiv_address[regno] != 0
5626 || num_not_at_initial_offset))
5628 rtx tem = make_memloc (XEXP (x, 0), regno);
5630 if (reg_equiv_address[regno]
5631 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5633 rtx orig = tem;
5635 /* First reload the memory location's address.
5636 We can't use ADDR_TYPE (type) here, because we need to
5637 write back the value after reading it, hence we actually
5638 need two registers. */
5639 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5640 &XEXP (tem, 0), opnum,
5641 RELOAD_OTHER,
5642 ind_levels, insn);
5644 if (!rtx_equal_p (tem, orig))
5645 push_reg_equiv_alt_mem (regno, tem);
5647 /* Then reload the memory location into a base
5648 register. */
5649 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5650 &XEXP (op1, 0),
5651 base_reg_class (mode, code,
5652 index_code),
5653 GET_MODE (x), GET_MODE (x), 0,
5654 0, opnum, RELOAD_OTHER);
5656 update_auto_inc_notes (this_insn, regno, reloadnum);
5657 return 0;
5661 if (reg_renumber[regno] >= 0)
5662 regno = reg_renumber[regno];
5664 /* We require a base register here... */
5665 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5667 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5668 &XEXP (op1, 0), &XEXP (x, 0),
5669 base_reg_class (mode, code, index_code),
5670 GET_MODE (x), GET_MODE (x), 0, 0,
5671 opnum, RELOAD_OTHER);
5673 update_auto_inc_notes (this_insn, regno, reloadnum);
5674 return 0;
5677 return 0;
5679 case POST_INC:
5680 case POST_DEC:
5681 case PRE_INC:
5682 case PRE_DEC:
5683 if (REG_P (XEXP (x, 0)))
5685 int regno = REGNO (XEXP (x, 0));
5686 int value = 0;
5687 rtx x_orig = x;
5689 /* A register that is incremented cannot be constant! */
5690 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5691 || reg_equiv_constant[regno] == 0);
5693 /* Handle a register that is equivalent to a memory location
5694 which cannot be addressed directly. */
5695 if (reg_equiv_memory_loc[regno] != 0
5696 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5698 rtx tem = make_memloc (XEXP (x, 0), regno);
5699 if (reg_equiv_address[regno]
5700 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5702 rtx orig = tem;
5704 /* First reload the memory location's address.
5705 We can't use ADDR_TYPE (type) here, because we need to
5706 write back the value after reading it, hence we actually
5707 need two registers. */
5708 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5709 &XEXP (tem, 0), opnum, type,
5710 ind_levels, insn);
5711 if (!rtx_equal_p (tem, orig))
5712 push_reg_equiv_alt_mem (regno, tem);
5713 /* Put this inside a new increment-expression. */
5714 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5715 /* Proceed to reload that, as if it contained a register. */
5719 /* If we have a hard register that is ok in this incdec context,
5720 don't make a reload. If the register isn't nice enough for
5721 autoincdec, we can reload it. But, if an autoincrement of a
5722 register that we here verified as playing nice, still outside
5723 isn't "valid", it must be that no autoincrement is "valid".
5724 If that is true and something made an autoincrement anyway,
5725 this must be a special context where one is allowed.
5726 (For example, a "push" instruction.)
5727 We can't improve this address, so leave it alone. */
5729 /* Otherwise, reload the autoincrement into a suitable hard reg
5730 and record how much to increment by. */
5732 if (reg_renumber[regno] >= 0)
5733 regno = reg_renumber[regno];
5734 if (regno >= FIRST_PSEUDO_REGISTER
5735 || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5736 index_code))
5738 int reloadnum;
5740 /* If we can output the register afterwards, do so, this
5741 saves the extra update.
5742 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5743 CALL_INSN - and it does not set CC0.
5744 But don't do this if we cannot directly address the
5745 memory location, since this will make it harder to
5746 reuse address reloads, and increases register pressure.
5747 Also don't do this if we can probably update x directly. */
5748 rtx equiv = (MEM_P (XEXP (x, 0))
5749 ? XEXP (x, 0)
5750 : reg_equiv_mem[regno]);
5751 int icode = (int) optab_handler (add_optab, Pmode)->insn_code;
5752 if (insn && NONJUMP_INSN_P (insn) && equiv
5753 && memory_operand (equiv, GET_MODE (equiv))
5754 #ifdef HAVE_cc0
5755 && ! sets_cc0_p (PATTERN (insn))
5756 #endif
5757 && ! (icode != CODE_FOR_nothing
5758 && ((*insn_data[icode].operand[0].predicate)
5759 (equiv, Pmode))
5760 && ((*insn_data[icode].operand[1].predicate)
5761 (equiv, Pmode))))
5763 /* We use the original pseudo for loc, so that
5764 emit_reload_insns() knows which pseudo this
5765 reload refers to and updates the pseudo rtx, not
5766 its equivalent memory location, as well as the
5767 corresponding entry in reg_last_reload_reg. */
5768 loc = &XEXP (x_orig, 0);
5769 x = XEXP (x, 0);
5770 reloadnum
5771 = push_reload (x, x, loc, loc,
5772 context_reg_class,
5773 GET_MODE (x), GET_MODE (x), 0, 0,
5774 opnum, RELOAD_OTHER);
5776 else
5778 reloadnum
5779 = push_reload (x, x, loc, (rtx*) 0,
5780 context_reg_class,
5781 GET_MODE (x), GET_MODE (x), 0, 0,
5782 opnum, type);
5783 rld[reloadnum].inc
5784 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5786 value = 1;
5789 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5790 reloadnum);
5792 return value;
5794 return 0;
5796 case TRUNCATE:
5797 case SIGN_EXTEND:
5798 case ZERO_EXTEND:
5799 /* Look for parts to reload in the inner expression and reload them
5800 too, in addition to this operation. Reloading all inner parts in
5801 addition to this one shouldn't be necessary, but at this point,
5802 we don't know if we can possibly omit any part that *can* be
5803 reloaded. Targets that are better off reloading just either part
5804 (or perhaps even a different part of an outer expression), should
5805 define LEGITIMIZE_RELOAD_ADDRESS. */
5806 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5807 context, code, SCRATCH, &XEXP (x, 0), opnum,
5808 type, ind_levels, insn);
5809 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5810 context_reg_class,
5811 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5812 return 1;
5814 case MEM:
5815 /* This is probably the result of a substitution, by eliminate_regs, of
5816 an equivalent address for a pseudo that was not allocated to a hard
5817 register. Verify that the specified address is valid and reload it
5818 into a register.
5820 Since we know we are going to reload this item, don't decrement for
5821 the indirection level.
5823 Note that this is actually conservative: it would be slightly more
5824 efficient to use the value of SPILL_INDIRECT_LEVELS from
5825 reload1.c here. */
5827 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5828 opnum, ADDR_TYPE (type), ind_levels, insn);
5829 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5830 context_reg_class,
5831 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5832 return 1;
5834 case REG:
5836 int regno = REGNO (x);
5838 if (reg_equiv_constant[regno] != 0)
5840 find_reloads_address_part (reg_equiv_constant[regno], loc,
5841 context_reg_class,
5842 GET_MODE (x), opnum, type, ind_levels);
5843 return 1;
5846 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5847 that feeds this insn. */
5848 if (reg_equiv_mem[regno] != 0)
5850 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5851 context_reg_class,
5852 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5853 return 1;
5855 #endif
5857 if (reg_equiv_memory_loc[regno]
5858 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5860 rtx tem = make_memloc (x, regno);
5861 if (reg_equiv_address[regno] != 0
5862 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5864 x = tem;
5865 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5866 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5867 ind_levels, insn);
5868 if (!rtx_equal_p (x, tem))
5869 push_reg_equiv_alt_mem (regno, x);
5873 if (reg_renumber[regno] >= 0)
5874 regno = reg_renumber[regno];
5876 if (regno >= FIRST_PSEUDO_REGISTER
5877 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5878 index_code))
5880 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5881 context_reg_class,
5882 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5883 return 1;
5886 /* If a register appearing in an address is the subject of a CLOBBER
5887 in this insn, reload it into some other register to be safe.
5888 The CLOBBER is supposed to make the register unavailable
5889 from before this insn to after it. */
5890 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5892 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5893 context_reg_class,
5894 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5895 return 1;
5898 return 0;
5900 case SUBREG:
5901 if (REG_P (SUBREG_REG (x)))
5903 /* If this is a SUBREG of a hard register and the resulting register
5904 is of the wrong class, reload the whole SUBREG. This avoids
5905 needless copies if SUBREG_REG is multi-word. */
5906 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5908 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5910 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5911 index_code))
5913 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5914 context_reg_class,
5915 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5916 return 1;
5919 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5920 is larger than the class size, then reload the whole SUBREG. */
5921 else
5923 enum reg_class rclass = context_reg_class;
5924 if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
5925 > reg_class_size[rclass])
5927 x = find_reloads_subreg_address (x, 0, opnum,
5928 ADDR_TYPE (type),
5929 ind_levels, insn);
5930 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
5931 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5932 return 1;
5936 break;
5938 default:
5939 break;
5943 const char *fmt = GET_RTX_FORMAT (code);
5944 int i;
5946 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5948 if (fmt[i] == 'e')
5949 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5950 we get here. */
5951 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5952 &XEXP (x, i), opnum, type, ind_levels, insn);
5956 #undef REG_OK_FOR_CONTEXT
5957 return 0;
5960 /* X, which is found at *LOC, is a part of an address that needs to be
5961 reloaded into a register of class RCLASS. If X is a constant, or if
5962 X is a PLUS that contains a constant, check that the constant is a
5963 legitimate operand and that we are supposed to be able to load
5964 it into the register.
5966 If not, force the constant into memory and reload the MEM instead.
5968 MODE is the mode to use, in case X is an integer constant.
5970 OPNUM and TYPE describe the purpose of any reloads made.
5972 IND_LEVELS says how many levels of indirect addressing this machine
5973 supports. */
5975 static void
5976 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
5977 enum machine_mode mode, int opnum,
5978 enum reload_type type, int ind_levels)
5980 if (CONSTANT_P (x)
5981 && (! LEGITIMATE_CONSTANT_P (x)
5982 || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
5984 x = force_const_mem (mode, x);
5985 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
5986 opnum, type, ind_levels, 0);
5989 else if (GET_CODE (x) == PLUS
5990 && CONSTANT_P (XEXP (x, 1))
5991 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5992 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
5994 rtx tem;
5996 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5997 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5998 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
5999 opnum, type, ind_levels, 0);
6002 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6003 mode, VOIDmode, 0, 0, opnum, type);
6006 /* X, a subreg of a pseudo, is a part of an address that needs to be
6007 reloaded.
6009 If the pseudo is equivalent to a memory location that cannot be directly
6010 addressed, make the necessary address reloads.
6012 If address reloads have been necessary, or if the address is changed
6013 by register elimination, return the rtx of the memory location;
6014 otherwise, return X.
6016 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6017 memory location.
6019 OPNUM and TYPE identify the purpose of the reload.
6021 IND_LEVELS says how many levels of indirect addressing are
6022 supported at this point in the address.
6024 INSN, if nonzero, is the insn in which we do the reload. It is used
6025 to determine where to put USEs for pseudos that we have to replace with
6026 stack slots. */
6028 static rtx
6029 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6030 enum reload_type type, int ind_levels, rtx insn)
6032 int regno = REGNO (SUBREG_REG (x));
6034 if (reg_equiv_memory_loc[regno])
6036 /* If the address is not directly addressable, or if the address is not
6037 offsettable, then it must be replaced. */
6038 if (! force_replace
6039 && (reg_equiv_address[regno]
6040 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6041 force_replace = 1;
6043 if (force_replace || num_not_at_initial_offset)
6045 rtx tem = make_memloc (SUBREG_REG (x), regno);
6047 /* If the address changes because of register elimination, then
6048 it must be replaced. */
6049 if (force_replace
6050 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6052 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6053 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6054 int offset;
6055 rtx orig = tem;
6056 int reloaded;
6058 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6059 hold the correct (negative) byte offset. */
6060 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6061 offset = inner_size - outer_size;
6062 else
6063 offset = SUBREG_BYTE (x);
6065 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6066 PUT_MODE (tem, GET_MODE (x));
6067 if (MEM_OFFSET (tem))
6068 set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6070 /* If this was a paradoxical subreg that we replaced, the
6071 resulting memory must be sufficiently aligned to allow
6072 us to widen the mode of the memory. */
6073 if (outer_size > inner_size)
6075 rtx base;
6077 base = XEXP (tem, 0);
6078 if (GET_CODE (base) == PLUS)
6080 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6081 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6082 return x;
6083 base = XEXP (base, 0);
6085 if (!REG_P (base)
6086 || (REGNO_POINTER_ALIGN (REGNO (base))
6087 < outer_size * BITS_PER_UNIT))
6088 return x;
6091 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6092 XEXP (tem, 0), &XEXP (tem, 0),
6093 opnum, type, ind_levels, insn);
6094 /* ??? Do we need to handle nonzero offsets somehow? */
6095 if (!offset && !rtx_equal_p (tem, orig))
6096 push_reg_equiv_alt_mem (regno, tem);
6098 /* For some processors an address may be valid in the
6099 original mode but not in a smaller mode. For
6100 example, ARM accepts a scaled index register in
6101 SImode but not in HImode. Similarly, the address may
6102 have been valid before the subreg offset was added,
6103 but not afterwards. find_reloads_address
6104 assumes that we pass it a valid address, and doesn't
6105 force a reload. This will probably be fine if
6106 find_reloads_address finds some reloads. But if it
6107 doesn't find any, then we may have just converted a
6108 valid address into an invalid one. Check for that
6109 here. */
6110 if (reloaded == 0
6111 && !strict_memory_address_p (GET_MODE (tem),
6112 XEXP (tem, 0)))
6113 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6114 base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6115 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6116 opnum, type);
6118 /* If this is not a toplevel operand, find_reloads doesn't see
6119 this substitution. We have to emit a USE of the pseudo so
6120 that delete_output_reload can see it. */
6121 if (replace_reloads && recog_data.operand[opnum] != x)
6122 /* We mark the USE with QImode so that we recognize it
6123 as one that can be safely deleted at the end of
6124 reload. */
6125 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6126 SUBREG_REG (x)),
6127 insn), QImode);
6128 x = tem;
6132 return x;
6135 /* Substitute into the current INSN the registers into which we have reloaded
6136 the things that need reloading. The array `replacements'
6137 contains the locations of all pointers that must be changed
6138 and says what to replace them with.
6140 Return the rtx that X translates into; usually X, but modified. */
6142 void
6143 subst_reloads (rtx insn)
6145 int i;
6147 for (i = 0; i < n_replacements; i++)
6149 struct replacement *r = &replacements[i];
6150 rtx reloadreg = rld[r->what].reg_rtx;
6151 if (reloadreg)
6153 #ifdef DEBUG_RELOAD
6154 /* This checking takes a very long time on some platforms
6155 causing the gcc.c-torture/compile/limits-fnargs.c test
6156 to time out during testing. See PR 31850.
6158 Internal consistency test. Check that we don't modify
6159 anything in the equivalence arrays. Whenever something from
6160 those arrays needs to be reloaded, it must be unshared before
6161 being substituted into; the equivalence must not be modified.
6162 Otherwise, if the equivalence is used after that, it will
6163 have been modified, and the thing substituted (probably a
6164 register) is likely overwritten and not a usable equivalence. */
6165 int check_regno;
6167 for (check_regno = 0; check_regno < max_regno; check_regno++)
6169 #define CHECK_MODF(ARRAY) \
6170 gcc_assert (!ARRAY[check_regno] \
6171 || !loc_mentioned_in_p (r->where, \
6172 ARRAY[check_regno]))
6174 CHECK_MODF (reg_equiv_constant);
6175 CHECK_MODF (reg_equiv_memory_loc);
6176 CHECK_MODF (reg_equiv_address);
6177 CHECK_MODF (reg_equiv_mem);
6178 #undef CHECK_MODF
6180 #endif /* DEBUG_RELOAD */
6182 /* If we're replacing a LABEL_REF with a register, there must
6183 already be an indication (to e.g. flow) which label this
6184 register refers to. */
6185 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6186 || !JUMP_P (insn)
6187 || find_reg_note (insn,
6188 REG_LABEL_OPERAND,
6189 XEXP (*r->where, 0))
6190 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6192 /* Encapsulate RELOADREG so its machine mode matches what
6193 used to be there. Note that gen_lowpart_common will
6194 do the wrong thing if RELOADREG is multi-word. RELOADREG
6195 will always be a REG here. */
6196 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6197 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6199 /* If we are putting this into a SUBREG and RELOADREG is a
6200 SUBREG, we would be making nested SUBREGs, so we have to fix
6201 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6203 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6205 if (GET_MODE (*r->subreg_loc)
6206 == GET_MODE (SUBREG_REG (reloadreg)))
6207 *r->subreg_loc = SUBREG_REG (reloadreg);
6208 else
6210 int final_offset =
6211 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6213 /* When working with SUBREGs the rule is that the byte
6214 offset must be a multiple of the SUBREG's mode. */
6215 final_offset = (final_offset /
6216 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6217 final_offset = (final_offset *
6218 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6220 *r->where = SUBREG_REG (reloadreg);
6221 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6224 else
6225 *r->where = reloadreg;
6227 /* If reload got no reg and isn't optional, something's wrong. */
6228 else
6229 gcc_assert (rld[r->what].optional);
6233 /* Make a copy of any replacements being done into X and move those
6234 copies to locations in Y, a copy of X. */
6236 void
6237 copy_replacements (rtx x, rtx y)
6239 /* We can't support X being a SUBREG because we might then need to know its
6240 location if something inside it was replaced. */
6241 gcc_assert (GET_CODE (x) != SUBREG);
6243 copy_replacements_1 (&x, &y, n_replacements);
6246 static void
6247 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6249 int i, j;
6250 rtx x, y;
6251 struct replacement *r;
6252 enum rtx_code code;
6253 const char *fmt;
6255 for (j = 0; j < orig_replacements; j++)
6257 if (replacements[j].subreg_loc == px)
6259 r = &replacements[n_replacements++];
6260 r->where = replacements[j].where;
6261 r->subreg_loc = py;
6262 r->what = replacements[j].what;
6263 r->mode = replacements[j].mode;
6265 else if (replacements[j].where == px)
6267 r = &replacements[n_replacements++];
6268 r->where = py;
6269 r->subreg_loc = 0;
6270 r->what = replacements[j].what;
6271 r->mode = replacements[j].mode;
6275 x = *px;
6276 y = *py;
6277 code = GET_CODE (x);
6278 fmt = GET_RTX_FORMAT (code);
6280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6282 if (fmt[i] == 'e')
6283 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6284 else if (fmt[i] == 'E')
6285 for (j = XVECLEN (x, i); --j >= 0; )
6286 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6287 orig_replacements);
6291 /* Change any replacements being done to *X to be done to *Y. */
6293 void
6294 move_replacements (rtx *x, rtx *y)
6296 int i;
6298 for (i = 0; i < n_replacements; i++)
6299 if (replacements[i].subreg_loc == x)
6300 replacements[i].subreg_loc = y;
6301 else if (replacements[i].where == x)
6303 replacements[i].where = y;
6304 replacements[i].subreg_loc = 0;
6308 /* If LOC was scheduled to be replaced by something, return the replacement.
6309 Otherwise, return *LOC. */
6312 find_replacement (rtx *loc)
6314 struct replacement *r;
6316 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6318 rtx reloadreg = rld[r->what].reg_rtx;
6320 if (reloadreg && r->where == loc)
6322 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6323 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6325 return reloadreg;
6327 else if (reloadreg && r->subreg_loc == loc)
6329 /* RELOADREG must be either a REG or a SUBREG.
6331 ??? Is it actually still ever a SUBREG? If so, why? */
6333 if (REG_P (reloadreg))
6334 return gen_rtx_REG (GET_MODE (*loc),
6335 (REGNO (reloadreg) +
6336 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6337 GET_MODE (SUBREG_REG (*loc)),
6338 SUBREG_BYTE (*loc),
6339 GET_MODE (*loc))));
6340 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6341 return reloadreg;
6342 else
6344 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6346 /* When working with SUBREGs the rule is that the byte
6347 offset must be a multiple of the SUBREG's mode. */
6348 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6349 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6350 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6351 final_offset);
6356 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6357 what's inside and make a new rtl if so. */
6358 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6359 || GET_CODE (*loc) == MULT)
6361 rtx x = find_replacement (&XEXP (*loc, 0));
6362 rtx y = find_replacement (&XEXP (*loc, 1));
6364 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6365 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6368 return *loc;
6371 /* Return nonzero if register in range [REGNO, ENDREGNO)
6372 appears either explicitly or implicitly in X
6373 other than being stored into (except for earlyclobber operands).
6375 References contained within the substructure at LOC do not count.
6376 LOC may be zero, meaning don't ignore anything.
6378 This is similar to refers_to_regno_p in rtlanal.c except that we
6379 look at equivalences for pseudos that didn't get hard registers. */
6381 static int
6382 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6383 rtx x, rtx *loc)
6385 int i;
6386 unsigned int r;
6387 RTX_CODE code;
6388 const char *fmt;
6390 if (x == 0)
6391 return 0;
6393 repeat:
6394 code = GET_CODE (x);
6396 switch (code)
6398 case REG:
6399 r = REGNO (x);
6401 /* If this is a pseudo, a hard register must not have been allocated.
6402 X must therefore either be a constant or be in memory. */
6403 if (r >= FIRST_PSEUDO_REGISTER)
6405 if (reg_equiv_memory_loc[r])
6406 return refers_to_regno_for_reload_p (regno, endregno,
6407 reg_equiv_memory_loc[r],
6408 (rtx*) 0);
6410 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6411 return 0;
6414 return (endregno > r
6415 && regno < r + (r < FIRST_PSEUDO_REGISTER
6416 ? hard_regno_nregs[r][GET_MODE (x)]
6417 : 1));
6419 case SUBREG:
6420 /* If this is a SUBREG of a hard reg, we can see exactly which
6421 registers are being modified. Otherwise, handle normally. */
6422 if (REG_P (SUBREG_REG (x))
6423 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6425 unsigned int inner_regno = subreg_regno (x);
6426 unsigned int inner_endregno
6427 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6428 ? subreg_nregs (x) : 1);
6430 return endregno > inner_regno && regno < inner_endregno;
6432 break;
6434 case CLOBBER:
6435 case SET:
6436 if (&SET_DEST (x) != loc
6437 /* Note setting a SUBREG counts as referring to the REG it is in for
6438 a pseudo but not for hard registers since we can
6439 treat each word individually. */
6440 && ((GET_CODE (SET_DEST (x)) == SUBREG
6441 && loc != &SUBREG_REG (SET_DEST (x))
6442 && REG_P (SUBREG_REG (SET_DEST (x)))
6443 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6444 && refers_to_regno_for_reload_p (regno, endregno,
6445 SUBREG_REG (SET_DEST (x)),
6446 loc))
6447 /* If the output is an earlyclobber operand, this is
6448 a conflict. */
6449 || ((!REG_P (SET_DEST (x))
6450 || earlyclobber_operand_p (SET_DEST (x)))
6451 && refers_to_regno_for_reload_p (regno, endregno,
6452 SET_DEST (x), loc))))
6453 return 1;
6455 if (code == CLOBBER || loc == &SET_SRC (x))
6456 return 0;
6457 x = SET_SRC (x);
6458 goto repeat;
6460 default:
6461 break;
6464 /* X does not match, so try its subexpressions. */
6466 fmt = GET_RTX_FORMAT (code);
6467 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6469 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6471 if (i == 0)
6473 x = XEXP (x, 0);
6474 goto repeat;
6476 else
6477 if (refers_to_regno_for_reload_p (regno, endregno,
6478 XEXP (x, i), loc))
6479 return 1;
6481 else if (fmt[i] == 'E')
6483 int j;
6484 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6485 if (loc != &XVECEXP (x, i, j)
6486 && refers_to_regno_for_reload_p (regno, endregno,
6487 XVECEXP (x, i, j), loc))
6488 return 1;
6491 return 0;
6494 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6495 we check if any register number in X conflicts with the relevant register
6496 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6497 contains a MEM (we don't bother checking for memory addresses that can't
6498 conflict because we expect this to be a rare case.
6500 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6501 that we look at equivalences for pseudos that didn't get hard registers. */
6504 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6506 int regno, endregno;
6508 /* Overly conservative. */
6509 if (GET_CODE (x) == STRICT_LOW_PART
6510 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6511 x = XEXP (x, 0);
6513 /* If either argument is a constant, then modifying X can not affect IN. */
6514 if (CONSTANT_P (x) || CONSTANT_P (in))
6515 return 0;
6516 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6517 return refers_to_mem_for_reload_p (in);
6518 else if (GET_CODE (x) == SUBREG)
6520 regno = REGNO (SUBREG_REG (x));
6521 if (regno < FIRST_PSEUDO_REGISTER)
6522 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6523 GET_MODE (SUBREG_REG (x)),
6524 SUBREG_BYTE (x),
6525 GET_MODE (x));
6526 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6527 ? subreg_nregs (x) : 1);
6529 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6531 else if (REG_P (x))
6533 regno = REGNO (x);
6535 /* If this is a pseudo, it must not have been assigned a hard register.
6536 Therefore, it must either be in memory or be a constant. */
6538 if (regno >= FIRST_PSEUDO_REGISTER)
6540 if (reg_equiv_memory_loc[regno])
6541 return refers_to_mem_for_reload_p (in);
6542 gcc_assert (reg_equiv_constant[regno]);
6543 return 0;
6546 endregno = END_HARD_REGNO (x);
6548 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6550 else if (MEM_P (x))
6551 return refers_to_mem_for_reload_p (in);
6552 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6553 || GET_CODE (x) == CC0)
6554 return reg_mentioned_p (x, in);
6555 else
6557 gcc_assert (GET_CODE (x) == PLUS);
6559 /* We actually want to know if X is mentioned somewhere inside IN.
6560 We must not say that (plus (sp) (const_int 124)) is in
6561 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6562 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6563 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6564 while (MEM_P (in))
6565 in = XEXP (in, 0);
6566 if (REG_P (in))
6567 return 0;
6568 else if (GET_CODE (in) == PLUS)
6569 return (rtx_equal_p (x, in)
6570 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6571 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6572 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6573 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6576 gcc_unreachable ();
6579 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6580 registers. */
6582 static int
6583 refers_to_mem_for_reload_p (rtx x)
6585 const char *fmt;
6586 int i;
6588 if (MEM_P (x))
6589 return 1;
6591 if (REG_P (x))
6592 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6593 && reg_equiv_memory_loc[REGNO (x)]);
6595 fmt = GET_RTX_FORMAT (GET_CODE (x));
6596 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6597 if (fmt[i] == 'e'
6598 && (MEM_P (XEXP (x, i))
6599 || refers_to_mem_for_reload_p (XEXP (x, i))))
6600 return 1;
6602 return 0;
6605 /* Check the insns before INSN to see if there is a suitable register
6606 containing the same value as GOAL.
6607 If OTHER is -1, look for a register in class RCLASS.
6608 Otherwise, just see if register number OTHER shares GOAL's value.
6610 Return an rtx for the register found, or zero if none is found.
6612 If RELOAD_REG_P is (short *)1,
6613 we reject any hard reg that appears in reload_reg_rtx
6614 because such a hard reg is also needed coming into this insn.
6616 If RELOAD_REG_P is any other nonzero value,
6617 it is a vector indexed by hard reg number
6618 and we reject any hard reg whose element in the vector is nonnegative
6619 as well as any that appears in reload_reg_rtx.
6621 If GOAL is zero, then GOALREG is a register number; we look
6622 for an equivalent for that register.
6624 MODE is the machine mode of the value we want an equivalence for.
6625 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6627 This function is used by jump.c as well as in the reload pass.
6629 If GOAL is the sum of the stack pointer and a constant, we treat it
6630 as if it were a constant except that sp is required to be unchanging. */
6633 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6634 short *reload_reg_p, int goalreg, enum machine_mode mode)
6636 rtx p = insn;
6637 rtx goaltry, valtry, value, where;
6638 rtx pat;
6639 int regno = -1;
6640 int valueno;
6641 int goal_mem = 0;
6642 int goal_const = 0;
6643 int goal_mem_addr_varies = 0;
6644 int need_stable_sp = 0;
6645 int nregs;
6646 int valuenregs;
6647 int num = 0;
6649 if (goal == 0)
6650 regno = goalreg;
6651 else if (REG_P (goal))
6652 regno = REGNO (goal);
6653 else if (MEM_P (goal))
6655 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6656 if (MEM_VOLATILE_P (goal))
6657 return 0;
6658 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6659 return 0;
6660 /* An address with side effects must be reexecuted. */
6661 switch (code)
6663 case POST_INC:
6664 case PRE_INC:
6665 case POST_DEC:
6666 case PRE_DEC:
6667 case POST_MODIFY:
6668 case PRE_MODIFY:
6669 return 0;
6670 default:
6671 break;
6673 goal_mem = 1;
6675 else if (CONSTANT_P (goal))
6676 goal_const = 1;
6677 else if (GET_CODE (goal) == PLUS
6678 && XEXP (goal, 0) == stack_pointer_rtx
6679 && CONSTANT_P (XEXP (goal, 1)))
6680 goal_const = need_stable_sp = 1;
6681 else if (GET_CODE (goal) == PLUS
6682 && XEXP (goal, 0) == frame_pointer_rtx
6683 && CONSTANT_P (XEXP (goal, 1)))
6684 goal_const = 1;
6685 else
6686 return 0;
6688 num = 0;
6689 /* Scan insns back from INSN, looking for one that copies
6690 a value into or out of GOAL.
6691 Stop and give up if we reach a label. */
6693 while (1)
6695 p = PREV_INSN (p);
6696 num++;
6697 if (p == 0 || LABEL_P (p)
6698 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6699 return 0;
6701 if (NONJUMP_INSN_P (p)
6702 /* If we don't want spill regs ... */
6703 && (! (reload_reg_p != 0
6704 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6705 /* ... then ignore insns introduced by reload; they aren't
6706 useful and can cause results in reload_as_needed to be
6707 different from what they were when calculating the need for
6708 spills. If we notice an input-reload insn here, we will
6709 reject it below, but it might hide a usable equivalent.
6710 That makes bad code. It may even fail: perhaps no reg was
6711 spilled for this insn because it was assumed we would find
6712 that equivalent. */
6713 || INSN_UID (p) < reload_first_uid))
6715 rtx tem;
6716 pat = single_set (p);
6718 /* First check for something that sets some reg equal to GOAL. */
6719 if (pat != 0
6720 && ((regno >= 0
6721 && true_regnum (SET_SRC (pat)) == regno
6722 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6724 (regno >= 0
6725 && true_regnum (SET_DEST (pat)) == regno
6726 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6728 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6729 /* When looking for stack pointer + const,
6730 make sure we don't use a stack adjust. */
6731 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6732 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6733 || (goal_mem
6734 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6735 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6736 || (goal_mem
6737 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6738 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6739 /* If we are looking for a constant,
6740 and something equivalent to that constant was copied
6741 into a reg, we can use that reg. */
6742 || (goal_const && REG_NOTES (p) != 0
6743 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6744 && ((rtx_equal_p (XEXP (tem, 0), goal)
6745 && (valueno
6746 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6747 || (REG_P (SET_DEST (pat))
6748 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6749 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6750 && GET_CODE (goal) == CONST_INT
6751 && 0 != (goaltry
6752 = operand_subword (XEXP (tem, 0), 0, 0,
6753 VOIDmode))
6754 && rtx_equal_p (goal, goaltry)
6755 && (valtry
6756 = operand_subword (SET_DEST (pat), 0, 0,
6757 VOIDmode))
6758 && (valueno = true_regnum (valtry)) >= 0)))
6759 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6760 NULL_RTX))
6761 && REG_P (SET_DEST (pat))
6762 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6763 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6764 && GET_CODE (goal) == CONST_INT
6765 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6766 VOIDmode))
6767 && rtx_equal_p (goal, goaltry)
6768 && (valtry
6769 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6770 && (valueno = true_regnum (valtry)) >= 0)))
6772 if (other >= 0)
6774 if (valueno != other)
6775 continue;
6777 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6778 continue;
6779 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6780 mode, valueno))
6781 continue;
6782 value = valtry;
6783 where = p;
6784 break;
6789 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6790 (or copying VALUE into GOAL, if GOAL is also a register).
6791 Now verify that VALUE is really valid. */
6793 /* VALUENO is the register number of VALUE; a hard register. */
6795 /* Don't try to re-use something that is killed in this insn. We want
6796 to be able to trust REG_UNUSED notes. */
6797 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6798 return 0;
6800 /* If we propose to get the value from the stack pointer or if GOAL is
6801 a MEM based on the stack pointer, we need a stable SP. */
6802 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6803 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6804 goal)))
6805 need_stable_sp = 1;
6807 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6808 if (GET_MODE (value) != mode)
6809 return 0;
6811 /* Reject VALUE if it was loaded from GOAL
6812 and is also a register that appears in the address of GOAL. */
6814 if (goal_mem && value == SET_DEST (single_set (where))
6815 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6816 goal, (rtx*) 0))
6817 return 0;
6819 /* Reject registers that overlap GOAL. */
6821 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6822 nregs = hard_regno_nregs[regno][mode];
6823 else
6824 nregs = 1;
6825 valuenregs = hard_regno_nregs[valueno][mode];
6827 if (!goal_mem && !goal_const
6828 && regno + nregs > valueno && regno < valueno + valuenregs)
6829 return 0;
6831 /* Reject VALUE if it is one of the regs reserved for reloads.
6832 Reload1 knows how to reuse them anyway, and it would get
6833 confused if we allocated one without its knowledge.
6834 (Now that insns introduced by reload are ignored above,
6835 this case shouldn't happen, but I'm not positive.) */
6837 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6839 int i;
6840 for (i = 0; i < valuenregs; ++i)
6841 if (reload_reg_p[valueno + i] >= 0)
6842 return 0;
6845 /* Reject VALUE if it is a register being used for an input reload
6846 even if it is not one of those reserved. */
6848 if (reload_reg_p != 0)
6850 int i;
6851 for (i = 0; i < n_reloads; i++)
6852 if (rld[i].reg_rtx != 0 && rld[i].in)
6854 int regno1 = REGNO (rld[i].reg_rtx);
6855 int nregs1 = hard_regno_nregs[regno1]
6856 [GET_MODE (rld[i].reg_rtx)];
6857 if (regno1 < valueno + valuenregs
6858 && regno1 + nregs1 > valueno)
6859 return 0;
6863 if (goal_mem)
6864 /* We must treat frame pointer as varying here,
6865 since it can vary--in a nonlocal goto as generated by expand_goto. */
6866 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6868 /* Now verify that the values of GOAL and VALUE remain unaltered
6869 until INSN is reached. */
6871 p = insn;
6872 while (1)
6874 p = PREV_INSN (p);
6875 if (p == where)
6876 return value;
6878 /* Don't trust the conversion past a function call
6879 if either of the two is in a call-clobbered register, or memory. */
6880 if (CALL_P (p))
6882 int i;
6884 if (goal_mem || need_stable_sp)
6885 return 0;
6887 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6888 for (i = 0; i < nregs; ++i)
6889 if (call_used_regs[regno + i]
6890 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6891 return 0;
6893 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6894 for (i = 0; i < valuenregs; ++i)
6895 if (call_used_regs[valueno + i]
6896 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6897 return 0;
6900 if (INSN_P (p))
6902 pat = PATTERN (p);
6904 /* Watch out for unspec_volatile, and volatile asms. */
6905 if (volatile_insn_p (pat))
6906 return 0;
6908 /* If this insn P stores in either GOAL or VALUE, return 0.
6909 If GOAL is a memory ref and this insn writes memory, return 0.
6910 If GOAL is a memory ref and its address is not constant,
6911 and this insn P changes a register used in GOAL, return 0. */
6913 if (GET_CODE (pat) == COND_EXEC)
6914 pat = COND_EXEC_CODE (pat);
6915 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6917 rtx dest = SET_DEST (pat);
6918 while (GET_CODE (dest) == SUBREG
6919 || GET_CODE (dest) == ZERO_EXTRACT
6920 || GET_CODE (dest) == STRICT_LOW_PART)
6921 dest = XEXP (dest, 0);
6922 if (REG_P (dest))
6924 int xregno = REGNO (dest);
6925 int xnregs;
6926 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6927 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6928 else
6929 xnregs = 1;
6930 if (xregno < regno + nregs && xregno + xnregs > regno)
6931 return 0;
6932 if (xregno < valueno + valuenregs
6933 && xregno + xnregs > valueno)
6934 return 0;
6935 if (goal_mem_addr_varies
6936 && reg_overlap_mentioned_for_reload_p (dest, goal))
6937 return 0;
6938 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6939 return 0;
6941 else if (goal_mem && MEM_P (dest)
6942 && ! push_operand (dest, GET_MODE (dest)))
6943 return 0;
6944 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6945 && reg_equiv_memory_loc[regno] != 0)
6946 return 0;
6947 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6948 return 0;
6950 else if (GET_CODE (pat) == PARALLEL)
6952 int i;
6953 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6955 rtx v1 = XVECEXP (pat, 0, i);
6956 if (GET_CODE (v1) == COND_EXEC)
6957 v1 = COND_EXEC_CODE (v1);
6958 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6960 rtx dest = SET_DEST (v1);
6961 while (GET_CODE (dest) == SUBREG
6962 || GET_CODE (dest) == ZERO_EXTRACT
6963 || GET_CODE (dest) == STRICT_LOW_PART)
6964 dest = XEXP (dest, 0);
6965 if (REG_P (dest))
6967 int xregno = REGNO (dest);
6968 int xnregs;
6969 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6970 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6971 else
6972 xnregs = 1;
6973 if (xregno < regno + nregs
6974 && xregno + xnregs > regno)
6975 return 0;
6976 if (xregno < valueno + valuenregs
6977 && xregno + xnregs > valueno)
6978 return 0;
6979 if (goal_mem_addr_varies
6980 && reg_overlap_mentioned_for_reload_p (dest,
6981 goal))
6982 return 0;
6983 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6984 return 0;
6986 else if (goal_mem && MEM_P (dest)
6987 && ! push_operand (dest, GET_MODE (dest)))
6988 return 0;
6989 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6990 && reg_equiv_memory_loc[regno] != 0)
6991 return 0;
6992 else if (need_stable_sp
6993 && push_operand (dest, GET_MODE (dest)))
6994 return 0;
6999 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7001 rtx link;
7003 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7004 link = XEXP (link, 1))
7006 pat = XEXP (link, 0);
7007 if (GET_CODE (pat) == CLOBBER)
7009 rtx dest = SET_DEST (pat);
7011 if (REG_P (dest))
7013 int xregno = REGNO (dest);
7014 int xnregs
7015 = hard_regno_nregs[xregno][GET_MODE (dest)];
7017 if (xregno < regno + nregs
7018 && xregno + xnregs > regno)
7019 return 0;
7020 else if (xregno < valueno + valuenregs
7021 && xregno + xnregs > valueno)
7022 return 0;
7023 else if (goal_mem_addr_varies
7024 && reg_overlap_mentioned_for_reload_p (dest,
7025 goal))
7026 return 0;
7029 else if (goal_mem && MEM_P (dest)
7030 && ! push_operand (dest, GET_MODE (dest)))
7031 return 0;
7032 else if (need_stable_sp
7033 && push_operand (dest, GET_MODE (dest)))
7034 return 0;
7039 #ifdef AUTO_INC_DEC
7040 /* If this insn auto-increments or auto-decrements
7041 either regno or valueno, return 0 now.
7042 If GOAL is a memory ref and its address is not constant,
7043 and this insn P increments a register used in GOAL, return 0. */
7045 rtx link;
7047 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7048 if (REG_NOTE_KIND (link) == REG_INC
7049 && REG_P (XEXP (link, 0)))
7051 int incno = REGNO (XEXP (link, 0));
7052 if (incno < regno + nregs && incno >= regno)
7053 return 0;
7054 if (incno < valueno + valuenregs && incno >= valueno)
7055 return 0;
7056 if (goal_mem_addr_varies
7057 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7058 goal))
7059 return 0;
7062 #endif
7067 /* Find a place where INCED appears in an increment or decrement operator
7068 within X, and return the amount INCED is incremented or decremented by.
7069 The value is always positive. */
7071 static int
7072 find_inc_amount (rtx x, rtx inced)
7074 enum rtx_code code = GET_CODE (x);
7075 const char *fmt;
7076 int i;
7078 if (code == MEM)
7080 rtx addr = XEXP (x, 0);
7081 if ((GET_CODE (addr) == PRE_DEC
7082 || GET_CODE (addr) == POST_DEC
7083 || GET_CODE (addr) == PRE_INC
7084 || GET_CODE (addr) == POST_INC)
7085 && XEXP (addr, 0) == inced)
7086 return GET_MODE_SIZE (GET_MODE (x));
7087 else if ((GET_CODE (addr) == PRE_MODIFY
7088 || GET_CODE (addr) == POST_MODIFY)
7089 && GET_CODE (XEXP (addr, 1)) == PLUS
7090 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7091 && XEXP (addr, 0) == inced
7092 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7094 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7095 return i < 0 ? -i : i;
7099 fmt = GET_RTX_FORMAT (code);
7100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7102 if (fmt[i] == 'e')
7104 int tem = find_inc_amount (XEXP (x, i), inced);
7105 if (tem != 0)
7106 return tem;
7108 if (fmt[i] == 'E')
7110 int j;
7111 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7113 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7114 if (tem != 0)
7115 return tem;
7120 return 0;
7123 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7124 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7126 #ifdef AUTO_INC_DEC
7127 static int
7128 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7129 rtx insn)
7131 rtx link;
7133 gcc_assert (insn);
7135 if (! INSN_P (insn))
7136 return 0;
7138 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7139 if (REG_NOTE_KIND (link) == REG_INC)
7141 unsigned int test = (int) REGNO (XEXP (link, 0));
7142 if (test >= regno && test < endregno)
7143 return 1;
7145 return 0;
7147 #else
7149 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7151 #endif
7153 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7154 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7155 REG_INC. REGNO must refer to a hard register. */
7158 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7159 int sets)
7161 unsigned int nregs, endregno;
7163 /* regno must be a hard register. */
7164 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7166 nregs = hard_regno_nregs[regno][mode];
7167 endregno = regno + nregs;
7169 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7170 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7171 && REG_P (XEXP (PATTERN (insn), 0)))
7173 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7175 return test >= regno && test < endregno;
7178 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7179 return 1;
7181 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7183 int i = XVECLEN (PATTERN (insn), 0) - 1;
7185 for (; i >= 0; i--)
7187 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7188 if ((GET_CODE (elt) == CLOBBER
7189 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7190 && REG_P (XEXP (elt, 0)))
7192 unsigned int test = REGNO (XEXP (elt, 0));
7194 if (test >= regno && test < endregno)
7195 return 1;
7197 if (sets == 2
7198 && reg_inc_found_and_valid_p (regno, endregno, elt))
7199 return 1;
7203 return 0;
7206 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7208 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7210 int regno;
7212 if (GET_MODE (reloadreg) == mode)
7213 return reloadreg;
7215 regno = REGNO (reloadreg);
7217 if (WORDS_BIG_ENDIAN)
7218 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7219 - (int) hard_regno_nregs[regno][mode];
7221 return gen_rtx_REG (mode, regno);
7224 static const char *const reload_when_needed_name[] =
7226 "RELOAD_FOR_INPUT",
7227 "RELOAD_FOR_OUTPUT",
7228 "RELOAD_FOR_INSN",
7229 "RELOAD_FOR_INPUT_ADDRESS",
7230 "RELOAD_FOR_INPADDR_ADDRESS",
7231 "RELOAD_FOR_OUTPUT_ADDRESS",
7232 "RELOAD_FOR_OUTADDR_ADDRESS",
7233 "RELOAD_FOR_OPERAND_ADDRESS",
7234 "RELOAD_FOR_OPADDR_ADDR",
7235 "RELOAD_OTHER",
7236 "RELOAD_FOR_OTHER_ADDRESS"
7239 /* These functions are used to print the variables set by 'find_reloads' */
7241 void
7242 debug_reload_to_stream (FILE *f)
7244 int r;
7245 const char *prefix;
7247 if (! f)
7248 f = stderr;
7249 for (r = 0; r < n_reloads; r++)
7251 fprintf (f, "Reload %d: ", r);
7253 if (rld[r].in != 0)
7255 fprintf (f, "reload_in (%s) = ",
7256 GET_MODE_NAME (rld[r].inmode));
7257 print_inline_rtx (f, rld[r].in, 24);
7258 fprintf (f, "\n\t");
7261 if (rld[r].out != 0)
7263 fprintf (f, "reload_out (%s) = ",
7264 GET_MODE_NAME (rld[r].outmode));
7265 print_inline_rtx (f, rld[r].out, 24);
7266 fprintf (f, "\n\t");
7269 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7271 fprintf (f, "%s (opnum = %d)",
7272 reload_when_needed_name[(int) rld[r].when_needed],
7273 rld[r].opnum);
7275 if (rld[r].optional)
7276 fprintf (f, ", optional");
7278 if (rld[r].nongroup)
7279 fprintf (f, ", nongroup");
7281 if (rld[r].inc != 0)
7282 fprintf (f, ", inc by %d", rld[r].inc);
7284 if (rld[r].nocombine)
7285 fprintf (f, ", can't combine");
7287 if (rld[r].secondary_p)
7288 fprintf (f, ", secondary_reload_p");
7290 if (rld[r].in_reg != 0)
7292 fprintf (f, "\n\treload_in_reg: ");
7293 print_inline_rtx (f, rld[r].in_reg, 24);
7296 if (rld[r].out_reg != 0)
7298 fprintf (f, "\n\treload_out_reg: ");
7299 print_inline_rtx (f, rld[r].out_reg, 24);
7302 if (rld[r].reg_rtx != 0)
7304 fprintf (f, "\n\treload_reg_rtx: ");
7305 print_inline_rtx (f, rld[r].reg_rtx, 24);
7308 prefix = "\n\t";
7309 if (rld[r].secondary_in_reload != -1)
7311 fprintf (f, "%ssecondary_in_reload = %d",
7312 prefix, rld[r].secondary_in_reload);
7313 prefix = ", ";
7316 if (rld[r].secondary_out_reload != -1)
7317 fprintf (f, "%ssecondary_out_reload = %d\n",
7318 prefix, rld[r].secondary_out_reload);
7320 prefix = "\n\t";
7321 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7323 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7324 insn_data[rld[r].secondary_in_icode].name);
7325 prefix = ", ";
7328 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7329 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7330 insn_data[rld[r].secondary_out_icode].name);
7332 fprintf (f, "\n");
7336 void
7337 debug_reload (void)
7339 debug_reload_to_stream (stderr);