Merge from trunk @ 138209
[official-gcc.git] / gcc / ipa-struct-reorg.c
blobd6bca8ab7224ef8fe2c2a7e327784d5ac12ead3e
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "gimple.h"
32 #include "tree-inline.h"
33 #include "tree-flow.h"
34 #include "tree-flow-inline.h"
35 #include "langhooks.h"
36 #include "pointer-set.h"
37 #include "hashtab.h"
38 #include "c-tree.h"
39 #include "toplev.h"
40 #include "flags.h"
41 #include "debug.h"
42 #include "target.h"
43 #include "cgraph.h"
44 #include "diagnostic.h"
45 #include "timevar.h"
46 #include "params.h"
47 #include "fibheap.h"
48 #include "intl.h"
49 #include "function.h"
50 #include "basic-block.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "ipa-struct-reorg.h"
54 #include "opts.h"
55 #include "ipa-type-escape.h"
56 #include "tree-dump.h"
57 #include "c-common.h"
58 #include "gimple.h"
60 /* This optimization implements structure peeling.
62 For example, given a structure type:
63 typedef struct
65 int a;
66 float b;
67 int c;
68 }str_t;
70 it can be peeled into two structure types as follows:
72 typedef struct and typedef struct
73 { {
74 int a; float b;
75 int c; } str_t_1;
76 }str_t_0;
78 or can be fully peeled:
80 typedef struct
82 int a;
83 }str_t_0;
85 typedef struct
87 float b;
88 }str_t_1;
90 typedef struct
92 int c;
93 }str_t_2;
95 When structure type is peeled all instances and their accesses
96 in the program are updated accordingly. For example, if there is
97 array of structures:
99 str_t A[N];
101 and structure type str_t was peeled into two structures str_t_0
102 and str_t_1 as it was shown above, then array A will be replaced
103 by two arrays as follows:
105 str_t_0 A_0[N];
106 str_t_1 A_1[N];
108 The field access of field a of element i of array A: A[i].a will be
109 replaced by an access to field a of element i of array A_0: A_0[i].a.
111 This optimization also supports dynamically allocated arrays.
112 If array of structures was allocated by malloc function:
114 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
116 the allocation site will be replaced to reflect new structure types:
118 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
119 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
121 The field access through the pointer p[i].a will be changed by p_0[i].a.
123 The goal of structure peeling is to improve spatial locality.
124 For example, if one of the fields of a structure is accessed frequently
125 in the loop:
127 for (i = 0; i < N; i++)
129 ... = A[i].a;
132 the allocation of field a of str_t contiguously in memory will
133 increase the chances of fetching the field from cache.
135 The analysis part of this optimization is based on the frequency of
136 field accesses, which are collected all over the program.
137 Then the fields with the frequencies that satisfy the following condition
138 get peeled out of the structure:
140 freq(f) > C * max_field_freq_in_struct
142 where max_field_freq_in_struct is the maximum field frequency
143 in the structure. C is a constant defining which portion of
144 max_field_freq_in_struct the fields should have in order to be peeled.
146 If profiling information is provided, it is used to calculate the
147 frequency of field accesses. Otherwise, the structure is fully peeled.
149 IPA type-escape analysis is used to determine when it is safe
150 to peel a structure.
152 The optimization is activated by flag -fipa-struct-reorg. */
154 /* New variables created by this optimization.
155 When doing struct peeling, each variable of
156 the original struct type will be replaced by
157 the set of new variables corresponding to
158 the new structure types. */
159 struct new_var_data {
160 /* VAR_DECL for original struct type. */
161 tree orig_var;
162 /* Vector of new variables. */
163 VEC(tree, heap) *new_vars;
166 typedef struct new_var_data *new_var;
167 typedef const struct new_var_data *const_new_var;
169 /* This structure represents allocation site of the structure. */
170 typedef struct alloc_site
172 gimple stmt;
173 d_str str;
174 } alloc_site_t;
176 DEF_VEC_O (alloc_site_t);
177 DEF_VEC_ALLOC_O (alloc_site_t, heap);
179 /* Allocation sites that belong to the same function. */
180 struct func_alloc_sites
182 tree func;
183 /* Vector of allocation sites for function. */
184 VEC (alloc_site_t, heap) *allocs;
187 typedef struct func_alloc_sites *fallocs_t;
188 typedef const struct func_alloc_sites *const_fallocs_t;
190 /* All allocation sites in the program. */
191 htab_t alloc_sites = NULL;
193 /* New global variables. Generated once for whole program. */
194 htab_t new_global_vars;
196 /* New local variables. Generated per-function. */
197 htab_t new_local_vars;
199 /* Vector of structures to be transformed. */
200 typedef struct data_structure structure;
201 DEF_VEC_O (structure);
202 DEF_VEC_ALLOC_O (structure, heap);
203 VEC (structure, heap) *structures;
205 /* Forward declarations. */
206 static bool is_equal_types (tree, tree);
208 /* Strip structure TYPE from pointers and arrays. */
210 static inline tree
211 strip_type (tree type)
213 gcc_assert (TYPE_P (type));
215 while (POINTER_TYPE_P (type)
216 || TREE_CODE (type) == ARRAY_TYPE)
217 type = TREE_TYPE (type);
219 return type;
222 /* This function returns type of VAR. */
224 static inline tree
225 get_type_of_var (tree var)
227 if (!var)
228 return NULL;
230 if (TREE_CODE (var) == PARM_DECL)
231 return DECL_ARG_TYPE (var);
232 else
233 return TREE_TYPE (var);
236 /* Set of actions we do for each newly generated STMT. */
238 static inline void
239 finalize_stmt (gimple stmt)
241 update_stmt (stmt);
242 mark_symbols_for_renaming (stmt);
245 /* This function finalizes STMT and appends it to the list STMTS. */
247 static inline void
248 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
250 gimple_seq_add_stmt (stmts, stmt);
251 finalize_stmt (stmt);
254 /* Given structure type SRT_TYPE and field FIELD,
255 this function is looking for a field with the same name
256 and type as FIELD in STR_TYPE. It returns it if found,
257 or NULL_TREE otherwise. */
259 static tree
260 find_field_in_struct_1 (tree str_type, tree field)
262 tree str_field;
264 for (str_field = TYPE_FIELDS (str_type); str_field;
265 str_field = TREE_CHAIN (str_field))
267 const char * str_field_name;
268 const char * field_name;
270 str_field_name = IDENTIFIER_POINTER (DECL_NAME (str_field));
271 field_name = IDENTIFIER_POINTER (DECL_NAME (field));
273 gcc_assert (str_field_name);
274 gcc_assert (field_name);
276 if (!strcmp (str_field_name, field_name))
278 /* Check field types. */
279 if (is_equal_types (TREE_TYPE (str_field), TREE_TYPE (field)))
280 return str_field;
284 return NULL_TREE;
287 /* Given a field declaration FIELD_DECL, this function
288 returns corresponding field entry in structure STR. */
290 static struct field_entry *
291 find_field_in_struct (d_str str, tree field_decl)
293 int i;
295 tree field = find_field_in_struct_1 (str->decl, field_decl);
297 for (i = 0; i < str->num_fields; i++)
298 if (str->fields[i].decl == field)
299 return &(str->fields[i]);
301 return NULL;
304 /* This function checks whether ARG is a result of multiplication
305 of some number by STRUCT_SIZE. If yes, the function returns true
306 and this number is filled into NUM. */
308 static bool
309 is_result_of_mult (tree arg, tree *num, tree struct_size)
311 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
313 /* If the allocation statement was of the form
314 D.2229_10 = <alloc_func> (D.2228_9);
315 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
317 if (size_def_stmt && is_gimple_assign (size_def_stmt))
319 tree lhs = gimple_assign_lhs (size_def_stmt);
321 /* We expect temporary here. */
322 if (!is_gimple_reg (lhs))
323 return false;
325 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
327 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
328 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
330 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
332 *num = arg1;
333 return true;
336 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
338 *num = arg0;
339 return true;
344 *num = NULL_TREE;
345 return false;
349 /* This function returns true if access ACC corresponds to the pattern
350 generated by compiler when an address of element i of an array
351 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
352 pattern is recognized correctly, this function returns true
353 and fills missing fields in ACC. Otherwise it returns false. */
355 static bool
356 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
358 tree ref_var;
359 tree struct_size, op0, op1;
360 tree before_cast;
361 enum tree_code rhs_code;
363 ref_var = TREE_OPERAND (acc->ref, 0);
365 if (TREE_CODE (ref_var) != SSA_NAME)
366 return false;
368 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
369 if (!(acc->ref_def_stmt)
370 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
371 return false;
373 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
375 if (rhs_code != PLUS_EXPR
376 && rhs_code != MINUS_EXPR
377 && rhs_code != POINTER_PLUS_EXPR)
378 return false;
380 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
381 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
383 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
384 &acc->base, &acc->offset,
385 &acc->cast_stmt))
386 return false;
388 if (acc->cast_stmt)
389 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
390 else
391 before_cast = acc->offset;
393 if (!before_cast)
394 return false;
397 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
398 return false;
400 struct_size = TYPE_SIZE_UNIT (str_decl);
402 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
403 return false;
405 return true;
409 /* This function checks whether the access ACC of structure type STR
410 is of the form suitable for transformation. If yes, it returns true.
411 False otherwise. */
413 static bool
414 decompose_access (tree str_decl, struct field_access_site *acc)
416 gcc_assert (acc->ref);
418 if (TREE_CODE (acc->ref) == INDIRECT_REF)
419 return decompose_indirect_ref_acc (str_decl, acc);
420 else if (TREE_CODE (acc->ref) == ARRAY_REF)
421 return true;
422 else if (TREE_CODE (acc->ref) == VAR_DECL)
423 return true;
425 return false;
428 /* This function creates empty field_access_site node. */
430 static inline struct field_access_site *
431 make_field_acc_node (void)
433 int size = sizeof (struct field_access_site);
435 return (struct field_access_site *) xcalloc (1, size);
438 /* This function returns the structure field access, defined by STMT,
439 if it is already in hashtable of function accesses F_ACCS. */
441 static struct field_access_site *
442 is_in_field_accs (gimple stmt, htab_t f_accs)
444 return (struct field_access_site *)
445 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
448 /* This function adds an access ACC to the hashtable
449 F_ACCS of field accesses. */
451 static void
452 add_field_acc_to_acc_sites (struct field_access_site *acc,
453 htab_t f_accs)
455 void **slot;
457 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
458 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
459 htab_hash_pointer (acc->stmt),
460 INSERT);
461 *slot = acc;
464 /* This function adds the VAR to vector of variables of
465 an access site defined by statement STMT. If access entry
466 with statement STMT does not exist in hashtable of
467 accesses ACCS, this function creates it. */
469 static void
470 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
472 struct access_site *acc;
474 acc = (struct access_site *)
475 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
477 if (!acc)
479 void **slot;
481 acc = (struct access_site *) xmalloc (sizeof (struct access_site));
482 acc->stmt = stmt;
483 acc->vars = VEC_alloc (tree, heap, 10);
484 slot = htab_find_slot_with_hash (accs, stmt,
485 htab_hash_pointer (stmt), INSERT);
486 *slot = acc;
489 VEC_safe_push (tree, heap, acc->vars, var);
492 /* This function adds NEW_DECL to function
493 referenced vars, and marks it for renaming. */
495 static void
496 finalize_var_creation (tree new_decl)
498 add_referenced_var (new_decl);
499 if (is_global_var (new_decl))
500 mark_call_clobbered (new_decl, ESCAPE_UNKNOWN);
501 mark_sym_for_renaming (new_decl);
504 /* This function finalizes VAR creation if it is a global VAR_DECL. */
506 static void
507 finalize_global_creation (tree var)
509 if (TREE_CODE (var) == VAR_DECL
510 && is_global_var (var))
511 finalize_var_creation (var);
514 /* This function inserts NEW_DECL to varpool. */
516 static inline void
517 insert_global_to_varpool (tree new_decl)
519 struct varpool_node *new_node;
521 new_node = varpool_node (new_decl);
522 notice_global_symbol (new_decl);
523 varpool_mark_needed_node (new_node);
524 varpool_finalize_decl (new_decl);
527 /* This function finalizes the creation of new variables,
528 defined by *SLOT->new_vars. */
530 static int
531 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
533 new_var n_var = *(new_var *) slot;
534 unsigned i;
535 tree var;
537 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
538 finalize_var_creation (var);
539 return 1;
542 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
543 It returns it, if found, and NULL_TREE otherwise. */
545 static tree
546 find_var_in_new_vars_vec (new_var var, tree new_type)
548 tree n_var;
549 unsigned i;
551 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
553 tree type = strip_type(get_type_of_var (n_var));
554 gcc_assert (type);
556 if (type == new_type)
557 return n_var;
560 return NULL_TREE;
563 /* This function returns new_var node, the orig_var of which is DECL.
564 It looks for new_var's in NEW_VARS_HTAB. If not found,
565 the function returns NULL. */
567 static new_var
568 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
570 return (new_var) htab_find_with_hash (new_vars_htab, decl,
571 htab_hash_pointer (decl));
574 /* Given original variable ORIG_VAR, this function returns
575 new variable corresponding to it of NEW_TYPE type. */
577 static tree
578 find_new_var_of_type (tree orig_var, tree new_type)
580 new_var var;
581 gcc_assert (orig_var && new_type);
583 if (TREE_CODE (orig_var) == SSA_NAME)
584 orig_var = SSA_NAME_VAR (orig_var);
586 var = is_in_new_vars_htab (orig_var, new_global_vars);
587 if (!var)
588 var = is_in_new_vars_htab (orig_var, new_local_vars);
589 gcc_assert (var);
590 return find_var_in_new_vars_vec (var, new_type);
593 /* This function generates stmt:
594 res = NUM * sizeof(TYPE) and returns it.
595 res is filled into RES. */
597 static gimple
598 gen_size (tree num, tree type, tree *res)
600 tree struct_size = TYPE_SIZE_UNIT (type);
601 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
602 gimple new_stmt;
604 *res = create_tmp_var (TREE_TYPE (num), NULL);
606 if (*res)
607 add_referenced_var (*res);
609 if (exact_log2 (struct_size_int) == -1)
611 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
612 new_stmt = gimple_build_assign_with_ops (MULT_EXPR, *res, num, size);
614 else
616 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
618 new_stmt = gimple_build_assign_with_ops (LSHIFT_EXPR, *res, num, C);
621 finalize_stmt (new_stmt);
622 return new_stmt;
625 /* This function generates and returns a statement, that cast variable
626 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
627 into RES_P. ORIG_CAST_STMT is the original cast statement. */
629 static gimple
630 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
631 tree *res_p)
633 tree lhs, new_lhs;
634 gimple new_stmt;
636 lhs = gimple_assign_lhs (orig_cast_stmt);
637 new_lhs = find_new_var_of_type (lhs, new_type);
638 gcc_assert (new_lhs);
640 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
641 finalize_stmt (new_stmt);
642 *res_p = new_lhs;
643 return new_stmt;
646 /* This function builds an edge between BB and E->dest and updates
647 phi nodes of E->dest. It returns newly created edge. */
649 static edge
650 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
652 edge new_e;
653 tree arg;
654 gimple_stmt_iterator si;
656 new_e = make_edge (bb, e->dest, e->flags);
658 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
660 gimple phi = gsi_stmt (si);
661 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
662 add_phi_arg (phi, arg, new_e);
665 return new_e;
668 /* This function inserts NEW_STMT before STMT. */
670 static void
671 insert_before_stmt (gimple stmt, gimple new_stmt)
673 gimple_stmt_iterator bsi;
675 if (!stmt || !new_stmt)
676 return;
678 bsi = gsi_for_stmt (stmt);
679 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
682 /* Insert NEW_STMTS after STMT. */
684 static void
685 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
687 gimple_stmt_iterator bsi;
689 if (!stmt || !new_stmts)
690 return;
692 bsi = gsi_for_stmt (stmt);
693 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
696 /* Insert NEW_STMT after STMT. */
698 static void
699 insert_after_stmt (gimple stmt, gimple new_stmt)
701 gimple_stmt_iterator bsi;
703 if (!stmt || !new_stmt)
704 return;
706 bsi = gsi_for_stmt (stmt);
707 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
710 /* This function returns vector of allocation sites
711 that appear in function FN_DECL. */
713 static fallocs_t
714 get_fallocs (tree fn_decl)
716 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
717 htab_hash_pointer (fn_decl));
720 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
721 and it is a part of allocation of a structure,
722 then it is usually followed by a cast stmt
723 p_8 = (struct str_t *) D.2225_7;
724 which is returned by this function. */
726 static gimple
727 get_final_alloc_stmt (gimple alloc_stmt)
729 gimple final_stmt;
730 use_operand_p use_p;
731 tree alloc_res;
733 if (!alloc_stmt)
734 return NULL;
736 if (!is_gimple_call (alloc_stmt))
737 return NULL;
739 alloc_res = gimple_get_lhs (alloc_stmt);
741 if (TREE_CODE (alloc_res) != SSA_NAME)
742 return NULL;
744 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
745 return NULL;
746 else
747 return final_stmt;
750 /* This function returns true if STMT is one of allocation
751 sites of function FN_DECL. It returns false otherwise. */
753 static bool
754 is_part_of_malloc (gimple stmt, tree fn_decl)
756 fallocs_t fallocs = get_fallocs (fn_decl);
758 if (fallocs)
760 alloc_site_t *call;
761 unsigned i;
763 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
764 if (call->stmt == stmt
765 || get_final_alloc_stmt (call->stmt) == stmt)
766 return true;
768 return false;
771 /* Auxiliary structure for a lookup over field accesses. */
772 struct find_stmt_data
774 bool found;
775 gimple stmt;
778 /* This function looks for DATA->stmt among
779 the statements involved in the field access,
780 defined by SLOT. It stops when it's found. */
782 static int
783 find_in_field_accs (void **slot, void *data)
785 struct field_access_site *f_acc = *(struct field_access_site **) slot;
786 gimple stmt = ((struct find_stmt_data *)data)->stmt;
788 if (f_acc->stmt == stmt
789 || f_acc->ref_def_stmt == stmt
790 || f_acc->cast_stmt == stmt)
792 ((struct find_stmt_data *)data)->found = true;
793 return 0;
795 else
796 return 1;
799 /* This function checks whether STMT is part of field
800 accesses of structure STR. It returns true, if found,
801 and false otherwise. */
803 static bool
804 is_part_of_field_access (gimple stmt, d_str str)
806 int i;
808 for (i = 0; i < str->num_fields; i++)
810 struct find_stmt_data data;
811 data.found = false;
812 data.stmt = stmt;
814 if (str->fields[i].acc_sites)
815 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
817 if (data.found)
818 return true;
821 return false;
824 /* Auxiliary data for exclude_from_accs function. */
826 struct exclude_data
828 tree fn_decl;
829 d_str str;
832 /* This function returns component_ref with the BASE and
833 field named FIELD_ID from structure TYPE. */
835 static inline tree
836 build_comp_ref (tree base, tree field_id, tree type)
838 tree field;
839 bool found = false;
842 /* Find field of structure type with the same name as field_id. */
843 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
845 if (DECL_NAME (field) == field_id)
847 found = true;
848 break;
852 gcc_assert (found);
854 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
858 /* This struct represent data used for walk_tree
859 called from function find_pos_in_stmt.
860 - ref is a tree to be found,
861 - and pos is a pointer that points to ref in stmt. */
862 struct ref_pos
864 tree *pos;
865 tree ref;
869 /* This is a callback function for walk_tree, called from
870 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
871 When *TP is equal to DATA->ref, the walk_tree stops,
872 and found position, equal to TP, is assigned to DATA->pos. */
874 static tree
875 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
877 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
878 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
879 tree ref = r_pos->ref;
880 tree t = *tp;
882 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
884 r_pos->pos = tp;
885 return t;
888 *walk_subtrees = 1;
889 return NULL_TREE;
893 /* This function looks for the pointer of REF in STMT,
894 It returns it, if found, and NULL otherwise. */
896 static tree *
897 find_pos_in_stmt (gimple stmt, tree ref)
899 struct ref_pos r_pos;
900 struct walk_stmt_info wi;
902 r_pos.ref = ref;
903 r_pos.pos = NULL;
904 memset (&wi, 0, sizeof (wi));
905 wi.info = &r_pos;
906 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
908 return r_pos.pos;
911 /* This structure is used to represent array
912 or pointer-to wrappers of structure type.
913 For example, if type1 is structure type,
914 then for type1 ** we generate two type_wrapper
915 structures with wrap = 0 each one.
916 It's used to unwind the original type up to
917 structure type, replace it with the new structure type
918 and wrap it back in the opposite order. */
920 typedef struct type_wrapper
922 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
923 bool wrap;
925 /* Relevant for arrays as domain or index. */
926 tree domain;
927 }type_wrapper_t;
929 DEF_VEC_O (type_wrapper_t);
930 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
932 /* This function replace field access ACC by the new
933 field access of structure type NEW_TYPE. */
935 static void
936 replace_field_acc (struct field_access_site *acc, tree new_type)
938 tree ref_var = acc->ref;
939 tree new_ref;
940 tree lhs, rhs;
941 tree *pos;
942 tree new_acc;
943 tree field_id = DECL_NAME (acc->field_decl);
944 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
945 type_wrapper_t *wr_p = NULL;
947 while (TREE_CODE (ref_var) == INDIRECT_REF
948 || TREE_CODE (ref_var) == ARRAY_REF)
950 type_wrapper_t wr;
952 if ( TREE_CODE (ref_var) == INDIRECT_REF)
954 wr.wrap = 0;
955 wr.domain = 0;
957 else
959 wr.wrap = 1;
960 wr.domain = TREE_OPERAND (ref_var, 1);
963 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
964 ref_var = TREE_OPERAND (ref_var, 0);
967 new_ref = find_new_var_of_type (ref_var, new_type);
968 finalize_global_creation (new_ref);
970 while (VEC_length (type_wrapper_t, wrapper) != 0)
972 tree type = TREE_TYPE (TREE_TYPE (new_ref));
974 wr_p = VEC_last (type_wrapper_t, wrapper);
975 if (wr_p->wrap) /* Array. */
976 new_ref = build4 (ARRAY_REF, type, new_ref,
977 wr_p->domain, NULL_TREE, NULL_TREE);
978 else /* Pointer. */
979 new_ref = build1 (INDIRECT_REF, type, new_ref);
980 VEC_pop (type_wrapper_t, wrapper);
983 new_acc = build_comp_ref (new_ref, field_id, new_type);
984 VEC_free (type_wrapper_t, heap, wrapper);
986 if (is_gimple_assign (acc->stmt))
988 lhs = gimple_assign_lhs (acc->stmt);
989 rhs = gimple_assign_rhs1 (acc->stmt);
991 if (lhs == acc->comp_ref)
992 gimple_assign_set_lhs (acc->stmt, new_acc);
993 else if (rhs == acc->comp_ref)
994 gimple_assign_set_rhs1 (acc->stmt, new_acc);
995 else
997 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
998 gcc_assert (pos);
999 *pos = new_acc;
1002 else
1004 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
1005 gcc_assert (pos);
1006 *pos = new_acc;
1009 finalize_stmt (acc->stmt);
1012 /* This function replace field access ACC by a new field access
1013 of structure type NEW_TYPE. */
1015 static void
1016 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1019 if (TREE_CODE (acc->ref) == INDIRECT_REF
1020 ||TREE_CODE (acc->ref) == ARRAY_REF
1021 ||TREE_CODE (acc->ref) == VAR_DECL)
1022 replace_field_acc (acc, new_type);
1023 else
1024 gcc_unreachable ();
1027 /* This function looks for d_str, represented by TYPE, in the structures
1028 vector. If found, it returns an index of found structure. Otherwise
1029 it returns a length of the structures vector. */
1031 static unsigned
1032 find_structure (tree type)
1034 d_str str;
1035 unsigned i;
1037 type = TYPE_MAIN_VARIANT (type);
1039 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1040 if (is_equal_types (str->decl, type))
1041 return i;
1043 return VEC_length (structure, structures);
1046 /* In this function we create new statements that have the same
1047 form as ORIG_STMT, but of type NEW_TYPE. The statements
1048 treated by this function are simple assignments,
1049 like assignments: p.8_7 = p; or statements with rhs of
1050 tree codes PLUS_EXPR and MINUS_EXPR. */
1052 static gimple
1053 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1055 tree lhs;
1056 tree new_lhs;
1057 gimple new_stmt;
1058 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1060 lhs = gimple_assign_lhs (orig_stmt);
1062 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1063 || TREE_CODE (lhs) == SSA_NAME);
1065 new_lhs = find_new_var_of_type (lhs, new_type);
1066 gcc_assert (new_lhs);
1067 finalize_var_creation (new_lhs);
1069 switch (gimple_assign_rhs_code (orig_stmt))
1071 case PLUS_EXPR:
1072 case MINUS_EXPR:
1073 case POINTER_PLUS_EXPR:
1075 tree op0 = gimple_assign_rhs1 (orig_stmt);
1076 tree op1 = gimple_assign_rhs2 (orig_stmt);
1077 unsigned str0, str1;
1078 unsigned length = VEC_length (structure, structures);
1081 str0 = find_structure (strip_type (get_type_of_var (op0)));
1082 str1 = find_structure (strip_type (get_type_of_var (op1)));
1083 gcc_assert ((str0 != length) || (str1 != length));
1085 if (str0 != length)
1086 new_op0 = find_new_var_of_type (op0, new_type);
1087 if (str1 != length)
1088 new_op1 = find_new_var_of_type (op1, new_type);
1090 if (!new_op0)
1091 new_op0 = offset;
1092 if (!new_op1)
1093 new_op1 = offset;
1095 break;
1097 default:
1098 gcc_unreachable();
1101 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1102 new_lhs, new_op0, new_op1);
1103 finalize_stmt (new_stmt);
1105 return new_stmt;
1108 /* Given a field access F_ACC of the FIELD, this function
1109 replaces it by the new field access. */
1111 static void
1112 create_new_field_access (struct field_access_site *f_acc,
1113 struct field_entry field)
1115 tree new_type = field.field_mapping;
1116 gimple new_stmt;
1117 tree size_res;
1118 gimple mult_stmt;
1119 gimple cast_stmt;
1120 tree cast_res = NULL;
1122 if (f_acc->num)
1124 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1125 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1128 if (f_acc->cast_stmt)
1130 cast_stmt = gen_cast_stmt (size_res, new_type,
1131 f_acc->cast_stmt, &cast_res);
1132 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1135 if (f_acc->ref_def_stmt)
1137 tree offset;
1138 if (cast_res)
1139 offset = cast_res;
1140 else
1141 offset = size_res;
1143 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1144 new_type, offset);
1145 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1148 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1149 D.2162_18 by an appropriate variable of new_type type. */
1150 replace_field_access_stmt (f_acc, new_type);
1153 /* This function creates a new condition statement
1154 corresponding to the original COND_STMT, adds new basic block
1155 and redirects condition edges. NEW_VAR is a new condition
1156 variable located in the condition statement at the position POS. */
1158 static void
1159 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1161 gimple new_stmt;
1162 edge true_e = NULL, false_e = NULL;
1163 basic_block new_bb;
1164 gimple_stmt_iterator si;
1166 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1167 &true_e, &false_e);
1169 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1170 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1171 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1172 NULL_TREE,
1173 NULL_TREE);
1175 finalize_stmt (new_stmt);
1177 /* Create new basic block after bb. */
1178 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1180 /* Add new condition stmt to the new_bb. */
1181 si = gsi_start_bb (new_bb);
1182 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1184 /* Create false and true edges from new_bb. */
1185 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1186 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1188 /* Redirect one of original edges to point to new_bb. */
1189 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1190 redirect_edge_succ (true_e, new_bb);
1191 else
1192 redirect_edge_succ (false_e, new_bb);
1195 /* This function creates new condition statements corresponding
1196 to original condition STMT, one for each new type, and
1197 recursively redirect edges to newly generated basic blocks. */
1199 static void
1200 create_new_stmts_for_cond_expr (gimple stmt)
1202 tree arg0, arg1, arg;
1203 unsigned str0, str1;
1204 bool s0, s1;
1205 d_str str;
1206 tree type;
1207 unsigned pos;
1208 int i;
1209 unsigned length = VEC_length (structure, structures);
1211 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1212 || gimple_cond_code (stmt) == NE_EXPR);
1214 arg0 = gimple_cond_lhs (stmt);
1215 arg1 = gimple_cond_rhs (stmt);
1217 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1218 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1220 s0 = (str0 != length) ? true : false;
1221 s1 = (str1 != length) ? true : false;
1223 gcc_assert (s0 || s1);
1224 /* For now we allow only comparison with 0 or NULL. */
1225 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1227 str = integer_zerop (arg0) ?
1228 VEC_index (structure, structures, str1):
1229 VEC_index (structure, structures, str0);
1230 arg = integer_zerop (arg0) ? arg1 : arg0;
1231 pos = integer_zerop (arg0) ? 1 : 0;
1233 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1235 tree new_arg;
1237 new_arg = find_new_var_of_type (arg, type);
1238 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1242 /* Create a new general access to replace original access ACC
1243 for structure type NEW_TYPE. */
1245 static gimple
1246 create_general_new_stmt (struct access_site *acc, tree new_type)
1248 gimple old_stmt = acc->stmt;
1249 tree var;
1250 gimple new_stmt = gimple_copy (old_stmt);
1251 unsigned i;
1253 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1255 tree *pos;
1256 tree new_var = find_new_var_of_type (var, new_type);
1257 tree lhs, rhs;
1259 gcc_assert (new_var);
1260 finalize_var_creation (new_var);
1262 if (is_gimple_assign (new_stmt))
1264 lhs = gimple_assign_lhs (new_stmt);
1266 if (TREE_CODE (lhs) == SSA_NAME)
1267 lhs = SSA_NAME_VAR (lhs);
1268 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1269 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1271 /* It can happen that rhs is a constructor.
1272 Then we have to replace it to be of new_type. */
1273 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1275 /* Dealing only with empty constructors right now. */
1276 gcc_assert (VEC_empty (constructor_elt,
1277 CONSTRUCTOR_ELTS (rhs)));
1278 rhs = build_constructor (new_type, 0);
1279 gimple_assign_set_rhs1 (new_stmt, rhs);
1282 if (lhs == var)
1283 gimple_assign_set_lhs (new_stmt, new_var);
1284 else if (rhs == var)
1285 gimple_assign_set_rhs1 (new_stmt, new_var);
1286 else
1288 pos = find_pos_in_stmt (new_stmt, var);
1289 gcc_assert (pos);
1290 *pos = new_var;
1293 else
1295 pos = find_pos_in_stmt (new_stmt, var);
1296 gcc_assert (pos);
1297 *pos = new_var;
1301 finalize_stmt (new_stmt);
1302 return new_stmt;
1305 /* For each new type in STR this function creates new general accesses
1306 corresponding to the original access ACC. */
1308 static void
1309 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1311 tree type;
1312 gimple stmt = acc->stmt;
1313 unsigned i;
1315 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1317 gimple new_stmt;
1319 new_stmt = create_general_new_stmt (acc, type);
1320 insert_after_stmt (stmt, new_stmt);
1324 /* This function creates a new general access of structure STR
1325 to replace the access ACC. */
1327 static void
1328 create_new_general_access (struct access_site *acc, d_str str)
1330 gimple stmt = acc->stmt;
1331 switch (gimple_code (stmt))
1333 case GIMPLE_COND:
1334 create_new_stmts_for_cond_expr (stmt);
1335 break;
1337 default:
1338 create_new_stmts_for_general_acc (acc, str);
1342 /* Auxiliary data for creation of accesses. */
1343 struct create_acc_data
1345 basic_block bb;
1346 d_str str;
1347 int field_index;
1350 /* This function creates a new general access, defined by SLOT.
1351 DATA is a pointer to create_acc_data structure. */
1353 static int
1354 create_new_acc (void **slot, void *data)
1356 struct access_site *acc = *(struct access_site **) slot;
1357 basic_block bb = ((struct create_acc_data *)data)->bb;
1358 d_str str = ((struct create_acc_data *)data)->str;
1360 if (gimple_bb (acc->stmt) == bb)
1361 create_new_general_access (acc, str);
1362 return 1;
1365 /* This function creates a new field access, defined by SLOT.
1366 DATA is a pointer to create_acc_data structure. */
1368 static int
1369 create_new_field_acc (void **slot, void *data)
1371 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1372 basic_block bb = ((struct create_acc_data *)data)->bb;
1373 d_str str = ((struct create_acc_data *)data)->str;
1374 int i = ((struct create_acc_data *)data)->field_index;
1376 if (gimple_bb (f_acc->stmt) == bb)
1377 create_new_field_access (f_acc, str->fields[i]);
1378 return 1;
1381 /* This function creates new accesses for the structure
1382 type STR in basic block BB. */
1384 static void
1385 create_new_accs_for_struct (d_str str, basic_block bb)
1387 int i;
1388 struct create_acc_data dt;
1390 dt.str = str;
1391 dt.bb = bb;
1392 dt.field_index = -1;
1394 for (i = 0; i < str->num_fields; i++)
1396 dt.field_index = i;
1398 if (str->fields[i].acc_sites)
1399 htab_traverse (str->fields[i].acc_sites,
1400 create_new_field_acc, &dt);
1402 if (str->accs)
1403 htab_traverse (str->accs, create_new_acc, &dt);
1406 /* This function inserts new variables from new_var,
1407 defined by SLOT, into varpool. */
1409 static int
1410 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1412 new_var n_var = *(new_var *) slot;
1413 tree var;
1414 unsigned i;
1416 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1417 insert_global_to_varpool (var);
1418 return 1;
1421 /* This function prints a field access site, defined by SLOT. */
1423 static int
1424 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1426 struct field_access_site *f_acc =
1427 *(struct field_access_site **) slot;
1429 fprintf(dump_file, "\n");
1430 if (f_acc->stmt)
1431 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1432 if (f_acc->ref_def_stmt)
1433 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1434 if (f_acc->cast_stmt)
1435 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1436 return 1;
1439 /* Print field accesses from hashtable F_ACCS. */
1441 static void
1442 dump_field_acc_sites (htab_t f_accs)
1444 if (!dump_file)
1445 return;
1447 if (f_accs)
1448 htab_traverse (f_accs, dump_field_acc, NULL);
1451 /* Hash value for fallocs_t. */
1453 static hashval_t
1454 malloc_hash (const void *x)
1456 return htab_hash_pointer (((const_fallocs_t)x)->func);
1459 /* This function returns nonzero if function of func_alloc_sites' X
1460 is equal to Y. */
1462 static int
1463 malloc_eq (const void *x, const void *y)
1465 return ((const_fallocs_t)x)->func == (const_tree)y;
1468 /* This function is a callback for traversal over a structure accesses.
1469 It frees an access represented by SLOT. */
1471 static int
1472 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1474 struct access_site * acc = *(struct access_site **) slot;
1476 VEC_free (tree, heap, acc->vars);
1477 free (acc);
1478 return 1;
1481 /* This is a callback function for traversal over field accesses.
1482 It frees a field access represented by SLOT. */
1484 static int
1485 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1487 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1489 free (f_acc);
1490 return 1;
1493 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1494 if it is not there yet. */
1496 static void
1497 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1499 unsigned i;
1500 tree t;
1502 if (!type)
1503 return;
1505 type = TYPE_MAIN_VARIANT (type);
1507 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1508 if (is_equal_types (t, type))
1509 break;
1511 if (i == VEC_length (tree, *unsuitable_types))
1512 VEC_safe_push (tree, heap, *unsuitable_types, type);
1515 /* Given a type TYPE, this function returns the name of the type. */
1517 static const char *
1518 get_type_name (tree type)
1520 if (! TYPE_NAME (type))
1521 return NULL;
1523 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1524 return IDENTIFIER_POINTER (TYPE_NAME (type));
1525 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1526 && DECL_NAME (TYPE_NAME (type)))
1527 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1528 else
1529 return NULL;
1532 /* This function is a temporary hack to overcome the types problem.
1533 When several compilation units are compiled together
1534 with -combine, the TYPE_MAIN_VARIANT of the same type
1535 can appear differently in different compilation units.
1536 Therefore this function first compares type names.
1537 If there are no names, structure bodies are recursively
1538 compared. */
1540 static bool
1541 is_equal_types (tree type1, tree type2)
1543 const char * name1,* name2;
1545 if ((!type1 && type2)
1546 ||(!type2 && type1))
1547 return false;
1549 if (!type1 && !type2)
1550 return true;
1552 if (TREE_CODE (type1) != TREE_CODE (type2))
1553 return false;
1555 if (type1 == type2)
1556 return true;
1558 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1559 return true;
1561 name1 = get_type_name (type1);
1562 name2 = get_type_name (type2);
1564 if (name1 && name2 && !strcmp (name1, name2))
1565 return true;
1567 if (name1 && name2 && strcmp (name1, name2))
1568 return false;
1570 switch (TREE_CODE (type1))
1572 case POINTER_TYPE:
1573 case REFERENCE_TYPE:
1575 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1577 break;
1579 case RECORD_TYPE:
1580 case UNION_TYPE:
1581 case QUAL_UNION_TYPE:
1582 case ENUMERAL_TYPE:
1584 tree field1;
1585 /* Compare fields of structure. */
1586 for (field1 = TYPE_FIELDS (type1); field1;
1587 field1 = TREE_CHAIN (field1))
1589 tree field2 = find_field_in_struct_1 (type2, field1);
1590 if (!field2)
1591 return false;
1593 return true;
1595 break;
1597 case INTEGER_TYPE:
1599 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1600 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1601 return true;
1603 break;
1605 case ARRAY_TYPE:
1607 tree d1, d2;
1608 tree max1, min1, max2, min2;
1610 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1611 return false;
1613 d1 = TYPE_DOMAIN (type1);
1614 d2 = TYPE_DOMAIN (type2);
1616 if (!d1 || !d2)
1617 return false;
1619 max1 = TYPE_MAX_VALUE (d1);
1620 max2 = TYPE_MAX_VALUE (d2);
1621 min1 = TYPE_MIN_VALUE (d1);
1622 min2 = TYPE_MIN_VALUE (d2);
1624 if (max1 && max2 && min1 && min2
1625 && TREE_CODE (max1) == TREE_CODE (max2)
1626 && TREE_CODE (max1) == INTEGER_CST
1627 && TREE_CODE (min1) == TREE_CODE (min2)
1628 && TREE_CODE (min1) == INTEGER_CST
1629 && tree_int_cst_equal (max1, max2)
1630 && tree_int_cst_equal (min1, min2))
1631 return true;
1633 break;
1635 default:
1636 gcc_unreachable();
1639 return false;
1642 /* This function free non-field accesses from hashtable ACCS. */
1644 static void
1645 free_accesses (htab_t accs)
1647 if (accs)
1648 htab_traverse (accs, free_accs, NULL);
1649 htab_delete (accs);
1652 /* This function free field accesses hashtable F_ACCS. */
1654 static void
1655 free_field_accesses (htab_t f_accs)
1657 if (f_accs)
1658 htab_traverse (f_accs, free_field_accs, NULL);
1659 htab_delete (f_accs);
1662 /* Update call graph with new edge generated by new MALLOC_STMT.
1663 The edge origin is CONTEXT function. */
1665 static void
1666 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1668 struct cgraph_node *src, *dest;
1669 tree malloc_fn_decl;
1671 if (!malloc_stmt)
1672 return;
1674 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1676 src = cgraph_node (context);
1677 dest = cgraph_node (malloc_fn_decl);
1678 cgraph_create_edge (src, dest, malloc_stmt,
1679 0, 0, gimple_bb (malloc_stmt)->loop_depth);
1682 /* This function generates set of statements required
1683 to allocate number NUM of structures of type NEW_TYPE.
1684 The statements are stored in NEW_STMTS. The statement that contain
1685 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1687 static gimple
1688 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1689 tree num)
1691 tree new_malloc_size;
1692 tree malloc_fn_decl;
1693 gimple new_stmt;
1694 tree malloc_res;
1695 gimple call_stmt, final_stmt;
1696 tree cast_res;
1698 gcc_assert (num && malloc_stmt && new_type);
1699 *new_stmts = gimple_seq_alloc ();
1701 /* Generate argument to malloc as multiplication of num
1702 and size of new_type. */
1703 new_stmt = gen_size (num, new_type, &new_malloc_size);
1704 gimple_seq_add_stmt (new_stmts, new_stmt);
1706 /* Generate new call for malloc. */
1707 malloc_res = create_tmp_var (ptr_type_node, NULL);
1708 add_referenced_var (malloc_res);
1710 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1711 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1712 gimple_call_set_lhs (call_stmt, malloc_res);
1713 finalize_stmt_and_append (new_stmts, call_stmt);
1715 /* Create new cast statement. */
1716 final_stmt = get_final_alloc_stmt (malloc_stmt);
1717 gcc_assert (final_stmt);
1718 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1719 gimple_seq_add_stmt (new_stmts, new_stmt);
1721 return call_stmt;
1724 /* This function returns a tree representing
1725 the number of instances of structure STR_DECL allocated
1726 by allocation STMT. If new statements are generated,
1727 they are filled into NEW_STMTS_P. */
1729 static tree
1730 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1731 gimple_seq *new_stmts_p)
1733 tree arg;
1734 tree struct_size;
1735 HOST_WIDE_INT struct_size_int;
1737 if (!stmt)
1738 return NULL_TREE;
1740 /* Get malloc argument. */
1741 if (!is_gimple_call (stmt))
1742 return NULL_TREE;
1744 arg = gimple_call_arg (stmt, 0);
1746 if (TREE_CODE (arg) != SSA_NAME
1747 && !TREE_CONSTANT (arg))
1748 return NULL_TREE;
1750 struct_size = TYPE_SIZE_UNIT (str_decl);
1751 struct_size_int = TREE_INT_CST_LOW (struct_size);
1753 gcc_assert (struct_size);
1755 if (TREE_CODE (arg) == SSA_NAME)
1757 tree num;
1758 gimple div_stmt;
1760 if (is_result_of_mult (arg, &num, struct_size))
1761 return num;
1763 num = create_tmp_var (integer_type_node, NULL);
1765 if (num)
1766 add_referenced_var (num);
1768 if (exact_log2 (struct_size_int) == -1)
1769 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1770 struct_size);
1771 else
1773 tree C = build_int_cst (integer_type_node,
1774 exact_log2 (struct_size_int));
1776 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1778 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1779 finalize_stmt (div_stmt);
1780 return num;
1783 if (CONSTANT_CLASS_P (arg)
1784 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1785 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1787 return NULL_TREE;
1790 /* This function is a callback for traversal on new_var's hashtable.
1791 SLOT is a pointer to new_var. This function prints to dump_file
1792 an original variable and all new variables from the new_var
1793 pointed by *SLOT. */
1795 static int
1796 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1798 new_var n_var = *(new_var *) slot;
1799 tree var_type;
1800 tree var;
1801 unsigned i;
1803 var_type = get_type_of_var (n_var->orig_var);
1805 fprintf (dump_file, "\nOrig var: ");
1806 print_generic_expr (dump_file, n_var->orig_var, 0);
1807 fprintf (dump_file, " of type ");
1808 print_generic_expr (dump_file, var_type, 0);
1809 fprintf (dump_file, "\n");
1811 for (i = 0;
1812 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1814 var_type = get_type_of_var (var);
1816 fprintf (dump_file, " ");
1817 print_generic_expr (dump_file, var, 0);
1818 fprintf (dump_file, " of type ");
1819 print_generic_expr (dump_file, var_type, 0);
1820 fprintf (dump_file, "\n");
1822 return 1;
1825 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1827 static inline void
1828 copy_decl_attributes (tree new_decl, tree orig_decl)
1831 DECL_ARTIFICIAL (new_decl) = 1;
1832 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1833 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1834 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1835 TREE_USED (new_decl) = TREE_USED (orig_decl);
1836 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1837 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1838 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1840 if (TREE_CODE (orig_decl) == VAR_DECL)
1842 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1843 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1847 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1848 the same way as a structure type is wrapped in DECL.
1849 It returns the generated type. */
1851 static inline tree
1852 gen_struct_type (tree decl, tree new_str_type)
1854 tree type_orig = get_type_of_var (decl);
1855 tree new_type = new_str_type;
1856 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1857 type_wrapper_t wr;
1858 type_wrapper_t *wr_p;
1860 while (POINTER_TYPE_P (type_orig)
1861 || TREE_CODE (type_orig) == ARRAY_TYPE)
1863 if (POINTER_TYPE_P (type_orig))
1865 wr.wrap = 0;
1866 wr.domain = NULL_TREE;
1868 else if (TREE_CODE (type_orig) == ARRAY_TYPE)
1870 wr.wrap = 1;
1871 wr.domain = TYPE_DOMAIN (type_orig);
1873 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1874 type_orig = TREE_TYPE (type_orig);
1877 while (VEC_length (type_wrapper_t, wrapper) != 0)
1879 wr_p = VEC_last (type_wrapper_t, wrapper);
1881 if (wr_p->wrap) /* Array. */
1882 new_type = build_array_type (new_type, wr_p->domain);
1883 else /* Pointer. */
1884 new_type = build_pointer_type (new_type);
1886 VEC_pop (type_wrapper_t, wrapper);
1889 VEC_free (type_wrapper_t, heap, wrapper);
1890 return new_type;
1893 /* This function generates and returns new variable name based on
1894 ORIG_DECL name, combined with index I.
1895 The form of the new name is <orig_name>.<I> . */
1897 static tree
1898 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1900 const char *old_name;
1901 char *prefix;
1902 char *new_name;
1904 if (!DECL_NAME (orig_decl)
1905 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1906 return NULL;
1908 /* If the original variable has a name, create an
1909 appropriate new name for the new variable. */
1911 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1912 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1913 strcpy (prefix, old_name);
1914 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1915 return get_identifier (new_name);
1918 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1920 static void
1921 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1923 void **slot;
1925 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1926 htab_hash_pointer (new_node->orig_var),
1927 INSERT);
1928 *slot = new_node;
1931 /* This function creates and returns new_var_data node
1932 with empty new_vars and orig_var equal to VAR. */
1934 static new_var
1935 create_new_var_node (tree var, d_str str)
1937 new_var node;
1939 node = (new_var) xmalloc (sizeof (struct new_var_data));
1940 node->orig_var = var;
1941 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
1942 return node;
1945 /* Check whether the type of VAR is potential candidate for peeling.
1946 Returns true if yes, false otherwise. If yes, TYPE_P will contain
1947 candidate type. If VAR is initialized, the type of VAR will be added
1948 to UNSUITABLE_TYPES. */
1950 static bool
1951 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
1953 tree type;
1954 bool initialized = false;
1956 *type_p = NULL;
1958 if (!var)
1959 return false;
1961 /* There is no support of initialized vars. */
1962 if (TREE_CODE (var) == VAR_DECL
1963 && DECL_INITIAL (var) != NULL_TREE)
1964 initialized = true;
1966 type = get_type_of_var (var);
1968 if (type)
1970 type = TYPE_MAIN_VARIANT (strip_type (type));
1971 if (TREE_CODE (type) != RECORD_TYPE)
1972 return false;
1973 else
1975 if (initialized && unsuitable_types && *unsuitable_types)
1977 if (dump_file)
1979 fprintf (dump_file, "The type ");
1980 print_generic_expr (dump_file, type, 0);
1981 fprintf (dump_file, " is initialized...Excluded.");
1983 add_unsuitable_type (unsuitable_types, type);
1985 *type_p = type;
1986 return true;
1989 else
1990 return false;
1993 /* Hash value for field_access_site. */
1995 static hashval_t
1996 field_acc_hash (const void *x)
1998 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
2001 /* This function returns nonzero if stmt of field_access_site X
2002 is equal to Y. */
2004 static int
2005 field_acc_eq (const void *x, const void *y)
2007 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2010 /* This function prints an access site, defined by SLOT. */
2012 static int
2013 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2015 struct access_site *acc = *(struct access_site **) slot;
2016 tree var;
2017 unsigned i;
2019 fprintf(dump_file, "\n");
2020 if (acc->stmt)
2021 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2022 fprintf(dump_file, " : ");
2024 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2026 print_generic_expr (dump_file, var, 0);
2027 fprintf(dump_file, ", ");
2029 return 1;
2032 /* This function frees memory allocated for structure clusters,
2033 starting from CLUSTER. */
2035 static void
2036 free_struct_cluster (struct field_cluster* cluster)
2038 if (cluster)
2040 if (cluster->fields_in_cluster)
2041 sbitmap_free (cluster->fields_in_cluster);
2042 if (cluster->sibling)
2043 free_struct_cluster (cluster->sibling);
2044 free (cluster);
2048 /* Free all allocated memory under the structure node pointed by D_NODE. */
2050 static void
2051 free_data_struct (d_str d_node)
2053 int i;
2055 if (!d_node)
2056 return;
2058 if (dump_file)
2060 fprintf (dump_file, "\nRemoving data structure \"");
2061 print_generic_expr (dump_file, d_node->decl, 0);
2062 fprintf (dump_file, "\" from data_struct_list.");
2065 /* Free all space under d_node. */
2066 if (d_node->fields)
2068 for (i = 0; i < d_node->num_fields; i++)
2069 free_field_accesses (d_node->fields[i].acc_sites);
2070 free (d_node->fields);
2073 if (d_node->accs)
2074 free_accesses (d_node->accs);
2076 if (d_node->struct_clustering)
2077 free_struct_cluster (d_node->struct_clustering);
2079 if (d_node->new_types)
2080 VEC_free (tree, heap, d_node->new_types);
2083 /* This function creates new general and field accesses in BB. */
2085 static void
2086 create_new_accesses_in_bb (basic_block bb)
2088 d_str str;
2089 unsigned i;
2091 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2092 create_new_accs_for_struct (str, bb);
2095 /* This function adds allocation sites for peeled structures.
2096 M_DATA is vector of allocation sites of function CONTEXT. */
2098 static void
2099 create_new_alloc_sites (fallocs_t m_data, tree context)
2101 alloc_site_t *call;
2102 unsigned j;
2104 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2106 gimple stmt = call->stmt;
2107 d_str str = call->str;
2108 tree num;
2109 gimple_seq new_stmts = NULL;
2110 gimple last_stmt = get_final_alloc_stmt (stmt);
2111 unsigned i;
2112 tree type;
2114 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2115 if (new_stmts)
2117 last_stmt = gimple_seq_last_stmt (new_stmts);
2118 insert_seq_after_stmt (last_stmt, new_stmts);
2121 /* Generate an allocation sites for each new structure type. */
2122 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2124 gimple new_malloc_stmt = NULL;
2125 gimple last_stmt_tmp = NULL;
2127 new_stmts = NULL;
2128 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2129 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2130 insert_seq_after_stmt (last_stmt, new_stmts);
2131 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2132 last_stmt = last_stmt_tmp;
2137 /* This function prints new variables from hashtable
2138 NEW_VARS_HTAB to dump_file. */
2140 static void
2141 dump_new_vars (htab_t new_vars_htab)
2143 if (!dump_file)
2144 return;
2146 if (new_vars_htab)
2147 htab_traverse (new_vars_htab, dump_new_var, NULL);
2150 /* Given an original variable ORIG_DECL of structure type STR,
2151 this function generates new variables of the types defined
2152 by STR->new_type. Generated types are saved in new_var node NODE.
2153 ORIG_DECL should has VAR_DECL tree_code. */
2155 static void
2156 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2158 unsigned i;
2159 tree type;
2161 for (i = 0;
2162 VEC_iterate (tree, str->new_types, i, type); i++)
2164 tree new_decl = NULL;
2165 tree new_name;
2167 new_name = gen_var_name (orig_decl, i);
2168 type = gen_struct_type (orig_decl, type);
2170 if (is_global_var (orig_decl))
2171 new_decl = build_decl (VAR_DECL, new_name, type);
2172 else
2174 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2175 new_decl = create_tmp_var (type, name);
2178 copy_decl_attributes (new_decl, orig_decl);
2179 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2183 /* This function creates new variables to
2184 substitute the original variable VAR_DECL and adds
2185 them to the new_var's hashtable NEW_VARS_HTAB. */
2187 static void
2188 create_new_var (tree var_decl, htab_t new_vars_htab)
2190 new_var node;
2191 d_str str;
2192 tree type;
2193 unsigned i;
2195 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2196 return;
2198 if (!is_candidate (var_decl, &type, NULL))
2199 return;
2201 i = find_structure (type);
2202 if (i == VEC_length (structure, structures))
2203 return;
2205 str = VEC_index (structure, structures, i);
2206 node = create_new_var_node (var_decl, str);
2207 create_new_var_1 (var_decl, str, node);
2208 add_to_new_vars_htab (node, new_vars_htab);
2211 /* Hash value for new_var. */
2213 static hashval_t
2214 new_var_hash (const void *x)
2216 return htab_hash_pointer (((const_new_var)x)->orig_var);
2219 /* This function returns nonzero if orig_var of new_var X is equal to Y. */
2221 static int
2222 new_var_eq (const void *x, const void *y)
2224 return ((const_new_var)x)->orig_var == (const_tree)y;
2227 /* This function check whether a structure type represented by STR
2228 escapes due to ipa-type-escape analysis. If yes, this type is added
2229 to UNSUITABLE_TYPES vector. */
2231 static void
2232 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2234 tree type = str->decl;
2236 if (!ipa_type_escape_type_contained_p (type))
2238 if (dump_file)
2240 fprintf (dump_file, "\nEscaping type is ");
2241 print_generic_expr (dump_file, type, 0);
2243 add_unsuitable_type (unsuitable_types, type);
2247 /* Hash value for access_site. */
2249 static hashval_t
2250 acc_hash (const void *x)
2252 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2255 /* Return nonzero if stmt of access_site X is equal to Y. */
2257 static int
2258 acc_eq (const void *x, const void *y)
2260 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2263 /* Given a structure declaration STRUCT_DECL, and number of fields
2264 in the structure NUM_FIELDS, this function creates and returns
2265 corresponding field_entry's. */
2267 static struct field_entry *
2268 get_fields (tree struct_decl, int num_fields)
2270 struct field_entry *list;
2271 tree t = TYPE_FIELDS (struct_decl);
2272 int idx = 0;
2274 list =
2275 (struct field_entry *) xmalloc (num_fields * sizeof (struct field_entry));
2277 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2278 if (TREE_CODE (t) == FIELD_DECL)
2280 list[idx].index = idx;
2281 list[idx].decl = t;
2282 list[idx].acc_sites =
2283 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2284 list[idx].count = 0;
2285 list[idx].field_mapping = NULL_TREE;
2288 return list;
2291 /* Print non-field accesses from hashtable ACCS of structure. */
2293 static void
2294 dump_access_sites (htab_t accs)
2296 if (!dump_file)
2297 return;
2299 if (accs)
2300 htab_traverse (accs, dump_acc, NULL);
2303 /* This function is a callback for alloc_sites hashtable
2304 traversal. SLOT is a pointer to fallocs_t. This function
2305 removes all allocations of the structure defined by DATA. */
2307 static int
2308 remove_str_allocs_in_func (void **slot, void *data)
2310 fallocs_t fallocs = *(fallocs_t *) slot;
2311 unsigned i = 0;
2312 alloc_site_t *call;
2314 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2316 if (call->str == (d_str) data)
2317 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2318 else
2319 i++;
2322 return 1;
2325 /* This function remove all entries corresponding to the STR structure
2326 from alloc_sites hashtable. */
2328 static void
2329 remove_str_allocs (d_str str)
2331 if (!str)
2332 return;
2334 if (alloc_sites)
2335 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2338 /* This function removes the structure with index I from structures vector. */
2340 static void
2341 remove_structure (unsigned i)
2343 d_str str;
2345 if (i >= VEC_length (structure, structures))
2346 return;
2348 str = VEC_index (structure, structures, i);
2350 /* Before removing the structure str, we have to remove its
2351 allocations from alloc_sites hashtable. */
2352 remove_str_allocs (str);
2353 free_data_struct (str);
2354 VEC_ordered_remove (structure, structures, i);
2357 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2358 COND_STMT is a condition statement to check. */
2360 static bool
2361 is_safe_cond_expr (gimple cond_stmt)
2363 tree arg0, arg1;
2364 unsigned str0, str1;
2365 bool s0, s1;
2366 unsigned length = VEC_length (structure, structures);
2368 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2369 && gimple_cond_code (cond_stmt) != NE_EXPR)
2370 return false;
2372 arg0 = gimple_cond_lhs (cond_stmt);
2373 arg1 = gimple_cond_rhs (cond_stmt);
2375 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2376 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2378 s0 = (str0 != length) ? true : false;
2379 s1 = (str1 != length) ? true : false;
2381 if (!s0 && !s1)
2382 return false;
2384 /* For now we allow only comparison with 0 or NULL. */
2385 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2386 return false;
2388 return true;
2391 /* This function excludes statements, that are
2392 part of allocation sites or field accesses, from the
2393 hashtable of general accesses. SLOT represents general
2394 access that will be checked. DATA is a pointer to
2395 exclude_data structure. */
2397 static int
2398 exclude_from_accs (void **slot, void *data)
2400 struct access_site *acc = *(struct access_site **) slot;
2401 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2402 d_str str = ((struct exclude_data *)data)->str;
2404 if (is_part_of_malloc (acc->stmt, fn_decl)
2405 || is_part_of_field_access (acc->stmt, str))
2407 VEC_free (tree, heap, acc->vars);
2408 free (acc);
2409 htab_clear_slot (str->accs, slot);
2411 return 1;
2414 /* Callback function for walk_tree called from collect_accesses_in_bb
2415 function. DATA is the statement which is analyzed. */
2417 static tree
2418 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2420 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2421 gimple stmt = (gimple) wi->info;
2422 tree t = *tp;
2424 if (!t)
2425 return NULL;
2427 switch (TREE_CODE (t))
2429 case BIT_FIELD_REF:
2431 tree var = TREE_OPERAND(t, 0);
2432 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2433 unsigned i = find_structure (type);
2435 if (i != VEC_length (structure, structures))
2437 if (dump_file)
2439 fprintf (dump_file, "\nThe type ");
2440 print_generic_expr (dump_file, type, 0);
2441 fprintf (dump_file, " has bitfield.");
2443 remove_structure (i);
2446 break;
2448 case COMPONENT_REF:
2450 tree ref = TREE_OPERAND (t, 0);
2451 tree field_decl = TREE_OPERAND (t, 1);
2454 if ((TREE_CODE (ref) == INDIRECT_REF
2455 || TREE_CODE (ref) == ARRAY_REF
2456 || TREE_CODE (ref) == VAR_DECL)
2457 && TREE_CODE (field_decl) == FIELD_DECL)
2459 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2460 unsigned i = find_structure (type);
2462 if (i != VEC_length (structure, structures))
2464 d_str str = VEC_index (structure, structures, i);
2465 struct field_entry * field =
2466 find_field_in_struct (str, field_decl);
2468 if (field)
2470 struct field_access_site *acc = make_field_acc_node ();
2472 gcc_assert (acc);
2474 acc->stmt = stmt;
2475 acc->comp_ref = t;
2476 acc->ref = ref;
2477 acc->field_decl = field_decl;
2479 /* Check whether the access is of the form
2480 we can deal with. */
2481 if (!decompose_access (str->decl, acc))
2483 if (dump_file)
2485 fprintf (dump_file, "\nThe type ");
2486 print_generic_expr (dump_file, type, 0);
2487 fprintf (dump_file,
2488 " has complicate access in statement ");
2489 print_gimple_stmt (dump_file, stmt, 0, 0);
2492 remove_structure (i);
2493 free (acc);
2495 else
2497 /* Increase count of field. */
2498 basic_block bb = gimple_bb (stmt);
2499 field->count += bb->count;
2501 /* Add stmt to the acc_sites of field. */
2502 add_field_acc_to_acc_sites (acc, field->acc_sites);
2504 *walk_subtrees = 0;
2509 break;
2511 case COND_EXPR:
2513 tree cond = COND_EXPR_COND (t);
2514 int i;
2515 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2517 tree t = TREE_OPERAND (cond, i);
2519 *walk_subtrees = 1;
2520 walk_tree (&t, get_stmt_accesses, data, NULL);
2522 *walk_subtrees = 0;
2524 break;
2526 case VAR_DECL:
2527 case SSA_NAME:
2529 unsigned i;
2531 if (TREE_CODE (t) == SSA_NAME)
2532 t = SSA_NAME_VAR (t);
2534 i = find_structure (strip_type (get_type_of_var (t)));
2535 if (i != VEC_length (structure, structures))
2537 d_str str;
2539 str = VEC_index (structure, structures, i);
2540 add_access_to_acc_sites (stmt, t, str->accs);
2542 *walk_subtrees = 0;
2544 break;
2546 default:
2547 return NULL;
2550 return NULL;
2553 /* Free structures hashtable. */
2555 static void
2556 free_structures (void)
2558 d_str str;
2559 unsigned i;
2561 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2562 free_data_struct (str);
2564 VEC_free (structure, heap, structures);
2565 structures = NULL;
2568 /* This function is a callback for traversal over new_var's hashtable.
2569 SLOT is a pointer to new_var. This function frees memory allocated
2570 for new_var and pointed by *SLOT. */
2572 static int
2573 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2575 new_var n_var = *(new_var *) slot;
2577 /* Free vector of new_vars. */
2578 VEC_free (tree, heap, n_var->new_vars);
2579 free (n_var);
2580 return 1;
2583 /* Free new_vars hashtable NEW_VARS_HTAB. */
2585 static void
2586 free_new_vars_htab (htab_t new_vars_htab)
2588 if (new_vars_htab)
2589 htab_traverse (new_vars_htab, free_new_var, NULL);
2590 htab_delete (new_vars_htab);
2591 new_vars_htab = NULL;
2594 /* This function creates new general and field accesses that appear in cfun. */
2596 static void
2597 create_new_accesses_for_func (void)
2599 basic_block bb;
2601 FOR_EACH_BB_FN (bb, cfun)
2602 create_new_accesses_in_bb (bb);
2605 /* Create new allocation sites for the function represented by NODE. */
2607 static void
2608 create_new_alloc_sites_for_func (struct cgraph_node *node)
2610 fallocs_t fallocs = get_fallocs (node->decl);
2612 if (fallocs)
2613 create_new_alloc_sites (fallocs, node->decl);
2616 /* For each local variable of structure type from the vector of structures
2617 this function generates new variable(s) to replace it. */
2619 static void
2620 create_new_local_vars (void)
2622 tree var;
2623 referenced_var_iterator rvi;
2625 new_local_vars = htab_create (num_referenced_vars,
2626 new_var_hash, new_var_eq, NULL);
2628 FOR_EACH_REFERENCED_VAR (var, rvi)
2630 if (!is_global_var (var))
2631 create_new_var (var, new_local_vars);
2634 if (new_local_vars)
2635 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2636 dump_new_vars (new_local_vars);
2639 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2641 static inline void
2642 print_shift (unsigned HOST_WIDE_INT shift)
2644 unsigned HOST_WIDE_INT sh = shift;
2646 while (sh--)
2647 fprintf (dump_file, " ");
2650 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2652 static inline void
2653 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2654 struct field_entry * fields, int num_fields)
2656 int i;
2658 for (i = 0; i < num_fields; i++)
2659 if (TEST_BIT (cluster->fields_in_cluster, i))
2660 fields[i].field_mapping = new_type;
2663 /* This functions builds structure with FIELDS,
2664 NAME and attributes similar to ORIG_STRUCT.
2665 It returns the newly created structure. */
2667 static tree
2668 build_basic_struct (tree fields, tree name, tree orig_struct)
2670 tree attributes = NULL_TREE;
2671 tree ref = 0;
2672 tree x;
2674 if (TYPE_ATTRIBUTES (orig_struct))
2675 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2676 ref = make_node (RECORD_TYPE);
2677 TYPE_SIZE (ref) = 0;
2678 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2679 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2680 for (x = fields; x; x = TREE_CHAIN (x))
2682 DECL_CONTEXT (x) = ref;
2683 DECL_PACKED (x) |= TYPE_PACKED (ref);
2685 TYPE_FIELDS (ref) = fields;
2686 layout_type (ref);
2687 TYPE_NAME (ref) = name;
2689 return ref;
2692 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2693 of preparation for new structure building. NUM_FIELDS is a total
2694 number of fields in the structure. The function returns newly
2695 generated fields. */
2697 static tree
2698 create_fields (struct field_cluster * cluster,
2699 struct field_entry * fields, int num_fields)
2701 int i;
2702 tree new_types = NULL_TREE;
2703 tree last = NULL_TREE;
2705 for (i = 0; i < num_fields; i++)
2706 if (TEST_BIT (cluster->fields_in_cluster, i))
2708 tree new_decl = unshare_expr (fields[i].decl);
2710 if (!new_types)
2711 new_types = new_decl;
2712 else
2713 TREE_CHAIN (last) = new_decl;
2714 last = new_decl;
2717 TREE_CHAIN (last) = NULL_TREE;
2718 return new_types;
2722 /* This function creates a cluster name. The name is based on
2723 the original structure name, if it is present. It has a form:
2725 <original_struct_name>_sub.<CLUST_NUM>
2727 The original structure name is taken from the type of DECL.
2728 If an original structure name is not present, it's generated to be:
2730 struct.<STR_NUM>
2732 The function returns identifier of the new cluster name. */
2734 static inline tree
2735 gen_cluster_name (tree decl, int clust_num, int str_num)
2737 const char * orig_name = get_type_name (decl);
2738 char * tmp_name = NULL;
2739 char * prefix;
2740 char * new_name;
2741 size_t len;
2743 if (!orig_name)
2744 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2746 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2747 prefix = XALLOCAVEC (char, len + 1);
2748 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2749 strlen (tmp_name ? tmp_name : orig_name));
2750 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2752 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2753 return get_identifier (new_name);
2756 /* This function checks whether the structure STR has bitfields.
2757 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2759 static void
2760 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2762 tree type = str->decl;
2763 int i;
2765 for (i = 0; i < str->num_fields; i++)
2766 if (DECL_BIT_FIELD (str->fields[i].decl))
2768 add_unsuitable_type (unsuitable_types, type);
2769 if (dump_file)
2771 fprintf (dump_file, "\nType ");
2772 print_generic_expr (dump_file, type, 0);
2773 fprintf (dump_file, "\nescapes due to bitfield ");
2774 print_generic_expr (dump_file, str->fields[i].decl, 0);
2776 break;
2780 /* This function adds to UNSUITABLE_TYPES those types that escape
2781 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2783 static void
2784 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2786 d_str str;
2787 unsigned i;
2789 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2790 check_type_escape (str, unsuitable_types);
2793 /* If a structure type is a return type of any function,
2794 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2796 static void
2797 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2799 struct cgraph_node *c_node;
2801 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2803 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2805 if (ret_t)
2807 ret_t = strip_type (ret_t);
2808 if (TREE_CODE (ret_t) == RECORD_TYPE)
2810 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2811 if (dump_file)
2813 fprintf (dump_file, "\nThe type \"");
2814 print_generic_expr (dump_file, ret_t, 0);
2815 fprintf (dump_file,
2816 "\" is return type of function...Excluded.");
2823 /* This function looks for parameters of local functions
2824 which are of structure types, or derived from them (arrays
2825 of structures, pointers to structures, or their combinations).
2826 We are not handling peeling of such structures right now.
2827 The found structures types are added to UNSUITABLE_TYPES vector. */
2829 static void
2830 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2832 struct cgraph_node *c_node;
2834 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2835 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2837 tree fn = c_node->decl;
2838 tree arg;
2840 for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
2842 tree type = TREE_TYPE (arg);
2844 type = strip_type (type);
2845 if (TREE_CODE (type) == RECORD_TYPE)
2847 add_unsuitable_type (unsuitable_types,
2848 TYPE_MAIN_VARIANT (type));
2849 if (dump_file)
2851 fprintf (dump_file, "\nPointer to type \"");
2852 print_generic_expr (dump_file, type, 0);
2853 fprintf (dump_file,
2854 "\" is passed to local function...Excluded.");
2861 /* This function analyzes structure form of structures
2862 potential for transformation. If we are not capable to transform
2863 structure of some form, we remove it from the structures hashtable.
2864 Right now we cannot handle nested structs, when nesting is
2865 through any level of pointers or arrays.
2867 TBD: release these constrains in future.
2869 Note, that in this function we suppose that all structures
2870 in the program are members of the structures hashtable right now,
2871 without excluding escaping types. */
2873 static void
2874 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2876 int i;
2878 for (i = 0; i < str->num_fields; i++)
2880 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2882 if (TREE_CODE (f_type) == RECORD_TYPE)
2884 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2885 add_unsuitable_type (unsuitable_types, str->decl);
2886 if (dump_file)
2888 fprintf (dump_file, "\nType ");
2889 print_generic_expr (dump_file, f_type, 0);
2890 fprintf (dump_file, " is a field in the structure ");
2891 print_generic_expr (dump_file, str->decl, 0);
2892 fprintf (dump_file, ". Escaping...");
2898 /* This function adds a structure TYPE to the vector of structures,
2899 if it's not already there. */
2901 static void
2902 add_structure (tree type)
2904 struct data_structure node;
2905 unsigned i;
2906 int num_fields;
2908 type = TYPE_MAIN_VARIANT (type);
2910 i = find_structure (type);
2912 if (i != VEC_length (structure, structures))
2913 return;
2915 num_fields = fields_length (type);
2916 node.decl = type;
2917 node.num_fields = num_fields;
2918 node.fields = get_fields (type, num_fields);
2919 node.struct_clustering = NULL;
2920 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
2921 node.new_types = VEC_alloc (tree, heap, num_fields);
2922 node.count = 0;
2924 VEC_safe_push (structure, heap, structures, &node);
2926 if (dump_file)
2928 fprintf (dump_file, "\nAdding data structure \"");
2929 print_generic_expr (dump_file, type, 0);
2930 fprintf (dump_file, "\" to data_struct_list.");
2934 /* This function adds an allocation site to alloc_sites hashtable.
2935 The allocation site appears in STMT of function FN_DECL and
2936 allocates the structure represented by STR. */
2938 static void
2939 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
2941 fallocs_t fallocs = NULL;
2942 alloc_site_t m_call;
2944 m_call.stmt = stmt;
2945 m_call.str = str;
2947 fallocs =
2948 (fallocs_t) htab_find_with_hash (alloc_sites,
2949 fn_decl, htab_hash_pointer (fn_decl));
2951 if (!fallocs)
2953 void **slot;
2955 fallocs = (fallocs_t)
2956 xmalloc (sizeof (struct func_alloc_sites));
2957 fallocs->func = fn_decl;
2958 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
2959 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
2960 htab_hash_pointer (fn_decl), INSERT);
2961 *slot = fallocs;
2963 VEC_safe_push (alloc_site_t, heap,
2964 fallocs->allocs, &m_call);
2966 if (dump_file)
2968 fprintf (dump_file, "\nAdding stmt ");
2969 print_gimple_stmt (dump_file, stmt, 0, 0);
2970 fprintf (dump_file, " to list of mallocs.");
2974 /* This function returns true if the result of STMT, that contains a call
2975 to an allocation function, is cast to one of the structure types.
2976 STMT should be of the form: T.2 = <alloc_func> (T.1);
2977 If true, I_P contains an index of an allocated structure.
2978 Otherwise I_P contains the length of the vector of structures. */
2980 static bool
2981 is_alloc_of_struct (gimple stmt, unsigned *i_p)
2983 tree lhs;
2984 tree type;
2985 gimple final_stmt;
2987 final_stmt = get_final_alloc_stmt (stmt);
2989 if (!final_stmt)
2990 return false;
2992 /* final_stmt should be of the form:
2993 T.3 = (struct_type *) T.2; */
2995 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
2996 return false;
2998 lhs = gimple_assign_lhs (final_stmt);
3000 type = get_type_of_var (lhs);
3002 if (!type)
3003 return false;
3005 if (!POINTER_TYPE_P (type)
3006 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3007 return false;
3009 *i_p = find_structure (strip_type (type));
3011 if (*i_p == VEC_length (structure, structures))
3012 return false;
3014 return true;
3017 /* This function prints non-field and field accesses
3018 of the structure STR. */
3020 static void
3021 dump_accs (d_str str)
3023 int i;
3025 fprintf (dump_file, "\nAccess sites of struct ");
3026 print_generic_expr (dump_file, str->decl, 0);
3028 for (i = 0; i < str->num_fields; i++)
3030 fprintf (dump_file, "\nAccess site of field ");
3031 print_generic_expr (dump_file, str->fields[i].decl, 0);
3032 dump_field_acc_sites (str->fields[i].acc_sites);
3033 fprintf (dump_file, ":\n");
3035 fprintf (dump_file, "\nGeneral access sites\n");
3036 dump_access_sites (str->accs);
3039 /* This function checks whether an access statement, pointed by SLOT,
3040 is a condition we are capable to transform. It returns false if not,
3041 setting bool *DATA to false. */
3043 static int
3044 safe_cond_expr_check (void **slot, void *data)
3046 struct access_site *acc = *(struct access_site **) slot;
3048 if (gimple_code (acc->stmt) == GIMPLE_COND
3049 && !is_safe_cond_expr (acc->stmt))
3051 if (dump_file)
3053 fprintf (dump_file, "\nUnsafe conditional statement ");
3054 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3056 *(bool *) data = false;
3057 return 0;
3059 return 1;
3062 /* This function excludes statements that are part of allocation sites and
3063 field accesses from the hashtable of general accesses of the structure
3064 type STR. Only accesses that belong to the function represented by
3065 NODE are treated. */
3067 static void
3068 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3070 struct exclude_data dt;
3071 dt.str = str;
3072 dt.fn_decl = node->decl;
3074 if (dt.str->accs)
3075 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3078 /* Collect accesses to the structure types that appear in basic block BB. */
3080 static void
3081 collect_accesses_in_bb (basic_block bb)
3083 gimple_stmt_iterator bsi;
3084 struct walk_stmt_info wi;
3086 memset (&wi, 0, sizeof (wi));
3088 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3090 gimple stmt = gsi_stmt (bsi);
3092 /* In asm stmt we cannot always track the arguments,
3093 so we just give up. */
3094 if (gimple_code (stmt) == GIMPLE_ASM)
3096 free_structures ();
3097 break;
3100 wi.info = (void *) stmt;
3101 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3105 /* This function generates cluster substructure that contains FIELDS.
3106 The cluster added to the set of clusters of the structure STR. */
3108 static void
3109 gen_cluster (sbitmap fields, d_str str)
3111 struct field_cluster *crr_cluster = NULL;
3113 crr_cluster =
3114 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3115 crr_cluster->sibling = str->struct_clustering;
3116 str->struct_clustering = crr_cluster;
3117 crr_cluster->fields_in_cluster = fields;
3120 /* This function peels a field with the index I from the structure DS. */
3122 static void
3123 peel_field (int i, d_str ds)
3125 struct field_cluster *crr_cluster = NULL;
3127 crr_cluster =
3128 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3129 crr_cluster->sibling = ds->struct_clustering;
3130 ds->struct_clustering = crr_cluster;
3131 crr_cluster->fields_in_cluster =
3132 sbitmap_alloc ((unsigned int) ds->num_fields);
3133 sbitmap_zero (crr_cluster->fields_in_cluster);
3134 SET_BIT (crr_cluster->fields_in_cluster, i);
3137 /* This function calculates maximum field count in
3138 the structure STR. */
3140 static gcov_type
3141 get_max_field_count (d_str str)
3143 gcov_type max = 0;
3144 int i;
3146 for (i = 0; i < str->num_fields; i++)
3147 if (str->fields[i].count > max)
3148 max = str->fields[i].count;
3150 return max;
3153 /* Do struct-reorg transformation for individual function
3154 represented by NODE. All structure types relevant
3155 for this function are transformed. */
3157 static void
3158 do_reorg_for_func (struct cgraph_node *node)
3160 create_new_local_vars ();
3161 create_new_alloc_sites_for_func (node);
3162 create_new_accesses_for_func ();
3163 update_ssa (TODO_update_ssa);
3164 cleanup_tree_cfg ();
3166 /* Free auxiliary data representing local variables. */
3167 free_new_vars_htab (new_local_vars);
3170 /* Print structure TYPE, its name, if it exists, and body.
3171 INDENT defines the level of indentation (similar
3172 to the option -i of indent command). SHIFT parameter
3173 defines a number of spaces by which a structure will
3174 be shifted right. */
3176 static void
3177 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3178 unsigned HOST_WIDE_INT shift)
3180 const char *struct_name;
3181 tree field;
3183 if (!type || !dump_file)
3184 return;
3186 if (TREE_CODE (type) != RECORD_TYPE)
3188 print_generic_expr (dump_file, type, 0);
3189 return;
3192 print_shift (shift);
3193 struct_name = get_type_name (type);
3194 fprintf (dump_file, "struct ");
3195 if (struct_name)
3196 fprintf (dump_file, "%s\n",struct_name);
3197 print_shift (shift);
3198 fprintf (dump_file, "{\n");
3200 for (field = TYPE_FIELDS (type); field;
3201 field = TREE_CHAIN (field))
3203 unsigned HOST_WIDE_INT s = indent;
3204 tree f_type = TREE_TYPE (field);
3206 print_shift (shift);
3207 while (s--)
3208 fprintf (dump_file, " ");
3209 dump_struct_type (f_type, indent, shift + indent);
3210 fprintf(dump_file, " ");
3211 print_generic_expr (dump_file, field, 0);
3212 fprintf(dump_file, ";\n");
3214 print_shift (shift);
3215 fprintf (dump_file, "}\n");
3218 /* This function creates new structure types to replace original type,
3219 indicated by STR->decl. The names of the new structure types are
3220 derived from the original structure type. If the original structure
3221 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3223 static void
3224 create_new_type (d_str str, int *str_num)
3226 int cluster_num = 0;
3228 struct field_cluster *cluster = str->struct_clustering;
3229 while (cluster)
3231 tree name = gen_cluster_name (str->decl, cluster_num,
3232 *str_num);
3233 tree fields;
3234 tree new_type;
3235 cluster_num++;
3237 fields = create_fields (cluster, str->fields,
3238 str->num_fields);
3239 new_type = build_basic_struct (fields, name, str->decl);
3241 update_fields_mapping (cluster, new_type,
3242 str->fields, str->num_fields);
3244 VEC_safe_push (tree, heap, str->new_types, new_type);
3245 cluster = cluster->sibling;
3247 (*str_num)++;
3250 /* This function is a callback for alloc_sites hashtable
3251 traversal. SLOT is a pointer to fallocs_t.
3252 This function frees memory pointed by *SLOT. */
3254 static int
3255 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3257 fallocs_t fallocs = *(fallocs_t *) slot;
3259 VEC_free (alloc_site_t, heap, fallocs->allocs);
3260 free (fallocs);
3261 return 1;
3264 /* Remove structures collected in UNSUITABLE_TYPES
3265 from structures vector. */
3267 static void
3268 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3270 d_str str;
3271 tree type;
3272 unsigned i, j;
3274 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3275 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3276 if (is_equal_types (str->decl, type))
3278 remove_structure (i);
3279 break;
3283 /* Exclude structure types with bitfields.
3284 We would not want to interfere with other optimizations
3285 that can be done in this case. The structure types with
3286 bitfields are added to UNSUITABLE_TYPES vector. */
3288 static void
3289 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3291 d_str str;
3292 unsigned i;
3294 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3295 check_bitfields (str, unsuitable_types);
3298 /* This function checks three types of escape. A structure type escapes:
3300 1. if it's a type of parameter of a local function.
3301 2. if it's a type of function return value.
3302 3. if it escapes as a result of ipa-type-escape analysis.
3304 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3306 static void
3307 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3309 exclude_types_passed_to_local_func (unsuitable_types);
3310 exclude_returned_types (unsuitable_types);
3311 exclude_escaping_types_1 (unsuitable_types);
3314 /* This function analyzes whether the form of
3315 structure is such that we are capable to transform it.
3316 Nested structures are checked here. Unsuitable structure
3317 types are added to UNSUITABLE_TYPE vector. */
3319 static void
3320 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3322 d_str str;
3323 unsigned i;
3325 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3326 check_struct_form (str, unsuitable_types);
3329 /* This function looks for structure types instantiated in the program.
3330 The candidate types are added to the structures vector.
3331 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3333 static void
3334 build_data_structure (VEC (tree, heap) **unsuitable_types)
3336 tree var, type;
3337 tree var_list;
3338 struct varpool_node *current_varpool;
3339 struct cgraph_node *c_node;
3341 /* Check global variables. */
3342 FOR_EACH_STATIC_VARIABLE (current_varpool)
3344 var = current_varpool->decl;
3345 if (is_candidate (var, &type, unsuitable_types))
3346 add_structure (type);
3349 /* Now add structures that are types of function parameters and
3350 local variables. */
3351 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3353 enum availability avail =
3354 cgraph_function_body_availability (c_node);
3356 /* We need AVAIL_AVAILABLE for main function. */
3357 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3359 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3361 for (var = DECL_ARGUMENTS (c_node->decl); var;
3362 var = TREE_CHAIN (var))
3363 if (is_candidate (var, &type, unsuitable_types))
3364 add_structure (type);
3366 /* Check function local variables. */
3367 for (var_list = fn->local_decls; var_list;
3368 var_list = TREE_CHAIN (var_list))
3370 var = TREE_VALUE (var_list);
3372 if (is_candidate (var, &type, unsuitable_types))
3373 add_structure (type);
3379 /* This function returns true if the program contains
3380 a call to user defined allocation function, or other
3381 functions that can interfere with struct-reorg optimizations. */
3383 static bool
3384 program_redefines_malloc_p (void)
3386 struct cgraph_node *c_node;
3387 struct cgraph_node *c_node2;
3388 struct cgraph_edge *c_edge;
3389 tree fndecl;
3390 tree fndecl2;
3392 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3394 fndecl = c_node->decl;
3396 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3398 c_node2 = c_edge->callee;
3399 fndecl2 = c_node2->decl;
3400 if (is_gimple_call (c_edge->call_stmt))
3402 const char * fname = get_name (fndecl2);
3404 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3405 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3406 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3407 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3408 return true;
3410 /* Check that there is no __builtin_object_size,
3411 __builtin_offsetof, or realloc's in the program. */
3412 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3413 || !strcmp (fname, "__builtin_offsetof")
3414 || !strcmp (fname, "realloc"))
3415 return true;
3420 return false;
3423 /* In this function we assume that an allocation statement
3425 var = (type_cast) malloc (size);
3427 is converted into the following set of statements:
3429 T.1 = size;
3430 T.2 = malloc (T.1);
3431 T.3 = (type_cast) T.2;
3432 var = T.3;
3434 In this function we collect into alloc_sites the allocation
3435 sites of variables of structure types that are present
3436 in structures vector. */
3438 static void
3439 collect_alloc_sites (void)
3441 struct cgraph_node *node;
3442 struct cgraph_edge *cs;
3444 for (node = cgraph_nodes; node; node = node->next)
3445 if (node->analyzed && node->decl)
3447 for (cs = node->callees; cs; cs = cs->next_callee)
3449 gimple stmt = cs->call_stmt;
3451 if (stmt)
3453 tree decl;
3455 if (is_gimple_call (stmt)
3456 && (decl = gimple_call_fndecl (stmt))
3457 && gimple_call_lhs (stmt))
3459 unsigned i;
3461 if (is_alloc_of_struct (stmt, &i))
3463 /* We support only malloc now. */
3464 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3466 d_str str;
3468 str = VEC_index (structure, structures, i);
3469 add_alloc_site (node->decl, stmt, str);
3471 else
3473 if (dump_file)
3475 fprintf (dump_file,
3476 "\nUnsupported allocation function ");
3477 print_gimple_stmt (dump_file, stmt, 0, 0);
3479 remove_structure (i);
3488 /* Print collected accesses. */
3490 static void
3491 dump_accesses (void)
3493 d_str str;
3494 unsigned i;
3496 if (!dump_file)
3497 return;
3499 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3500 dump_accs (str);
3503 /* This function checks whether the accesses of structures in condition
3504 expressions are of the kind we are capable to transform.
3505 If not, such structures are removed from the vector of structures. */
3507 static void
3508 check_cond_exprs (void)
3510 d_str str;
3511 unsigned i;
3513 i = 0;
3514 while (VEC_iterate (structure, structures, i, str))
3516 bool safe_p = true;
3518 if (str->accs)
3519 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3520 if (!safe_p)
3521 remove_structure (i);
3522 else
3523 i++;
3527 /* We exclude from non-field accesses of the structure
3528 all statements that will be treated as part of the structure
3529 allocation sites or field accesses. */
3531 static void
3532 exclude_alloc_and_field_accs (struct cgraph_node *node)
3534 d_str str;
3535 unsigned i;
3537 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3538 exclude_alloc_and_field_accs_1 (str, node);
3541 /* This function collects accesses of the fields of the structures
3542 that appear at function FN. */
3544 static void
3545 collect_accesses_in_func (struct function *fn)
3547 basic_block bb;
3549 if (! fn)
3550 return;
3552 /* Collect accesses for each basic blocks separately. */
3553 FOR_EACH_BB_FN (bb, fn)
3554 collect_accesses_in_bb (bb);
3557 /* This function summarizes counts of the fields into the structure count. */
3559 static void
3560 sum_counts (d_str str, gcov_type *hottest)
3562 int i;
3564 str->count = 0;
3565 for (i = 0; i < str->num_fields; i++)
3567 if (dump_file)
3569 fprintf (dump_file, "\nCounter of field \"");
3570 print_generic_expr (dump_file, str->fields[i].decl, 0);
3571 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3572 str->fields[i].count);
3574 str->count += str->fields[i].count;
3577 if (dump_file)
3579 fprintf (dump_file, "\nCounter of struct \"");
3580 print_generic_expr (dump_file, str->decl, 0);
3581 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3584 if (str->count > *hottest)
3585 *hottest = str->count;
3588 /* This function peels the field into separate structure if it's
3589 sufficiently hot, i.e. if its count provides at least 90% of
3590 the maximum field count in the structure. */
3592 static void
3593 peel_hot_fields (d_str str)
3595 gcov_type max_field_count;
3596 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3597 int i;
3599 sbitmap_ones (fields_left);
3600 max_field_count =
3601 (gcov_type) (get_max_field_count (str)/100)*90;
3603 str->struct_clustering = NULL;
3605 for (i = 0; i < str->num_fields; i++)
3607 if (str->count >= max_field_count)
3609 RESET_BIT (fields_left, i);
3610 peel_field (i, str);
3614 i = sbitmap_first_set_bit (fields_left);
3615 if (i != -1)
3616 gen_cluster (fields_left, str);
3617 else
3618 sbitmap_free (fields_left);
3621 /* This function is a helper for do_reorg. It goes over
3622 functions in call graph and performs actual transformation
3623 on them. */
3625 static void
3626 do_reorg_1 (void)
3628 struct cgraph_node *node;
3630 /* Initialize the default bitmap obstack. */
3631 bitmap_obstack_initialize (NULL);
3633 for (node = cgraph_nodes; node; node = node->next)
3634 if (node->analyzed && node->decl && !node->next_clone)
3636 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3637 current_function_decl = node->decl;
3638 if (dump_file)
3639 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3640 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3641 do_reorg_for_func (node);
3642 free_dominance_info (CDI_DOMINATORS);
3643 free_dominance_info (CDI_POST_DOMINATORS);
3644 current_function_decl = NULL;
3645 pop_cfun ();
3648 set_cfun (NULL);
3649 bitmap_obstack_release (NULL);
3652 /* This function creates new global struct variables.
3653 For each original variable, the set of new variables
3654 is created with the new structure types corresponding
3655 to the structure type of original variable.
3656 Only VAR_DECL variables are treated by this function. */
3658 static void
3659 create_new_global_vars (void)
3661 struct varpool_node *current_varpool;
3662 unsigned HOST_WIDE_INT i;
3663 unsigned HOST_WIDE_INT varpool_size = 0;
3665 for (i = 0; i < 2; i++)
3667 if (i)
3668 new_global_vars = htab_create (varpool_size,
3669 new_var_hash, new_var_eq, NULL);
3670 FOR_EACH_STATIC_VARIABLE(current_varpool)
3672 tree var_decl = current_varpool->decl;
3674 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3675 continue;
3676 if (!i)
3677 varpool_size++;
3678 else
3679 create_new_var (var_decl, new_global_vars);
3683 if (new_global_vars)
3684 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3687 /* Dump all new types generated by this optimization. */
3689 static void
3690 dump_new_types (void)
3692 d_str str;
3693 tree type;
3694 unsigned i, j;
3696 if (!dump_file)
3697 return;
3699 fprintf (dump_file, "\nThe following are the new types generated by"
3700 " this optimization:\n");
3702 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3704 if (dump_file)
3706 fprintf (dump_file, "\nFor type ");
3707 dump_struct_type (str->decl, 2, 0);
3708 fprintf (dump_file, "\nthe number of new types is %d\n",
3709 VEC_length (tree, str->new_types));
3711 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3712 dump_struct_type (type, 2, 0);
3716 /* This function creates new types to replace old structure types. */
3718 static void
3719 create_new_types (void)
3721 d_str str;
3722 unsigned i;
3723 int str_num = 0;
3725 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3726 create_new_type (str, &str_num);
3729 /* Free allocation sites hashtable. */
3731 static void
3732 free_alloc_sites (void)
3734 if (alloc_sites)
3735 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3736 htab_delete (alloc_sites);
3737 alloc_sites = NULL;
3740 /* This function collects structures potential
3741 for peeling transformation, and inserts
3742 them into structures hashtable. */
3744 static void
3745 collect_structures (void)
3747 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3749 structures = VEC_alloc (structure, heap, 32);
3751 /* If program contains user defined mallocs, we give up. */
3752 if (program_redefines_malloc_p ())
3753 return;
3755 /* Build data structures hashtable of all data structures
3756 in the program. */
3757 build_data_structure (&unsuitable_types);
3759 /* This function analyzes whether the form of
3760 structure is such that we are capable to transform it.
3761 Nested structures are checked here. */
3762 analyze_struct_form (&unsuitable_types);
3764 /* This function excludes those structure types
3765 that escape compilation unit. */
3766 exclude_escaping_types (&unsuitable_types);
3768 /* We do not want to change data layout of the structures with bitfields. */
3769 exclude_types_with_bit_fields (&unsuitable_types);
3771 remove_unsuitable_types (unsuitable_types);
3772 VEC_free (tree, heap, unsuitable_types);
3775 /* Collect structure allocation sites. In case of arrays
3776 we have nothing to do. */
3778 static void
3779 collect_allocation_sites (void)
3781 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3782 collect_alloc_sites ();
3785 /* This function collects data accesses for the
3786 structures to be transformed. For each structure
3787 field it updates the count field in field_entry. */
3789 static void
3790 collect_data_accesses (void)
3792 struct cgraph_node *c_node;
3794 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3796 enum availability avail = cgraph_function_body_availability (c_node);
3798 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3800 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3802 if (!c_node->next_clone)
3803 collect_accesses_in_func (func);
3804 exclude_alloc_and_field_accs (c_node);
3808 check_cond_exprs ();
3809 /* Print collected accesses. */
3810 dump_accesses ();
3813 /* We do not bother to transform cold structures.
3814 Coldness of the structure is defined relatively
3815 to the highest structure count among the structures
3816 to be transformed. It's triggered by the compiler parameter
3818 --param struct-reorg-cold-struct-ratio=<value>
3820 where <value> ranges from 0 to 100. Structures with count ratios
3821 that are less than this parameter are considered to be cold. */
3823 static void
3824 exclude_cold_structs (void)
3826 gcov_type hottest = 0;
3827 unsigned i;
3828 d_str str;
3830 /* We summarize counts of fields of a structure into the structure count. */
3831 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3832 sum_counts (str, &hottest);
3834 /* Remove cold structures from structures vector. */
3835 i = 0;
3836 while (VEC_iterate (structure, structures, i, str))
3837 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3839 if (dump_file)
3841 fprintf (dump_file, "\nThe structure ");
3842 print_generic_expr (dump_file, str->decl, 0);
3843 fprintf (dump_file, " is cold.");
3845 remove_structure (i);
3847 else
3848 i++;
3851 /* This function decomposes original structure into substructures,
3852 i.e.clusters. */
3854 static void
3855 peel_structs (void)
3857 d_str str;
3858 unsigned i;
3860 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3861 peel_hot_fields (str);
3864 /* Stage 3. */
3865 /* Do the actual transformation for each structure
3866 from the structures hashtable. */
3868 static void
3869 do_reorg (void)
3871 /* Check that there is a work to do. */
3872 if (!VEC_length (structure, structures))
3874 if (dump_file)
3875 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3876 return;
3878 else
3880 if (dump_file)
3882 fprintf (dump_file, "\nNumber of structures to transform is %d",
3883 VEC_length (structure, structures));
3887 /* Generate new types. */
3888 create_new_types ();
3889 dump_new_types ();
3891 /* Create new global variables. */
3892 create_new_global_vars ();
3893 dump_new_vars (new_global_vars);
3895 /* Decompose structures for each function separately. */
3896 do_reorg_1 ();
3898 /* Free auxiliary data collected for global variables. */
3899 free_new_vars_htab (new_global_vars);
3902 /* Free all auxiliary data used by this optimization. */
3904 static void
3905 free_data_structs (void)
3907 free_structures ();
3908 free_alloc_sites ();
3911 /* Perform structure decomposition (peeling). */
3913 static void
3914 reorg_structs (void)
3917 /* Stage1. */
3918 /* Collect structure types. */
3919 collect_structures ();
3921 /* Collect structure allocation sites. */
3922 collect_allocation_sites ();
3924 /* Collect structure accesses. */
3925 collect_data_accesses ();
3927 /* We transform only hot structures. */
3928 exclude_cold_structs ();
3930 /* Stage2. */
3931 /* Decompose structures into substructures, i.e. clusters. */
3932 peel_structs ();
3934 /* Stage3. */
3935 /* Do the actual transformation for each structure
3936 from the structures hashtable. */
3937 do_reorg ();
3939 /* Free all auxiliary data used by this optimization. */
3940 free_data_structs ();
3943 /* Struct-reorg optimization entry point function. */
3945 static unsigned int
3946 reorg_structs_drive (void)
3948 reorg_structs ();
3949 return 0;
3952 /* Struct-reorg optimization gate function. */
3954 static bool
3955 struct_reorg_gate (void)
3957 return flag_ipa_struct_reorg
3958 && flag_whole_program
3959 && (optimize > 0);
3962 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
3965 SIMPLE_IPA_PASS,
3966 "ipa_struct_reorg", /* name */
3967 struct_reorg_gate, /* gate */
3968 reorg_structs_drive, /* execute */
3969 NULL, /* sub */
3970 NULL, /* next */
3971 0, /* static_pass_number */
3972 TV_INTEGRATION, /* tv_id */
3973 0, /* properties_required */
3974 0, /* properties_provided */
3975 0, /* properties_destroyed */
3976 TODO_verify_ssa, /* todo_flags_start */
3977 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */