Merge from trunk @ 138209
[official-gcc.git] / gcc / gcse.c
blob008544f0f64dda4eb84ab02e3595b42cab682306
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
30 - ability to realloc sbitmap vectors would allow one initial computation
31 of reg_set_in_block with only subsequent additions, rather than
32 recomputing it for each pass
36 /* References searched while implementing this.
38 Compilers Principles, Techniques and Tools
39 Aho, Sethi, Ullman
40 Addison-Wesley, 1988
42 Global Optimization by Suppression of Partial Redundancies
43 E. Morel, C. Renvoise
44 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46 A Portable Machine-Independent Global Optimizer - Design and Measurements
47 Frederick Chow
48 Stanford Ph.D. thesis, Dec. 1983
50 A Fast Algorithm for Code Movement Optimization
51 D.M. Dhamdhere
52 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54 A Solution to a Problem with Morel and Renvoise's
55 Global Optimization by Suppression of Partial Redundancies
56 K-H Drechsler, M.P. Stadel
57 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59 Practical Adaptation of the Global Optimization
60 Algorithm of Morel and Renvoise
61 D.M. Dhamdhere
62 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64 Efficiently Computing Static Single Assignment Form and the Control
65 Dependence Graph
66 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
67 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69 Lazy Code Motion
70 J. Knoop, O. Ruthing, B. Steffen
71 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
74 Time for Reducible Flow Control
75 Thomas Ball
76 ACM Letters on Programming Languages and Systems,
77 Vol. 2, Num. 1-4, Mar-Dec 1993
79 An Efficient Representation for Sparse Sets
80 Preston Briggs, Linda Torczon
81 ACM Letters on Programming Languages and Systems,
82 Vol. 2, Num. 1-4, Mar-Dec 1993
84 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
85 K-H Drechsler, M.P. Stadel
86 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88 Partial Dead Code Elimination
89 J. Knoop, O. Ruthing, B. Steffen
90 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 Effective Partial Redundancy Elimination
93 P. Briggs, K.D. Cooper
94 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 The Program Structure Tree: Computing Control Regions in Linear Time
97 R. Johnson, D. Pearson, K. Pingali
98 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100 Optimal Code Motion: Theory and Practice
101 J. Knoop, O. Ruthing, B. Steffen
102 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104 The power of assignment motion
105 J. Knoop, O. Ruthing, B. Steffen
106 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 Global code motion / global value numbering
109 C. Click
110 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112 Value Driven Redundancy Elimination
113 L.T. Simpson
114 Rice University Ph.D. thesis, Apr. 1996
116 Value Numbering
117 L.T. Simpson
118 Massively Scalar Compiler Project, Rice University, Sep. 1996
120 High Performance Compilers for Parallel Computing
121 Michael Wolfe
122 Addison-Wesley, 1996
124 Advanced Compiler Design and Implementation
125 Steven Muchnick
126 Morgan Kaufmann, 1997
128 Building an Optimizing Compiler
129 Robert Morgan
130 Digital Press, 1998
132 People wishing to speed up the code here should read:
133 Elimination Algorithms for Data Flow Analysis
134 B.G. Ryder, M.C. Paull
135 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137 How to Analyze Large Programs Efficiently and Informatively
138 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
139 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141 People wishing to do something different can find various possibilities
142 in the above papers and elsewhere.
145 #include "config.h"
146 #include "system.h"
147 #include "coretypes.h"
148 #include "tm.h"
149 #include "toplev.h"
151 #include "rtl.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
168 #include "intl.h"
169 #include "obstack.h"
170 #include "timevar.h"
171 #include "tree-pass.h"
172 #include "hashtab.h"
173 #include "df.h"
174 #include "dbgcnt.h"
176 /* Propagate flow information through back edges and thus enable PRE's
177 moving loop invariant calculations out of loops.
179 Originally this tended to create worse overall code, but several
180 improvements during the development of PRE seem to have made following
181 back edges generally a win.
183 Note much of the loop invariant code motion done here would normally
184 be done by loop.c, which has more heuristics for when to move invariants
185 out of loops. At some point we might need to move some of those
186 heuristics into gcse.c. */
188 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
189 are a superset of those done by GCSE.
191 We perform the following steps:
193 1) Compute basic block information.
195 2) Compute table of places where registers are set.
197 3) Perform copy/constant propagation.
199 4) Perform global cse using lazy code motion if not optimizing
200 for size, or code hoisting if we are.
202 5) Perform another pass of copy/constant propagation.
204 Two passes of copy/constant propagation are done because the first one
205 enables more GCSE and the second one helps to clean up the copies that
206 GCSE creates. This is needed more for PRE than for Classic because Classic
207 GCSE will try to use an existing register containing the common
208 subexpression rather than create a new one. This is harder to do for PRE
209 because of the code motion (which Classic GCSE doesn't do).
211 Expressions we are interested in GCSE-ing are of the form
212 (set (pseudo-reg) (expression)).
213 Function want_to_gcse_p says what these are.
215 PRE handles moving invariant expressions out of loops (by treating them as
216 partially redundant).
218 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
219 assignment) based GVN (global value numbering). L. T. Simpson's paper
220 (Rice University) on value numbering is a useful reference for this.
222 **********************
224 We used to support multiple passes but there are diminishing returns in
225 doing so. The first pass usually makes 90% of the changes that are doable.
226 A second pass can make a few more changes made possible by the first pass.
227 Experiments show any further passes don't make enough changes to justify
228 the expense.
230 A study of spec92 using an unlimited number of passes:
231 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
232 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
233 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
235 It was found doing copy propagation between each pass enables further
236 substitutions.
238 PRE is quite expensive in complicated functions because the DFA can take
239 a while to converge. Hence we only perform one pass. The parameter
240 max-gcse-passes can be modified if one wants to experiment.
242 **********************
244 The steps for PRE are:
246 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
248 2) Perform the data flow analysis for PRE.
250 3) Delete the redundant instructions
252 4) Insert the required copies [if any] that make the partially
253 redundant instructions fully redundant.
255 5) For other reaching expressions, insert an instruction to copy the value
256 to a newly created pseudo that will reach the redundant instruction.
258 The deletion is done first so that when we do insertions we
259 know which pseudo reg to use.
261 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
262 argue it is not. The number of iterations for the algorithm to converge
263 is typically 2-4 so I don't view it as that expensive (relatively speaking).
265 PRE GCSE depends heavily on the second CSE pass to clean up the copies
266 we create. To make an expression reach the place where it's redundant,
267 the result of the expression is copied to a new register, and the redundant
268 expression is deleted by replacing it with this new register. Classic GCSE
269 doesn't have this problem as much as it computes the reaching defs of
270 each register in each block and thus can try to use an existing
271 register. */
273 /* GCSE global vars. */
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
283 /* An obstack for our working variables. */
284 static struct obstack gcse_obstack;
286 struct reg_use {rtx reg_rtx; };
288 /* Hash table of expressions. */
290 struct expr
292 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
293 rtx expr;
294 /* Index in the available expression bitmaps. */
295 int bitmap_index;
296 /* Next entry with the same hash. */
297 struct expr *next_same_hash;
298 /* List of anticipatable occurrences in basic blocks in the function.
299 An "anticipatable occurrence" is one that is the first occurrence in the
300 basic block, the operands are not modified in the basic block prior
301 to the occurrence and the output is not used between the start of
302 the block and the occurrence. */
303 struct occr *antic_occr;
304 /* List of available occurrence in basic blocks in the function.
305 An "available occurrence" is one that is the last occurrence in the
306 basic block and the operands are not modified by following statements in
307 the basic block [including this insn]. */
308 struct occr *avail_occr;
309 /* Non-null if the computation is PRE redundant.
310 The value is the newly created pseudo-reg to record a copy of the
311 expression in all the places that reach the redundant copy. */
312 rtx reaching_reg;
315 /* Occurrence of an expression.
316 There is one per basic block. If a pattern appears more than once the
317 last appearance is used [or first for anticipatable expressions]. */
319 struct occr
321 /* Next occurrence of this expression. */
322 struct occr *next;
323 /* The insn that computes the expression. */
324 rtx insn;
325 /* Nonzero if this [anticipatable] occurrence has been deleted. */
326 char deleted_p;
327 /* Nonzero if this [available] occurrence has been copied to
328 reaching_reg. */
329 /* ??? This is mutually exclusive with deleted_p, so they could share
330 the same byte. */
331 char copied_p;
334 /* Expression and copy propagation hash tables.
335 Each hash table is an array of buckets.
336 ??? It is known that if it were an array of entries, structure elements
337 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
338 not clear whether in the final analysis a sufficient amount of memory would
339 be saved as the size of the available expression bitmaps would be larger
340 [one could build a mapping table without holes afterwards though].
341 Someday I'll perform the computation and figure it out. */
343 struct hash_table
345 /* The table itself.
346 This is an array of `expr_hash_table_size' elements. */
347 struct expr **table;
349 /* Size of the hash table, in elements. */
350 unsigned int size;
352 /* Number of hash table elements. */
353 unsigned int n_elems;
355 /* Whether the table is expression of copy propagation one. */
356 int set_p;
359 /* Expression hash table. */
360 static struct hash_table expr_hash_table;
362 /* Copy propagation hash table. */
363 static struct hash_table set_hash_table;
365 /* Mapping of uids to cuids.
366 Only real insns get cuids. */
367 static int *uid_cuid;
369 /* Highest UID in UID_CUID. */
370 static int max_uid;
372 /* Get the cuid of an insn. */
373 #ifdef ENABLE_CHECKING
374 #define INSN_CUID(INSN) \
375 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
376 #else
377 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
378 #endif
380 /* Number of cuids. */
381 static int max_cuid;
383 /* Maximum register number in function prior to doing gcse + 1.
384 Registers created during this pass have regno >= max_gcse_regno.
385 This is named with "gcse" to not collide with global of same name. */
386 static unsigned int max_gcse_regno;
388 /* Table of registers that are modified.
390 For each register, each element is a list of places where the pseudo-reg
391 is set.
393 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
394 requires knowledge of which blocks kill which regs [and thus could use
395 a bitmap instead of the lists `reg_set_table' uses].
397 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
398 num-regs) [however perhaps it may be useful to keep the data as is]. One
399 advantage of recording things this way is that `reg_set_table' is fairly
400 sparse with respect to pseudo regs but for hard regs could be fairly dense
401 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
402 up functions like compute_transp since in the case of pseudo-regs we only
403 need to iterate over the number of times a pseudo-reg is set, not over the
404 number of basic blocks [clearly there is a bit of a slow down in the cases
405 where a pseudo is set more than once in a block, however it is believed
406 that the net effect is to speed things up]. This isn't done for hard-regs
407 because recording call-clobbered hard-regs in `reg_set_table' at each
408 function call can consume a fair bit of memory, and iterating over
409 hard-regs stored this way in compute_transp will be more expensive. */
411 typedef struct reg_set
413 /* The next setting of this register. */
414 struct reg_set *next;
415 /* The index of the block where it was set. */
416 int bb_index;
417 } reg_set;
419 static reg_set **reg_set_table;
421 /* Size of `reg_set_table'.
422 The table starts out at max_gcse_regno + slop, and is enlarged as
423 necessary. */
424 static int reg_set_table_size;
426 /* Amount to grow `reg_set_table' by when it's full. */
427 #define REG_SET_TABLE_SLOP 100
429 /* This is a list of expressions which are MEMs and will be used by load
430 or store motion.
431 Load motion tracks MEMs which aren't killed by
432 anything except itself. (i.e., loads and stores to a single location).
433 We can then allow movement of these MEM refs with a little special
434 allowance. (all stores copy the same value to the reaching reg used
435 for the loads). This means all values used to store into memory must have
436 no side effects so we can re-issue the setter value.
437 Store Motion uses this structure as an expression table to track stores
438 which look interesting, and might be moveable towards the exit block. */
440 struct ls_expr
442 struct expr * expr; /* Gcse expression reference for LM. */
443 rtx pattern; /* Pattern of this mem. */
444 rtx pattern_regs; /* List of registers mentioned by the mem. */
445 rtx loads; /* INSN list of loads seen. */
446 rtx stores; /* INSN list of stores seen. */
447 struct ls_expr * next; /* Next in the list. */
448 int invalid; /* Invalid for some reason. */
449 int index; /* If it maps to a bitmap index. */
450 unsigned int hash_index; /* Index when in a hash table. */
451 rtx reaching_reg; /* Register to use when re-writing. */
454 /* Array of implicit set patterns indexed by basic block index. */
455 static rtx *implicit_sets;
457 /* Head of the list of load/store memory refs. */
458 static struct ls_expr * pre_ldst_mems = NULL;
460 /* Hashtable for the load/store memory refs. */
461 static htab_t pre_ldst_table = NULL;
463 /* Bitmap containing one bit for each register in the program.
464 Used when performing GCSE to track which registers have been set since
465 the start of the basic block. */
466 static regset reg_set_bitmap;
468 /* For each block, a bitmap of registers set in the block.
469 This is used by compute_transp.
470 It is computed during hash table computation and not by compute_sets
471 as it includes registers added since the last pass (or between cprop and
472 gcse) and it's currently not easy to realloc sbitmap vectors. */
473 static sbitmap *reg_set_in_block;
475 /* Array, indexed by basic block number for a list of insns which modify
476 memory within that block. */
477 static rtx * modify_mem_list;
478 static bitmap modify_mem_list_set;
480 /* This array parallels modify_mem_list, but is kept canonicalized. */
481 static rtx * canon_modify_mem_list;
483 /* Bitmap indexed by block numbers to record which blocks contain
484 function calls. */
485 static bitmap blocks_with_calls;
487 /* Various variables for statistics gathering. */
489 /* Memory used in a pass.
490 This isn't intended to be absolutely precise. Its intent is only
491 to keep an eye on memory usage. */
492 static int bytes_used;
494 /* GCSE substitutions made. */
495 static int gcse_subst_count;
496 /* Number of copy instructions created. */
497 static int gcse_create_count;
498 /* Number of local constants propagated. */
499 static int local_const_prop_count;
500 /* Number of local copies propagated. */
501 static int local_copy_prop_count;
502 /* Number of global constants propagated. */
503 static int global_const_prop_count;
504 /* Number of global copies propagated. */
505 static int global_copy_prop_count;
507 /* For available exprs */
508 static sbitmap *ae_kill, *ae_gen;
510 static void compute_can_copy (void);
511 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
512 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
513 static void *grealloc (void *, size_t);
514 static void *gcse_alloc (unsigned long);
515 static void alloc_gcse_mem (void);
516 static void free_gcse_mem (void);
517 static void alloc_reg_set_mem (int);
518 static void free_reg_set_mem (void);
519 static void record_one_set (int, rtx);
520 static void record_set_info (rtx, const_rtx, void *);
521 static void compute_sets (void);
522 static void hash_scan_insn (rtx, struct hash_table *);
523 static void hash_scan_set (rtx, rtx, struct hash_table *);
524 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
525 static void hash_scan_call (rtx, rtx, struct hash_table *);
526 static int want_to_gcse_p (rtx);
527 static bool can_assign_to_reg_p (rtx);
528 static bool gcse_constant_p (const_rtx);
529 static int oprs_unchanged_p (const_rtx, const_rtx, int);
530 static int oprs_anticipatable_p (const_rtx, const_rtx);
531 static int oprs_available_p (const_rtx, const_rtx);
532 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
533 struct hash_table *);
534 static void insert_set_in_table (rtx, rtx, struct hash_table *);
535 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
536 static unsigned int hash_set (int, int);
537 static int expr_equiv_p (const_rtx, const_rtx);
538 static void record_last_reg_set_info (rtx, int);
539 static void record_last_mem_set_info (rtx);
540 static void record_last_set_info (rtx, const_rtx, void *);
541 static void compute_hash_table (struct hash_table *);
542 static void alloc_hash_table (int, struct hash_table *, int);
543 static void free_hash_table (struct hash_table *);
544 static void compute_hash_table_work (struct hash_table *);
545 static void dump_hash_table (FILE *, const char *, struct hash_table *);
546 static struct expr *lookup_set (unsigned int, struct hash_table *);
547 static struct expr *next_set (unsigned int, struct expr *);
548 static void reset_opr_set_tables (void);
549 static int oprs_not_set_p (const_rtx, const_rtx);
550 static void mark_call (rtx);
551 static void mark_set (rtx, rtx);
552 static void mark_clobber (rtx, rtx);
553 static void mark_oprs_set (rtx);
554 static void alloc_cprop_mem (int, int);
555 static void free_cprop_mem (void);
556 static void compute_transp (const_rtx, int, sbitmap *, int);
557 static void compute_transpout (void);
558 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
559 struct hash_table *);
560 static void compute_cprop_data (void);
561 static void find_used_regs (rtx *, void *);
562 static int try_replace_reg (rtx, rtx, rtx);
563 static struct expr *find_avail_set (int, rtx);
564 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
565 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
566 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
567 static void canon_list_insert (rtx, const_rtx, void *);
568 static int cprop_insn (rtx, int);
569 static int cprop (int);
570 static void find_implicit_sets (void);
571 static int one_cprop_pass (int, bool, bool);
572 static bool constprop_register (rtx, rtx, rtx, bool);
573 static struct expr *find_bypass_set (int, int);
574 static bool reg_killed_on_edge (const_rtx, const_edge);
575 static int bypass_block (basic_block, rtx, rtx);
576 static int bypass_conditional_jumps (void);
577 static void alloc_pre_mem (int, int);
578 static void free_pre_mem (void);
579 static void compute_pre_data (void);
580 static int pre_expr_reaches_here_p (basic_block, struct expr *,
581 basic_block);
582 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
583 static void pre_insert_copy_insn (struct expr *, rtx);
584 static void pre_insert_copies (void);
585 static int pre_delete (void);
586 static int pre_gcse (void);
587 static int one_pre_gcse_pass (int);
588 static void add_label_notes (rtx, rtx);
589 static void alloc_code_hoist_mem (int, int);
590 static void free_code_hoist_mem (void);
591 static void compute_code_hoist_vbeinout (void);
592 static void compute_code_hoist_data (void);
593 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
594 static void hoist_code (void);
595 static int one_code_hoisting_pass (void);
596 static rtx process_insert_insn (struct expr *);
597 static int pre_edge_insert (struct edge_list *, struct expr **);
598 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
599 basic_block, char *);
600 static struct ls_expr * ldst_entry (rtx);
601 static void free_ldst_entry (struct ls_expr *);
602 static void free_ldst_mems (void);
603 static void print_ldst_list (FILE *);
604 static struct ls_expr * find_rtx_in_ldst (rtx);
605 static int enumerate_ldsts (void);
606 static inline struct ls_expr * first_ls_expr (void);
607 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
608 static int simple_mem (const_rtx);
609 static void invalidate_any_buried_refs (rtx);
610 static void compute_ld_motion_mems (void);
611 static void trim_ld_motion_mems (void);
612 static void update_ld_motion_stores (struct expr *);
613 static void reg_set_info (rtx, const_rtx, void *);
614 static void reg_clear_last_set (rtx, const_rtx, void *);
615 static bool store_ops_ok (const_rtx, int *);
616 static rtx extract_mentioned_regs (rtx);
617 static rtx extract_mentioned_regs_helper (rtx, rtx);
618 static void find_moveable_store (rtx, int *, int *);
619 static int compute_store_table (void);
620 static bool load_kills_store (const_rtx, const_rtx, int);
621 static bool find_loads (const_rtx, const_rtx, int);
622 static bool store_killed_in_insn (const_rtx, const_rtx, const_rtx, int);
623 static bool store_killed_after (const_rtx, const_rtx, const_rtx, const_basic_block, int *, rtx *);
624 static bool store_killed_before (const_rtx, const_rtx, const_rtx, const_basic_block, int *);
625 static void build_store_vectors (void);
626 static void insert_insn_start_basic_block (rtx, basic_block);
627 static int insert_store (struct ls_expr *, edge);
628 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
629 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
630 static void delete_store (struct ls_expr *, basic_block);
631 static void free_store_memory (void);
632 static void store_motion (void);
633 static void free_insn_expr_list_list (rtx *);
634 static void clear_modify_mem_tables (void);
635 static void free_modify_mem_tables (void);
636 static rtx gcse_emit_move_after (rtx, rtx, rtx);
637 static void local_cprop_find_used_regs (rtx *, void *);
638 static bool do_local_cprop (rtx, rtx, bool);
639 static void local_cprop_pass (bool);
640 static bool is_too_expensive (const char *);
642 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
643 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
645 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
646 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
647 #define GRESIZEVEC(T, P, N) ((T *) grealloc ((void *) (P), sizeof (T) * (N)))
649 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
650 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
651 #define GRESIZEVAR(T, P, S) ((T *) grealloc ((P), (S)))
653 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
654 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
657 /* Entry point for global common subexpression elimination.
658 F is the first instruction in the function. Return nonzero if a
659 change is mode. */
661 static int
662 gcse_main (rtx f ATTRIBUTE_UNUSED)
664 int changed, pass;
665 /* Bytes used at start of pass. */
666 int initial_bytes_used;
667 /* Maximum number of bytes used by a pass. */
668 int max_pass_bytes;
669 /* Point to release obstack data from for each pass. */
670 char *gcse_obstack_bottom;
672 /* We do not construct an accurate cfg in functions which call
673 setjmp, so just punt to be safe. */
674 if (cfun->calls_setjmp)
675 return 0;
677 /* Assume that we do not need to run jump optimizations after gcse. */
678 run_jump_opt_after_gcse = 0;
680 /* Identify the basic block information for this function, including
681 successors and predecessors. */
682 max_gcse_regno = max_reg_num ();
684 df_note_add_problem ();
685 df_analyze ();
687 if (dump_file)
688 dump_flow_info (dump_file, dump_flags);
690 /* Return if there's nothing to do, or it is too expensive. */
691 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
692 || is_too_expensive (_("GCSE disabled")))
693 return 0;
695 gcc_obstack_init (&gcse_obstack);
696 bytes_used = 0;
698 /* We need alias. */
699 init_alias_analysis ();
700 /* Record where pseudo-registers are set. This data is kept accurate
701 during each pass. ??? We could also record hard-reg information here
702 [since it's unchanging], however it is currently done during hash table
703 computation.
705 It may be tempting to compute MEM set information here too, but MEM sets
706 will be subject to code motion one day and thus we need to compute
707 information about memory sets when we build the hash tables. */
709 alloc_reg_set_mem (max_gcse_regno);
710 compute_sets ();
712 pass = 0;
713 initial_bytes_used = bytes_used;
714 max_pass_bytes = 0;
715 gcse_obstack_bottom = GOBNEWVAR (char, 1);
716 changed = 1;
717 while (changed && pass < MAX_GCSE_PASSES)
719 changed = 0;
720 if (dump_file)
721 fprintf (dump_file, "GCSE pass %d\n\n", pass + 1);
723 /* Initialize bytes_used to the space for the pred/succ lists,
724 and the reg_set_table data. */
725 bytes_used = initial_bytes_used;
727 /* Each pass may create new registers, so recalculate each time. */
728 max_gcse_regno = max_reg_num ();
730 alloc_gcse_mem ();
732 /* Don't allow constant propagation to modify jumps
733 during this pass. */
734 if (dbg_cnt (cprop1))
736 timevar_push (TV_CPROP1);
737 changed = one_cprop_pass (pass + 1, false, false);
738 timevar_pop (TV_CPROP1);
741 if (optimize_size)
742 /* Do nothing. */ ;
743 else
745 timevar_push (TV_PRE);
746 changed |= one_pre_gcse_pass (pass + 1);
747 /* We may have just created new basic blocks. Release and
748 recompute various things which are sized on the number of
749 basic blocks. */
750 if (changed)
752 free_modify_mem_tables ();
753 modify_mem_list = GCNEWVEC (rtx, last_basic_block);
754 canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
756 free_reg_set_mem ();
757 alloc_reg_set_mem (max_reg_num ());
758 compute_sets ();
759 run_jump_opt_after_gcse = 1;
760 timevar_pop (TV_PRE);
763 if (max_pass_bytes < bytes_used)
764 max_pass_bytes = bytes_used;
766 /* Free up memory, then reallocate for code hoisting. We can
767 not re-use the existing allocated memory because the tables
768 will not have info for the insns or registers created by
769 partial redundancy elimination. */
770 free_gcse_mem ();
772 /* It does not make sense to run code hoisting unless we are optimizing
773 for code size -- it rarely makes programs faster, and can make
774 them bigger if we did partial redundancy elimination (when optimizing
775 for space, we don't run the partial redundancy algorithms). */
776 if (optimize_size)
778 timevar_push (TV_HOIST);
779 max_gcse_regno = max_reg_num ();
780 alloc_gcse_mem ();
781 changed |= one_code_hoisting_pass ();
782 free_gcse_mem ();
784 if (max_pass_bytes < bytes_used)
785 max_pass_bytes = bytes_used;
786 timevar_pop (TV_HOIST);
789 if (dump_file)
791 fprintf (dump_file, "\n");
792 fflush (dump_file);
795 obstack_free (&gcse_obstack, gcse_obstack_bottom);
796 pass++;
799 /* Do one last pass of copy propagation, including cprop into
800 conditional jumps. */
802 if (dbg_cnt (cprop2))
804 max_gcse_regno = max_reg_num ();
805 alloc_gcse_mem ();
807 /* This time, go ahead and allow cprop to alter jumps. */
808 timevar_push (TV_CPROP2);
809 one_cprop_pass (pass + 1, true, true);
810 timevar_pop (TV_CPROP2);
811 free_gcse_mem ();
814 if (dump_file)
816 fprintf (dump_file, "GCSE of %s: %d basic blocks, ",
817 current_function_name (), n_basic_blocks);
818 fprintf (dump_file, "%d pass%s, %d bytes\n\n",
819 pass, pass > 1 ? "es" : "", max_pass_bytes);
822 obstack_free (&gcse_obstack, NULL);
823 free_reg_set_mem ();
825 /* We are finished with alias. */
826 end_alias_analysis ();
828 if (!optimize_size && flag_gcse_sm)
830 timevar_push (TV_LSM);
831 store_motion ();
832 timevar_pop (TV_LSM);
835 /* Record where pseudo-registers are set. */
836 return run_jump_opt_after_gcse;
839 /* Misc. utilities. */
841 /* Nonzero for each mode that supports (set (reg) (reg)).
842 This is trivially true for integer and floating point values.
843 It may or may not be true for condition codes. */
844 static char can_copy[(int) NUM_MACHINE_MODES];
846 /* Compute which modes support reg/reg copy operations. */
848 static void
849 compute_can_copy (void)
851 int i;
852 #ifndef AVOID_CCMODE_COPIES
853 rtx reg, insn;
854 #endif
855 memset (can_copy, 0, NUM_MACHINE_MODES);
857 start_sequence ();
858 for (i = 0; i < NUM_MACHINE_MODES; i++)
859 if (GET_MODE_CLASS (i) == MODE_CC)
861 #ifdef AVOID_CCMODE_COPIES
862 can_copy[i] = 0;
863 #else
864 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
865 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
866 if (recog (PATTERN (insn), insn, NULL) >= 0)
867 can_copy[i] = 1;
868 #endif
870 else
871 can_copy[i] = 1;
873 end_sequence ();
876 /* Returns whether the mode supports reg/reg copy operations. */
878 bool
879 can_copy_p (enum machine_mode mode)
881 static bool can_copy_init_p = false;
883 if (! can_copy_init_p)
885 compute_can_copy ();
886 can_copy_init_p = true;
889 return can_copy[mode] != 0;
892 /* Cover function to xmalloc to record bytes allocated. */
894 static void *
895 gmalloc (size_t size)
897 bytes_used += size;
898 return xmalloc (size);
901 /* Cover function to xcalloc to record bytes allocated. */
903 static void *
904 gcalloc (size_t nelem, size_t elsize)
906 bytes_used += nelem * elsize;
907 return xcalloc (nelem, elsize);
910 /* Cover function to xrealloc.
911 We don't record the additional size since we don't know it.
912 It won't affect memory usage stats much anyway. */
914 static void *
915 grealloc (void *ptr, size_t size)
917 return xrealloc (ptr, size);
920 /* Cover function to obstack_alloc. */
922 static void *
923 gcse_alloc (unsigned long size)
925 bytes_used += size;
926 return obstack_alloc (&gcse_obstack, size);
929 /* Allocate memory for the cuid mapping array,
930 and reg/memory set tracking tables.
932 This is called at the start of each pass. */
934 static void
935 alloc_gcse_mem (void)
937 int i;
938 basic_block bb;
939 rtx insn;
941 /* Find the largest UID and create a mapping from UIDs to CUIDs.
942 CUIDs are like UIDs except they increase monotonically, have no gaps,
943 and only apply to real insns.
944 (Actually, there are gaps, for insn that are not inside a basic block.
945 but we should never see those anyway, so this is OK.) */
947 max_uid = get_max_uid ();
948 uid_cuid = GCNEWVEC (int, max_uid + 1);
949 i = 0;
950 FOR_EACH_BB (bb)
951 FOR_BB_INSNS (bb, insn)
953 if (INSN_P (insn))
954 uid_cuid[INSN_UID (insn)] = i++;
955 else
956 uid_cuid[INSN_UID (insn)] = i;
959 max_cuid = i;
961 /* Allocate vars to track sets of regs. */
962 reg_set_bitmap = BITMAP_ALLOC (NULL);
964 /* Allocate vars to track sets of regs, memory per block. */
965 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
966 /* Allocate array to keep a list of insns which modify memory in each
967 basic block. */
968 modify_mem_list = GCNEWVEC (rtx, last_basic_block);
969 canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
970 modify_mem_list_set = BITMAP_ALLOC (NULL);
971 blocks_with_calls = BITMAP_ALLOC (NULL);
974 /* Free memory allocated by alloc_gcse_mem. */
976 static void
977 free_gcse_mem (void)
979 free (uid_cuid);
981 BITMAP_FREE (reg_set_bitmap);
983 sbitmap_vector_free (reg_set_in_block);
984 free_modify_mem_tables ();
985 BITMAP_FREE (modify_mem_list_set);
986 BITMAP_FREE (blocks_with_calls);
989 /* Compute the local properties of each recorded expression.
991 Local properties are those that are defined by the block, irrespective of
992 other blocks.
994 An expression is transparent in a block if its operands are not modified
995 in the block.
997 An expression is computed (locally available) in a block if it is computed
998 at least once and expression would contain the same value if the
999 computation was moved to the end of the block.
1001 An expression is locally anticipatable in a block if it is computed at
1002 least once and expression would contain the same value if the computation
1003 was moved to the beginning of the block.
1005 We call this routine for cprop, pre and code hoisting. They all compute
1006 basically the same information and thus can easily share this code.
1008 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1009 properties. If NULL, then it is not necessary to compute or record that
1010 particular property.
1012 TABLE controls which hash table to look at. If it is set hash table,
1013 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1014 ABSALTERED. */
1016 static void
1017 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1018 struct hash_table *table)
1020 unsigned int i;
1022 /* Initialize any bitmaps that were passed in. */
1023 if (transp)
1025 if (table->set_p)
1026 sbitmap_vector_zero (transp, last_basic_block);
1027 else
1028 sbitmap_vector_ones (transp, last_basic_block);
1031 if (comp)
1032 sbitmap_vector_zero (comp, last_basic_block);
1033 if (antloc)
1034 sbitmap_vector_zero (antloc, last_basic_block);
1036 for (i = 0; i < table->size; i++)
1038 struct expr *expr;
1040 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1042 int indx = expr->bitmap_index;
1043 struct occr *occr;
1045 /* The expression is transparent in this block if it is not killed.
1046 We start by assuming all are transparent [none are killed], and
1047 then reset the bits for those that are. */
1048 if (transp)
1049 compute_transp (expr->expr, indx, transp, table->set_p);
1051 /* The occurrences recorded in antic_occr are exactly those that
1052 we want to set to nonzero in ANTLOC. */
1053 if (antloc)
1054 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1056 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1058 /* While we're scanning the table, this is a good place to
1059 initialize this. */
1060 occr->deleted_p = 0;
1063 /* The occurrences recorded in avail_occr are exactly those that
1064 we want to set to nonzero in COMP. */
1065 if (comp)
1066 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1068 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1070 /* While we're scanning the table, this is a good place to
1071 initialize this. */
1072 occr->copied_p = 0;
1075 /* While we're scanning the table, this is a good place to
1076 initialize this. */
1077 expr->reaching_reg = 0;
1082 /* Register set information.
1084 `reg_set_table' records where each register is set or otherwise
1085 modified. */
1087 static struct obstack reg_set_obstack;
1089 static void
1090 alloc_reg_set_mem (int n_regs)
1092 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1093 reg_set_table = GCNEWVEC (struct reg_set *, reg_set_table_size);
1095 gcc_obstack_init (&reg_set_obstack);
1098 static void
1099 free_reg_set_mem (void)
1101 free (reg_set_table);
1102 obstack_free (&reg_set_obstack, NULL);
1105 /* Record REGNO in the reg_set table. */
1107 static void
1108 record_one_set (int regno, rtx insn)
1110 /* Allocate a new reg_set element and link it onto the list. */
1111 struct reg_set *new_reg_info;
1113 /* If the table isn't big enough, enlarge it. */
1114 if (regno >= reg_set_table_size)
1116 int new_size = regno + REG_SET_TABLE_SLOP;
1118 reg_set_table = GRESIZEVEC (struct reg_set *, reg_set_table, new_size);
1119 memset (reg_set_table + reg_set_table_size, 0,
1120 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1121 reg_set_table_size = new_size;
1124 new_reg_info = XOBNEW (&reg_set_obstack, struct reg_set);
1125 bytes_used += sizeof (struct reg_set);
1126 new_reg_info->bb_index = BLOCK_NUM (insn);
1127 new_reg_info->next = reg_set_table[regno];
1128 reg_set_table[regno] = new_reg_info;
1131 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1132 an insn. The DATA is really the instruction in which the SET is
1133 occurring. */
1135 static void
1136 record_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1138 rtx record_set_insn = (rtx) data;
1140 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1141 record_one_set (REGNO (dest), record_set_insn);
1144 /* Scan the function and record each set of each pseudo-register.
1146 This is called once, at the start of the gcse pass. See the comments for
1147 `reg_set_table' for further documentation. */
1149 static void
1150 compute_sets (void)
1152 basic_block bb;
1153 rtx insn;
1155 FOR_EACH_BB (bb)
1156 FOR_BB_INSNS (bb, insn)
1157 if (INSN_P (insn))
1158 note_stores (PATTERN (insn), record_set_info, insn);
1161 /* Hash table support. */
1163 struct reg_avail_info
1165 basic_block last_bb;
1166 int first_set;
1167 int last_set;
1170 static struct reg_avail_info *reg_avail_info;
1171 static basic_block current_bb;
1174 /* See whether X, the source of a set, is something we want to consider for
1175 GCSE. */
1177 static int
1178 want_to_gcse_p (rtx x)
1180 #ifdef STACK_REGS
1181 /* On register stack architectures, don't GCSE constants from the
1182 constant pool, as the benefits are often swamped by the overhead
1183 of shuffling the register stack between basic blocks. */
1184 if (IS_STACK_MODE (GET_MODE (x)))
1185 x = avoid_constant_pool_reference (x);
1186 #endif
1188 switch (GET_CODE (x))
1190 case REG:
1191 case SUBREG:
1192 case CONST_INT:
1193 case CONST_DOUBLE:
1194 case CONST_FIXED:
1195 case CONST_VECTOR:
1196 case CALL:
1197 return 0;
1199 default:
1200 return can_assign_to_reg_p (x);
1204 /* Used internally by can_assign_to_reg_p. */
1206 static GTY(()) rtx test_insn;
1208 /* Return true if we can assign X to a pseudo register. */
1210 static bool
1211 can_assign_to_reg_p (rtx x)
1213 int num_clobbers = 0;
1214 int icode;
1216 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1217 if (general_operand (x, GET_MODE (x)))
1218 return 1;
1219 else if (GET_MODE (x) == VOIDmode)
1220 return 0;
1222 /* Otherwise, check if we can make a valid insn from it. First initialize
1223 our test insn if we haven't already. */
1224 if (test_insn == 0)
1226 test_insn
1227 = make_insn_raw (gen_rtx_SET (VOIDmode,
1228 gen_rtx_REG (word_mode,
1229 FIRST_PSEUDO_REGISTER * 2),
1230 const0_rtx));
1231 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1234 /* Now make an insn like the one we would make when GCSE'ing and see if
1235 valid. */
1236 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1237 SET_SRC (PATTERN (test_insn)) = x;
1238 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1239 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1242 /* Return nonzero if the operands of expression X are unchanged from the
1243 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1244 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1246 static int
1247 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
1249 int i, j;
1250 enum rtx_code code;
1251 const char *fmt;
1253 if (x == 0)
1254 return 1;
1256 code = GET_CODE (x);
1257 switch (code)
1259 case REG:
1261 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1263 if (info->last_bb != current_bb)
1264 return 1;
1265 if (avail_p)
1266 return info->last_set < INSN_CUID (insn);
1267 else
1268 return info->first_set >= INSN_CUID (insn);
1271 case MEM:
1272 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1273 x, avail_p))
1274 return 0;
1275 else
1276 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1278 case PRE_DEC:
1279 case PRE_INC:
1280 case POST_DEC:
1281 case POST_INC:
1282 case PRE_MODIFY:
1283 case POST_MODIFY:
1284 return 0;
1286 case PC:
1287 case CC0: /*FIXME*/
1288 case CONST:
1289 case CONST_INT:
1290 case CONST_DOUBLE:
1291 case CONST_FIXED:
1292 case CONST_VECTOR:
1293 case SYMBOL_REF:
1294 case LABEL_REF:
1295 case ADDR_VEC:
1296 case ADDR_DIFF_VEC:
1297 return 1;
1299 default:
1300 break;
1303 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1305 if (fmt[i] == 'e')
1307 /* If we are about to do the last recursive call needed at this
1308 level, change it into iteration. This function is called enough
1309 to be worth it. */
1310 if (i == 0)
1311 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1313 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1314 return 0;
1316 else if (fmt[i] == 'E')
1317 for (j = 0; j < XVECLEN (x, i); j++)
1318 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1319 return 0;
1322 return 1;
1325 /* Used for communication between mems_conflict_for_gcse_p and
1326 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1327 conflict between two memory references. */
1328 static int gcse_mems_conflict_p;
1330 /* Used for communication between mems_conflict_for_gcse_p and
1331 load_killed_in_block_p. A memory reference for a load instruction,
1332 mems_conflict_for_gcse_p will see if a memory store conflicts with
1333 this memory load. */
1334 static const_rtx gcse_mem_operand;
1336 /* DEST is the output of an instruction. If it is a memory reference, and
1337 possibly conflicts with the load found in gcse_mem_operand, then set
1338 gcse_mems_conflict_p to a nonzero value. */
1340 static void
1341 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1342 void *data ATTRIBUTE_UNUSED)
1344 while (GET_CODE (dest) == SUBREG
1345 || GET_CODE (dest) == ZERO_EXTRACT
1346 || GET_CODE (dest) == STRICT_LOW_PART)
1347 dest = XEXP (dest, 0);
1349 /* If DEST is not a MEM, then it will not conflict with the load. Note
1350 that function calls are assumed to clobber memory, but are handled
1351 elsewhere. */
1352 if (! MEM_P (dest))
1353 return;
1355 /* If we are setting a MEM in our list of specially recognized MEMs,
1356 don't mark as killed this time. */
1358 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1360 if (!find_rtx_in_ldst (dest))
1361 gcse_mems_conflict_p = 1;
1362 return;
1365 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1366 rtx_addr_varies_p))
1367 gcse_mems_conflict_p = 1;
1370 /* Return nonzero if the expression in X (a memory reference) is killed
1371 in block BB before or after the insn with the CUID in UID_LIMIT.
1372 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1373 before UID_LIMIT.
1375 To check the entire block, set UID_LIMIT to max_uid + 1 and
1376 AVAIL_P to 0. */
1378 static int
1379 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
1381 rtx list_entry = modify_mem_list[bb->index];
1383 /* If this is a readonly then we aren't going to be changing it. */
1384 if (MEM_READONLY_P (x))
1385 return 0;
1387 while (list_entry)
1389 rtx setter;
1390 /* Ignore entries in the list that do not apply. */
1391 if ((avail_p
1392 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1393 || (! avail_p
1394 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1396 list_entry = XEXP (list_entry, 1);
1397 continue;
1400 setter = XEXP (list_entry, 0);
1402 /* If SETTER is a call everything is clobbered. Note that calls
1403 to pure functions are never put on the list, so we need not
1404 worry about them. */
1405 if (CALL_P (setter))
1406 return 1;
1408 /* SETTER must be an INSN of some kind that sets memory. Call
1409 note_stores to examine each hunk of memory that is modified.
1411 The note_stores interface is pretty limited, so we have to
1412 communicate via global variables. Yuk. */
1413 gcse_mem_operand = x;
1414 gcse_mems_conflict_p = 0;
1415 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1416 if (gcse_mems_conflict_p)
1417 return 1;
1418 list_entry = XEXP (list_entry, 1);
1420 return 0;
1423 /* Return nonzero if the operands of expression X are unchanged from
1424 the start of INSN's basic block up to but not including INSN. */
1426 static int
1427 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1429 return oprs_unchanged_p (x, insn, 0);
1432 /* Return nonzero if the operands of expression X are unchanged from
1433 INSN to the end of INSN's basic block. */
1435 static int
1436 oprs_available_p (const_rtx x, const_rtx insn)
1438 return oprs_unchanged_p (x, insn, 1);
1441 /* Hash expression X.
1443 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1444 indicating if a volatile operand is found or if the expression contains
1445 something we don't want to insert in the table. HASH_TABLE_SIZE is
1446 the current size of the hash table to be probed. */
1448 static unsigned int
1449 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1450 int hash_table_size)
1452 unsigned int hash;
1454 *do_not_record_p = 0;
1456 hash = hash_rtx (x, mode, do_not_record_p,
1457 NULL, /*have_reg_qty=*/false);
1458 return hash % hash_table_size;
1461 /* Hash a set of register REGNO.
1463 Sets are hashed on the register that is set. This simplifies the PRE copy
1464 propagation code.
1466 ??? May need to make things more elaborate. Later, as necessary. */
1468 static unsigned int
1469 hash_set (int regno, int hash_table_size)
1471 unsigned int hash;
1473 hash = regno;
1474 return hash % hash_table_size;
1477 /* Return nonzero if exp1 is equivalent to exp2. */
1479 static int
1480 expr_equiv_p (const_rtx x, const_rtx y)
1482 return exp_equiv_p (x, y, 0, true);
1485 /* Insert expression X in INSN in the hash TABLE.
1486 If it is already present, record it as the last occurrence in INSN's
1487 basic block.
1489 MODE is the mode of the value X is being stored into.
1490 It is only used if X is a CONST_INT.
1492 ANTIC_P is nonzero if X is an anticipatable expression.
1493 AVAIL_P is nonzero if X is an available expression. */
1495 static void
1496 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1497 int avail_p, struct hash_table *table)
1499 int found, do_not_record_p;
1500 unsigned int hash;
1501 struct expr *cur_expr, *last_expr = NULL;
1502 struct occr *antic_occr, *avail_occr;
1504 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1506 /* Do not insert expression in table if it contains volatile operands,
1507 or if hash_expr determines the expression is something we don't want
1508 to or can't handle. */
1509 if (do_not_record_p)
1510 return;
1512 cur_expr = table->table[hash];
1513 found = 0;
1515 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1517 /* If the expression isn't found, save a pointer to the end of
1518 the list. */
1519 last_expr = cur_expr;
1520 cur_expr = cur_expr->next_same_hash;
1523 if (! found)
1525 cur_expr = GOBNEW (struct expr);
1526 bytes_used += sizeof (struct expr);
1527 if (table->table[hash] == NULL)
1528 /* This is the first pattern that hashed to this index. */
1529 table->table[hash] = cur_expr;
1530 else
1531 /* Add EXPR to end of this hash chain. */
1532 last_expr->next_same_hash = cur_expr;
1534 /* Set the fields of the expr element. */
1535 cur_expr->expr = x;
1536 cur_expr->bitmap_index = table->n_elems++;
1537 cur_expr->next_same_hash = NULL;
1538 cur_expr->antic_occr = NULL;
1539 cur_expr->avail_occr = NULL;
1542 /* Now record the occurrence(s). */
1543 if (antic_p)
1545 antic_occr = cur_expr->antic_occr;
1547 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1548 antic_occr = NULL;
1550 if (antic_occr)
1551 /* Found another instance of the expression in the same basic block.
1552 Prefer the currently recorded one. We want the first one in the
1553 block and the block is scanned from start to end. */
1554 ; /* nothing to do */
1555 else
1557 /* First occurrence of this expression in this basic block. */
1558 antic_occr = GOBNEW (struct occr);
1559 bytes_used += sizeof (struct occr);
1560 antic_occr->insn = insn;
1561 antic_occr->next = cur_expr->antic_occr;
1562 antic_occr->deleted_p = 0;
1563 cur_expr->antic_occr = antic_occr;
1567 if (avail_p)
1569 avail_occr = cur_expr->avail_occr;
1571 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1573 /* Found another instance of the expression in the same basic block.
1574 Prefer this occurrence to the currently recorded one. We want
1575 the last one in the block and the block is scanned from start
1576 to end. */
1577 avail_occr->insn = insn;
1579 else
1581 /* First occurrence of this expression in this basic block. */
1582 avail_occr = GOBNEW (struct occr);
1583 bytes_used += sizeof (struct occr);
1584 avail_occr->insn = insn;
1585 avail_occr->next = cur_expr->avail_occr;
1586 avail_occr->deleted_p = 0;
1587 cur_expr->avail_occr = avail_occr;
1592 /* Insert pattern X in INSN in the hash table.
1593 X is a SET of a reg to either another reg or a constant.
1594 If it is already present, record it as the last occurrence in INSN's
1595 basic block. */
1597 static void
1598 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1600 int found;
1601 unsigned int hash;
1602 struct expr *cur_expr, *last_expr = NULL;
1603 struct occr *cur_occr;
1605 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1607 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1609 cur_expr = table->table[hash];
1610 found = 0;
1612 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1614 /* If the expression isn't found, save a pointer to the end of
1615 the list. */
1616 last_expr = cur_expr;
1617 cur_expr = cur_expr->next_same_hash;
1620 if (! found)
1622 cur_expr = GOBNEW (struct expr);
1623 bytes_used += sizeof (struct expr);
1624 if (table->table[hash] == NULL)
1625 /* This is the first pattern that hashed to this index. */
1626 table->table[hash] = cur_expr;
1627 else
1628 /* Add EXPR to end of this hash chain. */
1629 last_expr->next_same_hash = cur_expr;
1631 /* Set the fields of the expr element.
1632 We must copy X because it can be modified when copy propagation is
1633 performed on its operands. */
1634 cur_expr->expr = copy_rtx (x);
1635 cur_expr->bitmap_index = table->n_elems++;
1636 cur_expr->next_same_hash = NULL;
1637 cur_expr->antic_occr = NULL;
1638 cur_expr->avail_occr = NULL;
1641 /* Now record the occurrence. */
1642 cur_occr = cur_expr->avail_occr;
1644 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1646 /* Found another instance of the expression in the same basic block.
1647 Prefer this occurrence to the currently recorded one. We want
1648 the last one in the block and the block is scanned from start
1649 to end. */
1650 cur_occr->insn = insn;
1652 else
1654 /* First occurrence of this expression in this basic block. */
1655 cur_occr = GOBNEW (struct occr);
1656 bytes_used += sizeof (struct occr);
1658 cur_occr->insn = insn;
1659 cur_occr->next = cur_expr->avail_occr;
1660 cur_occr->deleted_p = 0;
1661 cur_expr->avail_occr = cur_occr;
1665 /* Determine whether the rtx X should be treated as a constant for
1666 the purposes of GCSE's constant propagation. */
1668 static bool
1669 gcse_constant_p (const_rtx x)
1671 /* Consider a COMPARE of two integers constant. */
1672 if (GET_CODE (x) == COMPARE
1673 && GET_CODE (XEXP (x, 0)) == CONST_INT
1674 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1675 return true;
1677 /* Consider a COMPARE of the same registers is a constant
1678 if they are not floating point registers. */
1679 if (GET_CODE(x) == COMPARE
1680 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1681 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1682 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1683 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1684 return true;
1686 return CONSTANT_P (x);
1689 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1690 expression one). */
1692 static void
1693 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1695 rtx src = SET_SRC (pat);
1696 rtx dest = SET_DEST (pat);
1697 rtx note;
1699 if (GET_CODE (src) == CALL)
1700 hash_scan_call (src, insn, table);
1702 else if (REG_P (dest))
1704 unsigned int regno = REGNO (dest);
1705 rtx tmp;
1707 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1709 This allows us to do a single GCSE pass and still eliminate
1710 redundant constants, addresses or other expressions that are
1711 constructed with multiple instructions.
1713 However, keep the original SRC if INSN is a simple reg-reg move. In
1714 In this case, there will almost always be a REG_EQUAL note on the
1715 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1716 for INSN, we miss copy propagation opportunities and we perform the
1717 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1718 do more than one PRE GCSE pass.
1720 Note that this does not impede profitable constant propagations. We
1721 "look through" reg-reg sets in lookup_avail_set. */
1722 note = find_reg_equal_equiv_note (insn);
1723 if (note != 0
1724 && REG_NOTE_KIND (note) == REG_EQUAL
1725 && !REG_P (src)
1726 && (table->set_p
1727 ? gcse_constant_p (XEXP (note, 0))
1728 : want_to_gcse_p (XEXP (note, 0))))
1729 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1731 /* Only record sets of pseudo-regs in the hash table. */
1732 if (! table->set_p
1733 && regno >= FIRST_PSEUDO_REGISTER
1734 /* Don't GCSE something if we can't do a reg/reg copy. */
1735 && can_copy_p (GET_MODE (dest))
1736 /* GCSE commonly inserts instruction after the insn. We can't
1737 do that easily for EH_REGION notes so disable GCSE on these
1738 for now. */
1739 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1740 /* Is SET_SRC something we want to gcse? */
1741 && want_to_gcse_p (src)
1742 /* Don't CSE a nop. */
1743 && ! set_noop_p (pat)
1744 /* Don't GCSE if it has attached REG_EQUIV note.
1745 At this point this only function parameters should have
1746 REG_EQUIV notes and if the argument slot is used somewhere
1747 explicitly, it means address of parameter has been taken,
1748 so we should not extend the lifetime of the pseudo. */
1749 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1751 /* An expression is not anticipatable if its operands are
1752 modified before this insn or if this is not the only SET in
1753 this insn. The latter condition does not have to mean that
1754 SRC itself is not anticipatable, but we just will not be
1755 able to handle code motion of insns with multiple sets. */
1756 int antic_p = oprs_anticipatable_p (src, insn)
1757 && !multiple_sets (insn);
1758 /* An expression is not available if its operands are
1759 subsequently modified, including this insn. It's also not
1760 available if this is a branch, because we can't insert
1761 a set after the branch. */
1762 int avail_p = (oprs_available_p (src, insn)
1763 && ! JUMP_P (insn));
1765 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1768 /* Record sets for constant/copy propagation. */
1769 else if (table->set_p
1770 && regno >= FIRST_PSEUDO_REGISTER
1771 && ((REG_P (src)
1772 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1773 && can_copy_p (GET_MODE (dest))
1774 && REGNO (src) != regno)
1775 || gcse_constant_p (src))
1776 /* A copy is not available if its src or dest is subsequently
1777 modified. Here we want to search from INSN+1 on, but
1778 oprs_available_p searches from INSN on. */
1779 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1780 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1781 || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1782 || oprs_available_p (pat, tmp)))
1783 insert_set_in_table (pat, insn, table);
1785 /* In case of store we want to consider the memory value as available in
1786 the REG stored in that memory. This makes it possible to remove
1787 redundant loads from due to stores to the same location. */
1788 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1790 unsigned int regno = REGNO (src);
1792 /* Do not do this for constant/copy propagation. */
1793 if (! table->set_p
1794 /* Only record sets of pseudo-regs in the hash table. */
1795 && regno >= FIRST_PSEUDO_REGISTER
1796 /* Don't GCSE something if we can't do a reg/reg copy. */
1797 && can_copy_p (GET_MODE (src))
1798 /* GCSE commonly inserts instruction after the insn. We can't
1799 do that easily for EH_REGION notes so disable GCSE on these
1800 for now. */
1801 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1802 /* Is SET_DEST something we want to gcse? */
1803 && want_to_gcse_p (dest)
1804 /* Don't CSE a nop. */
1805 && ! set_noop_p (pat)
1806 /* Don't GCSE if it has attached REG_EQUIV note.
1807 At this point this only function parameters should have
1808 REG_EQUIV notes and if the argument slot is used somewhere
1809 explicitly, it means address of parameter has been taken,
1810 so we should not extend the lifetime of the pseudo. */
1811 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1812 || ! MEM_P (XEXP (note, 0))))
1814 /* Stores are never anticipatable. */
1815 int antic_p = 0;
1816 /* An expression is not available if its operands are
1817 subsequently modified, including this insn. It's also not
1818 available if this is a branch, because we can't insert
1819 a set after the branch. */
1820 int avail_p = oprs_available_p (dest, insn)
1821 && ! JUMP_P (insn);
1823 /* Record the memory expression (DEST) in the hash table. */
1824 insert_expr_in_table (dest, GET_MODE (dest), insn,
1825 antic_p, avail_p, table);
1830 static void
1831 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1832 struct hash_table *table ATTRIBUTE_UNUSED)
1834 /* Currently nothing to do. */
1837 static void
1838 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1839 struct hash_table *table ATTRIBUTE_UNUSED)
1841 /* Currently nothing to do. */
1844 /* Process INSN and add hash table entries as appropriate.
1846 Only available expressions that set a single pseudo-reg are recorded.
1848 Single sets in a PARALLEL could be handled, but it's an extra complication
1849 that isn't dealt with right now. The trick is handling the CLOBBERs that
1850 are also in the PARALLEL. Later.
1852 If SET_P is nonzero, this is for the assignment hash table,
1853 otherwise it is for the expression hash table. */
1855 static void
1856 hash_scan_insn (rtx insn, struct hash_table *table)
1858 rtx pat = PATTERN (insn);
1859 int i;
1861 /* Pick out the sets of INSN and for other forms of instructions record
1862 what's been modified. */
1864 if (GET_CODE (pat) == SET)
1865 hash_scan_set (pat, insn, table);
1866 else if (GET_CODE (pat) == PARALLEL)
1867 for (i = 0; i < XVECLEN (pat, 0); i++)
1869 rtx x = XVECEXP (pat, 0, i);
1871 if (GET_CODE (x) == SET)
1872 hash_scan_set (x, insn, table);
1873 else if (GET_CODE (x) == CLOBBER)
1874 hash_scan_clobber (x, insn, table);
1875 else if (GET_CODE (x) == CALL)
1876 hash_scan_call (x, insn, table);
1879 else if (GET_CODE (pat) == CLOBBER)
1880 hash_scan_clobber (pat, insn, table);
1881 else if (GET_CODE (pat) == CALL)
1882 hash_scan_call (pat, insn, table);
1885 static void
1886 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1888 int i;
1889 /* Flattened out table, so it's printed in proper order. */
1890 struct expr **flat_table;
1891 unsigned int *hash_val;
1892 struct expr *expr;
1894 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1895 hash_val = XNEWVEC (unsigned int, table->n_elems);
1897 for (i = 0; i < (int) table->size; i++)
1898 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1900 flat_table[expr->bitmap_index] = expr;
1901 hash_val[expr->bitmap_index] = i;
1904 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1905 name, table->size, table->n_elems);
1907 for (i = 0; i < (int) table->n_elems; i++)
1908 if (flat_table[i] != 0)
1910 expr = flat_table[i];
1911 fprintf (file, "Index %d (hash value %d)\n ",
1912 expr->bitmap_index, hash_val[i]);
1913 print_rtl (file, expr->expr);
1914 fprintf (file, "\n");
1917 fprintf (file, "\n");
1919 free (flat_table);
1920 free (hash_val);
1923 /* Record register first/last/block set information for REGNO in INSN.
1925 first_set records the first place in the block where the register
1926 is set and is used to compute "anticipatability".
1928 last_set records the last place in the block where the register
1929 is set and is used to compute "availability".
1931 last_bb records the block for which first_set and last_set are
1932 valid, as a quick test to invalidate them.
1934 reg_set_in_block records whether the register is set in the block
1935 and is used to compute "transparency". */
1937 static void
1938 record_last_reg_set_info (rtx insn, int regno)
1940 struct reg_avail_info *info = &reg_avail_info[regno];
1941 int cuid = INSN_CUID (insn);
1943 info->last_set = cuid;
1944 if (info->last_bb != current_bb)
1946 info->last_bb = current_bb;
1947 info->first_set = cuid;
1948 SET_BIT (reg_set_in_block[current_bb->index], regno);
1953 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1954 Note we store a pair of elements in the list, so they have to be
1955 taken off pairwise. */
1957 static void
1958 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1959 void * v_insn)
1961 rtx dest_addr, insn;
1962 int bb;
1964 while (GET_CODE (dest) == SUBREG
1965 || GET_CODE (dest) == ZERO_EXTRACT
1966 || GET_CODE (dest) == STRICT_LOW_PART)
1967 dest = XEXP (dest, 0);
1969 /* If DEST is not a MEM, then it will not conflict with a load. Note
1970 that function calls are assumed to clobber memory, but are handled
1971 elsewhere. */
1973 if (! MEM_P (dest))
1974 return;
1976 dest_addr = get_addr (XEXP (dest, 0));
1977 dest_addr = canon_rtx (dest_addr);
1978 insn = (rtx) v_insn;
1979 bb = BLOCK_NUM (insn);
1981 canon_modify_mem_list[bb] =
1982 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1983 canon_modify_mem_list[bb] =
1984 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1987 /* Record memory modification information for INSN. We do not actually care
1988 about the memory location(s) that are set, or even how they are set (consider
1989 a CALL_INSN). We merely need to record which insns modify memory. */
1991 static void
1992 record_last_mem_set_info (rtx insn)
1994 int bb = BLOCK_NUM (insn);
1996 /* load_killed_in_block_p will handle the case of calls clobbering
1997 everything. */
1998 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1999 bitmap_set_bit (modify_mem_list_set, bb);
2001 if (CALL_P (insn))
2003 /* Note that traversals of this loop (other than for free-ing)
2004 will break after encountering a CALL_INSN. So, there's no
2005 need to insert a pair of items, as canon_list_insert does. */
2006 canon_modify_mem_list[bb] =
2007 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2008 bitmap_set_bit (blocks_with_calls, bb);
2010 else
2011 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2014 /* Called from compute_hash_table via note_stores to handle one
2015 SET or CLOBBER in an insn. DATA is really the instruction in which
2016 the SET is taking place. */
2018 static void
2019 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
2021 rtx last_set_insn = (rtx) data;
2023 if (GET_CODE (dest) == SUBREG)
2024 dest = SUBREG_REG (dest);
2026 if (REG_P (dest))
2027 record_last_reg_set_info (last_set_insn, REGNO (dest));
2028 else if (MEM_P (dest)
2029 /* Ignore pushes, they clobber nothing. */
2030 && ! push_operand (dest, GET_MODE (dest)))
2031 record_last_mem_set_info (last_set_insn);
2034 /* Top level function to create an expression or assignment hash table.
2036 Expression entries are placed in the hash table if
2037 - they are of the form (set (pseudo-reg) src),
2038 - src is something we want to perform GCSE on,
2039 - none of the operands are subsequently modified in the block
2041 Assignment entries are placed in the hash table if
2042 - they are of the form (set (pseudo-reg) src),
2043 - src is something we want to perform const/copy propagation on,
2044 - none of the operands or target are subsequently modified in the block
2046 Currently src must be a pseudo-reg or a const_int.
2048 TABLE is the table computed. */
2050 static void
2051 compute_hash_table_work (struct hash_table *table)
2053 unsigned int i;
2055 /* While we compute the hash table we also compute a bit array of which
2056 registers are set in which blocks.
2057 ??? This isn't needed during const/copy propagation, but it's cheap to
2058 compute. Later. */
2059 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2061 /* re-Cache any INSN_LIST nodes we have allocated. */
2062 clear_modify_mem_tables ();
2063 /* Some working arrays used to track first and last set in each block. */
2064 reg_avail_info = GNEWVEC (struct reg_avail_info, max_gcse_regno);
2066 for (i = 0; i < max_gcse_regno; ++i)
2067 reg_avail_info[i].last_bb = NULL;
2069 FOR_EACH_BB (current_bb)
2071 rtx insn;
2072 unsigned int regno;
2074 /* First pass over the instructions records information used to
2075 determine when registers and memory are first and last set.
2076 ??? hard-reg reg_set_in_block computation
2077 could be moved to compute_sets since they currently don't change. */
2079 FOR_BB_INSNS (current_bb, insn)
2081 if (! INSN_P (insn))
2082 continue;
2084 if (CALL_P (insn))
2086 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2087 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2088 record_last_reg_set_info (insn, regno);
2090 mark_call (insn);
2093 note_stores (PATTERN (insn), record_last_set_info, insn);
2096 /* Insert implicit sets in the hash table. */
2097 if (table->set_p
2098 && implicit_sets[current_bb->index] != NULL_RTX)
2099 hash_scan_set (implicit_sets[current_bb->index],
2100 BB_HEAD (current_bb), table);
2102 /* The next pass builds the hash table. */
2103 FOR_BB_INSNS (current_bb, insn)
2104 if (INSN_P (insn))
2105 hash_scan_insn (insn, table);
2108 free (reg_avail_info);
2109 reg_avail_info = NULL;
2112 /* Allocate space for the set/expr hash TABLE.
2113 N_INSNS is the number of instructions in the function.
2114 It is used to determine the number of buckets to use.
2115 SET_P determines whether set or expression table will
2116 be created. */
2118 static void
2119 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2121 int n;
2123 table->size = n_insns / 4;
2124 if (table->size < 11)
2125 table->size = 11;
2127 /* Attempt to maintain efficient use of hash table.
2128 Making it an odd number is simplest for now.
2129 ??? Later take some measurements. */
2130 table->size |= 1;
2131 n = table->size * sizeof (struct expr *);
2132 table->table = GNEWVAR (struct expr *, n);
2133 table->set_p = set_p;
2136 /* Free things allocated by alloc_hash_table. */
2138 static void
2139 free_hash_table (struct hash_table *table)
2141 free (table->table);
2144 /* Compute the hash TABLE for doing copy/const propagation or
2145 expression hash table. */
2147 static void
2148 compute_hash_table (struct hash_table *table)
2150 /* Initialize count of number of entries in hash table. */
2151 table->n_elems = 0;
2152 memset (table->table, 0, table->size * sizeof (struct expr *));
2154 compute_hash_table_work (table);
2157 /* Expression tracking support. */
2159 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2160 table entry, or NULL if not found. */
2162 static struct expr *
2163 lookup_set (unsigned int regno, struct hash_table *table)
2165 unsigned int hash = hash_set (regno, table->size);
2166 struct expr *expr;
2168 expr = table->table[hash];
2170 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2171 expr = expr->next_same_hash;
2173 return expr;
2176 /* Return the next entry for REGNO in list EXPR. */
2178 static struct expr *
2179 next_set (unsigned int regno, struct expr *expr)
2182 expr = expr->next_same_hash;
2183 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2185 return expr;
2188 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2189 types may be mixed. */
2191 static void
2192 free_insn_expr_list_list (rtx *listp)
2194 rtx list, next;
2196 for (list = *listp; list ; list = next)
2198 next = XEXP (list, 1);
2199 if (GET_CODE (list) == EXPR_LIST)
2200 free_EXPR_LIST_node (list);
2201 else
2202 free_INSN_LIST_node (list);
2205 *listp = NULL;
2208 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2209 static void
2210 clear_modify_mem_tables (void)
2212 unsigned i;
2213 bitmap_iterator bi;
2215 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2217 free_INSN_LIST_list (modify_mem_list + i);
2218 free_insn_expr_list_list (canon_modify_mem_list + i);
2220 bitmap_clear (modify_mem_list_set);
2221 bitmap_clear (blocks_with_calls);
2224 /* Release memory used by modify_mem_list_set. */
2226 static void
2227 free_modify_mem_tables (void)
2229 clear_modify_mem_tables ();
2230 free (modify_mem_list);
2231 free (canon_modify_mem_list);
2232 modify_mem_list = 0;
2233 canon_modify_mem_list = 0;
2236 /* Reset tables used to keep track of what's still available [since the
2237 start of the block]. */
2239 static void
2240 reset_opr_set_tables (void)
2242 /* Maintain a bitmap of which regs have been set since beginning of
2243 the block. */
2244 CLEAR_REG_SET (reg_set_bitmap);
2246 /* Also keep a record of the last instruction to modify memory.
2247 For now this is very trivial, we only record whether any memory
2248 location has been modified. */
2249 clear_modify_mem_tables ();
2252 /* Return nonzero if the operands of X are not set before INSN in
2253 INSN's basic block. */
2255 static int
2256 oprs_not_set_p (const_rtx x, const_rtx insn)
2258 int i, j;
2259 enum rtx_code code;
2260 const char *fmt;
2262 if (x == 0)
2263 return 1;
2265 code = GET_CODE (x);
2266 switch (code)
2268 case PC:
2269 case CC0:
2270 case CONST:
2271 case CONST_INT:
2272 case CONST_DOUBLE:
2273 case CONST_FIXED:
2274 case CONST_VECTOR:
2275 case SYMBOL_REF:
2276 case LABEL_REF:
2277 case ADDR_VEC:
2278 case ADDR_DIFF_VEC:
2279 return 1;
2281 case MEM:
2282 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2283 INSN_CUID (insn), x, 0))
2284 return 0;
2285 else
2286 return oprs_not_set_p (XEXP (x, 0), insn);
2288 case REG:
2289 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2291 default:
2292 break;
2295 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2297 if (fmt[i] == 'e')
2299 /* If we are about to do the last recursive call
2300 needed at this level, change it into iteration.
2301 This function is called enough to be worth it. */
2302 if (i == 0)
2303 return oprs_not_set_p (XEXP (x, i), insn);
2305 if (! oprs_not_set_p (XEXP (x, i), insn))
2306 return 0;
2308 else if (fmt[i] == 'E')
2309 for (j = 0; j < XVECLEN (x, i); j++)
2310 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2311 return 0;
2314 return 1;
2317 /* Mark things set by a CALL. */
2319 static void
2320 mark_call (rtx insn)
2322 if (! RTL_CONST_OR_PURE_CALL_P (insn))
2323 record_last_mem_set_info (insn);
2326 /* Mark things set by a SET. */
2328 static void
2329 mark_set (rtx pat, rtx insn)
2331 rtx dest = SET_DEST (pat);
2333 while (GET_CODE (dest) == SUBREG
2334 || GET_CODE (dest) == ZERO_EXTRACT
2335 || GET_CODE (dest) == STRICT_LOW_PART)
2336 dest = XEXP (dest, 0);
2338 if (REG_P (dest))
2339 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2340 else if (MEM_P (dest))
2341 record_last_mem_set_info (insn);
2343 if (GET_CODE (SET_SRC (pat)) == CALL)
2344 mark_call (insn);
2347 /* Record things set by a CLOBBER. */
2349 static void
2350 mark_clobber (rtx pat, rtx insn)
2352 rtx clob = XEXP (pat, 0);
2354 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2355 clob = XEXP (clob, 0);
2357 if (REG_P (clob))
2358 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2359 else
2360 record_last_mem_set_info (insn);
2363 /* Record things set by INSN.
2364 This data is used by oprs_not_set_p. */
2366 static void
2367 mark_oprs_set (rtx insn)
2369 rtx pat = PATTERN (insn);
2370 int i;
2372 if (GET_CODE (pat) == SET)
2373 mark_set (pat, insn);
2374 else if (GET_CODE (pat) == PARALLEL)
2375 for (i = 0; i < XVECLEN (pat, 0); i++)
2377 rtx x = XVECEXP (pat, 0, i);
2379 if (GET_CODE (x) == SET)
2380 mark_set (x, insn);
2381 else if (GET_CODE (x) == CLOBBER)
2382 mark_clobber (x, insn);
2383 else if (GET_CODE (x) == CALL)
2384 mark_call (insn);
2387 else if (GET_CODE (pat) == CLOBBER)
2388 mark_clobber (pat, insn);
2389 else if (GET_CODE (pat) == CALL)
2390 mark_call (insn);
2394 /* Compute copy/constant propagation working variables. */
2396 /* Local properties of assignments. */
2397 static sbitmap *cprop_pavloc;
2398 static sbitmap *cprop_absaltered;
2400 /* Global properties of assignments (computed from the local properties). */
2401 static sbitmap *cprop_avin;
2402 static sbitmap *cprop_avout;
2404 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2405 basic blocks. N_SETS is the number of sets. */
2407 static void
2408 alloc_cprop_mem (int n_blocks, int n_sets)
2410 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2411 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2413 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2414 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2417 /* Free vars used by copy/const propagation. */
2419 static void
2420 free_cprop_mem (void)
2422 sbitmap_vector_free (cprop_pavloc);
2423 sbitmap_vector_free (cprop_absaltered);
2424 sbitmap_vector_free (cprop_avin);
2425 sbitmap_vector_free (cprop_avout);
2428 /* For each block, compute whether X is transparent. X is either an
2429 expression or an assignment [though we don't care which, for this context
2430 an assignment is treated as an expression]. For each block where an
2431 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2432 bit in BMAP. */
2434 static void
2435 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2437 int i, j;
2438 basic_block bb;
2439 enum rtx_code code;
2440 reg_set *r;
2441 const char *fmt;
2443 /* repeat is used to turn tail-recursion into iteration since GCC
2444 can't do it when there's no return value. */
2445 repeat:
2447 if (x == 0)
2448 return;
2450 code = GET_CODE (x);
2451 switch (code)
2453 case REG:
2454 if (set_p)
2456 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2458 FOR_EACH_BB (bb)
2459 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2460 SET_BIT (bmap[bb->index], indx);
2462 else
2464 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2465 SET_BIT (bmap[r->bb_index], indx);
2468 else
2470 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2472 FOR_EACH_BB (bb)
2473 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2474 RESET_BIT (bmap[bb->index], indx);
2476 else
2478 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2479 RESET_BIT (bmap[r->bb_index], indx);
2483 return;
2485 case MEM:
2486 if (! MEM_READONLY_P (x))
2488 bitmap_iterator bi;
2489 unsigned bb_index;
2491 /* First handle all the blocks with calls. We don't need to
2492 do any list walking for them. */
2493 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2495 if (set_p)
2496 SET_BIT (bmap[bb_index], indx);
2497 else
2498 RESET_BIT (bmap[bb_index], indx);
2501 /* Now iterate over the blocks which have memory modifications
2502 but which do not have any calls. */
2503 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2504 blocks_with_calls,
2505 0, bb_index, bi)
2507 rtx list_entry = canon_modify_mem_list[bb_index];
2509 while (list_entry)
2511 rtx dest, dest_addr;
2513 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2514 Examine each hunk of memory that is modified. */
2516 dest = XEXP (list_entry, 0);
2517 list_entry = XEXP (list_entry, 1);
2518 dest_addr = XEXP (list_entry, 0);
2520 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2521 x, rtx_addr_varies_p))
2523 if (set_p)
2524 SET_BIT (bmap[bb_index], indx);
2525 else
2526 RESET_BIT (bmap[bb_index], indx);
2527 break;
2529 list_entry = XEXP (list_entry, 1);
2534 x = XEXP (x, 0);
2535 goto repeat;
2537 case PC:
2538 case CC0: /*FIXME*/
2539 case CONST:
2540 case CONST_INT:
2541 case CONST_DOUBLE:
2542 case CONST_FIXED:
2543 case CONST_VECTOR:
2544 case SYMBOL_REF:
2545 case LABEL_REF:
2546 case ADDR_VEC:
2547 case ADDR_DIFF_VEC:
2548 return;
2550 default:
2551 break;
2554 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2556 if (fmt[i] == 'e')
2558 /* If we are about to do the last recursive call
2559 needed at this level, change it into iteration.
2560 This function is called enough to be worth it. */
2561 if (i == 0)
2563 x = XEXP (x, i);
2564 goto repeat;
2567 compute_transp (XEXP (x, i), indx, bmap, set_p);
2569 else if (fmt[i] == 'E')
2570 for (j = 0; j < XVECLEN (x, i); j++)
2571 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2575 /* Top level routine to do the dataflow analysis needed by copy/const
2576 propagation. */
2578 static void
2579 compute_cprop_data (void)
2581 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2582 compute_available (cprop_pavloc, cprop_absaltered,
2583 cprop_avout, cprop_avin);
2586 /* Copy/constant propagation. */
2588 /* Maximum number of register uses in an insn that we handle. */
2589 #define MAX_USES 8
2591 /* Table of uses found in an insn.
2592 Allocated statically to avoid alloc/free complexity and overhead. */
2593 static struct reg_use reg_use_table[MAX_USES];
2595 /* Index into `reg_use_table' while building it. */
2596 static int reg_use_count;
2598 /* Set up a list of register numbers used in INSN. The found uses are stored
2599 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2600 and contains the number of uses in the table upon exit.
2602 ??? If a register appears multiple times we will record it multiple times.
2603 This doesn't hurt anything but it will slow things down. */
2605 static void
2606 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2608 int i, j;
2609 enum rtx_code code;
2610 const char *fmt;
2611 rtx x = *xptr;
2613 /* repeat is used to turn tail-recursion into iteration since GCC
2614 can't do it when there's no return value. */
2615 repeat:
2616 if (x == 0)
2617 return;
2619 code = GET_CODE (x);
2620 if (REG_P (x))
2622 if (reg_use_count == MAX_USES)
2623 return;
2625 reg_use_table[reg_use_count].reg_rtx = x;
2626 reg_use_count++;
2629 /* Recursively scan the operands of this expression. */
2631 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2633 if (fmt[i] == 'e')
2635 /* If we are about to do the last recursive call
2636 needed at this level, change it into iteration.
2637 This function is called enough to be worth it. */
2638 if (i == 0)
2640 x = XEXP (x, 0);
2641 goto repeat;
2644 find_used_regs (&XEXP (x, i), data);
2646 else if (fmt[i] == 'E')
2647 for (j = 0; j < XVECLEN (x, i); j++)
2648 find_used_regs (&XVECEXP (x, i, j), data);
2652 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2653 Returns nonzero is successful. */
2655 static int
2656 try_replace_reg (rtx from, rtx to, rtx insn)
2658 rtx note = find_reg_equal_equiv_note (insn);
2659 rtx src = 0;
2660 int success = 0;
2661 rtx set = single_set (insn);
2663 /* Usually we substitute easy stuff, so we won't copy everything.
2664 We however need to take care to not duplicate non-trivial CONST
2665 expressions. */
2666 to = copy_rtx (to);
2668 validate_replace_src_group (from, to, insn);
2669 if (num_changes_pending () && apply_change_group ())
2670 success = 1;
2672 /* Try to simplify SET_SRC if we have substituted a constant. */
2673 if (success && set && CONSTANT_P (to))
2675 src = simplify_rtx (SET_SRC (set));
2677 if (src)
2678 validate_change (insn, &SET_SRC (set), src, 0);
2681 /* If there is already a REG_EQUAL note, update the expression in it
2682 with our replacement. */
2683 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2684 set_unique_reg_note (insn, REG_EQUAL,
2685 simplify_replace_rtx (XEXP (note, 0), from,
2686 copy_rtx (to)));
2687 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2689 /* If above failed and this is a single set, try to simplify the source of
2690 the set given our substitution. We could perhaps try this for multiple
2691 SETs, but it probably won't buy us anything. */
2692 src = simplify_replace_rtx (SET_SRC (set), from, to);
2694 if (!rtx_equal_p (src, SET_SRC (set))
2695 && validate_change (insn, &SET_SRC (set), src, 0))
2696 success = 1;
2698 /* If we've failed to do replacement, have a single SET, don't already
2699 have a note, and have no special SET, add a REG_EQUAL note to not
2700 lose information. */
2701 if (!success && note == 0 && set != 0
2702 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2703 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2704 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2707 /* REG_EQUAL may get simplified into register.
2708 We don't allow that. Remove that note. This code ought
2709 not to happen, because previous code ought to synthesize
2710 reg-reg move, but be on the safe side. */
2711 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2712 remove_note (insn, note);
2714 return success;
2717 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2718 NULL no such set is found. */
2720 static struct expr *
2721 find_avail_set (int regno, rtx insn)
2723 /* SET1 contains the last set found that can be returned to the caller for
2724 use in a substitution. */
2725 struct expr *set1 = 0;
2727 /* Loops are not possible here. To get a loop we would need two sets
2728 available at the start of the block containing INSN. i.e. we would
2729 need two sets like this available at the start of the block:
2731 (set (reg X) (reg Y))
2732 (set (reg Y) (reg X))
2734 This can not happen since the set of (reg Y) would have killed the
2735 set of (reg X) making it unavailable at the start of this block. */
2736 while (1)
2738 rtx src;
2739 struct expr *set = lookup_set (regno, &set_hash_table);
2741 /* Find a set that is available at the start of the block
2742 which contains INSN. */
2743 while (set)
2745 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2746 break;
2747 set = next_set (regno, set);
2750 /* If no available set was found we've reached the end of the
2751 (possibly empty) copy chain. */
2752 if (set == 0)
2753 break;
2755 gcc_assert (GET_CODE (set->expr) == SET);
2757 src = SET_SRC (set->expr);
2759 /* We know the set is available.
2760 Now check that SRC is ANTLOC (i.e. none of the source operands
2761 have changed since the start of the block).
2763 If the source operand changed, we may still use it for the next
2764 iteration of this loop, but we may not use it for substitutions. */
2766 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2767 set1 = set;
2769 /* If the source of the set is anything except a register, then
2770 we have reached the end of the copy chain. */
2771 if (! REG_P (src))
2772 break;
2774 /* Follow the copy chain, i.e. start another iteration of the loop
2775 and see if we have an available copy into SRC. */
2776 regno = REGNO (src);
2779 /* SET1 holds the last set that was available and anticipatable at
2780 INSN. */
2781 return set1;
2784 /* Subroutine of cprop_insn that tries to propagate constants into
2785 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2786 it is the instruction that immediately precedes JUMP, and must be a
2787 single SET of a register. FROM is what we will try to replace,
2788 SRC is the constant we will try to substitute for it. Returns nonzero
2789 if a change was made. */
2791 static int
2792 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2794 rtx new_rtx, set_src, note_src;
2795 rtx set = pc_set (jump);
2796 rtx note = find_reg_equal_equiv_note (jump);
2798 if (note)
2800 note_src = XEXP (note, 0);
2801 if (GET_CODE (note_src) == EXPR_LIST)
2802 note_src = NULL_RTX;
2804 else note_src = NULL_RTX;
2806 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2807 set_src = note_src ? note_src : SET_SRC (set);
2809 /* First substitute the SETCC condition into the JUMP instruction,
2810 then substitute that given values into this expanded JUMP. */
2811 if (setcc != NULL_RTX
2812 && !modified_between_p (from, setcc, jump)
2813 && !modified_between_p (src, setcc, jump))
2815 rtx setcc_src;
2816 rtx setcc_set = single_set (setcc);
2817 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2818 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2819 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2820 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2821 setcc_src);
2823 else
2824 setcc = NULL_RTX;
2826 new_rtx = simplify_replace_rtx (set_src, from, src);
2828 /* If no simplification can be made, then try the next register. */
2829 if (rtx_equal_p (new_rtx, SET_SRC (set)))
2830 return 0;
2832 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2833 if (new_rtx == pc_rtx)
2834 delete_insn (jump);
2835 else
2837 /* Ensure the value computed inside the jump insn to be equivalent
2838 to one computed by setcc. */
2839 if (setcc && modified_in_p (new_rtx, setcc))
2840 return 0;
2841 if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0))
2843 /* When (some) constants are not valid in a comparison, and there
2844 are two registers to be replaced by constants before the entire
2845 comparison can be folded into a constant, we need to keep
2846 intermediate information in REG_EQUAL notes. For targets with
2847 separate compare insns, such notes are added by try_replace_reg.
2848 When we have a combined compare-and-branch instruction, however,
2849 we need to attach a note to the branch itself to make this
2850 optimization work. */
2852 if (!rtx_equal_p (new_rtx, note_src))
2853 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx));
2854 return 0;
2857 /* Remove REG_EQUAL note after simplification. */
2858 if (note_src)
2859 remove_note (jump, note);
2862 #ifdef HAVE_cc0
2863 /* Delete the cc0 setter. */
2864 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2865 delete_insn (setcc);
2866 #endif
2868 run_jump_opt_after_gcse = 1;
2870 global_const_prop_count++;
2871 if (dump_file != NULL)
2873 fprintf (dump_file,
2874 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2875 REGNO (from), INSN_UID (jump));
2876 print_rtl (dump_file, src);
2877 fprintf (dump_file, "\n");
2879 purge_dead_edges (bb);
2881 /* If a conditional jump has been changed into unconditional jump, remove
2882 the jump and make the edge fallthru - this is always called in
2883 cfglayout mode. */
2884 if (new_rtx != pc_rtx && simplejump_p (jump))
2886 edge e;
2887 edge_iterator ei;
2889 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2890 if (e->dest != EXIT_BLOCK_PTR
2891 && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2893 e->flags |= EDGE_FALLTHRU;
2894 break;
2896 delete_insn (jump);
2899 return 1;
2902 static bool
2903 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2905 rtx sset;
2907 /* Check for reg or cc0 setting instructions followed by
2908 conditional branch instructions first. */
2909 if (alter_jumps
2910 && (sset = single_set (insn)) != NULL
2911 && NEXT_INSN (insn)
2912 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2914 rtx dest = SET_DEST (sset);
2915 if ((REG_P (dest) || CC0_P (dest))
2916 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2917 return 1;
2920 /* Handle normal insns next. */
2921 if (NONJUMP_INSN_P (insn)
2922 && try_replace_reg (from, to, insn))
2923 return 1;
2925 /* Try to propagate a CONST_INT into a conditional jump.
2926 We're pretty specific about what we will handle in this
2927 code, we can extend this as necessary over time.
2929 Right now the insn in question must look like
2930 (set (pc) (if_then_else ...)) */
2931 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2932 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2933 return 0;
2936 /* Perform constant and copy propagation on INSN.
2937 The result is nonzero if a change was made. */
2939 static int
2940 cprop_insn (rtx insn, int alter_jumps)
2942 struct reg_use *reg_used;
2943 int changed = 0;
2944 rtx note;
2946 if (!INSN_P (insn))
2947 return 0;
2949 reg_use_count = 0;
2950 note_uses (&PATTERN (insn), find_used_regs, NULL);
2952 note = find_reg_equal_equiv_note (insn);
2954 /* We may win even when propagating constants into notes. */
2955 if (note)
2956 find_used_regs (&XEXP (note, 0), NULL);
2958 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2959 reg_used++, reg_use_count--)
2961 unsigned int regno = REGNO (reg_used->reg_rtx);
2962 rtx pat, src;
2963 struct expr *set;
2965 /* Ignore registers created by GCSE.
2966 We do this because ... */
2967 if (regno >= max_gcse_regno)
2968 continue;
2970 /* If the register has already been set in this block, there's
2971 nothing we can do. */
2972 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2973 continue;
2975 /* Find an assignment that sets reg_used and is available
2976 at the start of the block. */
2977 set = find_avail_set (regno, insn);
2978 if (! set)
2979 continue;
2981 pat = set->expr;
2982 /* ??? We might be able to handle PARALLELs. Later. */
2983 gcc_assert (GET_CODE (pat) == SET);
2985 src = SET_SRC (pat);
2987 /* Constant propagation. */
2988 if (gcse_constant_p (src))
2990 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2992 changed = 1;
2993 global_const_prop_count++;
2994 if (dump_file != NULL)
2996 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2997 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2998 print_rtl (dump_file, src);
2999 fprintf (dump_file, "\n");
3001 if (INSN_DELETED_P (insn))
3002 return 1;
3005 else if (REG_P (src)
3006 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3007 && REGNO (src) != regno)
3009 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3011 changed = 1;
3012 global_copy_prop_count++;
3013 if (dump_file != NULL)
3015 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3016 regno, INSN_UID (insn));
3017 fprintf (dump_file, " with reg %d\n", REGNO (src));
3020 /* The original insn setting reg_used may or may not now be
3021 deletable. We leave the deletion to flow. */
3022 /* FIXME: If it turns out that the insn isn't deletable,
3023 then we may have unnecessarily extended register lifetimes
3024 and made things worse. */
3029 return changed;
3032 /* Like find_used_regs, but avoid recording uses that appear in
3033 input-output contexts such as zero_extract or pre_dec. This
3034 restricts the cases we consider to those for which local cprop
3035 can legitimately make replacements. */
3037 static void
3038 local_cprop_find_used_regs (rtx *xptr, void *data)
3040 rtx x = *xptr;
3042 if (x == 0)
3043 return;
3045 switch (GET_CODE (x))
3047 case ZERO_EXTRACT:
3048 case SIGN_EXTRACT:
3049 case STRICT_LOW_PART:
3050 return;
3052 case PRE_DEC:
3053 case PRE_INC:
3054 case POST_DEC:
3055 case POST_INC:
3056 case PRE_MODIFY:
3057 case POST_MODIFY:
3058 /* Can only legitimately appear this early in the context of
3059 stack pushes for function arguments, but handle all of the
3060 codes nonetheless. */
3061 return;
3063 case SUBREG:
3064 /* Setting a subreg of a register larger than word_mode leaves
3065 the non-written words unchanged. */
3066 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3067 return;
3068 break;
3070 default:
3071 break;
3074 find_used_regs (xptr, data);
3077 /* Try to perform local const/copy propagation on X in INSN.
3078 If ALTER_JUMPS is false, changing jump insns is not allowed. */
3080 static bool
3081 do_local_cprop (rtx x, rtx insn, bool alter_jumps)
3083 rtx newreg = NULL, newcnst = NULL;
3085 /* Rule out USE instructions and ASM statements as we don't want to
3086 change the hard registers mentioned. */
3087 if (REG_P (x)
3088 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3089 || (GET_CODE (PATTERN (insn)) != USE
3090 && asm_noperands (PATTERN (insn)) < 0)))
3092 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3093 struct elt_loc_list *l;
3095 if (!val)
3096 return false;
3097 for (l = val->locs; l; l = l->next)
3099 rtx this_rtx = l->loc;
3100 rtx note;
3102 if (gcse_constant_p (this_rtx))
3103 newcnst = this_rtx;
3104 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3105 /* Don't copy propagate if it has attached REG_EQUIV note.
3106 At this point this only function parameters should have
3107 REG_EQUIV notes and if the argument slot is used somewhere
3108 explicitly, it means address of parameter has been taken,
3109 so we should not extend the lifetime of the pseudo. */
3110 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3111 || ! MEM_P (XEXP (note, 0))))
3112 newreg = this_rtx;
3114 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3116 if (dump_file != NULL)
3118 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3119 REGNO (x));
3120 fprintf (dump_file, "insn %d with constant ",
3121 INSN_UID (insn));
3122 print_rtl (dump_file, newcnst);
3123 fprintf (dump_file, "\n");
3125 local_const_prop_count++;
3126 return true;
3128 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3130 if (dump_file != NULL)
3132 fprintf (dump_file,
3133 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3134 REGNO (x), INSN_UID (insn));
3135 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
3137 local_copy_prop_count++;
3138 return true;
3141 return false;
3144 /* Do local const/copy propagation (i.e. within each basic block).
3145 If ALTER_JUMPS is true, allow propagating into jump insns, which
3146 could modify the CFG. */
3148 static void
3149 local_cprop_pass (bool alter_jumps)
3151 basic_block bb;
3152 rtx insn;
3153 struct reg_use *reg_used;
3154 bool changed = false;
3156 cselib_init (false);
3157 FOR_EACH_BB (bb)
3159 FOR_BB_INSNS (bb, insn)
3161 if (INSN_P (insn))
3163 rtx note = find_reg_equal_equiv_note (insn);
3166 reg_use_count = 0;
3167 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3168 NULL);
3169 if (note)
3170 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3172 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3173 reg_used++, reg_use_count--)
3175 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps))
3177 changed = true;
3178 break;
3181 if (INSN_DELETED_P (insn))
3182 break;
3184 while (reg_use_count);
3186 cselib_process_insn (insn);
3189 /* Forget everything at the end of a basic block. */
3190 cselib_clear_table ();
3193 cselib_finish ();
3195 /* Global analysis may get into infinite loops for unreachable blocks. */
3196 if (changed && alter_jumps)
3198 delete_unreachable_blocks ();
3199 free_reg_set_mem ();
3200 alloc_reg_set_mem (max_reg_num ());
3201 compute_sets ();
3205 /* Forward propagate copies. This includes copies and constants. Return
3206 nonzero if a change was made. */
3208 static int
3209 cprop (int alter_jumps)
3211 int changed;
3212 basic_block bb;
3213 rtx insn;
3215 /* Note we start at block 1. */
3216 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3218 if (dump_file != NULL)
3219 fprintf (dump_file, "\n");
3220 return 0;
3223 changed = 0;
3224 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3226 /* Reset tables used to keep track of what's still valid [since the
3227 start of the block]. */
3228 reset_opr_set_tables ();
3230 FOR_BB_INSNS (bb, insn)
3231 if (INSN_P (insn))
3233 changed |= cprop_insn (insn, alter_jumps);
3235 /* Keep track of everything modified by this insn. */
3236 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3237 call mark_oprs_set if we turned the insn into a NOTE. */
3238 if (! NOTE_P (insn))
3239 mark_oprs_set (insn);
3243 if (dump_file != NULL)
3244 fprintf (dump_file, "\n");
3246 return changed;
3249 /* Similar to get_condition, only the resulting condition must be
3250 valid at JUMP, instead of at EARLIEST.
3252 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3253 settle for the condition variable in the jump instruction being integral.
3254 We prefer to be able to record the value of a user variable, rather than
3255 the value of a temporary used in a condition. This could be solved by
3256 recording the value of *every* register scanned by canonicalize_condition,
3257 but this would require some code reorganization. */
3260 fis_get_condition (rtx jump)
3262 return get_condition (jump, NULL, false, true);
3265 /* Check the comparison COND to see if we can safely form an implicit set from
3266 it. COND is either an EQ or NE comparison. */
3268 static bool
3269 implicit_set_cond_p (const_rtx cond)
3271 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3272 const_rtx cst = XEXP (cond, 1);
3274 /* We can't perform this optimization if either operand might be or might
3275 contain a signed zero. */
3276 if (HONOR_SIGNED_ZEROS (mode))
3278 /* It is sufficient to check if CST is or contains a zero. We must
3279 handle float, complex, and vector. If any subpart is a zero, then
3280 the optimization can't be performed. */
3281 /* ??? The complex and vector checks are not implemented yet. We just
3282 always return zero for them. */
3283 if (GET_CODE (cst) == CONST_DOUBLE)
3285 REAL_VALUE_TYPE d;
3286 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3287 if (REAL_VALUES_EQUAL (d, dconst0))
3288 return 0;
3290 else
3291 return 0;
3294 return gcse_constant_p (cst);
3297 /* Find the implicit sets of a function. An "implicit set" is a constraint
3298 on the value of a variable, implied by a conditional jump. For example,
3299 following "if (x == 2)", the then branch may be optimized as though the
3300 conditional performed an "explicit set", in this example, "x = 2". This
3301 function records the set patterns that are implicit at the start of each
3302 basic block. */
3304 static void
3305 find_implicit_sets (void)
3307 basic_block bb, dest;
3308 unsigned int count;
3309 rtx cond, new_rtx;
3311 count = 0;
3312 FOR_EACH_BB (bb)
3313 /* Check for more than one successor. */
3314 if (EDGE_COUNT (bb->succs) > 1)
3316 cond = fis_get_condition (BB_END (bb));
3318 if (cond
3319 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3320 && REG_P (XEXP (cond, 0))
3321 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3322 && implicit_set_cond_p (cond))
3324 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3325 : FALLTHRU_EDGE (bb)->dest;
3327 if (dest && single_pred_p (dest)
3328 && dest != EXIT_BLOCK_PTR)
3330 new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3331 XEXP (cond, 1));
3332 implicit_sets[dest->index] = new_rtx;
3333 if (dump_file)
3335 fprintf(dump_file, "Implicit set of reg %d in ",
3336 REGNO (XEXP (cond, 0)));
3337 fprintf(dump_file, "basic block %d\n", dest->index);
3339 count++;
3344 if (dump_file)
3345 fprintf (dump_file, "Found %d implicit sets\n", count);
3348 /* Perform one copy/constant propagation pass.
3349 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3350 propagation into conditional jumps. If BYPASS_JUMPS is true,
3351 perform conditional jump bypassing optimizations. */
3353 static int
3354 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3356 int changed = 0;
3358 global_const_prop_count = local_const_prop_count = 0;
3359 global_copy_prop_count = local_copy_prop_count = 0;
3361 if (cprop_jumps)
3362 local_cprop_pass (cprop_jumps);
3364 /* Determine implicit sets. */
3365 implicit_sets = XCNEWVEC (rtx, last_basic_block);
3366 find_implicit_sets ();
3368 alloc_hash_table (max_cuid, &set_hash_table, 1);
3369 compute_hash_table (&set_hash_table);
3371 /* Free implicit_sets before peak usage. */
3372 free (implicit_sets);
3373 implicit_sets = NULL;
3375 if (dump_file)
3376 dump_hash_table (dump_file, "SET", &set_hash_table);
3377 if (set_hash_table.n_elems > 0)
3379 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3380 compute_cprop_data ();
3381 changed = cprop (cprop_jumps);
3382 if (bypass_jumps)
3383 changed |= bypass_conditional_jumps ();
3384 free_cprop_mem ();
3387 free_hash_table (&set_hash_table);
3389 if (dump_file)
3391 fprintf (dump_file, "CPROP of %s, pass %d: %d bytes needed, ",
3392 current_function_name (), pass, bytes_used);
3393 fprintf (dump_file, "%d local const props, %d local copy props, ",
3394 local_const_prop_count, local_copy_prop_count);
3395 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
3396 global_const_prop_count, global_copy_prop_count);
3398 /* Global analysis may get into infinite loops for unreachable blocks. */
3399 if (changed && cprop_jumps)
3400 delete_unreachable_blocks ();
3402 return changed;
3405 /* Bypass conditional jumps. */
3407 /* The value of last_basic_block at the beginning of the jump_bypass
3408 pass. The use of redirect_edge_and_branch_force may introduce new
3409 basic blocks, but the data flow analysis is only valid for basic
3410 block indices less than bypass_last_basic_block. */
3412 static int bypass_last_basic_block;
3414 /* Find a set of REGNO to a constant that is available at the end of basic
3415 block BB. Returns NULL if no such set is found. Based heavily upon
3416 find_avail_set. */
3418 static struct expr *
3419 find_bypass_set (int regno, int bb)
3421 struct expr *result = 0;
3423 for (;;)
3425 rtx src;
3426 struct expr *set = lookup_set (regno, &set_hash_table);
3428 while (set)
3430 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3431 break;
3432 set = next_set (regno, set);
3435 if (set == 0)
3436 break;
3438 gcc_assert (GET_CODE (set->expr) == SET);
3440 src = SET_SRC (set->expr);
3441 if (gcse_constant_p (src))
3442 result = set;
3444 if (! REG_P (src))
3445 break;
3447 regno = REGNO (src);
3449 return result;
3453 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3454 any of the instructions inserted on an edge. Jump bypassing places
3455 condition code setters on CFG edges using insert_insn_on_edge. This
3456 function is required to check that our data flow analysis is still
3457 valid prior to commit_edge_insertions. */
3459 static bool
3460 reg_killed_on_edge (const_rtx reg, const_edge e)
3462 rtx insn;
3464 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3465 if (INSN_P (insn) && reg_set_p (reg, insn))
3466 return true;
3468 return false;
3471 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3472 basic block BB which has more than one predecessor. If not NULL, SETCC
3473 is the first instruction of BB, which is immediately followed by JUMP_INSN
3474 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3475 Returns nonzero if a change was made.
3477 During the jump bypassing pass, we may place copies of SETCC instructions
3478 on CFG edges. The following routine must be careful to pay attention to
3479 these inserted insns when performing its transformations. */
3481 static int
3482 bypass_block (basic_block bb, rtx setcc, rtx jump)
3484 rtx insn, note;
3485 edge e, edest;
3486 int i, change;
3487 int may_be_loop_header;
3488 unsigned removed_p;
3489 edge_iterator ei;
3491 insn = (setcc != NULL) ? setcc : jump;
3493 /* Determine set of register uses in INSN. */
3494 reg_use_count = 0;
3495 note_uses (&PATTERN (insn), find_used_regs, NULL);
3496 note = find_reg_equal_equiv_note (insn);
3497 if (note)
3498 find_used_regs (&XEXP (note, 0), NULL);
3500 may_be_loop_header = false;
3501 FOR_EACH_EDGE (e, ei, bb->preds)
3502 if (e->flags & EDGE_DFS_BACK)
3504 may_be_loop_header = true;
3505 break;
3508 change = 0;
3509 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3511 removed_p = 0;
3513 if (e->flags & EDGE_COMPLEX)
3515 ei_next (&ei);
3516 continue;
3519 /* We can't redirect edges from new basic blocks. */
3520 if (e->src->index >= bypass_last_basic_block)
3522 ei_next (&ei);
3523 continue;
3526 /* The irreducible loops created by redirecting of edges entering the
3527 loop from outside would decrease effectiveness of some of the following
3528 optimizations, so prevent this. */
3529 if (may_be_loop_header
3530 && !(e->flags & EDGE_DFS_BACK))
3532 ei_next (&ei);
3533 continue;
3536 for (i = 0; i < reg_use_count; i++)
3538 struct reg_use *reg_used = &reg_use_table[i];
3539 unsigned int regno = REGNO (reg_used->reg_rtx);
3540 basic_block dest, old_dest;
3541 struct expr *set;
3542 rtx src, new_rtx;
3544 if (regno >= max_gcse_regno)
3545 continue;
3547 set = find_bypass_set (regno, e->src->index);
3549 if (! set)
3550 continue;
3552 /* Check the data flow is valid after edge insertions. */
3553 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3554 continue;
3556 src = SET_SRC (pc_set (jump));
3558 if (setcc != NULL)
3559 src = simplify_replace_rtx (src,
3560 SET_DEST (PATTERN (setcc)),
3561 SET_SRC (PATTERN (setcc)));
3563 new_rtx = simplify_replace_rtx (src, reg_used->reg_rtx,
3564 SET_SRC (set->expr));
3566 /* Jump bypassing may have already placed instructions on
3567 edges of the CFG. We can't bypass an outgoing edge that
3568 has instructions associated with it, as these insns won't
3569 get executed if the incoming edge is redirected. */
3571 if (new_rtx == pc_rtx)
3573 edest = FALLTHRU_EDGE (bb);
3574 dest = edest->insns.r ? NULL : edest->dest;
3576 else if (GET_CODE (new_rtx) == LABEL_REF)
3578 dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0));
3579 /* Don't bypass edges containing instructions. */
3580 edest = find_edge (bb, dest);
3581 if (edest && edest->insns.r)
3582 dest = NULL;
3584 else
3585 dest = NULL;
3587 /* Avoid unification of the edge with other edges from original
3588 branch. We would end up emitting the instruction on "both"
3589 edges. */
3591 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3592 && find_edge (e->src, dest))
3593 dest = NULL;
3595 old_dest = e->dest;
3596 if (dest != NULL
3597 && dest != old_dest
3598 && dest != EXIT_BLOCK_PTR)
3600 redirect_edge_and_branch_force (e, dest);
3602 /* Copy the register setter to the redirected edge.
3603 Don't copy CC0 setters, as CC0 is dead after jump. */
3604 if (setcc)
3606 rtx pat = PATTERN (setcc);
3607 if (!CC0_P (SET_DEST (pat)))
3608 insert_insn_on_edge (copy_insn (pat), e);
3611 if (dump_file != NULL)
3613 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3614 "in jump_insn %d equals constant ",
3615 regno, INSN_UID (jump));
3616 print_rtl (dump_file, SET_SRC (set->expr));
3617 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3618 e->src->index, old_dest->index, dest->index);
3620 change = 1;
3621 removed_p = 1;
3622 break;
3625 if (!removed_p)
3626 ei_next (&ei);
3628 return change;
3631 /* Find basic blocks with more than one predecessor that only contain a
3632 single conditional jump. If the result of the comparison is known at
3633 compile-time from any incoming edge, redirect that edge to the
3634 appropriate target. Returns nonzero if a change was made.
3636 This function is now mis-named, because we also handle indirect jumps. */
3638 static int
3639 bypass_conditional_jumps (void)
3641 basic_block bb;
3642 int changed;
3643 rtx setcc;
3644 rtx insn;
3645 rtx dest;
3647 /* Note we start at block 1. */
3648 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3649 return 0;
3651 bypass_last_basic_block = last_basic_block;
3652 mark_dfs_back_edges ();
3654 changed = 0;
3655 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3656 EXIT_BLOCK_PTR, next_bb)
3658 /* Check for more than one predecessor. */
3659 if (!single_pred_p (bb))
3661 setcc = NULL_RTX;
3662 FOR_BB_INSNS (bb, insn)
3663 if (NONJUMP_INSN_P (insn))
3665 if (setcc)
3666 break;
3667 if (GET_CODE (PATTERN (insn)) != SET)
3668 break;
3670 dest = SET_DEST (PATTERN (insn));
3671 if (REG_P (dest) || CC0_P (dest))
3672 setcc = insn;
3673 else
3674 break;
3676 else if (JUMP_P (insn))
3678 if ((any_condjump_p (insn) || computed_jump_p (insn))
3679 && onlyjump_p (insn))
3680 changed |= bypass_block (bb, setcc, insn);
3681 break;
3683 else if (INSN_P (insn))
3684 break;
3688 /* If we bypassed any register setting insns, we inserted a
3689 copy on the redirected edge. These need to be committed. */
3690 if (changed)
3691 commit_edge_insertions ();
3693 return changed;
3696 /* Compute PRE+LCM working variables. */
3698 /* Local properties of expressions. */
3699 /* Nonzero for expressions that are transparent in the block. */
3700 static sbitmap *transp;
3702 /* Nonzero for expressions that are transparent at the end of the block.
3703 This is only zero for expressions killed by abnormal critical edge
3704 created by a calls. */
3705 static sbitmap *transpout;
3707 /* Nonzero for expressions that are computed (available) in the block. */
3708 static sbitmap *comp;
3710 /* Nonzero for expressions that are locally anticipatable in the block. */
3711 static sbitmap *antloc;
3713 /* Nonzero for expressions where this block is an optimal computation
3714 point. */
3715 static sbitmap *pre_optimal;
3717 /* Nonzero for expressions which are redundant in a particular block. */
3718 static sbitmap *pre_redundant;
3720 /* Nonzero for expressions which should be inserted on a specific edge. */
3721 static sbitmap *pre_insert_map;
3723 /* Nonzero for expressions which should be deleted in a specific block. */
3724 static sbitmap *pre_delete_map;
3726 /* Contains the edge_list returned by pre_edge_lcm. */
3727 static struct edge_list *edge_list;
3729 /* Redundant insns. */
3730 static sbitmap pre_redundant_insns;
3732 /* Allocate vars used for PRE analysis. */
3734 static void
3735 alloc_pre_mem (int n_blocks, int n_exprs)
3737 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3738 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3739 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3741 pre_optimal = NULL;
3742 pre_redundant = NULL;
3743 pre_insert_map = NULL;
3744 pre_delete_map = NULL;
3745 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3747 /* pre_insert and pre_delete are allocated later. */
3750 /* Free vars used for PRE analysis. */
3752 static void
3753 free_pre_mem (void)
3755 sbitmap_vector_free (transp);
3756 sbitmap_vector_free (comp);
3758 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3760 if (pre_optimal)
3761 sbitmap_vector_free (pre_optimal);
3762 if (pre_redundant)
3763 sbitmap_vector_free (pre_redundant);
3764 if (pre_insert_map)
3765 sbitmap_vector_free (pre_insert_map);
3766 if (pre_delete_map)
3767 sbitmap_vector_free (pre_delete_map);
3769 transp = comp = NULL;
3770 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3773 /* Top level routine to do the dataflow analysis needed by PRE. */
3775 static void
3776 compute_pre_data (void)
3778 sbitmap trapping_expr;
3779 basic_block bb;
3780 unsigned int ui;
3782 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3783 sbitmap_vector_zero (ae_kill, last_basic_block);
3785 /* Collect expressions which might trap. */
3786 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3787 sbitmap_zero (trapping_expr);
3788 for (ui = 0; ui < expr_hash_table.size; ui++)
3790 struct expr *e;
3791 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3792 if (may_trap_p (e->expr))
3793 SET_BIT (trapping_expr, e->bitmap_index);
3796 /* Compute ae_kill for each basic block using:
3798 ~(TRANSP | COMP)
3801 FOR_EACH_BB (bb)
3803 edge e;
3804 edge_iterator ei;
3806 /* If the current block is the destination of an abnormal edge, we
3807 kill all trapping expressions because we won't be able to properly
3808 place the instruction on the edge. So make them neither
3809 anticipatable nor transparent. This is fairly conservative. */
3810 FOR_EACH_EDGE (e, ei, bb->preds)
3811 if (e->flags & EDGE_ABNORMAL)
3813 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3814 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3815 break;
3818 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3819 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3822 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3823 ae_kill, &pre_insert_map, &pre_delete_map);
3824 sbitmap_vector_free (antloc);
3825 antloc = NULL;
3826 sbitmap_vector_free (ae_kill);
3827 ae_kill = NULL;
3828 sbitmap_free (trapping_expr);
3831 /* PRE utilities */
3833 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3834 block BB.
3836 VISITED is a pointer to a working buffer for tracking which BB's have
3837 been visited. It is NULL for the top-level call.
3839 We treat reaching expressions that go through blocks containing the same
3840 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3841 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3842 2 as not reaching. The intent is to improve the probability of finding
3843 only one reaching expression and to reduce register lifetimes by picking
3844 the closest such expression. */
3846 static int
3847 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3849 edge pred;
3850 edge_iterator ei;
3852 FOR_EACH_EDGE (pred, ei, bb->preds)
3854 basic_block pred_bb = pred->src;
3856 if (pred->src == ENTRY_BLOCK_PTR
3857 /* Has predecessor has already been visited? */
3858 || visited[pred_bb->index])
3859 ;/* Nothing to do. */
3861 /* Does this predecessor generate this expression? */
3862 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3864 /* Is this the occurrence we're looking for?
3865 Note that there's only one generating occurrence per block
3866 so we just need to check the block number. */
3867 if (occr_bb == pred_bb)
3868 return 1;
3870 visited[pred_bb->index] = 1;
3872 /* Ignore this predecessor if it kills the expression. */
3873 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3874 visited[pred_bb->index] = 1;
3876 /* Neither gen nor kill. */
3877 else
3879 visited[pred_bb->index] = 1;
3880 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3881 return 1;
3885 /* All paths have been checked. */
3886 return 0;
3889 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3890 memory allocated for that function is returned. */
3892 static int
3893 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3895 int rval;
3896 char *visited = XCNEWVEC (char, last_basic_block);
3898 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3900 free (visited);
3901 return rval;
3905 /* Given an expr, generate RTL which we can insert at the end of a BB,
3906 or on an edge. Set the block number of any insns generated to
3907 the value of BB. */
3909 static rtx
3910 process_insert_insn (struct expr *expr)
3912 rtx reg = expr->reaching_reg;
3913 rtx exp = copy_rtx (expr->expr);
3914 rtx pat;
3916 start_sequence ();
3918 /* If the expression is something that's an operand, like a constant,
3919 just copy it to a register. */
3920 if (general_operand (exp, GET_MODE (reg)))
3921 emit_move_insn (reg, exp);
3923 /* Otherwise, make a new insn to compute this expression and make sure the
3924 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3925 expression to make sure we don't have any sharing issues. */
3926 else
3928 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3930 if (insn_invalid_p (insn))
3931 gcc_unreachable ();
3935 pat = get_insns ();
3936 end_sequence ();
3938 return pat;
3941 /* Add EXPR to the end of basic block BB.
3943 This is used by both the PRE and code hoisting.
3945 For PRE, we want to verify that the expr is either transparent
3946 or locally anticipatable in the target block. This check makes
3947 no sense for code hoisting. */
3949 static void
3950 insert_insn_end_basic_block (struct expr *expr, basic_block bb, int pre)
3952 rtx insn = BB_END (bb);
3953 rtx new_insn;
3954 rtx reg = expr->reaching_reg;
3955 int regno = REGNO (reg);
3956 rtx pat, pat_end;
3958 pat = process_insert_insn (expr);
3959 gcc_assert (pat && INSN_P (pat));
3961 pat_end = pat;
3962 while (NEXT_INSN (pat_end) != NULL_RTX)
3963 pat_end = NEXT_INSN (pat_end);
3965 /* If the last insn is a jump, insert EXPR in front [taking care to
3966 handle cc0, etc. properly]. Similarly we need to care trapping
3967 instructions in presence of non-call exceptions. */
3969 if (JUMP_P (insn)
3970 || (NONJUMP_INSN_P (insn)
3971 && (!single_succ_p (bb)
3972 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3974 #ifdef HAVE_cc0
3975 rtx note;
3976 #endif
3977 /* It should always be the case that we can put these instructions
3978 anywhere in the basic block with performing PRE optimizations.
3979 Check this. */
3980 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
3981 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3982 || TEST_BIT (transp[bb->index], expr->bitmap_index));
3984 /* If this is a jump table, then we can't insert stuff here. Since
3985 we know the previous real insn must be the tablejump, we insert
3986 the new instruction just before the tablejump. */
3987 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3988 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3989 insn = prev_real_insn (insn);
3991 #ifdef HAVE_cc0
3992 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3993 if cc0 isn't set. */
3994 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3995 if (note)
3996 insn = XEXP (note, 0);
3997 else
3999 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4000 if (maybe_cc0_setter
4001 && INSN_P (maybe_cc0_setter)
4002 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4003 insn = maybe_cc0_setter;
4005 #endif
4006 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4007 new_insn = emit_insn_before_noloc (pat, insn, bb);
4010 /* Likewise if the last insn is a call, as will happen in the presence
4011 of exception handling. */
4012 else if (CALL_P (insn)
4013 && (!single_succ_p (bb)
4014 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4016 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4017 we search backward and place the instructions before the first
4018 parameter is loaded. Do this for everyone for consistency and a
4019 presumption that we'll get better code elsewhere as well.
4021 It should always be the case that we can put these instructions
4022 anywhere in the basic block with performing PRE optimizations.
4023 Check this. */
4025 gcc_assert (!pre
4026 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4027 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4029 /* Since different machines initialize their parameter registers
4030 in different orders, assume nothing. Collect the set of all
4031 parameter registers. */
4032 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4034 /* If we found all the parameter loads, then we want to insert
4035 before the first parameter load.
4037 If we did not find all the parameter loads, then we might have
4038 stopped on the head of the block, which could be a CODE_LABEL.
4039 If we inserted before the CODE_LABEL, then we would be putting
4040 the insn in the wrong basic block. In that case, put the insn
4041 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4042 while (LABEL_P (insn)
4043 || NOTE_INSN_BASIC_BLOCK_P (insn))
4044 insn = NEXT_INSN (insn);
4046 new_insn = emit_insn_before_noloc (pat, insn, bb);
4048 else
4049 new_insn = emit_insn_after_noloc (pat, insn, bb);
4051 while (1)
4053 if (INSN_P (pat))
4055 add_label_notes (PATTERN (pat), new_insn);
4056 note_stores (PATTERN (pat), record_set_info, pat);
4058 if (pat == pat_end)
4059 break;
4060 pat = NEXT_INSN (pat);
4063 gcse_create_count++;
4065 if (dump_file)
4067 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
4068 bb->index, INSN_UID (new_insn));
4069 fprintf (dump_file, "copying expression %d to reg %d\n",
4070 expr->bitmap_index, regno);
4074 /* Insert partially redundant expressions on edges in the CFG to make
4075 the expressions fully redundant. */
4077 static int
4078 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4080 int e, i, j, num_edges, set_size, did_insert = 0;
4081 sbitmap *inserted;
4083 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4084 if it reaches any of the deleted expressions. */
4086 set_size = pre_insert_map[0]->size;
4087 num_edges = NUM_EDGES (edge_list);
4088 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4089 sbitmap_vector_zero (inserted, num_edges);
4091 for (e = 0; e < num_edges; e++)
4093 int indx;
4094 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4096 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4098 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4100 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4101 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4103 struct expr *expr = index_map[j];
4104 struct occr *occr;
4106 /* Now look at each deleted occurrence of this expression. */
4107 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4109 if (! occr->deleted_p)
4110 continue;
4112 /* Insert this expression on this edge if it would
4113 reach the deleted occurrence in BB. */
4114 if (!TEST_BIT (inserted[e], j))
4116 rtx insn;
4117 edge eg = INDEX_EDGE (edge_list, e);
4119 /* We can't insert anything on an abnormal and
4120 critical edge, so we insert the insn at the end of
4121 the previous block. There are several alternatives
4122 detailed in Morgans book P277 (sec 10.5) for
4123 handling this situation. This one is easiest for
4124 now. */
4126 if (eg->flags & EDGE_ABNORMAL)
4127 insert_insn_end_basic_block (index_map[j], bb, 0);
4128 else
4130 insn = process_insert_insn (index_map[j]);
4131 insert_insn_on_edge (insn, eg);
4134 if (dump_file)
4136 fprintf (dump_file, "PRE/HOIST: edge (%d,%d), ",
4137 bb->index,
4138 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4139 fprintf (dump_file, "copy expression %d\n",
4140 expr->bitmap_index);
4143 update_ld_motion_stores (expr);
4144 SET_BIT (inserted[e], j);
4145 did_insert = 1;
4146 gcse_create_count++;
4153 sbitmap_vector_free (inserted);
4154 return did_insert;
4157 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4158 Given "old_reg <- expr" (INSN), instead of adding after it
4159 reaching_reg <- old_reg
4160 it's better to do the following:
4161 reaching_reg <- expr
4162 old_reg <- reaching_reg
4163 because this way copy propagation can discover additional PRE
4164 opportunities. But if this fails, we try the old way.
4165 When "expr" is a store, i.e.
4166 given "MEM <- old_reg", instead of adding after it
4167 reaching_reg <- old_reg
4168 it's better to add it before as follows:
4169 reaching_reg <- old_reg
4170 MEM <- reaching_reg. */
4172 static void
4173 pre_insert_copy_insn (struct expr *expr, rtx insn)
4175 rtx reg = expr->reaching_reg;
4176 int regno = REGNO (reg);
4177 int indx = expr->bitmap_index;
4178 rtx pat = PATTERN (insn);
4179 rtx set, first_set, new_insn;
4180 rtx old_reg;
4181 int i;
4183 /* This block matches the logic in hash_scan_insn. */
4184 switch (GET_CODE (pat))
4186 case SET:
4187 set = pat;
4188 break;
4190 case PARALLEL:
4191 /* Search through the parallel looking for the set whose
4192 source was the expression that we're interested in. */
4193 first_set = NULL_RTX;
4194 set = NULL_RTX;
4195 for (i = 0; i < XVECLEN (pat, 0); i++)
4197 rtx x = XVECEXP (pat, 0, i);
4198 if (GET_CODE (x) == SET)
4200 /* If the source was a REG_EQUAL or REG_EQUIV note, we
4201 may not find an equivalent expression, but in this
4202 case the PARALLEL will have a single set. */
4203 if (first_set == NULL_RTX)
4204 first_set = x;
4205 if (expr_equiv_p (SET_SRC (x), expr->expr))
4207 set = x;
4208 break;
4213 gcc_assert (first_set);
4214 if (set == NULL_RTX)
4215 set = first_set;
4216 break;
4218 default:
4219 gcc_unreachable ();
4222 if (REG_P (SET_DEST (set)))
4224 old_reg = SET_DEST (set);
4225 /* Check if we can modify the set destination in the original insn. */
4226 if (validate_change (insn, &SET_DEST (set), reg, 0))
4228 new_insn = gen_move_insn (old_reg, reg);
4229 new_insn = emit_insn_after (new_insn, insn);
4231 /* Keep register set table up to date. */
4232 record_one_set (regno, insn);
4234 else
4236 new_insn = gen_move_insn (reg, old_reg);
4237 new_insn = emit_insn_after (new_insn, insn);
4239 /* Keep register set table up to date. */
4240 record_one_set (regno, new_insn);
4243 else /* This is possible only in case of a store to memory. */
4245 old_reg = SET_SRC (set);
4246 new_insn = gen_move_insn (reg, old_reg);
4248 /* Check if we can modify the set source in the original insn. */
4249 if (validate_change (insn, &SET_SRC (set), reg, 0))
4250 new_insn = emit_insn_before (new_insn, insn);
4251 else
4252 new_insn = emit_insn_after (new_insn, insn);
4254 /* Keep register set table up to date. */
4255 record_one_set (regno, new_insn);
4258 gcse_create_count++;
4260 if (dump_file)
4261 fprintf (dump_file,
4262 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4263 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4264 INSN_UID (insn), regno);
4267 /* Copy available expressions that reach the redundant expression
4268 to `reaching_reg'. */
4270 static void
4271 pre_insert_copies (void)
4273 unsigned int i, added_copy;
4274 struct expr *expr;
4275 struct occr *occr;
4276 struct occr *avail;
4278 /* For each available expression in the table, copy the result to
4279 `reaching_reg' if the expression reaches a deleted one.
4281 ??? The current algorithm is rather brute force.
4282 Need to do some profiling. */
4284 for (i = 0; i < expr_hash_table.size; i++)
4285 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4287 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4288 we don't want to insert a copy here because the expression may not
4289 really be redundant. So only insert an insn if the expression was
4290 deleted. This test also avoids further processing if the
4291 expression wasn't deleted anywhere. */
4292 if (expr->reaching_reg == NULL)
4293 continue;
4295 /* Set when we add a copy for that expression. */
4296 added_copy = 0;
4298 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4300 if (! occr->deleted_p)
4301 continue;
4303 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4305 rtx insn = avail->insn;
4307 /* No need to handle this one if handled already. */
4308 if (avail->copied_p)
4309 continue;
4311 /* Don't handle this one if it's a redundant one. */
4312 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4313 continue;
4315 /* Or if the expression doesn't reach the deleted one. */
4316 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4317 expr,
4318 BLOCK_FOR_INSN (occr->insn)))
4319 continue;
4321 added_copy = 1;
4323 /* Copy the result of avail to reaching_reg. */
4324 pre_insert_copy_insn (expr, insn);
4325 avail->copied_p = 1;
4329 if (added_copy)
4330 update_ld_motion_stores (expr);
4334 /* Emit move from SRC to DEST noting the equivalence with expression computed
4335 in INSN. */
4336 static rtx
4337 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4339 rtx new_rtx;
4340 rtx set = single_set (insn), set2;
4341 rtx note;
4342 rtx eqv;
4344 /* This should never fail since we're creating a reg->reg copy
4345 we've verified to be valid. */
4347 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
4349 /* Note the equivalence for local CSE pass. */
4350 set2 = single_set (new_rtx);
4351 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4352 return new_rtx;
4353 if ((note = find_reg_equal_equiv_note (insn)))
4354 eqv = XEXP (note, 0);
4355 else
4356 eqv = SET_SRC (set);
4358 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
4360 return new_rtx;
4363 /* Delete redundant computations.
4364 Deletion is done by changing the insn to copy the `reaching_reg' of
4365 the expression into the result of the SET. It is left to later passes
4366 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4368 Returns nonzero if a change is made. */
4370 static int
4371 pre_delete (void)
4373 unsigned int i;
4374 int changed;
4375 struct expr *expr;
4376 struct occr *occr;
4378 changed = 0;
4379 for (i = 0; i < expr_hash_table.size; i++)
4380 for (expr = expr_hash_table.table[i];
4381 expr != NULL;
4382 expr = expr->next_same_hash)
4384 int indx = expr->bitmap_index;
4386 /* We only need to search antic_occr since we require
4387 ANTLOC != 0. */
4389 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4391 rtx insn = occr->insn;
4392 rtx set;
4393 basic_block bb = BLOCK_FOR_INSN (insn);
4395 /* We only delete insns that have a single_set. */
4396 if (TEST_BIT (pre_delete_map[bb->index], indx)
4397 && (set = single_set (insn)) != 0
4398 && dbg_cnt (pre_insn))
4400 /* Create a pseudo-reg to store the result of reaching
4401 expressions into. Get the mode for the new pseudo from
4402 the mode of the original destination pseudo. */
4403 if (expr->reaching_reg == NULL)
4404 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
4406 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4407 delete_insn (insn);
4408 occr->deleted_p = 1;
4409 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4410 changed = 1;
4411 gcse_subst_count++;
4413 if (dump_file)
4415 fprintf (dump_file,
4416 "PRE: redundant insn %d (expression %d) in ",
4417 INSN_UID (insn), indx);
4418 fprintf (dump_file, "bb %d, reaching reg is %d\n",
4419 bb->index, REGNO (expr->reaching_reg));
4425 return changed;
4428 /* Perform GCSE optimizations using PRE.
4429 This is called by one_pre_gcse_pass after all the dataflow analysis
4430 has been done.
4432 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4433 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4434 Compiler Design and Implementation.
4436 ??? A new pseudo reg is created to hold the reaching expression. The nice
4437 thing about the classical approach is that it would try to use an existing
4438 reg. If the register can't be adequately optimized [i.e. we introduce
4439 reload problems], one could add a pass here to propagate the new register
4440 through the block.
4442 ??? We don't handle single sets in PARALLELs because we're [currently] not
4443 able to copy the rest of the parallel when we insert copies to create full
4444 redundancies from partial redundancies. However, there's no reason why we
4445 can't handle PARALLELs in the cases where there are no partial
4446 redundancies. */
4448 static int
4449 pre_gcse (void)
4451 unsigned int i;
4452 int did_insert, changed;
4453 struct expr **index_map;
4454 struct expr *expr;
4456 /* Compute a mapping from expression number (`bitmap_index') to
4457 hash table entry. */
4459 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4460 for (i = 0; i < expr_hash_table.size; i++)
4461 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4462 index_map[expr->bitmap_index] = expr;
4464 /* Reset bitmap used to track which insns are redundant. */
4465 pre_redundant_insns = sbitmap_alloc (max_cuid);
4466 sbitmap_zero (pre_redundant_insns);
4468 /* Delete the redundant insns first so that
4469 - we know what register to use for the new insns and for the other
4470 ones with reaching expressions
4471 - we know which insns are redundant when we go to create copies */
4473 changed = pre_delete ();
4474 did_insert = pre_edge_insert (edge_list, index_map);
4476 /* In other places with reaching expressions, copy the expression to the
4477 specially allocated pseudo-reg that reaches the redundant expr. */
4478 pre_insert_copies ();
4479 if (did_insert)
4481 commit_edge_insertions ();
4482 changed = 1;
4485 free (index_map);
4486 sbitmap_free (pre_redundant_insns);
4487 return changed;
4490 /* Top level routine to perform one PRE GCSE pass.
4492 Return nonzero if a change was made. */
4494 static int
4495 one_pre_gcse_pass (int pass)
4497 int changed = 0;
4499 gcse_subst_count = 0;
4500 gcse_create_count = 0;
4502 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4503 add_noreturn_fake_exit_edges ();
4504 if (flag_gcse_lm)
4505 compute_ld_motion_mems ();
4507 compute_hash_table (&expr_hash_table);
4508 trim_ld_motion_mems ();
4509 if (dump_file)
4510 dump_hash_table (dump_file, "Expression", &expr_hash_table);
4512 if (expr_hash_table.n_elems > 0)
4514 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4515 compute_pre_data ();
4516 changed |= pre_gcse ();
4517 free_edge_list (edge_list);
4518 free_pre_mem ();
4521 free_ldst_mems ();
4522 remove_fake_exit_edges ();
4523 free_hash_table (&expr_hash_table);
4525 if (dump_file)
4527 fprintf (dump_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4528 current_function_name (), pass, bytes_used);
4529 fprintf (dump_file, "%d substs, %d insns created\n",
4530 gcse_subst_count, gcse_create_count);
4533 return changed;
4536 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4537 to INSN. If such notes are added to an insn which references a
4538 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4539 that note, because the following loop optimization pass requires
4540 them. */
4542 /* ??? If there was a jump optimization pass after gcse and before loop,
4543 then we would not need to do this here, because jump would add the
4544 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4546 static void
4547 add_label_notes (rtx x, rtx insn)
4549 enum rtx_code code = GET_CODE (x);
4550 int i, j;
4551 const char *fmt;
4553 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4555 /* This code used to ignore labels that referred to dispatch tables to
4556 avoid flow generating (slightly) worse code.
4558 We no longer ignore such label references (see LABEL_REF handling in
4559 mark_jump_label for additional information). */
4561 /* There's no reason for current users to emit jump-insns with
4562 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4563 notes. */
4564 gcc_assert (!JUMP_P (insn));
4565 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
4567 if (LABEL_P (XEXP (x, 0)))
4568 LABEL_NUSES (XEXP (x, 0))++;
4570 return;
4573 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4575 if (fmt[i] == 'e')
4576 add_label_notes (XEXP (x, i), insn);
4577 else if (fmt[i] == 'E')
4578 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4579 add_label_notes (XVECEXP (x, i, j), insn);
4583 /* Compute transparent outgoing information for each block.
4585 An expression is transparent to an edge unless it is killed by
4586 the edge itself. This can only happen with abnormal control flow,
4587 when the edge is traversed through a call. This happens with
4588 non-local labels and exceptions.
4590 This would not be necessary if we split the edge. While this is
4591 normally impossible for abnormal critical edges, with some effort
4592 it should be possible with exception handling, since we still have
4593 control over which handler should be invoked. But due to increased
4594 EH table sizes, this may not be worthwhile. */
4596 static void
4597 compute_transpout (void)
4599 basic_block bb;
4600 unsigned int i;
4601 struct expr *expr;
4603 sbitmap_vector_ones (transpout, last_basic_block);
4605 FOR_EACH_BB (bb)
4607 /* Note that flow inserted a nop at the end of basic blocks that
4608 end in call instructions for reasons other than abnormal
4609 control flow. */
4610 if (! CALL_P (BB_END (bb)))
4611 continue;
4613 for (i = 0; i < expr_hash_table.size; i++)
4614 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4615 if (MEM_P (expr->expr))
4617 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4618 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4619 continue;
4621 /* ??? Optimally, we would use interprocedural alias
4622 analysis to determine if this mem is actually killed
4623 by this call. */
4624 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4629 /* Code Hoisting variables and subroutines. */
4631 /* Very busy expressions. */
4632 static sbitmap *hoist_vbein;
4633 static sbitmap *hoist_vbeout;
4635 /* Hoistable expressions. */
4636 static sbitmap *hoist_exprs;
4638 /* ??? We could compute post dominators and run this algorithm in
4639 reverse to perform tail merging, doing so would probably be
4640 more effective than the tail merging code in jump.c.
4642 It's unclear if tail merging could be run in parallel with
4643 code hoisting. It would be nice. */
4645 /* Allocate vars used for code hoisting analysis. */
4647 static void
4648 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4650 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4651 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4652 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4654 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4655 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4656 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4657 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4660 /* Free vars used for code hoisting analysis. */
4662 static void
4663 free_code_hoist_mem (void)
4665 sbitmap_vector_free (antloc);
4666 sbitmap_vector_free (transp);
4667 sbitmap_vector_free (comp);
4669 sbitmap_vector_free (hoist_vbein);
4670 sbitmap_vector_free (hoist_vbeout);
4671 sbitmap_vector_free (hoist_exprs);
4672 sbitmap_vector_free (transpout);
4674 free_dominance_info (CDI_DOMINATORS);
4677 /* Compute the very busy expressions at entry/exit from each block.
4679 An expression is very busy if all paths from a given point
4680 compute the expression. */
4682 static void
4683 compute_code_hoist_vbeinout (void)
4685 int changed, passes;
4686 basic_block bb;
4688 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4689 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4691 passes = 0;
4692 changed = 1;
4694 while (changed)
4696 changed = 0;
4698 /* We scan the blocks in the reverse order to speed up
4699 the convergence. */
4700 FOR_EACH_BB_REVERSE (bb)
4702 if (bb->next_bb != EXIT_BLOCK_PTR)
4703 sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
4704 hoist_vbein, bb->index);
4706 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
4707 antloc[bb->index],
4708 hoist_vbeout[bb->index],
4709 transp[bb->index]);
4712 passes++;
4715 if (dump_file)
4716 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4719 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4721 static void
4722 compute_code_hoist_data (void)
4724 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4725 compute_transpout ();
4726 compute_code_hoist_vbeinout ();
4727 calculate_dominance_info (CDI_DOMINATORS);
4728 if (dump_file)
4729 fprintf (dump_file, "\n");
4732 /* Determine if the expression identified by EXPR_INDEX would
4733 reach BB unimpared if it was placed at the end of EXPR_BB.
4735 It's unclear exactly what Muchnick meant by "unimpared". It seems
4736 to me that the expression must either be computed or transparent in
4737 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4738 would allow the expression to be hoisted out of loops, even if
4739 the expression wasn't a loop invariant.
4741 Contrast this to reachability for PRE where an expression is
4742 considered reachable if *any* path reaches instead of *all*
4743 paths. */
4745 static int
4746 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4748 edge pred;
4749 edge_iterator ei;
4750 int visited_allocated_locally = 0;
4753 if (visited == NULL)
4755 visited_allocated_locally = 1;
4756 visited = XCNEWVEC (char, last_basic_block);
4759 FOR_EACH_EDGE (pred, ei, bb->preds)
4761 basic_block pred_bb = pred->src;
4763 if (pred->src == ENTRY_BLOCK_PTR)
4764 break;
4765 else if (pred_bb == expr_bb)
4766 continue;
4767 else if (visited[pred_bb->index])
4768 continue;
4770 /* Does this predecessor generate this expression? */
4771 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4772 break;
4773 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4774 break;
4776 /* Not killed. */
4777 else
4779 visited[pred_bb->index] = 1;
4780 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4781 pred_bb, visited))
4782 break;
4785 if (visited_allocated_locally)
4786 free (visited);
4788 return (pred == NULL);
4791 /* Actually perform code hoisting. */
4793 static void
4794 hoist_code (void)
4796 basic_block bb, dominated;
4797 VEC (basic_block, heap) *domby;
4798 unsigned int i,j;
4799 struct expr **index_map;
4800 struct expr *expr;
4802 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4804 /* Compute a mapping from expression number (`bitmap_index') to
4805 hash table entry. */
4807 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4808 for (i = 0; i < expr_hash_table.size; i++)
4809 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4810 index_map[expr->bitmap_index] = expr;
4812 /* Walk over each basic block looking for potentially hoistable
4813 expressions, nothing gets hoisted from the entry block. */
4814 FOR_EACH_BB (bb)
4816 int found = 0;
4817 int insn_inserted_p;
4819 domby = get_dominated_by (CDI_DOMINATORS, bb);
4820 /* Examine each expression that is very busy at the exit of this
4821 block. These are the potentially hoistable expressions. */
4822 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4824 int hoistable = 0;
4826 if (TEST_BIT (hoist_vbeout[bb->index], i)
4827 && TEST_BIT (transpout[bb->index], i))
4829 /* We've found a potentially hoistable expression, now
4830 we look at every block BB dominates to see if it
4831 computes the expression. */
4832 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4834 /* Ignore self dominance. */
4835 if (bb == dominated)
4836 continue;
4837 /* We've found a dominated block, now see if it computes
4838 the busy expression and whether or not moving that
4839 expression to the "beginning" of that block is safe. */
4840 if (!TEST_BIT (antloc[dominated->index], i))
4841 continue;
4843 /* Note if the expression would reach the dominated block
4844 unimpared if it was placed at the end of BB.
4846 Keep track of how many times this expression is hoistable
4847 from a dominated block into BB. */
4848 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4849 hoistable++;
4852 /* If we found more than one hoistable occurrence of this
4853 expression, then note it in the bitmap of expressions to
4854 hoist. It makes no sense to hoist things which are computed
4855 in only one BB, and doing so tends to pessimize register
4856 allocation. One could increase this value to try harder
4857 to avoid any possible code expansion due to register
4858 allocation issues; however experiments have shown that
4859 the vast majority of hoistable expressions are only movable
4860 from two successors, so raising this threshold is likely
4861 to nullify any benefit we get from code hoisting. */
4862 if (hoistable > 1)
4864 SET_BIT (hoist_exprs[bb->index], i);
4865 found = 1;
4869 /* If we found nothing to hoist, then quit now. */
4870 if (! found)
4872 VEC_free (basic_block, heap, domby);
4873 continue;
4876 /* Loop over all the hoistable expressions. */
4877 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4879 /* We want to insert the expression into BB only once, so
4880 note when we've inserted it. */
4881 insn_inserted_p = 0;
4883 /* These tests should be the same as the tests above. */
4884 if (TEST_BIT (hoist_exprs[bb->index], i))
4886 /* We've found a potentially hoistable expression, now
4887 we look at every block BB dominates to see if it
4888 computes the expression. */
4889 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4891 /* Ignore self dominance. */
4892 if (bb == dominated)
4893 continue;
4895 /* We've found a dominated block, now see if it computes
4896 the busy expression and whether or not moving that
4897 expression to the "beginning" of that block is safe. */
4898 if (!TEST_BIT (antloc[dominated->index], i))
4899 continue;
4901 /* The expression is computed in the dominated block and
4902 it would be safe to compute it at the start of the
4903 dominated block. Now we have to determine if the
4904 expression would reach the dominated block if it was
4905 placed at the end of BB. */
4906 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4908 struct expr *expr = index_map[i];
4909 struct occr *occr = expr->antic_occr;
4910 rtx insn;
4911 rtx set;
4913 /* Find the right occurrence of this expression. */
4914 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4915 occr = occr->next;
4917 gcc_assert (occr);
4918 insn = occr->insn;
4919 set = single_set (insn);
4920 gcc_assert (set);
4922 /* Create a pseudo-reg to store the result of reaching
4923 expressions into. Get the mode for the new pseudo
4924 from the mode of the original destination pseudo. */
4925 if (expr->reaching_reg == NULL)
4926 expr->reaching_reg
4927 = gen_reg_rtx_and_attrs (SET_DEST (set));
4929 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4930 delete_insn (insn);
4931 occr->deleted_p = 1;
4932 if (!insn_inserted_p)
4934 insert_insn_end_basic_block (index_map[i], bb, 0);
4935 insn_inserted_p = 1;
4941 VEC_free (basic_block, heap, domby);
4944 free (index_map);
4947 /* Top level routine to perform one code hoisting (aka unification) pass
4949 Return nonzero if a change was made. */
4951 static int
4952 one_code_hoisting_pass (void)
4954 int changed = 0;
4956 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4957 compute_hash_table (&expr_hash_table);
4958 if (dump_file)
4959 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4961 if (expr_hash_table.n_elems > 0)
4963 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4964 compute_code_hoist_data ();
4965 hoist_code ();
4966 free_code_hoist_mem ();
4969 free_hash_table (&expr_hash_table);
4971 return changed;
4974 /* Here we provide the things required to do store motion towards
4975 the exit. In order for this to be effective, gcse also needed to
4976 be taught how to move a load when it is kill only by a store to itself.
4978 int i;
4979 float a[10];
4981 void foo(float scale)
4983 for (i=0; i<10; i++)
4984 a[i] *= scale;
4987 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4988 the load out since its live around the loop, and stored at the bottom
4989 of the loop.
4991 The 'Load Motion' referred to and implemented in this file is
4992 an enhancement to gcse which when using edge based lcm, recognizes
4993 this situation and allows gcse to move the load out of the loop.
4995 Once gcse has hoisted the load, store motion can then push this
4996 load towards the exit, and we end up with no loads or stores of 'i'
4997 in the loop. */
4999 static hashval_t
5000 pre_ldst_expr_hash (const void *p)
5002 int do_not_record_p = 0;
5003 const struct ls_expr *const x = (const struct ls_expr *) p;
5004 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
5007 static int
5008 pre_ldst_expr_eq (const void *p1, const void *p2)
5010 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
5011 *const ptr2 = (const struct ls_expr *) p2;
5012 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
5015 /* This will search the ldst list for a matching expression. If it
5016 doesn't find one, we create one and initialize it. */
5018 static struct ls_expr *
5019 ldst_entry (rtx x)
5021 int do_not_record_p = 0;
5022 struct ls_expr * ptr;
5023 unsigned int hash;
5024 void **slot;
5025 struct ls_expr e;
5027 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5028 NULL, /*have_reg_qty=*/false);
5030 e.pattern = x;
5031 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
5032 if (*slot)
5033 return (struct ls_expr *)*slot;
5035 ptr = XNEW (struct ls_expr);
5037 ptr->next = pre_ldst_mems;
5038 ptr->expr = NULL;
5039 ptr->pattern = x;
5040 ptr->pattern_regs = NULL_RTX;
5041 ptr->loads = NULL_RTX;
5042 ptr->stores = NULL_RTX;
5043 ptr->reaching_reg = NULL_RTX;
5044 ptr->invalid = 0;
5045 ptr->index = 0;
5046 ptr->hash_index = hash;
5047 pre_ldst_mems = ptr;
5048 *slot = ptr;
5050 return ptr;
5053 /* Free up an individual ldst entry. */
5055 static void
5056 free_ldst_entry (struct ls_expr * ptr)
5058 free_INSN_LIST_list (& ptr->loads);
5059 free_INSN_LIST_list (& ptr->stores);
5061 free (ptr);
5064 /* Free up all memory associated with the ldst list. */
5066 static void
5067 free_ldst_mems (void)
5069 if (pre_ldst_table)
5070 htab_delete (pre_ldst_table);
5071 pre_ldst_table = NULL;
5073 while (pre_ldst_mems)
5075 struct ls_expr * tmp = pre_ldst_mems;
5077 pre_ldst_mems = pre_ldst_mems->next;
5079 free_ldst_entry (tmp);
5082 pre_ldst_mems = NULL;
5085 /* Dump debugging info about the ldst list. */
5087 static void
5088 print_ldst_list (FILE * file)
5090 struct ls_expr * ptr;
5092 fprintf (file, "LDST list: \n");
5094 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5096 fprintf (file, " Pattern (%3d): ", ptr->index);
5098 print_rtl (file, ptr->pattern);
5100 fprintf (file, "\n Loads : ");
5102 if (ptr->loads)
5103 print_rtl (file, ptr->loads);
5104 else
5105 fprintf (file, "(nil)");
5107 fprintf (file, "\n Stores : ");
5109 if (ptr->stores)
5110 print_rtl (file, ptr->stores);
5111 else
5112 fprintf (file, "(nil)");
5114 fprintf (file, "\n\n");
5117 fprintf (file, "\n");
5120 /* Returns 1 if X is in the list of ldst only expressions. */
5122 static struct ls_expr *
5123 find_rtx_in_ldst (rtx x)
5125 struct ls_expr e;
5126 void **slot;
5127 if (!pre_ldst_table)
5128 return NULL;
5129 e.pattern = x;
5130 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
5131 if (!slot || ((struct ls_expr *)*slot)->invalid)
5132 return NULL;
5133 return (struct ls_expr *) *slot;
5136 /* Assign each element of the list of mems a monotonically increasing value. */
5138 static int
5139 enumerate_ldsts (void)
5141 struct ls_expr * ptr;
5142 int n = 0;
5144 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5145 ptr->index = n++;
5147 return n;
5150 /* Return first item in the list. */
5152 static inline struct ls_expr *
5153 first_ls_expr (void)
5155 return pre_ldst_mems;
5158 /* Return the next item in the list after the specified one. */
5160 static inline struct ls_expr *
5161 next_ls_expr (struct ls_expr * ptr)
5163 return ptr->next;
5166 /* Load Motion for loads which only kill themselves. */
5168 /* Return true if x is a simple MEM operation, with no registers or
5169 side effects. These are the types of loads we consider for the
5170 ld_motion list, otherwise we let the usual aliasing take care of it. */
5172 static int
5173 simple_mem (const_rtx x)
5175 if (! MEM_P (x))
5176 return 0;
5178 if (MEM_VOLATILE_P (x))
5179 return 0;
5181 if (GET_MODE (x) == BLKmode)
5182 return 0;
5184 /* If we are handling exceptions, we must be careful with memory references
5185 that may trap. If we are not, the behavior is undefined, so we may just
5186 continue. */
5187 if (flag_non_call_exceptions && may_trap_p (x))
5188 return 0;
5190 if (side_effects_p (x))
5191 return 0;
5193 /* Do not consider function arguments passed on stack. */
5194 if (reg_mentioned_p (stack_pointer_rtx, x))
5195 return 0;
5197 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5198 return 0;
5200 return 1;
5203 /* Make sure there isn't a buried reference in this pattern anywhere.
5204 If there is, invalidate the entry for it since we're not capable
5205 of fixing it up just yet.. We have to be sure we know about ALL
5206 loads since the aliasing code will allow all entries in the
5207 ld_motion list to not-alias itself. If we miss a load, we will get
5208 the wrong value since gcse might common it and we won't know to
5209 fix it up. */
5211 static void
5212 invalidate_any_buried_refs (rtx x)
5214 const char * fmt;
5215 int i, j;
5216 struct ls_expr * ptr;
5218 /* Invalidate it in the list. */
5219 if (MEM_P (x) && simple_mem (x))
5221 ptr = ldst_entry (x);
5222 ptr->invalid = 1;
5225 /* Recursively process the insn. */
5226 fmt = GET_RTX_FORMAT (GET_CODE (x));
5228 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5230 if (fmt[i] == 'e')
5231 invalidate_any_buried_refs (XEXP (x, i));
5232 else if (fmt[i] == 'E')
5233 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5234 invalidate_any_buried_refs (XVECEXP (x, i, j));
5238 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5239 being defined as MEM loads and stores to symbols, with no side effects
5240 and no registers in the expression. For a MEM destination, we also
5241 check that the insn is still valid if we replace the destination with a
5242 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5243 which don't match this criteria, they are invalidated and trimmed out
5244 later. */
5246 static void
5247 compute_ld_motion_mems (void)
5249 struct ls_expr * ptr;
5250 basic_block bb;
5251 rtx insn;
5253 pre_ldst_mems = NULL;
5254 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5255 pre_ldst_expr_eq, NULL);
5257 FOR_EACH_BB (bb)
5259 FOR_BB_INSNS (bb, insn)
5261 if (INSN_P (insn))
5263 if (GET_CODE (PATTERN (insn)) == SET)
5265 rtx src = SET_SRC (PATTERN (insn));
5266 rtx dest = SET_DEST (PATTERN (insn));
5268 /* Check for a simple LOAD... */
5269 if (MEM_P (src) && simple_mem (src))
5271 ptr = ldst_entry (src);
5272 if (REG_P (dest))
5273 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5274 else
5275 ptr->invalid = 1;
5277 else
5279 /* Make sure there isn't a buried load somewhere. */
5280 invalidate_any_buried_refs (src);
5283 /* Check for stores. Don't worry about aliased ones, they
5284 will block any movement we might do later. We only care
5285 about this exact pattern since those are the only
5286 circumstance that we will ignore the aliasing info. */
5287 if (MEM_P (dest) && simple_mem (dest))
5289 ptr = ldst_entry (dest);
5291 if (! MEM_P (src)
5292 && GET_CODE (src) != ASM_OPERANDS
5293 /* Check for REG manually since want_to_gcse_p
5294 returns 0 for all REGs. */
5295 && can_assign_to_reg_p (src))
5296 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5297 else
5298 ptr->invalid = 1;
5301 else
5302 invalidate_any_buried_refs (PATTERN (insn));
5308 /* Remove any references that have been either invalidated or are not in the
5309 expression list for pre gcse. */
5311 static void
5312 trim_ld_motion_mems (void)
5314 struct ls_expr * * last = & pre_ldst_mems;
5315 struct ls_expr * ptr = pre_ldst_mems;
5317 while (ptr != NULL)
5319 struct expr * expr;
5321 /* Delete if entry has been made invalid. */
5322 if (! ptr->invalid)
5324 /* Delete if we cannot find this mem in the expression list. */
5325 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5327 for (expr = expr_hash_table.table[hash];
5328 expr != NULL;
5329 expr = expr->next_same_hash)
5330 if (expr_equiv_p (expr->expr, ptr->pattern))
5331 break;
5333 else
5334 expr = (struct expr *) 0;
5336 if (expr)
5338 /* Set the expression field if we are keeping it. */
5339 ptr->expr = expr;
5340 last = & ptr->next;
5341 ptr = ptr->next;
5343 else
5345 *last = ptr->next;
5346 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5347 free_ldst_entry (ptr);
5348 ptr = * last;
5352 /* Show the world what we've found. */
5353 if (dump_file && pre_ldst_mems != NULL)
5354 print_ldst_list (dump_file);
5357 /* This routine will take an expression which we are replacing with
5358 a reaching register, and update any stores that are needed if
5359 that expression is in the ld_motion list. Stores are updated by
5360 copying their SRC to the reaching register, and then storing
5361 the reaching register into the store location. These keeps the
5362 correct value in the reaching register for the loads. */
5364 static void
5365 update_ld_motion_stores (struct expr * expr)
5367 struct ls_expr * mem_ptr;
5369 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5371 /* We can try to find just the REACHED stores, but is shouldn't
5372 matter to set the reaching reg everywhere... some might be
5373 dead and should be eliminated later. */
5375 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5376 where reg is the reaching reg used in the load. We checked in
5377 compute_ld_motion_mems that we can replace (set mem expr) with
5378 (set reg expr) in that insn. */
5379 rtx list = mem_ptr->stores;
5381 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5383 rtx insn = XEXP (list, 0);
5384 rtx pat = PATTERN (insn);
5385 rtx src = SET_SRC (pat);
5386 rtx reg = expr->reaching_reg;
5387 rtx copy, new_rtx;
5389 /* If we've already copied it, continue. */
5390 if (expr->reaching_reg == src)
5391 continue;
5393 if (dump_file)
5395 fprintf (dump_file, "PRE: store updated with reaching reg ");
5396 print_rtl (dump_file, expr->reaching_reg);
5397 fprintf (dump_file, ":\n ");
5398 print_inline_rtx (dump_file, insn, 8);
5399 fprintf (dump_file, "\n");
5402 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5403 new_rtx = emit_insn_before (copy, insn);
5404 record_one_set (REGNO (reg), new_rtx);
5405 SET_SRC (pat) = reg;
5406 df_insn_rescan (insn);
5408 /* un-recognize this pattern since it's probably different now. */
5409 INSN_CODE (insn) = -1;
5410 gcse_create_count++;
5415 /* Store motion code. */
5417 #define ANTIC_STORE_LIST(x) ((x)->loads)
5418 #define AVAIL_STORE_LIST(x) ((x)->stores)
5419 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5421 /* This is used to communicate the target bitvector we want to use in the
5422 reg_set_info routine when called via the note_stores mechanism. */
5423 static int * regvec;
5425 /* And current insn, for the same routine. */
5426 static rtx compute_store_table_current_insn;
5428 /* Used in computing the reverse edge graph bit vectors. */
5429 static sbitmap * st_antloc;
5431 /* Global holding the number of store expressions we are dealing with. */
5432 static int num_stores;
5434 /* Checks to set if we need to mark a register set. Called from
5435 note_stores. */
5437 static void
5438 reg_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5439 void *data)
5441 sbitmap bb_reg = (sbitmap) data;
5443 if (GET_CODE (dest) == SUBREG)
5444 dest = SUBREG_REG (dest);
5446 if (REG_P (dest))
5448 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5449 if (bb_reg)
5450 SET_BIT (bb_reg, REGNO (dest));
5454 /* Clear any mark that says that this insn sets dest. Called from
5455 note_stores. */
5457 static void
5458 reg_clear_last_set (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
5459 void *data)
5461 int *dead_vec = (int *) data;
5463 if (GET_CODE (dest) == SUBREG)
5464 dest = SUBREG_REG (dest);
5466 if (REG_P (dest) &&
5467 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5468 dead_vec[REGNO (dest)] = 0;
5471 /* Return zero if some of the registers in list X are killed
5472 due to set of registers in bitmap REGS_SET. */
5474 static bool
5475 store_ops_ok (const_rtx x, int *regs_set)
5477 const_rtx reg;
5479 for (; x; x = XEXP (x, 1))
5481 reg = XEXP (x, 0);
5482 if (regs_set[REGNO(reg)])
5483 return false;
5486 return true;
5489 /* Returns a list of registers mentioned in X. */
5490 static rtx
5491 extract_mentioned_regs (rtx x)
5493 return extract_mentioned_regs_helper (x, NULL_RTX);
5496 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5497 registers. */
5498 static rtx
5499 extract_mentioned_regs_helper (rtx x, rtx accum)
5501 int i;
5502 enum rtx_code code;
5503 const char * fmt;
5505 /* Repeat is used to turn tail-recursion into iteration. */
5506 repeat:
5508 if (x == 0)
5509 return accum;
5511 code = GET_CODE (x);
5512 switch (code)
5514 case REG:
5515 return alloc_EXPR_LIST (0, x, accum);
5517 case MEM:
5518 x = XEXP (x, 0);
5519 goto repeat;
5521 case PRE_DEC:
5522 case PRE_INC:
5523 case PRE_MODIFY:
5524 case POST_DEC:
5525 case POST_INC:
5526 case POST_MODIFY:
5527 /* We do not run this function with arguments having side effects. */
5528 gcc_unreachable ();
5530 case PC:
5531 case CC0: /*FIXME*/
5532 case CONST:
5533 case CONST_INT:
5534 case CONST_DOUBLE:
5535 case CONST_FIXED:
5536 case CONST_VECTOR:
5537 case SYMBOL_REF:
5538 case LABEL_REF:
5539 case ADDR_VEC:
5540 case ADDR_DIFF_VEC:
5541 return accum;
5543 default:
5544 break;
5547 i = GET_RTX_LENGTH (code) - 1;
5548 fmt = GET_RTX_FORMAT (code);
5550 for (; i >= 0; i--)
5552 if (fmt[i] == 'e')
5554 rtx tem = XEXP (x, i);
5556 /* If we are about to do the last recursive call
5557 needed at this level, change it into iteration. */
5558 if (i == 0)
5560 x = tem;
5561 goto repeat;
5564 accum = extract_mentioned_regs_helper (tem, accum);
5566 else if (fmt[i] == 'E')
5568 int j;
5570 for (j = 0; j < XVECLEN (x, i); j++)
5571 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5575 return accum;
5578 /* Determine whether INSN is MEM store pattern that we will consider moving.
5579 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5580 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5581 including) the insn in this basic block. We must be passing through BB from
5582 head to end, as we are using this fact to speed things up.
5584 The results are stored this way:
5586 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5587 -- if the processed expression is not anticipatable, NULL_RTX is added
5588 there instead, so that we can use it as indicator that no further
5589 expression of this type may be anticipatable
5590 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5591 consequently, all of them but this head are dead and may be deleted.
5592 -- if the expression is not available, the insn due to that it fails to be
5593 available is stored in reaching_reg.
5595 The things are complicated a bit by fact that there already may be stores
5596 to the same MEM from other blocks; also caller must take care of the
5597 necessary cleanup of the temporary markers after end of the basic block.
5600 static void
5601 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5603 struct ls_expr * ptr;
5604 rtx dest, set, tmp;
5605 int check_anticipatable, check_available;
5606 basic_block bb = BLOCK_FOR_INSN (insn);
5608 set = single_set (insn);
5609 if (!set)
5610 return;
5612 dest = SET_DEST (set);
5614 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5615 || GET_MODE (dest) == BLKmode)
5616 return;
5618 if (side_effects_p (dest))
5619 return;
5621 /* If we are handling exceptions, we must be careful with memory references
5622 that may trap. If we are not, the behavior is undefined, so we may just
5623 continue. */
5624 if (flag_non_call_exceptions && may_trap_p (dest))
5625 return;
5627 /* Even if the destination cannot trap, the source may. In this case we'd
5628 need to handle updating the REG_EH_REGION note. */
5629 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5630 return;
5632 /* Make sure that the SET_SRC of this store insns can be assigned to
5633 a register, or we will fail later on in replace_store_insn, which
5634 assumes that we can do this. But sometimes the target machine has
5635 oddities like MEM read-modify-write instruction. See for example
5636 PR24257. */
5637 if (!can_assign_to_reg_p (SET_SRC (set)))
5638 return;
5640 ptr = ldst_entry (dest);
5641 if (!ptr->pattern_regs)
5642 ptr->pattern_regs = extract_mentioned_regs (dest);
5644 /* Do not check for anticipatability if we either found one anticipatable
5645 store already, or tested for one and found out that it was killed. */
5646 check_anticipatable = 0;
5647 if (!ANTIC_STORE_LIST (ptr))
5648 check_anticipatable = 1;
5649 else
5651 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5652 if (tmp != NULL_RTX
5653 && BLOCK_FOR_INSN (tmp) != bb)
5654 check_anticipatable = 1;
5656 if (check_anticipatable)
5658 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5659 tmp = NULL_RTX;
5660 else
5661 tmp = insn;
5662 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5663 ANTIC_STORE_LIST (ptr));
5666 /* It is not necessary to check whether store is available if we did
5667 it successfully before; if we failed before, do not bother to check
5668 until we reach the insn that caused us to fail. */
5669 check_available = 0;
5670 if (!AVAIL_STORE_LIST (ptr))
5671 check_available = 1;
5672 else
5674 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5675 if (BLOCK_FOR_INSN (tmp) != bb)
5676 check_available = 1;
5678 if (check_available)
5680 /* Check that we have already reached the insn at that the check
5681 failed last time. */
5682 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5684 for (tmp = BB_END (bb);
5685 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5686 tmp = PREV_INSN (tmp))
5687 continue;
5688 if (tmp == insn)
5689 check_available = 0;
5691 else
5692 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5693 bb, regs_set_after,
5694 &LAST_AVAIL_CHECK_FAILURE (ptr));
5696 if (!check_available)
5697 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5700 /* Find available and anticipatable stores. */
5702 static int
5703 compute_store_table (void)
5705 int ret;
5706 basic_block bb;
5707 unsigned regno;
5708 rtx insn, pat, tmp;
5709 int *last_set_in, *already_set;
5710 struct ls_expr * ptr, **prev_next_ptr_ptr;
5712 max_gcse_regno = max_reg_num ();
5714 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5715 max_gcse_regno);
5716 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5717 pre_ldst_mems = 0;
5718 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
5719 pre_ldst_expr_eq, NULL);
5720 last_set_in = XCNEWVEC (int, max_gcse_regno);
5721 already_set = XNEWVEC (int, max_gcse_regno);
5723 /* Find all the stores we care about. */
5724 FOR_EACH_BB (bb)
5726 /* First compute the registers set in this block. */
5727 regvec = last_set_in;
5729 FOR_BB_INSNS (bb, insn)
5731 if (! INSN_P (insn))
5732 continue;
5734 if (CALL_P (insn))
5736 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5737 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5739 last_set_in[regno] = INSN_UID (insn);
5740 SET_BIT (reg_set_in_block[bb->index], regno);
5744 pat = PATTERN (insn);
5745 compute_store_table_current_insn = insn;
5746 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5749 /* Now find the stores. */
5750 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5751 regvec = already_set;
5752 FOR_BB_INSNS (bb, insn)
5754 if (! INSN_P (insn))
5755 continue;
5757 if (CALL_P (insn))
5759 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5760 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5761 already_set[regno] = 1;
5764 pat = PATTERN (insn);
5765 note_stores (pat, reg_set_info, NULL);
5767 /* Now that we've marked regs, look for stores. */
5768 find_moveable_store (insn, already_set, last_set_in);
5770 /* Unmark regs that are no longer set. */
5771 compute_store_table_current_insn = insn;
5772 note_stores (pat, reg_clear_last_set, last_set_in);
5773 if (CALL_P (insn))
5775 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5776 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5777 && last_set_in[regno] == INSN_UID (insn))
5778 last_set_in[regno] = 0;
5782 #ifdef ENABLE_CHECKING
5783 /* last_set_in should now be all-zero. */
5784 for (regno = 0; regno < max_gcse_regno; regno++)
5785 gcc_assert (!last_set_in[regno]);
5786 #endif
5788 /* Clear temporary marks. */
5789 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5791 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5792 if (ANTIC_STORE_LIST (ptr)
5793 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5794 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5798 /* Remove the stores that are not available anywhere, as there will
5799 be no opportunity to optimize them. */
5800 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5801 ptr != NULL;
5802 ptr = *prev_next_ptr_ptr)
5804 if (!AVAIL_STORE_LIST (ptr))
5806 *prev_next_ptr_ptr = ptr->next;
5807 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
5808 free_ldst_entry (ptr);
5810 else
5811 prev_next_ptr_ptr = &ptr->next;
5814 ret = enumerate_ldsts ();
5816 if (dump_file)
5818 fprintf (dump_file, "ST_avail and ST_antic (shown under loads..)\n");
5819 print_ldst_list (dump_file);
5822 free (last_set_in);
5823 free (already_set);
5824 return ret;
5827 /* Check to see if the load X is aliased with STORE_PATTERN.
5828 AFTER is true if we are checking the case when STORE_PATTERN occurs
5829 after the X. */
5831 static bool
5832 load_kills_store (const_rtx x, const_rtx store_pattern, int after)
5834 if (after)
5835 return anti_dependence (x, store_pattern);
5836 else
5837 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5838 rtx_addr_varies_p);
5841 /* Go through the entire insn X, looking for any loads which might alias
5842 STORE_PATTERN. Return true if found.
5843 AFTER is true if we are checking the case when STORE_PATTERN occurs
5844 after the insn X. */
5846 static bool
5847 find_loads (const_rtx x, const_rtx store_pattern, int after)
5849 const char * fmt;
5850 int i, j;
5851 int ret = false;
5853 if (!x)
5854 return false;
5856 if (GET_CODE (x) == SET)
5857 x = SET_SRC (x);
5859 if (MEM_P (x))
5861 if (load_kills_store (x, store_pattern, after))
5862 return true;
5865 /* Recursively process the insn. */
5866 fmt = GET_RTX_FORMAT (GET_CODE (x));
5868 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5870 if (fmt[i] == 'e')
5871 ret |= find_loads (XEXP (x, i), store_pattern, after);
5872 else if (fmt[i] == 'E')
5873 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5874 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5876 return ret;
5879 static inline bool
5880 store_killed_in_pat (const_rtx x, const_rtx pat, int after)
5882 if (GET_CODE (pat) == SET)
5884 rtx dest = SET_DEST (pat);
5886 if (GET_CODE (dest) == ZERO_EXTRACT)
5887 dest = XEXP (dest, 0);
5889 /* Check for memory stores to aliased objects. */
5890 if (MEM_P (dest)
5891 && !expr_equiv_p (dest, x))
5893 if (after)
5895 if (output_dependence (dest, x))
5896 return true;
5898 else
5900 if (output_dependence (x, dest))
5901 return true;
5906 if (find_loads (pat, x, after))
5907 return true;
5909 return false;
5912 /* Check if INSN kills the store pattern X (is aliased with it).
5913 AFTER is true if we are checking the case when store X occurs
5914 after the insn. Return true if it does. */
5916 static bool
5917 store_killed_in_insn (const_rtx x, const_rtx x_regs, const_rtx insn, int after)
5919 const_rtx reg, base, note, pat;
5921 if (!INSN_P (insn))
5922 return false;
5924 if (CALL_P (insn))
5926 /* A normal or pure call might read from pattern,
5927 but a const call will not. */
5928 if (!RTL_CONST_CALL_P (insn))
5929 return true;
5931 /* But even a const call reads its parameters. Check whether the
5932 base of some of registers used in mem is stack pointer. */
5933 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5935 base = find_base_term (XEXP (reg, 0));
5936 if (!base
5937 || (GET_CODE (base) == ADDRESS
5938 && GET_MODE (base) == Pmode
5939 && XEXP (base, 0) == stack_pointer_rtx))
5940 return true;
5943 return false;
5946 pat = PATTERN (insn);
5947 if (GET_CODE (pat) == SET)
5949 if (store_killed_in_pat (x, pat, after))
5950 return true;
5952 else if (GET_CODE (pat) == PARALLEL)
5954 int i;
5956 for (i = 0; i < XVECLEN (pat, 0); i++)
5957 if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
5958 return true;
5960 else if (find_loads (PATTERN (insn), x, after))
5961 return true;
5963 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5964 location aliased with X, then this insn kills X. */
5965 note = find_reg_equal_equiv_note (insn);
5966 if (! note)
5967 return false;
5968 note = XEXP (note, 0);
5970 /* However, if the note represents a must alias rather than a may
5971 alias relationship, then it does not kill X. */
5972 if (expr_equiv_p (note, x))
5973 return false;
5975 /* See if there are any aliased loads in the note. */
5976 return find_loads (note, x, after);
5979 /* Returns true if the expression X is loaded or clobbered on or after INSN
5980 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5981 or after the insn. X_REGS is list of registers mentioned in X. If the store
5982 is killed, return the last insn in that it occurs in FAIL_INSN. */
5984 static bool
5985 store_killed_after (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
5986 int *regs_set_after, rtx *fail_insn)
5988 rtx last = BB_END (bb), act;
5990 if (!store_ops_ok (x_regs, regs_set_after))
5992 /* We do not know where it will happen. */
5993 if (fail_insn)
5994 *fail_insn = NULL_RTX;
5995 return true;
5998 /* Scan from the end, so that fail_insn is determined correctly. */
5999 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6000 if (store_killed_in_insn (x, x_regs, act, false))
6002 if (fail_insn)
6003 *fail_insn = act;
6004 return true;
6007 return false;
6010 /* Returns true if the expression X is loaded or clobbered on or before INSN
6011 within basic block BB. X_REGS is list of registers mentioned in X.
6012 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6013 static bool
6014 store_killed_before (const_rtx x, const_rtx x_regs, const_rtx insn, const_basic_block bb,
6015 int *regs_set_before)
6017 rtx first = BB_HEAD (bb);
6019 if (!store_ops_ok (x_regs, regs_set_before))
6020 return true;
6022 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6023 if (store_killed_in_insn (x, x_regs, insn, true))
6024 return true;
6026 return false;
6029 /* Fill in available, anticipatable, transparent and kill vectors in
6030 STORE_DATA, based on lists of available and anticipatable stores. */
6031 static void
6032 build_store_vectors (void)
6034 basic_block bb;
6035 int *regs_set_in_block;
6036 rtx insn, st;
6037 struct ls_expr * ptr;
6038 unsigned regno;
6040 /* Build the gen_vector. This is any store in the table which is not killed
6041 by aliasing later in its block. */
6042 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6043 sbitmap_vector_zero (ae_gen, last_basic_block);
6045 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6046 sbitmap_vector_zero (st_antloc, last_basic_block);
6048 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6050 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6052 insn = XEXP (st, 0);
6053 bb = BLOCK_FOR_INSN (insn);
6055 /* If we've already seen an available expression in this block,
6056 we can delete this one (It occurs earlier in the block). We'll
6057 copy the SRC expression to an unused register in case there
6058 are any side effects. */
6059 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6061 rtx r = gen_reg_rtx_and_attrs (ptr->pattern);
6062 if (dump_file)
6063 fprintf (dump_file, "Removing redundant store:\n");
6064 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6065 continue;
6067 SET_BIT (ae_gen[bb->index], ptr->index);
6070 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6072 insn = XEXP (st, 0);
6073 bb = BLOCK_FOR_INSN (insn);
6074 SET_BIT (st_antloc[bb->index], ptr->index);
6078 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6079 sbitmap_vector_zero (ae_kill, last_basic_block);
6081 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6082 sbitmap_vector_zero (transp, last_basic_block);
6083 regs_set_in_block = XNEWVEC (int, max_gcse_regno);
6085 FOR_EACH_BB (bb)
6087 for (regno = 0; regno < max_gcse_regno; regno++)
6088 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6090 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6092 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6093 bb, regs_set_in_block, NULL))
6095 /* It should not be necessary to consider the expression
6096 killed if it is both anticipatable and available. */
6097 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6098 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6099 SET_BIT (ae_kill[bb->index], ptr->index);
6101 else
6102 SET_BIT (transp[bb->index], ptr->index);
6106 free (regs_set_in_block);
6108 if (dump_file)
6110 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
6111 dump_sbitmap_vector (dump_file, "st_kill", "", ae_kill, last_basic_block);
6112 dump_sbitmap_vector (dump_file, "Transpt", "", transp, last_basic_block);
6113 dump_sbitmap_vector (dump_file, "st_avloc", "", ae_gen, last_basic_block);
6117 /* Insert an instruction at the beginning of a basic block, and update
6118 the BB_HEAD if needed. */
6120 static void
6121 insert_insn_start_basic_block (rtx insn, basic_block bb)
6123 /* Insert at start of successor block. */
6124 rtx prev = PREV_INSN (BB_HEAD (bb));
6125 rtx before = BB_HEAD (bb);
6126 while (before != 0)
6128 if (! LABEL_P (before)
6129 && !NOTE_INSN_BASIC_BLOCK_P (before))
6130 break;
6131 prev = before;
6132 if (prev == BB_END (bb))
6133 break;
6134 before = NEXT_INSN (before);
6137 insn = emit_insn_after_noloc (insn, prev, bb);
6139 if (dump_file)
6141 fprintf (dump_file, "STORE_MOTION insert store at start of BB %d:\n",
6142 bb->index);
6143 print_inline_rtx (dump_file, insn, 6);
6144 fprintf (dump_file, "\n");
6148 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6149 the memory reference, and E is the edge to insert it on. Returns nonzero
6150 if an edge insertion was performed. */
6152 static int
6153 insert_store (struct ls_expr * expr, edge e)
6155 rtx reg, insn;
6156 basic_block bb;
6157 edge tmp;
6158 edge_iterator ei;
6160 /* We did all the deleted before this insert, so if we didn't delete a
6161 store, then we haven't set the reaching reg yet either. */
6162 if (expr->reaching_reg == NULL_RTX)
6163 return 0;
6165 if (e->flags & EDGE_FAKE)
6166 return 0;
6168 reg = expr->reaching_reg;
6169 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6171 /* If we are inserting this expression on ALL predecessor edges of a BB,
6172 insert it at the start of the BB, and reset the insert bits on the other
6173 edges so we don't try to insert it on the other edges. */
6174 bb = e->dest;
6175 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6176 if (!(tmp->flags & EDGE_FAKE))
6178 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6180 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6181 if (! TEST_BIT (pre_insert_map[index], expr->index))
6182 break;
6185 /* If tmp is NULL, we found an insertion on every edge, blank the
6186 insertion vector for these edges, and insert at the start of the BB. */
6187 if (!tmp && bb != EXIT_BLOCK_PTR)
6189 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6191 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6192 RESET_BIT (pre_insert_map[index], expr->index);
6194 insert_insn_start_basic_block (insn, bb);
6195 return 0;
6198 /* We can't put stores in the front of blocks pointed to by abnormal
6199 edges since that may put a store where one didn't used to be. */
6200 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6202 insert_insn_on_edge (insn, e);
6204 if (dump_file)
6206 fprintf (dump_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6207 e->src->index, e->dest->index);
6208 print_inline_rtx (dump_file, insn, 6);
6209 fprintf (dump_file, "\n");
6212 return 1;
6215 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6216 memory location in SMEXPR set in basic block BB.
6218 This could be rather expensive. */
6220 static void
6221 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6223 edge_iterator *stack, ei;
6224 int sp;
6225 edge act;
6226 sbitmap visited = sbitmap_alloc (last_basic_block);
6227 rtx last, insn, note;
6228 rtx mem = smexpr->pattern;
6230 stack = XNEWVEC (edge_iterator, n_basic_blocks);
6231 sp = 0;
6232 ei = ei_start (bb->succs);
6234 sbitmap_zero (visited);
6236 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6237 while (1)
6239 if (!act)
6241 if (!sp)
6243 free (stack);
6244 sbitmap_free (visited);
6245 return;
6247 act = ei_edge (stack[--sp]);
6249 bb = act->dest;
6251 if (bb == EXIT_BLOCK_PTR
6252 || TEST_BIT (visited, bb->index))
6254 if (!ei_end_p (ei))
6255 ei_next (&ei);
6256 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6257 continue;
6259 SET_BIT (visited, bb->index);
6261 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6263 for (last = ANTIC_STORE_LIST (smexpr);
6264 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6265 last = XEXP (last, 1))
6266 continue;
6267 last = XEXP (last, 0);
6269 else
6270 last = NEXT_INSN (BB_END (bb));
6272 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6273 if (INSN_P (insn))
6275 note = find_reg_equal_equiv_note (insn);
6276 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6277 continue;
6279 if (dump_file)
6280 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6281 INSN_UID (insn));
6282 remove_note (insn, note);
6285 if (!ei_end_p (ei))
6286 ei_next (&ei);
6287 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6289 if (EDGE_COUNT (bb->succs) > 0)
6291 if (act)
6292 stack[sp++] = ei;
6293 ei = ei_start (bb->succs);
6294 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6299 /* This routine will replace a store with a SET to a specified register. */
6301 static void
6302 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6304 rtx insn, mem, note, set, ptr;
6306 mem = smexpr->pattern;
6307 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6309 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6310 if (XEXP (ptr, 0) == del)
6312 XEXP (ptr, 0) = insn;
6313 break;
6316 /* Move the notes from the deleted insn to its replacement. */
6317 REG_NOTES (insn) = REG_NOTES (del);
6319 /* Emit the insn AFTER all the notes are transferred.
6320 This is cheaper since we avoid df rescanning for the note change. */
6321 insn = emit_insn_after (insn, del);
6323 if (dump_file)
6325 fprintf (dump_file,
6326 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6327 print_inline_rtx (dump_file, del, 6);
6328 fprintf (dump_file, "\nSTORE MOTION replaced with insn:\n ");
6329 print_inline_rtx (dump_file, insn, 6);
6330 fprintf (dump_file, "\n");
6333 delete_insn (del);
6335 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6336 they are no longer accurate provided that they are reached by this
6337 definition, so drop them. */
6338 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6339 if (INSN_P (insn))
6341 set = single_set (insn);
6342 if (!set)
6343 continue;
6344 if (expr_equiv_p (SET_DEST (set), mem))
6345 return;
6346 note = find_reg_equal_equiv_note (insn);
6347 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6348 continue;
6350 if (dump_file)
6351 fprintf (dump_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6352 INSN_UID (insn));
6353 remove_note (insn, note);
6355 remove_reachable_equiv_notes (bb, smexpr);
6359 /* Delete a store, but copy the value that would have been stored into
6360 the reaching_reg for later storing. */
6362 static void
6363 delete_store (struct ls_expr * expr, basic_block bb)
6365 rtx reg, i, del;
6367 if (expr->reaching_reg == NULL_RTX)
6368 expr->reaching_reg = gen_reg_rtx_and_attrs (expr->pattern);
6370 reg = expr->reaching_reg;
6372 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6374 del = XEXP (i, 0);
6375 if (BLOCK_FOR_INSN (del) == bb)
6377 /* We know there is only one since we deleted redundant
6378 ones during the available computation. */
6379 replace_store_insn (reg, del, bb, expr);
6380 break;
6385 /* Free memory used by store motion. */
6387 static void
6388 free_store_memory (void)
6390 free_ldst_mems ();
6392 if (ae_gen)
6393 sbitmap_vector_free (ae_gen);
6394 if (ae_kill)
6395 sbitmap_vector_free (ae_kill);
6396 if (transp)
6397 sbitmap_vector_free (transp);
6398 if (st_antloc)
6399 sbitmap_vector_free (st_antloc);
6400 if (pre_insert_map)
6401 sbitmap_vector_free (pre_insert_map);
6402 if (pre_delete_map)
6403 sbitmap_vector_free (pre_delete_map);
6404 if (reg_set_in_block)
6405 sbitmap_vector_free (reg_set_in_block);
6407 ae_gen = ae_kill = transp = st_antloc = NULL;
6408 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6411 /* Perform store motion. Much like gcse, except we move expressions the
6412 other way by looking at the flowgraph in reverse. */
6414 static void
6415 store_motion (void)
6417 basic_block bb;
6418 int x;
6419 struct ls_expr * ptr;
6420 int update_flow = 0;
6422 if (dump_file)
6424 fprintf (dump_file, "before store motion\n");
6425 print_rtl (dump_file, get_insns ());
6428 init_alias_analysis ();
6430 /* Find all the available and anticipatable stores. */
6431 num_stores = compute_store_table ();
6432 if (num_stores == 0)
6434 htab_delete (pre_ldst_table);
6435 pre_ldst_table = NULL;
6436 sbitmap_vector_free (reg_set_in_block);
6437 end_alias_analysis ();
6438 return;
6441 /* Now compute kill & transp vectors. */
6442 build_store_vectors ();
6443 add_noreturn_fake_exit_edges ();
6444 connect_infinite_loops_to_exit ();
6446 edge_list = pre_edge_rev_lcm (num_stores, transp, ae_gen,
6447 st_antloc, ae_kill, &pre_insert_map,
6448 &pre_delete_map);
6450 /* Now we want to insert the new stores which are going to be needed. */
6451 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6453 /* If any of the edges we have above are abnormal, we can't move this
6454 store. */
6455 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6456 if (TEST_BIT (pre_insert_map[x], ptr->index)
6457 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6458 break;
6460 if (x >= 0)
6462 if (dump_file != NULL)
6463 fprintf (dump_file,
6464 "Can't replace store %d: abnormal edge from %d to %d\n",
6465 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6466 INDEX_EDGE (edge_list, x)->dest->index);
6467 continue;
6470 /* Now we want to insert the new stores which are going to be needed. */
6472 FOR_EACH_BB (bb)
6473 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6474 delete_store (ptr, bb);
6476 for (x = 0; x < NUM_EDGES (edge_list); x++)
6477 if (TEST_BIT (pre_insert_map[x], ptr->index))
6478 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6481 if (update_flow)
6482 commit_edge_insertions ();
6484 free_store_memory ();
6485 free_edge_list (edge_list);
6486 remove_fake_exit_edges ();
6487 end_alias_analysis ();
6491 /* Entry point for jump bypassing optimization pass. */
6493 static int
6494 bypass_jumps (void)
6496 int changed;
6498 /* We do not construct an accurate cfg in functions which call
6499 setjmp, so just punt to be safe. */
6500 if (cfun->calls_setjmp)
6501 return 0;
6503 /* Identify the basic block information for this function, including
6504 successors and predecessors. */
6505 max_gcse_regno = max_reg_num ();
6507 if (dump_file)
6508 dump_flow_info (dump_file, dump_flags);
6510 /* Return if there's nothing to do, or it is too expensive. */
6511 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
6512 || is_too_expensive (_ ("jump bypassing disabled")))
6513 return 0;
6515 gcc_obstack_init (&gcse_obstack);
6516 bytes_used = 0;
6518 /* We need alias. */
6519 init_alias_analysis ();
6521 /* Record where pseudo-registers are set. This data is kept accurate
6522 during each pass. ??? We could also record hard-reg information here
6523 [since it's unchanging], however it is currently done during hash table
6524 computation.
6526 It may be tempting to compute MEM set information here too, but MEM sets
6527 will be subject to code motion one day and thus we need to compute
6528 information about memory sets when we build the hash tables. */
6530 alloc_reg_set_mem (max_gcse_regno);
6531 compute_sets ();
6533 max_gcse_regno = max_reg_num ();
6534 alloc_gcse_mem ();
6535 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6536 free_gcse_mem ();
6538 if (dump_file)
6540 fprintf (dump_file, "BYPASS of %s: %d basic blocks, ",
6541 current_function_name (), n_basic_blocks);
6542 fprintf (dump_file, "%d bytes\n\n", bytes_used);
6545 obstack_free (&gcse_obstack, NULL);
6546 free_reg_set_mem ();
6548 /* We are finished with alias. */
6549 end_alias_analysis ();
6551 return changed;
6554 /* Return true if the graph is too expensive to optimize. PASS is the
6555 optimization about to be performed. */
6557 static bool
6558 is_too_expensive (const char *pass)
6560 /* Trying to perform global optimizations on flow graphs which have
6561 a high connectivity will take a long time and is unlikely to be
6562 particularly useful.
6564 In normal circumstances a cfg should have about twice as many
6565 edges as blocks. But we do not want to punish small functions
6566 which have a couple switch statements. Rather than simply
6567 threshold the number of blocks, uses something with a more
6568 graceful degradation. */
6569 if (n_edges > 20000 + n_basic_blocks * 4)
6571 warning (OPT_Wdisabled_optimization,
6572 "%s: %d basic blocks and %d edges/basic block",
6573 pass, n_basic_blocks, n_edges / n_basic_blocks);
6575 return true;
6578 /* If allocating memory for the cprop bitmap would take up too much
6579 storage it's better just to disable the optimization. */
6580 if ((n_basic_blocks
6581 * SBITMAP_SET_SIZE (max_reg_num ())
6582 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6584 warning (OPT_Wdisabled_optimization,
6585 "%s: %d basic blocks and %d registers",
6586 pass, n_basic_blocks, max_reg_num ());
6588 return true;
6591 return false;
6594 static bool
6595 gate_handle_jump_bypass (void)
6597 return optimize > 0 && flag_gcse
6598 && dbg_cnt (jump_bypass);
6601 /* Perform jump bypassing and control flow optimizations. */
6602 static unsigned int
6603 rest_of_handle_jump_bypass (void)
6605 delete_unreachable_blocks ();
6606 if (bypass_jumps ())
6608 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6609 rebuild_jump_labels (get_insns ());
6610 cleanup_cfg (0);
6612 return 0;
6615 struct rtl_opt_pass pass_jump_bypass =
6618 RTL_PASS,
6619 "bypass", /* name */
6620 gate_handle_jump_bypass, /* gate */
6621 rest_of_handle_jump_bypass, /* execute */
6622 NULL, /* sub */
6623 NULL, /* next */
6624 0, /* static_pass_number */
6625 TV_BYPASS, /* tv_id */
6626 0, /* properties_required */
6627 0, /* properties_provided */
6628 0, /* properties_destroyed */
6629 0, /* todo_flags_start */
6630 TODO_dump_func |
6631 TODO_ggc_collect | TODO_verify_flow /* todo_flags_finish */
6636 static bool
6637 gate_handle_gcse (void)
6639 return optimize > 0 && flag_gcse
6640 && dbg_cnt (gcse);
6644 static unsigned int
6645 rest_of_handle_gcse (void)
6647 int save_csb, save_cfj;
6648 int tem2 = 0, tem;
6649 tem = gcse_main (get_insns ());
6650 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6651 rebuild_jump_labels (get_insns ());
6652 save_csb = flag_cse_skip_blocks;
6653 save_cfj = flag_cse_follow_jumps;
6654 flag_cse_skip_blocks = flag_cse_follow_jumps = 0;
6656 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6657 by gcse. */
6658 if (flag_expensive_optimizations)
6660 timevar_push (TV_CSE);
6661 tem2 = cse_main (get_insns (), max_reg_num ());
6662 df_finish_pass (false);
6663 purge_all_dead_edges ();
6664 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6665 timevar_pop (TV_CSE);
6666 cse_not_expected = !flag_rerun_cse_after_loop;
6669 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6670 things up. */
6671 if (tem || tem2 == 2)
6673 timevar_push (TV_JUMP);
6674 rebuild_jump_labels (get_insns ());
6675 cleanup_cfg (0);
6676 timevar_pop (TV_JUMP);
6678 else if (tem2 == 1)
6679 cleanup_cfg (0);
6681 flag_cse_skip_blocks = save_csb;
6682 flag_cse_follow_jumps = save_cfj;
6683 return 0;
6686 struct rtl_opt_pass pass_gcse =
6689 RTL_PASS,
6690 "gcse1", /* name */
6691 gate_handle_gcse, /* gate */
6692 rest_of_handle_gcse, /* execute */
6693 NULL, /* sub */
6694 NULL, /* next */
6695 0, /* static_pass_number */
6696 TV_GCSE, /* tv_id */
6697 0, /* properties_required */
6698 0, /* properties_provided */
6699 0, /* properties_destroyed */
6700 0, /* todo_flags_start */
6701 TODO_df_finish | TODO_verify_rtl_sharing |
6702 TODO_dump_func |
6703 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
6708 #include "gt-gcse.h"