2007-03-01 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / rtlanal.c
blobcf9fd1d65af381f1fec829011ca11c0256a6842b
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "tree.h"
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
54 /* Forward declarations */
55 static void set_of_1 (rtx, rtx, void *);
56 static bool covers_regno_p (rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (rtx);
60 static void parms_set (rtx, rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
66 rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
69 enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
75 enum machine_mode, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
85 int target_flags;
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (rtx x)
111 RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
115 switch (code)
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_VECTOR:
124 case SYMBOL_REF:
125 case LABEL_REF:
126 return 0;
128 case REG:
129 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
130 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
131 /* The arg pointer varies if it is not a fixed register. */
132 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
133 return 0;
134 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
135 /* ??? When call-clobbered, the value is stable modulo the restore
136 that must happen after a call. This currently screws up local-alloc
137 into believing that the restore is not needed. */
138 if (x == pic_offset_table_rtx)
139 return 0;
140 #endif
141 return 1;
143 case ASM_OPERANDS:
144 if (MEM_VOLATILE_P (x))
145 return 1;
147 /* Fall through. */
149 default:
150 break;
153 fmt = GET_RTX_FORMAT (code);
154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
155 if (fmt[i] == 'e')
157 if (rtx_unstable_p (XEXP (x, i)))
158 return 1;
160 else if (fmt[i] == 'E')
162 int j;
163 for (j = 0; j < XVECLEN (x, i); j++)
164 if (rtx_unstable_p (XVECEXP (x, i, j)))
165 return 1;
168 return 0;
171 /* Return 1 if X has a value that can vary even between two
172 executions of the program. 0 means X can be compared reliably
173 against certain constants or near-constants.
174 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
175 zero, we are slightly more conservative.
176 The frame pointer and the arg pointer are considered constant. */
179 rtx_varies_p (rtx x, int for_alias)
181 RTX_CODE code;
182 int i;
183 const char *fmt;
185 if (!x)
186 return 0;
188 code = GET_CODE (x);
189 switch (code)
191 case MEM:
192 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194 case CONST:
195 case CONST_INT:
196 case CONST_DOUBLE:
197 case CONST_VECTOR:
198 case SYMBOL_REF:
199 case LABEL_REF:
200 return 0;
202 case REG:
203 /* Note that we have to test for the actual rtx used for the frame
204 and arg pointers and not just the register number in case we have
205 eliminated the frame and/or arg pointer and are using it
206 for pseudos. */
207 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
208 /* The arg pointer varies if it is not a fixed register. */
209 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
210 return 0;
211 if (x == pic_offset_table_rtx
212 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
213 /* ??? When call-clobbered, the value is stable modulo the restore
214 that must happen after a call. This currently screws up
215 local-alloc into believing that the restore is not needed, so we
216 must return 0 only if we are called from alias analysis. */
217 && for_alias
218 #endif
220 return 0;
221 return 1;
223 case LO_SUM:
224 /* The operand 0 of a LO_SUM is considered constant
225 (in fact it is related specifically to operand 1)
226 during alias analysis. */
227 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
228 || rtx_varies_p (XEXP (x, 1), for_alias);
230 case ASM_OPERANDS:
231 if (MEM_VOLATILE_P (x))
232 return 1;
234 /* Fall through. */
236 default:
237 break;
240 fmt = GET_RTX_FORMAT (code);
241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
242 if (fmt[i] == 'e')
244 if (rtx_varies_p (XEXP (x, i), for_alias))
245 return 1;
247 else if (fmt[i] == 'E')
249 int j;
250 for (j = 0; j < XVECLEN (x, i); j++)
251 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
252 return 1;
255 return 0;
258 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
259 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
260 whether nonzero is returned for unaligned memory accesses on strict
261 alignment machines. */
263 static int
264 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
266 enum rtx_code code = GET_CODE (x);
268 switch (code)
270 case SYMBOL_REF:
271 return SYMBOL_REF_WEAK (x);
273 case LABEL_REF:
274 return 0;
276 case REG:
277 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
278 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
279 || x == stack_pointer_rtx
280 /* The arg pointer varies if it is not a fixed register. */
281 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
282 return 0;
283 /* All of the virtual frame registers are stack references. */
284 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
285 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
286 return 0;
287 return 1;
289 case CONST:
290 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
292 case PLUS:
293 /* An address is assumed not to trap if:
294 - it is an address that can't trap plus a constant integer,
295 with the proper remainder modulo the mode size if we are
296 considering unaligned memory references. */
297 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
298 && GET_CODE (XEXP (x, 1)) == CONST_INT)
300 HOST_WIDE_INT offset;
302 if (!STRICT_ALIGNMENT
303 || !unaligned_mems
304 || GET_MODE_SIZE (mode) == 0)
305 return 0;
307 offset = INTVAL (XEXP (x, 1));
309 #ifdef SPARC_STACK_BOUNDARY_HACK
310 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
311 the real alignment of %sp. However, when it does this, the
312 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
313 if (SPARC_STACK_BOUNDARY_HACK
314 && (XEXP (x, 0) == stack_pointer_rtx
315 || XEXP (x, 0) == hard_frame_pointer_rtx))
316 offset -= STACK_POINTER_OFFSET;
317 #endif
319 return offset % GET_MODE_SIZE (mode) != 0;
322 /* - or it is the pic register plus a constant. */
323 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
324 return 0;
326 return 1;
328 case LO_SUM:
329 case PRE_MODIFY:
330 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
332 case PRE_DEC:
333 case PRE_INC:
334 case POST_DEC:
335 case POST_INC:
336 case POST_MODIFY:
337 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
339 default:
340 break;
343 /* If it isn't one of the case above, it can cause a trap. */
344 return 1;
347 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350 rtx_addr_can_trap_p (rtx x)
352 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 /* Return true if X is an address that is known to not be zero. */
357 bool
358 nonzero_address_p (rtx x)
360 enum rtx_code code = GET_CODE (x);
362 switch (code)
364 case SYMBOL_REF:
365 return !SYMBOL_REF_WEAK (x);
367 case LABEL_REF:
368 return true;
370 case REG:
371 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
372 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
373 || x == stack_pointer_rtx
374 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
375 return true;
376 /* All of the virtual frame registers are stack references. */
377 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
378 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
379 return true;
380 return false;
382 case CONST:
383 return nonzero_address_p (XEXP (x, 0));
385 case PLUS:
386 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
387 return nonzero_address_p (XEXP (x, 0));
388 /* Handle PIC references. */
389 else if (XEXP (x, 0) == pic_offset_table_rtx
390 && CONSTANT_P (XEXP (x, 1)))
391 return true;
392 return false;
394 case PRE_MODIFY:
395 /* Similar to the above; allow positive offsets. Further, since
396 auto-inc is only allowed in memories, the register must be a
397 pointer. */
398 if (GET_CODE (XEXP (x, 1)) == CONST_INT
399 && INTVAL (XEXP (x, 1)) > 0)
400 return true;
401 return nonzero_address_p (XEXP (x, 0));
403 case PRE_INC:
404 /* Similarly. Further, the offset is always positive. */
405 return true;
407 case PRE_DEC:
408 case POST_DEC:
409 case POST_INC:
410 case POST_MODIFY:
411 return nonzero_address_p (XEXP (x, 0));
413 case LO_SUM:
414 return nonzero_address_p (XEXP (x, 1));
416 default:
417 break;
420 /* If it isn't one of the case above, might be zero. */
421 return false;
424 /* Return 1 if X refers to a memory location whose address
425 cannot be compared reliably with constant addresses,
426 or if X refers to a BLKmode memory object.
427 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
428 zero, we are slightly more conservative. */
431 rtx_addr_varies_p (rtx x, int for_alias)
433 enum rtx_code code;
434 int i;
435 const char *fmt;
437 if (x == 0)
438 return 0;
440 code = GET_CODE (x);
441 if (code == MEM)
442 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
446 if (fmt[i] == 'e')
448 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
449 return 1;
451 else if (fmt[i] == 'E')
453 int j;
454 for (j = 0; j < XVECLEN (x, i); j++)
455 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
456 return 1;
458 return 0;
461 /* Return the value of the integer term in X, if one is apparent;
462 otherwise return 0.
463 Only obvious integer terms are detected.
464 This is used in cse.c with the `related_value' field. */
466 HOST_WIDE_INT
467 get_integer_term (rtx x)
469 if (GET_CODE (x) == CONST)
470 x = XEXP (x, 0);
472 if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return - INTVAL (XEXP (x, 1));
475 if (GET_CODE (x) == PLUS
476 && GET_CODE (XEXP (x, 1)) == CONST_INT)
477 return INTVAL (XEXP (x, 1));
478 return 0;
481 /* If X is a constant, return the value sans apparent integer term;
482 otherwise return 0.
483 Only obvious integer terms are detected. */
486 get_related_value (rtx x)
488 if (GET_CODE (x) != CONST)
489 return 0;
490 x = XEXP (x, 0);
491 if (GET_CODE (x) == PLUS
492 && GET_CODE (XEXP (x, 1)) == CONST_INT)
493 return XEXP (x, 0);
494 else if (GET_CODE (x) == MINUS
495 && GET_CODE (XEXP (x, 1)) == CONST_INT)
496 return XEXP (x, 0);
497 return 0;
500 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
501 to somewhere in the same object or object_block as SYMBOL. */
503 bool
504 offset_within_block_p (rtx symbol, HOST_WIDE_INT offset)
506 tree decl;
508 if (GET_CODE (symbol) != SYMBOL_REF)
509 return false;
511 if (offset == 0)
512 return true;
514 if (offset > 0)
516 if (CONSTANT_POOL_ADDRESS_P (symbol)
517 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
518 return true;
520 decl = SYMBOL_REF_DECL (symbol);
521 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
522 return true;
525 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
526 && SYMBOL_REF_BLOCK (symbol)
527 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
528 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
529 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
530 return true;
532 return false;
535 /* Split X into a base and a constant offset, storing them in *BASE_OUT
536 and *OFFSET_OUT respectively. */
538 void
539 split_const (rtx x, rtx *base_out, rtx *offset_out)
541 if (GET_CODE (x) == CONST)
543 x = XEXP (x, 0);
544 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
546 *base_out = XEXP (x, 0);
547 *offset_out = XEXP (x, 1);
548 return;
551 *base_out = x;
552 *offset_out = const0_rtx;
555 /* Return the number of places FIND appears within X. If COUNT_DEST is
556 zero, we do not count occurrences inside the destination of a SET. */
559 count_occurrences (rtx x, rtx find, int count_dest)
561 int i, j;
562 enum rtx_code code;
563 const char *format_ptr;
564 int count;
566 if (x == find)
567 return 1;
569 code = GET_CODE (x);
571 switch (code)
573 case REG:
574 case CONST_INT:
575 case CONST_DOUBLE:
576 case CONST_VECTOR:
577 case SYMBOL_REF:
578 case CODE_LABEL:
579 case PC:
580 case CC0:
581 return 0;
583 case EXPR_LIST:
584 count = count_occurrences (XEXP (x, 0), find, count_dest);
585 if (XEXP (x, 1))
586 count += count_occurrences (XEXP (x, 1), find, count_dest);
587 return count;
589 case MEM:
590 if (MEM_P (find) && rtx_equal_p (x, find))
591 return 1;
592 break;
594 case SET:
595 if (SET_DEST (x) == find && ! count_dest)
596 return count_occurrences (SET_SRC (x), find, count_dest);
597 break;
599 default:
600 break;
603 format_ptr = GET_RTX_FORMAT (code);
604 count = 0;
606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
608 switch (*format_ptr++)
610 case 'e':
611 count += count_occurrences (XEXP (x, i), find, count_dest);
612 break;
614 case 'E':
615 for (j = 0; j < XVECLEN (x, i); j++)
616 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
617 break;
620 return count;
623 /* Nonzero if register REG appears somewhere within IN.
624 Also works if REG is not a register; in this case it checks
625 for a subexpression of IN that is Lisp "equal" to REG. */
628 reg_mentioned_p (rtx reg, rtx in)
630 const char *fmt;
631 int i;
632 enum rtx_code code;
634 if (in == 0)
635 return 0;
637 if (reg == in)
638 return 1;
640 if (GET_CODE (in) == LABEL_REF)
641 return reg == XEXP (in, 0);
643 code = GET_CODE (in);
645 switch (code)
647 /* Compare registers by number. */
648 case REG:
649 return REG_P (reg) && REGNO (in) == REGNO (reg);
651 /* These codes have no constituent expressions
652 and are unique. */
653 case SCRATCH:
654 case CC0:
655 case PC:
656 return 0;
658 case CONST_INT:
659 case CONST_VECTOR:
660 case CONST_DOUBLE:
661 /* These are kept unique for a given value. */
662 return 0;
664 default:
665 break;
668 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
669 return 1;
671 fmt = GET_RTX_FORMAT (code);
673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
675 if (fmt[i] == 'E')
677 int j;
678 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
679 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
680 return 1;
682 else if (fmt[i] == 'e'
683 && reg_mentioned_p (reg, XEXP (in, i)))
684 return 1;
686 return 0;
689 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
690 no CODE_LABEL insn. */
693 no_labels_between_p (rtx beg, rtx end)
695 rtx p;
696 if (beg == end)
697 return 0;
698 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
699 if (LABEL_P (p))
700 return 0;
701 return 1;
704 /* Nonzero if register REG is used in an insn between
705 FROM_INSN and TO_INSN (exclusive of those two). */
708 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
710 rtx insn;
712 if (from_insn == to_insn)
713 return 0;
715 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
716 if (INSN_P (insn)
717 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
718 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
719 return 1;
720 return 0;
723 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
724 is entirely replaced by a new value and the only use is as a SET_DEST,
725 we do not consider it a reference. */
728 reg_referenced_p (rtx x, rtx body)
730 int i;
732 switch (GET_CODE (body))
734 case SET:
735 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
736 return 1;
738 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
739 of a REG that occupies all of the REG, the insn references X if
740 it is mentioned in the destination. */
741 if (GET_CODE (SET_DEST (body)) != CC0
742 && GET_CODE (SET_DEST (body)) != PC
743 && !REG_P (SET_DEST (body))
744 && ! (GET_CODE (SET_DEST (body)) == SUBREG
745 && REG_P (SUBREG_REG (SET_DEST (body)))
746 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
747 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
748 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
749 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
750 && reg_overlap_mentioned_p (x, SET_DEST (body)))
751 return 1;
752 return 0;
754 case ASM_OPERANDS:
755 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
756 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
757 return 1;
758 return 0;
760 case CALL:
761 case USE:
762 case IF_THEN_ELSE:
763 return reg_overlap_mentioned_p (x, body);
765 case TRAP_IF:
766 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
768 case PREFETCH:
769 return reg_overlap_mentioned_p (x, XEXP (body, 0));
771 case UNSPEC:
772 case UNSPEC_VOLATILE:
773 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
775 return 1;
776 return 0;
778 case PARALLEL:
779 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
780 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
781 return 1;
782 return 0;
784 case CLOBBER:
785 if (MEM_P (XEXP (body, 0)))
786 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
787 return 1;
788 return 0;
790 case COND_EXEC:
791 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
792 return 1;
793 return reg_referenced_p (x, COND_EXEC_CODE (body));
795 default:
796 return 0;
800 /* Nonzero if register REG is set or clobbered in an insn between
801 FROM_INSN and TO_INSN (exclusive of those two). */
804 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
806 rtx insn;
808 if (from_insn == to_insn)
809 return 0;
811 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
812 if (INSN_P (insn) && reg_set_p (reg, insn))
813 return 1;
814 return 0;
817 /* Internals of reg_set_between_p. */
819 reg_set_p (rtx reg, rtx insn)
821 /* We can be passed an insn or part of one. If we are passed an insn,
822 check if a side-effect of the insn clobbers REG. */
823 if (INSN_P (insn)
824 && (FIND_REG_INC_NOTE (insn, reg)
825 || (CALL_P (insn)
826 && ((REG_P (reg)
827 && REGNO (reg) < FIRST_PSEUDO_REGISTER
828 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
829 REGNO (reg)))
830 || MEM_P (reg)
831 || find_reg_fusage (insn, CLOBBER, reg)))))
832 return 1;
834 return set_of (reg, insn) != NULL_RTX;
837 /* Similar to reg_set_between_p, but check all registers in X. Return 0
838 only if none of them are modified between START and END. Return 1 if
839 X contains a MEM; this routine does usememory aliasing. */
842 modified_between_p (rtx x, rtx start, rtx end)
844 enum rtx_code code = GET_CODE (x);
845 const char *fmt;
846 int i, j;
847 rtx insn;
849 if (start == end)
850 return 0;
852 switch (code)
854 case CONST_INT:
855 case CONST_DOUBLE:
856 case CONST_VECTOR:
857 case CONST:
858 case SYMBOL_REF:
859 case LABEL_REF:
860 return 0;
862 case PC:
863 case CC0:
864 return 1;
866 case MEM:
867 if (modified_between_p (XEXP (x, 0), start, end))
868 return 1;
869 if (MEM_READONLY_P (x))
870 return 0;
871 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
872 if (memory_modified_in_insn_p (x, insn))
873 return 1;
874 return 0;
875 break;
877 case REG:
878 return reg_set_between_p (x, start, end);
880 default:
881 break;
884 fmt = GET_RTX_FORMAT (code);
885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
887 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
888 return 1;
890 else if (fmt[i] == 'E')
891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
892 if (modified_between_p (XVECEXP (x, i, j), start, end))
893 return 1;
896 return 0;
899 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
900 of them are modified in INSN. Return 1 if X contains a MEM; this routine
901 does use memory aliasing. */
904 modified_in_p (rtx x, rtx insn)
906 enum rtx_code code = GET_CODE (x);
907 const char *fmt;
908 int i, j;
910 switch (code)
912 case CONST_INT:
913 case CONST_DOUBLE:
914 case CONST_VECTOR:
915 case CONST:
916 case SYMBOL_REF:
917 case LABEL_REF:
918 return 0;
920 case PC:
921 case CC0:
922 return 1;
924 case MEM:
925 if (modified_in_p (XEXP (x, 0), insn))
926 return 1;
927 if (MEM_READONLY_P (x))
928 return 0;
929 if (memory_modified_in_insn_p (x, insn))
930 return 1;
931 return 0;
932 break;
934 case REG:
935 return reg_set_p (x, insn);
937 default:
938 break;
941 fmt = GET_RTX_FORMAT (code);
942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
944 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
945 return 1;
947 else if (fmt[i] == 'E')
948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
949 if (modified_in_p (XVECEXP (x, i, j), insn))
950 return 1;
953 return 0;
956 /* Helper function for set_of. */
957 struct set_of_data
959 rtx found;
960 rtx pat;
963 static void
964 set_of_1 (rtx x, rtx pat, void *data1)
966 struct set_of_data *data = (struct set_of_data *) (data1);
967 if (rtx_equal_p (x, data->pat)
968 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
969 data->found = pat;
972 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
973 (either directly or via STRICT_LOW_PART and similar modifiers). */
975 set_of (rtx pat, rtx insn)
977 struct set_of_data data;
978 data.found = NULL_RTX;
979 data.pat = pat;
980 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
981 return data.found;
984 /* Given an INSN, return a SET expression if this insn has only a single SET.
985 It may also have CLOBBERs, USEs, or SET whose output
986 will not be used, which we ignore. */
989 single_set_2 (rtx insn, rtx pat)
991 rtx set = NULL;
992 int set_verified = 1;
993 int i;
995 if (GET_CODE (pat) == PARALLEL)
997 for (i = 0; i < XVECLEN (pat, 0); i++)
999 rtx sub = XVECEXP (pat, 0, i);
1000 switch (GET_CODE (sub))
1002 case USE:
1003 case CLOBBER:
1004 break;
1006 case SET:
1007 /* We can consider insns having multiple sets, where all
1008 but one are dead as single set insns. In common case
1009 only single set is present in the pattern so we want
1010 to avoid checking for REG_UNUSED notes unless necessary.
1012 When we reach set first time, we just expect this is
1013 the single set we are looking for and only when more
1014 sets are found in the insn, we check them. */
1015 if (!set_verified)
1017 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1018 && !side_effects_p (set))
1019 set = NULL;
1020 else
1021 set_verified = 1;
1023 if (!set)
1024 set = sub, set_verified = 0;
1025 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1026 || side_effects_p (sub))
1027 return NULL_RTX;
1028 break;
1030 default:
1031 return NULL_RTX;
1035 return set;
1038 /* Given an INSN, return nonzero if it has more than one SET, else return
1039 zero. */
1042 multiple_sets (rtx insn)
1044 int found;
1045 int i;
1047 /* INSN must be an insn. */
1048 if (! INSN_P (insn))
1049 return 0;
1051 /* Only a PARALLEL can have multiple SETs. */
1052 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1054 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1055 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1057 /* If we have already found a SET, then return now. */
1058 if (found)
1059 return 1;
1060 else
1061 found = 1;
1065 /* Either zero or one SET. */
1066 return 0;
1069 /* Return nonzero if the destination of SET equals the source
1070 and there are no side effects. */
1073 set_noop_p (rtx set)
1075 rtx src = SET_SRC (set);
1076 rtx dst = SET_DEST (set);
1078 if (dst == pc_rtx && src == pc_rtx)
1079 return 1;
1081 if (MEM_P (dst) && MEM_P (src))
1082 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1084 if (GET_CODE (dst) == ZERO_EXTRACT)
1085 return rtx_equal_p (XEXP (dst, 0), src)
1086 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1087 && !side_effects_p (src);
1089 if (GET_CODE (dst) == STRICT_LOW_PART)
1090 dst = XEXP (dst, 0);
1092 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1094 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1095 return 0;
1096 src = SUBREG_REG (src);
1097 dst = SUBREG_REG (dst);
1100 return (REG_P (src) && REG_P (dst)
1101 && REGNO (src) == REGNO (dst));
1104 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1105 value to itself. */
1108 noop_move_p (rtx insn)
1110 rtx pat = PATTERN (insn);
1112 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1113 return 1;
1115 /* Insns carrying these notes are useful later on. */
1116 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1117 return 0;
1119 /* For now treat an insn with a REG_RETVAL note as a
1120 a special insn which should not be considered a no-op. */
1121 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1122 return 0;
1124 if (GET_CODE (pat) == SET && set_noop_p (pat))
1125 return 1;
1127 if (GET_CODE (pat) == PARALLEL)
1129 int i;
1130 /* If nothing but SETs of registers to themselves,
1131 this insn can also be deleted. */
1132 for (i = 0; i < XVECLEN (pat, 0); i++)
1134 rtx tem = XVECEXP (pat, 0, i);
1136 if (GET_CODE (tem) == USE
1137 || GET_CODE (tem) == CLOBBER)
1138 continue;
1140 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1141 return 0;
1144 return 1;
1146 return 0;
1150 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1151 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1152 If the object was modified, if we hit a partial assignment to X, or hit a
1153 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1154 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1155 be the src. */
1158 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1160 rtx p;
1162 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1163 p = PREV_INSN (p))
1164 if (INSN_P (p))
1166 rtx set = single_set (p);
1167 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1169 if (set && rtx_equal_p (x, SET_DEST (set)))
1171 rtx src = SET_SRC (set);
1173 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1174 src = XEXP (note, 0);
1176 if ((valid_to == NULL_RTX
1177 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1178 /* Reject hard registers because we don't usually want
1179 to use them; we'd rather use a pseudo. */
1180 && (! (REG_P (src)
1181 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1183 *pinsn = p;
1184 return src;
1188 /* If set in non-simple way, we don't have a value. */
1189 if (reg_set_p (x, p))
1190 break;
1193 return x;
1196 /* Return nonzero if register in range [REGNO, ENDREGNO)
1197 appears either explicitly or implicitly in X
1198 other than being stored into.
1200 References contained within the substructure at LOC do not count.
1201 LOC may be zero, meaning don't ignore anything. */
1204 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1205 rtx *loc)
1207 int i;
1208 unsigned int x_regno;
1209 RTX_CODE code;
1210 const char *fmt;
1212 repeat:
1213 /* The contents of a REG_NONNEG note is always zero, so we must come here
1214 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1215 if (x == 0)
1216 return 0;
1218 code = GET_CODE (x);
1220 switch (code)
1222 case REG:
1223 x_regno = REGNO (x);
1225 /* If we modifying the stack, frame, or argument pointer, it will
1226 clobber a virtual register. In fact, we could be more precise,
1227 but it isn't worth it. */
1228 if ((x_regno == STACK_POINTER_REGNUM
1229 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1230 || x_regno == ARG_POINTER_REGNUM
1231 #endif
1232 || x_regno == FRAME_POINTER_REGNUM)
1233 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1234 return 1;
1236 return (endregno > x_regno
1237 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1238 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1239 : 1));
1241 case SUBREG:
1242 /* If this is a SUBREG of a hard reg, we can see exactly which
1243 registers are being modified. Otherwise, handle normally. */
1244 if (REG_P (SUBREG_REG (x))
1245 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1247 unsigned int inner_regno = subreg_regno (x);
1248 unsigned int inner_endregno
1249 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1250 ? subreg_nregs (x) : 1);
1252 return endregno > inner_regno && regno < inner_endregno;
1254 break;
1256 case CLOBBER:
1257 case SET:
1258 if (&SET_DEST (x) != loc
1259 /* Note setting a SUBREG counts as referring to the REG it is in for
1260 a pseudo but not for hard registers since we can
1261 treat each word individually. */
1262 && ((GET_CODE (SET_DEST (x)) == SUBREG
1263 && loc != &SUBREG_REG (SET_DEST (x))
1264 && REG_P (SUBREG_REG (SET_DEST (x)))
1265 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1266 && refers_to_regno_p (regno, endregno,
1267 SUBREG_REG (SET_DEST (x)), loc))
1268 || (!REG_P (SET_DEST (x))
1269 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1270 return 1;
1272 if (code == CLOBBER || loc == &SET_SRC (x))
1273 return 0;
1274 x = SET_SRC (x);
1275 goto repeat;
1277 default:
1278 break;
1281 /* X does not match, so try its subexpressions. */
1283 fmt = GET_RTX_FORMAT (code);
1284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1286 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1288 if (i == 0)
1290 x = XEXP (x, 0);
1291 goto repeat;
1293 else
1294 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1295 return 1;
1297 else if (fmt[i] == 'E')
1299 int j;
1300 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1301 if (loc != &XVECEXP (x, i, j)
1302 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1303 return 1;
1306 return 0;
1309 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1310 we check if any register number in X conflicts with the relevant register
1311 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1312 contains a MEM (we don't bother checking for memory addresses that can't
1313 conflict because we expect this to be a rare case. */
1316 reg_overlap_mentioned_p (rtx x, rtx in)
1318 unsigned int regno, endregno;
1320 /* If either argument is a constant, then modifying X can not
1321 affect IN. Here we look at IN, we can profitably combine
1322 CONSTANT_P (x) with the switch statement below. */
1323 if (CONSTANT_P (in))
1324 return 0;
1326 recurse:
1327 switch (GET_CODE (x))
1329 case STRICT_LOW_PART:
1330 case ZERO_EXTRACT:
1331 case SIGN_EXTRACT:
1332 /* Overly conservative. */
1333 x = XEXP (x, 0);
1334 goto recurse;
1336 case SUBREG:
1337 regno = REGNO (SUBREG_REG (x));
1338 if (regno < FIRST_PSEUDO_REGISTER)
1339 regno = subreg_regno (x);
1340 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1341 ? subreg_nregs (x) : 1);
1342 goto do_reg;
1344 case REG:
1345 regno = REGNO (x);
1346 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1347 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1348 do_reg:
1349 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1351 case MEM:
1353 const char *fmt;
1354 int i;
1356 if (MEM_P (in))
1357 return 1;
1359 fmt = GET_RTX_FORMAT (GET_CODE (in));
1360 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1361 if (fmt[i] == 'e')
1363 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1364 return 1;
1366 else if (fmt[i] == 'E')
1368 int j;
1369 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1370 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1371 return 1;
1374 return 0;
1377 case SCRATCH:
1378 case PC:
1379 case CC0:
1380 return reg_mentioned_p (x, in);
1382 case PARALLEL:
1384 int i;
1386 /* If any register in here refers to it we return true. */
1387 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1388 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1389 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1390 return 1;
1391 return 0;
1394 default:
1395 gcc_assert (CONSTANT_P (x));
1396 return 0;
1400 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1401 (X would be the pattern of an insn).
1402 FUN receives two arguments:
1403 the REG, MEM, CC0 or PC being stored in or clobbered,
1404 the SET or CLOBBER rtx that does the store.
1406 If the item being stored in or clobbered is a SUBREG of a hard register,
1407 the SUBREG will be passed. */
1409 void
1410 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1412 int i;
1414 if (GET_CODE (x) == COND_EXEC)
1415 x = COND_EXEC_CODE (x);
1417 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1419 rtx dest = SET_DEST (x);
1421 while ((GET_CODE (dest) == SUBREG
1422 && (!REG_P (SUBREG_REG (dest))
1423 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1424 || GET_CODE (dest) == ZERO_EXTRACT
1425 || GET_CODE (dest) == STRICT_LOW_PART)
1426 dest = XEXP (dest, 0);
1428 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1429 each of whose first operand is a register. */
1430 if (GET_CODE (dest) == PARALLEL)
1432 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1433 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1434 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1436 else
1437 (*fun) (dest, x, data);
1440 else if (GET_CODE (x) == PARALLEL)
1441 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1442 note_stores (XVECEXP (x, 0, i), fun, data);
1445 /* Like notes_stores, but call FUN for each expression that is being
1446 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1447 FUN for each expression, not any interior subexpressions. FUN receives a
1448 pointer to the expression and the DATA passed to this function.
1450 Note that this is not quite the same test as that done in reg_referenced_p
1451 since that considers something as being referenced if it is being
1452 partially set, while we do not. */
1454 void
1455 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1457 rtx body = *pbody;
1458 int i;
1460 switch (GET_CODE (body))
1462 case COND_EXEC:
1463 (*fun) (&COND_EXEC_TEST (body), data);
1464 note_uses (&COND_EXEC_CODE (body), fun, data);
1465 return;
1467 case PARALLEL:
1468 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1469 note_uses (&XVECEXP (body, 0, i), fun, data);
1470 return;
1472 case SEQUENCE:
1473 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1474 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1475 return;
1477 case USE:
1478 (*fun) (&XEXP (body, 0), data);
1479 return;
1481 case ASM_OPERANDS:
1482 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1483 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1484 return;
1486 case TRAP_IF:
1487 (*fun) (&TRAP_CONDITION (body), data);
1488 return;
1490 case PREFETCH:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1494 case UNSPEC:
1495 case UNSPEC_VOLATILE:
1496 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1497 (*fun) (&XVECEXP (body, 0, i), data);
1498 return;
1500 case CLOBBER:
1501 if (MEM_P (XEXP (body, 0)))
1502 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1503 return;
1505 case SET:
1507 rtx dest = SET_DEST (body);
1509 /* For sets we replace everything in source plus registers in memory
1510 expression in store and operands of a ZERO_EXTRACT. */
1511 (*fun) (&SET_SRC (body), data);
1513 if (GET_CODE (dest) == ZERO_EXTRACT)
1515 (*fun) (&XEXP (dest, 1), data);
1516 (*fun) (&XEXP (dest, 2), data);
1519 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1520 dest = XEXP (dest, 0);
1522 if (MEM_P (dest))
1523 (*fun) (&XEXP (dest, 0), data);
1525 return;
1527 default:
1528 /* All the other possibilities never store. */
1529 (*fun) (pbody, data);
1530 return;
1534 /* Return nonzero if X's old contents don't survive after INSN.
1535 This will be true if X is (cc0) or if X is a register and
1536 X dies in INSN or because INSN entirely sets X.
1538 "Entirely set" means set directly and not through a SUBREG, or
1539 ZERO_EXTRACT, so no trace of the old contents remains.
1540 Likewise, REG_INC does not count.
1542 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1543 but for this use that makes no difference, since regs don't overlap
1544 during their lifetimes. Therefore, this function may be used
1545 at any time after deaths have been computed (in flow.c).
1547 If REG is a hard reg that occupies multiple machine registers, this
1548 function will only return 1 if each of those registers will be replaced
1549 by INSN. */
1552 dead_or_set_p (rtx insn, rtx x)
1554 unsigned int regno, last_regno;
1555 unsigned int i;
1557 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1558 if (GET_CODE (x) == CC0)
1559 return 1;
1561 gcc_assert (REG_P (x));
1563 regno = REGNO (x);
1564 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1565 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1567 for (i = regno; i <= last_regno; i++)
1568 if (! dead_or_set_regno_p (insn, i))
1569 return 0;
1571 return 1;
1574 /* Return TRUE iff DEST is a register or subreg of a register and
1575 doesn't change the number of words of the inner register, and any
1576 part of the register is TEST_REGNO. */
1578 static bool
1579 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1581 unsigned int regno, endregno;
1583 if (GET_CODE (dest) == SUBREG
1584 && (((GET_MODE_SIZE (GET_MODE (dest))
1585 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1587 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1588 dest = SUBREG_REG (dest);
1590 if (!REG_P (dest))
1591 return false;
1593 regno = REGNO (dest);
1594 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1595 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1596 return (test_regno >= regno && test_regno < endregno);
1599 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1600 any member matches the covers_regno_no_parallel_p criteria. */
1602 static bool
1603 covers_regno_p (rtx dest, unsigned int test_regno)
1605 if (GET_CODE (dest) == PARALLEL)
1607 /* Some targets place small structures in registers for return
1608 values of functions, and those registers are wrapped in
1609 PARALLELs that we may see as the destination of a SET. */
1610 int i;
1612 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1614 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1615 if (inner != NULL_RTX
1616 && covers_regno_no_parallel_p (inner, test_regno))
1617 return true;
1620 return false;
1622 else
1623 return covers_regno_no_parallel_p (dest, test_regno);
1626 /* Utility function for dead_or_set_p to check an individual register. Also
1627 called from flow.c. */
1630 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1632 rtx pattern;
1634 /* See if there is a death note for something that includes TEST_REGNO. */
1635 if (find_regno_note (insn, REG_DEAD, test_regno))
1636 return 1;
1638 if (CALL_P (insn)
1639 && find_regno_fusage (insn, CLOBBER, test_regno))
1640 return 1;
1642 pattern = PATTERN (insn);
1644 if (GET_CODE (pattern) == COND_EXEC)
1645 pattern = COND_EXEC_CODE (pattern);
1647 if (GET_CODE (pattern) == SET)
1648 return covers_regno_p (SET_DEST (pattern), test_regno);
1649 else if (GET_CODE (pattern) == PARALLEL)
1651 int i;
1653 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1655 rtx body = XVECEXP (pattern, 0, i);
1657 if (GET_CODE (body) == COND_EXEC)
1658 body = COND_EXEC_CODE (body);
1660 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1661 && covers_regno_p (SET_DEST (body), test_regno))
1662 return 1;
1666 return 0;
1669 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1670 If DATUM is nonzero, look for one whose datum is DATUM. */
1673 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1675 rtx link;
1677 gcc_assert (insn);
1679 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1680 if (! INSN_P (insn))
1681 return 0;
1682 if (datum == 0)
1684 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1685 if (REG_NOTE_KIND (link) == kind)
1686 return link;
1687 return 0;
1690 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1691 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1692 return link;
1693 return 0;
1696 /* Return the reg-note of kind KIND in insn INSN which applies to register
1697 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1698 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1699 it might be the case that the note overlaps REGNO. */
1702 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1704 rtx link;
1706 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1707 if (! INSN_P (insn))
1708 return 0;
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind
1712 /* Verify that it is a register, so that scratch and MEM won't cause a
1713 problem here. */
1714 && REG_P (XEXP (link, 0))
1715 && REGNO (XEXP (link, 0)) <= regno
1716 && ((REGNO (XEXP (link, 0))
1717 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1718 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1719 [GET_MODE (XEXP (link, 0))]))
1720 > regno))
1721 return link;
1722 return 0;
1725 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1726 has such a note. */
1729 find_reg_equal_equiv_note (rtx insn)
1731 rtx link;
1733 if (!INSN_P (insn))
1734 return 0;
1736 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1737 if (REG_NOTE_KIND (link) == REG_EQUAL
1738 || REG_NOTE_KIND (link) == REG_EQUIV)
1740 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1741 insns that have multiple sets. Checking single_set to
1742 make sure of this is not the proper check, as explained
1743 in the comment in set_unique_reg_note.
1745 This should be changed into an assert. */
1746 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1747 return 0;
1748 return link;
1750 return NULL;
1753 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1754 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1757 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1759 /* If it's not a CALL_INSN, it can't possibly have a
1760 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1761 if (!CALL_P (insn))
1762 return 0;
1764 gcc_assert (datum);
1766 if (!REG_P (datum))
1768 rtx link;
1770 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1771 link;
1772 link = XEXP (link, 1))
1773 if (GET_CODE (XEXP (link, 0)) == code
1774 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1775 return 1;
1777 else
1779 unsigned int regno = REGNO (datum);
1781 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1782 to pseudo registers, so don't bother checking. */
1784 if (regno < FIRST_PSEUDO_REGISTER)
1786 unsigned int end_regno
1787 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1788 unsigned int i;
1790 for (i = regno; i < end_regno; i++)
1791 if (find_regno_fusage (insn, code, i))
1792 return 1;
1796 return 0;
1799 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1800 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1803 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1805 rtx link;
1807 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1808 to pseudo registers, so don't bother checking. */
1810 if (regno >= FIRST_PSEUDO_REGISTER
1811 || !CALL_P (insn) )
1812 return 0;
1814 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1816 unsigned int regnote;
1817 rtx op, reg;
1819 if (GET_CODE (op = XEXP (link, 0)) == code
1820 && REG_P (reg = XEXP (op, 0))
1821 && (regnote = REGNO (reg)) <= regno
1822 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1823 return 1;
1826 return 0;
1829 /* Return true if INSN is a call to a pure function. */
1832 pure_call_p (rtx insn)
1834 rtx link;
1836 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1837 return 0;
1839 /* Look for the note that differentiates const and pure functions. */
1840 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1842 rtx u, m;
1844 if (GET_CODE (u = XEXP (link, 0)) == USE
1845 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1846 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1847 return 1;
1850 return 0;
1853 /* Remove register note NOTE from the REG_NOTES of INSN. */
1855 void
1856 remove_note (rtx insn, rtx note)
1858 rtx link;
1860 if (note == NULL_RTX)
1861 return;
1863 if (REG_NOTES (insn) == note)
1865 REG_NOTES (insn) = XEXP (note, 1);
1866 return;
1869 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1870 if (XEXP (link, 1) == note)
1872 XEXP (link, 1) = XEXP (note, 1);
1873 return;
1876 gcc_unreachable ();
1879 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1881 void
1882 remove_reg_equal_equiv_notes (rtx insn)
1884 rtx *loc;
1886 loc = &REG_NOTES (insn);
1887 while (*loc)
1889 enum reg_note kind = REG_NOTE_KIND (*loc);
1890 if (kind == REG_EQUAL || kind == REG_EQUIV)
1891 *loc = XEXP (*loc, 1);
1892 else
1893 loc = &XEXP (*loc, 1);
1897 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1898 return 1 if it is found. A simple equality test is used to determine if
1899 NODE matches. */
1902 in_expr_list_p (rtx listp, rtx node)
1904 rtx x;
1906 for (x = listp; x; x = XEXP (x, 1))
1907 if (node == XEXP (x, 0))
1908 return 1;
1910 return 0;
1913 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1914 remove that entry from the list if it is found.
1916 A simple equality test is used to determine if NODE matches. */
1918 void
1919 remove_node_from_expr_list (rtx node, rtx *listp)
1921 rtx temp = *listp;
1922 rtx prev = NULL_RTX;
1924 while (temp)
1926 if (node == XEXP (temp, 0))
1928 /* Splice the node out of the list. */
1929 if (prev)
1930 XEXP (prev, 1) = XEXP (temp, 1);
1931 else
1932 *listp = XEXP (temp, 1);
1934 return;
1937 prev = temp;
1938 temp = XEXP (temp, 1);
1942 /* Nonzero if X contains any volatile instructions. These are instructions
1943 which may cause unpredictable machine state instructions, and thus no
1944 instructions should be moved or combined across them. This includes
1945 only volatile asms and UNSPEC_VOLATILE instructions. */
1948 volatile_insn_p (rtx x)
1950 RTX_CODE code;
1952 code = GET_CODE (x);
1953 switch (code)
1955 case LABEL_REF:
1956 case SYMBOL_REF:
1957 case CONST_INT:
1958 case CONST:
1959 case CONST_DOUBLE:
1960 case CONST_VECTOR:
1961 case CC0:
1962 case PC:
1963 case REG:
1964 case SCRATCH:
1965 case CLOBBER:
1966 case ADDR_VEC:
1967 case ADDR_DIFF_VEC:
1968 case CALL:
1969 case MEM:
1970 return 0;
1972 case UNSPEC_VOLATILE:
1973 /* case TRAP_IF: This isn't clear yet. */
1974 return 1;
1976 case ASM_INPUT:
1977 case ASM_OPERANDS:
1978 if (MEM_VOLATILE_P (x))
1979 return 1;
1981 default:
1982 break;
1985 /* Recursively scan the operands of this expression. */
1988 const char *fmt = GET_RTX_FORMAT (code);
1989 int i;
1991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1993 if (fmt[i] == 'e')
1995 if (volatile_insn_p (XEXP (x, i)))
1996 return 1;
1998 else if (fmt[i] == 'E')
2000 int j;
2001 for (j = 0; j < XVECLEN (x, i); j++)
2002 if (volatile_insn_p (XVECEXP (x, i, j)))
2003 return 1;
2007 return 0;
2010 /* Nonzero if X contains any volatile memory references
2011 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2014 volatile_refs_p (rtx x)
2016 RTX_CODE code;
2018 code = GET_CODE (x);
2019 switch (code)
2021 case LABEL_REF:
2022 case SYMBOL_REF:
2023 case CONST_INT:
2024 case CONST:
2025 case CONST_DOUBLE:
2026 case CONST_VECTOR:
2027 case CC0:
2028 case PC:
2029 case REG:
2030 case SCRATCH:
2031 case CLOBBER:
2032 case ADDR_VEC:
2033 case ADDR_DIFF_VEC:
2034 return 0;
2036 case UNSPEC_VOLATILE:
2037 return 1;
2039 case MEM:
2040 case ASM_INPUT:
2041 case ASM_OPERANDS:
2042 if (MEM_VOLATILE_P (x))
2043 return 1;
2045 default:
2046 break;
2049 /* Recursively scan the operands of this expression. */
2052 const char *fmt = GET_RTX_FORMAT (code);
2053 int i;
2055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2057 if (fmt[i] == 'e')
2059 if (volatile_refs_p (XEXP (x, i)))
2060 return 1;
2062 else if (fmt[i] == 'E')
2064 int j;
2065 for (j = 0; j < XVECLEN (x, i); j++)
2066 if (volatile_refs_p (XVECEXP (x, i, j)))
2067 return 1;
2071 return 0;
2074 /* Similar to above, except that it also rejects register pre- and post-
2075 incrementing. */
2078 side_effects_p (rtx x)
2080 RTX_CODE code;
2082 code = GET_CODE (x);
2083 switch (code)
2085 case LABEL_REF:
2086 case SYMBOL_REF:
2087 case CONST_INT:
2088 case CONST:
2089 case CONST_DOUBLE:
2090 case CONST_VECTOR:
2091 case CC0:
2092 case PC:
2093 case REG:
2094 case SCRATCH:
2095 case ADDR_VEC:
2096 case ADDR_DIFF_VEC:
2097 return 0;
2099 case CLOBBER:
2100 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2101 when some combination can't be done. If we see one, don't think
2102 that we can simplify the expression. */
2103 return (GET_MODE (x) != VOIDmode);
2105 case PRE_INC:
2106 case PRE_DEC:
2107 case POST_INC:
2108 case POST_DEC:
2109 case PRE_MODIFY:
2110 case POST_MODIFY:
2111 case CALL:
2112 case UNSPEC_VOLATILE:
2113 /* case TRAP_IF: This isn't clear yet. */
2114 return 1;
2116 case MEM:
2117 case ASM_INPUT:
2118 case ASM_OPERANDS:
2119 if (MEM_VOLATILE_P (x))
2120 return 1;
2122 default:
2123 break;
2126 /* Recursively scan the operands of this expression. */
2129 const char *fmt = GET_RTX_FORMAT (code);
2130 int i;
2132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2134 if (fmt[i] == 'e')
2136 if (side_effects_p (XEXP (x, i)))
2137 return 1;
2139 else if (fmt[i] == 'E')
2141 int j;
2142 for (j = 0; j < XVECLEN (x, i); j++)
2143 if (side_effects_p (XVECEXP (x, i, j)))
2144 return 1;
2148 return 0;
2151 enum may_trap_p_flags
2153 MTP_UNALIGNED_MEMS = 1,
2154 MTP_AFTER_MOVE = 2
2156 /* Return nonzero if evaluating rtx X might cause a trap.
2157 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2158 unaligned memory accesses on strict alignment machines. If
2159 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2160 cannot trap at its current location, but it might become trapping if moved
2161 elsewhere. */
2163 static int
2164 may_trap_p_1 (rtx x, unsigned flags)
2166 int i;
2167 enum rtx_code code;
2168 const char *fmt;
2169 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2171 if (x == 0)
2172 return 0;
2173 code = GET_CODE (x);
2174 switch (code)
2176 /* Handle these cases quickly. */
2177 case CONST_INT:
2178 case CONST_DOUBLE:
2179 case CONST_VECTOR:
2180 case SYMBOL_REF:
2181 case LABEL_REF:
2182 case CONST:
2183 case PC:
2184 case CC0:
2185 case REG:
2186 case SCRATCH:
2187 return 0;
2189 case ASM_INPUT:
2190 case UNSPEC_VOLATILE:
2191 case TRAP_IF:
2192 return 1;
2194 case ASM_OPERANDS:
2195 return MEM_VOLATILE_P (x);
2197 /* Memory ref can trap unless it's a static var or a stack slot. */
2198 case MEM:
2199 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2200 reference; moving it out of condition might cause its address
2201 become invalid. */
2202 !(flags & MTP_AFTER_MOVE)
2203 && MEM_NOTRAP_P (x)
2204 && (!STRICT_ALIGNMENT || !unaligned_mems))
2205 return 0;
2206 return
2207 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2209 /* Division by a non-constant might trap. */
2210 case DIV:
2211 case MOD:
2212 case UDIV:
2213 case UMOD:
2214 if (HONOR_SNANS (GET_MODE (x)))
2215 return 1;
2216 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2217 return flag_trapping_math;
2218 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2219 return 1;
2220 break;
2222 case EXPR_LIST:
2223 /* An EXPR_LIST is used to represent a function call. This
2224 certainly may trap. */
2225 return 1;
2227 case GE:
2228 case GT:
2229 case LE:
2230 case LT:
2231 case LTGT:
2232 case COMPARE:
2233 /* Some floating point comparisons may trap. */
2234 if (!flag_trapping_math)
2235 break;
2236 /* ??? There is no machine independent way to check for tests that trap
2237 when COMPARE is used, though many targets do make this distinction.
2238 For instance, sparc uses CCFPE for compares which generate exceptions
2239 and CCFP for compares which do not generate exceptions. */
2240 if (HONOR_NANS (GET_MODE (x)))
2241 return 1;
2242 /* But often the compare has some CC mode, so check operand
2243 modes as well. */
2244 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2245 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2246 return 1;
2247 break;
2249 case EQ:
2250 case NE:
2251 if (HONOR_SNANS (GET_MODE (x)))
2252 return 1;
2253 /* Often comparison is CC mode, so check operand modes. */
2254 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2255 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2256 return 1;
2257 break;
2259 case FIX:
2260 /* Conversion of floating point might trap. */
2261 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2262 return 1;
2263 break;
2265 case NEG:
2266 case ABS:
2267 case SUBREG:
2268 /* These operations don't trap even with floating point. */
2269 break;
2271 default:
2272 /* Any floating arithmetic may trap. */
2273 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2274 && flag_trapping_math)
2275 return 1;
2278 fmt = GET_RTX_FORMAT (code);
2279 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2281 if (fmt[i] == 'e')
2283 if (may_trap_p_1 (XEXP (x, i), flags))
2284 return 1;
2286 else if (fmt[i] == 'E')
2288 int j;
2289 for (j = 0; j < XVECLEN (x, i); j++)
2290 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2291 return 1;
2294 return 0;
2297 /* Return nonzero if evaluating rtx X might cause a trap. */
2300 may_trap_p (rtx x)
2302 return may_trap_p_1 (x, 0);
2305 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2306 is moved from its current location by some optimization. */
2309 may_trap_after_code_motion_p (rtx x)
2311 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2314 /* Same as above, but additionally return nonzero if evaluating rtx X might
2315 cause a fault. We define a fault for the purpose of this function as a
2316 erroneous execution condition that cannot be encountered during the normal
2317 execution of a valid program; the typical example is an unaligned memory
2318 access on a strict alignment machine. The compiler guarantees that it
2319 doesn't generate code that will fault from a valid program, but this
2320 guarantee doesn't mean anything for individual instructions. Consider
2321 the following example:
2323 struct S { int d; union { char *cp; int *ip; }; };
2325 int foo(struct S *s)
2327 if (s->d == 1)
2328 return *s->ip;
2329 else
2330 return *s->cp;
2333 on a strict alignment machine. In a valid program, foo will never be
2334 invoked on a structure for which d is equal to 1 and the underlying
2335 unique field of the union not aligned on a 4-byte boundary, but the
2336 expression *s->ip might cause a fault if considered individually.
2338 At the RTL level, potentially problematic expressions will almost always
2339 verify may_trap_p; for example, the above dereference can be emitted as
2340 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2341 However, suppose that foo is inlined in a caller that causes s->cp to
2342 point to a local character variable and guarantees that s->d is not set
2343 to 1; foo may have been effectively translated into pseudo-RTL as:
2345 if ((reg:SI) == 1)
2346 (set (reg:SI) (mem:SI (%fp - 7)))
2347 else
2348 (set (reg:QI) (mem:QI (%fp - 7)))
2350 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2351 memory reference to a stack slot, but it will certainly cause a fault
2352 on a strict alignment machine. */
2355 may_trap_or_fault_p (rtx x)
2357 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2360 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2361 i.e., an inequality. */
2364 inequality_comparisons_p (rtx x)
2366 const char *fmt;
2367 int len, i;
2368 enum rtx_code code = GET_CODE (x);
2370 switch (code)
2372 case REG:
2373 case SCRATCH:
2374 case PC:
2375 case CC0:
2376 case CONST_INT:
2377 case CONST_DOUBLE:
2378 case CONST_VECTOR:
2379 case CONST:
2380 case LABEL_REF:
2381 case SYMBOL_REF:
2382 return 0;
2384 case LT:
2385 case LTU:
2386 case GT:
2387 case GTU:
2388 case LE:
2389 case LEU:
2390 case GE:
2391 case GEU:
2392 return 1;
2394 default:
2395 break;
2398 len = GET_RTX_LENGTH (code);
2399 fmt = GET_RTX_FORMAT (code);
2401 for (i = 0; i < len; i++)
2403 if (fmt[i] == 'e')
2405 if (inequality_comparisons_p (XEXP (x, i)))
2406 return 1;
2408 else if (fmt[i] == 'E')
2410 int j;
2411 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2412 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2413 return 1;
2417 return 0;
2420 /* Replace any occurrence of FROM in X with TO. The function does
2421 not enter into CONST_DOUBLE for the replace.
2423 Note that copying is not done so X must not be shared unless all copies
2424 are to be modified. */
2427 replace_rtx (rtx x, rtx from, rtx to)
2429 int i, j;
2430 const char *fmt;
2432 /* The following prevents loops occurrence when we change MEM in
2433 CONST_DOUBLE onto the same CONST_DOUBLE. */
2434 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2435 return x;
2437 if (x == from)
2438 return to;
2440 /* Allow this function to make replacements in EXPR_LISTs. */
2441 if (x == 0)
2442 return 0;
2444 if (GET_CODE (x) == SUBREG)
2446 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2448 if (GET_CODE (new) == CONST_INT)
2450 x = simplify_subreg (GET_MODE (x), new,
2451 GET_MODE (SUBREG_REG (x)),
2452 SUBREG_BYTE (x));
2453 gcc_assert (x);
2455 else
2456 SUBREG_REG (x) = new;
2458 return x;
2460 else if (GET_CODE (x) == ZERO_EXTEND)
2462 rtx new = replace_rtx (XEXP (x, 0), from, to);
2464 if (GET_CODE (new) == CONST_INT)
2466 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2467 new, GET_MODE (XEXP (x, 0)));
2468 gcc_assert (x);
2470 else
2471 XEXP (x, 0) = new;
2473 return x;
2476 fmt = GET_RTX_FORMAT (GET_CODE (x));
2477 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2479 if (fmt[i] == 'e')
2480 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2481 else if (fmt[i] == 'E')
2482 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2483 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2486 return x;
2489 /* Replace occurrences of the old label in *X with the new one.
2490 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2493 replace_label (rtx *x, void *data)
2495 rtx l = *x;
2496 rtx old_label = ((replace_label_data *) data)->r1;
2497 rtx new_label = ((replace_label_data *) data)->r2;
2498 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2500 if (l == NULL_RTX)
2501 return 0;
2503 if (GET_CODE (l) == SYMBOL_REF
2504 && CONSTANT_POOL_ADDRESS_P (l))
2506 rtx c = get_pool_constant (l);
2507 if (rtx_referenced_p (old_label, c))
2509 rtx new_c, new_l;
2510 replace_label_data *d = (replace_label_data *) data;
2512 /* Create a copy of constant C; replace the label inside
2513 but do not update LABEL_NUSES because uses in constant pool
2514 are not counted. */
2515 new_c = copy_rtx (c);
2516 d->update_label_nuses = false;
2517 for_each_rtx (&new_c, replace_label, data);
2518 d->update_label_nuses = update_label_nuses;
2520 /* Add the new constant NEW_C to constant pool and replace
2521 the old reference to constant by new reference. */
2522 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2523 *x = replace_rtx (l, l, new_l);
2525 return 0;
2528 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2529 field. This is not handled by for_each_rtx because it doesn't
2530 handle unprinted ('0') fields. */
2531 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2532 JUMP_LABEL (l) = new_label;
2534 if ((GET_CODE (l) == LABEL_REF
2535 || GET_CODE (l) == INSN_LIST)
2536 && XEXP (l, 0) == old_label)
2538 XEXP (l, 0) = new_label;
2539 if (update_label_nuses)
2541 ++LABEL_NUSES (new_label);
2542 --LABEL_NUSES (old_label);
2544 return 0;
2547 return 0;
2550 /* When *BODY is equal to X or X is directly referenced by *BODY
2551 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2552 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2554 static int
2555 rtx_referenced_p_1 (rtx *body, void *x)
2557 rtx y = (rtx) x;
2559 if (*body == NULL_RTX)
2560 return y == NULL_RTX;
2562 /* Return true if a label_ref *BODY refers to label Y. */
2563 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2564 return XEXP (*body, 0) == y;
2566 /* If *BODY is a reference to pool constant traverse the constant. */
2567 if (GET_CODE (*body) == SYMBOL_REF
2568 && CONSTANT_POOL_ADDRESS_P (*body))
2569 return rtx_referenced_p (y, get_pool_constant (*body));
2571 /* By default, compare the RTL expressions. */
2572 return rtx_equal_p (*body, y);
2575 /* Return true if X is referenced in BODY. */
2578 rtx_referenced_p (rtx x, rtx body)
2580 return for_each_rtx (&body, rtx_referenced_p_1, x);
2583 /* If INSN is a tablejump return true and store the label (before jump table) to
2584 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2586 bool
2587 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2589 rtx label, table;
2591 if (JUMP_P (insn)
2592 && (label = JUMP_LABEL (insn)) != NULL_RTX
2593 && (table = next_active_insn (label)) != NULL_RTX
2594 && JUMP_P (table)
2595 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2596 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2598 if (labelp)
2599 *labelp = label;
2600 if (tablep)
2601 *tablep = table;
2602 return true;
2604 return false;
2607 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2608 constant that is not in the constant pool and not in the condition
2609 of an IF_THEN_ELSE. */
2611 static int
2612 computed_jump_p_1 (rtx x)
2614 enum rtx_code code = GET_CODE (x);
2615 int i, j;
2616 const char *fmt;
2618 switch (code)
2620 case LABEL_REF:
2621 case PC:
2622 return 0;
2624 case CONST:
2625 case CONST_INT:
2626 case CONST_DOUBLE:
2627 case CONST_VECTOR:
2628 case SYMBOL_REF:
2629 case REG:
2630 return 1;
2632 case MEM:
2633 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2634 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2636 case IF_THEN_ELSE:
2637 return (computed_jump_p_1 (XEXP (x, 1))
2638 || computed_jump_p_1 (XEXP (x, 2)));
2640 default:
2641 break;
2644 fmt = GET_RTX_FORMAT (code);
2645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2647 if (fmt[i] == 'e'
2648 && computed_jump_p_1 (XEXP (x, i)))
2649 return 1;
2651 else if (fmt[i] == 'E')
2652 for (j = 0; j < XVECLEN (x, i); j++)
2653 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2654 return 1;
2657 return 0;
2660 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2662 Tablejumps and casesi insns are not considered indirect jumps;
2663 we can recognize them by a (use (label_ref)). */
2666 computed_jump_p (rtx insn)
2668 int i;
2669 if (JUMP_P (insn))
2671 rtx pat = PATTERN (insn);
2673 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2674 return 0;
2675 else if (GET_CODE (pat) == PARALLEL)
2677 int len = XVECLEN (pat, 0);
2678 int has_use_labelref = 0;
2680 for (i = len - 1; i >= 0; i--)
2681 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2682 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2683 == LABEL_REF))
2684 has_use_labelref = 1;
2686 if (! has_use_labelref)
2687 for (i = len - 1; i >= 0; i--)
2688 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2689 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2690 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2691 return 1;
2693 else if (GET_CODE (pat) == SET
2694 && SET_DEST (pat) == pc_rtx
2695 && computed_jump_p_1 (SET_SRC (pat)))
2696 return 1;
2698 return 0;
2701 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2702 calls. Processes the subexpressions of EXP and passes them to F. */
2703 static int
2704 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2706 int result, i, j;
2707 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2708 rtx *x;
2710 for (; format[n] != '\0'; n++)
2712 switch (format[n])
2714 case 'e':
2715 /* Call F on X. */
2716 x = &XEXP (exp, n);
2717 result = (*f) (x, data);
2718 if (result == -1)
2719 /* Do not traverse sub-expressions. */
2720 continue;
2721 else if (result != 0)
2722 /* Stop the traversal. */
2723 return result;
2725 if (*x == NULL_RTX)
2726 /* There are no sub-expressions. */
2727 continue;
2729 i = non_rtx_starting_operands[GET_CODE (*x)];
2730 if (i >= 0)
2732 result = for_each_rtx_1 (*x, i, f, data);
2733 if (result != 0)
2734 return result;
2736 break;
2738 case 'V':
2739 case 'E':
2740 if (XVEC (exp, n) == 0)
2741 continue;
2742 for (j = 0; j < XVECLEN (exp, n); ++j)
2744 /* Call F on X. */
2745 x = &XVECEXP (exp, n, j);
2746 result = (*f) (x, data);
2747 if (result == -1)
2748 /* Do not traverse sub-expressions. */
2749 continue;
2750 else if (result != 0)
2751 /* Stop the traversal. */
2752 return result;
2754 if (*x == NULL_RTX)
2755 /* There are no sub-expressions. */
2756 continue;
2758 i = non_rtx_starting_operands[GET_CODE (*x)];
2759 if (i >= 0)
2761 result = for_each_rtx_1 (*x, i, f, data);
2762 if (result != 0)
2763 return result;
2766 break;
2768 default:
2769 /* Nothing to do. */
2770 break;
2774 return 0;
2777 /* Traverse X via depth-first search, calling F for each
2778 sub-expression (including X itself). F is also passed the DATA.
2779 If F returns -1, do not traverse sub-expressions, but continue
2780 traversing the rest of the tree. If F ever returns any other
2781 nonzero value, stop the traversal, and return the value returned
2782 by F. Otherwise, return 0. This function does not traverse inside
2783 tree structure that contains RTX_EXPRs, or into sub-expressions
2784 whose format code is `0' since it is not known whether or not those
2785 codes are actually RTL.
2787 This routine is very general, and could (should?) be used to
2788 implement many of the other routines in this file. */
2791 for_each_rtx (rtx *x, rtx_function f, void *data)
2793 int result;
2794 int i;
2796 /* Call F on X. */
2797 result = (*f) (x, data);
2798 if (result == -1)
2799 /* Do not traverse sub-expressions. */
2800 return 0;
2801 else if (result != 0)
2802 /* Stop the traversal. */
2803 return result;
2805 if (*x == NULL_RTX)
2806 /* There are no sub-expressions. */
2807 return 0;
2809 i = non_rtx_starting_operands[GET_CODE (*x)];
2810 if (i < 0)
2811 return 0;
2813 return for_each_rtx_1 (*x, i, f, data);
2817 /* Searches X for any reference to REGNO, returning the rtx of the
2818 reference found if any. Otherwise, returns NULL_RTX. */
2821 regno_use_in (unsigned int regno, rtx x)
2823 const char *fmt;
2824 int i, j;
2825 rtx tem;
2827 if (REG_P (x) && REGNO (x) == regno)
2828 return x;
2830 fmt = GET_RTX_FORMAT (GET_CODE (x));
2831 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2833 if (fmt[i] == 'e')
2835 if ((tem = regno_use_in (regno, XEXP (x, i))))
2836 return tem;
2838 else if (fmt[i] == 'E')
2839 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2840 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2841 return tem;
2844 return NULL_RTX;
2847 /* Return a value indicating whether OP, an operand of a commutative
2848 operation, is preferred as the first or second operand. The higher
2849 the value, the stronger the preference for being the first operand.
2850 We use negative values to indicate a preference for the first operand
2851 and positive values for the second operand. */
2854 commutative_operand_precedence (rtx op)
2856 enum rtx_code code = GET_CODE (op);
2858 /* Constants always come the second operand. Prefer "nice" constants. */
2859 if (code == CONST_INT)
2860 return -7;
2861 if (code == CONST_DOUBLE)
2862 return -6;
2863 op = avoid_constant_pool_reference (op);
2864 code = GET_CODE (op);
2866 switch (GET_RTX_CLASS (code))
2868 case RTX_CONST_OBJ:
2869 if (code == CONST_INT)
2870 return -5;
2871 if (code == CONST_DOUBLE)
2872 return -4;
2873 return -3;
2875 case RTX_EXTRA:
2876 /* SUBREGs of objects should come second. */
2877 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2878 return -2;
2880 if (!CONSTANT_P (op))
2881 return 0;
2882 else
2883 /* As for RTX_CONST_OBJ. */
2884 return -3;
2886 case RTX_OBJ:
2887 /* Complex expressions should be the first, so decrease priority
2888 of objects. */
2889 return -1;
2891 case RTX_COMM_ARITH:
2892 /* Prefer operands that are themselves commutative to be first.
2893 This helps to make things linear. In particular,
2894 (and (and (reg) (reg)) (not (reg))) is canonical. */
2895 return 4;
2897 case RTX_BIN_ARITH:
2898 /* If only one operand is a binary expression, it will be the first
2899 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2900 is canonical, although it will usually be further simplified. */
2901 return 2;
2903 case RTX_UNARY:
2904 /* Then prefer NEG and NOT. */
2905 if (code == NEG || code == NOT)
2906 return 1;
2908 default:
2909 return 0;
2913 /* Return 1 iff it is necessary to swap operands of commutative operation
2914 in order to canonicalize expression. */
2917 swap_commutative_operands_p (rtx x, rtx y)
2919 return (commutative_operand_precedence (x)
2920 < commutative_operand_precedence (y));
2923 /* Return 1 if X is an autoincrement side effect and the register is
2924 not the stack pointer. */
2926 auto_inc_p (rtx x)
2928 switch (GET_CODE (x))
2930 case PRE_INC:
2931 case POST_INC:
2932 case PRE_DEC:
2933 case POST_DEC:
2934 case PRE_MODIFY:
2935 case POST_MODIFY:
2936 /* There are no REG_INC notes for SP. */
2937 if (XEXP (x, 0) != stack_pointer_rtx)
2938 return 1;
2939 default:
2940 break;
2942 return 0;
2945 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2947 loc_mentioned_in_p (rtx *loc, rtx in)
2949 enum rtx_code code;
2950 const char *fmt;
2951 int i, j;
2953 if (!in)
2954 return 0;
2956 code = GET_CODE (in);
2957 fmt = GET_RTX_FORMAT (code);
2958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2960 if (loc == &in->u.fld[i].rt_rtx)
2961 return 1;
2962 if (fmt[i] == 'e')
2964 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2965 return 1;
2967 else if (fmt[i] == 'E')
2968 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2969 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2970 return 1;
2972 return 0;
2975 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2976 and SUBREG_BYTE, return the bit offset where the subreg begins
2977 (counting from the least significant bit of the operand). */
2979 unsigned int
2980 subreg_lsb_1 (enum machine_mode outer_mode,
2981 enum machine_mode inner_mode,
2982 unsigned int subreg_byte)
2984 unsigned int bitpos;
2985 unsigned int byte;
2986 unsigned int word;
2988 /* A paradoxical subreg begins at bit position 0. */
2989 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2990 return 0;
2992 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2993 /* If the subreg crosses a word boundary ensure that
2994 it also begins and ends on a word boundary. */
2995 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2996 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2997 && (subreg_byte % UNITS_PER_WORD
2998 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3000 if (WORDS_BIG_ENDIAN)
3001 word = (GET_MODE_SIZE (inner_mode)
3002 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3003 else
3004 word = subreg_byte / UNITS_PER_WORD;
3005 bitpos = word * BITS_PER_WORD;
3007 if (BYTES_BIG_ENDIAN)
3008 byte = (GET_MODE_SIZE (inner_mode)
3009 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3010 else
3011 byte = subreg_byte % UNITS_PER_WORD;
3012 bitpos += byte * BITS_PER_UNIT;
3014 return bitpos;
3017 /* Given a subreg X, return the bit offset where the subreg begins
3018 (counting from the least significant bit of the reg). */
3020 unsigned int
3021 subreg_lsb (rtx x)
3023 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3024 SUBREG_BYTE (x));
3027 /* Fill in information about a subreg of a hard register.
3028 xregno - A regno of an inner hard subreg_reg (or what will become one).
3029 xmode - The mode of xregno.
3030 offset - The byte offset.
3031 ymode - The mode of a top level SUBREG (or what may become one).
3032 info - Pointer to structure to fill in. */
3033 static void
3034 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3035 unsigned int offset, enum machine_mode ymode,
3036 struct subreg_info *info)
3038 int nregs_xmode, nregs_ymode;
3039 int mode_multiple, nregs_multiple;
3040 int offset_adj, y_offset, y_offset_adj;
3041 int regsize_xmode, regsize_ymode;
3042 bool rknown;
3044 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3046 rknown = false;
3048 /* If there are holes in a non-scalar mode in registers, we expect
3049 that it is made up of its units concatenated together. */
3050 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3052 enum machine_mode xmode_unit;
3054 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3055 if (GET_MODE_INNER (xmode) == VOIDmode)
3056 xmode_unit = xmode;
3057 else
3058 xmode_unit = GET_MODE_INNER (xmode);
3059 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3060 gcc_assert (nregs_xmode
3061 == (GET_MODE_NUNITS (xmode)
3062 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3063 gcc_assert (hard_regno_nregs[xregno][xmode]
3064 == (hard_regno_nregs[xregno][xmode_unit]
3065 * GET_MODE_NUNITS (xmode)));
3067 /* You can only ask for a SUBREG of a value with holes in the middle
3068 if you don't cross the holes. (Such a SUBREG should be done by
3069 picking a different register class, or doing it in memory if
3070 necessary.) An example of a value with holes is XCmode on 32-bit
3071 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3072 3 for each part, but in memory it's two 128-bit parts.
3073 Padding is assumed to be at the end (not necessarily the 'high part')
3074 of each unit. */
3075 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3076 < GET_MODE_NUNITS (xmode))
3077 && (offset / GET_MODE_SIZE (xmode_unit)
3078 != ((offset + GET_MODE_SIZE (ymode) - 1)
3079 / GET_MODE_SIZE (xmode_unit))))
3081 info->representable_p = false;
3082 rknown = true;
3085 else
3086 nregs_xmode = hard_regno_nregs[xregno][xmode];
3088 nregs_ymode = hard_regno_nregs[xregno][ymode];
3090 /* Paradoxical subregs are otherwise valid. */
3091 if (!rknown
3092 && offset == 0
3093 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3095 info->representable_p = true;
3096 /* If this is a big endian paradoxical subreg, which uses more
3097 actual hard registers than the original register, we must
3098 return a negative offset so that we find the proper highpart
3099 of the register. */
3100 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3101 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3102 info->offset = nregs_xmode - nregs_ymode;
3103 else
3104 info->offset = 0;
3105 info->nregs = nregs_ymode;
3106 return;
3109 /* If registers store different numbers of bits in the different
3110 modes, we cannot generally form this subreg. */
3111 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3112 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3113 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3114 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3116 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3117 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3118 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3120 info->representable_p = false;
3121 info->nregs
3122 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3123 info->offset = offset / regsize_xmode;
3124 return;
3126 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3128 info->representable_p = false;
3129 info->nregs
3130 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3131 info->offset = offset / regsize_xmode;
3132 return;
3136 /* Lowpart subregs are otherwise valid. */
3137 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3139 info->representable_p = true;
3140 rknown = true;
3142 if (offset == 0 || nregs_xmode == nregs_ymode)
3144 info->offset = 0;
3145 info->nregs = nregs_ymode;
3146 return;
3150 /* This should always pass, otherwise we don't know how to verify
3151 the constraint. These conditions may be relaxed but
3152 subreg_regno_offset would need to be redesigned. */
3153 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3154 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3156 /* The XMODE value can be seen as a vector of NREGS_XMODE
3157 values. The subreg must represent a lowpart of given field.
3158 Compute what field it is. */
3159 offset_adj = offset;
3160 offset_adj -= subreg_lowpart_offset (ymode,
3161 mode_for_size (GET_MODE_BITSIZE (xmode)
3162 / nregs_xmode,
3163 MODE_INT, 0));
3165 /* Size of ymode must not be greater than the size of xmode. */
3166 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3167 gcc_assert (mode_multiple != 0);
3169 y_offset = offset / GET_MODE_SIZE (ymode);
3170 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3171 nregs_multiple = nregs_xmode / nregs_ymode;
3173 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3174 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3176 if (!rknown)
3178 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3179 rknown = true;
3181 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3182 info->nregs = nregs_ymode;
3185 /* This function returns the regno offset of a subreg expression.
3186 xregno - A regno of an inner hard subreg_reg (or what will become one).
3187 xmode - The mode of xregno.
3188 offset - The byte offset.
3189 ymode - The mode of a top level SUBREG (or what may become one).
3190 RETURN - The regno offset which would be used. */
3191 unsigned int
3192 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3193 unsigned int offset, enum machine_mode ymode)
3195 struct subreg_info info;
3196 subreg_get_info (xregno, xmode, offset, ymode, &info);
3197 return info.offset;
3200 /* This function returns true when the offset is representable via
3201 subreg_offset in the given regno.
3202 xregno - A regno of an inner hard subreg_reg (or what will become one).
3203 xmode - The mode of xregno.
3204 offset - The byte offset.
3205 ymode - The mode of a top level SUBREG (or what may become one).
3206 RETURN - Whether the offset is representable. */
3207 bool
3208 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3209 unsigned int offset, enum machine_mode ymode)
3211 struct subreg_info info;
3212 subreg_get_info (xregno, xmode, offset, ymode, &info);
3213 return info.representable_p;
3216 /* Return the final regno that a subreg expression refers to. */
3217 unsigned int
3218 subreg_regno (rtx x)
3220 unsigned int ret;
3221 rtx subreg = SUBREG_REG (x);
3222 int regno = REGNO (subreg);
3224 ret = regno + subreg_regno_offset (regno,
3225 GET_MODE (subreg),
3226 SUBREG_BYTE (x),
3227 GET_MODE (x));
3228 return ret;
3232 /* Return the number of registers that a subreg expression refers
3233 to. */
3234 unsigned int
3235 subreg_nregs (rtx x)
3237 struct subreg_info info;
3238 rtx subreg = SUBREG_REG (x);
3239 int regno = REGNO (subreg);
3241 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3242 &info);
3243 return info.nregs;
3246 struct parms_set_data
3248 int nregs;
3249 HARD_REG_SET regs;
3252 /* Helper function for noticing stores to parameter registers. */
3253 static void
3254 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3256 struct parms_set_data *d = data;
3257 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3258 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3260 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3261 d->nregs--;
3265 /* Look backward for first parameter to be loaded.
3266 Note that loads of all parameters will not necessarily be
3267 found if CSE has eliminated some of them (e.g., an argument
3268 to the outer function is passed down as a parameter).
3269 Do not skip BOUNDARY. */
3271 find_first_parameter_load (rtx call_insn, rtx boundary)
3273 struct parms_set_data parm;
3274 rtx p, before, first_set;
3276 /* Since different machines initialize their parameter registers
3277 in different orders, assume nothing. Collect the set of all
3278 parameter registers. */
3279 CLEAR_HARD_REG_SET (parm.regs);
3280 parm.nregs = 0;
3281 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3282 if (GET_CODE (XEXP (p, 0)) == USE
3283 && REG_P (XEXP (XEXP (p, 0), 0)))
3285 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3287 /* We only care about registers which can hold function
3288 arguments. */
3289 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3290 continue;
3292 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3293 parm.nregs++;
3295 before = call_insn;
3296 first_set = call_insn;
3298 /* Search backward for the first set of a register in this set. */
3299 while (parm.nregs && before != boundary)
3301 before = PREV_INSN (before);
3303 /* It is possible that some loads got CSEed from one call to
3304 another. Stop in that case. */
3305 if (CALL_P (before))
3306 break;
3308 /* Our caller needs either ensure that we will find all sets
3309 (in case code has not been optimized yet), or take care
3310 for possible labels in a way by setting boundary to preceding
3311 CODE_LABEL. */
3312 if (LABEL_P (before))
3314 gcc_assert (before == boundary);
3315 break;
3318 if (INSN_P (before))
3320 int nregs_old = parm.nregs;
3321 note_stores (PATTERN (before), parms_set, &parm);
3322 /* If we found something that did not set a parameter reg,
3323 we're done. Do not keep going, as that might result
3324 in hoisting an insn before the setting of a pseudo
3325 that is used by the hoisted insn. */
3326 if (nregs_old != parm.nregs)
3327 first_set = before;
3328 else
3329 break;
3332 return first_set;
3335 /* Return true if we should avoid inserting code between INSN and preceding
3336 call instruction. */
3338 bool
3339 keep_with_call_p (rtx insn)
3341 rtx set;
3343 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3345 if (REG_P (SET_DEST (set))
3346 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3347 && fixed_regs[REGNO (SET_DEST (set))]
3348 && general_operand (SET_SRC (set), VOIDmode))
3349 return true;
3350 if (REG_P (SET_SRC (set))
3351 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3352 && REG_P (SET_DEST (set))
3353 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3354 return true;
3355 /* There may be a stack pop just after the call and before the store
3356 of the return register. Search for the actual store when deciding
3357 if we can break or not. */
3358 if (SET_DEST (set) == stack_pointer_rtx)
3360 rtx i2 = next_nonnote_insn (insn);
3361 if (i2 && keep_with_call_p (i2))
3362 return true;
3365 return false;
3368 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3369 to non-complex jumps. That is, direct unconditional, conditional,
3370 and tablejumps, but not computed jumps or returns. It also does
3371 not apply to the fallthru case of a conditional jump. */
3373 bool
3374 label_is_jump_target_p (rtx label, rtx jump_insn)
3376 rtx tmp = JUMP_LABEL (jump_insn);
3378 if (label == tmp)
3379 return true;
3381 if (tablejump_p (jump_insn, NULL, &tmp))
3383 rtvec vec = XVEC (PATTERN (tmp),
3384 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3385 int i, veclen = GET_NUM_ELEM (vec);
3387 for (i = 0; i < veclen; ++i)
3388 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3389 return true;
3392 return false;
3396 /* Return an estimate of the cost of computing rtx X.
3397 One use is in cse, to decide which expression to keep in the hash table.
3398 Another is in rtl generation, to pick the cheapest way to multiply.
3399 Other uses like the latter are expected in the future. */
3402 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3404 int i, j;
3405 enum rtx_code code;
3406 const char *fmt;
3407 int total;
3409 if (x == 0)
3410 return 0;
3412 /* Compute the default costs of certain things.
3413 Note that targetm.rtx_costs can override the defaults. */
3415 code = GET_CODE (x);
3416 switch (code)
3418 case MULT:
3419 total = COSTS_N_INSNS (5);
3420 break;
3421 case DIV:
3422 case UDIV:
3423 case MOD:
3424 case UMOD:
3425 total = COSTS_N_INSNS (7);
3426 break;
3427 case USE:
3428 /* Used in combine.c as a marker. */
3429 total = 0;
3430 break;
3431 default:
3432 total = COSTS_N_INSNS (1);
3435 switch (code)
3437 case REG:
3438 return 0;
3440 case SUBREG:
3441 total = 0;
3442 /* If we can't tie these modes, make this expensive. The larger
3443 the mode, the more expensive it is. */
3444 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3445 return COSTS_N_INSNS (2
3446 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3447 break;
3449 default:
3450 if (targetm.rtx_costs (x, code, outer_code, &total))
3451 return total;
3452 break;
3455 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3456 which is already in total. */
3458 fmt = GET_RTX_FORMAT (code);
3459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3460 if (fmt[i] == 'e')
3461 total += rtx_cost (XEXP (x, i), code);
3462 else if (fmt[i] == 'E')
3463 for (j = 0; j < XVECLEN (x, i); j++)
3464 total += rtx_cost (XVECEXP (x, i, j), code);
3466 return total;
3469 /* Return cost of address expression X.
3470 Expect that X is properly formed address reference. */
3473 address_cost (rtx x, enum machine_mode mode)
3475 /* We may be asked for cost of various unusual addresses, such as operands
3476 of push instruction. It is not worthwhile to complicate writing
3477 of the target hook by such cases. */
3479 if (!memory_address_p (mode, x))
3480 return 1000;
3482 return targetm.address_cost (x);
3485 /* If the target doesn't override, compute the cost as with arithmetic. */
3488 default_address_cost (rtx x)
3490 return rtx_cost (x, MEM);
3494 unsigned HOST_WIDE_INT
3495 nonzero_bits (rtx x, enum machine_mode mode)
3497 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3500 unsigned int
3501 num_sign_bit_copies (rtx x, enum machine_mode mode)
3503 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3506 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3507 It avoids exponential behavior in nonzero_bits1 when X has
3508 identical subexpressions on the first or the second level. */
3510 static unsigned HOST_WIDE_INT
3511 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3512 enum machine_mode known_mode,
3513 unsigned HOST_WIDE_INT known_ret)
3515 if (x == known_x && mode == known_mode)
3516 return known_ret;
3518 /* Try to find identical subexpressions. If found call
3519 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3520 precomputed value for the subexpression as KNOWN_RET. */
3522 if (ARITHMETIC_P (x))
3524 rtx x0 = XEXP (x, 0);
3525 rtx x1 = XEXP (x, 1);
3527 /* Check the first level. */
3528 if (x0 == x1)
3529 return nonzero_bits1 (x, mode, x0, mode,
3530 cached_nonzero_bits (x0, mode, known_x,
3531 known_mode, known_ret));
3533 /* Check the second level. */
3534 if (ARITHMETIC_P (x0)
3535 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3536 return nonzero_bits1 (x, mode, x1, mode,
3537 cached_nonzero_bits (x1, mode, known_x,
3538 known_mode, known_ret));
3540 if (ARITHMETIC_P (x1)
3541 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3542 return nonzero_bits1 (x, mode, x0, mode,
3543 cached_nonzero_bits (x0, mode, known_x,
3544 known_mode, known_ret));
3547 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3550 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3551 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3552 is less useful. We can't allow both, because that results in exponential
3553 run time recursion. There is a nullstone testcase that triggered
3554 this. This macro avoids accidental uses of num_sign_bit_copies. */
3555 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3557 /* Given an expression, X, compute which bits in X can be nonzero.
3558 We don't care about bits outside of those defined in MODE.
3560 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3561 an arithmetic operation, we can do better. */
3563 static unsigned HOST_WIDE_INT
3564 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3565 enum machine_mode known_mode,
3566 unsigned HOST_WIDE_INT known_ret)
3568 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3569 unsigned HOST_WIDE_INT inner_nz;
3570 enum rtx_code code;
3571 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3573 /* For floating-point values, assume all bits are needed. */
3574 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3575 return nonzero;
3577 /* If X is wider than MODE, use its mode instead. */
3578 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3580 mode = GET_MODE (x);
3581 nonzero = GET_MODE_MASK (mode);
3582 mode_width = GET_MODE_BITSIZE (mode);
3585 if (mode_width > HOST_BITS_PER_WIDE_INT)
3586 /* Our only callers in this case look for single bit values. So
3587 just return the mode mask. Those tests will then be false. */
3588 return nonzero;
3590 #ifndef WORD_REGISTER_OPERATIONS
3591 /* If MODE is wider than X, but both are a single word for both the host
3592 and target machines, we can compute this from which bits of the
3593 object might be nonzero in its own mode, taking into account the fact
3594 that on many CISC machines, accessing an object in a wider mode
3595 causes the high-order bits to become undefined. So they are
3596 not known to be zero. */
3598 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3599 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3600 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3601 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3603 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3604 known_x, known_mode, known_ret);
3605 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3606 return nonzero;
3608 #endif
3610 code = GET_CODE (x);
3611 switch (code)
3613 case REG:
3614 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3615 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3616 all the bits above ptr_mode are known to be zero. */
3617 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3618 && REG_POINTER (x))
3619 nonzero &= GET_MODE_MASK (ptr_mode);
3620 #endif
3622 /* Include declared information about alignment of pointers. */
3623 /* ??? We don't properly preserve REG_POINTER changes across
3624 pointer-to-integer casts, so we can't trust it except for
3625 things that we know must be pointers. See execute/960116-1.c. */
3626 if ((x == stack_pointer_rtx
3627 || x == frame_pointer_rtx
3628 || x == arg_pointer_rtx)
3629 && REGNO_POINTER_ALIGN (REGNO (x)))
3631 unsigned HOST_WIDE_INT alignment
3632 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3634 #ifdef PUSH_ROUNDING
3635 /* If PUSH_ROUNDING is defined, it is possible for the
3636 stack to be momentarily aligned only to that amount,
3637 so we pick the least alignment. */
3638 if (x == stack_pointer_rtx && PUSH_ARGS)
3639 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3640 alignment);
3641 #endif
3643 nonzero &= ~(alignment - 1);
3647 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3648 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3649 known_mode, known_ret,
3650 &nonzero_for_hook);
3652 if (new)
3653 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3654 known_mode, known_ret);
3656 return nonzero_for_hook;
3659 case CONST_INT:
3660 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3661 /* If X is negative in MODE, sign-extend the value. */
3662 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3663 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3664 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3665 #endif
3667 return INTVAL (x);
3669 case MEM:
3670 #ifdef LOAD_EXTEND_OP
3671 /* In many, if not most, RISC machines, reading a byte from memory
3672 zeros the rest of the register. Noticing that fact saves a lot
3673 of extra zero-extends. */
3674 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3675 nonzero &= GET_MODE_MASK (GET_MODE (x));
3676 #endif
3677 break;
3679 case EQ: case NE:
3680 case UNEQ: case LTGT:
3681 case GT: case GTU: case UNGT:
3682 case LT: case LTU: case UNLT:
3683 case GE: case GEU: case UNGE:
3684 case LE: case LEU: case UNLE:
3685 case UNORDERED: case ORDERED:
3686 /* If this produces an integer result, we know which bits are set.
3687 Code here used to clear bits outside the mode of X, but that is
3688 now done above. */
3689 /* Mind that MODE is the mode the caller wants to look at this
3690 operation in, and not the actual operation mode. We can wind
3691 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3692 that describes the results of a vector compare. */
3693 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3694 && mode_width <= HOST_BITS_PER_WIDE_INT)
3695 nonzero = STORE_FLAG_VALUE;
3696 break;
3698 case NEG:
3699 #if 0
3700 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3701 and num_sign_bit_copies. */
3702 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3703 == GET_MODE_BITSIZE (GET_MODE (x)))
3704 nonzero = 1;
3705 #endif
3707 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3708 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3709 break;
3711 case ABS:
3712 #if 0
3713 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3714 and num_sign_bit_copies. */
3715 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3716 == GET_MODE_BITSIZE (GET_MODE (x)))
3717 nonzero = 1;
3718 #endif
3719 break;
3721 case TRUNCATE:
3722 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3723 known_x, known_mode, known_ret)
3724 & GET_MODE_MASK (mode));
3725 break;
3727 case ZERO_EXTEND:
3728 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3729 known_x, known_mode, known_ret);
3730 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3731 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3732 break;
3734 case SIGN_EXTEND:
3735 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3736 Otherwise, show all the bits in the outer mode but not the inner
3737 may be nonzero. */
3738 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3739 known_x, known_mode, known_ret);
3740 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3742 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3743 if (inner_nz
3744 & (((HOST_WIDE_INT) 1
3745 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3746 inner_nz |= (GET_MODE_MASK (mode)
3747 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3750 nonzero &= inner_nz;
3751 break;
3753 case AND:
3754 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3755 known_x, known_mode, known_ret)
3756 & cached_nonzero_bits (XEXP (x, 1), mode,
3757 known_x, known_mode, known_ret);
3758 break;
3760 case XOR: case IOR:
3761 case UMIN: case UMAX: case SMIN: case SMAX:
3763 unsigned HOST_WIDE_INT nonzero0 =
3764 cached_nonzero_bits (XEXP (x, 0), mode,
3765 known_x, known_mode, known_ret);
3767 /* Don't call nonzero_bits for the second time if it cannot change
3768 anything. */
3769 if ((nonzero & nonzero0) != nonzero)
3770 nonzero &= nonzero0
3771 | cached_nonzero_bits (XEXP (x, 1), mode,
3772 known_x, known_mode, known_ret);
3774 break;
3776 case PLUS: case MINUS:
3777 case MULT:
3778 case DIV: case UDIV:
3779 case MOD: case UMOD:
3780 /* We can apply the rules of arithmetic to compute the number of
3781 high- and low-order zero bits of these operations. We start by
3782 computing the width (position of the highest-order nonzero bit)
3783 and the number of low-order zero bits for each value. */
3785 unsigned HOST_WIDE_INT nz0 =
3786 cached_nonzero_bits (XEXP (x, 0), mode,
3787 known_x, known_mode, known_ret);
3788 unsigned HOST_WIDE_INT nz1 =
3789 cached_nonzero_bits (XEXP (x, 1), mode,
3790 known_x, known_mode, known_ret);
3791 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3792 int width0 = floor_log2 (nz0) + 1;
3793 int width1 = floor_log2 (nz1) + 1;
3794 int low0 = floor_log2 (nz0 & -nz0);
3795 int low1 = floor_log2 (nz1 & -nz1);
3796 HOST_WIDE_INT op0_maybe_minusp
3797 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3798 HOST_WIDE_INT op1_maybe_minusp
3799 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3800 unsigned int result_width = mode_width;
3801 int result_low = 0;
3803 switch (code)
3805 case PLUS:
3806 result_width = MAX (width0, width1) + 1;
3807 result_low = MIN (low0, low1);
3808 break;
3809 case MINUS:
3810 result_low = MIN (low0, low1);
3811 break;
3812 case MULT:
3813 result_width = width0 + width1;
3814 result_low = low0 + low1;
3815 break;
3816 case DIV:
3817 if (width1 == 0)
3818 break;
3819 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3820 result_width = width0;
3821 break;
3822 case UDIV:
3823 if (width1 == 0)
3824 break;
3825 result_width = width0;
3826 break;
3827 case MOD:
3828 if (width1 == 0)
3829 break;
3830 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3831 result_width = MIN (width0, width1);
3832 result_low = MIN (low0, low1);
3833 break;
3834 case UMOD:
3835 if (width1 == 0)
3836 break;
3837 result_width = MIN (width0, width1);
3838 result_low = MIN (low0, low1);
3839 break;
3840 default:
3841 gcc_unreachable ();
3844 if (result_width < mode_width)
3845 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3847 if (result_low > 0)
3848 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3850 #ifdef POINTERS_EXTEND_UNSIGNED
3851 /* If pointers extend unsigned and this is an addition or subtraction
3852 to a pointer in Pmode, all the bits above ptr_mode are known to be
3853 zero. */
3854 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3855 && (code == PLUS || code == MINUS)
3856 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3857 nonzero &= GET_MODE_MASK (ptr_mode);
3858 #endif
3860 break;
3862 case ZERO_EXTRACT:
3863 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3864 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3865 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3866 break;
3868 case SUBREG:
3869 /* If this is a SUBREG formed for a promoted variable that has
3870 been zero-extended, we know that at least the high-order bits
3871 are zero, though others might be too. */
3873 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3874 nonzero = GET_MODE_MASK (GET_MODE (x))
3875 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3876 known_x, known_mode, known_ret);
3878 /* If the inner mode is a single word for both the host and target
3879 machines, we can compute this from which bits of the inner
3880 object might be nonzero. */
3881 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3882 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3883 <= HOST_BITS_PER_WIDE_INT))
3885 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3886 known_x, known_mode, known_ret);
3888 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3889 /* If this is a typical RISC machine, we only have to worry
3890 about the way loads are extended. */
3891 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3892 ? (((nonzero
3893 & (((unsigned HOST_WIDE_INT) 1
3894 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3895 != 0))
3896 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3897 || !MEM_P (SUBREG_REG (x)))
3898 #endif
3900 /* On many CISC machines, accessing an object in a wider mode
3901 causes the high-order bits to become undefined. So they are
3902 not known to be zero. */
3903 if (GET_MODE_SIZE (GET_MODE (x))
3904 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3905 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3906 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3909 break;
3911 case ASHIFTRT:
3912 case LSHIFTRT:
3913 case ASHIFT:
3914 case ROTATE:
3915 /* The nonzero bits are in two classes: any bits within MODE
3916 that aren't in GET_MODE (x) are always significant. The rest of the
3917 nonzero bits are those that are significant in the operand of
3918 the shift when shifted the appropriate number of bits. This
3919 shows that high-order bits are cleared by the right shift and
3920 low-order bits by left shifts. */
3921 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3922 && INTVAL (XEXP (x, 1)) >= 0
3923 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3925 enum machine_mode inner_mode = GET_MODE (x);
3926 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3927 int count = INTVAL (XEXP (x, 1));
3928 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3929 unsigned HOST_WIDE_INT op_nonzero =
3930 cached_nonzero_bits (XEXP (x, 0), mode,
3931 known_x, known_mode, known_ret);
3932 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3933 unsigned HOST_WIDE_INT outer = 0;
3935 if (mode_width > width)
3936 outer = (op_nonzero & nonzero & ~mode_mask);
3938 if (code == LSHIFTRT)
3939 inner >>= count;
3940 else if (code == ASHIFTRT)
3942 inner >>= count;
3944 /* If the sign bit may have been nonzero before the shift, we
3945 need to mark all the places it could have been copied to
3946 by the shift as possibly nonzero. */
3947 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3948 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3950 else if (code == ASHIFT)
3951 inner <<= count;
3952 else
3953 inner = ((inner << (count % width)
3954 | (inner >> (width - (count % width)))) & mode_mask);
3956 nonzero &= (outer | inner);
3958 break;
3960 case FFS:
3961 case POPCOUNT:
3962 /* This is at most the number of bits in the mode. */
3963 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3964 break;
3966 case CLZ:
3967 /* If CLZ has a known value at zero, then the nonzero bits are
3968 that value, plus the number of bits in the mode minus one. */
3969 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3970 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3971 else
3972 nonzero = -1;
3973 break;
3975 case CTZ:
3976 /* If CTZ has a known value at zero, then the nonzero bits are
3977 that value, plus the number of bits in the mode minus one. */
3978 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3979 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3980 else
3981 nonzero = -1;
3982 break;
3984 case PARITY:
3985 nonzero = 1;
3986 break;
3988 case IF_THEN_ELSE:
3990 unsigned HOST_WIDE_INT nonzero_true =
3991 cached_nonzero_bits (XEXP (x, 1), mode,
3992 known_x, known_mode, known_ret);
3994 /* Don't call nonzero_bits for the second time if it cannot change
3995 anything. */
3996 if ((nonzero & nonzero_true) != nonzero)
3997 nonzero &= nonzero_true
3998 | cached_nonzero_bits (XEXP (x, 2), mode,
3999 known_x, known_mode, known_ret);
4001 break;
4003 default:
4004 break;
4007 return nonzero;
4010 /* See the macro definition above. */
4011 #undef cached_num_sign_bit_copies
4014 /* The function cached_num_sign_bit_copies is a wrapper around
4015 num_sign_bit_copies1. It avoids exponential behavior in
4016 num_sign_bit_copies1 when X has identical subexpressions on the
4017 first or the second level. */
4019 static unsigned int
4020 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4021 enum machine_mode known_mode,
4022 unsigned int known_ret)
4024 if (x == known_x && mode == known_mode)
4025 return known_ret;
4027 /* Try to find identical subexpressions. If found call
4028 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4029 the precomputed value for the subexpression as KNOWN_RET. */
4031 if (ARITHMETIC_P (x))
4033 rtx x0 = XEXP (x, 0);
4034 rtx x1 = XEXP (x, 1);
4036 /* Check the first level. */
4037 if (x0 == x1)
4038 return
4039 num_sign_bit_copies1 (x, mode, x0, mode,
4040 cached_num_sign_bit_copies (x0, mode, known_x,
4041 known_mode,
4042 known_ret));
4044 /* Check the second level. */
4045 if (ARITHMETIC_P (x0)
4046 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4047 return
4048 num_sign_bit_copies1 (x, mode, x1, mode,
4049 cached_num_sign_bit_copies (x1, mode, known_x,
4050 known_mode,
4051 known_ret));
4053 if (ARITHMETIC_P (x1)
4054 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4055 return
4056 num_sign_bit_copies1 (x, mode, x0, mode,
4057 cached_num_sign_bit_copies (x0, mode, known_x,
4058 known_mode,
4059 known_ret));
4062 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4065 /* Return the number of bits at the high-order end of X that are known to
4066 be equal to the sign bit. X will be used in mode MODE; if MODE is
4067 VOIDmode, X will be used in its own mode. The returned value will always
4068 be between 1 and the number of bits in MODE. */
4070 static unsigned int
4071 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4072 enum machine_mode known_mode,
4073 unsigned int known_ret)
4075 enum rtx_code code = GET_CODE (x);
4076 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4077 int num0, num1, result;
4078 unsigned HOST_WIDE_INT nonzero;
4080 /* If we weren't given a mode, use the mode of X. If the mode is still
4081 VOIDmode, we don't know anything. Likewise if one of the modes is
4082 floating-point. */
4084 if (mode == VOIDmode)
4085 mode = GET_MODE (x);
4087 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4088 return 1;
4090 /* For a smaller object, just ignore the high bits. */
4091 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4093 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4094 known_x, known_mode, known_ret);
4095 return MAX (1,
4096 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4099 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4101 #ifndef WORD_REGISTER_OPERATIONS
4102 /* If this machine does not do all register operations on the entire
4103 register and MODE is wider than the mode of X, we can say nothing
4104 at all about the high-order bits. */
4105 return 1;
4106 #else
4107 /* Likewise on machines that do, if the mode of the object is smaller
4108 than a word and loads of that size don't sign extend, we can say
4109 nothing about the high order bits. */
4110 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4111 #ifdef LOAD_EXTEND_OP
4112 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4113 #endif
4115 return 1;
4116 #endif
4119 switch (code)
4121 case REG:
4123 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4124 /* If pointers extend signed and this is a pointer in Pmode, say that
4125 all the bits above ptr_mode are known to be sign bit copies. */
4126 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4127 && REG_POINTER (x))
4128 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4129 #endif
4132 unsigned int copies_for_hook = 1, copies = 1;
4133 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4134 known_mode, known_ret,
4135 &copies_for_hook);
4137 if (new)
4138 copies = cached_num_sign_bit_copies (new, mode, known_x,
4139 known_mode, known_ret);
4141 if (copies > 1 || copies_for_hook > 1)
4142 return MAX (copies, copies_for_hook);
4144 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4146 break;
4148 case MEM:
4149 #ifdef LOAD_EXTEND_OP
4150 /* Some RISC machines sign-extend all loads of smaller than a word. */
4151 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4152 return MAX (1, ((int) bitwidth
4153 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4154 #endif
4155 break;
4157 case CONST_INT:
4158 /* If the constant is negative, take its 1's complement and remask.
4159 Then see how many zero bits we have. */
4160 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4161 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4162 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4163 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4165 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4167 case SUBREG:
4168 /* If this is a SUBREG for a promoted object that is sign-extended
4169 and we are looking at it in a wider mode, we know that at least the
4170 high-order bits are known to be sign bit copies. */
4172 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4174 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4175 known_x, known_mode, known_ret);
4176 return MAX ((int) bitwidth
4177 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4178 num0);
4181 /* For a smaller object, just ignore the high bits. */
4182 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4184 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4185 known_x, known_mode, known_ret);
4186 return MAX (1, (num0
4187 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4188 - bitwidth)));
4191 #ifdef WORD_REGISTER_OPERATIONS
4192 #ifdef LOAD_EXTEND_OP
4193 /* For paradoxical SUBREGs on machines where all register operations
4194 affect the entire register, just look inside. Note that we are
4195 passing MODE to the recursive call, so the number of sign bit copies
4196 will remain relative to that mode, not the inner mode. */
4198 /* This works only if loads sign extend. Otherwise, if we get a
4199 reload for the inner part, it may be loaded from the stack, and
4200 then we lose all sign bit copies that existed before the store
4201 to the stack. */
4203 if ((GET_MODE_SIZE (GET_MODE (x))
4204 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4205 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4206 && MEM_P (SUBREG_REG (x)))
4207 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4208 known_x, known_mode, known_ret);
4209 #endif
4210 #endif
4211 break;
4213 case SIGN_EXTRACT:
4214 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4215 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4216 break;
4218 case SIGN_EXTEND:
4219 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4220 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4221 known_x, known_mode, known_ret));
4223 case TRUNCATE:
4224 /* For a smaller object, just ignore the high bits. */
4225 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4226 known_x, known_mode, known_ret);
4227 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4228 - bitwidth)));
4230 case NOT:
4231 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4232 known_x, known_mode, known_ret);
4234 case ROTATE: case ROTATERT:
4235 /* If we are rotating left by a number of bits less than the number
4236 of sign bit copies, we can just subtract that amount from the
4237 number. */
4238 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4239 && INTVAL (XEXP (x, 1)) >= 0
4240 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4242 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4245 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4247 break;
4249 case NEG:
4250 /* In general, this subtracts one sign bit copy. But if the value
4251 is known to be positive, the number of sign bit copies is the
4252 same as that of the input. Finally, if the input has just one bit
4253 that might be nonzero, all the bits are copies of the sign bit. */
4254 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4255 known_x, known_mode, known_ret);
4256 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4257 return num0 > 1 ? num0 - 1 : 1;
4259 nonzero = nonzero_bits (XEXP (x, 0), mode);
4260 if (nonzero == 1)
4261 return bitwidth;
4263 if (num0 > 1
4264 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4265 num0--;
4267 return num0;
4269 case IOR: case AND: case XOR:
4270 case SMIN: case SMAX: case UMIN: case UMAX:
4271 /* Logical operations will preserve the number of sign-bit copies.
4272 MIN and MAX operations always return one of the operands. */
4273 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4274 known_x, known_mode, known_ret);
4275 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4276 known_x, known_mode, known_ret);
4277 return MIN (num0, num1);
4279 case PLUS: case MINUS:
4280 /* For addition and subtraction, we can have a 1-bit carry. However,
4281 if we are subtracting 1 from a positive number, there will not
4282 be such a carry. Furthermore, if the positive number is known to
4283 be 0 or 1, we know the result is either -1 or 0. */
4285 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4286 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4288 nonzero = nonzero_bits (XEXP (x, 0), mode);
4289 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4290 return (nonzero == 1 || nonzero == 0 ? bitwidth
4291 : bitwidth - floor_log2 (nonzero) - 1);
4294 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4295 known_x, known_mode, known_ret);
4296 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4298 result = MAX (1, MIN (num0, num1) - 1);
4300 #ifdef POINTERS_EXTEND_UNSIGNED
4301 /* If pointers extend signed and this is an addition or subtraction
4302 to a pointer in Pmode, all the bits above ptr_mode are known to be
4303 sign bit copies. */
4304 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4305 && (code == PLUS || code == MINUS)
4306 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4307 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4308 - GET_MODE_BITSIZE (ptr_mode) + 1),
4309 result);
4310 #endif
4311 return result;
4313 case MULT:
4314 /* The number of bits of the product is the sum of the number of
4315 bits of both terms. However, unless one of the terms if known
4316 to be positive, we must allow for an additional bit since negating
4317 a negative number can remove one sign bit copy. */
4319 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4320 known_x, known_mode, known_ret);
4321 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4322 known_x, known_mode, known_ret);
4324 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4325 if (result > 0
4326 && (bitwidth > HOST_BITS_PER_WIDE_INT
4327 || (((nonzero_bits (XEXP (x, 0), mode)
4328 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4329 && ((nonzero_bits (XEXP (x, 1), mode)
4330 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4331 result--;
4333 return MAX (1, result);
4335 case UDIV:
4336 /* The result must be <= the first operand. If the first operand
4337 has the high bit set, we know nothing about the number of sign
4338 bit copies. */
4339 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4340 return 1;
4341 else if ((nonzero_bits (XEXP (x, 0), mode)
4342 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4343 return 1;
4344 else
4345 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4346 known_x, known_mode, known_ret);
4348 case UMOD:
4349 /* The result must be <= the second operand. */
4350 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4351 known_x, known_mode, known_ret);
4353 case DIV:
4354 /* Similar to unsigned division, except that we have to worry about
4355 the case where the divisor is negative, in which case we have
4356 to add 1. */
4357 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4358 known_x, known_mode, known_ret);
4359 if (result > 1
4360 && (bitwidth > HOST_BITS_PER_WIDE_INT
4361 || (nonzero_bits (XEXP (x, 1), mode)
4362 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4363 result--;
4365 return result;
4367 case MOD:
4368 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4369 known_x, known_mode, known_ret);
4370 if (result > 1
4371 && (bitwidth > HOST_BITS_PER_WIDE_INT
4372 || (nonzero_bits (XEXP (x, 1), mode)
4373 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4374 result--;
4376 return result;
4378 case ASHIFTRT:
4379 /* Shifts by a constant add to the number of bits equal to the
4380 sign bit. */
4381 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4382 known_x, known_mode, known_ret);
4383 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4384 && INTVAL (XEXP (x, 1)) > 0)
4385 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4387 return num0;
4389 case ASHIFT:
4390 /* Left shifts destroy copies. */
4391 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4392 || INTVAL (XEXP (x, 1)) < 0
4393 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4394 return 1;
4396 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4397 known_x, known_mode, known_ret);
4398 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4400 case IF_THEN_ELSE:
4401 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4402 known_x, known_mode, known_ret);
4403 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4404 known_x, known_mode, known_ret);
4405 return MIN (num0, num1);
4407 case EQ: case NE: case GE: case GT: case LE: case LT:
4408 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4409 case GEU: case GTU: case LEU: case LTU:
4410 case UNORDERED: case ORDERED:
4411 /* If the constant is negative, take its 1's complement and remask.
4412 Then see how many zero bits we have. */
4413 nonzero = STORE_FLAG_VALUE;
4414 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4415 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4416 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4418 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4420 default:
4421 break;
4424 /* If we haven't been able to figure it out by one of the above rules,
4425 see if some of the high-order bits are known to be zero. If so,
4426 count those bits and return one less than that amount. If we can't
4427 safely compute the mask for this mode, always return BITWIDTH. */
4429 bitwidth = GET_MODE_BITSIZE (mode);
4430 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4431 return 1;
4433 nonzero = nonzero_bits (x, mode);
4434 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4435 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4438 /* Calculate the rtx_cost of a single instruction. A return value of
4439 zero indicates an instruction pattern without a known cost. */
4442 insn_rtx_cost (rtx pat)
4444 int i, cost;
4445 rtx set;
4447 /* Extract the single set rtx from the instruction pattern.
4448 We can't use single_set since we only have the pattern. */
4449 if (GET_CODE (pat) == SET)
4450 set = pat;
4451 else if (GET_CODE (pat) == PARALLEL)
4453 set = NULL_RTX;
4454 for (i = 0; i < XVECLEN (pat, 0); i++)
4456 rtx x = XVECEXP (pat, 0, i);
4457 if (GET_CODE (x) == SET)
4459 if (set)
4460 return 0;
4461 set = x;
4464 if (!set)
4465 return 0;
4467 else
4468 return 0;
4470 cost = rtx_cost (SET_SRC (set), SET);
4471 return cost > 0 ? cost : COSTS_N_INSNS (1);
4474 /* Given an insn INSN and condition COND, return the condition in a
4475 canonical form to simplify testing by callers. Specifically:
4477 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4478 (2) Both operands will be machine operands; (cc0) will have been replaced.
4479 (3) If an operand is a constant, it will be the second operand.
4480 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4481 for GE, GEU, and LEU.
4483 If the condition cannot be understood, or is an inequality floating-point
4484 comparison which needs to be reversed, 0 will be returned.
4486 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4488 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4489 insn used in locating the condition was found. If a replacement test
4490 of the condition is desired, it should be placed in front of that
4491 insn and we will be sure that the inputs are still valid.
4493 If WANT_REG is nonzero, we wish the condition to be relative to that
4494 register, if possible. Therefore, do not canonicalize the condition
4495 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4496 to be a compare to a CC mode register.
4498 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4499 and at INSN. */
4502 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4503 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4505 enum rtx_code code;
4506 rtx prev = insn;
4507 rtx set;
4508 rtx tem;
4509 rtx op0, op1;
4510 int reverse_code = 0;
4511 enum machine_mode mode;
4512 basic_block bb = BLOCK_FOR_INSN (insn);
4514 code = GET_CODE (cond);
4515 mode = GET_MODE (cond);
4516 op0 = XEXP (cond, 0);
4517 op1 = XEXP (cond, 1);
4519 if (reverse)
4520 code = reversed_comparison_code (cond, insn);
4521 if (code == UNKNOWN)
4522 return 0;
4524 if (earliest)
4525 *earliest = insn;
4527 /* If we are comparing a register with zero, see if the register is set
4528 in the previous insn to a COMPARE or a comparison operation. Perform
4529 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4530 in cse.c */
4532 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4533 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4534 && op1 == CONST0_RTX (GET_MODE (op0))
4535 && op0 != want_reg)
4537 /* Set nonzero when we find something of interest. */
4538 rtx x = 0;
4540 #ifdef HAVE_cc0
4541 /* If comparison with cc0, import actual comparison from compare
4542 insn. */
4543 if (op0 == cc0_rtx)
4545 if ((prev = prev_nonnote_insn (prev)) == 0
4546 || !NONJUMP_INSN_P (prev)
4547 || (set = single_set (prev)) == 0
4548 || SET_DEST (set) != cc0_rtx)
4549 return 0;
4551 op0 = SET_SRC (set);
4552 op1 = CONST0_RTX (GET_MODE (op0));
4553 if (earliest)
4554 *earliest = prev;
4556 #endif
4558 /* If this is a COMPARE, pick up the two things being compared. */
4559 if (GET_CODE (op0) == COMPARE)
4561 op1 = XEXP (op0, 1);
4562 op0 = XEXP (op0, 0);
4563 continue;
4565 else if (!REG_P (op0))
4566 break;
4568 /* Go back to the previous insn. Stop if it is not an INSN. We also
4569 stop if it isn't a single set or if it has a REG_INC note because
4570 we don't want to bother dealing with it. */
4572 if ((prev = prev_nonnote_insn (prev)) == 0
4573 || !NONJUMP_INSN_P (prev)
4574 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4575 /* In cfglayout mode, there do not have to be labels at the
4576 beginning of a block, or jumps at the end, so the previous
4577 conditions would not stop us when we reach bb boundary. */
4578 || BLOCK_FOR_INSN (prev) != bb)
4579 break;
4581 set = set_of (op0, prev);
4583 if (set
4584 && (GET_CODE (set) != SET
4585 || !rtx_equal_p (SET_DEST (set), op0)))
4586 break;
4588 /* If this is setting OP0, get what it sets it to if it looks
4589 relevant. */
4590 if (set)
4592 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4593 #ifdef FLOAT_STORE_FLAG_VALUE
4594 REAL_VALUE_TYPE fsfv;
4595 #endif
4597 /* ??? We may not combine comparisons done in a CCmode with
4598 comparisons not done in a CCmode. This is to aid targets
4599 like Alpha that have an IEEE compliant EQ instruction, and
4600 a non-IEEE compliant BEQ instruction. The use of CCmode is
4601 actually artificial, simply to prevent the combination, but
4602 should not affect other platforms.
4604 However, we must allow VOIDmode comparisons to match either
4605 CCmode or non-CCmode comparison, because some ports have
4606 modeless comparisons inside branch patterns.
4608 ??? This mode check should perhaps look more like the mode check
4609 in simplify_comparison in combine. */
4611 if ((GET_CODE (SET_SRC (set)) == COMPARE
4612 || (((code == NE
4613 || (code == LT
4614 && GET_MODE_CLASS (inner_mode) == MODE_INT
4615 && (GET_MODE_BITSIZE (inner_mode)
4616 <= HOST_BITS_PER_WIDE_INT)
4617 && (STORE_FLAG_VALUE
4618 & ((HOST_WIDE_INT) 1
4619 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4620 #ifdef FLOAT_STORE_FLAG_VALUE
4621 || (code == LT
4622 && SCALAR_FLOAT_MODE_P (inner_mode)
4623 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4624 REAL_VALUE_NEGATIVE (fsfv)))
4625 #endif
4627 && COMPARISON_P (SET_SRC (set))))
4628 && (((GET_MODE_CLASS (mode) == MODE_CC)
4629 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4630 || mode == VOIDmode || inner_mode == VOIDmode))
4631 x = SET_SRC (set);
4632 else if (((code == EQ
4633 || (code == GE
4634 && (GET_MODE_BITSIZE (inner_mode)
4635 <= HOST_BITS_PER_WIDE_INT)
4636 && GET_MODE_CLASS (inner_mode) == MODE_INT
4637 && (STORE_FLAG_VALUE
4638 & ((HOST_WIDE_INT) 1
4639 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4640 #ifdef FLOAT_STORE_FLAG_VALUE
4641 || (code == GE
4642 && SCALAR_FLOAT_MODE_P (inner_mode)
4643 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4644 REAL_VALUE_NEGATIVE (fsfv)))
4645 #endif
4647 && COMPARISON_P (SET_SRC (set))
4648 && (((GET_MODE_CLASS (mode) == MODE_CC)
4649 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4650 || mode == VOIDmode || inner_mode == VOIDmode))
4653 reverse_code = 1;
4654 x = SET_SRC (set);
4656 else
4657 break;
4660 else if (reg_set_p (op0, prev))
4661 /* If this sets OP0, but not directly, we have to give up. */
4662 break;
4664 if (x)
4666 /* If the caller is expecting the condition to be valid at INSN,
4667 make sure X doesn't change before INSN. */
4668 if (valid_at_insn_p)
4669 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4670 break;
4671 if (COMPARISON_P (x))
4672 code = GET_CODE (x);
4673 if (reverse_code)
4675 code = reversed_comparison_code (x, prev);
4676 if (code == UNKNOWN)
4677 return 0;
4678 reverse_code = 0;
4681 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4682 if (earliest)
4683 *earliest = prev;
4687 /* If constant is first, put it last. */
4688 if (CONSTANT_P (op0))
4689 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4691 /* If OP0 is the result of a comparison, we weren't able to find what
4692 was really being compared, so fail. */
4693 if (!allow_cc_mode
4694 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4695 return 0;
4697 /* Canonicalize any ordered comparison with integers involving equality
4698 if we can do computations in the relevant mode and we do not
4699 overflow. */
4701 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4702 && GET_CODE (op1) == CONST_INT
4703 && GET_MODE (op0) != VOIDmode
4704 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4706 HOST_WIDE_INT const_val = INTVAL (op1);
4707 unsigned HOST_WIDE_INT uconst_val = const_val;
4708 unsigned HOST_WIDE_INT max_val
4709 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4711 switch (code)
4713 case LE:
4714 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4715 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4716 break;
4718 /* When cross-compiling, const_val might be sign-extended from
4719 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4720 case GE:
4721 if ((HOST_WIDE_INT) (const_val & max_val)
4722 != (((HOST_WIDE_INT) 1
4723 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4724 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4725 break;
4727 case LEU:
4728 if (uconst_val < max_val)
4729 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4730 break;
4732 case GEU:
4733 if (uconst_val != 0)
4734 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4735 break;
4737 default:
4738 break;
4742 /* Never return CC0; return zero instead. */
4743 if (CC0_P (op0))
4744 return 0;
4746 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4749 /* Given a jump insn JUMP, return the condition that will cause it to branch
4750 to its JUMP_LABEL. If the condition cannot be understood, or is an
4751 inequality floating-point comparison which needs to be reversed, 0 will
4752 be returned.
4754 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4755 insn used in locating the condition was found. If a replacement test
4756 of the condition is desired, it should be placed in front of that
4757 insn and we will be sure that the inputs are still valid. If EARLIEST
4758 is null, the returned condition will be valid at INSN.
4760 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4761 compare CC mode register.
4763 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4766 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4768 rtx cond;
4769 int reverse;
4770 rtx set;
4772 /* If this is not a standard conditional jump, we can't parse it. */
4773 if (!JUMP_P (jump)
4774 || ! any_condjump_p (jump))
4775 return 0;
4776 set = pc_set (jump);
4778 cond = XEXP (SET_SRC (set), 0);
4780 /* If this branches to JUMP_LABEL when the condition is false, reverse
4781 the condition. */
4782 reverse
4783 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4784 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4786 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4787 allow_cc_mode, valid_at_insn_p);
4790 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4791 TARGET_MODE_REP_EXTENDED.
4793 Note that we assume that the property of
4794 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4795 narrower than mode B. I.e., if A is a mode narrower than B then in
4796 order to be able to operate on it in mode B, mode A needs to
4797 satisfy the requirements set by the representation of mode B. */
4799 static void
4800 init_num_sign_bit_copies_in_rep (void)
4802 enum machine_mode mode, in_mode;
4804 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4805 in_mode = GET_MODE_WIDER_MODE (mode))
4806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4807 mode = GET_MODE_WIDER_MODE (mode))
4809 enum machine_mode i;
4811 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4812 extends to the next widest mode. */
4813 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4814 || GET_MODE_WIDER_MODE (mode) == in_mode);
4816 /* We are in in_mode. Count how many bits outside of mode
4817 have to be copies of the sign-bit. */
4818 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4820 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4822 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4823 /* We can only check sign-bit copies starting from the
4824 top-bit. In order to be able to check the bits we
4825 have already seen we pretend that subsequent bits
4826 have to be sign-bit copies too. */
4827 || num_sign_bit_copies_in_rep [in_mode][mode])
4828 num_sign_bit_copies_in_rep [in_mode][mode]
4829 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4834 /* Suppose that truncation from the machine mode of X to MODE is not a
4835 no-op. See if there is anything special about X so that we can
4836 assume it already contains a truncated value of MODE. */
4838 bool
4839 truncated_to_mode (enum machine_mode mode, rtx x)
4841 /* This register has already been used in MODE without explicit
4842 truncation. */
4843 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4844 return true;
4846 /* See if we already satisfy the requirements of MODE. If yes we
4847 can just switch to MODE. */
4848 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4849 && (num_sign_bit_copies (x, GET_MODE (x))
4850 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4851 return true;
4853 return false;
4856 /* Initialize non_rtx_starting_operands, which is used to speed up
4857 for_each_rtx. */
4858 void
4859 init_rtlanal (void)
4861 int i;
4862 for (i = 0; i < NUM_RTX_CODE; i++)
4864 const char *format = GET_RTX_FORMAT (i);
4865 const char *first = strpbrk (format, "eEV");
4866 non_rtx_starting_operands[i] = first ? first - format : -1;
4869 init_num_sign_bit_copies_in_rep ();
4872 /* Check whether this is a constant pool constant. */
4873 bool
4874 constant_pool_constant_p (rtx x)
4876 x = avoid_constant_pool_reference (x);
4877 return GET_CODE (x) == CONST_DOUBLE;