2007-03-01 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-data-ref.h
blobba4717447677b9691c75373ee9ad0bf8097682a4
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
25 #include "lambda.h"
28 The first location accessed by data-ref in the loop is the address of data-ref's
29 base (BASE_ADDRESS) plus the initial offset from the base. We divide the initial offset
30 into two parts: loop invariant offset (OFFSET) and constant offset (INIT).
31 STEP is the stride of data-ref in the loop in bytes.
33 Example 1 Example 2
34 data-ref a[j].b[i][j] a + x + 16B (a is int*)
36 First location info:
37 base_address &a a
38 offset j_0*D_j + i_0*D_i x
39 init C_b + C_a 16
40 step D_j 4
41 access_fn NULL {16, +, 1}
43 Base object info:
44 base_object a NULL
45 access_fn <access_fns of indexes of b> NULL
48 struct first_location_in_loop
50 tree base_address;
51 tree offset;
52 tree init;
53 tree step;
54 /* Access function related to first location in the loop. */
55 VEC(tree,heap) *access_fns;
58 struct base_object_info
60 /* The object. */
61 tree base_object;
63 /* A list of chrecs. Access functions related to BASE_OBJECT. */
64 VEC(tree,heap) *access_fns;
67 enum data_ref_type {
68 ARRAY_REF_TYPE,
69 POINTER_REF_TYPE
72 struct data_reference
74 /* A pointer to the statement that contains this DR. */
75 tree stmt;
77 /* A pointer to the ARRAY_REF node. */
78 tree ref;
80 /* Auxiliary info specific to a pass. */
81 int aux;
83 /* True when the data reference is in RHS of a stmt. */
84 bool is_read;
86 /* First location accessed by the data-ref in the loop. */
87 struct first_location_in_loop first_location;
89 /* Base object related info. */
90 struct base_object_info object_info;
92 /* Aliasing information. This field represents the symbol that
93 should be aliased by a pointer holding the address of this data
94 reference. If the original data reference was a pointer
95 dereference, then this field contains the memory tag that should
96 be used by the new vector-pointer. */
97 tree memtag;
98 struct ptr_info_def *ptr_info;
99 subvar_t subvars;
101 /* Alignment information.
102 MISALIGNMENT is the offset of the data-reference from its base in bytes.
103 ALIGNED_TO is the maximum data-ref's alignment.
105 Example 1,
106 for i
107 for (j = 3; j < N; j++)
108 a[j].b[i][j] = 0;
110 For a[j].b[i][j], the offset from base (calculated in get_inner_reference()
111 will be 'i * C_i + j * C_j + C'.
112 We try to substitute the variables of the offset expression
113 with initial_condition of the corresponding access_fn in the loop.
114 'i' cannot be substituted, since its access_fn in the inner loop is i. 'j'
115 will be substituted with 3.
117 Example 2
118 for (j = 3; j < N; j++)
119 a[j].b[5][j] = 0;
121 Here the offset expression (j * C_j + C) will not contain variables after
122 substitution of j=3 (3*C_j + C).
124 Misalignment can be calculated only if all the variables can be
125 substituted with constants, otherwise, we record maximum possible alignment
126 in ALIGNED_TO. In Example 1, since 'i' cannot be substituted,
127 MISALIGNMENT will be NULL_TREE, and the biggest divider of C_i (a power of
128 2) will be recorded in ALIGNED_TO.
130 In Example 2, MISALIGNMENT will be the value of 3*C_j + C in bytes, and
131 ALIGNED_TO will be NULL_TREE.
133 tree misalignment;
134 tree aligned_to;
136 /* The type of the data-ref. */
137 enum data_ref_type type;
140 typedef struct data_reference *data_reference_p;
141 DEF_VEC_P(data_reference_p);
142 DEF_VEC_ALLOC_P (data_reference_p, heap);
144 #define DR_STMT(DR) (DR)->stmt
145 #define DR_REF(DR) (DR)->ref
146 #define DR_BASE_OBJECT(DR) (DR)->object_info.base_object
147 #define DR_TYPE(DR) (DR)->type
148 #define DR_ACCESS_FNS(DR)\
149 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
150 (DR)->object_info.access_fns : (DR)->first_location.access_fns)
151 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
152 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
153 #define DR_IS_READ(DR) (DR)->is_read
154 #define DR_BASE_ADDRESS(DR) (DR)->first_location.base_address
155 #define DR_OFFSET(DR) (DR)->first_location.offset
156 #define DR_INIT(DR) (DR)->first_location.init
157 #define DR_STEP(DR) (DR)->first_location.step
158 #define DR_MEMTAG(DR) (DR)->memtag
159 #define DR_ALIGNED_TO(DR) (DR)->aligned_to
160 #define DR_OFFSET_MISALIGNMENT(DR) (DR)->misalignment
161 #define DR_PTR_INFO(DR) (DR)->ptr_info
162 #define DR_SUBVARS(DR) (DR)->subvars
164 #define DR_ACCESS_FNS_ADDR(DR) \
165 (DR_TYPE(DR) == ARRAY_REF_TYPE ? \
166 &((DR)->object_info.access_fns) : &((DR)->first_location.access_fns))
167 #define DR_SET_ACCESS_FNS(DR, ACC_FNS) \
169 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
170 (DR)->object_info.access_fns = ACC_FNS; \
171 else \
172 (DR)->first_location.access_fns = ACC_FNS; \
174 #define DR_FREE_ACCESS_FNS(DR) \
176 if (DR_TYPE(DR) == ARRAY_REF_TYPE) \
177 VEC_free (tree, heap, (DR)->object_info.access_fns); \
178 else \
179 VEC_free (tree, heap, (DR)->first_location.access_fns); \
182 enum data_dependence_direction {
183 dir_positive,
184 dir_negative,
185 dir_equal,
186 dir_positive_or_negative,
187 dir_positive_or_equal,
188 dir_negative_or_equal,
189 dir_star,
190 dir_independent
193 /* The description of the grid of iterations that overlap. At most
194 two loops are considered at the same time just now, hence at most
195 two functions are needed. For each of the functions, we store
196 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
197 where x, y, ... are variables. */
199 #define MAX_DIM 2
201 /* Special values of N. */
202 #define NO_DEPENDENCE 0
203 #define NOT_KNOWN (MAX_DIM + 1)
204 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
205 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
206 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
208 typedef VEC (tree, heap) *affine_fn;
210 typedef struct
212 unsigned n;
213 affine_fn fns[MAX_DIM];
214 } conflict_function;
216 /* What is a subscript? Given two array accesses a subscript is the
217 tuple composed of the access functions for a given dimension.
218 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
219 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
220 are stored in the data_dependence_relation structure under the form
221 of an array of subscripts. */
223 struct subscript
225 /* A description of the iterations for which the elements are
226 accessed twice. */
227 conflict_function *conflicting_iterations_in_a;
228 conflict_function *conflicting_iterations_in_b;
230 /* This field stores the information about the iteration domain
231 validity of the dependence relation. */
232 tree last_conflict;
234 /* Distance from the iteration that access a conflicting element in
235 A to the iteration that access this same conflicting element in
236 B. The distance is a tree scalar expression, i.e. a constant or a
237 symbolic expression, but certainly not a chrec function. */
238 tree distance;
241 typedef struct subscript *subscript_p;
242 DEF_VEC_P(subscript_p);
243 DEF_VEC_ALLOC_P (subscript_p, heap);
245 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
246 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
247 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
248 #define SUB_DISTANCE(SUB) SUB->distance
250 /* A data_dependence_relation represents a relation between two
251 data_references A and B. */
253 struct data_dependence_relation
256 struct data_reference *a;
257 struct data_reference *b;
259 /* When the dependence relation is affine, it can be represented by
260 a distance vector. */
261 bool affine_p;
263 /* A "yes/no/maybe" field for the dependence relation:
265 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
266 relation between A and B, and the description of this relation
267 is given in the SUBSCRIPTS array,
269 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
270 SUBSCRIPTS is empty,
272 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
273 but the analyzer cannot be more specific. */
274 tree are_dependent;
276 /* For each subscript in the dependence test, there is an element in
277 this array. This is the attribute that labels the edge A->B of
278 the data_dependence_relation. */
279 VEC (subscript_p, heap) *subscripts;
281 /* The analyzed loop nest. */
282 VEC (loop_p, heap) *loop_nest;
284 /* The classic direction vector. */
285 VEC (lambda_vector, heap) *dir_vects;
287 /* The classic distance vector. */
288 VEC (lambda_vector, heap) *dist_vects;
291 typedef struct data_dependence_relation *ddr_p;
292 DEF_VEC_P(ddr_p);
293 DEF_VEC_ALLOC_P(ddr_p,heap);
295 #define DDR_A(DDR) DDR->a
296 #define DDR_B(DDR) DDR->b
297 #define DDR_AFFINE_P(DDR) DDR->affine_p
298 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
299 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
300 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
301 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
303 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
304 /* The size of the direction/distance vectors: the number of loops in
305 the loop nest. */
306 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
308 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
309 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
310 #define DDR_NUM_DIST_VECTS(DDR) \
311 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
312 #define DDR_NUM_DIR_VECTS(DDR) \
313 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
314 #define DDR_DIR_VECT(DDR, I) \
315 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
316 #define DDR_DIST_VECT(DDR, I) \
317 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
321 /* Describes a location of a memory reference. */
323 typedef struct data_ref_loc_d
325 /* Position of the memory reference. */
326 tree *pos;
328 /* True if the memory reference is read. */
329 bool is_read;
330 } data_ref_loc;
332 DEF_VEC_O (data_ref_loc);
333 DEF_VEC_ALLOC_O (data_ref_loc, heap);
335 bool get_references_in_stmt (tree, VEC (data_ref_loc, heap) **);
336 extern tree find_data_references_in_loop (struct loop *,
337 VEC (data_reference_p, heap) **);
338 extern void compute_data_dependences_for_loop (struct loop *, bool,
339 VEC (data_reference_p, heap) **,
340 VEC (ddr_p, heap) **);
341 extern void print_direction_vector (FILE *, lambda_vector, int);
342 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
343 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
344 extern void dump_subscript (FILE *, struct subscript *);
345 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
346 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
347 extern void dump_data_reference (FILE *, struct data_reference *);
348 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
349 extern void debug_data_dependence_relation (struct data_dependence_relation *);
350 extern void dump_data_dependence_relation (FILE *,
351 struct data_dependence_relation *);
352 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
353 extern void dump_data_dependence_direction (FILE *,
354 enum data_dependence_direction);
355 extern void free_dependence_relation (struct data_dependence_relation *);
356 extern void free_dependence_relations (VEC (ddr_p, heap) *);
357 extern void free_data_refs (VEC (data_reference_p, heap) *);
358 extern struct data_reference *analyze_array (tree, tree, bool);
361 /* Return the index of the variable VAR in the LOOP_NEST array. */
363 static inline int
364 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
366 struct loop *loopi;
367 int var_index;
369 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
370 var_index++)
371 if (loopi->num == var)
372 break;
374 return var_index;
377 /* In lambda-code.c */
378 bool lambda_transform_legal_p (lambda_trans_matrix, int, VEC (ddr_p, heap) *);
380 #endif /* GCC_TREE_DATA_REF_H */