Merge from trunk @ 138209
[official-gcc.git] / gcc / fwprop.c
blobfbe432974f4179ec1225f3b14f7caf66496f94cc
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "timevar.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
86 Things like this:
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead. */
106 static int num_changes;
109 /* Do not try to replace constant addresses or addresses of local and
110 argument slots. These MEM expressions are made only once and inserted
111 in many instructions, as well as being used to control symbol table
112 output. It is not safe to clobber them.
114 There are some uncommon cases where the address is already in a register
115 for some reason, but we cannot take advantage of that because we have
116 no easy way to unshare the MEM. In addition, looking up all stack
117 addresses is costly. */
119 static bool
120 can_simplify_addr (rtx addr)
122 rtx reg;
124 if (CONSTANT_ADDRESS_P (addr))
125 return false;
127 if (GET_CODE (addr) == PLUS)
128 reg = XEXP (addr, 0);
129 else
130 reg = addr;
132 return (!REG_P (reg)
133 || (REGNO (reg) != FRAME_POINTER_REGNUM
134 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
135 && REGNO (reg) != ARG_POINTER_REGNUM));
138 /* Returns a canonical version of X for the address, from the point of view,
139 that all multiplications are represented as MULT instead of the multiply
140 by a power of 2 being represented as ASHIFT.
142 Every ASHIFT we find has been made by simplify_gen_binary and was not
143 there before, so it is not shared. So we can do this in place. */
145 static void
146 canonicalize_address (rtx x)
148 for (;;)
149 switch (GET_CODE (x))
151 case ASHIFT:
152 if (GET_CODE (XEXP (x, 1)) == CONST_INT
153 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
154 && INTVAL (XEXP (x, 1)) >= 0)
156 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
157 PUT_CODE (x, MULT);
158 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
159 GET_MODE (x));
162 x = XEXP (x, 0);
163 break;
165 case PLUS:
166 if (GET_CODE (XEXP (x, 0)) == PLUS
167 || GET_CODE (XEXP (x, 0)) == ASHIFT
168 || GET_CODE (XEXP (x, 0)) == CONST)
169 canonicalize_address (XEXP (x, 0));
171 x = XEXP (x, 1);
172 break;
174 case CONST:
175 x = XEXP (x, 0);
176 break;
178 default:
179 return;
183 /* OLD is a memory address. Return whether it is good to use NEW instead,
184 for a memory access in the given MODE. */
186 static bool
187 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode)
189 int gain;
191 if (rtx_equal_p (old_rtx, new_rtx) || !memory_address_p (mode, new_rtx))
192 return false;
194 /* Copy propagation is always ok. */
195 if (REG_P (old_rtx) && REG_P (new_rtx))
196 return true;
198 /* Prefer the new address if it is less expensive. */
199 gain = address_cost (old_rtx, mode) - address_cost (new_rtx, mode);
201 /* If the addresses have equivalent cost, prefer the new address
202 if it has the highest `rtx_cost'. That has the potential of
203 eliminating the most insns without additional costs, and it
204 is the same that cse.c used to do. */
205 if (gain == 0)
206 gain = rtx_cost (new_rtx, SET) - rtx_cost (old_rtx, SET);
208 return (gain > 0);
212 /* Flags for the last parameter of propagate_rtx_1. */
214 enum {
215 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
216 if it is false, propagate_rtx_1 returns false if, for at least
217 one occurrence OLD, it failed to collapse the result to a constant.
218 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
219 collapse to zero if replacing (reg:M B) with (reg:M A).
221 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
222 propagate_rtx_1 just tries to make cheaper and valid memory
223 addresses. */
224 PR_CAN_APPEAR = 1,
226 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
227 outside memory addresses. This is needed because propagate_rtx_1 does
228 not do any analysis on memory; thus it is very conservative and in general
229 it will fail if non-read-only MEMs are found in the source expression.
231 PR_HANDLE_MEM is set when the source of the propagation was not
232 another MEM. Then, it is safe not to treat non-read-only MEMs as
233 ``opaque'' objects. */
234 PR_HANDLE_MEM = 2
238 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
239 resulting expression. Replace *PX with a new RTL expression if an
240 occurrence of OLD was found.
242 This is only a wrapper around simplify-rtx.c: do not add any pattern
243 matching code here. (The sole exception is the handling of LO_SUM, but
244 that is because there is no simplify_gen_* function for LO_SUM). */
246 static bool
247 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
249 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
250 enum rtx_code code = GET_CODE (x);
251 enum machine_mode mode = GET_MODE (x);
252 enum machine_mode op_mode;
253 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
254 bool valid_ops = true;
256 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
258 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
259 they have side effects or not). */
260 *px = (side_effects_p (x)
261 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
262 : gen_rtx_SCRATCH (GET_MODE (x)));
263 return false;
266 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
267 address, and we are *not* inside one. */
268 if (x == old_rtx)
270 *px = new_rtx;
271 return can_appear;
274 /* If this is an expression, try recursive substitution. */
275 switch (GET_RTX_CLASS (code))
277 case RTX_UNARY:
278 op0 = XEXP (x, 0);
279 op_mode = GET_MODE (op0);
280 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
281 if (op0 == XEXP (x, 0))
282 return true;
283 tem = simplify_gen_unary (code, mode, op0, op_mode);
284 break;
286 case RTX_BIN_ARITH:
287 case RTX_COMM_ARITH:
288 op0 = XEXP (x, 0);
289 op1 = XEXP (x, 1);
290 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
291 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
292 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
293 return true;
294 tem = simplify_gen_binary (code, mode, op0, op1);
295 break;
297 case RTX_COMPARE:
298 case RTX_COMM_COMPARE:
299 op0 = XEXP (x, 0);
300 op1 = XEXP (x, 1);
301 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
302 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
303 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
304 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
305 return true;
306 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
307 break;
309 case RTX_TERNARY:
310 case RTX_BITFIELD_OPS:
311 op0 = XEXP (x, 0);
312 op1 = XEXP (x, 1);
313 op2 = XEXP (x, 2);
314 op_mode = GET_MODE (op0);
315 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
316 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
317 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
318 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
319 return true;
320 if (op_mode == VOIDmode)
321 op_mode = GET_MODE (op0);
322 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
323 break;
325 case RTX_EXTRA:
326 /* The only case we try to handle is a SUBREG. */
327 if (code == SUBREG)
329 op0 = XEXP (x, 0);
330 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
331 if (op0 == XEXP (x, 0))
332 return true;
333 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
334 SUBREG_BYTE (x));
336 break;
338 case RTX_OBJ:
339 if (code == MEM && x != new_rtx)
341 rtx new_op0;
342 op0 = XEXP (x, 0);
344 /* There are some addresses that we cannot work on. */
345 if (!can_simplify_addr (op0))
346 return true;
348 op0 = new_op0 = targetm.delegitimize_address (op0);
349 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
350 flags | PR_CAN_APPEAR);
352 /* Dismiss transformation that we do not want to carry on. */
353 if (!valid_ops
354 || new_op0 == op0
355 || !(GET_MODE (new_op0) == GET_MODE (op0)
356 || GET_MODE (new_op0) == VOIDmode))
357 return true;
359 canonicalize_address (new_op0);
361 /* Copy propagations are always ok. Otherwise check the costs. */
362 if (!(REG_P (old_rtx) && REG_P (new_rtx))
363 && !should_replace_address (op0, new_op0, GET_MODE (x)))
364 return true;
366 tem = replace_equiv_address_nv (x, new_op0);
369 else if (code == LO_SUM)
371 op0 = XEXP (x, 0);
372 op1 = XEXP (x, 1);
374 /* The only simplification we do attempts to remove references to op0
375 or make it constant -- in both cases, op0's invalidity will not
376 make the result invalid. */
377 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
378 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
379 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
380 return true;
382 /* (lo_sum (high x) x) -> x */
383 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
384 tem = op1;
385 else
386 tem = gen_rtx_LO_SUM (mode, op0, op1);
388 /* OP1 is likely not a legitimate address, otherwise there would have
389 been no LO_SUM. We want it to disappear if it is invalid, return
390 false in that case. */
391 return memory_address_p (mode, tem);
394 else if (code == REG)
396 if (rtx_equal_p (x, old_rtx))
398 *px = new_rtx;
399 return can_appear;
402 break;
404 default:
405 break;
408 /* No change, no trouble. */
409 if (tem == NULL_RTX)
410 return true;
412 *px = tem;
414 /* The replacement we made so far is valid, if all of the recursive
415 replacements were valid, or we could simplify everything to
416 a constant. */
417 return valid_ops || can_appear || CONSTANT_P (tem);
421 /* for_each_rtx traversal function that returns 1 if BODY points to
422 a non-constant mem. */
424 static int
425 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
427 rtx x = *body;
428 return MEM_P (x) && !MEM_READONLY_P (x);
432 /* Replace all occurrences of OLD in X with NEW and try to simplify the
433 resulting expression (in mode MODE). Return a new expression if it is
434 a constant, otherwise X.
436 Simplifications where occurrences of NEW collapse to a constant are always
437 accepted. All simplifications are accepted if NEW is a pseudo too.
438 Otherwise, we accept simplifications that have a lower or equal cost. */
440 static rtx
441 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx)
443 rtx tem;
444 bool collapsed;
445 int flags;
447 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
448 return NULL_RTX;
450 flags = 0;
451 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
452 flags |= PR_CAN_APPEAR;
453 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
454 flags |= PR_HANDLE_MEM;
456 tem = x;
457 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
458 if (tem == x || !collapsed)
459 return NULL_RTX;
461 /* gen_lowpart_common will not be able to process VOIDmode entities other
462 than CONST_INTs. */
463 if (GET_MODE (tem) == VOIDmode && GET_CODE (tem) != CONST_INT)
464 return NULL_RTX;
466 if (GET_MODE (tem) == VOIDmode)
467 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
468 else
469 gcc_assert (GET_MODE (tem) == mode);
471 return tem;
477 /* Return true if the register from reference REF is killed
478 between FROM to (but not including) TO. */
480 static bool
481 local_ref_killed_between_p (struct df_ref * ref, rtx from, rtx to)
483 rtx insn;
485 for (insn = from; insn != to; insn = NEXT_INSN (insn))
487 struct df_ref **def_rec;
488 if (!INSN_P (insn))
489 continue;
491 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
493 struct df_ref *def = *def_rec;
494 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
495 return true;
498 return false;
502 /* Check if the given DEF is available in INSN. This would require full
503 computation of available expressions; we check only restricted conditions:
504 - if DEF is the sole definition of its register, go ahead;
505 - in the same basic block, we check for no definitions killing the
506 definition of DEF_INSN;
507 - if USE's basic block has DEF's basic block as the sole predecessor,
508 we check if the definition is killed after DEF_INSN or before
509 TARGET_INSN insn, in their respective basic blocks. */
510 static bool
511 use_killed_between (struct df_ref *use, rtx def_insn, rtx target_insn)
513 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
514 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
515 int regno;
516 struct df_ref * def;
518 /* In some obscure situations we can have a def reaching a use
519 that is _before_ the def. In other words the def does not
520 dominate the use even though the use and def are in the same
521 basic block. This can happen when a register may be used
522 uninitialized in a loop. In such cases, we must assume that
523 DEF is not available. */
524 if (def_bb == target_bb
525 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
526 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
527 return true;
529 /* Check if the reg in USE has only one definition. We already
530 know that this definition reaches use, or we wouldn't be here.
531 However, this is invalid for hard registers because if they are
532 live at the beginning of the function it does not mean that we
533 have an uninitialized access. */
534 regno = DF_REF_REGNO (use);
535 def = DF_REG_DEF_CHAIN (regno);
536 if (def
537 && def->next_reg == NULL
538 && regno >= FIRST_PSEUDO_REGISTER)
539 return false;
541 /* Check locally if we are in the same basic block. */
542 if (def_bb == target_bb)
543 return local_ref_killed_between_p (use, def_insn, target_insn);
545 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
546 if (single_pred_p (target_bb)
547 && single_pred (target_bb) == def_bb)
549 struct df_ref *x;
551 /* See if USE is killed between DEF_INSN and the last insn in the
552 basic block containing DEF_INSN. */
553 x = df_bb_regno_last_def_find (def_bb, regno);
554 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
555 return true;
557 /* See if USE is killed between TARGET_INSN and the first insn in the
558 basic block containing TARGET_INSN. */
559 x = df_bb_regno_first_def_find (target_bb, regno);
560 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
561 return true;
563 return false;
566 /* Otherwise assume the worst case. */
567 return true;
571 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
572 would require full computation of available expressions;
573 we check only restricted conditions, see use_killed_between. */
574 static bool
575 all_uses_available_at (rtx def_insn, rtx target_insn)
577 struct df_ref **use_rec;
578 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
579 rtx def_set = single_set (def_insn);
581 gcc_assert (def_set);
583 /* If target_insn comes right after def_insn, which is very common
584 for addresses, we can use a quicker test. */
585 if (NEXT_INSN (def_insn) == target_insn
586 && REG_P (SET_DEST (def_set)))
588 rtx def_reg = SET_DEST (def_set);
590 /* If the insn uses the reg that it defines, the substitution is
591 invalid. */
592 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
594 struct df_ref *use = *use_rec;
595 if (rtx_equal_p (DF_REF_REG (use), def_reg))
596 return false;
598 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
600 struct df_ref *use = *use_rec;
601 if (rtx_equal_p (use->reg, def_reg))
602 return false;
605 else
607 /* Look at all the uses of DEF_INSN, and see if they are not
608 killed between DEF_INSN and TARGET_INSN. */
609 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
611 struct df_ref *use = *use_rec;
612 if (use_killed_between (use, def_insn, target_insn))
613 return false;
615 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
617 struct df_ref *use = *use_rec;
618 if (use_killed_between (use, def_insn, target_insn))
619 return false;
623 return true;
627 struct find_occurrence_data
629 rtx find;
630 rtx *retval;
633 /* Callback for for_each_rtx, used in find_occurrence.
634 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
635 if successful, or 0 to continue traversing otherwise. */
637 static int
638 find_occurrence_callback (rtx *px, void *data)
640 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
641 rtx x = *px;
642 rtx find = fod->find;
644 if (x == find)
646 fod->retval = px;
647 return 1;
650 return 0;
653 /* Return a pointer to one of the occurrences of register FIND in *PX. */
655 static rtx *
656 find_occurrence (rtx *px, rtx find)
658 struct find_occurrence_data data;
660 gcc_assert (REG_P (find)
661 || (GET_CODE (find) == SUBREG
662 && REG_P (SUBREG_REG (find))));
664 data.find = find;
665 data.retval = NULL;
666 for_each_rtx (px, find_occurrence_callback, &data);
667 return data.retval;
671 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
672 uses from USE_VEC. Find those that are present, and create new items
673 in the data flow object of the pass. Mark any new uses as having the
674 given TYPE. */
675 static void
676 update_df (rtx insn, rtx *loc, struct df_ref **use_rec, enum df_ref_type type,
677 int new_flags)
679 bool changed = false;
681 /* Add a use for the registers that were propagated. */
682 while (*use_rec)
684 struct df_ref *use = *use_rec;
685 struct df_ref *orig_use = use, *new_use;
686 int width = -1;
687 int offset = -1;
688 enum machine_mode mode = 0;
689 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
690 use_rec++;
692 if (!new_loc)
693 continue;
695 if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
697 width = DF_REF_EXTRACT_WIDTH (orig_use);
698 offset = DF_REF_EXTRACT_OFFSET (orig_use);
699 mode = DF_REF_EXTRACT_MODE (orig_use);
702 /* Add a new insn use. Use the original type, because it says if the
703 use was within a MEM. */
704 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
705 insn, BLOCK_FOR_INSN (insn),
706 type, DF_REF_FLAGS (orig_use) | new_flags,
707 width, offset, mode);
709 /* Set up the use-def chain. */
710 df_chain_copy (new_use, DF_REF_CHAIN (orig_use));
711 changed = true;
713 if (changed)
714 df_insn_rescan (insn);
718 /* Try substituting NEW into LOC, which originated from forward propagation
719 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
720 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
721 new insn is not recognized. Return whether the substitution was
722 performed. */
724 static bool
725 try_fwprop_subst (struct df_ref *use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
727 rtx insn = DF_REF_INSN (use);
728 enum df_ref_type type = DF_REF_TYPE (use);
729 int flags = DF_REF_FLAGS (use);
730 rtx set = single_set (insn);
731 int old_cost = rtx_cost (SET_SRC (set), SET);
732 bool ok;
734 if (dump_file)
736 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
737 print_inline_rtx (dump_file, *loc, 2);
738 fprintf (dump_file, "\n with ");
739 print_inline_rtx (dump_file, new_rtx, 2);
740 fprintf (dump_file, "\n");
743 validate_unshare_change (insn, loc, new_rtx, true);
744 if (!verify_changes (0))
746 if (dump_file)
747 fprintf (dump_file, "Changes to insn %d not recognized\n",
748 INSN_UID (insn));
749 ok = false;
752 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
753 && rtx_cost (SET_SRC (set), SET) > old_cost)
755 if (dump_file)
756 fprintf (dump_file, "Changes to insn %d not profitable\n",
757 INSN_UID (insn));
758 ok = false;
761 else
763 if (dump_file)
764 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
765 ok = true;
768 if (ok)
770 confirm_change_group ();
771 num_changes++;
773 df_ref_remove (use);
774 if (!CONSTANT_P (new_rtx))
776 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
777 update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
778 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
781 else
783 cancel_changes (0);
785 /* Can also record a simplified value in a REG_EQUAL note,
786 making a new one if one does not already exist. */
787 if (set_reg_equal)
789 if (dump_file)
790 fprintf (dump_file, " Setting REG_EQUAL note\n");
792 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
794 /* ??? Is this still necessary if we add the note through
795 set_unique_reg_note? */
796 if (!CONSTANT_P (new_rtx))
798 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
799 update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
800 type, DF_REF_IN_NOTE);
801 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
802 type, DF_REF_IN_NOTE);
807 return ok;
811 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
813 static bool
814 forward_propagate_subreg (struct df_ref *use, rtx def_insn, rtx def_set)
816 rtx use_reg = DF_REF_REG (use);
817 rtx use_insn, src;
819 /* Only consider paradoxical subregs... */
820 enum machine_mode use_mode = GET_MODE (use_reg);
821 if (GET_CODE (use_reg) != SUBREG
822 || !REG_P (SET_DEST (def_set))
823 || GET_MODE_SIZE (use_mode)
824 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
825 return false;
827 /* If this is a paradoxical SUBREG, we have no idea what value the
828 extra bits would have. However, if the operand is equivalent to
829 a SUBREG whose operand is the same as our mode, and all the modes
830 are within a word, we can just use the inner operand because
831 these SUBREGs just say how to treat the register. */
832 use_insn = DF_REF_INSN (use);
833 src = SET_SRC (def_set);
834 if (GET_CODE (src) == SUBREG
835 && REG_P (SUBREG_REG (src))
836 && GET_MODE (SUBREG_REG (src)) == use_mode
837 && subreg_lowpart_p (src)
838 && all_uses_available_at (def_insn, use_insn))
839 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
840 def_insn, false);
841 else
842 return false;
845 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
846 result. */
848 static bool
849 forward_propagate_and_simplify (struct df_ref *use, rtx def_insn, rtx def_set)
851 rtx use_insn = DF_REF_INSN (use);
852 rtx use_set = single_set (use_insn);
853 rtx src, reg, new_rtx, *loc;
854 bool set_reg_equal;
855 enum machine_mode mode;
857 if (!use_set)
858 return false;
860 /* Do not propagate into PC, CC0, etc. */
861 if (GET_MODE (SET_DEST (use_set)) == VOIDmode)
862 return false;
864 /* If def and use are subreg, check if they match. */
865 reg = DF_REF_REG (use);
866 if (GET_CODE (reg) == SUBREG
867 && GET_CODE (SET_DEST (def_set)) == SUBREG
868 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
869 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
870 return false;
872 /* Check if the def had a subreg, but the use has the whole reg. */
873 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
874 return false;
876 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
877 previous case, the optimization is possible and often useful indeed. */
878 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
879 reg = SUBREG_REG (reg);
881 /* Check if the substitution is valid (last, because it's the most
882 expensive check!). */
883 src = SET_SRC (def_set);
884 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
885 return false;
887 /* Check if the def is loading something from the constant pool; in this
888 case we would undo optimization such as compress_float_constant.
889 Still, we can set a REG_EQUAL note. */
890 if (MEM_P (src) && MEM_READONLY_P (src))
892 rtx x = avoid_constant_pool_reference (src);
893 if (x != src)
895 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
896 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
897 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
898 if (old_rtx != new_rtx)
899 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
901 return false;
904 /* Else try simplifying. */
906 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
908 loc = &SET_DEST (use_set);
909 set_reg_equal = false;
911 else
913 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
914 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
915 loc = &XEXP (note, 0);
916 else
917 loc = &SET_SRC (use_set);
919 /* Do not replace an existing REG_EQUAL note if the insn is not
920 recognized. Either we're already replacing in the note, or
921 we'll separately try plugging the definition in the note and
922 simplifying. */
923 set_reg_equal = (note == NULL_RTX);
926 if (GET_MODE (*loc) == VOIDmode)
927 mode = GET_MODE (SET_DEST (use_set));
928 else
929 mode = GET_MODE (*loc);
931 new_rtx = propagate_rtx (*loc, mode, reg, src);
933 if (!new_rtx)
934 return false;
936 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
940 /* Given a use USE of an insn, if it has a single reaching
941 definition, try to forward propagate it into that insn. */
943 static void
944 forward_propagate_into (struct df_ref *use)
946 struct df_link *defs;
947 struct df_ref *def;
948 rtx def_insn, def_set, use_insn;
949 rtx parent;
951 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
952 return;
953 if (DF_REF_IS_ARTIFICIAL (use))
954 return;
956 /* Only consider uses that have a single definition. */
957 defs = DF_REF_CHAIN (use);
958 if (!defs || defs->next)
959 return;
961 def = defs->ref;
962 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
963 return;
964 if (DF_REF_IS_ARTIFICIAL (def))
965 return;
967 /* Do not propagate loop invariant definitions inside the loop. */
968 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
969 return;
971 /* Check if the use is still present in the insn! */
972 use_insn = DF_REF_INSN (use);
973 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
974 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
975 else
976 parent = PATTERN (use_insn);
978 if (!reg_mentioned_p (DF_REF_REG (use), parent))
979 return;
981 def_insn = DF_REF_INSN (def);
982 if (multiple_sets (def_insn))
983 return;
984 def_set = single_set (def_insn);
985 if (!def_set)
986 return;
988 /* Only try one kind of propagation. If two are possible, we'll
989 do it on the following iterations. */
990 if (!forward_propagate_and_simplify (use, def_insn, def_set))
991 forward_propagate_subreg (use, def_insn, def_set);
995 static void
996 fwprop_init (void)
998 num_changes = 0;
999 calculate_dominance_info (CDI_DOMINATORS);
1001 /* We do not always want to propagate into loops, so we have to find
1002 loops and be careful about them. But we have to call flow_loops_find
1003 before df_analyze, because flow_loops_find may introduce new jump
1004 insns (sadly) if we are not working in cfglayout mode. */
1005 loop_optimizer_init (0);
1007 /* Now set up the dataflow problem (we only want use-def chains) and
1008 put the dataflow solver to work. */
1009 df_set_flags (DF_EQ_NOTES);
1010 df_chain_add_problem (DF_UD_CHAIN);
1011 df_analyze ();
1012 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
1013 df_set_flags (DF_DEFER_INSN_RESCAN);
1016 static void
1017 fwprop_done (void)
1019 loop_optimizer_finalize ();
1021 free_dominance_info (CDI_DOMINATORS);
1022 cleanup_cfg (0);
1023 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1025 if (dump_file)
1026 fprintf (dump_file,
1027 "\nNumber of successful forward propagations: %d\n\n",
1028 num_changes);
1033 /* Main entry point. */
1035 static bool
1036 gate_fwprop (void)
1038 return optimize > 0 && flag_forward_propagate;
1041 static unsigned int
1042 fwprop (void)
1044 unsigned i;
1046 fwprop_init ();
1048 /* Go through all the uses. update_df will create new ones at the
1049 end, and we'll go through them as well.
1051 Do not forward propagate addresses into loops until after unrolling.
1052 CSE did so because it was able to fix its own mess, but we are not. */
1054 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1056 struct df_ref *use = DF_USES_GET (i);
1057 if (use)
1058 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1059 || DF_REF_BB (use)->loop_father == NULL)
1060 forward_propagate_into (use);
1063 fwprop_done ();
1064 return 0;
1067 struct rtl_opt_pass pass_rtl_fwprop =
1070 RTL_PASS,
1071 "fwprop1", /* name */
1072 gate_fwprop, /* gate */
1073 fwprop, /* execute */
1074 NULL, /* sub */
1075 NULL, /* next */
1076 0, /* static_pass_number */
1077 TV_FWPROP, /* tv_id */
1078 0, /* properties_required */
1079 0, /* properties_provided */
1080 0, /* properties_destroyed */
1081 0, /* todo_flags_start */
1082 TODO_df_finish | TODO_verify_rtl_sharing |
1083 TODO_dump_func /* todo_flags_finish */
1087 static unsigned int
1088 fwprop_addr (void)
1090 unsigned i;
1091 fwprop_init ();
1093 /* Go through all the uses. update_df will create new ones at the
1094 end, and we'll go through them as well. */
1095 df_set_flags (DF_DEFER_INSN_RESCAN);
1097 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1099 struct df_ref *use = DF_USES_GET (i);
1100 if (use)
1101 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1102 && DF_REF_BB (use)->loop_father != NULL)
1103 forward_propagate_into (use);
1106 fwprop_done ();
1108 return 0;
1111 struct rtl_opt_pass pass_rtl_fwprop_addr =
1114 RTL_PASS,
1115 "fwprop2", /* name */
1116 gate_fwprop, /* gate */
1117 fwprop_addr, /* execute */
1118 NULL, /* sub */
1119 NULL, /* next */
1120 0, /* static_pass_number */
1121 TV_FWPROP, /* tv_id */
1122 0, /* properties_required */
1123 0, /* properties_provided */
1124 0, /* properties_destroyed */
1125 0, /* todo_flags_start */
1126 TODO_df_finish | TODO_verify_rtl_sharing |
1127 TODO_dump_func /* todo_flags_finish */