2007-03-01 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-flow-inline.h
blob8d1072aaf4d18a8e52fb72b8ffa6e7d622891ca5
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
31 at first place. */
32 static inline bool
33 gimple_in_ssa_p (struct function *fun)
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
39 static inline bool
40 gimple_aliases_computed_p (struct function *fun)
42 gcc_assert (fun && fun->gimple_df);
43 return fun->gimple_df->aliases_computed_p;
46 /* Addressable variables in the function. If bit I is set, then
47 REFERENCED_VARS (I) has had its address taken. Note that
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
49 addressable variable is not necessarily call-clobbered (e.g., a
50 local addressable whose address does not escape) and not all
51 call-clobbered variables are addressable (e.g., a local static
52 variable). */
53 static inline bitmap
54 gimple_addressable_vars (struct function *fun)
56 gcc_assert (fun && fun->gimple_df);
57 return fun->gimple_df->addressable_vars;
60 /* Call clobbered variables in the function. If bit I is set, then
61 REFERENCED_VARS (I) is call-clobbered. */
62 static inline bitmap
63 gimple_call_clobbered_vars (struct function *fun)
65 gcc_assert (fun && fun->gimple_df);
66 return fun->gimple_df->call_clobbered_vars;
69 /* Array of all variables referenced in the function. */
70 static inline htab_t
71 gimple_referenced_vars (struct function *fun)
73 if (!fun->gimple_df)
74 return NULL;
75 return fun->gimple_df->referenced_vars;
78 /* Artificial variable used to model the effects of function calls. */
79 static inline tree
80 gimple_global_var (struct function *fun)
82 gcc_assert (fun && fun->gimple_df);
83 return fun->gimple_df->global_var;
86 /* Artificial variable used to model the effects of nonlocal
87 variables. */
88 static inline tree
89 gimple_nonlocal_all (struct function *fun)
91 gcc_assert (fun && fun->gimple_df);
92 return fun->gimple_df->nonlocal_all;
95 /* Hashtable of variables annotations. Used for static variables only;
96 local variables have direct pointer in the tree node. */
97 static inline htab_t
98 gimple_var_anns (struct function *fun)
100 return fun->gimple_df->var_anns;
103 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
105 static inline void *
106 first_htab_element (htab_iterator *hti, htab_t table)
108 hti->htab = table;
109 hti->slot = table->entries;
110 hti->limit = hti->slot + htab_size (table);
113 PTR x = *(hti->slot);
114 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
115 break;
116 } while (++(hti->slot) < hti->limit);
118 if (hti->slot < hti->limit)
119 return *(hti->slot);
120 return NULL;
123 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
124 or NULL if we have reached the end. */
126 static inline bool
127 end_htab_p (htab_iterator *hti)
129 if (hti->slot >= hti->limit)
130 return true;
131 return false;
134 /* Advance the hashtable iterator pointed to by HTI to the next element of the
135 hashtable. */
137 static inline void *
138 next_htab_element (htab_iterator *hti)
140 while (++(hti->slot) < hti->limit)
142 PTR x = *(hti->slot);
143 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
144 return x;
146 return NULL;
149 /* Initialize ITER to point to the first referenced variable in the
150 referenced_vars hashtable, and return that variable. */
152 static inline tree
153 first_referenced_var (referenced_var_iterator *iter)
155 struct int_tree_map *itm;
156 itm = (struct int_tree_map *) first_htab_element (&iter->hti,
157 gimple_referenced_vars
158 (cfun));
159 if (!itm)
160 return NULL;
161 return itm->to;
164 /* Return true if we have hit the end of the referenced variables ITER is
165 iterating through. */
167 static inline bool
168 end_referenced_vars_p (referenced_var_iterator *iter)
170 return end_htab_p (&iter->hti);
173 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
174 and return that variable. */
176 static inline tree
177 next_referenced_var (referenced_var_iterator *iter)
179 struct int_tree_map *itm;
180 itm = (struct int_tree_map *) next_htab_element (&iter->hti);
181 if (!itm)
182 return NULL;
183 return itm->to;
186 /* Fill up VEC with the variables in the referenced vars hashtable. */
188 static inline void
189 fill_referenced_var_vec (VEC (tree, heap) **vec)
191 referenced_var_iterator rvi;
192 tree var;
193 *vec = NULL;
194 FOR_EACH_REFERENCED_VAR (var, rvi)
195 VEC_safe_push (tree, heap, *vec, var);
198 /* Return the variable annotation for T, which must be a _DECL node.
199 Return NULL if the variable annotation doesn't already exist. */
200 static inline var_ann_t
201 var_ann (tree t)
203 gcc_assert (t);
204 gcc_assert (DECL_P (t));
205 gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
206 if (!MTAG_P (t) && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
208 struct static_var_ann_d *sann
209 = ((struct static_var_ann_d *)
210 htab_find_with_hash (gimple_var_anns (cfun), t, DECL_UID (t)));
211 if (!sann)
212 return NULL;
213 gcc_assert (sann->ann.common.type = VAR_ANN);
214 return &sann->ann;
216 gcc_assert (!t->base.ann
217 || t->base.ann->common.type == VAR_ANN);
219 return (var_ann_t) t->base.ann;
222 /* Return the variable annotation for T, which must be a _DECL node.
223 Create the variable annotation if it doesn't exist. */
224 static inline var_ann_t
225 get_var_ann (tree var)
227 var_ann_t ann = var_ann (var);
228 return (ann) ? ann : create_var_ann (var);
231 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
232 Return NULL if the function annotation doesn't already exist. */
233 static inline function_ann_t
234 function_ann (tree t)
236 gcc_assert (t);
237 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
238 gcc_assert (!t->base.ann
239 || t->base.ann->common.type == FUNCTION_ANN);
241 return (function_ann_t) t->base.ann;
244 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
245 Create the function annotation if it doesn't exist. */
246 static inline function_ann_t
247 get_function_ann (tree var)
249 function_ann_t ann = function_ann (var);
250 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
251 return (ann) ? ann : create_function_ann (var);
254 /* Return true if T has a statement annotation attached to it. */
256 static inline bool
257 has_stmt_ann (tree t)
259 #ifdef ENABLE_CHECKING
260 gcc_assert (is_gimple_stmt (t));
261 #endif
262 return t->base.ann && t->base.ann->common.type == STMT_ANN;
265 /* Return the statement annotation for T, which must be a statement
266 node. Return NULL if the statement annotation doesn't exist. */
267 static inline stmt_ann_t
268 stmt_ann (tree t)
270 #ifdef ENABLE_CHECKING
271 gcc_assert (is_gimple_stmt (t));
272 #endif
273 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
274 return (stmt_ann_t) t->base.ann;
277 /* Return the statement annotation for T, which must be a statement
278 node. Create the statement annotation if it doesn't exist. */
279 static inline stmt_ann_t
280 get_stmt_ann (tree stmt)
282 stmt_ann_t ann = stmt_ann (stmt);
283 return (ann) ? ann : create_stmt_ann (stmt);
286 /* Return the annotation type for annotation ANN. */
287 static inline enum tree_ann_type
288 ann_type (tree_ann_t ann)
290 return ann->common.type;
293 /* Return the basic block for statement T. */
294 static inline basic_block
295 bb_for_stmt (tree t)
297 stmt_ann_t ann;
299 if (TREE_CODE (t) == PHI_NODE)
300 return PHI_BB (t);
302 ann = stmt_ann (t);
303 return ann ? ann->bb : NULL;
306 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
307 no may aliases. */
308 static inline bitmap
309 may_aliases (tree var)
311 return MTAG_ALIASES (var);
314 /* Return the line number for EXPR, or return -1 if we have no line
315 number information for it. */
316 static inline int
317 get_lineno (tree expr)
319 if (expr == NULL_TREE)
320 return -1;
322 if (TREE_CODE (expr) == COMPOUND_EXPR)
323 expr = TREE_OPERAND (expr, 0);
325 if (! EXPR_HAS_LOCATION (expr))
326 return -1;
328 return EXPR_LINENO (expr);
331 /* Return the file name for EXPR, or return "???" if we have no
332 filename information. */
333 static inline const char *
334 get_filename (tree expr)
336 const char *filename;
337 if (expr == NULL_TREE)
338 return "???";
340 if (TREE_CODE (expr) == COMPOUND_EXPR)
341 expr = TREE_OPERAND (expr, 0);
343 if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
344 return filename;
345 else
346 return "???";
349 /* Return true if T is a noreturn call. */
350 static inline bool
351 noreturn_call_p (tree t)
353 tree call = get_call_expr_in (t);
354 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
357 /* Mark statement T as modified. */
358 static inline void
359 mark_stmt_modified (tree t)
361 stmt_ann_t ann;
362 if (TREE_CODE (t) == PHI_NODE)
363 return;
365 ann = stmt_ann (t);
366 if (ann == NULL)
367 ann = create_stmt_ann (t);
368 else if (noreturn_call_p (t) && cfun->gimple_df)
369 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
370 ann->modified = 1;
373 /* Mark statement T as modified, and update it. */
374 static inline void
375 update_stmt (tree t)
377 if (TREE_CODE (t) == PHI_NODE)
378 return;
379 mark_stmt_modified (t);
380 update_stmt_operands (t);
383 static inline void
384 update_stmt_if_modified (tree t)
386 if (stmt_modified_p (t))
387 update_stmt_operands (t);
390 /* Return true if T is marked as modified, false otherwise. */
391 static inline bool
392 stmt_modified_p (tree t)
394 stmt_ann_t ann = stmt_ann (t);
396 /* Note that if the statement doesn't yet have an annotation, we consider it
397 modified. This will force the next call to update_stmt_operands to scan
398 the statement. */
399 return ann ? ann->modified : true;
402 /* Delink an immediate_uses node from its chain. */
403 static inline void
404 delink_imm_use (ssa_use_operand_t *linknode)
406 /* Return if this node is not in a list. */
407 if (linknode->prev == NULL)
408 return;
410 linknode->prev->next = linknode->next;
411 linknode->next->prev = linknode->prev;
412 linknode->prev = NULL;
413 linknode->next = NULL;
416 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
417 static inline void
418 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
420 /* Link the new node at the head of the list. If we are in the process of
421 traversing the list, we won't visit any new nodes added to it. */
422 linknode->prev = list;
423 linknode->next = list->next;
424 list->next->prev = linknode;
425 list->next = linknode;
428 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
429 static inline void
430 link_imm_use (ssa_use_operand_t *linknode, tree def)
432 ssa_use_operand_t *root;
434 if (!def || TREE_CODE (def) != SSA_NAME)
435 linknode->prev = NULL;
436 else
438 root = &(SSA_NAME_IMM_USE_NODE (def));
439 #ifdef ENABLE_CHECKING
440 if (linknode->use)
441 gcc_assert (*(linknode->use) == def);
442 #endif
443 link_imm_use_to_list (linknode, root);
447 /* Set the value of a use pointed to by USE to VAL. */
448 static inline void
449 set_ssa_use_from_ptr (use_operand_p use, tree val)
451 delink_imm_use (use);
452 *(use->use) = val;
453 link_imm_use (use, val);
456 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
457 in STMT. */
458 static inline void
459 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
461 if (stmt)
462 link_imm_use (linknode, def);
463 else
464 link_imm_use (linknode, NULL);
465 linknode->stmt = stmt;
468 /* Relink a new node in place of an old node in the list. */
469 static inline void
470 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
472 /* The node one had better be in the same list. */
473 gcc_assert (*(old->use) == *(node->use));
474 node->prev = old->prev;
475 node->next = old->next;
476 if (old->prev)
478 old->prev->next = node;
479 old->next->prev = node;
480 /* Remove the old node from the list. */
481 old->prev = NULL;
485 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
486 in STMT. */
487 static inline void
488 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
490 if (stmt)
491 relink_imm_use (linknode, old);
492 else
493 link_imm_use (linknode, NULL);
494 linknode->stmt = stmt;
498 /* Return true is IMM has reached the end of the immediate use list. */
499 static inline bool
500 end_readonly_imm_use_p (imm_use_iterator *imm)
502 return (imm->imm_use == imm->end_p);
505 /* Initialize iterator IMM to process the list for VAR. */
506 static inline use_operand_p
507 first_readonly_imm_use (imm_use_iterator *imm, tree var)
509 gcc_assert (TREE_CODE (var) == SSA_NAME);
511 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
512 imm->imm_use = imm->end_p->next;
513 #ifdef ENABLE_CHECKING
514 imm->iter_node.next = imm->imm_use->next;
515 #endif
516 if (end_readonly_imm_use_p (imm))
517 return NULL_USE_OPERAND_P;
518 return imm->imm_use;
521 /* Bump IMM to the next use in the list. */
522 static inline use_operand_p
523 next_readonly_imm_use (imm_use_iterator *imm)
525 use_operand_p old = imm->imm_use;
527 #ifdef ENABLE_CHECKING
528 /* If this assertion fails, it indicates the 'next' pointer has changed
529 since we the last bump. This indicates that the list is being modified
530 via stmt changes, or SET_USE, or somesuch thing, and you need to be
531 using the SAFE version of the iterator. */
532 gcc_assert (imm->iter_node.next == old->next);
533 imm->iter_node.next = old->next->next;
534 #endif
536 imm->imm_use = old->next;
537 if (end_readonly_imm_use_p (imm))
538 return old;
539 return imm->imm_use;
542 /* Return true if VAR has no uses. */
543 static inline bool
544 has_zero_uses (tree var)
546 ssa_use_operand_t *ptr;
547 ptr = &(SSA_NAME_IMM_USE_NODE (var));
548 /* A single use means there is no items in the list. */
549 return (ptr == ptr->next);
552 /* Return true if VAR has a single use. */
553 static inline bool
554 has_single_use (tree var)
556 ssa_use_operand_t *ptr;
557 ptr = &(SSA_NAME_IMM_USE_NODE (var));
558 /* A single use means there is one item in the list. */
559 return (ptr != ptr->next && ptr == ptr->next->next);
563 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
564 to the use pointer and stmt of occurrence. */
565 static inline bool
566 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
568 ssa_use_operand_t *ptr;
570 ptr = &(SSA_NAME_IMM_USE_NODE (var));
571 if (ptr != ptr->next && ptr == ptr->next->next)
573 *use_p = ptr->next;
574 *stmt = ptr->next->stmt;
575 return true;
577 *use_p = NULL_USE_OPERAND_P;
578 *stmt = NULL_TREE;
579 return false;
582 /* Return the number of immediate uses of VAR. */
583 static inline unsigned int
584 num_imm_uses (tree var)
586 ssa_use_operand_t *ptr, *start;
587 unsigned int num;
589 start = &(SSA_NAME_IMM_USE_NODE (var));
590 num = 0;
591 for (ptr = start->next; ptr != start; ptr = ptr->next)
592 num++;
594 return num;
597 /* Return the tree pointer to by USE. */
598 static inline tree
599 get_use_from_ptr (use_operand_p use)
601 return *(use->use);
604 /* Return the tree pointer to by DEF. */
605 static inline tree
606 get_def_from_ptr (def_operand_p def)
608 return *def;
611 /* Return a def_operand_p pointer for the result of PHI. */
612 static inline def_operand_p
613 get_phi_result_ptr (tree phi)
615 return &(PHI_RESULT_TREE (phi));
618 /* Return a use_operand_p pointer for argument I of phinode PHI. */
619 static inline use_operand_p
620 get_phi_arg_def_ptr (tree phi, int i)
622 return &(PHI_ARG_IMM_USE_NODE (phi,i));
626 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
627 no addresses. */
628 static inline bitmap
629 addresses_taken (tree stmt)
631 stmt_ann_t ann = stmt_ann (stmt);
632 return ann ? ann->addresses_taken : NULL;
635 /* Return the PHI nodes for basic block BB, or NULL if there are no
636 PHI nodes. */
637 static inline tree
638 phi_nodes (basic_block bb)
640 return bb->phi_nodes;
643 /* Set list of phi nodes of a basic block BB to L. */
645 static inline void
646 set_phi_nodes (basic_block bb, tree l)
648 tree phi;
650 bb->phi_nodes = l;
651 for (phi = l; phi; phi = PHI_CHAIN (phi))
652 set_bb_for_stmt (phi, bb);
655 /* Return the phi argument which contains the specified use. */
657 static inline int
658 phi_arg_index_from_use (use_operand_p use)
660 struct phi_arg_d *element, *root;
661 int index;
662 tree phi;
664 /* Since the use is the first thing in a PHI argument element, we can
665 calculate its index based on casting it to an argument, and performing
666 pointer arithmetic. */
668 phi = USE_STMT (use);
669 gcc_assert (TREE_CODE (phi) == PHI_NODE);
671 element = (struct phi_arg_d *)use;
672 root = &(PHI_ARG_ELT (phi, 0));
673 index = element - root;
675 #ifdef ENABLE_CHECKING
676 /* Make sure the calculation doesn't have any leftover bytes. If it does,
677 then imm_use is likely not the first element in phi_arg_d. */
678 gcc_assert (
679 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
680 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
681 #endif
683 return index;
686 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
688 static inline void
689 set_is_used (tree var)
691 var_ann_t ann = get_var_ann (var);
692 ann->used = 1;
695 /* Return true if T is an executable statement. */
696 static inline bool
697 is_exec_stmt (tree t)
699 return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
703 /* Return true if this stmt can be the target of a control transfer stmt such
704 as a goto. */
705 static inline bool
706 is_label_stmt (tree t)
708 if (t)
709 switch (TREE_CODE (t))
711 case LABEL_DECL:
712 case LABEL_EXPR:
713 case CASE_LABEL_EXPR:
714 return true;
715 default:
716 return false;
718 return false;
721 /* PHI nodes should contain only ssa_names and invariants. A test
722 for ssa_name is definitely simpler; don't let invalid contents
723 slip in in the meantime. */
725 static inline bool
726 phi_ssa_name_p (tree t)
728 if (TREE_CODE (t) == SSA_NAME)
729 return true;
730 #ifdef ENABLE_CHECKING
731 gcc_assert (is_gimple_min_invariant (t));
732 #endif
733 return false;
736 /* ----------------------------------------------------------------------- */
738 /* Return a block_stmt_iterator that points to beginning of basic
739 block BB. */
740 static inline block_stmt_iterator
741 bsi_start (basic_block bb)
743 block_stmt_iterator bsi;
744 if (bb->stmt_list)
745 bsi.tsi = tsi_start (bb->stmt_list);
746 else
748 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
749 bsi.tsi.ptr = NULL;
750 bsi.tsi.container = NULL;
752 bsi.bb = bb;
753 return bsi;
756 /* Return a block statement iterator that points to the first non-label
757 statement in block BB. */
759 static inline block_stmt_iterator
760 bsi_after_labels (basic_block bb)
762 block_stmt_iterator bsi = bsi_start (bb);
764 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
765 bsi_next (&bsi);
767 return bsi;
770 /* Return a block statement iterator that points to the end of basic
771 block BB. */
772 static inline block_stmt_iterator
773 bsi_last (basic_block bb)
775 block_stmt_iterator bsi;
776 if (bb->stmt_list)
777 bsi.tsi = tsi_last (bb->stmt_list);
778 else
780 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
781 bsi.tsi.ptr = NULL;
782 bsi.tsi.container = NULL;
784 bsi.bb = bb;
785 return bsi;
788 /* Return true if block statement iterator I has reached the end of
789 the basic block. */
790 static inline bool
791 bsi_end_p (block_stmt_iterator i)
793 return tsi_end_p (i.tsi);
796 /* Modify block statement iterator I so that it is at the next
797 statement in the basic block. */
798 static inline void
799 bsi_next (block_stmt_iterator *i)
801 tsi_next (&i->tsi);
804 /* Modify block statement iterator I so that it is at the previous
805 statement in the basic block. */
806 static inline void
807 bsi_prev (block_stmt_iterator *i)
809 tsi_prev (&i->tsi);
812 /* Return the statement that block statement iterator I is currently
813 at. */
814 static inline tree
815 bsi_stmt (block_stmt_iterator i)
817 return tsi_stmt (i.tsi);
820 /* Return a pointer to the statement that block statement iterator I
821 is currently at. */
822 static inline tree *
823 bsi_stmt_ptr (block_stmt_iterator i)
825 return tsi_stmt_ptr (i.tsi);
828 /* Returns the loop of the statement STMT. */
830 static inline struct loop *
831 loop_containing_stmt (tree stmt)
833 basic_block bb = bb_for_stmt (stmt);
834 if (!bb)
835 return NULL;
837 return bb->loop_father;
841 /* Return the memory partition tag associated with symbol SYM. */
843 static inline tree
844 memory_partition (tree sym)
846 tree tag;
848 /* MPTs belong to their own partition. */
849 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
850 return sym;
852 gcc_assert (!is_gimple_reg (sym));
853 tag = get_var_ann (sym)->mpt;
855 #if defined ENABLE_CHECKING
856 if (tag)
857 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
858 #endif
860 return tag;
864 /* Set MPT to be the memory partition associated with symbol SYM. */
866 static inline void
867 set_memory_partition (tree sym, tree mpt)
869 #if defined ENABLE_CHECKING
870 if (mpt)
871 gcc_assert (TREE_CODE (mpt) == MEMORY_PARTITION_TAG
872 && !is_gimple_reg (sym));
873 #endif
874 var_ann (sym)->mpt = mpt;
875 if (mpt)
877 bitmap_set_bit (MPT_SYMBOLS (mpt), DECL_UID (sym));
879 /* MPT inherits the call-clobbering attributes from SYM. */
880 if (is_call_clobbered (sym))
882 MTAG_GLOBAL (mpt) = 1;
883 mark_call_clobbered (mpt, ESCAPE_IS_GLOBAL);
888 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
889 name for a memory partition. */
891 static inline bool
892 factoring_name_p (tree name)
894 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
897 /* Return true if VAR is a clobbered by function calls. */
898 static inline bool
899 is_call_clobbered (tree var)
901 if (!MTAG_P (var))
902 return var_ann (var)->call_clobbered;
903 else
904 return bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var));
907 /* Mark variable VAR as being clobbered by function calls. */
908 static inline void
909 mark_call_clobbered (tree var, unsigned int escape_type)
911 var_ann (var)->escape_mask |= escape_type;
912 if (!MTAG_P (var))
913 var_ann (var)->call_clobbered = true;
914 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
917 /* Clear the call-clobbered attribute from variable VAR. */
918 static inline void
919 clear_call_clobbered (tree var)
921 var_ann_t ann = var_ann (var);
922 ann->escape_mask = 0;
923 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
924 MTAG_GLOBAL (var) = 0;
925 if (!MTAG_P (var))
926 var_ann (var)->call_clobbered = false;
927 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
930 /* Return the common annotation for T. Return NULL if the annotation
931 doesn't already exist. */
932 static inline tree_ann_common_t
933 tree_common_ann (tree t)
935 /* Watch out static variables with unshared annotations. */
936 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
937 return &var_ann (t)->common;
938 return &t->base.ann->common;
941 /* Return a common annotation for T. Create the constant annotation if it
942 doesn't exist. */
943 static inline tree_ann_common_t
944 get_tree_common_ann (tree t)
946 tree_ann_common_t ann = tree_common_ann (t);
947 return (ann) ? ann : create_tree_common_ann (t);
950 /* ----------------------------------------------------------------------- */
952 /* The following set of routines are used to iterator over various type of
953 SSA operands. */
955 /* Return true if PTR is finished iterating. */
956 static inline bool
957 op_iter_done (ssa_op_iter *ptr)
959 return ptr->done;
962 /* Get the next iterator use value for PTR. */
963 static inline use_operand_p
964 op_iter_next_use (ssa_op_iter *ptr)
966 use_operand_p use_p;
967 #ifdef ENABLE_CHECKING
968 gcc_assert (ptr->iter_type == ssa_op_iter_use);
969 #endif
970 if (ptr->uses)
972 use_p = USE_OP_PTR (ptr->uses);
973 ptr->uses = ptr->uses->next;
974 return use_p;
976 if (ptr->vuses)
978 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
979 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
981 ptr->vuse_index = 0;
982 ptr->vuses = ptr->vuses->next;
984 return use_p;
986 if (ptr->mayuses)
988 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
989 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
991 ptr->mayuse_index = 0;
992 ptr->mayuses = ptr->mayuses->next;
994 return use_p;
996 if (ptr->phi_i < ptr->num_phi)
998 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
1000 ptr->done = true;
1001 return NULL_USE_OPERAND_P;
1004 /* Get the next iterator def value for PTR. */
1005 static inline def_operand_p
1006 op_iter_next_def (ssa_op_iter *ptr)
1008 def_operand_p def_p;
1009 #ifdef ENABLE_CHECKING
1010 gcc_assert (ptr->iter_type == ssa_op_iter_def);
1011 #endif
1012 if (ptr->defs)
1014 def_p = DEF_OP_PTR (ptr->defs);
1015 ptr->defs = ptr->defs->next;
1016 return def_p;
1018 if (ptr->vdefs)
1020 def_p = VDEF_RESULT_PTR (ptr->vdefs);
1021 ptr->vdefs = ptr->vdefs->next;
1022 return def_p;
1024 ptr->done = true;
1025 return NULL_DEF_OPERAND_P;
1028 /* Get the next iterator tree value for PTR. */
1029 static inline tree
1030 op_iter_next_tree (ssa_op_iter *ptr)
1032 tree val;
1033 #ifdef ENABLE_CHECKING
1034 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
1035 #endif
1036 if (ptr->uses)
1038 val = USE_OP (ptr->uses);
1039 ptr->uses = ptr->uses->next;
1040 return val;
1042 if (ptr->vuses)
1044 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1045 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1047 ptr->vuse_index = 0;
1048 ptr->vuses = ptr->vuses->next;
1050 return val;
1052 if (ptr->mayuses)
1054 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1055 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1057 ptr->mayuse_index = 0;
1058 ptr->mayuses = ptr->mayuses->next;
1060 return val;
1062 if (ptr->defs)
1064 val = DEF_OP (ptr->defs);
1065 ptr->defs = ptr->defs->next;
1066 return val;
1068 if (ptr->vdefs)
1070 val = VDEF_RESULT (ptr->vdefs);
1071 ptr->vdefs = ptr->vdefs->next;
1072 return val;
1075 ptr->done = true;
1076 return NULL_TREE;
1081 /* This functions clears the iterator PTR, and marks it done. This is normally
1082 used to prevent warnings in the compile about might be uninitialized
1083 components. */
1085 static inline void
1086 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1088 ptr->defs = NULL;
1089 ptr->uses = NULL;
1090 ptr->vuses = NULL;
1091 ptr->vdefs = NULL;
1092 ptr->mayuses = NULL;
1093 ptr->iter_type = ssa_op_iter_none;
1094 ptr->phi_i = 0;
1095 ptr->num_phi = 0;
1096 ptr->phi_stmt = NULL_TREE;
1097 ptr->done = true;
1098 ptr->vuse_index = 0;
1099 ptr->mayuse_index = 0;
1102 /* Initialize the iterator PTR to the virtual defs in STMT. */
1103 static inline void
1104 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1106 #ifdef ENABLE_CHECKING
1107 gcc_assert (stmt_ann (stmt));
1108 #endif
1110 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1111 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1112 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1113 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1114 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1115 ptr->done = false;
1117 ptr->phi_i = 0;
1118 ptr->num_phi = 0;
1119 ptr->phi_stmt = NULL_TREE;
1120 ptr->vuse_index = 0;
1121 ptr->mayuse_index = 0;
1124 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1125 the first use. */
1126 static inline use_operand_p
1127 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1129 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1130 op_iter_init (ptr, stmt, flags);
1131 ptr->iter_type = ssa_op_iter_use;
1132 return op_iter_next_use (ptr);
1135 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1136 the first def. */
1137 static inline def_operand_p
1138 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1140 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1141 op_iter_init (ptr, stmt, flags);
1142 ptr->iter_type = ssa_op_iter_def;
1143 return op_iter_next_def (ptr);
1146 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1147 the first operand as a tree. */
1148 static inline tree
1149 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1151 op_iter_init (ptr, stmt, flags);
1152 ptr->iter_type = ssa_op_iter_tree;
1153 return op_iter_next_tree (ptr);
1156 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1157 KILL and DEF. */
1158 static inline void
1159 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1160 ssa_op_iter *ptr)
1162 #ifdef ENABLE_CHECKING
1163 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1164 #endif
1165 if (ptr->mayuses)
1167 *def = VDEF_RESULT_PTR (ptr->mayuses);
1168 *use = VDEF_VECT (ptr->mayuses);
1169 ptr->mayuses = ptr->mayuses->next;
1170 return;
1173 *def = NULL_DEF_OPERAND_P;
1174 *use = NULL;
1175 ptr->done = true;
1176 return;
1180 static inline void
1181 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1182 ssa_op_iter *ptr)
1184 vuse_vec_p vp;
1185 op_iter_next_vdef (&vp, def, ptr);
1186 if (vp != NULL)
1188 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1189 *use = VUSE_ELEMENT_PTR (*vp, 0);
1191 else
1192 *use = NULL_USE_OPERAND_P;
1195 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1196 in USE and DEF. */
1197 static inline void
1198 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1199 def_operand_p *def)
1201 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1203 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1204 ptr->iter_type = ssa_op_iter_vdef;
1205 op_iter_next_vdef (use, def, ptr);
1209 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1210 return NULL. */
1211 static inline tree
1212 single_ssa_tree_operand (tree stmt, int flags)
1214 tree var;
1215 ssa_op_iter iter;
1217 var = op_iter_init_tree (&iter, stmt, flags);
1218 if (op_iter_done (&iter))
1219 return NULL_TREE;
1220 op_iter_next_tree (&iter);
1221 if (op_iter_done (&iter))
1222 return var;
1223 return NULL_TREE;
1227 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1228 return NULL. */
1229 static inline use_operand_p
1230 single_ssa_use_operand (tree stmt, int flags)
1232 use_operand_p var;
1233 ssa_op_iter iter;
1235 var = op_iter_init_use (&iter, stmt, flags);
1236 if (op_iter_done (&iter))
1237 return NULL_USE_OPERAND_P;
1238 op_iter_next_use (&iter);
1239 if (op_iter_done (&iter))
1240 return var;
1241 return NULL_USE_OPERAND_P;
1246 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1247 return NULL. */
1248 static inline def_operand_p
1249 single_ssa_def_operand (tree stmt, int flags)
1251 def_operand_p var;
1252 ssa_op_iter iter;
1254 var = op_iter_init_def (&iter, stmt, flags);
1255 if (op_iter_done (&iter))
1256 return NULL_DEF_OPERAND_P;
1257 op_iter_next_def (&iter);
1258 if (op_iter_done (&iter))
1259 return var;
1260 return NULL_DEF_OPERAND_P;
1264 /* Return true if there are zero operands in STMT matching the type
1265 given in FLAGS. */
1266 static inline bool
1267 zero_ssa_operands (tree stmt, int flags)
1269 ssa_op_iter iter;
1271 op_iter_init_tree (&iter, stmt, flags);
1272 return op_iter_done (&iter);
1276 /* Return the number of operands matching FLAGS in STMT. */
1277 static inline int
1278 num_ssa_operands (tree stmt, int flags)
1280 ssa_op_iter iter;
1281 tree t;
1282 int num = 0;
1284 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1285 num++;
1286 return num;
1290 /* Delink all immediate_use information for STMT. */
1291 static inline void
1292 delink_stmt_imm_use (tree stmt)
1294 ssa_op_iter iter;
1295 use_operand_p use_p;
1297 if (ssa_operands_active ())
1298 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1299 delink_imm_use (use_p);
1303 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1304 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1305 static inline bool
1306 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1308 ssa_op_iter iter1, iter2;
1309 tree op1 = NULL_TREE;
1310 tree op2 = NULL_TREE;
1311 bool look1, look2;
1313 if (stmt1 == stmt2)
1314 return true;
1316 look1 = stmt1 && stmt_ann (stmt1);
1317 look2 = stmt2 && stmt_ann (stmt2);
1319 if (look1)
1321 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1322 if (!look2)
1323 return op_iter_done (&iter1);
1325 else
1326 clear_and_done_ssa_iter (&iter1);
1328 if (look2)
1330 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1331 if (!look1)
1332 return op_iter_done (&iter2);
1334 else
1335 clear_and_done_ssa_iter (&iter2);
1337 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1339 if (op1 != op2)
1340 return false;
1341 op1 = op_iter_next_tree (&iter1);
1342 op2 = op_iter_next_tree (&iter2);
1345 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1349 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1350 Otherwise return NULL_DEF_OPERAND_P. */
1351 static inline tree
1352 single_phi_def (tree stmt, int flags)
1354 tree def = PHI_RESULT (stmt);
1355 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1356 return def;
1357 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1358 return def;
1359 return NULL_TREE;
1362 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1363 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1364 static inline use_operand_p
1365 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1367 tree phi_def = PHI_RESULT (phi);
1368 int comp;
1370 clear_and_done_ssa_iter (ptr);
1371 ptr->done = false;
1373 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1375 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1377 /* If the PHI node doesn't the operand type we care about, we're done. */
1378 if ((flags & comp) == 0)
1380 ptr->done = true;
1381 return NULL_USE_OPERAND_P;
1384 ptr->phi_stmt = phi;
1385 ptr->num_phi = PHI_NUM_ARGS (phi);
1386 ptr->iter_type = ssa_op_iter_use;
1387 return op_iter_next_use (ptr);
1391 /* Start an iterator for a PHI definition. */
1393 static inline def_operand_p
1394 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1396 tree phi_def = PHI_RESULT (phi);
1397 int comp;
1399 clear_and_done_ssa_iter (ptr);
1400 ptr->done = false;
1402 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1404 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1406 /* If the PHI node doesn't the operand type we care about, we're done. */
1407 if ((flags & comp) == 0)
1409 ptr->done = true;
1410 return NULL_USE_OPERAND_P;
1413 ptr->iter_type = ssa_op_iter_def;
1414 /* The first call to op_iter_next_def will terminate the iterator since
1415 all the fields are NULL. Simply return the result here as the first and
1416 therefore only result. */
1417 return PHI_RESULT_PTR (phi);
1420 /* Return true is IMM has reached the end of the immediate use stmt list. */
1422 static inline bool
1423 end_imm_use_stmt_p (imm_use_iterator *imm)
1425 return (imm->imm_use == imm->end_p);
1428 /* Finished the traverse of an immediate use stmt list IMM by removing the
1429 placeholder node from the list. */
1431 static inline void
1432 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1434 delink_imm_use (&(imm->iter_node));
1437 /* Immediate use traversal of uses within a stmt require that all the
1438 uses on a stmt be sequentially listed. This routine is used to build up
1439 this sequential list by adding USE_P to the end of the current list
1440 currently delimited by HEAD and LAST_P. The new LAST_P value is
1441 returned. */
1443 static inline use_operand_p
1444 move_use_after_head (use_operand_p use_p, use_operand_p head,
1445 use_operand_p last_p)
1447 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1448 /* Skip head when we find it. */
1449 if (use_p != head)
1451 /* If use_p is already linked in after last_p, continue. */
1452 if (last_p->next == use_p)
1453 last_p = use_p;
1454 else
1456 /* Delink from current location, and link in at last_p. */
1457 delink_imm_use (use_p);
1458 link_imm_use_to_list (use_p, last_p);
1459 last_p = use_p;
1462 return last_p;
1466 /* This routine will relink all uses with the same stmt as HEAD into the list
1467 immediately following HEAD for iterator IMM. */
1469 static inline void
1470 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1472 use_operand_p use_p;
1473 use_operand_p last_p = head;
1474 tree head_stmt = USE_STMT (head);
1475 tree use = USE_FROM_PTR (head);
1476 ssa_op_iter op_iter;
1477 int flag;
1479 /* Only look at virtual or real uses, depending on the type of HEAD. */
1480 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1482 if (TREE_CODE (head_stmt) == PHI_NODE)
1484 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1485 if (USE_FROM_PTR (use_p) == use)
1486 last_p = move_use_after_head (use_p, head, last_p);
1488 else
1490 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1491 if (USE_FROM_PTR (use_p) == use)
1492 last_p = move_use_after_head (use_p, head, last_p);
1494 /* LInk iter node in after last_p. */
1495 if (imm->iter_node.prev != NULL)
1496 delink_imm_use (&imm->iter_node);
1497 link_imm_use_to_list (&(imm->iter_node), last_p);
1500 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1501 static inline tree
1502 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1504 gcc_assert (TREE_CODE (var) == SSA_NAME);
1506 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1507 imm->imm_use = imm->end_p->next;
1508 imm->next_imm_name = NULL_USE_OPERAND_P;
1510 /* iter_node is used as a marker within the immediate use list to indicate
1511 where the end of the current stmt's uses are. Initialize it to NULL
1512 stmt and use, which indicates a marker node. */
1513 imm->iter_node.prev = NULL_USE_OPERAND_P;
1514 imm->iter_node.next = NULL_USE_OPERAND_P;
1515 imm->iter_node.stmt = NULL_TREE;
1516 imm->iter_node.use = NULL_USE_OPERAND_P;
1518 if (end_imm_use_stmt_p (imm))
1519 return NULL_TREE;
1521 link_use_stmts_after (imm->imm_use, imm);
1523 return USE_STMT (imm->imm_use);
1526 /* Bump IMM to the next stmt which has a use of var. */
1528 static inline tree
1529 next_imm_use_stmt (imm_use_iterator *imm)
1531 imm->imm_use = imm->iter_node.next;
1532 if (end_imm_use_stmt_p (imm))
1534 if (imm->iter_node.prev != NULL)
1535 delink_imm_use (&imm->iter_node);
1536 return NULL_TREE;
1539 link_use_stmts_after (imm->imm_use, imm);
1540 return USE_STMT (imm->imm_use);
1544 /* This routine will return the first use on the stmt IMM currently refers
1545 to. */
1547 static inline use_operand_p
1548 first_imm_use_on_stmt (imm_use_iterator *imm)
1550 imm->next_imm_name = imm->imm_use->next;
1551 return imm->imm_use;
1554 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1556 static inline bool
1557 end_imm_use_on_stmt_p (imm_use_iterator *imm)
1559 return (imm->imm_use == &(imm->iter_node));
1562 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1564 static inline use_operand_p
1565 next_imm_use_on_stmt (imm_use_iterator *imm)
1567 imm->imm_use = imm->next_imm_name;
1568 if (end_imm_use_on_stmt_p (imm))
1569 return NULL_USE_OPERAND_P;
1570 else
1572 imm->next_imm_name = imm->imm_use->next;
1573 return imm->imm_use;
1577 /* Return true if VAR cannot be modified by the program. */
1579 static inline bool
1580 unmodifiable_var_p (tree var)
1582 if (TREE_CODE (var) == SSA_NAME)
1583 var = SSA_NAME_VAR (var);
1585 if (MTAG_P (var))
1586 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1588 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1591 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1593 static inline bool
1594 array_ref_contains_indirect_ref (tree ref)
1596 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1598 do {
1599 ref = TREE_OPERAND (ref, 0);
1600 } while (handled_component_p (ref));
1602 return TREE_CODE (ref) == INDIRECT_REF;
1605 /* Return true if REF, a handled component reference, has an ARRAY_REF
1606 somewhere in it. */
1608 static inline bool
1609 ref_contains_array_ref (tree ref)
1611 gcc_assert (handled_component_p (ref));
1613 do {
1614 if (TREE_CODE (ref) == ARRAY_REF)
1615 return true;
1616 ref = TREE_OPERAND (ref, 0);
1617 } while (handled_component_p (ref));
1619 return false;
1622 /* Given a variable VAR, lookup and return a pointer to the list of
1623 subvariables for it. */
1625 static inline subvar_t *
1626 lookup_subvars_for_var (tree var)
1628 var_ann_t ann = var_ann (var);
1629 gcc_assert (ann);
1630 return &ann->subvars;
1633 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1634 NULL, if there are no subvariables. */
1636 static inline subvar_t
1637 get_subvars_for_var (tree var)
1639 subvar_t subvars;
1641 gcc_assert (SSA_VAR_P (var));
1643 if (TREE_CODE (var) == SSA_NAME)
1644 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1645 else
1646 subvars = *(lookup_subvars_for_var (var));
1647 return subvars;
1650 /* Return the subvariable of VAR at offset OFFSET. */
1652 static inline tree
1653 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1655 subvar_t sv;
1657 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1658 if (SFT_OFFSET (sv->var) == offset)
1659 return sv->var;
1661 return NULL_TREE;
1664 /* Return true if V is a tree that we can have subvars for.
1665 Normally, this is any aggregate type. Also complex
1666 types which are not gimple registers can have subvars. */
1668 static inline bool
1669 var_can_have_subvars (tree v)
1671 /* Volatile variables should never have subvars. */
1672 if (TREE_THIS_VOLATILE (v))
1673 return false;
1675 /* Non decls or memory tags can never have subvars. */
1676 if (!DECL_P (v) || MTAG_P (v))
1677 return false;
1679 /* Aggregates can have subvars. */
1680 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1681 return true;
1683 /* Complex types variables which are not also a gimple register can
1684 have subvars. */
1685 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1686 && !DECL_GIMPLE_REG_P (v))
1687 return true;
1689 return false;
1693 /* Return true if OFFSET and SIZE define a range that overlaps with some
1694 portion of the range of SV, a subvar. If there was an exact overlap,
1695 *EXACT will be set to true upon return. */
1697 static inline bool
1698 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1699 tree sv, bool *exact)
1701 /* There are three possible cases of overlap.
1702 1. We can have an exact overlap, like so:
1703 |offset, offset + size |
1704 |sv->offset, sv->offset + sv->size |
1706 2. We can have offset starting after sv->offset, like so:
1708 |offset, offset + size |
1709 |sv->offset, sv->offset + sv->size |
1711 3. We can have offset starting before sv->offset, like so:
1713 |offset, offset + size |
1714 |sv->offset, sv->offset + sv->size|
1717 if (exact)
1718 *exact = false;
1719 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1721 if (exact)
1722 *exact = true;
1723 return true;
1725 else if (offset >= SFT_OFFSET (sv)
1726 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1728 return true;
1730 else if (offset < SFT_OFFSET (sv)
1731 && (size > SFT_OFFSET (sv) - offset))
1733 return true;
1735 return false;
1739 /* Return the memory tag associated with symbol SYM. */
1741 static inline tree
1742 symbol_mem_tag (tree sym)
1744 tree tag = get_var_ann (sym)->symbol_mem_tag;
1746 #if defined ENABLE_CHECKING
1747 if (tag)
1748 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1749 #endif
1751 return tag;
1755 /* Set the memory tag associated with symbol SYM. */
1757 static inline void
1758 set_symbol_mem_tag (tree sym, tree tag)
1760 #if defined ENABLE_CHECKING
1761 if (tag)
1762 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1763 #endif
1765 get_var_ann (sym)->symbol_mem_tag = tag;
1768 /* Get the value handle of EXPR. This is the only correct way to get
1769 the value handle for a "thing". If EXPR does not have a value
1770 handle associated, it returns NULL_TREE.
1771 NB: If EXPR is min_invariant, this function is *required* to return
1772 EXPR. */
1774 static inline tree
1775 get_value_handle (tree expr)
1777 if (TREE_CODE (expr) == SSA_NAME)
1778 return SSA_NAME_VALUE (expr);
1779 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1780 || TREE_CODE (expr) == CONSTRUCTOR)
1782 tree_ann_common_t ann = tree_common_ann (expr);
1783 return ((ann) ? ann->value_handle : NULL_TREE);
1785 else if (is_gimple_min_invariant (expr))
1786 return expr;
1787 else if (EXPR_P (expr))
1789 tree_ann_common_t ann = tree_common_ann (expr);
1790 return ((ann) ? ann->value_handle : NULL_TREE);
1792 else
1793 gcc_unreachable ();
1796 /* Accessor to tree-ssa-operands.c caches. */
1797 static inline struct ssa_operands *
1798 gimple_ssa_operands (struct function *fun)
1800 return &fun->gimple_df->ssa_operands;
1802 #endif /* _TREE_FLOW_INLINE_H */