2007-03-01 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob1bfb56c6eaeb5d18745b506ca031be7af77a9e5e
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
176 static void
177 cfg_blocks_add (basic_block bb)
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
182 if (cfg_blocks_empty_p ())
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
187 else
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
211 /* Remove a block from the worklist. */
213 static basic_block
214 cfg_blocks_get (void)
216 basic_block bb;
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
228 return bb;
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
236 static void
237 add_ssa_edge (tree var, bool is_varying)
239 imm_use_iterator iter;
240 use_operand_p use_p;
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
244 tree use_stmt = USE_STMT (use_p);
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
259 /* Add edge E to the control flow worklist. */
261 static void
262 add_control_edge (edge e)
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
272 e->flags |= EDGE_EXECUTABLE;
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
278 cfg_blocks_add (bb);
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
286 /* Simulate the execution of STMT and update the work lists accordingly. */
288 static void
289 simulate_stmt (tree stmt)
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
300 if (TREE_CODE (stmt) == PHI_NODE)
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
308 if (val == SSA_PROP_VARYING)
310 DONT_SIMULATE_AGAIN (stmt) = 1;
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
348 static void
349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
354 basic_block bb;
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
367 if (dump_file && (dump_flags & TDF_DETAILS))
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
373 bb = bb_for_stmt (stmt);
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
388 static void
389 simulate_block (basic_block block)
391 tree phi;
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
419 tree stmt = bsi_stmt (j);
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
429 simulate_stmt (stmt);
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
447 normal_edge_count++;
448 normal_edge = e;
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
458 /* Initialize local data structures and work lists. */
460 static void
461 ssa_prop_init (void)
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
493 block_stmt_iterator si;
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
509 /* Free allocated storage. */
511 static void
512 ssa_prop_fini (void)
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
523 /* Get the main expression from statement STMT. */
525 tree
526 get_rhs (tree stmt)
528 enum tree_code code = TREE_CODE (stmt);
530 switch (code)
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
535 return stmt;
536 /* FALLTHRU */
538 case GIMPLE_MODIFY_STMT:
539 stmt = GENERIC_TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
554 default:
555 return stmt;
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
564 bool
565 set_rhs (tree *stmt_p, tree expr)
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
573 /* Verify the constant folded result is valid gimple. */
574 switch (TREE_CODE_CLASS (code))
576 case tcc_declaration:
577 if (!is_gimple_variable(expr))
578 return false;
579 break;
581 case tcc_constant:
582 break;
584 case tcc_binary:
585 case tcc_comparison:
586 if (!is_gimple_val (TREE_OPERAND (expr, 0))
587 || !is_gimple_val (TREE_OPERAND (expr, 1)))
588 return false;
589 break;
591 case tcc_unary:
592 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
593 return false;
594 break;
596 case tcc_expression:
597 switch (code)
599 case ADDR_EXPR:
600 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
601 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
602 return false;
603 break;
605 case TRUTH_NOT_EXPR:
606 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
607 return false;
608 break;
610 case TRUTH_AND_EXPR:
611 case TRUTH_XOR_EXPR:
612 case TRUTH_OR_EXPR:
613 if (!is_gimple_val (TREE_OPERAND (expr, 0))
614 || !is_gimple_val (TREE_OPERAND (expr, 1)))
615 return false;
616 break;
618 case EXC_PTR_EXPR:
619 case FILTER_EXPR:
620 break;
622 default:
623 return false;
625 break;
627 case tcc_vl_exp:
628 switch (code)
630 case CALL_EXPR:
631 break;
632 default:
633 return false;
635 break;
637 case tcc_exceptional:
638 switch (code)
640 case SSA_NAME:
641 break;
643 default:
644 return false;
646 break;
648 default:
649 return false;
652 if (EXPR_HAS_LOCATION (stmt)
653 && (EXPR_P (expr)
654 || GIMPLE_STMT_P (expr))
655 && ! EXPR_HAS_LOCATION (expr)
656 && TREE_SIDE_EFFECTS (expr)
657 && TREE_CODE (expr) != LABEL_EXPR)
658 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
660 switch (TREE_CODE (stmt))
662 case RETURN_EXPR:
663 op = TREE_OPERAND (stmt, 0);
664 if (TREE_CODE (op) != GIMPLE_MODIFY_STMT)
666 GIMPLE_STMT_OPERAND (stmt, 0) = expr;
667 break;
669 stmt = op;
670 /* FALLTHRU */
672 case GIMPLE_MODIFY_STMT:
673 op = GIMPLE_STMT_OPERAND (stmt, 1);
674 if (TREE_CODE (op) == WITH_SIZE_EXPR)
676 stmt = op;
677 TREE_OPERAND (stmt, 1) = expr;
679 else
680 GIMPLE_STMT_OPERAND (stmt, 1) = expr;
681 break;
683 case COND_EXPR:
684 if (!is_gimple_condexpr (expr))
685 return false;
686 COND_EXPR_COND (stmt) = expr;
687 break;
688 case SWITCH_EXPR:
689 SWITCH_COND (stmt) = expr;
690 break;
691 case GOTO_EXPR:
692 GOTO_DESTINATION (stmt) = expr;
693 break;
694 case LABEL_EXPR:
695 LABEL_EXPR_LABEL (stmt) = expr;
696 break;
698 default:
699 /* Replace the whole statement with EXPR. If EXPR has no side
700 effects, then replace *STMT_P with an empty statement. */
701 ann = stmt_ann (stmt);
702 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
703 (*stmt_p)->base.ann = (tree_ann_t) ann;
705 if (gimple_in_ssa_p (cfun)
706 && TREE_SIDE_EFFECTS (expr))
708 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
709 replacement. */
710 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
712 if (TREE_CODE (var) == SSA_NAME)
713 SSA_NAME_DEF_STMT (var) = *stmt_p;
716 break;
719 return true;
723 /* Entry point to the propagation engine.
725 VISIT_STMT is called for every statement visited.
726 VISIT_PHI is called for every PHI node visited. */
728 void
729 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
730 ssa_prop_visit_phi_fn visit_phi)
732 ssa_prop_visit_stmt = visit_stmt;
733 ssa_prop_visit_phi = visit_phi;
735 ssa_prop_init ();
737 /* Iterate until the worklists are empty. */
738 while (!cfg_blocks_empty_p ()
739 || VEC_length (tree, interesting_ssa_edges) > 0
740 || VEC_length (tree, varying_ssa_edges) > 0)
742 if (!cfg_blocks_empty_p ())
744 /* Pull the next block to simulate off the worklist. */
745 basic_block dest_block = cfg_blocks_get ();
746 simulate_block (dest_block);
749 /* In order to move things to varying as quickly as
750 possible,process the VARYING_SSA_EDGES worklist first. */
751 process_ssa_edge_worklist (&varying_ssa_edges);
753 /* Now process the INTERESTING_SSA_EDGES worklist. */
754 process_ssa_edge_worklist (&interesting_ssa_edges);
757 ssa_prop_fini ();
761 /* Return the first VDEF operand for STMT. */
763 tree
764 first_vdef (tree stmt)
766 ssa_op_iter iter;
767 tree op;
769 /* Simply return the first operand we arrive at. */
770 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
771 return (op);
773 gcc_unreachable ();
777 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
778 is a non-volatile pointer dereference, a structure reference or a
779 reference to a single _DECL. Ignore volatile memory references
780 because they are not interesting for the optimizers. */
782 bool
783 stmt_makes_single_load (tree stmt)
785 tree rhs;
787 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
788 return false;
790 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF|SSA_OP_VUSE))
791 return false;
793 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
794 STRIP_NOPS (rhs);
796 return (!TREE_THIS_VOLATILE (rhs)
797 && (DECL_P (rhs)
798 || REFERENCE_CLASS_P (rhs)));
802 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
803 is a non-volatile pointer dereference, a structure reference or a
804 reference to a single _DECL. Ignore volatile memory references
805 because they are not interesting for the optimizers. */
807 bool
808 stmt_makes_single_store (tree stmt)
810 tree lhs;
812 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
813 return false;
815 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
816 return false;
818 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
819 STRIP_NOPS (lhs);
821 return (!TREE_THIS_VOLATILE (lhs)
822 && (DECL_P (lhs)
823 || REFERENCE_CLASS_P (lhs)));
827 /* If STMT makes a single memory load and all the virtual use operands
828 have the same value in array VALUES, return it. Otherwise, return
829 NULL. */
831 prop_value_t *
832 get_value_loaded_by (tree stmt, prop_value_t *values)
834 ssa_op_iter i;
835 tree vuse;
836 prop_value_t *prev_val = NULL;
837 prop_value_t *val = NULL;
839 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
841 val = &values[SSA_NAME_VERSION (vuse)];
842 if (prev_val && prev_val->value != val->value)
843 return NULL;
844 prev_val = val;
847 return val;
851 /* Propagation statistics. */
852 struct prop_stats_d
854 long num_const_prop;
855 long num_copy_prop;
856 long num_pred_folded;
859 static struct prop_stats_d prop_stats;
861 /* Replace USE references in statement STMT with the values stored in
862 PROP_VALUE. Return true if at least one reference was replaced. If
863 REPLACED_ADDRESSES_P is given, it will be set to true if an address
864 constant was replaced. */
866 bool
867 replace_uses_in (tree stmt, bool *replaced_addresses_p,
868 prop_value_t *prop_value)
870 bool replaced = false;
871 use_operand_p use;
872 ssa_op_iter iter;
874 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
876 tree tuse = USE_FROM_PTR (use);
877 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
879 if (val == tuse || val == NULL_TREE)
880 continue;
882 if (TREE_CODE (stmt) == ASM_EXPR
883 && !may_propagate_copy_into_asm (tuse))
884 continue;
886 if (!may_propagate_copy (tuse, val))
887 continue;
889 if (TREE_CODE (val) != SSA_NAME)
890 prop_stats.num_const_prop++;
891 else
892 prop_stats.num_copy_prop++;
894 propagate_value (use, val);
896 replaced = true;
897 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
898 *replaced_addresses_p = true;
901 return replaced;
905 /* Replace the VUSE references in statement STMT with the values
906 stored in PROP_VALUE. Return true if a reference was replaced. If
907 REPLACED_ADDRESSES_P is given, it will be set to true if an address
908 constant was replaced.
910 Replacing VUSE operands is slightly more complex than replacing
911 regular USEs. We are only interested in two types of replacements
912 here:
914 1- If the value to be replaced is a constant or an SSA name for a
915 GIMPLE register, then we are making a copy/constant propagation
916 from a memory store. For instance,
918 # a_3 = VDEF <a_2>
919 a.b = x_1;
921 # VUSE <a_3>
922 y_4 = a.b;
924 This replacement is only possible iff STMT is an assignment
925 whose RHS is identical to the LHS of the statement that created
926 the VUSE(s) that we are replacing. Otherwise, we may do the
927 wrong replacement:
929 # a_3 = VDEF <a_2>
930 # b_5 = VDEF <b_4>
931 *p = 10;
933 # VUSE <b_5>
934 x_8 = b;
936 Even though 'b_5' acquires the value '10' during propagation,
937 there is no way for the propagator to tell whether the
938 replacement is correct in every reached use, because values are
939 computed at definition sites. Therefore, when doing final
940 substitution of propagated values, we have to check each use
941 site. Since the RHS of STMT ('b') is different from the LHS of
942 the originating statement ('*p'), we cannot replace 'b' with
943 '10'.
945 Similarly, when merging values from PHI node arguments,
946 propagators need to take care not to merge the same values
947 stored in different locations:
949 if (...)
950 # a_3 = VDEF <a_2>
951 a.b = 3;
952 else
953 # a_4 = VDEF <a_2>
954 a.c = 3;
955 # a_5 = PHI <a_3, a_4>
957 It would be wrong to propagate '3' into 'a_5' because that
958 operation merges two stores to different memory locations.
961 2- If the value to be replaced is an SSA name for a virtual
962 register, then we simply replace each VUSE operand with its
963 value from PROP_VALUE. This is the same replacement done by
964 replace_uses_in. */
966 static bool
967 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
968 prop_value_t *prop_value)
970 bool replaced = false;
971 ssa_op_iter iter;
972 use_operand_p vuse;
974 if (stmt_makes_single_load (stmt))
976 /* If STMT is an assignment whose RHS is a single memory load,
977 see if we are trying to propagate a constant or a GIMPLE
978 register (case #1 above). */
979 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
980 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
982 if (val
983 && val->value
984 && (is_gimple_reg (val->value)
985 || is_gimple_min_invariant (val->value))
986 && simple_cst_equal (rhs, val->mem_ref) == 1)
989 /* If we are replacing a constant address, inform our
990 caller. */
991 if (TREE_CODE (val->value) != SSA_NAME
992 && POINTER_TYPE_P (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1)))
993 && replaced_addresses_p)
994 *replaced_addresses_p = true;
996 /* We can only perform the substitution if the load is done
997 from the same memory location as the original store.
998 Since we already know that there are no intervening
999 stores between DEF_STMT and STMT, we only need to check
1000 that the RHS of STMT is the same as the memory reference
1001 propagated together with the value. */
1002 GIMPLE_STMT_OPERAND (stmt, 1) = val->value;
1004 if (TREE_CODE (val->value) != SSA_NAME)
1005 prop_stats.num_const_prop++;
1006 else
1007 prop_stats.num_copy_prop++;
1009 /* Since we have replaced the whole RHS of STMT, there
1010 is no point in checking the other VUSEs, as they will
1011 all have the same value. */
1012 return true;
1016 /* Otherwise, the values for every VUSE operand must be other
1017 SSA_NAMEs that can be propagated into STMT. */
1018 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1020 tree var = USE_FROM_PTR (vuse);
1021 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1023 if (val == NULL_TREE || var == val)
1024 continue;
1026 /* Constants and copies propagated between real and virtual
1027 operands are only possible in the cases handled above. They
1028 should be ignored in any other context. */
1029 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1030 continue;
1032 propagate_value (vuse, val);
1033 prop_stats.num_copy_prop++;
1034 replaced = true;
1037 return replaced;
1041 /* Replace propagated values into all the arguments for PHI using the
1042 values from PROP_VALUE. */
1044 static void
1045 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1047 int i;
1048 bool replaced = false;
1049 tree prev_phi = NULL;
1051 if (dump_file && (dump_flags & TDF_DETAILS))
1052 prev_phi = unshare_expr (phi);
1054 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1056 tree arg = PHI_ARG_DEF (phi, i);
1058 if (TREE_CODE (arg) == SSA_NAME)
1060 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1062 if (val && val != arg && may_propagate_copy (arg, val))
1064 if (TREE_CODE (val) != SSA_NAME)
1065 prop_stats.num_const_prop++;
1066 else
1067 prop_stats.num_copy_prop++;
1069 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1070 replaced = true;
1072 /* If we propagated a copy and this argument flows
1073 through an abnormal edge, update the replacement
1074 accordingly. */
1075 if (TREE_CODE (val) == SSA_NAME
1076 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1077 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1082 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1084 fprintf (dump_file, "Folded PHI node: ");
1085 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1086 fprintf (dump_file, " into: ");
1087 print_generic_stmt (dump_file, phi, TDF_SLIM);
1088 fprintf (dump_file, "\n");
1093 /* If STMT has a predicate whose value can be computed using the value
1094 range information computed by VRP, compute its value and return true.
1095 Otherwise, return false. */
1097 static bool
1098 fold_predicate_in (tree stmt)
1100 tree *pred_p = NULL;
1101 bool modify_stmt_p = false;
1102 tree val;
1104 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1105 && COMPARISON_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
1107 modify_stmt_p = true;
1108 pred_p = &GIMPLE_STMT_OPERAND (stmt, 1);
1110 else if (TREE_CODE (stmt) == COND_EXPR)
1111 pred_p = &COND_EXPR_COND (stmt);
1112 else
1113 return false;
1115 val = vrp_evaluate_conditional (*pred_p, true);
1116 if (val)
1118 if (modify_stmt_p)
1119 val = fold_convert (TREE_TYPE (*pred_p), val);
1121 if (dump_file)
1123 fprintf (dump_file, "Folding predicate ");
1124 print_generic_expr (dump_file, *pred_p, 0);
1125 fprintf (dump_file, " to ");
1126 print_generic_expr (dump_file, val, 0);
1127 fprintf (dump_file, "\n");
1130 prop_stats.num_pred_folded++;
1131 *pred_p = val;
1132 return true;
1135 return false;
1139 /* Perform final substitution and folding of propagated values.
1141 PROP_VALUE[I] contains the single value that should be substituted
1142 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1143 substituted.
1145 If USE_RANGES_P is true, statements that contain predicate
1146 expressions are evaluated with a call to vrp_evaluate_conditional.
1147 This will only give meaningful results when called from tree-vrp.c
1148 (the information used by vrp_evaluate_conditional is built by the
1149 VRP pass).
1151 Return TRUE when something changed. */
1153 bool
1154 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1156 basic_block bb;
1157 bool something_changed = false;
1159 if (prop_value == NULL && !use_ranges_p)
1160 return false;
1162 if (dump_file && (dump_flags & TDF_DETAILS))
1163 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1165 memset (&prop_stats, 0, sizeof (prop_stats));
1167 /* Substitute values in every statement of every basic block. */
1168 FOR_EACH_BB (bb)
1170 block_stmt_iterator i;
1171 tree phi;
1173 /* Propagate known values into PHI nodes. */
1174 if (prop_value)
1175 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1176 replace_phi_args_in (phi, prop_value);
1178 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1180 bool replaced_address, did_replace;
1181 tree prev_stmt = NULL;
1182 tree stmt = bsi_stmt (i);
1184 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1185 range information for names and they are discarded
1186 afterwards. */
1187 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1188 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
1189 continue;
1191 /* Record the state of the statement before replacements. */
1192 push_stmt_changes (bsi_stmt_ptr (i));
1194 /* Replace the statement with its folded version and mark it
1195 folded. */
1196 did_replace = false;
1197 replaced_address = false;
1198 if (dump_file && (dump_flags & TDF_DETAILS))
1199 prev_stmt = unshare_expr (stmt);
1201 /* If we have range information, see if we can fold
1202 predicate expressions. */
1203 if (use_ranges_p)
1204 did_replace = fold_predicate_in (stmt);
1206 if (prop_value)
1208 /* Only replace real uses if we couldn't fold the
1209 statement using value range information (value range
1210 information is not collected on virtuals, so we only
1211 need to check this for real uses). */
1212 if (!did_replace)
1213 did_replace |= replace_uses_in (stmt, &replaced_address,
1214 prop_value);
1216 did_replace |= replace_vuses_in (stmt, &replaced_address,
1217 prop_value);
1220 /* If we made a replacement, fold and cleanup the statement. */
1221 if (did_replace)
1223 tree old_stmt = stmt;
1224 tree rhs;
1226 fold_stmt (bsi_stmt_ptr (i));
1227 stmt = bsi_stmt (i);
1229 /* If we cleaned up EH information from the statement,
1230 remove EH edges. */
1231 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1232 tree_purge_dead_eh_edges (bb);
1234 rhs = get_rhs (stmt);
1235 if (TREE_CODE (rhs) == ADDR_EXPR)
1236 recompute_tree_invariant_for_addr_expr (rhs);
1238 if (dump_file && (dump_flags & TDF_DETAILS))
1240 fprintf (dump_file, "Folded statement: ");
1241 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1242 fprintf (dump_file, " into: ");
1243 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1244 fprintf (dump_file, "\n");
1247 /* Determine what needs to be done to update the SSA form. */
1248 pop_stmt_changes (bsi_stmt_ptr (i));
1249 something_changed = true;
1251 else
1253 /* The statement was not modified, discard the change buffer. */
1254 discard_stmt_changes (bsi_stmt_ptr (i));
1257 /* Some statements may be simplified using ranges. For
1258 example, division may be replaced by shifts, modulo
1259 replaced with bitwise and, etc. Do this after
1260 substituting constants, folding, etc so that we're
1261 presented with a fully propagated, canonicalized
1262 statement. */
1263 if (use_ranges_p)
1264 simplify_stmt_using_ranges (stmt);
1268 if (dump_file && (dump_flags & TDF_STATS))
1270 fprintf (dump_file, "Constants propagated: %6ld\n",
1271 prop_stats.num_const_prop);
1272 fprintf (dump_file, "Copies propagated: %6ld\n",
1273 prop_stats.num_copy_prop);
1274 fprintf (dump_file, "Predicates folded: %6ld\n",
1275 prop_stats.num_pred_folded);
1277 return something_changed;
1280 #include "gt-tree-ssa-propagate.h"