gcc/ChangeLog:
[official-gcc.git] / gcc / dwarf2out.c
blob6b08ab649c4fc6bde4f0de5330e34aaf56ff54e3
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 /* Array of RTXes referenced by the debugging information, which therefore
174 must be kept around forever. */
175 static GTY(()) varray_type used_rtx_varray;
177 /* A pointer to the base of a list of incomplete types which might be
178 completed at some later time. incomplete_types_list needs to be a VARRAY
179 because we want to tell the garbage collector about it. */
180 static GTY(()) varray_type incomplete_types;
182 /* A pointer to the base of a table of references to declaration
183 scopes. This table is a display which tracks the nesting
184 of declaration scopes at the current scope and containing
185 scopes. This table is used to find the proper place to
186 define type declaration DIE's. */
187 static GTY(()) varray_type decl_scope_table;
189 /* How to start an assembler comment. */
190 #ifndef ASM_COMMENT_START
191 #define ASM_COMMENT_START ";#"
192 #endif
194 typedef struct dw_cfi_struct *dw_cfi_ref;
195 typedef struct dw_fde_struct *dw_fde_ref;
196 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
198 /* Call frames are described using a sequence of Call Frame
199 Information instructions. The register number, offset
200 and address fields are provided as possible operands;
201 their use is selected by the opcode field. */
203 enum dw_cfi_oprnd_type {
204 dw_cfi_oprnd_unused,
205 dw_cfi_oprnd_reg_num,
206 dw_cfi_oprnd_offset,
207 dw_cfi_oprnd_addr,
208 dw_cfi_oprnd_loc
211 typedef union dw_cfi_oprnd_struct GTY(())
213 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
214 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
215 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
216 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
218 dw_cfi_oprnd;
220 typedef struct dw_cfi_struct GTY(())
222 dw_cfi_ref dw_cfi_next;
223 enum dwarf_call_frame_info dw_cfi_opc;
224 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
225 dw_cfi_oprnd1;
226 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
227 dw_cfi_oprnd2;
229 dw_cfi_node;
231 /* This is how we define the location of the CFA. We use to handle it
232 as REG + OFFSET all the time, but now it can be more complex.
233 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
234 Instead of passing around REG and OFFSET, we pass a copy
235 of this structure. */
236 typedef struct cfa_loc GTY(())
238 unsigned long reg;
239 HOST_WIDE_INT offset;
240 HOST_WIDE_INT base_offset;
241 int indirect; /* 1 if CFA is accessed via a dereference. */
242 } dw_cfa_location;
244 /* All call frame descriptions (FDE's) in the GCC generated DWARF
245 refer to a single Common Information Entry (CIE), defined at
246 the beginning of the .debug_frame section. This use of a single
247 CIE obviates the need to keep track of multiple CIE's
248 in the DWARF generation routines below. */
250 typedef struct dw_fde_struct GTY(())
252 tree decl;
253 const char *dw_fde_begin;
254 const char *dw_fde_current_label;
255 const char *dw_fde_end;
256 const char *dw_fde_hot_section_label;
257 const char *dw_fde_hot_section_end_label;
258 const char *dw_fde_unlikely_section_label;
259 const char *dw_fde_unlikely_section_end_label;
260 bool dw_fde_switched_sections;
261 dw_cfi_ref dw_fde_cfi;
262 unsigned funcdef_number;
263 unsigned all_throwers_are_sibcalls : 1;
264 unsigned nothrow : 1;
265 unsigned uses_eh_lsda : 1;
267 dw_fde_node;
269 /* Maximum size (in bytes) of an artificially generated label. */
270 #define MAX_ARTIFICIAL_LABEL_BYTES 30
272 /* The size of addresses as they appear in the Dwarf 2 data.
273 Some architectures use word addresses to refer to code locations,
274 but Dwarf 2 info always uses byte addresses. On such machines,
275 Dwarf 2 addresses need to be larger than the architecture's
276 pointers. */
277 #ifndef DWARF2_ADDR_SIZE
278 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
279 #endif
281 /* The size in bytes of a DWARF field indicating an offset or length
282 relative to a debug info section, specified to be 4 bytes in the
283 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
284 as PTR_SIZE. */
286 #ifndef DWARF_OFFSET_SIZE
287 #define DWARF_OFFSET_SIZE 4
288 #endif
290 /* According to the (draft) DWARF 3 specification, the initial length
291 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
292 bytes are 0xffffffff, followed by the length stored in the next 8
293 bytes.
295 However, the SGI/MIPS ABI uses an initial length which is equal to
296 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
298 #ifndef DWARF_INITIAL_LENGTH_SIZE
299 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
300 #endif
302 #define DWARF_VERSION 2
304 /* Round SIZE up to the nearest BOUNDARY. */
305 #define DWARF_ROUND(SIZE,BOUNDARY) \
306 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
308 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
309 #ifndef DWARF_CIE_DATA_ALIGNMENT
310 #ifdef STACK_GROWS_DOWNWARD
311 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
312 #else
313 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
314 #endif
315 #endif
317 /* A pointer to the base of a table that contains frame description
318 information for each routine. */
319 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
321 /* Number of elements currently allocated for fde_table. */
322 static GTY(()) unsigned fde_table_allocated;
324 /* Number of elements in fde_table currently in use. */
325 static GTY(()) unsigned fde_table_in_use;
327 /* Size (in elements) of increments by which we may expand the
328 fde_table. */
329 #define FDE_TABLE_INCREMENT 256
331 /* A list of call frame insns for the CIE. */
332 static GTY(()) dw_cfi_ref cie_cfi_head;
334 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
335 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
336 attribute that accelerates the lookup of the FDE associated
337 with the subprogram. This variable holds the table index of the FDE
338 associated with the current function (body) definition. */
339 static unsigned current_funcdef_fde;
340 #endif
342 struct indirect_string_node GTY(())
344 const char *str;
345 unsigned int refcount;
346 unsigned int form;
347 char *label;
350 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
352 static GTY(()) int dw2_string_counter;
353 static GTY(()) unsigned long dwarf2out_cfi_label_num;
355 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
357 /* Forward declarations for functions defined in this file. */
359 static char *stripattributes (const char *);
360 static const char *dwarf_cfi_name (unsigned);
361 static dw_cfi_ref new_cfi (void);
362 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
363 static void add_fde_cfi (const char *, dw_cfi_ref);
364 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
365 static void lookup_cfa (dw_cfa_location *);
366 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
367 static void initial_return_save (rtx);
368 static HOST_WIDE_INT stack_adjust_offset (rtx);
369 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
370 static void output_call_frame_info (int);
371 static void dwarf2out_stack_adjust (rtx, bool);
372 static void flush_queued_reg_saves (void);
373 static bool clobbers_queued_reg_save (rtx);
374 static void dwarf2out_frame_debug_expr (rtx, const char *);
376 /* Support for complex CFA locations. */
377 static void output_cfa_loc (dw_cfi_ref);
378 static void get_cfa_from_loc_descr (dw_cfa_location *,
379 struct dw_loc_descr_struct *);
380 static struct dw_loc_descr_struct *build_cfa_loc
381 (dw_cfa_location *);
382 static void def_cfa_1 (const char *, dw_cfa_location *);
384 /* How to start an assembler comment. */
385 #ifndef ASM_COMMENT_START
386 #define ASM_COMMENT_START ";#"
387 #endif
389 /* Data and reference forms for relocatable data. */
390 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
391 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
393 #ifndef DEBUG_FRAME_SECTION
394 #define DEBUG_FRAME_SECTION ".debug_frame"
395 #endif
397 #ifndef FUNC_BEGIN_LABEL
398 #define FUNC_BEGIN_LABEL "LFB"
399 #endif
401 #ifndef FUNC_END_LABEL
402 #define FUNC_END_LABEL "LFE"
403 #endif
405 #ifndef FRAME_BEGIN_LABEL
406 #define FRAME_BEGIN_LABEL "Lframe"
407 #endif
408 #define CIE_AFTER_SIZE_LABEL "LSCIE"
409 #define CIE_END_LABEL "LECIE"
410 #define FDE_LABEL "LSFDE"
411 #define FDE_AFTER_SIZE_LABEL "LASFDE"
412 #define FDE_END_LABEL "LEFDE"
413 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
414 #define LINE_NUMBER_END_LABEL "LELT"
415 #define LN_PROLOG_AS_LABEL "LASLTP"
416 #define LN_PROLOG_END_LABEL "LELTP"
417 #define DIE_LABEL_PREFIX "DW"
419 /* The DWARF 2 CFA column which tracks the return address. Normally this
420 is the column for PC, or the first column after all of the hard
421 registers. */
422 #ifndef DWARF_FRAME_RETURN_COLUMN
423 #ifdef PC_REGNUM
424 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
425 #else
426 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
427 #endif
428 #endif
430 /* The mapping from gcc register number to DWARF 2 CFA column number. By
431 default, we just provide columns for all registers. */
432 #ifndef DWARF_FRAME_REGNUM
433 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
434 #endif
436 /* The offset from the incoming value of %sp to the top of the stack frame
437 for the current function. */
438 #ifndef INCOMING_FRAME_SP_OFFSET
439 #define INCOMING_FRAME_SP_OFFSET 0
440 #endif
442 /* Hook used by __throw. */
445 expand_builtin_dwarf_sp_column (void)
447 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
450 /* Return a pointer to a copy of the section string name S with all
451 attributes stripped off, and an asterisk prepended (for assemble_name). */
453 static inline char *
454 stripattributes (const char *s)
456 char *stripped = xmalloc (strlen (s) + 2);
457 char *p = stripped;
459 *p++ = '*';
461 while (*s && *s != ',')
462 *p++ = *s++;
464 *p = '\0';
465 return stripped;
468 /* Generate code to initialize the register size table. */
470 void
471 expand_builtin_init_dwarf_reg_sizes (tree address)
473 int i;
474 enum machine_mode mode = TYPE_MODE (char_type_node);
475 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
476 rtx mem = gen_rtx_MEM (BLKmode, addr);
477 bool wrote_return_column = false;
479 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
480 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
482 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
483 enum machine_mode save_mode = reg_raw_mode[i];
484 HOST_WIDE_INT size;
486 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
487 save_mode = choose_hard_reg_mode (i, 1, true);
488 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
490 if (save_mode == VOIDmode)
491 continue;
492 wrote_return_column = true;
494 size = GET_MODE_SIZE (save_mode);
495 if (offset < 0)
496 continue;
498 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
502 gcc_assert (wrote_return_column);
503 i = DWARF_ALT_FRAME_RETURN_COLUMN;
504 wrote_return_column = false;
505 #else
506 i = DWARF_FRAME_RETURN_COLUMN;
507 #endif
509 if (! wrote_return_column)
511 enum machine_mode save_mode = Pmode;
512 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
513 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
514 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
518 /* Convert a DWARF call frame info. operation to its string name */
520 static const char *
521 dwarf_cfi_name (unsigned int cfi_opc)
523 switch (cfi_opc)
525 case DW_CFA_advance_loc:
526 return "DW_CFA_advance_loc";
527 case DW_CFA_offset:
528 return "DW_CFA_offset";
529 case DW_CFA_restore:
530 return "DW_CFA_restore";
531 case DW_CFA_nop:
532 return "DW_CFA_nop";
533 case DW_CFA_set_loc:
534 return "DW_CFA_set_loc";
535 case DW_CFA_advance_loc1:
536 return "DW_CFA_advance_loc1";
537 case DW_CFA_advance_loc2:
538 return "DW_CFA_advance_loc2";
539 case DW_CFA_advance_loc4:
540 return "DW_CFA_advance_loc4";
541 case DW_CFA_offset_extended:
542 return "DW_CFA_offset_extended";
543 case DW_CFA_restore_extended:
544 return "DW_CFA_restore_extended";
545 case DW_CFA_undefined:
546 return "DW_CFA_undefined";
547 case DW_CFA_same_value:
548 return "DW_CFA_same_value";
549 case DW_CFA_register:
550 return "DW_CFA_register";
551 case DW_CFA_remember_state:
552 return "DW_CFA_remember_state";
553 case DW_CFA_restore_state:
554 return "DW_CFA_restore_state";
555 case DW_CFA_def_cfa:
556 return "DW_CFA_def_cfa";
557 case DW_CFA_def_cfa_register:
558 return "DW_CFA_def_cfa_register";
559 case DW_CFA_def_cfa_offset:
560 return "DW_CFA_def_cfa_offset";
562 /* DWARF 3 */
563 case DW_CFA_def_cfa_expression:
564 return "DW_CFA_def_cfa_expression";
565 case DW_CFA_expression:
566 return "DW_CFA_expression";
567 case DW_CFA_offset_extended_sf:
568 return "DW_CFA_offset_extended_sf";
569 case DW_CFA_def_cfa_sf:
570 return "DW_CFA_def_cfa_sf";
571 case DW_CFA_def_cfa_offset_sf:
572 return "DW_CFA_def_cfa_offset_sf";
574 /* SGI/MIPS specific */
575 case DW_CFA_MIPS_advance_loc8:
576 return "DW_CFA_MIPS_advance_loc8";
578 /* GNU extensions */
579 case DW_CFA_GNU_window_save:
580 return "DW_CFA_GNU_window_save";
581 case DW_CFA_GNU_args_size:
582 return "DW_CFA_GNU_args_size";
583 case DW_CFA_GNU_negative_offset_extended:
584 return "DW_CFA_GNU_negative_offset_extended";
586 default:
587 return "DW_CFA_<unknown>";
591 /* Return a pointer to a newly allocated Call Frame Instruction. */
593 static inline dw_cfi_ref
594 new_cfi (void)
596 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
598 cfi->dw_cfi_next = NULL;
599 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
600 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
602 return cfi;
605 /* Add a Call Frame Instruction to list of instructions. */
607 static inline void
608 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
610 dw_cfi_ref *p;
612 /* Find the end of the chain. */
613 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
616 *p = cfi;
619 /* Generate a new label for the CFI info to refer to. */
621 char *
622 dwarf2out_cfi_label (void)
624 static char label[20];
626 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
627 ASM_OUTPUT_LABEL (asm_out_file, label);
628 return label;
631 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
632 or to the CIE if LABEL is NULL. */
634 static void
635 add_fde_cfi (const char *label, dw_cfi_ref cfi)
637 if (label)
639 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
641 if (*label == 0)
642 label = dwarf2out_cfi_label ();
644 if (fde->dw_fde_current_label == NULL
645 || strcmp (label, fde->dw_fde_current_label) != 0)
647 dw_cfi_ref xcfi;
649 fde->dw_fde_current_label = label = xstrdup (label);
651 /* Set the location counter to the new label. */
652 xcfi = new_cfi ();
653 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
654 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
655 add_cfi (&fde->dw_fde_cfi, xcfi);
658 add_cfi (&fde->dw_fde_cfi, cfi);
661 else
662 add_cfi (&cie_cfi_head, cfi);
665 /* Subroutine of lookup_cfa. */
667 static inline void
668 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
670 switch (cfi->dw_cfi_opc)
672 case DW_CFA_def_cfa_offset:
673 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_register:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 break;
678 case DW_CFA_def_cfa:
679 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
680 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
681 break;
682 case DW_CFA_def_cfa_expression:
683 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
684 break;
685 default:
686 break;
690 /* Find the previous value for the CFA. */
692 static void
693 lookup_cfa (dw_cfa_location *loc)
695 dw_cfi_ref cfi;
697 loc->reg = (unsigned long) -1;
698 loc->offset = 0;
699 loc->indirect = 0;
700 loc->base_offset = 0;
702 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
703 lookup_cfa_1 (cfi, loc);
705 if (fde_table_in_use)
707 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
708 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
709 lookup_cfa_1 (cfi, loc);
713 /* The current rule for calculating the DWARF2 canonical frame address. */
714 static dw_cfa_location cfa;
716 /* The register used for saving registers to the stack, and its offset
717 from the CFA. */
718 static dw_cfa_location cfa_store;
720 /* The running total of the size of arguments pushed onto the stack. */
721 static HOST_WIDE_INT args_size;
723 /* The last args_size we actually output. */
724 static HOST_WIDE_INT old_args_size;
726 /* Entry point to update the canonical frame address (CFA).
727 LABEL is passed to add_fde_cfi. The value of CFA is now to be
728 calculated from REG+OFFSET. */
730 void
731 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
733 dw_cfa_location loc;
734 loc.indirect = 0;
735 loc.base_offset = 0;
736 loc.reg = reg;
737 loc.offset = offset;
738 def_cfa_1 (label, &loc);
741 /* This routine does the actual work. The CFA is now calculated from
742 the dw_cfa_location structure. */
744 static void
745 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
747 dw_cfi_ref cfi;
748 dw_cfa_location old_cfa, loc;
750 cfa = *loc_p;
751 loc = *loc_p;
753 if (cfa_store.reg == loc.reg && loc.indirect == 0)
754 cfa_store.offset = loc.offset;
756 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
757 lookup_cfa (&old_cfa);
759 /* If nothing changed, no need to issue any call frame instructions. */
760 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
761 && loc.indirect == old_cfa.indirect
762 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
763 return;
765 cfi = new_cfi ();
767 if (loc.reg == old_cfa.reg && !loc.indirect)
769 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
770 indicating the CFA register did not change but the offset
771 did. */
772 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
773 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
776 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
777 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
778 && !loc.indirect)
780 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
781 indicating the CFA register has changed to <register> but the
782 offset has not changed. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 #endif
788 else if (loc.indirect == 0)
790 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
791 indicating the CFA register has changed to <register> with
792 the specified offset. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
795 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
797 else
799 /* Construct a DW_CFA_def_cfa_expression instruction to
800 calculate the CFA using a full location expression since no
801 register-offset pair is available. */
802 struct dw_loc_descr_struct *loc_list;
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
805 loc_list = build_cfa_loc (&loc);
806 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
809 add_fde_cfi (label, cfi);
812 /* Add the CFI for saving a register. REG is the CFA column number.
813 LABEL is passed to add_fde_cfi.
814 If SREG is -1, the register is saved at OFFSET from the CFA;
815 otherwise it is saved in SREG. */
817 static void
818 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
820 dw_cfi_ref cfi = new_cfi ();
822 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
824 if (sreg == INVALID_REGNUM)
826 if (reg & ~0x3f)
827 /* The register number won't fit in 6 bits, so we have to use
828 the long form. */
829 cfi->dw_cfi_opc = DW_CFA_offset_extended;
830 else
831 cfi->dw_cfi_opc = DW_CFA_offset;
833 #ifdef ENABLE_CHECKING
835 /* If we get an offset that is not a multiple of
836 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
837 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
838 description. */
839 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
841 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
843 #endif
844 offset /= DWARF_CIE_DATA_ALIGNMENT;
845 if (offset < 0)
846 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
848 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
850 else if (sreg == reg)
851 cfi->dw_cfi_opc = DW_CFA_same_value;
852 else
854 cfi->dw_cfi_opc = DW_CFA_register;
855 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
858 add_fde_cfi (label, cfi);
861 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
862 This CFI tells the unwinder that it needs to restore the window registers
863 from the previous frame's window save area.
865 ??? Perhaps we should note in the CIE where windows are saved (instead of
866 assuming 0(cfa)) and what registers are in the window. */
868 void
869 dwarf2out_window_save (const char *label)
871 dw_cfi_ref cfi = new_cfi ();
873 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
874 add_fde_cfi (label, cfi);
877 /* Add a CFI to update the running total of the size of arguments
878 pushed onto the stack. */
880 void
881 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
883 dw_cfi_ref cfi;
885 if (size == old_args_size)
886 return;
888 old_args_size = size;
890 cfi = new_cfi ();
891 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
892 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
893 add_fde_cfi (label, cfi);
896 /* Entry point for saving a register to the stack. REG is the GCC register
897 number. LABEL and OFFSET are passed to reg_save. */
899 void
900 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
902 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
905 /* Entry point for saving the return address in the stack.
906 LABEL and OFFSET are passed to reg_save. */
908 void
909 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
914 /* Entry point for saving the return address in a register.
915 LABEL and SREG are passed to reg_save. */
917 void
918 dwarf2out_return_reg (const char *label, unsigned int sreg)
920 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
923 /* Record the initial position of the return address. RTL is
924 INCOMING_RETURN_ADDR_RTX. */
926 static void
927 initial_return_save (rtx rtl)
929 unsigned int reg = INVALID_REGNUM;
930 HOST_WIDE_INT offset = 0;
932 switch (GET_CODE (rtl))
934 case REG:
935 /* RA is in a register. */
936 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
937 break;
939 case MEM:
940 /* RA is on the stack. */
941 rtl = XEXP (rtl, 0);
942 switch (GET_CODE (rtl))
944 case REG:
945 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
946 offset = 0;
947 break;
949 case PLUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = INTVAL (XEXP (rtl, 1));
952 break;
954 case MINUS:
955 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
956 offset = -INTVAL (XEXP (rtl, 1));
957 break;
959 default:
960 gcc_unreachable ();
963 break;
965 case PLUS:
966 /* The return address is at some offset from any value we can
967 actually load. For instance, on the SPARC it is in %i7+8. Just
968 ignore the offset for now; it doesn't matter for unwinding frames. */
969 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
970 initial_return_save (XEXP (rtl, 0));
971 return;
973 default:
974 gcc_unreachable ();
977 if (reg != DWARF_FRAME_RETURN_COLUMN)
978 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
981 /* Given a SET, calculate the amount of stack adjustment it
982 contains. */
984 static HOST_WIDE_INT
985 stack_adjust_offset (rtx pattern)
987 rtx src = SET_SRC (pattern);
988 rtx dest = SET_DEST (pattern);
989 HOST_WIDE_INT offset = 0;
990 enum rtx_code code;
992 if (dest == stack_pointer_rtx)
994 /* (set (reg sp) (plus (reg sp) (const_int))) */
995 code = GET_CODE (src);
996 if (! (code == PLUS || code == MINUS)
997 || XEXP (src, 0) != stack_pointer_rtx
998 || GET_CODE (XEXP (src, 1)) != CONST_INT)
999 return 0;
1001 offset = INTVAL (XEXP (src, 1));
1002 if (code == PLUS)
1003 offset = -offset;
1005 else if (MEM_P (dest))
1007 /* (set (mem (pre_dec (reg sp))) (foo)) */
1008 src = XEXP (dest, 0);
1009 code = GET_CODE (src);
1011 switch (code)
1013 case PRE_MODIFY:
1014 case POST_MODIFY:
1015 if (XEXP (src, 0) == stack_pointer_rtx)
1017 rtx val = XEXP (XEXP (src, 1), 1);
1018 /* We handle only adjustments by constant amount. */
1019 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1020 && GET_CODE (val) == CONST_INT);
1021 offset = -INTVAL (val);
1022 break;
1024 return 0;
1026 case PRE_DEC:
1027 case POST_DEC:
1028 if (XEXP (src, 0) == stack_pointer_rtx)
1030 offset = GET_MODE_SIZE (GET_MODE (dest));
1031 break;
1033 return 0;
1035 case PRE_INC:
1036 case POST_INC:
1037 if (XEXP (src, 0) == stack_pointer_rtx)
1039 offset = -GET_MODE_SIZE (GET_MODE (dest));
1040 break;
1042 return 0;
1044 default:
1045 return 0;
1048 else
1049 return 0;
1051 return offset;
1054 /* Check INSN to see if it looks like a push or a stack adjustment, and
1055 make a note of it if it does. EH uses this information to find out how
1056 much extra space it needs to pop off the stack. */
1058 static void
1059 dwarf2out_stack_adjust (rtx insn, bool after_p)
1061 HOST_WIDE_INT offset;
1062 const char *label;
1063 int i;
1065 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1066 with this function. Proper support would require all frame-related
1067 insns to be marked, and to be able to handle saving state around
1068 epilogues textually in the middle of the function. */
1069 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1070 return;
1072 /* If only calls can throw, and we have a frame pointer,
1073 save up adjustments until we see the CALL_INSN. */
1074 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1076 if (CALL_P (insn) && !after_p)
1078 /* Extract the size of the args from the CALL rtx itself. */
1079 insn = PATTERN (insn);
1080 if (GET_CODE (insn) == PARALLEL)
1081 insn = XVECEXP (insn, 0, 0);
1082 if (GET_CODE (insn) == SET)
1083 insn = SET_SRC (insn);
1084 gcc_assert (GET_CODE (insn) == CALL);
1085 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1087 return;
1090 if (CALL_P (insn) && !after_p)
1092 if (!flag_asynchronous_unwind_tables)
1093 dwarf2out_args_size ("", args_size);
1094 return;
1096 else if (BARRIER_P (insn))
1098 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1099 the compiler will have already emitted a stack adjustment, but
1100 doesn't bother for calls to noreturn functions. */
1101 #ifdef STACK_GROWS_DOWNWARD
1102 offset = -args_size;
1103 #else
1104 offset = args_size;
1105 #endif
1107 else if (GET_CODE (PATTERN (insn)) == SET)
1108 offset = stack_adjust_offset (PATTERN (insn));
1109 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1110 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1112 /* There may be stack adjustments inside compound insns. Search
1113 for them. */
1114 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1116 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1118 else
1119 return;
1121 if (offset == 0)
1122 return;
1124 if (cfa.reg == STACK_POINTER_REGNUM)
1125 cfa.offset += offset;
1127 #ifndef STACK_GROWS_DOWNWARD
1128 offset = -offset;
1129 #endif
1131 args_size += offset;
1132 if (args_size < 0)
1133 args_size = 0;
1135 label = dwarf2out_cfi_label ();
1136 def_cfa_1 (label, &cfa);
1137 if (flag_asynchronous_unwind_tables)
1138 dwarf2out_args_size (label, args_size);
1141 #endif
1143 /* We delay emitting a register save until either (a) we reach the end
1144 of the prologue or (b) the register is clobbered. This clusters
1145 register saves so that there are fewer pc advances. */
1147 struct queued_reg_save GTY(())
1149 struct queued_reg_save *next;
1150 rtx reg;
1151 HOST_WIDE_INT cfa_offset;
1152 rtx saved_reg;
1155 static GTY(()) struct queued_reg_save *queued_reg_saves;
1157 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1158 struct reg_saved_in_data GTY(()) {
1159 rtx orig_reg;
1160 rtx saved_in_reg;
1163 /* A list of registers saved in other registers.
1164 The list intentionally has a small maximum capacity of 4; if your
1165 port needs more than that, you might consider implementing a
1166 more efficient data structure. */
1167 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1168 static GTY(()) size_t num_regs_saved_in_regs;
1170 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1171 static const char *last_reg_save_label;
1173 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1174 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1176 static void
1177 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1179 struct queued_reg_save *q;
1181 /* Duplicates waste space, but it's also necessary to remove them
1182 for correctness, since the queue gets output in reverse
1183 order. */
1184 for (q = queued_reg_saves; q != NULL; q = q->next)
1185 if (REGNO (q->reg) == REGNO (reg))
1186 break;
1188 if (q == NULL)
1190 q = ggc_alloc (sizeof (*q));
1191 q->next = queued_reg_saves;
1192 queued_reg_saves = q;
1195 q->reg = reg;
1196 q->cfa_offset = offset;
1197 q->saved_reg = sreg;
1199 last_reg_save_label = label;
1202 /* Output all the entries in QUEUED_REG_SAVES. */
1204 static void
1205 flush_queued_reg_saves (void)
1207 struct queued_reg_save *q;
1209 for (q = queued_reg_saves; q; q = q->next)
1211 size_t i;
1212 unsigned int reg, sreg;
1214 for (i = 0; i < num_regs_saved_in_regs; i++)
1215 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1216 break;
1217 if (q->saved_reg && i == num_regs_saved_in_regs)
1219 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1220 num_regs_saved_in_regs++;
1222 if (i != num_regs_saved_in_regs)
1224 regs_saved_in_regs[i].orig_reg = q->reg;
1225 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1228 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1229 if (q->saved_reg)
1230 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1231 else
1232 sreg = INVALID_REGNUM;
1233 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1236 queued_reg_saves = NULL;
1237 last_reg_save_label = NULL;
1240 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1241 location for? Or, does it clobber a register which we've previously
1242 said that some other register is saved in, and for which we now
1243 have a new location for? */
1245 static bool
1246 clobbers_queued_reg_save (rtx insn)
1248 struct queued_reg_save *q;
1250 for (q = queued_reg_saves; q; q = q->next)
1252 size_t i;
1253 if (modified_in_p (q->reg, insn))
1254 return true;
1255 for (i = 0; i < num_regs_saved_in_regs; i++)
1256 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1257 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1258 return true;
1261 return false;
1264 /* What register, if any, is currently saved in REG? */
1266 static rtx
1267 reg_saved_in (rtx reg)
1269 unsigned int regn = REGNO (reg);
1270 size_t i;
1271 struct queued_reg_save *q;
1273 for (q = queued_reg_saves; q; q = q->next)
1274 if (q->saved_reg && regn == REGNO (q->saved_reg))
1275 return q->reg;
1277 for (i = 0; i < num_regs_saved_in_regs; i++)
1278 if (regs_saved_in_regs[i].saved_in_reg
1279 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1280 return regs_saved_in_regs[i].orig_reg;
1282 return NULL_RTX;
1286 /* A temporary register holding an integral value used in adjusting SP
1287 or setting up the store_reg. The "offset" field holds the integer
1288 value, not an offset. */
1289 static dw_cfa_location cfa_temp;
1291 /* Record call frame debugging information for an expression EXPR,
1292 which either sets SP or FP (adjusting how we calculate the frame
1293 address) or saves a register to the stack or another register.
1294 LABEL indicates the address of EXPR.
1296 This function encodes a state machine mapping rtxes to actions on
1297 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1298 users need not read the source code.
1300 The High-Level Picture
1302 Changes in the register we use to calculate the CFA: Currently we
1303 assume that if you copy the CFA register into another register, we
1304 should take the other one as the new CFA register; this seems to
1305 work pretty well. If it's wrong for some target, it's simple
1306 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1308 Changes in the register we use for saving registers to the stack:
1309 This is usually SP, but not always. Again, we deduce that if you
1310 copy SP into another register (and SP is not the CFA register),
1311 then the new register is the one we will be using for register
1312 saves. This also seems to work.
1314 Register saves: There's not much guesswork about this one; if
1315 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1316 register save, and the register used to calculate the destination
1317 had better be the one we think we're using for this purpose.
1318 It's also assumed that a copy from a call-saved register to another
1319 register is saving that register if RTX_FRAME_RELATED_P is set on
1320 that instruction. If the copy is from a call-saved register to
1321 the *same* register, that means that the register is now the same
1322 value as in the caller.
1324 Except: If the register being saved is the CFA register, and the
1325 offset is nonzero, we are saving the CFA, so we assume we have to
1326 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1327 the intent is to save the value of SP from the previous frame.
1329 In addition, if a register has previously been saved to a different
1330 register,
1332 Invariants / Summaries of Rules
1334 cfa current rule for calculating the CFA. It usually
1335 consists of a register and an offset.
1336 cfa_store register used by prologue code to save things to the stack
1337 cfa_store.offset is the offset from the value of
1338 cfa_store.reg to the actual CFA
1339 cfa_temp register holding an integral value. cfa_temp.offset
1340 stores the value, which will be used to adjust the
1341 stack pointer. cfa_temp is also used like cfa_store,
1342 to track stores to the stack via fp or a temp reg.
1344 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1345 with cfa.reg as the first operand changes the cfa.reg and its
1346 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1347 cfa_temp.offset.
1349 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1350 expression yielding a constant. This sets cfa_temp.reg
1351 and cfa_temp.offset.
1353 Rule 5: Create a new register cfa_store used to save items to the
1354 stack.
1356 Rules 10-14: Save a register to the stack. Define offset as the
1357 difference of the original location and cfa_store's
1358 location (or cfa_temp's location if cfa_temp is used).
1360 The Rules
1362 "{a,b}" indicates a choice of a xor b.
1363 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1365 Rule 1:
1366 (set <reg1> <reg2>:cfa.reg)
1367 effects: cfa.reg = <reg1>
1368 cfa.offset unchanged
1369 cfa_temp.reg = <reg1>
1370 cfa_temp.offset = cfa.offset
1372 Rule 2:
1373 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1374 {<const_int>,<reg>:cfa_temp.reg}))
1375 effects: cfa.reg = sp if fp used
1376 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1377 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1378 if cfa_store.reg==sp
1380 Rule 3:
1381 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1382 effects: cfa.reg = fp
1383 cfa_offset += +/- <const_int>
1385 Rule 4:
1386 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1387 constraints: <reg1> != fp
1388 <reg1> != sp
1389 effects: cfa.reg = <reg1>
1390 cfa_temp.reg = <reg1>
1391 cfa_temp.offset = cfa.offset
1393 Rule 5:
1394 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1395 constraints: <reg1> != fp
1396 <reg1> != sp
1397 effects: cfa_store.reg = <reg1>
1398 cfa_store.offset = cfa.offset - cfa_temp.offset
1400 Rule 6:
1401 (set <reg> <const_int>)
1402 effects: cfa_temp.reg = <reg>
1403 cfa_temp.offset = <const_int>
1405 Rule 7:
1406 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1407 effects: cfa_temp.reg = <reg1>
1408 cfa_temp.offset |= <const_int>
1410 Rule 8:
1411 (set <reg> (high <exp>))
1412 effects: none
1414 Rule 9:
1415 (set <reg> (lo_sum <exp> <const_int>))
1416 effects: cfa_temp.reg = <reg>
1417 cfa_temp.offset = <const_int>
1419 Rule 10:
1420 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1421 effects: cfa_store.offset -= <const_int>
1422 cfa.offset = cfa_store.offset if cfa.reg == sp
1423 cfa.reg = sp
1424 cfa.base_offset = -cfa_store.offset
1426 Rule 11:
1427 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1428 effects: cfa_store.offset += -/+ mode_size(mem)
1429 cfa.offset = cfa_store.offset if cfa.reg == sp
1430 cfa.reg = sp
1431 cfa.base_offset = -cfa_store.offset
1433 Rule 12:
1434 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1436 <reg2>)
1437 effects: cfa.reg = <reg1>
1438 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1440 Rule 13:
1441 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1445 Rule 14:
1446 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -cfa_temp.offset
1449 cfa_temp.offset -= mode_size(mem)
1451   Rule 15:
1452   (set <reg> {unspec, unspec_volatile})
1453   effects: target-dependent */
1455 static void
1456 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1458 rtx src, dest;
1459 HOST_WIDE_INT offset;
1461 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1462 the PARALLEL independently. The first element is always processed if
1463 it is a SET. This is for backward compatibility. Other elements
1464 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1465 flag is set in them. */
1466 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1468 int par_index;
1469 int limit = XVECLEN (expr, 0);
1471 for (par_index = 0; par_index < limit; par_index++)
1472 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1473 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1474 || par_index == 0))
1475 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1477 return;
1480 gcc_assert (GET_CODE (expr) == SET);
1482 src = SET_SRC (expr);
1483 dest = SET_DEST (expr);
1485 if (GET_CODE (src) == REG)
1487 rtx rsi = reg_saved_in (src);
1488 if (rsi)
1489 src = rsi;
1492 switch (GET_CODE (dest))
1494 case REG:
1495 switch (GET_CODE (src))
1497 /* Setting FP from SP. */
1498 case REG:
1499 if (cfa.reg == (unsigned) REGNO (src))
1501 /* Rule 1 */
1502 /* Update the CFA rule wrt SP or FP. Make sure src is
1503 relative to the current CFA register.
1505 We used to require that dest be either SP or FP, but the
1506 ARM copies SP to a temporary register, and from there to
1507 FP. So we just rely on the backends to only set
1508 RTX_FRAME_RELATED_P on appropriate insns. */
1509 cfa.reg = REGNO (dest);
1510 cfa_temp.reg = cfa.reg;
1511 cfa_temp.offset = cfa.offset;
1513 else
1515 /* Saving a register in a register. */
1516 gcc_assert (call_used_regs [REGNO (dest)]
1517 && (!fixed_regs [REGNO (dest)]
1518 /* For the SPARC and its register window. */
1519 || DWARF_FRAME_REGNUM (REGNO (src))
1520 == DWARF_FRAME_RETURN_COLUMN));
1521 queue_reg_save (label, src, dest, 0);
1523 break;
1525 case PLUS:
1526 case MINUS:
1527 case LO_SUM:
1528 if (dest == stack_pointer_rtx)
1530 /* Rule 2 */
1531 /* Adjusting SP. */
1532 switch (GET_CODE (XEXP (src, 1)))
1534 case CONST_INT:
1535 offset = INTVAL (XEXP (src, 1));
1536 break;
1537 case REG:
1538 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1539 == cfa_temp.reg);
1540 offset = cfa_temp.offset;
1541 break;
1542 default:
1543 gcc_unreachable ();
1546 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1548 /* Restoring SP from FP in the epilogue. */
1549 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1550 cfa.reg = STACK_POINTER_REGNUM;
1552 else if (GET_CODE (src) == LO_SUM)
1553 /* Assume we've set the source reg of the LO_SUM from sp. */
1555 else
1556 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1558 if (GET_CODE (src) != MINUS)
1559 offset = -offset;
1560 if (cfa.reg == STACK_POINTER_REGNUM)
1561 cfa.offset += offset;
1562 if (cfa_store.reg == STACK_POINTER_REGNUM)
1563 cfa_store.offset += offset;
1565 else if (dest == hard_frame_pointer_rtx)
1567 /* Rule 3 */
1568 /* Either setting the FP from an offset of the SP,
1569 or adjusting the FP */
1570 gcc_assert (frame_pointer_needed);
1572 gcc_assert (REG_P (XEXP (src, 0))
1573 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1574 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1575 offset = INTVAL (XEXP (src, 1));
1576 if (GET_CODE (src) != MINUS)
1577 offset = -offset;
1578 cfa.offset += offset;
1579 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1581 else
1583 gcc_assert (GET_CODE (src) != MINUS);
1585 /* Rule 4 */
1586 if (REG_P (XEXP (src, 0))
1587 && REGNO (XEXP (src, 0)) == cfa.reg
1588 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1590 /* Setting a temporary CFA register that will be copied
1591 into the FP later on. */
1592 offset = - INTVAL (XEXP (src, 1));
1593 cfa.offset += offset;
1594 cfa.reg = REGNO (dest);
1595 /* Or used to save regs to the stack. */
1596 cfa_temp.reg = cfa.reg;
1597 cfa_temp.offset = cfa.offset;
1600 /* Rule 5 */
1601 else if (REG_P (XEXP (src, 0))
1602 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1603 && XEXP (src, 1) == stack_pointer_rtx)
1605 /* Setting a scratch register that we will use instead
1606 of SP for saving registers to the stack. */
1607 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1608 cfa_store.reg = REGNO (dest);
1609 cfa_store.offset = cfa.offset - cfa_temp.offset;
1612 /* Rule 9 */
1613 else if (GET_CODE (src) == LO_SUM
1614 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1616 cfa_temp.reg = REGNO (dest);
1617 cfa_temp.offset = INTVAL (XEXP (src, 1));
1619 else
1620 gcc_unreachable ();
1622 break;
1624 /* Rule 6 */
1625 case CONST_INT:
1626 cfa_temp.reg = REGNO (dest);
1627 cfa_temp.offset = INTVAL (src);
1628 break;
1630 /* Rule 7 */
1631 case IOR:
1632 gcc_assert (REG_P (XEXP (src, 0))
1633 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1634 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1636 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1637 cfa_temp.reg = REGNO (dest);
1638 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1639 break;
1641 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1642 which will fill in all of the bits. */
1643 /* Rule 8 */
1644 case HIGH:
1645 break;
1647 /* Rule 15 */
1648 case UNSPEC:
1649 case UNSPEC_VOLATILE:
1650 gcc_assert (targetm.dwarf_handle_frame_unspec);
1651 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1652 break;
1654 default:
1655 gcc_unreachable ();
1658 def_cfa_1 (label, &cfa);
1659 break;
1661 case MEM:
1662 gcc_assert (REG_P (src));
1664 /* Saving a register to the stack. Make sure dest is relative to the
1665 CFA register. */
1666 switch (GET_CODE (XEXP (dest, 0)))
1668 /* Rule 10 */
1669 /* With a push. */
1670 case PRE_MODIFY:
1671 /* We can't handle variable size modifications. */
1672 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1673 == CONST_INT);
1674 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1676 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1677 && cfa_store.reg == STACK_POINTER_REGNUM);
1679 cfa_store.offset += offset;
1680 if (cfa.reg == STACK_POINTER_REGNUM)
1681 cfa.offset = cfa_store.offset;
1683 offset = -cfa_store.offset;
1684 break;
1686 /* Rule 11 */
1687 case PRE_INC:
1688 case PRE_DEC:
1689 offset = GET_MODE_SIZE (GET_MODE (dest));
1690 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1691 offset = -offset;
1693 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1694 && cfa_store.reg == STACK_POINTER_REGNUM);
1696 cfa_store.offset += offset;
1697 if (cfa.reg == STACK_POINTER_REGNUM)
1698 cfa.offset = cfa_store.offset;
1700 offset = -cfa_store.offset;
1701 break;
1703 /* Rule 12 */
1704 /* With an offset. */
1705 case PLUS:
1706 case MINUS:
1707 case LO_SUM:
1709 int regno;
1711 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1712 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1713 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1714 offset = -offset;
1716 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1718 if (cfa_store.reg == (unsigned) regno)
1719 offset -= cfa_store.offset;
1720 else
1722 gcc_assert (cfa_temp.reg == (unsigned) regno);
1723 offset -= cfa_temp.offset;
1726 break;
1728 /* Rule 13 */
1729 /* Without an offset. */
1730 case REG:
1732 int regno = REGNO (XEXP (dest, 0));
1734 if (cfa_store.reg == (unsigned) regno)
1735 offset = -cfa_store.offset;
1736 else
1738 gcc_assert (cfa_temp.reg == (unsigned) regno);
1739 offset = -cfa_temp.offset;
1742 break;
1744 /* Rule 14 */
1745 case POST_INC:
1746 gcc_assert (cfa_temp.reg
1747 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1748 offset = -cfa_temp.offset;
1749 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1750 break;
1752 default:
1753 gcc_unreachable ();
1756 if (REGNO (src) != STACK_POINTER_REGNUM
1757 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1758 && (unsigned) REGNO (src) == cfa.reg)
1760 /* We're storing the current CFA reg into the stack. */
1762 if (cfa.offset == 0)
1764 /* If the source register is exactly the CFA, assume
1765 we're saving SP like any other register; this happens
1766 on the ARM. */
1767 def_cfa_1 (label, &cfa);
1768 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1769 break;
1771 else
1773 /* Otherwise, we'll need to look in the stack to
1774 calculate the CFA. */
1775 rtx x = XEXP (dest, 0);
1777 if (!REG_P (x))
1778 x = XEXP (x, 0);
1779 gcc_assert (REG_P (x));
1781 cfa.reg = REGNO (x);
1782 cfa.base_offset = offset;
1783 cfa.indirect = 1;
1784 def_cfa_1 (label, &cfa);
1785 break;
1789 def_cfa_1 (label, &cfa);
1790 queue_reg_save (label, src, NULL_RTX, offset);
1791 break;
1793 default:
1794 gcc_unreachable ();
1798 /* Record call frame debugging information for INSN, which either
1799 sets SP or FP (adjusting how we calculate the frame address) or saves a
1800 register to the stack. If INSN is NULL_RTX, initialize our state.
1802 If AFTER_P is false, we're being called before the insn is emitted,
1803 otherwise after. Call instructions get invoked twice. */
1805 void
1806 dwarf2out_frame_debug (rtx insn, bool after_p)
1808 const char *label;
1809 rtx src;
1811 if (insn == NULL_RTX)
1813 size_t i;
1815 /* Flush any queued register saves. */
1816 flush_queued_reg_saves ();
1818 /* Set up state for generating call frame debug info. */
1819 lookup_cfa (&cfa);
1820 gcc_assert (cfa.reg
1821 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1823 cfa.reg = STACK_POINTER_REGNUM;
1824 cfa_store = cfa;
1825 cfa_temp.reg = -1;
1826 cfa_temp.offset = 0;
1828 for (i = 0; i < num_regs_saved_in_regs; i++)
1830 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1831 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1833 num_regs_saved_in_regs = 0;
1834 return;
1837 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1838 flush_queued_reg_saves ();
1840 if (! RTX_FRAME_RELATED_P (insn))
1842 if (!ACCUMULATE_OUTGOING_ARGS)
1843 dwarf2out_stack_adjust (insn, after_p);
1844 return;
1847 label = dwarf2out_cfi_label ();
1848 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1849 if (src)
1850 insn = XEXP (src, 0);
1851 else
1852 insn = PATTERN (insn);
1854 dwarf2out_frame_debug_expr (insn, label);
1857 #endif
1859 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1860 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1861 (enum dwarf_call_frame_info cfi);
1863 static enum dw_cfi_oprnd_type
1864 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1866 switch (cfi)
1868 case DW_CFA_nop:
1869 case DW_CFA_GNU_window_save:
1870 return dw_cfi_oprnd_unused;
1872 case DW_CFA_set_loc:
1873 case DW_CFA_advance_loc1:
1874 case DW_CFA_advance_loc2:
1875 case DW_CFA_advance_loc4:
1876 case DW_CFA_MIPS_advance_loc8:
1877 return dw_cfi_oprnd_addr;
1879 case DW_CFA_offset:
1880 case DW_CFA_offset_extended:
1881 case DW_CFA_def_cfa:
1882 case DW_CFA_offset_extended_sf:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_restore_extended:
1885 case DW_CFA_undefined:
1886 case DW_CFA_same_value:
1887 case DW_CFA_def_cfa_register:
1888 case DW_CFA_register:
1889 return dw_cfi_oprnd_reg_num;
1891 case DW_CFA_def_cfa_offset:
1892 case DW_CFA_GNU_args_size:
1893 case DW_CFA_def_cfa_offset_sf:
1894 return dw_cfi_oprnd_offset;
1896 case DW_CFA_def_cfa_expression:
1897 case DW_CFA_expression:
1898 return dw_cfi_oprnd_loc;
1900 default:
1901 gcc_unreachable ();
1905 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1906 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1907 (enum dwarf_call_frame_info cfi);
1909 static enum dw_cfi_oprnd_type
1910 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1912 switch (cfi)
1914 case DW_CFA_def_cfa:
1915 case DW_CFA_def_cfa_sf:
1916 case DW_CFA_offset:
1917 case DW_CFA_offset_extended_sf:
1918 case DW_CFA_offset_extended:
1919 return dw_cfi_oprnd_offset;
1921 case DW_CFA_register:
1922 return dw_cfi_oprnd_reg_num;
1924 default:
1925 return dw_cfi_oprnd_unused;
1929 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1931 /* Map register numbers held in the call frame info that gcc has
1932 collected using DWARF_FRAME_REGNUM to those that should be output in
1933 .debug_frame and .eh_frame. */
1934 #ifndef DWARF2_FRAME_REG_OUT
1935 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1936 #endif
1938 /* Output a Call Frame Information opcode and its operand(s). */
1940 static void
1941 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1943 unsigned long r;
1944 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1945 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1946 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1947 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1948 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1949 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1951 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1952 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1953 "DW_CFA_offset, column 0x%lx", r);
1954 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1956 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1958 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1959 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1960 "DW_CFA_restore, column 0x%lx", r);
1962 else
1964 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1965 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1967 switch (cfi->dw_cfi_opc)
1969 case DW_CFA_set_loc:
1970 if (for_eh)
1971 dw2_asm_output_encoded_addr_rtx (
1972 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1973 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1974 NULL);
1975 else
1976 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1977 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1978 break;
1980 case DW_CFA_advance_loc1:
1981 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1982 fde->dw_fde_current_label, NULL);
1983 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1984 break;
1986 case DW_CFA_advance_loc2:
1987 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1988 fde->dw_fde_current_label, NULL);
1989 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1990 break;
1992 case DW_CFA_advance_loc4:
1993 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1994 fde->dw_fde_current_label, NULL);
1995 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1996 break;
1998 case DW_CFA_MIPS_advance_loc8:
1999 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2000 fde->dw_fde_current_label, NULL);
2001 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2002 break;
2004 case DW_CFA_offset_extended:
2005 case DW_CFA_def_cfa:
2006 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2007 dw2_asm_output_data_uleb128 (r, NULL);
2008 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2009 break;
2011 case DW_CFA_offset_extended_sf:
2012 case DW_CFA_def_cfa_sf:
2013 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2014 dw2_asm_output_data_uleb128 (r, NULL);
2015 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2016 break;
2018 case DW_CFA_restore_extended:
2019 case DW_CFA_undefined:
2020 case DW_CFA_same_value:
2021 case DW_CFA_def_cfa_register:
2022 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2023 dw2_asm_output_data_uleb128 (r, NULL);
2024 break;
2026 case DW_CFA_register:
2027 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2028 dw2_asm_output_data_uleb128 (r, NULL);
2029 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2030 dw2_asm_output_data_uleb128 (r, NULL);
2031 break;
2033 case DW_CFA_def_cfa_offset:
2034 case DW_CFA_GNU_args_size:
2035 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2036 break;
2038 case DW_CFA_def_cfa_offset_sf:
2039 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2040 break;
2042 case DW_CFA_GNU_window_save:
2043 break;
2045 case DW_CFA_def_cfa_expression:
2046 case DW_CFA_expression:
2047 output_cfa_loc (cfi);
2048 break;
2050 case DW_CFA_GNU_negative_offset_extended:
2051 /* Obsoleted by DW_CFA_offset_extended_sf. */
2052 gcc_unreachable ();
2054 default:
2055 break;
2060 /* Output the call frame information used to record information
2061 that relates to calculating the frame pointer, and records the
2062 location of saved registers. */
2064 static void
2065 output_call_frame_info (int for_eh)
2067 unsigned int i;
2068 dw_fde_ref fde;
2069 dw_cfi_ref cfi;
2070 char l1[20], l2[20], section_start_label[20];
2071 bool any_lsda_needed = false;
2072 char augmentation[6];
2073 int augmentation_size;
2074 int fde_encoding = DW_EH_PE_absptr;
2075 int per_encoding = DW_EH_PE_absptr;
2076 int lsda_encoding = DW_EH_PE_absptr;
2078 /* Don't emit a CIE if there won't be any FDEs. */
2079 if (fde_table_in_use == 0)
2080 return;
2082 /* If we make FDEs linkonce, we may have to emit an empty label for
2083 an FDE that wouldn't otherwise be emitted. We want to avoid
2084 having an FDE kept around when the function it refers to is
2085 discarded. Example where this matters: a primary function
2086 template in C++ requires EH information, but an explicit
2087 specialization doesn't. */
2088 if (TARGET_USES_WEAK_UNWIND_INFO
2089 && ! flag_asynchronous_unwind_tables
2090 && for_eh)
2091 for (i = 0; i < fde_table_in_use; i++)
2092 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2093 && !fde_table[i].uses_eh_lsda
2094 && ! DECL_WEAK (fde_table[i].decl))
2095 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2096 for_eh, /* empty */ 1);
2098 /* If we don't have any functions we'll want to unwind out of, don't
2099 emit any EH unwind information. Note that if exceptions aren't
2100 enabled, we won't have collected nothrow information, and if we
2101 asked for asynchronous tables, we always want this info. */
2102 if (for_eh)
2104 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2106 for (i = 0; i < fde_table_in_use; i++)
2107 if (fde_table[i].uses_eh_lsda)
2108 any_eh_needed = any_lsda_needed = true;
2109 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2110 any_eh_needed = true;
2111 else if (! fde_table[i].nothrow
2112 && ! fde_table[i].all_throwers_are_sibcalls)
2113 any_eh_needed = true;
2115 if (! any_eh_needed)
2116 return;
2119 /* We're going to be generating comments, so turn on app. */
2120 if (flag_debug_asm)
2121 app_enable ();
2123 if (for_eh)
2124 targetm.asm_out.eh_frame_section ();
2125 else
2126 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2128 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2129 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2131 /* Output the CIE. */
2132 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2133 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2134 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2135 "Length of Common Information Entry");
2136 ASM_OUTPUT_LABEL (asm_out_file, l1);
2138 /* Now that the CIE pointer is PC-relative for EH,
2139 use 0 to identify the CIE. */
2140 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2141 (for_eh ? 0 : DW_CIE_ID),
2142 "CIE Identifier Tag");
2144 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2146 augmentation[0] = 0;
2147 augmentation_size = 0;
2148 if (for_eh)
2150 char *p;
2152 /* Augmentation:
2153 z Indicates that a uleb128 is present to size the
2154 augmentation section.
2155 L Indicates the encoding (and thus presence) of
2156 an LSDA pointer in the FDE augmentation.
2157 R Indicates a non-default pointer encoding for
2158 FDE code pointers.
2159 P Indicates the presence of an encoding + language
2160 personality routine in the CIE augmentation. */
2162 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2163 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2164 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2166 p = augmentation + 1;
2167 if (eh_personality_libfunc)
2169 *p++ = 'P';
2170 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2172 if (any_lsda_needed)
2174 *p++ = 'L';
2175 augmentation_size += 1;
2177 if (fde_encoding != DW_EH_PE_absptr)
2179 *p++ = 'R';
2180 augmentation_size += 1;
2182 if (p > augmentation + 1)
2184 augmentation[0] = 'z';
2185 *p = '\0';
2188 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2189 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2191 int offset = ( 4 /* Length */
2192 + 4 /* CIE Id */
2193 + 1 /* CIE version */
2194 + strlen (augmentation) + 1 /* Augmentation */
2195 + size_of_uleb128 (1) /* Code alignment */
2196 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2197 + 1 /* RA column */
2198 + 1 /* Augmentation size */
2199 + 1 /* Personality encoding */ );
2200 int pad = -offset & (PTR_SIZE - 1);
2202 augmentation_size += pad;
2204 /* Augmentations should be small, so there's scarce need to
2205 iterate for a solution. Die if we exceed one uleb128 byte. */
2206 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2210 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2211 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2212 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2213 "CIE Data Alignment Factor");
2215 if (DW_CIE_VERSION == 1)
2216 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2217 else
2218 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2220 if (augmentation[0])
2222 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2223 if (eh_personality_libfunc)
2225 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2226 eh_data_format_name (per_encoding));
2227 dw2_asm_output_encoded_addr_rtx (per_encoding,
2228 eh_personality_libfunc, NULL);
2231 if (any_lsda_needed)
2232 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2233 eh_data_format_name (lsda_encoding));
2235 if (fde_encoding != DW_EH_PE_absptr)
2236 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2237 eh_data_format_name (fde_encoding));
2240 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2241 output_cfi (cfi, NULL, for_eh);
2243 /* Pad the CIE out to an address sized boundary. */
2244 ASM_OUTPUT_ALIGN (asm_out_file,
2245 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2246 ASM_OUTPUT_LABEL (asm_out_file, l2);
2248 /* Loop through all of the FDE's. */
2249 for (i = 0; i < fde_table_in_use; i++)
2251 fde = &fde_table[i];
2253 /* Don't emit EH unwind info for leaf functions that don't need it. */
2254 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2255 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2256 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2257 && !fde->uses_eh_lsda)
2258 continue;
2260 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2261 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2262 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2263 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2264 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2265 "FDE Length");
2266 ASM_OUTPUT_LABEL (asm_out_file, l1);
2268 if (for_eh)
2269 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2270 else
2271 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2272 "FDE CIE offset");
2274 if (for_eh)
2276 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2277 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2278 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2279 sym_ref,
2280 "FDE initial location");
2281 if (fde->dw_fde_switched_sections)
2283 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2284 fde->dw_fde_unlikely_section_label);
2285 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2286 fde->dw_fde_hot_section_label);
2287 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2288 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2289 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2290 "FDE initial location");
2291 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2292 fde->dw_fde_hot_section_end_label,
2293 fde->dw_fde_hot_section_label,
2294 "FDE address range");
2295 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2296 "FDE initial location");
2297 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2298 fde->dw_fde_unlikely_section_end_label,
2299 fde->dw_fde_unlikely_section_label,
2300 "FDE address range");
2302 else
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_end, fde->dw_fde_begin,
2305 "FDE address range");
2307 else
2309 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2310 "FDE initial location");
2311 if (fde->dw_fde_switched_sections)
2313 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2314 fde->dw_fde_hot_section_label,
2315 "FDE initial location");
2316 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2317 fde->dw_fde_hot_section_end_label,
2318 fde->dw_fde_hot_section_label,
2319 "FDE address range");
2320 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2321 fde->dw_fde_unlikely_section_label,
2322 "FDE initial location");
2323 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2324 fde->dw_fde_unlikely_section_end_label,
2325 fde->dw_fde_unlikely_section_label,
2326 "FDE address range");
2328 else
2329 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2330 fde->dw_fde_end, fde->dw_fde_begin,
2331 "FDE address range");
2334 if (augmentation[0])
2336 if (any_lsda_needed)
2338 int size = size_of_encoded_value (lsda_encoding);
2340 if (lsda_encoding == DW_EH_PE_aligned)
2342 int offset = ( 4 /* Length */
2343 + 4 /* CIE offset */
2344 + 2 * size_of_encoded_value (fde_encoding)
2345 + 1 /* Augmentation size */ );
2346 int pad = -offset & (PTR_SIZE - 1);
2348 size += pad;
2349 gcc_assert (size_of_uleb128 (size) == 1);
2352 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2354 if (fde->uses_eh_lsda)
2356 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2357 fde->funcdef_number);
2358 dw2_asm_output_encoded_addr_rtx (
2359 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2360 "Language Specific Data Area");
2362 else
2364 if (lsda_encoding == DW_EH_PE_aligned)
2365 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2366 dw2_asm_output_data
2367 (size_of_encoded_value (lsda_encoding), 0,
2368 "Language Specific Data Area (none)");
2371 else
2372 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2375 /* Loop through the Call Frame Instructions associated with
2376 this FDE. */
2377 fde->dw_fde_current_label = fde->dw_fde_begin;
2378 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2379 output_cfi (cfi, fde, for_eh);
2381 /* Pad the FDE out to an address sized boundary. */
2382 ASM_OUTPUT_ALIGN (asm_out_file,
2383 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2384 ASM_OUTPUT_LABEL (asm_out_file, l2);
2387 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2388 dw2_asm_output_data (4, 0, "End of Table");
2389 #ifdef MIPS_DEBUGGING_INFO
2390 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2391 get a value of 0. Putting .align 0 after the label fixes it. */
2392 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2393 #endif
2395 /* Turn off app to make assembly quicker. */
2396 if (flag_debug_asm)
2397 app_disable ();
2400 /* Output a marker (i.e. a label) for the beginning of a function, before
2401 the prologue. */
2403 void
2404 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2405 const char *file ATTRIBUTE_UNUSED)
2407 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2408 char * dup_label;
2409 dw_fde_ref fde;
2411 current_function_func_begin_label = NULL;
2413 #ifdef TARGET_UNWIND_INFO
2414 /* ??? current_function_func_begin_label is also used by except.c
2415 for call-site information. We must emit this label if it might
2416 be used. */
2417 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2418 && ! dwarf2out_do_frame ())
2419 return;
2420 #else
2421 if (! dwarf2out_do_frame ())
2422 return;
2423 #endif
2425 function_section (current_function_decl);
2426 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2427 current_function_funcdef_no);
2428 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2429 current_function_funcdef_no);
2430 dup_label = xstrdup (label);
2431 current_function_func_begin_label = dup_label;
2433 #ifdef TARGET_UNWIND_INFO
2434 /* We can elide the fde allocation if we're not emitting debug info. */
2435 if (! dwarf2out_do_frame ())
2436 return;
2437 #endif
2439 /* Expand the fde table if necessary. */
2440 if (fde_table_in_use == fde_table_allocated)
2442 fde_table_allocated += FDE_TABLE_INCREMENT;
2443 fde_table = ggc_realloc (fde_table,
2444 fde_table_allocated * sizeof (dw_fde_node));
2445 memset (fde_table + fde_table_in_use, 0,
2446 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2449 /* Record the FDE associated with this function. */
2450 current_funcdef_fde = fde_table_in_use;
2452 /* Add the new FDE at the end of the fde_table. */
2453 fde = &fde_table[fde_table_in_use++];
2454 fde->decl = current_function_decl;
2455 fde->dw_fde_begin = dup_label;
2456 fde->dw_fde_current_label = NULL;
2457 fde->dw_fde_hot_section_label = NULL;
2458 fde->dw_fde_hot_section_end_label = NULL;
2459 fde->dw_fde_unlikely_section_label = NULL;
2460 fde->dw_fde_unlikely_section_end_label = NULL;
2461 fde->dw_fde_switched_sections = false;
2462 fde->dw_fde_end = NULL;
2463 fde->dw_fde_cfi = NULL;
2464 fde->funcdef_number = current_function_funcdef_no;
2465 fde->nothrow = TREE_NOTHROW (current_function_decl);
2466 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2467 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2469 args_size = old_args_size = 0;
2471 /* We only want to output line number information for the genuine dwarf2
2472 prologue case, not the eh frame case. */
2473 #ifdef DWARF2_DEBUGGING_INFO
2474 if (file)
2475 dwarf2out_source_line (line, file);
2476 #endif
2479 /* Output a marker (i.e. a label) for the absolute end of the generated code
2480 for a function definition. This gets called *after* the epilogue code has
2481 been generated. */
2483 void
2484 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2485 const char *file ATTRIBUTE_UNUSED)
2487 dw_fde_ref fde;
2488 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2490 /* Output a label to mark the endpoint of the code generated for this
2491 function. */
2492 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2493 current_function_funcdef_no);
2494 ASM_OUTPUT_LABEL (asm_out_file, label);
2495 fde = &fde_table[fde_table_in_use - 1];
2496 fde->dw_fde_end = xstrdup (label);
2499 void
2500 dwarf2out_frame_init (void)
2502 /* Allocate the initial hunk of the fde_table. */
2503 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2504 fde_table_allocated = FDE_TABLE_INCREMENT;
2505 fde_table_in_use = 0;
2507 /* Generate the CFA instructions common to all FDE's. Do it now for the
2508 sake of lookup_cfa. */
2510 #ifdef DWARF2_UNWIND_INFO
2511 /* On entry, the Canonical Frame Address is at SP. */
2512 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2513 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2514 #endif
2517 void
2518 dwarf2out_frame_finish (void)
2520 /* Output call frame information. */
2521 if (write_symbols == DWARF2_DEBUG
2522 || write_symbols == VMS_AND_DWARF2_DEBUG
2523 #ifdef DWARF2_FRAME_INFO
2524 || DWARF2_FRAME_INFO
2525 #endif
2527 output_call_frame_info (0);
2529 #ifndef TARGET_UNWIND_INFO
2530 /* Output another copy for the unwinder. */
2531 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2532 output_call_frame_info (1);
2533 #endif
2535 #endif
2537 /* And now, the subset of the debugging information support code necessary
2538 for emitting location expressions. */
2540 /* We need some way to distinguish DW_OP_addr with a direct symbol
2541 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2542 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2545 typedef struct dw_val_struct *dw_val_ref;
2546 typedef struct die_struct *dw_die_ref;
2547 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2548 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2550 /* Each DIE may have a series of attribute/value pairs. Values
2551 can take on several forms. The forms that are used in this
2552 implementation are listed below. */
2554 enum dw_val_class
2556 dw_val_class_addr,
2557 dw_val_class_offset,
2558 dw_val_class_loc,
2559 dw_val_class_loc_list,
2560 dw_val_class_range_list,
2561 dw_val_class_const,
2562 dw_val_class_unsigned_const,
2563 dw_val_class_long_long,
2564 dw_val_class_vec,
2565 dw_val_class_flag,
2566 dw_val_class_die_ref,
2567 dw_val_class_fde_ref,
2568 dw_val_class_lbl_id,
2569 dw_val_class_lbl_offset,
2570 dw_val_class_str
2573 /* Describe a double word constant value. */
2574 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2576 typedef struct dw_long_long_struct GTY(())
2578 unsigned long hi;
2579 unsigned long low;
2581 dw_long_long_const;
2583 /* Describe a floating point constant value, or a vector constant value. */
2585 typedef struct dw_vec_struct GTY(())
2587 unsigned char * GTY((length ("%h.length"))) array;
2588 unsigned length;
2589 unsigned elt_size;
2591 dw_vec_const;
2593 /* The dw_val_node describes an attribute's value, as it is
2594 represented internally. */
2596 typedef struct dw_val_struct GTY(())
2598 enum dw_val_class val_class;
2599 union dw_val_struct_union
2601 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2602 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2603 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2604 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2605 HOST_WIDE_INT GTY ((default)) val_int;
2606 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2607 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2608 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2609 struct dw_val_die_union
2611 dw_die_ref die;
2612 int external;
2613 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2614 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2615 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2616 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2617 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2619 GTY ((desc ("%1.val_class"))) v;
2621 dw_val_node;
2623 /* Locations in memory are described using a sequence of stack machine
2624 operations. */
2626 typedef struct dw_loc_descr_struct GTY(())
2628 dw_loc_descr_ref dw_loc_next;
2629 enum dwarf_location_atom dw_loc_opc;
2630 dw_val_node dw_loc_oprnd1;
2631 dw_val_node dw_loc_oprnd2;
2632 int dw_loc_addr;
2634 dw_loc_descr_node;
2636 /* Location lists are ranges + location descriptions for that range,
2637 so you can track variables that are in different places over
2638 their entire life. */
2639 typedef struct dw_loc_list_struct GTY(())
2641 dw_loc_list_ref dw_loc_next;
2642 const char *begin; /* Label for begin address of range */
2643 const char *end; /* Label for end address of range */
2644 char *ll_symbol; /* Label for beginning of location list.
2645 Only on head of list */
2646 const char *section; /* Section this loclist is relative to */
2647 dw_loc_descr_ref expr;
2648 } dw_loc_list_node;
2650 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2652 static const char *dwarf_stack_op_name (unsigned);
2653 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2654 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2655 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2656 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2657 static unsigned long size_of_locs (dw_loc_descr_ref);
2658 static void output_loc_operands (dw_loc_descr_ref);
2659 static void output_loc_sequence (dw_loc_descr_ref);
2661 /* Convert a DWARF stack opcode into its string name. */
2663 static const char *
2664 dwarf_stack_op_name (unsigned int op)
2666 switch (op)
2668 case DW_OP_addr:
2669 case INTERNAL_DW_OP_tls_addr:
2670 return "DW_OP_addr";
2671 case DW_OP_deref:
2672 return "DW_OP_deref";
2673 case DW_OP_const1u:
2674 return "DW_OP_const1u";
2675 case DW_OP_const1s:
2676 return "DW_OP_const1s";
2677 case DW_OP_const2u:
2678 return "DW_OP_const2u";
2679 case DW_OP_const2s:
2680 return "DW_OP_const2s";
2681 case DW_OP_const4u:
2682 return "DW_OP_const4u";
2683 case DW_OP_const4s:
2684 return "DW_OP_const4s";
2685 case DW_OP_const8u:
2686 return "DW_OP_const8u";
2687 case DW_OP_const8s:
2688 return "DW_OP_const8s";
2689 case DW_OP_constu:
2690 return "DW_OP_constu";
2691 case DW_OP_consts:
2692 return "DW_OP_consts";
2693 case DW_OP_dup:
2694 return "DW_OP_dup";
2695 case DW_OP_drop:
2696 return "DW_OP_drop";
2697 case DW_OP_over:
2698 return "DW_OP_over";
2699 case DW_OP_pick:
2700 return "DW_OP_pick";
2701 case DW_OP_swap:
2702 return "DW_OP_swap";
2703 case DW_OP_rot:
2704 return "DW_OP_rot";
2705 case DW_OP_xderef:
2706 return "DW_OP_xderef";
2707 case DW_OP_abs:
2708 return "DW_OP_abs";
2709 case DW_OP_and:
2710 return "DW_OP_and";
2711 case DW_OP_div:
2712 return "DW_OP_div";
2713 case DW_OP_minus:
2714 return "DW_OP_minus";
2715 case DW_OP_mod:
2716 return "DW_OP_mod";
2717 case DW_OP_mul:
2718 return "DW_OP_mul";
2719 case DW_OP_neg:
2720 return "DW_OP_neg";
2721 case DW_OP_not:
2722 return "DW_OP_not";
2723 case DW_OP_or:
2724 return "DW_OP_or";
2725 case DW_OP_plus:
2726 return "DW_OP_plus";
2727 case DW_OP_plus_uconst:
2728 return "DW_OP_plus_uconst";
2729 case DW_OP_shl:
2730 return "DW_OP_shl";
2731 case DW_OP_shr:
2732 return "DW_OP_shr";
2733 case DW_OP_shra:
2734 return "DW_OP_shra";
2735 case DW_OP_xor:
2736 return "DW_OP_xor";
2737 case DW_OP_bra:
2738 return "DW_OP_bra";
2739 case DW_OP_eq:
2740 return "DW_OP_eq";
2741 case DW_OP_ge:
2742 return "DW_OP_ge";
2743 case DW_OP_gt:
2744 return "DW_OP_gt";
2745 case DW_OP_le:
2746 return "DW_OP_le";
2747 case DW_OP_lt:
2748 return "DW_OP_lt";
2749 case DW_OP_ne:
2750 return "DW_OP_ne";
2751 case DW_OP_skip:
2752 return "DW_OP_skip";
2753 case DW_OP_lit0:
2754 return "DW_OP_lit0";
2755 case DW_OP_lit1:
2756 return "DW_OP_lit1";
2757 case DW_OP_lit2:
2758 return "DW_OP_lit2";
2759 case DW_OP_lit3:
2760 return "DW_OP_lit3";
2761 case DW_OP_lit4:
2762 return "DW_OP_lit4";
2763 case DW_OP_lit5:
2764 return "DW_OP_lit5";
2765 case DW_OP_lit6:
2766 return "DW_OP_lit6";
2767 case DW_OP_lit7:
2768 return "DW_OP_lit7";
2769 case DW_OP_lit8:
2770 return "DW_OP_lit8";
2771 case DW_OP_lit9:
2772 return "DW_OP_lit9";
2773 case DW_OP_lit10:
2774 return "DW_OP_lit10";
2775 case DW_OP_lit11:
2776 return "DW_OP_lit11";
2777 case DW_OP_lit12:
2778 return "DW_OP_lit12";
2779 case DW_OP_lit13:
2780 return "DW_OP_lit13";
2781 case DW_OP_lit14:
2782 return "DW_OP_lit14";
2783 case DW_OP_lit15:
2784 return "DW_OP_lit15";
2785 case DW_OP_lit16:
2786 return "DW_OP_lit16";
2787 case DW_OP_lit17:
2788 return "DW_OP_lit17";
2789 case DW_OP_lit18:
2790 return "DW_OP_lit18";
2791 case DW_OP_lit19:
2792 return "DW_OP_lit19";
2793 case DW_OP_lit20:
2794 return "DW_OP_lit20";
2795 case DW_OP_lit21:
2796 return "DW_OP_lit21";
2797 case DW_OP_lit22:
2798 return "DW_OP_lit22";
2799 case DW_OP_lit23:
2800 return "DW_OP_lit23";
2801 case DW_OP_lit24:
2802 return "DW_OP_lit24";
2803 case DW_OP_lit25:
2804 return "DW_OP_lit25";
2805 case DW_OP_lit26:
2806 return "DW_OP_lit26";
2807 case DW_OP_lit27:
2808 return "DW_OP_lit27";
2809 case DW_OP_lit28:
2810 return "DW_OP_lit28";
2811 case DW_OP_lit29:
2812 return "DW_OP_lit29";
2813 case DW_OP_lit30:
2814 return "DW_OP_lit30";
2815 case DW_OP_lit31:
2816 return "DW_OP_lit31";
2817 case DW_OP_reg0:
2818 return "DW_OP_reg0";
2819 case DW_OP_reg1:
2820 return "DW_OP_reg1";
2821 case DW_OP_reg2:
2822 return "DW_OP_reg2";
2823 case DW_OP_reg3:
2824 return "DW_OP_reg3";
2825 case DW_OP_reg4:
2826 return "DW_OP_reg4";
2827 case DW_OP_reg5:
2828 return "DW_OP_reg5";
2829 case DW_OP_reg6:
2830 return "DW_OP_reg6";
2831 case DW_OP_reg7:
2832 return "DW_OP_reg7";
2833 case DW_OP_reg8:
2834 return "DW_OP_reg8";
2835 case DW_OP_reg9:
2836 return "DW_OP_reg9";
2837 case DW_OP_reg10:
2838 return "DW_OP_reg10";
2839 case DW_OP_reg11:
2840 return "DW_OP_reg11";
2841 case DW_OP_reg12:
2842 return "DW_OP_reg12";
2843 case DW_OP_reg13:
2844 return "DW_OP_reg13";
2845 case DW_OP_reg14:
2846 return "DW_OP_reg14";
2847 case DW_OP_reg15:
2848 return "DW_OP_reg15";
2849 case DW_OP_reg16:
2850 return "DW_OP_reg16";
2851 case DW_OP_reg17:
2852 return "DW_OP_reg17";
2853 case DW_OP_reg18:
2854 return "DW_OP_reg18";
2855 case DW_OP_reg19:
2856 return "DW_OP_reg19";
2857 case DW_OP_reg20:
2858 return "DW_OP_reg20";
2859 case DW_OP_reg21:
2860 return "DW_OP_reg21";
2861 case DW_OP_reg22:
2862 return "DW_OP_reg22";
2863 case DW_OP_reg23:
2864 return "DW_OP_reg23";
2865 case DW_OP_reg24:
2866 return "DW_OP_reg24";
2867 case DW_OP_reg25:
2868 return "DW_OP_reg25";
2869 case DW_OP_reg26:
2870 return "DW_OP_reg26";
2871 case DW_OP_reg27:
2872 return "DW_OP_reg27";
2873 case DW_OP_reg28:
2874 return "DW_OP_reg28";
2875 case DW_OP_reg29:
2876 return "DW_OP_reg29";
2877 case DW_OP_reg30:
2878 return "DW_OP_reg30";
2879 case DW_OP_reg31:
2880 return "DW_OP_reg31";
2881 case DW_OP_breg0:
2882 return "DW_OP_breg0";
2883 case DW_OP_breg1:
2884 return "DW_OP_breg1";
2885 case DW_OP_breg2:
2886 return "DW_OP_breg2";
2887 case DW_OP_breg3:
2888 return "DW_OP_breg3";
2889 case DW_OP_breg4:
2890 return "DW_OP_breg4";
2891 case DW_OP_breg5:
2892 return "DW_OP_breg5";
2893 case DW_OP_breg6:
2894 return "DW_OP_breg6";
2895 case DW_OP_breg7:
2896 return "DW_OP_breg7";
2897 case DW_OP_breg8:
2898 return "DW_OP_breg8";
2899 case DW_OP_breg9:
2900 return "DW_OP_breg9";
2901 case DW_OP_breg10:
2902 return "DW_OP_breg10";
2903 case DW_OP_breg11:
2904 return "DW_OP_breg11";
2905 case DW_OP_breg12:
2906 return "DW_OP_breg12";
2907 case DW_OP_breg13:
2908 return "DW_OP_breg13";
2909 case DW_OP_breg14:
2910 return "DW_OP_breg14";
2911 case DW_OP_breg15:
2912 return "DW_OP_breg15";
2913 case DW_OP_breg16:
2914 return "DW_OP_breg16";
2915 case DW_OP_breg17:
2916 return "DW_OP_breg17";
2917 case DW_OP_breg18:
2918 return "DW_OP_breg18";
2919 case DW_OP_breg19:
2920 return "DW_OP_breg19";
2921 case DW_OP_breg20:
2922 return "DW_OP_breg20";
2923 case DW_OP_breg21:
2924 return "DW_OP_breg21";
2925 case DW_OP_breg22:
2926 return "DW_OP_breg22";
2927 case DW_OP_breg23:
2928 return "DW_OP_breg23";
2929 case DW_OP_breg24:
2930 return "DW_OP_breg24";
2931 case DW_OP_breg25:
2932 return "DW_OP_breg25";
2933 case DW_OP_breg26:
2934 return "DW_OP_breg26";
2935 case DW_OP_breg27:
2936 return "DW_OP_breg27";
2937 case DW_OP_breg28:
2938 return "DW_OP_breg28";
2939 case DW_OP_breg29:
2940 return "DW_OP_breg29";
2941 case DW_OP_breg30:
2942 return "DW_OP_breg30";
2943 case DW_OP_breg31:
2944 return "DW_OP_breg31";
2945 case DW_OP_regx:
2946 return "DW_OP_regx";
2947 case DW_OP_fbreg:
2948 return "DW_OP_fbreg";
2949 case DW_OP_bregx:
2950 return "DW_OP_bregx";
2951 case DW_OP_piece:
2952 return "DW_OP_piece";
2953 case DW_OP_deref_size:
2954 return "DW_OP_deref_size";
2955 case DW_OP_xderef_size:
2956 return "DW_OP_xderef_size";
2957 case DW_OP_nop:
2958 return "DW_OP_nop";
2959 case DW_OP_push_object_address:
2960 return "DW_OP_push_object_address";
2961 case DW_OP_call2:
2962 return "DW_OP_call2";
2963 case DW_OP_call4:
2964 return "DW_OP_call4";
2965 case DW_OP_call_ref:
2966 return "DW_OP_call_ref";
2967 case DW_OP_GNU_push_tls_address:
2968 return "DW_OP_GNU_push_tls_address";
2969 default:
2970 return "OP_<unknown>";
2974 /* Return a pointer to a newly allocated location description. Location
2975 descriptions are simple expression terms that can be strung
2976 together to form more complicated location (address) descriptions. */
2978 static inline dw_loc_descr_ref
2979 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2980 unsigned HOST_WIDE_INT oprnd2)
2982 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2984 descr->dw_loc_opc = op;
2985 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2986 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2987 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2988 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2990 return descr;
2994 /* Add a location description term to a location description expression. */
2996 static inline void
2997 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2999 dw_loc_descr_ref *d;
3001 /* Find the end of the chain. */
3002 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3005 *d = descr;
3008 /* Return the size of a location descriptor. */
3010 static unsigned long
3011 size_of_loc_descr (dw_loc_descr_ref loc)
3013 unsigned long size = 1;
3015 switch (loc->dw_loc_opc)
3017 case DW_OP_addr:
3018 case INTERNAL_DW_OP_tls_addr:
3019 size += DWARF2_ADDR_SIZE;
3020 break;
3021 case DW_OP_const1u:
3022 case DW_OP_const1s:
3023 size += 1;
3024 break;
3025 case DW_OP_const2u:
3026 case DW_OP_const2s:
3027 size += 2;
3028 break;
3029 case DW_OP_const4u:
3030 case DW_OP_const4s:
3031 size += 4;
3032 break;
3033 case DW_OP_const8u:
3034 case DW_OP_const8s:
3035 size += 8;
3036 break;
3037 case DW_OP_constu:
3038 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3039 break;
3040 case DW_OP_consts:
3041 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3042 break;
3043 case DW_OP_pick:
3044 size += 1;
3045 break;
3046 case DW_OP_plus_uconst:
3047 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3048 break;
3049 case DW_OP_skip:
3050 case DW_OP_bra:
3051 size += 2;
3052 break;
3053 case DW_OP_breg0:
3054 case DW_OP_breg1:
3055 case DW_OP_breg2:
3056 case DW_OP_breg3:
3057 case DW_OP_breg4:
3058 case DW_OP_breg5:
3059 case DW_OP_breg6:
3060 case DW_OP_breg7:
3061 case DW_OP_breg8:
3062 case DW_OP_breg9:
3063 case DW_OP_breg10:
3064 case DW_OP_breg11:
3065 case DW_OP_breg12:
3066 case DW_OP_breg13:
3067 case DW_OP_breg14:
3068 case DW_OP_breg15:
3069 case DW_OP_breg16:
3070 case DW_OP_breg17:
3071 case DW_OP_breg18:
3072 case DW_OP_breg19:
3073 case DW_OP_breg20:
3074 case DW_OP_breg21:
3075 case DW_OP_breg22:
3076 case DW_OP_breg23:
3077 case DW_OP_breg24:
3078 case DW_OP_breg25:
3079 case DW_OP_breg26:
3080 case DW_OP_breg27:
3081 case DW_OP_breg28:
3082 case DW_OP_breg29:
3083 case DW_OP_breg30:
3084 case DW_OP_breg31:
3085 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3086 break;
3087 case DW_OP_regx:
3088 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3089 break;
3090 case DW_OP_fbreg:
3091 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3092 break;
3093 case DW_OP_bregx:
3094 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3095 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3096 break;
3097 case DW_OP_piece:
3098 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3099 break;
3100 case DW_OP_deref_size:
3101 case DW_OP_xderef_size:
3102 size += 1;
3103 break;
3104 case DW_OP_call2:
3105 size += 2;
3106 break;
3107 case DW_OP_call4:
3108 size += 4;
3109 break;
3110 case DW_OP_call_ref:
3111 size += DWARF2_ADDR_SIZE;
3112 break;
3113 default:
3114 break;
3117 return size;
3120 /* Return the size of a series of location descriptors. */
3122 static unsigned long
3123 size_of_locs (dw_loc_descr_ref loc)
3125 unsigned long size;
3127 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3129 loc->dw_loc_addr = size;
3130 size += size_of_loc_descr (loc);
3133 return size;
3136 /* Output location description stack opcode's operands (if any). */
3138 static void
3139 output_loc_operands (dw_loc_descr_ref loc)
3141 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3142 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3144 switch (loc->dw_loc_opc)
3146 #ifdef DWARF2_DEBUGGING_INFO
3147 case DW_OP_addr:
3148 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 dw2_asm_output_data (2, val1->v.val_int, NULL);
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 dw2_asm_output_data (4, val1->v.val_int, NULL);
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 gcc_assert (HOST_BITS_PER_LONG >= 64);
3161 dw2_asm_output_data (8, val1->v.val_int, NULL);
3162 break;
3163 case DW_OP_skip:
3164 case DW_OP_bra:
3166 int offset;
3168 gcc_assert (val1->val_class == dw_val_class_loc);
3169 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3171 dw2_asm_output_data (2, offset, NULL);
3173 break;
3174 #else
3175 case DW_OP_addr:
3176 case DW_OP_const2u:
3177 case DW_OP_const2s:
3178 case DW_OP_const4u:
3179 case DW_OP_const4s:
3180 case DW_OP_const8u:
3181 case DW_OP_const8s:
3182 case DW_OP_skip:
3183 case DW_OP_bra:
3184 /* We currently don't make any attempt to make sure these are
3185 aligned properly like we do for the main unwind info, so
3186 don't support emitting things larger than a byte if we're
3187 only doing unwinding. */
3188 gcc_unreachable ();
3189 #endif
3190 case DW_OP_const1u:
3191 case DW_OP_const1s:
3192 dw2_asm_output_data (1, val1->v.val_int, NULL);
3193 break;
3194 case DW_OP_constu:
3195 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3196 break;
3197 case DW_OP_consts:
3198 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3199 break;
3200 case DW_OP_pick:
3201 dw2_asm_output_data (1, val1->v.val_int, NULL);
3202 break;
3203 case DW_OP_plus_uconst:
3204 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3205 break;
3206 case DW_OP_breg0:
3207 case DW_OP_breg1:
3208 case DW_OP_breg2:
3209 case DW_OP_breg3:
3210 case DW_OP_breg4:
3211 case DW_OP_breg5:
3212 case DW_OP_breg6:
3213 case DW_OP_breg7:
3214 case DW_OP_breg8:
3215 case DW_OP_breg9:
3216 case DW_OP_breg10:
3217 case DW_OP_breg11:
3218 case DW_OP_breg12:
3219 case DW_OP_breg13:
3220 case DW_OP_breg14:
3221 case DW_OP_breg15:
3222 case DW_OP_breg16:
3223 case DW_OP_breg17:
3224 case DW_OP_breg18:
3225 case DW_OP_breg19:
3226 case DW_OP_breg20:
3227 case DW_OP_breg21:
3228 case DW_OP_breg22:
3229 case DW_OP_breg23:
3230 case DW_OP_breg24:
3231 case DW_OP_breg25:
3232 case DW_OP_breg26:
3233 case DW_OP_breg27:
3234 case DW_OP_breg28:
3235 case DW_OP_breg29:
3236 case DW_OP_breg30:
3237 case DW_OP_breg31:
3238 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3239 break;
3240 case DW_OP_regx:
3241 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3242 break;
3243 case DW_OP_fbreg:
3244 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3245 break;
3246 case DW_OP_bregx:
3247 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3248 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3249 break;
3250 case DW_OP_piece:
3251 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3252 break;
3253 case DW_OP_deref_size:
3254 case DW_OP_xderef_size:
3255 dw2_asm_output_data (1, val1->v.val_int, NULL);
3256 break;
3258 case INTERNAL_DW_OP_tls_addr:
3259 #ifdef ASM_OUTPUT_DWARF_DTPREL
3260 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3261 val1->v.val_addr);
3262 fputc ('\n', asm_out_file);
3263 #else
3264 gcc_unreachable ();
3265 #endif
3266 break;
3268 default:
3269 /* Other codes have no operands. */
3270 break;
3274 /* Output a sequence of location operations. */
3276 static void
3277 output_loc_sequence (dw_loc_descr_ref loc)
3279 for (; loc != NULL; loc = loc->dw_loc_next)
3281 /* Output the opcode. */
3282 dw2_asm_output_data (1, loc->dw_loc_opc,
3283 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3285 /* Output the operand(s) (if any). */
3286 output_loc_operands (loc);
3290 /* This routine will generate the correct assembly data for a location
3291 description based on a cfi entry with a complex address. */
3293 static void
3294 output_cfa_loc (dw_cfi_ref cfi)
3296 dw_loc_descr_ref loc;
3297 unsigned long size;
3299 /* Output the size of the block. */
3300 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3301 size = size_of_locs (loc);
3302 dw2_asm_output_data_uleb128 (size, NULL);
3304 /* Now output the operations themselves. */
3305 output_loc_sequence (loc);
3308 /* This function builds a dwarf location descriptor sequence from
3309 a dw_cfa_location. */
3311 static struct dw_loc_descr_struct *
3312 build_cfa_loc (dw_cfa_location *cfa)
3314 struct dw_loc_descr_struct *head, *tmp;
3316 gcc_assert (cfa->indirect);
3318 if (cfa->base_offset)
3320 if (cfa->reg <= 31)
3321 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3322 else
3323 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3325 else if (cfa->reg <= 31)
3326 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3327 else
3328 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3330 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3331 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3332 add_loc_descr (&head, tmp);
3333 if (cfa->offset != 0)
3335 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3336 add_loc_descr (&head, tmp);
3339 return head;
3342 /* This function fills in aa dw_cfa_location structure from a dwarf location
3343 descriptor sequence. */
3345 static void
3346 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3348 struct dw_loc_descr_struct *ptr;
3349 cfa->offset = 0;
3350 cfa->base_offset = 0;
3351 cfa->indirect = 0;
3352 cfa->reg = -1;
3354 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3356 enum dwarf_location_atom op = ptr->dw_loc_opc;
3358 switch (op)
3360 case DW_OP_reg0:
3361 case DW_OP_reg1:
3362 case DW_OP_reg2:
3363 case DW_OP_reg3:
3364 case DW_OP_reg4:
3365 case DW_OP_reg5:
3366 case DW_OP_reg6:
3367 case DW_OP_reg7:
3368 case DW_OP_reg8:
3369 case DW_OP_reg9:
3370 case DW_OP_reg10:
3371 case DW_OP_reg11:
3372 case DW_OP_reg12:
3373 case DW_OP_reg13:
3374 case DW_OP_reg14:
3375 case DW_OP_reg15:
3376 case DW_OP_reg16:
3377 case DW_OP_reg17:
3378 case DW_OP_reg18:
3379 case DW_OP_reg19:
3380 case DW_OP_reg20:
3381 case DW_OP_reg21:
3382 case DW_OP_reg22:
3383 case DW_OP_reg23:
3384 case DW_OP_reg24:
3385 case DW_OP_reg25:
3386 case DW_OP_reg26:
3387 case DW_OP_reg27:
3388 case DW_OP_reg28:
3389 case DW_OP_reg29:
3390 case DW_OP_reg30:
3391 case DW_OP_reg31:
3392 cfa->reg = op - DW_OP_reg0;
3393 break;
3394 case DW_OP_regx:
3395 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3396 break;
3397 case DW_OP_breg0:
3398 case DW_OP_breg1:
3399 case DW_OP_breg2:
3400 case DW_OP_breg3:
3401 case DW_OP_breg4:
3402 case DW_OP_breg5:
3403 case DW_OP_breg6:
3404 case DW_OP_breg7:
3405 case DW_OP_breg8:
3406 case DW_OP_breg9:
3407 case DW_OP_breg10:
3408 case DW_OP_breg11:
3409 case DW_OP_breg12:
3410 case DW_OP_breg13:
3411 case DW_OP_breg14:
3412 case DW_OP_breg15:
3413 case DW_OP_breg16:
3414 case DW_OP_breg17:
3415 case DW_OP_breg18:
3416 case DW_OP_breg19:
3417 case DW_OP_breg20:
3418 case DW_OP_breg21:
3419 case DW_OP_breg22:
3420 case DW_OP_breg23:
3421 case DW_OP_breg24:
3422 case DW_OP_breg25:
3423 case DW_OP_breg26:
3424 case DW_OP_breg27:
3425 case DW_OP_breg28:
3426 case DW_OP_breg29:
3427 case DW_OP_breg30:
3428 case DW_OP_breg31:
3429 cfa->reg = op - DW_OP_breg0;
3430 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3431 break;
3432 case DW_OP_bregx:
3433 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3434 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3435 break;
3436 case DW_OP_deref:
3437 cfa->indirect = 1;
3438 break;
3439 case DW_OP_plus_uconst:
3440 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3441 break;
3442 default:
3443 internal_error ("DW_LOC_OP %s not implemented\n",
3444 dwarf_stack_op_name (ptr->dw_loc_opc));
3448 #endif /* .debug_frame support */
3450 /* And now, the support for symbolic debugging information. */
3451 #ifdef DWARF2_DEBUGGING_INFO
3453 /* .debug_str support. */
3454 static int output_indirect_string (void **, void *);
3456 static void dwarf2out_init (const char *);
3457 static void dwarf2out_finish (const char *);
3458 static void dwarf2out_define (unsigned int, const char *);
3459 static void dwarf2out_undef (unsigned int, const char *);
3460 static void dwarf2out_start_source_file (unsigned, const char *);
3461 static void dwarf2out_end_source_file (unsigned);
3462 static void dwarf2out_begin_block (unsigned, unsigned);
3463 static void dwarf2out_end_block (unsigned, unsigned);
3464 static bool dwarf2out_ignore_block (tree);
3465 static void dwarf2out_global_decl (tree);
3466 static void dwarf2out_type_decl (tree, int);
3467 static void dwarf2out_imported_module_or_decl (tree, tree);
3468 static void dwarf2out_abstract_function (tree);
3469 static void dwarf2out_var_location (rtx);
3470 static void dwarf2out_begin_function (tree);
3471 static void dwarf2out_switch_text_section (void);
3473 /* The debug hooks structure. */
3475 const struct gcc_debug_hooks dwarf2_debug_hooks =
3477 dwarf2out_init,
3478 dwarf2out_finish,
3479 dwarf2out_define,
3480 dwarf2out_undef,
3481 dwarf2out_start_source_file,
3482 dwarf2out_end_source_file,
3483 dwarf2out_begin_block,
3484 dwarf2out_end_block,
3485 dwarf2out_ignore_block,
3486 dwarf2out_source_line,
3487 dwarf2out_begin_prologue,
3488 debug_nothing_int_charstar, /* end_prologue */
3489 dwarf2out_end_epilogue,
3490 dwarf2out_begin_function,
3491 debug_nothing_int, /* end_function */
3492 dwarf2out_decl, /* function_decl */
3493 dwarf2out_global_decl,
3494 dwarf2out_type_decl, /* type_decl */
3495 dwarf2out_imported_module_or_decl,
3496 debug_nothing_tree, /* deferred_inline_function */
3497 /* The DWARF 2 backend tries to reduce debugging bloat by not
3498 emitting the abstract description of inline functions until
3499 something tries to reference them. */
3500 dwarf2out_abstract_function, /* outlining_inline_function */
3501 debug_nothing_rtx, /* label */
3502 debug_nothing_int, /* handle_pch */
3503 dwarf2out_var_location,
3504 dwarf2out_switch_text_section,
3505 1 /* start_end_main_source_file */
3507 #endif
3509 /* NOTE: In the comments in this file, many references are made to
3510 "Debugging Information Entries". This term is abbreviated as `DIE'
3511 throughout the remainder of this file. */
3513 /* An internal representation of the DWARF output is built, and then
3514 walked to generate the DWARF debugging info. The walk of the internal
3515 representation is done after the entire program has been compiled.
3516 The types below are used to describe the internal representation. */
3518 /* Various DIE's use offsets relative to the beginning of the
3519 .debug_info section to refer to each other. */
3521 typedef long int dw_offset;
3523 /* Define typedefs here to avoid circular dependencies. */
3525 typedef struct dw_attr_struct *dw_attr_ref;
3526 typedef struct dw_line_info_struct *dw_line_info_ref;
3527 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3528 typedef struct pubname_struct *pubname_ref;
3529 typedef struct dw_ranges_struct *dw_ranges_ref;
3531 /* Each entry in the line_info_table maintains the file and
3532 line number associated with the label generated for that
3533 entry. The label gives the PC value associated with
3534 the line number entry. */
3536 typedef struct dw_line_info_struct GTY(())
3538 unsigned long dw_file_num;
3539 unsigned long dw_line_num;
3541 dw_line_info_entry;
3543 /* Line information for functions in separate sections; each one gets its
3544 own sequence. */
3545 typedef struct dw_separate_line_info_struct GTY(())
3547 unsigned long dw_file_num;
3548 unsigned long dw_line_num;
3549 unsigned long function;
3551 dw_separate_line_info_entry;
3553 /* Each DIE attribute has a field specifying the attribute kind,
3554 a link to the next attribute in the chain, and an attribute value.
3555 Attributes are typically linked below the DIE they modify. */
3557 typedef struct dw_attr_struct GTY(())
3559 enum dwarf_attribute dw_attr;
3560 dw_attr_ref dw_attr_next;
3561 dw_val_node dw_attr_val;
3563 dw_attr_node;
3565 /* The Debugging Information Entry (DIE) structure */
3567 typedef struct die_struct GTY(())
3569 enum dwarf_tag die_tag;
3570 char *die_symbol;
3571 dw_attr_ref die_attr;
3572 dw_die_ref die_parent;
3573 dw_die_ref die_child;
3574 dw_die_ref die_sib;
3575 dw_die_ref die_definition; /* ref from a specification to its definition */
3576 dw_offset die_offset;
3577 unsigned long die_abbrev;
3578 int die_mark;
3579 unsigned int decl_id;
3581 die_node;
3583 /* The pubname structure */
3585 typedef struct pubname_struct GTY(())
3587 dw_die_ref die;
3588 char *name;
3590 pubname_entry;
3592 struct dw_ranges_struct GTY(())
3594 int block_num;
3597 /* The limbo die list structure. */
3598 typedef struct limbo_die_struct GTY(())
3600 dw_die_ref die;
3601 tree created_for;
3602 struct limbo_die_struct *next;
3604 limbo_die_node;
3606 /* How to start an assembler comment. */
3607 #ifndef ASM_COMMENT_START
3608 #define ASM_COMMENT_START ";#"
3609 #endif
3611 /* Define a macro which returns nonzero for a TYPE_DECL which was
3612 implicitly generated for a tagged type.
3614 Note that unlike the gcc front end (which generates a NULL named
3615 TYPE_DECL node for each complete tagged type, each array type, and
3616 each function type node created) the g++ front end generates a
3617 _named_ TYPE_DECL node for each tagged type node created.
3618 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3619 generate a DW_TAG_typedef DIE for them. */
3621 #define TYPE_DECL_IS_STUB(decl) \
3622 (DECL_NAME (decl) == NULL_TREE \
3623 || (DECL_ARTIFICIAL (decl) \
3624 && is_tagged_type (TREE_TYPE (decl)) \
3625 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3626 /* This is necessary for stub decls that \
3627 appear in nested inline functions. */ \
3628 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3629 && (decl_ultimate_origin (decl) \
3630 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3632 /* Information concerning the compilation unit's programming
3633 language, and compiler version. */
3635 /* Fixed size portion of the DWARF compilation unit header. */
3636 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3637 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3639 /* Fixed size portion of public names info. */
3640 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3642 /* Fixed size portion of the address range info. */
3643 #define DWARF_ARANGES_HEADER_SIZE \
3644 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3645 DWARF2_ADDR_SIZE * 2) \
3646 - DWARF_INITIAL_LENGTH_SIZE)
3648 /* Size of padding portion in the address range info. It must be
3649 aligned to twice the pointer size. */
3650 #define DWARF_ARANGES_PAD_SIZE \
3651 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3652 DWARF2_ADDR_SIZE * 2) \
3653 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3655 /* Use assembler line directives if available. */
3656 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3657 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3658 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3659 #else
3660 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3661 #endif
3662 #endif
3664 /* Minimum line offset in a special line info. opcode.
3665 This value was chosen to give a reasonable range of values. */
3666 #define DWARF_LINE_BASE -10
3668 /* First special line opcode - leave room for the standard opcodes. */
3669 #define DWARF_LINE_OPCODE_BASE 10
3671 /* Range of line offsets in a special line info. opcode. */
3672 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3674 /* Flag that indicates the initial value of the is_stmt_start flag.
3675 In the present implementation, we do not mark any lines as
3676 the beginning of a source statement, because that information
3677 is not made available by the GCC front-end. */
3678 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3680 #ifdef DWARF2_DEBUGGING_INFO
3681 /* This location is used by calc_die_sizes() to keep track
3682 the offset of each DIE within the .debug_info section. */
3683 static unsigned long next_die_offset;
3684 #endif
3686 /* Record the root of the DIE's built for the current compilation unit. */
3687 static GTY(()) dw_die_ref comp_unit_die;
3689 /* A list of DIEs with a NULL parent waiting to be relocated. */
3690 static GTY(()) limbo_die_node *limbo_die_list;
3692 /* Filenames referenced by this compilation unit. */
3693 static GTY(()) varray_type file_table;
3694 static GTY(()) varray_type file_table_emitted;
3695 static GTY(()) size_t file_table_last_lookup_index;
3697 /* A hash table of references to DIE's that describe declarations.
3698 The key is a DECL_UID() which is a unique number identifying each decl. */
3699 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3701 /* Node of the variable location list. */
3702 struct var_loc_node GTY ((chain_next ("%h.next")))
3704 rtx GTY (()) var_loc_note;
3705 const char * GTY (()) label;
3706 const char * GTY (()) section_label;
3707 struct var_loc_node * GTY (()) next;
3710 /* Variable location list. */
3711 struct var_loc_list_def GTY (())
3713 struct var_loc_node * GTY (()) first;
3715 /* Do not mark the last element of the chained list because
3716 it is marked through the chain. */
3717 struct var_loc_node * GTY ((skip ("%h"))) last;
3719 /* DECL_UID of the variable decl. */
3720 unsigned int decl_id;
3722 typedef struct var_loc_list_def var_loc_list;
3725 /* Table of decl location linked lists. */
3726 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3728 /* A pointer to the base of a list of references to DIE's that
3729 are uniquely identified by their tag, presence/absence of
3730 children DIE's, and list of attribute/value pairs. */
3731 static GTY((length ("abbrev_die_table_allocated")))
3732 dw_die_ref *abbrev_die_table;
3734 /* Number of elements currently allocated for abbrev_die_table. */
3735 static GTY(()) unsigned abbrev_die_table_allocated;
3737 /* Number of elements in type_die_table currently in use. */
3738 static GTY(()) unsigned abbrev_die_table_in_use;
3740 /* Size (in elements) of increments by which we may expand the
3741 abbrev_die_table. */
3742 #define ABBREV_DIE_TABLE_INCREMENT 256
3744 /* A pointer to the base of a table that contains line information
3745 for each source code line in .text in the compilation unit. */
3746 static GTY((length ("line_info_table_allocated")))
3747 dw_line_info_ref line_info_table;
3749 /* Number of elements currently allocated for line_info_table. */
3750 static GTY(()) unsigned line_info_table_allocated;
3752 /* Number of elements in line_info_table currently in use. */
3753 static GTY(()) unsigned line_info_table_in_use;
3755 /* A pointer to the base of a table that contains line information
3756 for each source code line outside of .text in the compilation unit. */
3757 static GTY ((length ("separate_line_info_table_allocated")))
3758 dw_separate_line_info_ref separate_line_info_table;
3760 /* Number of elements currently allocated for separate_line_info_table. */
3761 static GTY(()) unsigned separate_line_info_table_allocated;
3763 /* Number of elements in separate_line_info_table currently in use. */
3764 static GTY(()) unsigned separate_line_info_table_in_use;
3766 /* Size (in elements) of increments by which we may expand the
3767 line_info_table. */
3768 #define LINE_INFO_TABLE_INCREMENT 1024
3770 /* A pointer to the base of a table that contains a list of publicly
3771 accessible names. */
3772 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3774 /* Number of elements currently allocated for pubname_table. */
3775 static GTY(()) unsigned pubname_table_allocated;
3777 /* Number of elements in pubname_table currently in use. */
3778 static GTY(()) unsigned pubname_table_in_use;
3780 /* Size (in elements) of increments by which we may expand the
3781 pubname_table. */
3782 #define PUBNAME_TABLE_INCREMENT 64
3784 /* Array of dies for which we should generate .debug_arange info. */
3785 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3787 /* Number of elements currently allocated for arange_table. */
3788 static GTY(()) unsigned arange_table_allocated;
3790 /* Number of elements in arange_table currently in use. */
3791 static GTY(()) unsigned arange_table_in_use;
3793 /* Size (in elements) of increments by which we may expand the
3794 arange_table. */
3795 #define ARANGE_TABLE_INCREMENT 64
3797 /* Array of dies for which we should generate .debug_ranges info. */
3798 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3800 /* Number of elements currently allocated for ranges_table. */
3801 static GTY(()) unsigned ranges_table_allocated;
3803 /* Number of elements in ranges_table currently in use. */
3804 static GTY(()) unsigned ranges_table_in_use;
3806 /* Size (in elements) of increments by which we may expand the
3807 ranges_table. */
3808 #define RANGES_TABLE_INCREMENT 64
3810 /* Whether we have location lists that need outputting */
3811 static GTY(()) unsigned have_location_lists;
3813 /* Unique label counter. */
3814 static GTY(()) unsigned int loclabel_num;
3816 #ifdef DWARF2_DEBUGGING_INFO
3817 /* Record whether the function being analyzed contains inlined functions. */
3818 static int current_function_has_inlines;
3819 #endif
3820 #if 0 && defined (MIPS_DEBUGGING_INFO)
3821 static int comp_unit_has_inlines;
3822 #endif
3824 /* Number of file tables emitted in maybe_emit_file(). */
3825 static GTY(()) int emitcount = 0;
3827 /* Number of internal labels generated by gen_internal_sym(). */
3828 static GTY(()) int label_num;
3830 #ifdef DWARF2_DEBUGGING_INFO
3832 /* Forward declarations for functions defined in this file. */
3834 static int is_pseudo_reg (rtx);
3835 static tree type_main_variant (tree);
3836 static int is_tagged_type (tree);
3837 static const char *dwarf_tag_name (unsigned);
3838 static const char *dwarf_attr_name (unsigned);
3839 static const char *dwarf_form_name (unsigned);
3840 static tree decl_ultimate_origin (tree);
3841 static tree block_ultimate_origin (tree);
3842 static tree decl_class_context (tree);
3843 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3844 static inline enum dw_val_class AT_class (dw_attr_ref);
3845 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3846 static inline unsigned AT_flag (dw_attr_ref);
3847 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3848 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3849 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3850 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3851 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3852 unsigned long);
3853 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3854 unsigned int, unsigned char *);
3855 static hashval_t debug_str_do_hash (const void *);
3856 static int debug_str_eq (const void *, const void *);
3857 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3858 static inline const char *AT_string (dw_attr_ref);
3859 static int AT_string_form (dw_attr_ref);
3860 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3861 static void add_AT_specification (dw_die_ref, dw_die_ref);
3862 static inline dw_die_ref AT_ref (dw_attr_ref);
3863 static inline int AT_ref_external (dw_attr_ref);
3864 static inline void set_AT_ref_external (dw_attr_ref, int);
3865 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3866 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3867 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3868 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3869 dw_loc_list_ref);
3870 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3871 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3872 static inline rtx AT_addr (dw_attr_ref);
3873 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3874 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3875 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3876 unsigned HOST_WIDE_INT);
3877 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3878 unsigned long);
3879 static inline const char *AT_lbl (dw_attr_ref);
3880 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3881 static const char *get_AT_low_pc (dw_die_ref);
3882 static const char *get_AT_hi_pc (dw_die_ref);
3883 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3884 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3885 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3886 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3887 static bool is_c_family (void);
3888 static bool is_cxx (void);
3889 static bool is_java (void);
3890 static bool is_fortran (void);
3891 static bool is_ada (void);
3892 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3893 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3894 static inline void free_die (dw_die_ref);
3895 static void remove_children (dw_die_ref);
3896 static void add_child_die (dw_die_ref, dw_die_ref);
3897 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3898 static dw_die_ref lookup_type_die (tree);
3899 static void equate_type_number_to_die (tree, dw_die_ref);
3900 static hashval_t decl_die_table_hash (const void *);
3901 static int decl_die_table_eq (const void *, const void *);
3902 static dw_die_ref lookup_decl_die (tree);
3903 static hashval_t decl_loc_table_hash (const void *);
3904 static int decl_loc_table_eq (const void *, const void *);
3905 static var_loc_list *lookup_decl_loc (tree);
3906 static void equate_decl_number_to_die (tree, dw_die_ref);
3907 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3908 static void print_spaces (FILE *);
3909 static void print_die (dw_die_ref, FILE *);
3910 static void print_dwarf_line_table (FILE *);
3911 static void reverse_die_lists (dw_die_ref);
3912 static void reverse_all_dies (dw_die_ref);
3913 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3914 static dw_die_ref pop_compile_unit (dw_die_ref);
3915 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3916 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3917 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3918 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3919 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3920 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3921 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3922 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3923 static void compute_section_prefix (dw_die_ref);
3924 static int is_type_die (dw_die_ref);
3925 static int is_comdat_die (dw_die_ref);
3926 static int is_symbol_die (dw_die_ref);
3927 static void assign_symbol_names (dw_die_ref);
3928 static void break_out_includes (dw_die_ref);
3929 static hashval_t htab_cu_hash (const void *);
3930 static int htab_cu_eq (const void *, const void *);
3931 static void htab_cu_del (void *);
3932 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3933 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3934 static void add_sibling_attributes (dw_die_ref);
3935 static void build_abbrev_table (dw_die_ref);
3936 static void output_location_lists (dw_die_ref);
3937 static int constant_size (long unsigned);
3938 static unsigned long size_of_die (dw_die_ref);
3939 static void calc_die_sizes (dw_die_ref);
3940 static void mark_dies (dw_die_ref);
3941 static void unmark_dies (dw_die_ref);
3942 static void unmark_all_dies (dw_die_ref);
3943 static unsigned long size_of_pubnames (void);
3944 static unsigned long size_of_aranges (void);
3945 static enum dwarf_form value_format (dw_attr_ref);
3946 static void output_value_format (dw_attr_ref);
3947 static void output_abbrev_section (void);
3948 static void output_die_symbol (dw_die_ref);
3949 static void output_die (dw_die_ref);
3950 static void output_compilation_unit_header (void);
3951 static void output_comp_unit (dw_die_ref, int);
3952 static const char *dwarf2_name (tree, int);
3953 static void add_pubname (tree, dw_die_ref);
3954 static void output_pubnames (void);
3955 static void add_arange (tree, dw_die_ref);
3956 static void output_aranges (void);
3957 static unsigned int add_ranges (tree);
3958 static void output_ranges (void);
3959 static void output_line_info (void);
3960 static void output_file_names (void);
3961 static dw_die_ref base_type_die (tree);
3962 static tree root_type (tree);
3963 static int is_base_type (tree);
3964 static bool is_subrange_type (tree);
3965 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3966 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3967 static int type_is_enum (tree);
3968 static unsigned int dbx_reg_number (rtx);
3969 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3970 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3971 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3972 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3973 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3974 static int is_based_loc (rtx);
3975 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3976 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3977 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3978 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3979 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3980 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3981 static tree field_type (tree);
3982 static unsigned int simple_type_align_in_bits (tree);
3983 static unsigned int simple_decl_align_in_bits (tree);
3984 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3985 static HOST_WIDE_INT field_byte_offset (tree);
3986 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3987 dw_loc_descr_ref);
3988 static void add_data_member_location_attribute (dw_die_ref, tree);
3989 static void add_const_value_attribute (dw_die_ref, rtx);
3990 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3991 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3992 static void insert_float (rtx, unsigned char *);
3993 static rtx rtl_for_decl_location (tree);
3994 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3995 enum dwarf_attribute);
3996 static void tree_add_const_value_attribute (dw_die_ref, tree);
3997 static void add_name_attribute (dw_die_ref, const char *);
3998 static void add_comp_dir_attribute (dw_die_ref);
3999 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4000 static void add_subscript_info (dw_die_ref, tree);
4001 static void add_byte_size_attribute (dw_die_ref, tree);
4002 static void add_bit_offset_attribute (dw_die_ref, tree);
4003 static void add_bit_size_attribute (dw_die_ref, tree);
4004 static void add_prototyped_attribute (dw_die_ref, tree);
4005 static void add_abstract_origin_attribute (dw_die_ref, tree);
4006 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4007 static void add_src_coords_attributes (dw_die_ref, tree);
4008 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4009 static void push_decl_scope (tree);
4010 static void pop_decl_scope (void);
4011 static dw_die_ref scope_die_for (tree, dw_die_ref);
4012 static inline int local_scope_p (dw_die_ref);
4013 static inline int class_or_namespace_scope_p (dw_die_ref);
4014 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4015 static void add_calling_convention_attribute (dw_die_ref, tree);
4016 static const char *type_tag (tree);
4017 static tree member_declared_type (tree);
4018 #if 0
4019 static const char *decl_start_label (tree);
4020 #endif
4021 static void gen_array_type_die (tree, dw_die_ref);
4022 #if 0
4023 static void gen_entry_point_die (tree, dw_die_ref);
4024 #endif
4025 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4026 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4027 static void gen_inlined_union_type_die (tree, dw_die_ref);
4028 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4029 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4030 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4031 static void gen_formal_types_die (tree, dw_die_ref);
4032 static void gen_subprogram_die (tree, dw_die_ref);
4033 static void gen_variable_die (tree, dw_die_ref);
4034 static void gen_label_die (tree, dw_die_ref);
4035 static void gen_lexical_block_die (tree, dw_die_ref, int);
4036 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4037 static void gen_field_die (tree, dw_die_ref);
4038 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4039 static dw_die_ref gen_compile_unit_die (const char *);
4040 static void gen_string_type_die (tree, dw_die_ref);
4041 static void gen_inheritance_die (tree, tree, dw_die_ref);
4042 static void gen_member_die (tree, dw_die_ref);
4043 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4044 static void gen_subroutine_type_die (tree, dw_die_ref);
4045 static void gen_typedef_die (tree, dw_die_ref);
4046 static void gen_type_die (tree, dw_die_ref);
4047 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4048 static void gen_block_die (tree, dw_die_ref, int);
4049 static void decls_for_scope (tree, dw_die_ref, int);
4050 static int is_redundant_typedef (tree);
4051 static void gen_namespace_die (tree);
4052 static void gen_decl_die (tree, dw_die_ref);
4053 static dw_die_ref force_decl_die (tree);
4054 static dw_die_ref force_type_die (tree);
4055 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4056 static void declare_in_namespace (tree, dw_die_ref);
4057 static unsigned lookup_filename (const char *);
4058 static void init_file_table (void);
4059 static void retry_incomplete_types (void);
4060 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4061 static void splice_child_die (dw_die_ref, dw_die_ref);
4062 static int file_info_cmp (const void *, const void *);
4063 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4064 const char *, const char *, unsigned);
4065 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4066 const char *, const char *,
4067 const char *);
4068 static void output_loc_list (dw_loc_list_ref);
4069 static char *gen_internal_sym (const char *);
4071 static void prune_unmark_dies (dw_die_ref);
4072 static void prune_unused_types_mark (dw_die_ref, int);
4073 static void prune_unused_types_walk (dw_die_ref);
4074 static void prune_unused_types_walk_attribs (dw_die_ref);
4075 static void prune_unused_types_prune (dw_die_ref);
4076 static void prune_unused_types (void);
4077 static int maybe_emit_file (int);
4079 /* Section names used to hold DWARF debugging information. */
4080 #ifndef DEBUG_INFO_SECTION
4081 #define DEBUG_INFO_SECTION ".debug_info"
4082 #endif
4083 #ifndef DEBUG_ABBREV_SECTION
4084 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4085 #endif
4086 #ifndef DEBUG_ARANGES_SECTION
4087 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4088 #endif
4089 #ifndef DEBUG_MACINFO_SECTION
4090 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4091 #endif
4092 #ifndef DEBUG_LINE_SECTION
4093 #define DEBUG_LINE_SECTION ".debug_line"
4094 #endif
4095 #ifndef DEBUG_LOC_SECTION
4096 #define DEBUG_LOC_SECTION ".debug_loc"
4097 #endif
4098 #ifndef DEBUG_PUBNAMES_SECTION
4099 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4100 #endif
4101 #ifndef DEBUG_STR_SECTION
4102 #define DEBUG_STR_SECTION ".debug_str"
4103 #endif
4104 #ifndef DEBUG_RANGES_SECTION
4105 #define DEBUG_RANGES_SECTION ".debug_ranges"
4106 #endif
4108 /* Standard ELF section names for compiled code and data. */
4109 #ifndef TEXT_SECTION_NAME
4110 #define TEXT_SECTION_NAME ".text"
4111 #endif
4113 /* Section flags for .debug_str section. */
4114 #define DEBUG_STR_SECTION_FLAGS \
4115 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4116 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4117 : SECTION_DEBUG)
4119 /* Labels we insert at beginning sections we can reference instead of
4120 the section names themselves. */
4122 #ifndef TEXT_SECTION_LABEL
4123 #define TEXT_SECTION_LABEL "Ltext"
4124 #endif
4125 #ifndef DEBUG_LINE_SECTION_LABEL
4126 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4127 #endif
4128 #ifndef DEBUG_INFO_SECTION_LABEL
4129 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4130 #endif
4131 #ifndef DEBUG_ABBREV_SECTION_LABEL
4132 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4133 #endif
4134 #ifndef DEBUG_LOC_SECTION_LABEL
4135 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4136 #endif
4137 #ifndef DEBUG_RANGES_SECTION_LABEL
4138 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4139 #endif
4140 #ifndef DEBUG_MACINFO_SECTION_LABEL
4141 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4142 #endif
4144 /* Definitions of defaults for formats and names of various special
4145 (artificial) labels which may be generated within this file (when the -g
4146 options is used and DWARF2_DEBUGGING_INFO is in effect.
4147 If necessary, these may be overridden from within the tm.h file, but
4148 typically, overriding these defaults is unnecessary. */
4150 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4151 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4152 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4153 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4154 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4155 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4156 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4157 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4159 #ifndef TEXT_END_LABEL
4160 #define TEXT_END_LABEL "Letext"
4161 #endif
4162 #ifndef BLOCK_BEGIN_LABEL
4163 #define BLOCK_BEGIN_LABEL "LBB"
4164 #endif
4165 #ifndef BLOCK_END_LABEL
4166 #define BLOCK_END_LABEL "LBE"
4167 #endif
4168 #ifndef LINE_CODE_LABEL
4169 #define LINE_CODE_LABEL "LM"
4170 #endif
4171 #ifndef SEPARATE_LINE_CODE_LABEL
4172 #define SEPARATE_LINE_CODE_LABEL "LSM"
4173 #endif
4175 /* We allow a language front-end to designate a function that is to be
4176 called to "demangle" any name before it is put into a DIE. */
4178 static const char *(*demangle_name_func) (const char *);
4180 void
4181 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4183 demangle_name_func = func;
4186 /* Test if rtl node points to a pseudo register. */
4188 static inline int
4189 is_pseudo_reg (rtx rtl)
4191 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4192 || (GET_CODE (rtl) == SUBREG
4193 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4196 /* Return a reference to a type, with its const and volatile qualifiers
4197 removed. */
4199 static inline tree
4200 type_main_variant (tree type)
4202 type = TYPE_MAIN_VARIANT (type);
4204 /* ??? There really should be only one main variant among any group of
4205 variants of a given type (and all of the MAIN_VARIANT values for all
4206 members of the group should point to that one type) but sometimes the C
4207 front-end messes this up for array types, so we work around that bug
4208 here. */
4209 if (TREE_CODE (type) == ARRAY_TYPE)
4210 while (type != TYPE_MAIN_VARIANT (type))
4211 type = TYPE_MAIN_VARIANT (type);
4213 return type;
4216 /* Return nonzero if the given type node represents a tagged type. */
4218 static inline int
4219 is_tagged_type (tree type)
4221 enum tree_code code = TREE_CODE (type);
4223 return (code == RECORD_TYPE || code == UNION_TYPE
4224 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4227 /* Convert a DIE tag into its string name. */
4229 static const char *
4230 dwarf_tag_name (unsigned int tag)
4232 switch (tag)
4234 case DW_TAG_padding:
4235 return "DW_TAG_padding";
4236 case DW_TAG_array_type:
4237 return "DW_TAG_array_type";
4238 case DW_TAG_class_type:
4239 return "DW_TAG_class_type";
4240 case DW_TAG_entry_point:
4241 return "DW_TAG_entry_point";
4242 case DW_TAG_enumeration_type:
4243 return "DW_TAG_enumeration_type";
4244 case DW_TAG_formal_parameter:
4245 return "DW_TAG_formal_parameter";
4246 case DW_TAG_imported_declaration:
4247 return "DW_TAG_imported_declaration";
4248 case DW_TAG_label:
4249 return "DW_TAG_label";
4250 case DW_TAG_lexical_block:
4251 return "DW_TAG_lexical_block";
4252 case DW_TAG_member:
4253 return "DW_TAG_member";
4254 case DW_TAG_pointer_type:
4255 return "DW_TAG_pointer_type";
4256 case DW_TAG_reference_type:
4257 return "DW_TAG_reference_type";
4258 case DW_TAG_compile_unit:
4259 return "DW_TAG_compile_unit";
4260 case DW_TAG_string_type:
4261 return "DW_TAG_string_type";
4262 case DW_TAG_structure_type:
4263 return "DW_TAG_structure_type";
4264 case DW_TAG_subroutine_type:
4265 return "DW_TAG_subroutine_type";
4266 case DW_TAG_typedef:
4267 return "DW_TAG_typedef";
4268 case DW_TAG_union_type:
4269 return "DW_TAG_union_type";
4270 case DW_TAG_unspecified_parameters:
4271 return "DW_TAG_unspecified_parameters";
4272 case DW_TAG_variant:
4273 return "DW_TAG_variant";
4274 case DW_TAG_common_block:
4275 return "DW_TAG_common_block";
4276 case DW_TAG_common_inclusion:
4277 return "DW_TAG_common_inclusion";
4278 case DW_TAG_inheritance:
4279 return "DW_TAG_inheritance";
4280 case DW_TAG_inlined_subroutine:
4281 return "DW_TAG_inlined_subroutine";
4282 case DW_TAG_module:
4283 return "DW_TAG_module";
4284 case DW_TAG_ptr_to_member_type:
4285 return "DW_TAG_ptr_to_member_type";
4286 case DW_TAG_set_type:
4287 return "DW_TAG_set_type";
4288 case DW_TAG_subrange_type:
4289 return "DW_TAG_subrange_type";
4290 case DW_TAG_with_stmt:
4291 return "DW_TAG_with_stmt";
4292 case DW_TAG_access_declaration:
4293 return "DW_TAG_access_declaration";
4294 case DW_TAG_base_type:
4295 return "DW_TAG_base_type";
4296 case DW_TAG_catch_block:
4297 return "DW_TAG_catch_block";
4298 case DW_TAG_const_type:
4299 return "DW_TAG_const_type";
4300 case DW_TAG_constant:
4301 return "DW_TAG_constant";
4302 case DW_TAG_enumerator:
4303 return "DW_TAG_enumerator";
4304 case DW_TAG_file_type:
4305 return "DW_TAG_file_type";
4306 case DW_TAG_friend:
4307 return "DW_TAG_friend";
4308 case DW_TAG_namelist:
4309 return "DW_TAG_namelist";
4310 case DW_TAG_namelist_item:
4311 return "DW_TAG_namelist_item";
4312 case DW_TAG_namespace:
4313 return "DW_TAG_namespace";
4314 case DW_TAG_packed_type:
4315 return "DW_TAG_packed_type";
4316 case DW_TAG_subprogram:
4317 return "DW_TAG_subprogram";
4318 case DW_TAG_template_type_param:
4319 return "DW_TAG_template_type_param";
4320 case DW_TAG_template_value_param:
4321 return "DW_TAG_template_value_param";
4322 case DW_TAG_thrown_type:
4323 return "DW_TAG_thrown_type";
4324 case DW_TAG_try_block:
4325 return "DW_TAG_try_block";
4326 case DW_TAG_variant_part:
4327 return "DW_TAG_variant_part";
4328 case DW_TAG_variable:
4329 return "DW_TAG_variable";
4330 case DW_TAG_volatile_type:
4331 return "DW_TAG_volatile_type";
4332 case DW_TAG_imported_module:
4333 return "DW_TAG_imported_module";
4334 case DW_TAG_MIPS_loop:
4335 return "DW_TAG_MIPS_loop";
4336 case DW_TAG_format_label:
4337 return "DW_TAG_format_label";
4338 case DW_TAG_function_template:
4339 return "DW_TAG_function_template";
4340 case DW_TAG_class_template:
4341 return "DW_TAG_class_template";
4342 case DW_TAG_GNU_BINCL:
4343 return "DW_TAG_GNU_BINCL";
4344 case DW_TAG_GNU_EINCL:
4345 return "DW_TAG_GNU_EINCL";
4346 default:
4347 return "DW_TAG_<unknown>";
4351 /* Convert a DWARF attribute code into its string name. */
4353 static const char *
4354 dwarf_attr_name (unsigned int attr)
4356 switch (attr)
4358 case DW_AT_sibling:
4359 return "DW_AT_sibling";
4360 case DW_AT_location:
4361 return "DW_AT_location";
4362 case DW_AT_name:
4363 return "DW_AT_name";
4364 case DW_AT_ordering:
4365 return "DW_AT_ordering";
4366 case DW_AT_subscr_data:
4367 return "DW_AT_subscr_data";
4368 case DW_AT_byte_size:
4369 return "DW_AT_byte_size";
4370 case DW_AT_bit_offset:
4371 return "DW_AT_bit_offset";
4372 case DW_AT_bit_size:
4373 return "DW_AT_bit_size";
4374 case DW_AT_element_list:
4375 return "DW_AT_element_list";
4376 case DW_AT_stmt_list:
4377 return "DW_AT_stmt_list";
4378 case DW_AT_low_pc:
4379 return "DW_AT_low_pc";
4380 case DW_AT_high_pc:
4381 return "DW_AT_high_pc";
4382 case DW_AT_language:
4383 return "DW_AT_language";
4384 case DW_AT_member:
4385 return "DW_AT_member";
4386 case DW_AT_discr:
4387 return "DW_AT_discr";
4388 case DW_AT_discr_value:
4389 return "DW_AT_discr_value";
4390 case DW_AT_visibility:
4391 return "DW_AT_visibility";
4392 case DW_AT_import:
4393 return "DW_AT_import";
4394 case DW_AT_string_length:
4395 return "DW_AT_string_length";
4396 case DW_AT_common_reference:
4397 return "DW_AT_common_reference";
4398 case DW_AT_comp_dir:
4399 return "DW_AT_comp_dir";
4400 case DW_AT_const_value:
4401 return "DW_AT_const_value";
4402 case DW_AT_containing_type:
4403 return "DW_AT_containing_type";
4404 case DW_AT_default_value:
4405 return "DW_AT_default_value";
4406 case DW_AT_inline:
4407 return "DW_AT_inline";
4408 case DW_AT_is_optional:
4409 return "DW_AT_is_optional";
4410 case DW_AT_lower_bound:
4411 return "DW_AT_lower_bound";
4412 case DW_AT_producer:
4413 return "DW_AT_producer";
4414 case DW_AT_prototyped:
4415 return "DW_AT_prototyped";
4416 case DW_AT_return_addr:
4417 return "DW_AT_return_addr";
4418 case DW_AT_start_scope:
4419 return "DW_AT_start_scope";
4420 case DW_AT_stride_size:
4421 return "DW_AT_stride_size";
4422 case DW_AT_upper_bound:
4423 return "DW_AT_upper_bound";
4424 case DW_AT_abstract_origin:
4425 return "DW_AT_abstract_origin";
4426 case DW_AT_accessibility:
4427 return "DW_AT_accessibility";
4428 case DW_AT_address_class:
4429 return "DW_AT_address_class";
4430 case DW_AT_artificial:
4431 return "DW_AT_artificial";
4432 case DW_AT_base_types:
4433 return "DW_AT_base_types";
4434 case DW_AT_calling_convention:
4435 return "DW_AT_calling_convention";
4436 case DW_AT_count:
4437 return "DW_AT_count";
4438 case DW_AT_data_member_location:
4439 return "DW_AT_data_member_location";
4440 case DW_AT_decl_column:
4441 return "DW_AT_decl_column";
4442 case DW_AT_decl_file:
4443 return "DW_AT_decl_file";
4444 case DW_AT_decl_line:
4445 return "DW_AT_decl_line";
4446 case DW_AT_declaration:
4447 return "DW_AT_declaration";
4448 case DW_AT_discr_list:
4449 return "DW_AT_discr_list";
4450 case DW_AT_encoding:
4451 return "DW_AT_encoding";
4452 case DW_AT_external:
4453 return "DW_AT_external";
4454 case DW_AT_frame_base:
4455 return "DW_AT_frame_base";
4456 case DW_AT_friend:
4457 return "DW_AT_friend";
4458 case DW_AT_identifier_case:
4459 return "DW_AT_identifier_case";
4460 case DW_AT_macro_info:
4461 return "DW_AT_macro_info";
4462 case DW_AT_namelist_items:
4463 return "DW_AT_namelist_items";
4464 case DW_AT_priority:
4465 return "DW_AT_priority";
4466 case DW_AT_segment:
4467 return "DW_AT_segment";
4468 case DW_AT_specification:
4469 return "DW_AT_specification";
4470 case DW_AT_static_link:
4471 return "DW_AT_static_link";
4472 case DW_AT_type:
4473 return "DW_AT_type";
4474 case DW_AT_use_location:
4475 return "DW_AT_use_location";
4476 case DW_AT_variable_parameter:
4477 return "DW_AT_variable_parameter";
4478 case DW_AT_virtuality:
4479 return "DW_AT_virtuality";
4480 case DW_AT_vtable_elem_location:
4481 return "DW_AT_vtable_elem_location";
4483 case DW_AT_allocated:
4484 return "DW_AT_allocated";
4485 case DW_AT_associated:
4486 return "DW_AT_associated";
4487 case DW_AT_data_location:
4488 return "DW_AT_data_location";
4489 case DW_AT_stride:
4490 return "DW_AT_stride";
4491 case DW_AT_entry_pc:
4492 return "DW_AT_entry_pc";
4493 case DW_AT_use_UTF8:
4494 return "DW_AT_use_UTF8";
4495 case DW_AT_extension:
4496 return "DW_AT_extension";
4497 case DW_AT_ranges:
4498 return "DW_AT_ranges";
4499 case DW_AT_trampoline:
4500 return "DW_AT_trampoline";
4501 case DW_AT_call_column:
4502 return "DW_AT_call_column";
4503 case DW_AT_call_file:
4504 return "DW_AT_call_file";
4505 case DW_AT_call_line:
4506 return "DW_AT_call_line";
4508 case DW_AT_MIPS_fde:
4509 return "DW_AT_MIPS_fde";
4510 case DW_AT_MIPS_loop_begin:
4511 return "DW_AT_MIPS_loop_begin";
4512 case DW_AT_MIPS_tail_loop_begin:
4513 return "DW_AT_MIPS_tail_loop_begin";
4514 case DW_AT_MIPS_epilog_begin:
4515 return "DW_AT_MIPS_epilog_begin";
4516 case DW_AT_MIPS_loop_unroll_factor:
4517 return "DW_AT_MIPS_loop_unroll_factor";
4518 case DW_AT_MIPS_software_pipeline_depth:
4519 return "DW_AT_MIPS_software_pipeline_depth";
4520 case DW_AT_MIPS_linkage_name:
4521 return "DW_AT_MIPS_linkage_name";
4522 case DW_AT_MIPS_stride:
4523 return "DW_AT_MIPS_stride";
4524 case DW_AT_MIPS_abstract_name:
4525 return "DW_AT_MIPS_abstract_name";
4526 case DW_AT_MIPS_clone_origin:
4527 return "DW_AT_MIPS_clone_origin";
4528 case DW_AT_MIPS_has_inlines:
4529 return "DW_AT_MIPS_has_inlines";
4531 case DW_AT_sf_names:
4532 return "DW_AT_sf_names";
4533 case DW_AT_src_info:
4534 return "DW_AT_src_info";
4535 case DW_AT_mac_info:
4536 return "DW_AT_mac_info";
4537 case DW_AT_src_coords:
4538 return "DW_AT_src_coords";
4539 case DW_AT_body_begin:
4540 return "DW_AT_body_begin";
4541 case DW_AT_body_end:
4542 return "DW_AT_body_end";
4543 case DW_AT_GNU_vector:
4544 return "DW_AT_GNU_vector";
4546 case DW_AT_VMS_rtnbeg_pd_address:
4547 return "DW_AT_VMS_rtnbeg_pd_address";
4549 default:
4550 return "DW_AT_<unknown>";
4554 /* Convert a DWARF value form code into its string name. */
4556 static const char *
4557 dwarf_form_name (unsigned int form)
4559 switch (form)
4561 case DW_FORM_addr:
4562 return "DW_FORM_addr";
4563 case DW_FORM_block2:
4564 return "DW_FORM_block2";
4565 case DW_FORM_block4:
4566 return "DW_FORM_block4";
4567 case DW_FORM_data2:
4568 return "DW_FORM_data2";
4569 case DW_FORM_data4:
4570 return "DW_FORM_data4";
4571 case DW_FORM_data8:
4572 return "DW_FORM_data8";
4573 case DW_FORM_string:
4574 return "DW_FORM_string";
4575 case DW_FORM_block:
4576 return "DW_FORM_block";
4577 case DW_FORM_block1:
4578 return "DW_FORM_block1";
4579 case DW_FORM_data1:
4580 return "DW_FORM_data1";
4581 case DW_FORM_flag:
4582 return "DW_FORM_flag";
4583 case DW_FORM_sdata:
4584 return "DW_FORM_sdata";
4585 case DW_FORM_strp:
4586 return "DW_FORM_strp";
4587 case DW_FORM_udata:
4588 return "DW_FORM_udata";
4589 case DW_FORM_ref_addr:
4590 return "DW_FORM_ref_addr";
4591 case DW_FORM_ref1:
4592 return "DW_FORM_ref1";
4593 case DW_FORM_ref2:
4594 return "DW_FORM_ref2";
4595 case DW_FORM_ref4:
4596 return "DW_FORM_ref4";
4597 case DW_FORM_ref8:
4598 return "DW_FORM_ref8";
4599 case DW_FORM_ref_udata:
4600 return "DW_FORM_ref_udata";
4601 case DW_FORM_indirect:
4602 return "DW_FORM_indirect";
4603 default:
4604 return "DW_FORM_<unknown>";
4608 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4609 instance of an inlined instance of a decl which is local to an inline
4610 function, so we have to trace all of the way back through the origin chain
4611 to find out what sort of node actually served as the original seed for the
4612 given block. */
4614 static tree
4615 decl_ultimate_origin (tree decl)
4617 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4618 nodes in the function to point to themselves; ignore that if
4619 we're trying to output the abstract instance of this function. */
4620 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4621 return NULL_TREE;
4623 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4624 most distant ancestor, this should never happen. */
4625 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4627 return DECL_ABSTRACT_ORIGIN (decl);
4630 /* Determine the "ultimate origin" of a block. The block may be an inlined
4631 instance of an inlined instance of a block which is local to an inline
4632 function, so we have to trace all of the way back through the origin chain
4633 to find out what sort of node actually served as the original seed for the
4634 given block. */
4636 static tree
4637 block_ultimate_origin (tree block)
4639 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4641 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4642 nodes in the function to point to themselves; ignore that if
4643 we're trying to output the abstract instance of this function. */
4644 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4645 return NULL_TREE;
4647 if (immediate_origin == NULL_TREE)
4648 return NULL_TREE;
4649 else
4651 tree ret_val;
4652 tree lookahead = immediate_origin;
4656 ret_val = lookahead;
4657 lookahead = (TREE_CODE (ret_val) == BLOCK
4658 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4660 while (lookahead != NULL && lookahead != ret_val);
4662 /* The block's abstract origin chain may not be the *ultimate* origin of
4663 the block. It could lead to a DECL that has an abstract origin set.
4664 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4665 will give us if it has one). Note that DECL's abstract origins are
4666 supposed to be the most distant ancestor (or so decl_ultimate_origin
4667 claims), so we don't need to loop following the DECL origins. */
4668 if (DECL_P (ret_val))
4669 return DECL_ORIGIN (ret_val);
4671 return ret_val;
4675 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4676 of a virtual function may refer to a base class, so we check the 'this'
4677 parameter. */
4679 static tree
4680 decl_class_context (tree decl)
4682 tree context = NULL_TREE;
4684 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4685 context = DECL_CONTEXT (decl);
4686 else
4687 context = TYPE_MAIN_VARIANT
4688 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4690 if (context && !TYPE_P (context))
4691 context = NULL_TREE;
4693 return context;
4696 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4697 addition order, and correct that in reverse_all_dies. */
4699 static inline void
4700 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4702 if (die != NULL && attr != NULL)
4704 attr->dw_attr_next = die->die_attr;
4705 die->die_attr = attr;
4709 static inline enum dw_val_class
4710 AT_class (dw_attr_ref a)
4712 return a->dw_attr_val.val_class;
4715 /* Add a flag value attribute to a DIE. */
4717 static inline void
4718 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4720 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4722 attr->dw_attr_next = NULL;
4723 attr->dw_attr = attr_kind;
4724 attr->dw_attr_val.val_class = dw_val_class_flag;
4725 attr->dw_attr_val.v.val_flag = flag;
4726 add_dwarf_attr (die, attr);
4729 static inline unsigned
4730 AT_flag (dw_attr_ref a)
4732 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4733 return a->dw_attr_val.v.val_flag;
4736 /* Add a signed integer attribute value to a DIE. */
4738 static inline void
4739 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4741 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4743 attr->dw_attr_next = NULL;
4744 attr->dw_attr = attr_kind;
4745 attr->dw_attr_val.val_class = dw_val_class_const;
4746 attr->dw_attr_val.v.val_int = int_val;
4747 add_dwarf_attr (die, attr);
4750 static inline HOST_WIDE_INT
4751 AT_int (dw_attr_ref a)
4753 gcc_assert (a && AT_class (a) == dw_val_class_const);
4754 return a->dw_attr_val.v.val_int;
4757 /* Add an unsigned integer attribute value to a DIE. */
4759 static inline void
4760 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4761 unsigned HOST_WIDE_INT unsigned_val)
4763 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4765 attr->dw_attr_next = NULL;
4766 attr->dw_attr = attr_kind;
4767 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4768 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4769 add_dwarf_attr (die, attr);
4772 static inline unsigned HOST_WIDE_INT
4773 AT_unsigned (dw_attr_ref a)
4775 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4776 return a->dw_attr_val.v.val_unsigned;
4779 /* Add an unsigned double integer attribute value to a DIE. */
4781 static inline void
4782 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4783 long unsigned int val_hi, long unsigned int val_low)
4785 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4787 attr->dw_attr_next = NULL;
4788 attr->dw_attr = attr_kind;
4789 attr->dw_attr_val.val_class = dw_val_class_long_long;
4790 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4791 attr->dw_attr_val.v.val_long_long.low = val_low;
4792 add_dwarf_attr (die, attr);
4795 /* Add a floating point attribute value to a DIE and return it. */
4797 static inline void
4798 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4799 unsigned int length, unsigned int elt_size, unsigned char *array)
4801 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4803 attr->dw_attr_next = NULL;
4804 attr->dw_attr = attr_kind;
4805 attr->dw_attr_val.val_class = dw_val_class_vec;
4806 attr->dw_attr_val.v.val_vec.length = length;
4807 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4808 attr->dw_attr_val.v.val_vec.array = array;
4809 add_dwarf_attr (die, attr);
4812 /* Hash and equality functions for debug_str_hash. */
4814 static hashval_t
4815 debug_str_do_hash (const void *x)
4817 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4820 static int
4821 debug_str_eq (const void *x1, const void *x2)
4823 return strcmp ((((const struct indirect_string_node *)x1)->str),
4824 (const char *)x2) == 0;
4827 /* Add a string attribute value to a DIE. */
4829 static inline void
4830 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4832 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4833 struct indirect_string_node *node;
4834 void **slot;
4836 if (! debug_str_hash)
4837 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4838 debug_str_eq, NULL);
4840 slot = htab_find_slot_with_hash (debug_str_hash, str,
4841 htab_hash_string (str), INSERT);
4842 if (*slot == NULL)
4843 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4844 node = (struct indirect_string_node *) *slot;
4845 node->str = ggc_strdup (str);
4846 node->refcount++;
4848 attr->dw_attr_next = NULL;
4849 attr->dw_attr = attr_kind;
4850 attr->dw_attr_val.val_class = dw_val_class_str;
4851 attr->dw_attr_val.v.val_str = node;
4852 add_dwarf_attr (die, attr);
4855 static inline const char *
4856 AT_string (dw_attr_ref a)
4858 gcc_assert (a && AT_class (a) == dw_val_class_str);
4859 return a->dw_attr_val.v.val_str->str;
4862 /* Find out whether a string should be output inline in DIE
4863 or out-of-line in .debug_str section. */
4865 static int
4866 AT_string_form (dw_attr_ref a)
4868 struct indirect_string_node *node;
4869 unsigned int len;
4870 char label[32];
4872 gcc_assert (a && AT_class (a) == dw_val_class_str);
4874 node = a->dw_attr_val.v.val_str;
4875 if (node->form)
4876 return node->form;
4878 len = strlen (node->str) + 1;
4880 /* If the string is shorter or equal to the size of the reference, it is
4881 always better to put it inline. */
4882 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4883 return node->form = DW_FORM_string;
4885 /* If we cannot expect the linker to merge strings in .debug_str
4886 section, only put it into .debug_str if it is worth even in this
4887 single module. */
4888 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4889 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4890 return node->form = DW_FORM_string;
4892 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4893 ++dw2_string_counter;
4894 node->label = xstrdup (label);
4896 return node->form = DW_FORM_strp;
4899 /* Add a DIE reference attribute value to a DIE. */
4901 static inline void
4902 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4904 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4906 attr->dw_attr_next = NULL;
4907 attr->dw_attr = attr_kind;
4908 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4909 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4910 attr->dw_attr_val.v.val_die_ref.external = 0;
4911 add_dwarf_attr (die, attr);
4914 /* Add an AT_specification attribute to a DIE, and also make the back
4915 pointer from the specification to the definition. */
4917 static inline void
4918 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4920 add_AT_die_ref (die, DW_AT_specification, targ_die);
4921 gcc_assert (!targ_die->die_definition);
4922 targ_die->die_definition = die;
4925 static inline dw_die_ref
4926 AT_ref (dw_attr_ref a)
4928 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4929 return a->dw_attr_val.v.val_die_ref.die;
4932 static inline int
4933 AT_ref_external (dw_attr_ref a)
4935 if (a && AT_class (a) == dw_val_class_die_ref)
4936 return a->dw_attr_val.v.val_die_ref.external;
4938 return 0;
4941 static inline void
4942 set_AT_ref_external (dw_attr_ref a, int i)
4944 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4945 a->dw_attr_val.v.val_die_ref.external = i;
4948 /* Add an FDE reference attribute value to a DIE. */
4950 static inline void
4951 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4953 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4955 attr->dw_attr_next = NULL;
4956 attr->dw_attr = attr_kind;
4957 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4958 attr->dw_attr_val.v.val_fde_index = targ_fde;
4959 add_dwarf_attr (die, attr);
4962 /* Add a location description attribute value to a DIE. */
4964 static inline void
4965 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4967 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4969 attr->dw_attr_next = NULL;
4970 attr->dw_attr = attr_kind;
4971 attr->dw_attr_val.val_class = dw_val_class_loc;
4972 attr->dw_attr_val.v.val_loc = loc;
4973 add_dwarf_attr (die, attr);
4976 static inline dw_loc_descr_ref
4977 AT_loc (dw_attr_ref a)
4979 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4980 return a->dw_attr_val.v.val_loc;
4983 static inline void
4984 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4986 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4988 attr->dw_attr_next = NULL;
4989 attr->dw_attr = attr_kind;
4990 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4991 attr->dw_attr_val.v.val_loc_list = loc_list;
4992 add_dwarf_attr (die, attr);
4993 have_location_lists = 1;
4996 static inline dw_loc_list_ref
4997 AT_loc_list (dw_attr_ref a)
4999 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5000 return a->dw_attr_val.v.val_loc_list;
5003 /* Add an address constant attribute value to a DIE. */
5005 static inline void
5006 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5008 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5010 attr->dw_attr_next = NULL;
5011 attr->dw_attr = attr_kind;
5012 attr->dw_attr_val.val_class = dw_val_class_addr;
5013 attr->dw_attr_val.v.val_addr = addr;
5014 add_dwarf_attr (die, attr);
5017 static inline rtx
5018 AT_addr (dw_attr_ref a)
5020 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5021 return a->dw_attr_val.v.val_addr;
5024 /* Add a label identifier attribute value to a DIE. */
5026 static inline void
5027 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5029 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5031 attr->dw_attr_next = NULL;
5032 attr->dw_attr = attr_kind;
5033 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5034 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5035 add_dwarf_attr (die, attr);
5038 /* Add a section offset attribute value to a DIE. */
5040 static inline void
5041 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5043 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5045 attr->dw_attr_next = NULL;
5046 attr->dw_attr = attr_kind;
5047 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5048 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5049 add_dwarf_attr (die, attr);
5052 /* Add an offset attribute value to a DIE. */
5054 static inline void
5055 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5056 unsigned HOST_WIDE_INT offset)
5058 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5060 attr->dw_attr_next = NULL;
5061 attr->dw_attr = attr_kind;
5062 attr->dw_attr_val.val_class = dw_val_class_offset;
5063 attr->dw_attr_val.v.val_offset = offset;
5064 add_dwarf_attr (die, attr);
5067 /* Add an range_list attribute value to a DIE. */
5069 static void
5070 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5071 long unsigned int offset)
5073 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5075 attr->dw_attr_next = NULL;
5076 attr->dw_attr = attr_kind;
5077 attr->dw_attr_val.val_class = dw_val_class_range_list;
5078 attr->dw_attr_val.v.val_offset = offset;
5079 add_dwarf_attr (die, attr);
5082 static inline const char *
5083 AT_lbl (dw_attr_ref a)
5085 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5086 || AT_class (a) == dw_val_class_lbl_offset));
5087 return a->dw_attr_val.v.val_lbl_id;
5090 /* Get the attribute of type attr_kind. */
5092 static dw_attr_ref
5093 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5095 dw_attr_ref a;
5096 dw_die_ref spec = NULL;
5098 if (die != NULL)
5100 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5101 if (a->dw_attr == attr_kind)
5102 return a;
5103 else if (a->dw_attr == DW_AT_specification
5104 || a->dw_attr == DW_AT_abstract_origin)
5105 spec = AT_ref (a);
5107 if (spec)
5108 return get_AT (spec, attr_kind);
5111 return NULL;
5114 /* Return the "low pc" attribute value, typically associated with a subprogram
5115 DIE. Return null if the "low pc" attribute is either not present, or if it
5116 cannot be represented as an assembler label identifier. */
5118 static inline const char *
5119 get_AT_low_pc (dw_die_ref die)
5121 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5123 return a ? AT_lbl (a) : NULL;
5126 /* Return the "high pc" attribute value, typically associated with a subprogram
5127 DIE. Return null if the "high pc" attribute is either not present, or if it
5128 cannot be represented as an assembler label identifier. */
5130 static inline const char *
5131 get_AT_hi_pc (dw_die_ref die)
5133 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5135 return a ? AT_lbl (a) : NULL;
5138 /* Return the value of the string attribute designated by ATTR_KIND, or
5139 NULL if it is not present. */
5141 static inline const char *
5142 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5144 dw_attr_ref a = get_AT (die, attr_kind);
5146 return a ? AT_string (a) : NULL;
5149 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5150 if it is not present. */
5152 static inline int
5153 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5155 dw_attr_ref a = get_AT (die, attr_kind);
5157 return a ? AT_flag (a) : 0;
5160 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5161 if it is not present. */
5163 static inline unsigned
5164 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5166 dw_attr_ref a = get_AT (die, attr_kind);
5168 return a ? AT_unsigned (a) : 0;
5171 static inline dw_die_ref
5172 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5174 dw_attr_ref a = get_AT (die, attr_kind);
5176 return a ? AT_ref (a) : NULL;
5179 /* Return TRUE if the language is C or C++. */
5181 static inline bool
5182 is_c_family (void)
5184 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5186 return (lang == DW_LANG_C || lang == DW_LANG_C89
5187 || lang == DW_LANG_C_plus_plus);
5190 /* Return TRUE if the language is C++. */
5192 static inline bool
5193 is_cxx (void)
5195 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5196 == DW_LANG_C_plus_plus);
5199 /* Return TRUE if the language is Fortran. */
5201 static inline bool
5202 is_fortran (void)
5204 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5206 return (lang == DW_LANG_Fortran77
5207 || lang == DW_LANG_Fortran90
5208 || lang == DW_LANG_Fortran95);
5211 /* Return TRUE if the language is Java. */
5213 static inline bool
5214 is_java (void)
5216 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5218 return lang == DW_LANG_Java;
5221 /* Return TRUE if the language is Ada. */
5223 static inline bool
5224 is_ada (void)
5226 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5228 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5231 /* Free up the memory used by A. */
5233 static inline void free_AT (dw_attr_ref);
5234 static inline void
5235 free_AT (dw_attr_ref a)
5237 if (AT_class (a) == dw_val_class_str)
5238 if (a->dw_attr_val.v.val_str->refcount)
5239 a->dw_attr_val.v.val_str->refcount--;
5242 /* Remove the specified attribute if present. */
5244 static void
5245 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5247 dw_attr_ref *p;
5248 dw_attr_ref removed = NULL;
5250 if (die != NULL)
5252 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5253 if ((*p)->dw_attr == attr_kind)
5255 removed = *p;
5256 *p = (*p)->dw_attr_next;
5257 break;
5260 if (removed != 0)
5261 free_AT (removed);
5265 /* Remove child die whose die_tag is specified tag. */
5267 static void
5268 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5270 dw_die_ref current, prev, next;
5271 current = die->die_child;
5272 prev = NULL;
5273 while (current != NULL)
5275 if (current->die_tag == tag)
5277 next = current->die_sib;
5278 if (prev == NULL)
5279 die->die_child = next;
5280 else
5281 prev->die_sib = next;
5282 free_die (current);
5283 current = next;
5285 else
5287 prev = current;
5288 current = current->die_sib;
5293 /* Free up the memory used by DIE. */
5295 static inline void
5296 free_die (dw_die_ref die)
5298 remove_children (die);
5301 /* Discard the children of this DIE. */
5303 static void
5304 remove_children (dw_die_ref die)
5306 dw_die_ref child_die = die->die_child;
5308 die->die_child = NULL;
5310 while (child_die != NULL)
5312 dw_die_ref tmp_die = child_die;
5313 dw_attr_ref a;
5315 child_die = child_die->die_sib;
5317 for (a = tmp_die->die_attr; a != NULL;)
5319 dw_attr_ref tmp_a = a;
5321 a = a->dw_attr_next;
5322 free_AT (tmp_a);
5325 free_die (tmp_die);
5329 /* Add a child DIE below its parent. We build the lists up in reverse
5330 addition order, and correct that in reverse_all_dies. */
5332 static inline void
5333 add_child_die (dw_die_ref die, dw_die_ref child_die)
5335 if (die != NULL && child_die != NULL)
5337 gcc_assert (die != child_die);
5339 child_die->die_parent = die;
5340 child_die->die_sib = die->die_child;
5341 die->die_child = child_die;
5345 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5346 is the specification, to the front of PARENT's list of children. */
5348 static void
5349 splice_child_die (dw_die_ref parent, dw_die_ref child)
5351 dw_die_ref *p;
5353 /* We want the declaration DIE from inside the class, not the
5354 specification DIE at toplevel. */
5355 if (child->die_parent != parent)
5357 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5359 if (tmp)
5360 child = tmp;
5363 gcc_assert (child->die_parent == parent
5364 || (child->die_parent
5365 == get_AT_ref (parent, DW_AT_specification)));
5367 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5368 if (*p == child)
5370 *p = child->die_sib;
5371 break;
5374 child->die_parent = parent;
5375 child->die_sib = parent->die_child;
5376 parent->die_child = child;
5379 /* Return a pointer to a newly created DIE node. */
5381 static inline dw_die_ref
5382 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5384 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5386 die->die_tag = tag_value;
5388 if (parent_die != NULL)
5389 add_child_die (parent_die, die);
5390 else
5392 limbo_die_node *limbo_node;
5394 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5395 limbo_node->die = die;
5396 limbo_node->created_for = t;
5397 limbo_node->next = limbo_die_list;
5398 limbo_die_list = limbo_node;
5401 return die;
5404 /* Return the DIE associated with the given type specifier. */
5406 static inline dw_die_ref
5407 lookup_type_die (tree type)
5409 return TYPE_SYMTAB_DIE (type);
5412 /* Equate a DIE to a given type specifier. */
5414 static inline void
5415 equate_type_number_to_die (tree type, dw_die_ref type_die)
5417 TYPE_SYMTAB_DIE (type) = type_die;
5420 /* Returns a hash value for X (which really is a die_struct). */
5422 static hashval_t
5423 decl_die_table_hash (const void *x)
5425 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5428 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5430 static int
5431 decl_die_table_eq (const void *x, const void *y)
5433 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5436 /* Return the DIE associated with a given declaration. */
5438 static inline dw_die_ref
5439 lookup_decl_die (tree decl)
5441 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5444 /* Returns a hash value for X (which really is a var_loc_list). */
5446 static hashval_t
5447 decl_loc_table_hash (const void *x)
5449 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5452 /* Return nonzero if decl_id of var_loc_list X is the same as
5453 UID of decl *Y. */
5455 static int
5456 decl_loc_table_eq (const void *x, const void *y)
5458 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5461 /* Return the var_loc list associated with a given declaration. */
5463 static inline var_loc_list *
5464 lookup_decl_loc (tree decl)
5466 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5469 /* Equate a DIE to a particular declaration. */
5471 static void
5472 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5474 unsigned int decl_id = DECL_UID (decl);
5475 void **slot;
5477 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5478 *slot = decl_die;
5479 decl_die->decl_id = decl_id;
5482 /* Add a variable location node to the linked list for DECL. */
5484 static void
5485 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5487 unsigned int decl_id = DECL_UID (decl);
5488 var_loc_list *temp;
5489 void **slot;
5491 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5492 if (*slot == NULL)
5494 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5495 temp->decl_id = decl_id;
5496 *slot = temp;
5498 else
5499 temp = *slot;
5501 if (temp->last)
5503 /* If the current location is the same as the end of the list,
5504 we have nothing to do. */
5505 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5506 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5508 /* Add LOC to the end of list and update LAST. */
5509 temp->last->next = loc;
5510 temp->last = loc;
5513 /* Do not add empty location to the beginning of the list. */
5514 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5516 temp->first = loc;
5517 temp->last = loc;
5521 /* Keep track of the number of spaces used to indent the
5522 output of the debugging routines that print the structure of
5523 the DIE internal representation. */
5524 static int print_indent;
5526 /* Indent the line the number of spaces given by print_indent. */
5528 static inline void
5529 print_spaces (FILE *outfile)
5531 fprintf (outfile, "%*s", print_indent, "");
5534 /* Print the information associated with a given DIE, and its children.
5535 This routine is a debugging aid only. */
5537 static void
5538 print_die (dw_die_ref die, FILE *outfile)
5540 dw_attr_ref a;
5541 dw_die_ref c;
5543 print_spaces (outfile);
5544 fprintf (outfile, "DIE %4lu: %s\n",
5545 die->die_offset, dwarf_tag_name (die->die_tag));
5546 print_spaces (outfile);
5547 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5548 fprintf (outfile, " offset: %lu\n", die->die_offset);
5550 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5552 print_spaces (outfile);
5553 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5555 switch (AT_class (a))
5557 case dw_val_class_addr:
5558 fprintf (outfile, "address");
5559 break;
5560 case dw_val_class_offset:
5561 fprintf (outfile, "offset");
5562 break;
5563 case dw_val_class_loc:
5564 fprintf (outfile, "location descriptor");
5565 break;
5566 case dw_val_class_loc_list:
5567 fprintf (outfile, "location list -> label:%s",
5568 AT_loc_list (a)->ll_symbol);
5569 break;
5570 case dw_val_class_range_list:
5571 fprintf (outfile, "range list");
5572 break;
5573 case dw_val_class_const:
5574 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5575 break;
5576 case dw_val_class_unsigned_const:
5577 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5578 break;
5579 case dw_val_class_long_long:
5580 fprintf (outfile, "constant (%lu,%lu)",
5581 a->dw_attr_val.v.val_long_long.hi,
5582 a->dw_attr_val.v.val_long_long.low);
5583 break;
5584 case dw_val_class_vec:
5585 fprintf (outfile, "floating-point or vector constant");
5586 break;
5587 case dw_val_class_flag:
5588 fprintf (outfile, "%u", AT_flag (a));
5589 break;
5590 case dw_val_class_die_ref:
5591 if (AT_ref (a) != NULL)
5593 if (AT_ref (a)->die_symbol)
5594 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5595 else
5596 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5598 else
5599 fprintf (outfile, "die -> <null>");
5600 break;
5601 case dw_val_class_lbl_id:
5602 case dw_val_class_lbl_offset:
5603 fprintf (outfile, "label: %s", AT_lbl (a));
5604 break;
5605 case dw_val_class_str:
5606 if (AT_string (a) != NULL)
5607 fprintf (outfile, "\"%s\"", AT_string (a));
5608 else
5609 fprintf (outfile, "<null>");
5610 break;
5611 default:
5612 break;
5615 fprintf (outfile, "\n");
5618 if (die->die_child != NULL)
5620 print_indent += 4;
5621 for (c = die->die_child; c != NULL; c = c->die_sib)
5622 print_die (c, outfile);
5624 print_indent -= 4;
5626 if (print_indent == 0)
5627 fprintf (outfile, "\n");
5630 /* Print the contents of the source code line number correspondence table.
5631 This routine is a debugging aid only. */
5633 static void
5634 print_dwarf_line_table (FILE *outfile)
5636 unsigned i;
5637 dw_line_info_ref line_info;
5639 fprintf (outfile, "\n\nDWARF source line information\n");
5640 for (i = 1; i < line_info_table_in_use; i++)
5642 line_info = &line_info_table[i];
5643 fprintf (outfile, "%5d: ", i);
5644 fprintf (outfile, "%-20s",
5645 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5646 fprintf (outfile, "%6ld", line_info->dw_line_num);
5647 fprintf (outfile, "\n");
5650 fprintf (outfile, "\n\n");
5653 /* Print the information collected for a given DIE. */
5655 void
5656 debug_dwarf_die (dw_die_ref die)
5658 print_die (die, stderr);
5661 /* Print all DWARF information collected for the compilation unit.
5662 This routine is a debugging aid only. */
5664 void
5665 debug_dwarf (void)
5667 print_indent = 0;
5668 print_die (comp_unit_die, stderr);
5669 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5670 print_dwarf_line_table (stderr);
5673 /* We build up the lists of children and attributes by pushing new ones
5674 onto the beginning of the list. Reverse the lists for DIE so that
5675 they are in order of addition. */
5677 static void
5678 reverse_die_lists (dw_die_ref die)
5680 dw_die_ref c, cp, cn;
5681 dw_attr_ref a, ap, an;
5683 for (a = die->die_attr, ap = 0; a; a = an)
5685 an = a->dw_attr_next;
5686 a->dw_attr_next = ap;
5687 ap = a;
5690 die->die_attr = ap;
5692 for (c = die->die_child, cp = 0; c; c = cn)
5694 cn = c->die_sib;
5695 c->die_sib = cp;
5696 cp = c;
5699 die->die_child = cp;
5702 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5703 reverse all dies in add_sibling_attributes, which runs through all the dies,
5704 it would reverse all the dies. Now, however, since we don't call
5705 reverse_die_lists in add_sibling_attributes, we need a routine to
5706 recursively reverse all the dies. This is that routine. */
5708 static void
5709 reverse_all_dies (dw_die_ref die)
5711 dw_die_ref c;
5713 reverse_die_lists (die);
5715 for (c = die->die_child; c; c = c->die_sib)
5716 reverse_all_dies (c);
5719 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5720 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5721 DIE that marks the start of the DIEs for this include file. */
5723 static dw_die_ref
5724 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5726 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5727 dw_die_ref new_unit = gen_compile_unit_die (filename);
5729 new_unit->die_sib = old_unit;
5730 return new_unit;
5733 /* Close an include-file CU and reopen the enclosing one. */
5735 static dw_die_ref
5736 pop_compile_unit (dw_die_ref old_unit)
5738 dw_die_ref new_unit = old_unit->die_sib;
5740 old_unit->die_sib = NULL;
5741 return new_unit;
5744 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5745 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5747 /* Calculate the checksum of a location expression. */
5749 static inline void
5750 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5752 CHECKSUM (loc->dw_loc_opc);
5753 CHECKSUM (loc->dw_loc_oprnd1);
5754 CHECKSUM (loc->dw_loc_oprnd2);
5757 /* Calculate the checksum of an attribute. */
5759 static void
5760 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5762 dw_loc_descr_ref loc;
5763 rtx r;
5765 CHECKSUM (at->dw_attr);
5767 /* We don't care about differences in file numbering. */
5768 if (at->dw_attr == DW_AT_decl_file
5769 /* Or that this was compiled with a different compiler snapshot; if
5770 the output is the same, that's what matters. */
5771 || at->dw_attr == DW_AT_producer)
5772 return;
5774 switch (AT_class (at))
5776 case dw_val_class_const:
5777 CHECKSUM (at->dw_attr_val.v.val_int);
5778 break;
5779 case dw_val_class_unsigned_const:
5780 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5781 break;
5782 case dw_val_class_long_long:
5783 CHECKSUM (at->dw_attr_val.v.val_long_long);
5784 break;
5785 case dw_val_class_vec:
5786 CHECKSUM (at->dw_attr_val.v.val_vec);
5787 break;
5788 case dw_val_class_flag:
5789 CHECKSUM (at->dw_attr_val.v.val_flag);
5790 break;
5791 case dw_val_class_str:
5792 CHECKSUM_STRING (AT_string (at));
5793 break;
5795 case dw_val_class_addr:
5796 r = AT_addr (at);
5797 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5798 CHECKSUM_STRING (XSTR (r, 0));
5799 break;
5801 case dw_val_class_offset:
5802 CHECKSUM (at->dw_attr_val.v.val_offset);
5803 break;
5805 case dw_val_class_loc:
5806 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5807 loc_checksum (loc, ctx);
5808 break;
5810 case dw_val_class_die_ref:
5811 die_checksum (AT_ref (at), ctx, mark);
5812 break;
5814 case dw_val_class_fde_ref:
5815 case dw_val_class_lbl_id:
5816 case dw_val_class_lbl_offset:
5817 break;
5819 default:
5820 break;
5824 /* Calculate the checksum of a DIE. */
5826 static void
5827 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5829 dw_die_ref c;
5830 dw_attr_ref a;
5832 /* To avoid infinite recursion. */
5833 if (die->die_mark)
5835 CHECKSUM (die->die_mark);
5836 return;
5838 die->die_mark = ++(*mark);
5840 CHECKSUM (die->die_tag);
5842 for (a = die->die_attr; a; a = a->dw_attr_next)
5843 attr_checksum (a, ctx, mark);
5845 for (c = die->die_child; c; c = c->die_sib)
5846 die_checksum (c, ctx, mark);
5849 #undef CHECKSUM
5850 #undef CHECKSUM_STRING
5852 /* Do the location expressions look same? */
5853 static inline int
5854 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5856 return loc1->dw_loc_opc == loc2->dw_loc_opc
5857 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5858 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5861 /* Do the values look the same? */
5862 static int
5863 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5865 dw_loc_descr_ref loc1, loc2;
5866 rtx r1, r2;
5868 if (v1->val_class != v2->val_class)
5869 return 0;
5871 switch (v1->val_class)
5873 case dw_val_class_const:
5874 return v1->v.val_int == v2->v.val_int;
5875 case dw_val_class_unsigned_const:
5876 return v1->v.val_unsigned == v2->v.val_unsigned;
5877 case dw_val_class_long_long:
5878 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5879 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5880 case dw_val_class_vec:
5881 if (v1->v.val_vec.length != v2->v.val_vec.length
5882 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5883 return 0;
5884 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5885 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5886 return 0;
5887 return 1;
5888 case dw_val_class_flag:
5889 return v1->v.val_flag == v2->v.val_flag;
5890 case dw_val_class_str:
5891 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5893 case dw_val_class_addr:
5894 r1 = v1->v.val_addr;
5895 r2 = v2->v.val_addr;
5896 if (GET_CODE (r1) != GET_CODE (r2))
5897 return 0;
5898 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5899 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5901 case dw_val_class_offset:
5902 return v1->v.val_offset == v2->v.val_offset;
5904 case dw_val_class_loc:
5905 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5906 loc1 && loc2;
5907 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5908 if (!same_loc_p (loc1, loc2, mark))
5909 return 0;
5910 return !loc1 && !loc2;
5912 case dw_val_class_die_ref:
5913 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5915 case dw_val_class_fde_ref:
5916 case dw_val_class_lbl_id:
5917 case dw_val_class_lbl_offset:
5918 return 1;
5920 default:
5921 return 1;
5925 /* Do the attributes look the same? */
5927 static int
5928 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5930 if (at1->dw_attr != at2->dw_attr)
5931 return 0;
5933 /* We don't care about differences in file numbering. */
5934 if (at1->dw_attr == DW_AT_decl_file
5935 /* Or that this was compiled with a different compiler snapshot; if
5936 the output is the same, that's what matters. */
5937 || at1->dw_attr == DW_AT_producer)
5938 return 1;
5940 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5943 /* Do the dies look the same? */
5945 static int
5946 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5948 dw_die_ref c1, c2;
5949 dw_attr_ref a1, a2;
5951 /* To avoid infinite recursion. */
5952 if (die1->die_mark)
5953 return die1->die_mark == die2->die_mark;
5954 die1->die_mark = die2->die_mark = ++(*mark);
5956 if (die1->die_tag != die2->die_tag)
5957 return 0;
5959 for (a1 = die1->die_attr, a2 = die2->die_attr;
5960 a1 && a2;
5961 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5962 if (!same_attr_p (a1, a2, mark))
5963 return 0;
5964 if (a1 || a2)
5965 return 0;
5967 for (c1 = die1->die_child, c2 = die2->die_child;
5968 c1 && c2;
5969 c1 = c1->die_sib, c2 = c2->die_sib)
5970 if (!same_die_p (c1, c2, mark))
5971 return 0;
5972 if (c1 || c2)
5973 return 0;
5975 return 1;
5978 /* Do the dies look the same? Wrapper around same_die_p. */
5980 static int
5981 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5983 int mark = 0;
5984 int ret = same_die_p (die1, die2, &mark);
5986 unmark_all_dies (die1);
5987 unmark_all_dies (die2);
5989 return ret;
5992 /* The prefix to attach to symbols on DIEs in the current comdat debug
5993 info section. */
5994 static char *comdat_symbol_id;
5996 /* The index of the current symbol within the current comdat CU. */
5997 static unsigned int comdat_symbol_number;
5999 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6000 children, and set comdat_symbol_id accordingly. */
6002 static void
6003 compute_section_prefix (dw_die_ref unit_die)
6005 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6006 const char *base = die_name ? lbasename (die_name) : "anonymous";
6007 char *name = alloca (strlen (base) + 64);
6008 char *p;
6009 int i, mark;
6010 unsigned char checksum[16];
6011 struct md5_ctx ctx;
6013 /* Compute the checksum of the DIE, then append part of it as hex digits to
6014 the name filename of the unit. */
6016 md5_init_ctx (&ctx);
6017 mark = 0;
6018 die_checksum (unit_die, &ctx, &mark);
6019 unmark_all_dies (unit_die);
6020 md5_finish_ctx (&ctx, checksum);
6022 sprintf (name, "%s.", base);
6023 clean_symbol_name (name);
6025 p = name + strlen (name);
6026 for (i = 0; i < 4; i++)
6028 sprintf (p, "%.2x", checksum[i]);
6029 p += 2;
6032 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6033 comdat_symbol_number = 0;
6036 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6038 static int
6039 is_type_die (dw_die_ref die)
6041 switch (die->die_tag)
6043 case DW_TAG_array_type:
6044 case DW_TAG_class_type:
6045 case DW_TAG_enumeration_type:
6046 case DW_TAG_pointer_type:
6047 case DW_TAG_reference_type:
6048 case DW_TAG_string_type:
6049 case DW_TAG_structure_type:
6050 case DW_TAG_subroutine_type:
6051 case DW_TAG_union_type:
6052 case DW_TAG_ptr_to_member_type:
6053 case DW_TAG_set_type:
6054 case DW_TAG_subrange_type:
6055 case DW_TAG_base_type:
6056 case DW_TAG_const_type:
6057 case DW_TAG_file_type:
6058 case DW_TAG_packed_type:
6059 case DW_TAG_volatile_type:
6060 case DW_TAG_typedef:
6061 return 1;
6062 default:
6063 return 0;
6067 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6068 Basically, we want to choose the bits that are likely to be shared between
6069 compilations (types) and leave out the bits that are specific to individual
6070 compilations (functions). */
6072 static int
6073 is_comdat_die (dw_die_ref c)
6075 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6076 we do for stabs. The advantage is a greater likelihood of sharing between
6077 objects that don't include headers in the same order (and therefore would
6078 put the base types in a different comdat). jason 8/28/00 */
6080 if (c->die_tag == DW_TAG_base_type)
6081 return 0;
6083 if (c->die_tag == DW_TAG_pointer_type
6084 || c->die_tag == DW_TAG_reference_type
6085 || c->die_tag == DW_TAG_const_type
6086 || c->die_tag == DW_TAG_volatile_type)
6088 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6090 return t ? is_comdat_die (t) : 0;
6093 return is_type_die (c);
6096 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6097 compilation unit. */
6099 static int
6100 is_symbol_die (dw_die_ref c)
6102 return (is_type_die (c)
6103 || (get_AT (c, DW_AT_declaration)
6104 && !get_AT (c, DW_AT_specification)));
6107 static char *
6108 gen_internal_sym (const char *prefix)
6110 char buf[256];
6112 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6113 return xstrdup (buf);
6116 /* Assign symbols to all worthy DIEs under DIE. */
6118 static void
6119 assign_symbol_names (dw_die_ref die)
6121 dw_die_ref c;
6123 if (is_symbol_die (die))
6125 if (comdat_symbol_id)
6127 char *p = alloca (strlen (comdat_symbol_id) + 64);
6129 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6130 comdat_symbol_id, comdat_symbol_number++);
6131 die->die_symbol = xstrdup (p);
6133 else
6134 die->die_symbol = gen_internal_sym ("LDIE");
6137 for (c = die->die_child; c != NULL; c = c->die_sib)
6138 assign_symbol_names (c);
6141 struct cu_hash_table_entry
6143 dw_die_ref cu;
6144 unsigned min_comdat_num, max_comdat_num;
6145 struct cu_hash_table_entry *next;
6148 /* Routines to manipulate hash table of CUs. */
6149 static hashval_t
6150 htab_cu_hash (const void *of)
6152 const struct cu_hash_table_entry *entry = of;
6154 return htab_hash_string (entry->cu->die_symbol);
6157 static int
6158 htab_cu_eq (const void *of1, const void *of2)
6160 const struct cu_hash_table_entry *entry1 = of1;
6161 const struct die_struct *entry2 = of2;
6163 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6166 static void
6167 htab_cu_del (void *what)
6169 struct cu_hash_table_entry *next, *entry = what;
6171 while (entry)
6173 next = entry->next;
6174 free (entry);
6175 entry = next;
6179 /* Check whether we have already seen this CU and set up SYM_NUM
6180 accordingly. */
6181 static int
6182 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6184 struct cu_hash_table_entry dummy;
6185 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6187 dummy.max_comdat_num = 0;
6189 slot = (struct cu_hash_table_entry **)
6190 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6191 INSERT);
6192 entry = *slot;
6194 for (; entry; last = entry, entry = entry->next)
6196 if (same_die_p_wrap (cu, entry->cu))
6197 break;
6200 if (entry)
6202 *sym_num = entry->min_comdat_num;
6203 return 1;
6206 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6207 entry->cu = cu;
6208 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6209 entry->next = *slot;
6210 *slot = entry;
6212 return 0;
6215 /* Record SYM_NUM to record of CU in HTABLE. */
6216 static void
6217 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6219 struct cu_hash_table_entry **slot, *entry;
6221 slot = (struct cu_hash_table_entry **)
6222 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6223 NO_INSERT);
6224 entry = *slot;
6226 entry->max_comdat_num = sym_num;
6229 /* Traverse the DIE (which is always comp_unit_die), and set up
6230 additional compilation units for each of the include files we see
6231 bracketed by BINCL/EINCL. */
6233 static void
6234 break_out_includes (dw_die_ref die)
6236 dw_die_ref *ptr;
6237 dw_die_ref unit = NULL;
6238 limbo_die_node *node, **pnode;
6239 htab_t cu_hash_table;
6241 for (ptr = &(die->die_child); *ptr;)
6243 dw_die_ref c = *ptr;
6245 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6246 || (unit && is_comdat_die (c)))
6248 /* This DIE is for a secondary CU; remove it from the main one. */
6249 *ptr = c->die_sib;
6251 if (c->die_tag == DW_TAG_GNU_BINCL)
6253 unit = push_new_compile_unit (unit, c);
6254 free_die (c);
6256 else if (c->die_tag == DW_TAG_GNU_EINCL)
6258 unit = pop_compile_unit (unit);
6259 free_die (c);
6261 else
6262 add_child_die (unit, c);
6264 else
6266 /* Leave this DIE in the main CU. */
6267 ptr = &(c->die_sib);
6268 continue;
6272 #if 0
6273 /* We can only use this in debugging, since the frontend doesn't check
6274 to make sure that we leave every include file we enter. */
6275 gcc_assert (!unit);
6276 #endif
6278 assign_symbol_names (die);
6279 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6280 for (node = limbo_die_list, pnode = &limbo_die_list;
6281 node;
6282 node = node->next)
6284 int is_dupl;
6286 compute_section_prefix (node->die);
6287 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6288 &comdat_symbol_number);
6289 assign_symbol_names (node->die);
6290 if (is_dupl)
6291 *pnode = node->next;
6292 else
6294 pnode = &node->next;
6295 record_comdat_symbol_number (node->die, cu_hash_table,
6296 comdat_symbol_number);
6299 htab_delete (cu_hash_table);
6302 /* Traverse the DIE and add a sibling attribute if it may have the
6303 effect of speeding up access to siblings. To save some space,
6304 avoid generating sibling attributes for DIE's without children. */
6306 static void
6307 add_sibling_attributes (dw_die_ref die)
6309 dw_die_ref c;
6311 if (die->die_tag != DW_TAG_compile_unit
6312 && die->die_sib && die->die_child != NULL)
6313 /* Add the sibling link to the front of the attribute list. */
6314 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6316 for (c = die->die_child; c != NULL; c = c->die_sib)
6317 add_sibling_attributes (c);
6320 /* Output all location lists for the DIE and its children. */
6322 static void
6323 output_location_lists (dw_die_ref die)
6325 dw_die_ref c;
6326 dw_attr_ref d_attr;
6328 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6329 if (AT_class (d_attr) == dw_val_class_loc_list)
6330 output_loc_list (AT_loc_list (d_attr));
6332 for (c = die->die_child; c != NULL; c = c->die_sib)
6333 output_location_lists (c);
6337 /* The format of each DIE (and its attribute value pairs) is encoded in an
6338 abbreviation table. This routine builds the abbreviation table and assigns
6339 a unique abbreviation id for each abbreviation entry. The children of each
6340 die are visited recursively. */
6342 static void
6343 build_abbrev_table (dw_die_ref die)
6345 unsigned long abbrev_id;
6346 unsigned int n_alloc;
6347 dw_die_ref c;
6348 dw_attr_ref d_attr, a_attr;
6350 /* Scan the DIE references, and mark as external any that refer to
6351 DIEs from other CUs (i.e. those which are not marked). */
6352 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6353 if (AT_class (d_attr) == dw_val_class_die_ref
6354 && AT_ref (d_attr)->die_mark == 0)
6356 gcc_assert (AT_ref (d_attr)->die_symbol);
6358 set_AT_ref_external (d_attr, 1);
6361 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6363 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6365 if (abbrev->die_tag == die->die_tag)
6367 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6369 a_attr = abbrev->die_attr;
6370 d_attr = die->die_attr;
6372 while (a_attr != NULL && d_attr != NULL)
6374 if ((a_attr->dw_attr != d_attr->dw_attr)
6375 || (value_format (a_attr) != value_format (d_attr)))
6376 break;
6378 a_attr = a_attr->dw_attr_next;
6379 d_attr = d_attr->dw_attr_next;
6382 if (a_attr == NULL && d_attr == NULL)
6383 break;
6388 if (abbrev_id >= abbrev_die_table_in_use)
6390 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6392 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6393 abbrev_die_table = ggc_realloc (abbrev_die_table,
6394 sizeof (dw_die_ref) * n_alloc);
6396 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6397 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6398 abbrev_die_table_allocated = n_alloc;
6401 ++abbrev_die_table_in_use;
6402 abbrev_die_table[abbrev_id] = die;
6405 die->die_abbrev = abbrev_id;
6406 for (c = die->die_child; c != NULL; c = c->die_sib)
6407 build_abbrev_table (c);
6410 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6412 static int
6413 constant_size (long unsigned int value)
6415 int log;
6417 if (value == 0)
6418 log = 0;
6419 else
6420 log = floor_log2 (value);
6422 log = log / 8;
6423 log = 1 << (floor_log2 (log) + 1);
6425 return log;
6428 /* Return the size of a DIE as it is represented in the
6429 .debug_info section. */
6431 static unsigned long
6432 size_of_die (dw_die_ref die)
6434 unsigned long size = 0;
6435 dw_attr_ref a;
6437 size += size_of_uleb128 (die->die_abbrev);
6438 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6440 switch (AT_class (a))
6442 case dw_val_class_addr:
6443 size += DWARF2_ADDR_SIZE;
6444 break;
6445 case dw_val_class_offset:
6446 size += DWARF_OFFSET_SIZE;
6447 break;
6448 case dw_val_class_loc:
6450 unsigned long lsize = size_of_locs (AT_loc (a));
6452 /* Block length. */
6453 size += constant_size (lsize);
6454 size += lsize;
6456 break;
6457 case dw_val_class_loc_list:
6458 size += DWARF_OFFSET_SIZE;
6459 break;
6460 case dw_val_class_range_list:
6461 size += DWARF_OFFSET_SIZE;
6462 break;
6463 case dw_val_class_const:
6464 size += size_of_sleb128 (AT_int (a));
6465 break;
6466 case dw_val_class_unsigned_const:
6467 size += constant_size (AT_unsigned (a));
6468 break;
6469 case dw_val_class_long_long:
6470 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6471 break;
6472 case dw_val_class_vec:
6473 size += 1 + (a->dw_attr_val.v.val_vec.length
6474 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6475 break;
6476 case dw_val_class_flag:
6477 size += 1;
6478 break;
6479 case dw_val_class_die_ref:
6480 if (AT_ref_external (a))
6481 size += DWARF2_ADDR_SIZE;
6482 else
6483 size += DWARF_OFFSET_SIZE;
6484 break;
6485 case dw_val_class_fde_ref:
6486 size += DWARF_OFFSET_SIZE;
6487 break;
6488 case dw_val_class_lbl_id:
6489 size += DWARF2_ADDR_SIZE;
6490 break;
6491 case dw_val_class_lbl_offset:
6492 size += DWARF_OFFSET_SIZE;
6493 break;
6494 case dw_val_class_str:
6495 if (AT_string_form (a) == DW_FORM_strp)
6496 size += DWARF_OFFSET_SIZE;
6497 else
6498 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6499 break;
6500 default:
6501 gcc_unreachable ();
6505 return size;
6508 /* Size the debugging information associated with a given DIE. Visits the
6509 DIE's children recursively. Updates the global variable next_die_offset, on
6510 each time through. Uses the current value of next_die_offset to update the
6511 die_offset field in each DIE. */
6513 static void
6514 calc_die_sizes (dw_die_ref die)
6516 dw_die_ref c;
6518 die->die_offset = next_die_offset;
6519 next_die_offset += size_of_die (die);
6521 for (c = die->die_child; c != NULL; c = c->die_sib)
6522 calc_die_sizes (c);
6524 if (die->die_child != NULL)
6525 /* Count the null byte used to terminate sibling lists. */
6526 next_die_offset += 1;
6529 /* Set the marks for a die and its children. We do this so
6530 that we know whether or not a reference needs to use FORM_ref_addr; only
6531 DIEs in the same CU will be marked. We used to clear out the offset
6532 and use that as the flag, but ran into ordering problems. */
6534 static void
6535 mark_dies (dw_die_ref die)
6537 dw_die_ref c;
6539 gcc_assert (!die->die_mark);
6541 die->die_mark = 1;
6542 for (c = die->die_child; c; c = c->die_sib)
6543 mark_dies (c);
6546 /* Clear the marks for a die and its children. */
6548 static void
6549 unmark_dies (dw_die_ref die)
6551 dw_die_ref c;
6553 gcc_assert (die->die_mark);
6555 die->die_mark = 0;
6556 for (c = die->die_child; c; c = c->die_sib)
6557 unmark_dies (c);
6560 /* Clear the marks for a die, its children and referred dies. */
6562 static void
6563 unmark_all_dies (dw_die_ref die)
6565 dw_die_ref c;
6566 dw_attr_ref a;
6568 if (!die->die_mark)
6569 return;
6570 die->die_mark = 0;
6572 for (c = die->die_child; c; c = c->die_sib)
6573 unmark_all_dies (c);
6575 for (a = die->die_attr; a; a = a->dw_attr_next)
6576 if (AT_class (a) == dw_val_class_die_ref)
6577 unmark_all_dies (AT_ref (a));
6580 /* Return the size of the .debug_pubnames table generated for the
6581 compilation unit. */
6583 static unsigned long
6584 size_of_pubnames (void)
6586 unsigned long size;
6587 unsigned i;
6589 size = DWARF_PUBNAMES_HEADER_SIZE;
6590 for (i = 0; i < pubname_table_in_use; i++)
6592 pubname_ref p = &pubname_table[i];
6593 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6596 size += DWARF_OFFSET_SIZE;
6597 return size;
6600 /* Return the size of the information in the .debug_aranges section. */
6602 static unsigned long
6603 size_of_aranges (void)
6605 unsigned long size;
6607 size = DWARF_ARANGES_HEADER_SIZE;
6609 /* Count the address/length pair for this compilation unit. */
6610 size += 2 * DWARF2_ADDR_SIZE;
6611 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6613 /* Count the two zero words used to terminated the address range table. */
6614 size += 2 * DWARF2_ADDR_SIZE;
6615 return size;
6618 /* Select the encoding of an attribute value. */
6620 static enum dwarf_form
6621 value_format (dw_attr_ref a)
6623 switch (a->dw_attr_val.val_class)
6625 case dw_val_class_addr:
6626 return DW_FORM_addr;
6627 case dw_val_class_range_list:
6628 case dw_val_class_offset:
6629 switch (DWARF_OFFSET_SIZE)
6631 case 4:
6632 return DW_FORM_data4;
6633 case 8:
6634 return DW_FORM_data8;
6635 default:
6636 gcc_unreachable ();
6638 case dw_val_class_loc_list:
6639 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6640 .debug_loc section */
6641 return DW_FORM_data4;
6642 case dw_val_class_loc:
6643 switch (constant_size (size_of_locs (AT_loc (a))))
6645 case 1:
6646 return DW_FORM_block1;
6647 case 2:
6648 return DW_FORM_block2;
6649 default:
6650 gcc_unreachable ();
6652 case dw_val_class_const:
6653 return DW_FORM_sdata;
6654 case dw_val_class_unsigned_const:
6655 switch (constant_size (AT_unsigned (a)))
6657 case 1:
6658 return DW_FORM_data1;
6659 case 2:
6660 return DW_FORM_data2;
6661 case 4:
6662 return DW_FORM_data4;
6663 case 8:
6664 return DW_FORM_data8;
6665 default:
6666 gcc_unreachable ();
6668 case dw_val_class_long_long:
6669 return DW_FORM_block1;
6670 case dw_val_class_vec:
6671 return DW_FORM_block1;
6672 case dw_val_class_flag:
6673 return DW_FORM_flag;
6674 case dw_val_class_die_ref:
6675 if (AT_ref_external (a))
6676 return DW_FORM_ref_addr;
6677 else
6678 return DW_FORM_ref;
6679 case dw_val_class_fde_ref:
6680 return DW_FORM_data;
6681 case dw_val_class_lbl_id:
6682 return DW_FORM_addr;
6683 case dw_val_class_lbl_offset:
6684 return DW_FORM_data;
6685 case dw_val_class_str:
6686 return AT_string_form (a);
6688 default:
6689 gcc_unreachable ();
6693 /* Output the encoding of an attribute value. */
6695 static void
6696 output_value_format (dw_attr_ref a)
6698 enum dwarf_form form = value_format (a);
6700 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6703 /* Output the .debug_abbrev section which defines the DIE abbreviation
6704 table. */
6706 static void
6707 output_abbrev_section (void)
6709 unsigned long abbrev_id;
6711 dw_attr_ref a_attr;
6713 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6715 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6717 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6718 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6719 dwarf_tag_name (abbrev->die_tag));
6721 if (abbrev->die_child != NULL)
6722 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6723 else
6724 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6726 for (a_attr = abbrev->die_attr; a_attr != NULL;
6727 a_attr = a_attr->dw_attr_next)
6729 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6730 dwarf_attr_name (a_attr->dw_attr));
6731 output_value_format (a_attr);
6734 dw2_asm_output_data (1, 0, NULL);
6735 dw2_asm_output_data (1, 0, NULL);
6738 /* Terminate the table. */
6739 dw2_asm_output_data (1, 0, NULL);
6742 /* Output a symbol we can use to refer to this DIE from another CU. */
6744 static inline void
6745 output_die_symbol (dw_die_ref die)
6747 char *sym = die->die_symbol;
6749 if (sym == 0)
6750 return;
6752 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6753 /* We make these global, not weak; if the target doesn't support
6754 .linkonce, it doesn't support combining the sections, so debugging
6755 will break. */
6756 targetm.asm_out.globalize_label (asm_out_file, sym);
6758 ASM_OUTPUT_LABEL (asm_out_file, sym);
6761 /* Return a new location list, given the begin and end range, and the
6762 expression. gensym tells us whether to generate a new internal symbol for
6763 this location list node, which is done for the head of the list only. */
6765 static inline dw_loc_list_ref
6766 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6767 const char *section, unsigned int gensym)
6769 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6771 retlist->begin = begin;
6772 retlist->end = end;
6773 retlist->expr = expr;
6774 retlist->section = section;
6775 if (gensym)
6776 retlist->ll_symbol = gen_internal_sym ("LLST");
6778 return retlist;
6781 /* Add a location description expression to a location list. */
6783 static inline void
6784 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6785 const char *begin, const char *end,
6786 const char *section)
6788 dw_loc_list_ref *d;
6790 /* Find the end of the chain. */
6791 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6794 /* Add a new location list node to the list. */
6795 *d = new_loc_list (descr, begin, end, section, 0);
6798 static void
6799 dwarf2out_switch_text_section (void)
6801 dw_fde_ref fde;
6803 fde = &fde_table[fde_table_in_use - 1];
6804 fde->dw_fde_switched_sections = true;
6805 fde->dw_fde_hot_section_label = xstrdup (hot_section_label);
6806 fde->dw_fde_hot_section_end_label = xstrdup (hot_section_end_label);
6807 fde->dw_fde_unlikely_section_label = xstrdup (unlikely_section_label);
6808 fde->dw_fde_unlikely_section_end_label = xstrdup (cold_section_end_label);
6809 separate_line_info_table_in_use++;
6812 /* Output the location list given to us. */
6814 static void
6815 output_loc_list (dw_loc_list_ref list_head)
6817 dw_loc_list_ref curr = list_head;
6819 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6821 /* Walk the location list, and output each range + expression. */
6822 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6824 unsigned long size;
6825 if (separate_line_info_table_in_use == 0)
6827 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6828 "Location list begin address (%s)",
6829 list_head->ll_symbol);
6830 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6831 "Location list end address (%s)",
6832 list_head->ll_symbol);
6834 else
6836 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6837 "Location list begin address (%s)",
6838 list_head->ll_symbol);
6839 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6840 "Location list end address (%s)",
6841 list_head->ll_symbol);
6843 size = size_of_locs (curr->expr);
6845 /* Output the block length for this list of location operations. */
6846 gcc_assert (size <= 0xffff);
6847 dw2_asm_output_data (2, size, "%s", "Location expression size");
6849 output_loc_sequence (curr->expr);
6852 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6853 "Location list terminator begin (%s)",
6854 list_head->ll_symbol);
6855 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6856 "Location list terminator end (%s)",
6857 list_head->ll_symbol);
6860 /* Output the DIE and its attributes. Called recursively to generate
6861 the definitions of each child DIE. */
6863 static void
6864 output_die (dw_die_ref die)
6866 dw_attr_ref a;
6867 dw_die_ref c;
6868 unsigned long size;
6870 /* If someone in another CU might refer to us, set up a symbol for
6871 them to point to. */
6872 if (die->die_symbol)
6873 output_die_symbol (die);
6875 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6876 die->die_offset, dwarf_tag_name (die->die_tag));
6878 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6880 const char *name = dwarf_attr_name (a->dw_attr);
6882 switch (AT_class (a))
6884 case dw_val_class_addr:
6885 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6886 break;
6888 case dw_val_class_offset:
6889 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6890 "%s", name);
6891 break;
6893 case dw_val_class_range_list:
6895 char *p = strchr (ranges_section_label, '\0');
6897 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6898 a->dw_attr_val.v.val_offset);
6899 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6900 "%s", name);
6901 *p = '\0';
6903 break;
6905 case dw_val_class_loc:
6906 size = size_of_locs (AT_loc (a));
6908 /* Output the block length for this list of location operations. */
6909 dw2_asm_output_data (constant_size (size), size, "%s", name);
6911 output_loc_sequence (AT_loc (a));
6912 break;
6914 case dw_val_class_const:
6915 /* ??? It would be slightly more efficient to use a scheme like is
6916 used for unsigned constants below, but gdb 4.x does not sign
6917 extend. Gdb 5.x does sign extend. */
6918 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6919 break;
6921 case dw_val_class_unsigned_const:
6922 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6923 AT_unsigned (a), "%s", name);
6924 break;
6926 case dw_val_class_long_long:
6928 unsigned HOST_WIDE_INT first, second;
6930 dw2_asm_output_data (1,
6931 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6932 "%s", name);
6934 if (WORDS_BIG_ENDIAN)
6936 first = a->dw_attr_val.v.val_long_long.hi;
6937 second = a->dw_attr_val.v.val_long_long.low;
6939 else
6941 first = a->dw_attr_val.v.val_long_long.low;
6942 second = a->dw_attr_val.v.val_long_long.hi;
6945 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6946 first, "long long constant");
6947 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6948 second, NULL);
6950 break;
6952 case dw_val_class_vec:
6954 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6955 unsigned int len = a->dw_attr_val.v.val_vec.length;
6956 unsigned int i;
6957 unsigned char *p;
6959 dw2_asm_output_data (1, len * elt_size, "%s", name);
6960 if (elt_size > sizeof (HOST_WIDE_INT))
6962 elt_size /= 2;
6963 len *= 2;
6965 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6966 i < len;
6967 i++, p += elt_size)
6968 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6969 "fp or vector constant word %u", i);
6970 break;
6973 case dw_val_class_flag:
6974 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6975 break;
6977 case dw_val_class_loc_list:
6979 char *sym = AT_loc_list (a)->ll_symbol;
6981 gcc_assert (sym);
6982 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6984 break;
6986 case dw_val_class_die_ref:
6987 if (AT_ref_external (a))
6989 char *sym = AT_ref (a)->die_symbol;
6991 gcc_assert (sym);
6992 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6994 else
6996 gcc_assert (AT_ref (a)->die_offset);
6997 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6998 "%s", name);
7000 break;
7002 case dw_val_class_fde_ref:
7004 char l1[20];
7006 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7007 a->dw_attr_val.v.val_fde_index * 2);
7008 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7010 break;
7012 case dw_val_class_lbl_id:
7013 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7014 break;
7016 case dw_val_class_lbl_offset:
7017 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7018 break;
7020 case dw_val_class_str:
7021 if (AT_string_form (a) == DW_FORM_strp)
7022 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7023 a->dw_attr_val.v.val_str->label,
7024 "%s: \"%s\"", name, AT_string (a));
7025 else
7026 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7027 break;
7029 default:
7030 gcc_unreachable ();
7034 for (c = die->die_child; c != NULL; c = c->die_sib)
7035 output_die (c);
7037 /* Add null byte to terminate sibling list. */
7038 if (die->die_child != NULL)
7039 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7040 die->die_offset);
7043 /* Output the compilation unit that appears at the beginning of the
7044 .debug_info section, and precedes the DIE descriptions. */
7046 static void
7047 output_compilation_unit_header (void)
7049 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7050 dw2_asm_output_data (4, 0xffffffff,
7051 "Initial length escape value indicating 64-bit DWARF extension");
7052 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7053 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7054 "Length of Compilation Unit Info");
7055 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7056 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7057 "Offset Into Abbrev. Section");
7058 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7061 /* Output the compilation unit DIE and its children. */
7063 static void
7064 output_comp_unit (dw_die_ref die, int output_if_empty)
7066 const char *secname;
7067 char *oldsym, *tmp;
7069 /* Unless we are outputting main CU, we may throw away empty ones. */
7070 if (!output_if_empty && die->die_child == NULL)
7071 return;
7073 /* Even if there are no children of this DIE, we must output the information
7074 about the compilation unit. Otherwise, on an empty translation unit, we
7075 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7076 will then complain when examining the file. First mark all the DIEs in
7077 this CU so we know which get local refs. */
7078 mark_dies (die);
7080 build_abbrev_table (die);
7082 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7083 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7084 calc_die_sizes (die);
7086 oldsym = die->die_symbol;
7087 if (oldsym)
7089 tmp = alloca (strlen (oldsym) + 24);
7091 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7092 secname = tmp;
7093 die->die_symbol = NULL;
7095 else
7096 secname = (const char *) DEBUG_INFO_SECTION;
7098 /* Output debugging information. */
7099 named_section_flags (secname, SECTION_DEBUG);
7100 output_compilation_unit_header ();
7101 output_die (die);
7103 /* Leave the marks on the main CU, so we can check them in
7104 output_pubnames. */
7105 if (oldsym)
7107 unmark_dies (die);
7108 die->die_symbol = oldsym;
7112 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7113 output of lang_hooks.decl_printable_name for C++ looks like
7114 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7116 static const char *
7117 dwarf2_name (tree decl, int scope)
7119 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7122 /* Add a new entry to .debug_pubnames if appropriate. */
7124 static void
7125 add_pubname (tree decl, dw_die_ref die)
7127 pubname_ref p;
7129 if (! TREE_PUBLIC (decl))
7130 return;
7132 if (pubname_table_in_use == pubname_table_allocated)
7134 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7135 pubname_table
7136 = ggc_realloc (pubname_table,
7137 (pubname_table_allocated * sizeof (pubname_entry)));
7138 memset (pubname_table + pubname_table_in_use, 0,
7139 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7142 p = &pubname_table[pubname_table_in_use++];
7143 p->die = die;
7144 p->name = xstrdup (dwarf2_name (decl, 1));
7147 /* Output the public names table used to speed up access to externally
7148 visible names. For now, only generate entries for externally
7149 visible procedures. */
7151 static void
7152 output_pubnames (void)
7154 unsigned i;
7155 unsigned long pubnames_length = size_of_pubnames ();
7157 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7158 dw2_asm_output_data (4, 0xffffffff,
7159 "Initial length escape value indicating 64-bit DWARF extension");
7160 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7161 "Length of Public Names Info");
7162 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7163 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7164 "Offset of Compilation Unit Info");
7165 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7166 "Compilation Unit Length");
7168 for (i = 0; i < pubname_table_in_use; i++)
7170 pubname_ref pub = &pubname_table[i];
7172 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7173 gcc_assert (pub->die->die_mark);
7175 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7176 "DIE offset");
7178 dw2_asm_output_nstring (pub->name, -1, "external name");
7181 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7184 /* Add a new entry to .debug_aranges if appropriate. */
7186 static void
7187 add_arange (tree decl, dw_die_ref die)
7189 if (! DECL_SECTION_NAME (decl))
7190 return;
7192 if (arange_table_in_use == arange_table_allocated)
7194 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7195 arange_table = ggc_realloc (arange_table,
7196 (arange_table_allocated
7197 * sizeof (dw_die_ref)));
7198 memset (arange_table + arange_table_in_use, 0,
7199 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7202 arange_table[arange_table_in_use++] = die;
7205 /* Output the information that goes into the .debug_aranges table.
7206 Namely, define the beginning and ending address range of the
7207 text section generated for this compilation unit. */
7209 static void
7210 output_aranges (void)
7212 unsigned i;
7213 unsigned long aranges_length = size_of_aranges ();
7215 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7216 dw2_asm_output_data (4, 0xffffffff,
7217 "Initial length escape value indicating 64-bit DWARF extension");
7218 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7219 "Length of Address Ranges Info");
7220 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7221 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7222 "Offset of Compilation Unit Info");
7223 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7224 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7226 /* We need to align to twice the pointer size here. */
7227 if (DWARF_ARANGES_PAD_SIZE)
7229 /* Pad using a 2 byte words so that padding is correct for any
7230 pointer size. */
7231 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7232 2 * DWARF2_ADDR_SIZE);
7233 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7234 dw2_asm_output_data (2, 0, NULL);
7237 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7238 if (last_text_section == in_unlikely_executed_text
7239 || (last_text_section == in_named
7240 && last_text_section_name == unlikely_text_section_name))
7241 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7242 unlikely_section_label, "Length");
7243 else
7244 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7245 text_section_label, "Length");
7247 for (i = 0; i < arange_table_in_use; i++)
7249 dw_die_ref die = arange_table[i];
7251 /* We shouldn't see aranges for DIEs outside of the main CU. */
7252 gcc_assert (die->die_mark);
7254 if (die->die_tag == DW_TAG_subprogram)
7256 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7257 "Address");
7258 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7259 get_AT_low_pc (die), "Length");
7261 else
7263 /* A static variable; extract the symbol from DW_AT_location.
7264 Note that this code isn't currently hit, as we only emit
7265 aranges for functions (jason 9/23/99). */
7266 dw_attr_ref a = get_AT (die, DW_AT_location);
7267 dw_loc_descr_ref loc;
7269 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7271 loc = AT_loc (a);
7272 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7274 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7275 loc->dw_loc_oprnd1.v.val_addr, "Address");
7276 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7277 get_AT_unsigned (die, DW_AT_byte_size),
7278 "Length");
7282 /* Output the terminator words. */
7283 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7284 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7287 /* Add a new entry to .debug_ranges. Return the offset at which it
7288 was placed. */
7290 static unsigned int
7291 add_ranges (tree block)
7293 unsigned int in_use = ranges_table_in_use;
7295 if (in_use == ranges_table_allocated)
7297 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7298 ranges_table
7299 = ggc_realloc (ranges_table, (ranges_table_allocated
7300 * sizeof (struct dw_ranges_struct)));
7301 memset (ranges_table + ranges_table_in_use, 0,
7302 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7305 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7306 ranges_table_in_use = in_use + 1;
7308 return in_use * 2 * DWARF2_ADDR_SIZE;
7311 static void
7312 output_ranges (void)
7314 unsigned i;
7315 static const char *const start_fmt = "Offset 0x%x";
7316 const char *fmt = start_fmt;
7318 for (i = 0; i < ranges_table_in_use; i++)
7320 int block_num = ranges_table[i].block_num;
7322 if (block_num)
7324 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7325 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7327 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7328 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7330 /* If all code is in the text section, then the compilation
7331 unit base address defaults to DW_AT_low_pc, which is the
7332 base of the text section. */
7333 if (separate_line_info_table_in_use == 0)
7335 if (last_text_section == in_unlikely_executed_text
7336 || (last_text_section == in_named
7337 && last_text_section_name == unlikely_text_section_name))
7339 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7340 unlikely_section_label,
7341 fmt, i * 2 * DWARF2_ADDR_SIZE);
7342 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7343 unlikely_section_label, NULL);
7345 else
7347 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7348 text_section_label,
7349 fmt, i * 2 * DWARF2_ADDR_SIZE);
7350 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7351 text_section_label, NULL);
7355 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7356 compilation unit base address to zero, which allows us to
7357 use absolute addresses, and not worry about whether the
7358 target supports cross-section arithmetic. */
7359 else
7361 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7362 fmt, i * 2 * DWARF2_ADDR_SIZE);
7363 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7366 fmt = NULL;
7368 else
7370 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7371 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7372 fmt = start_fmt;
7377 /* Data structure containing information about input files. */
7378 struct file_info
7380 char *path; /* Complete file name. */
7381 char *fname; /* File name part. */
7382 int length; /* Length of entire string. */
7383 int file_idx; /* Index in input file table. */
7384 int dir_idx; /* Index in directory table. */
7387 /* Data structure containing information about directories with source
7388 files. */
7389 struct dir_info
7391 char *path; /* Path including directory name. */
7392 int length; /* Path length. */
7393 int prefix; /* Index of directory entry which is a prefix. */
7394 int count; /* Number of files in this directory. */
7395 int dir_idx; /* Index of directory used as base. */
7396 int used; /* Used in the end? */
7399 /* Callback function for file_info comparison. We sort by looking at
7400 the directories in the path. */
7402 static int
7403 file_info_cmp (const void *p1, const void *p2)
7405 const struct file_info *s1 = p1;
7406 const struct file_info *s2 = p2;
7407 unsigned char *cp1;
7408 unsigned char *cp2;
7410 /* Take care of file names without directories. We need to make sure that
7411 we return consistent values to qsort since some will get confused if
7412 we return the same value when identical operands are passed in opposite
7413 orders. So if neither has a directory, return 0 and otherwise return
7414 1 or -1 depending on which one has the directory. */
7415 if ((s1->path == s1->fname || s2->path == s2->fname))
7416 return (s2->path == s2->fname) - (s1->path == s1->fname);
7418 cp1 = (unsigned char *) s1->path;
7419 cp2 = (unsigned char *) s2->path;
7421 while (1)
7423 ++cp1;
7424 ++cp2;
7425 /* Reached the end of the first path? If so, handle like above. */
7426 if ((cp1 == (unsigned char *) s1->fname)
7427 || (cp2 == (unsigned char *) s2->fname))
7428 return ((cp2 == (unsigned char *) s2->fname)
7429 - (cp1 == (unsigned char *) s1->fname));
7431 /* Character of current path component the same? */
7432 else if (*cp1 != *cp2)
7433 return *cp1 - *cp2;
7437 /* Output the directory table and the file name table. We try to minimize
7438 the total amount of memory needed. A heuristic is used to avoid large
7439 slowdowns with many input files. */
7441 static void
7442 output_file_names (void)
7444 struct file_info *files;
7445 struct dir_info *dirs;
7446 int *saved;
7447 int *savehere;
7448 int *backmap;
7449 size_t ndirs;
7450 int idx_offset;
7451 size_t i;
7452 int idx;
7454 /* Handle the case where file_table is empty. */
7455 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7457 dw2_asm_output_data (1, 0, "End directory table");
7458 dw2_asm_output_data (1, 0, "End file name table");
7459 return;
7462 /* Allocate the various arrays we need. */
7463 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7464 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7466 /* Sort the file names. */
7467 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7469 char *f;
7471 /* Skip all leading "./". */
7472 f = VARRAY_CHAR_PTR (file_table, i);
7473 while (f[0] == '.' && f[1] == '/')
7474 f += 2;
7476 /* Create a new array entry. */
7477 files[i].path = f;
7478 files[i].length = strlen (f);
7479 files[i].file_idx = i;
7481 /* Search for the file name part. */
7482 f = strrchr (f, '/');
7483 files[i].fname = f == NULL ? files[i].path : f + 1;
7486 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7487 sizeof (files[0]), file_info_cmp);
7489 /* Find all the different directories used. */
7490 dirs[0].path = files[1].path;
7491 dirs[0].length = files[1].fname - files[1].path;
7492 dirs[0].prefix = -1;
7493 dirs[0].count = 1;
7494 dirs[0].dir_idx = 0;
7495 dirs[0].used = 0;
7496 files[1].dir_idx = 0;
7497 ndirs = 1;
7499 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7500 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7501 && memcmp (dirs[ndirs - 1].path, files[i].path,
7502 dirs[ndirs - 1].length) == 0)
7504 /* Same directory as last entry. */
7505 files[i].dir_idx = ndirs - 1;
7506 ++dirs[ndirs - 1].count;
7508 else
7510 size_t j;
7512 /* This is a new directory. */
7513 dirs[ndirs].path = files[i].path;
7514 dirs[ndirs].length = files[i].fname - files[i].path;
7515 dirs[ndirs].count = 1;
7516 dirs[ndirs].dir_idx = ndirs;
7517 dirs[ndirs].used = 0;
7518 files[i].dir_idx = ndirs;
7520 /* Search for a prefix. */
7521 dirs[ndirs].prefix = -1;
7522 for (j = 0; j < ndirs; j++)
7523 if (dirs[j].length < dirs[ndirs].length
7524 && dirs[j].length > 1
7525 && (dirs[ndirs].prefix == -1
7526 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7527 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7528 dirs[ndirs].prefix = j;
7530 ++ndirs;
7533 /* Now to the actual work. We have to find a subset of the directories which
7534 allow expressing the file name using references to the directory table
7535 with the least amount of characters. We do not do an exhaustive search
7536 where we would have to check out every combination of every single
7537 possible prefix. Instead we use a heuristic which provides nearly optimal
7538 results in most cases and never is much off. */
7539 saved = alloca (ndirs * sizeof (int));
7540 savehere = alloca (ndirs * sizeof (int));
7542 memset (saved, '\0', ndirs * sizeof (saved[0]));
7543 for (i = 0; i < ndirs; i++)
7545 size_t j;
7546 int total;
7548 /* We can always save some space for the current directory. But this
7549 does not mean it will be enough to justify adding the directory. */
7550 savehere[i] = dirs[i].length;
7551 total = (savehere[i] - saved[i]) * dirs[i].count;
7553 for (j = i + 1; j < ndirs; j++)
7555 savehere[j] = 0;
7556 if (saved[j] < dirs[i].length)
7558 /* Determine whether the dirs[i] path is a prefix of the
7559 dirs[j] path. */
7560 int k;
7562 k = dirs[j].prefix;
7563 while (k != -1 && k != (int) i)
7564 k = dirs[k].prefix;
7566 if (k == (int) i)
7568 /* Yes it is. We can possibly safe some memory but
7569 writing the filenames in dirs[j] relative to
7570 dirs[i]. */
7571 savehere[j] = dirs[i].length;
7572 total += (savehere[j] - saved[j]) * dirs[j].count;
7577 /* Check whether we can safe enough to justify adding the dirs[i]
7578 directory. */
7579 if (total > dirs[i].length + 1)
7581 /* It's worthwhile adding. */
7582 for (j = i; j < ndirs; j++)
7583 if (savehere[j] > 0)
7585 /* Remember how much we saved for this directory so far. */
7586 saved[j] = savehere[j];
7588 /* Remember the prefix directory. */
7589 dirs[j].dir_idx = i;
7594 /* We have to emit them in the order they appear in the file_table array
7595 since the index is used in the debug info generation. To do this
7596 efficiently we generate a back-mapping of the indices first. */
7597 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7598 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7600 backmap[files[i].file_idx] = i;
7602 /* Mark this directory as used. */
7603 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7606 /* That was it. We are ready to emit the information. First emit the
7607 directory name table. We have to make sure the first actually emitted
7608 directory name has index one; zero is reserved for the current working
7609 directory. Make sure we do not confuse these indices with the one for the
7610 constructed table (even though most of the time they are identical). */
7611 idx = 1;
7612 idx_offset = dirs[0].length > 0 ? 1 : 0;
7613 for (i = 1 - idx_offset; i < ndirs; i++)
7614 if (dirs[i].used != 0)
7616 dirs[i].used = idx++;
7617 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7618 "Directory Entry: 0x%x", dirs[i].used);
7621 dw2_asm_output_data (1, 0, "End directory table");
7623 /* Correct the index for the current working directory entry if it
7624 exists. */
7625 if (idx_offset == 0)
7626 dirs[0].used = 0;
7628 /* Now write all the file names. */
7629 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7631 int file_idx = backmap[i];
7632 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7634 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7635 "File Entry: 0x%lx", (unsigned long) i);
7637 /* Include directory index. */
7638 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7640 /* Modification time. */
7641 dw2_asm_output_data_uleb128 (0, NULL);
7643 /* File length in bytes. */
7644 dw2_asm_output_data_uleb128 (0, NULL);
7647 dw2_asm_output_data (1, 0, "End file name table");
7651 /* Output the source line number correspondence information. This
7652 information goes into the .debug_line section. */
7654 static void
7655 output_line_info (void)
7657 char l1[20], l2[20], p1[20], p2[20];
7658 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7659 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7660 unsigned opc;
7661 unsigned n_op_args;
7662 unsigned long lt_index;
7663 unsigned long current_line;
7664 long line_offset;
7665 long line_delta;
7666 unsigned long current_file;
7667 unsigned long function;
7669 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7670 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7671 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7672 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7674 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7675 dw2_asm_output_data (4, 0xffffffff,
7676 "Initial length escape value indicating 64-bit DWARF extension");
7677 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7678 "Length of Source Line Info");
7679 ASM_OUTPUT_LABEL (asm_out_file, l1);
7681 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7682 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7683 ASM_OUTPUT_LABEL (asm_out_file, p1);
7685 /* Define the architecture-dependent minimum instruction length (in
7686 bytes). In this implementation of DWARF, this field is used for
7687 information purposes only. Since GCC generates assembly language,
7688 we have no a priori knowledge of how many instruction bytes are
7689 generated for each source line, and therefore can use only the
7690 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7691 commands. Accordingly, we fix this as `1', which is "correct
7692 enough" for all architectures, and don't let the target override. */
7693 dw2_asm_output_data (1, 1,
7694 "Minimum Instruction Length");
7696 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7697 "Default is_stmt_start flag");
7698 dw2_asm_output_data (1, DWARF_LINE_BASE,
7699 "Line Base Value (Special Opcodes)");
7700 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7701 "Line Range Value (Special Opcodes)");
7702 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7703 "Special Opcode Base");
7705 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7707 switch (opc)
7709 case DW_LNS_advance_pc:
7710 case DW_LNS_advance_line:
7711 case DW_LNS_set_file:
7712 case DW_LNS_set_column:
7713 case DW_LNS_fixed_advance_pc:
7714 n_op_args = 1;
7715 break;
7716 default:
7717 n_op_args = 0;
7718 break;
7721 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7722 opc, n_op_args);
7725 /* Write out the information about the files we use. */
7726 output_file_names ();
7727 ASM_OUTPUT_LABEL (asm_out_file, p2);
7729 /* We used to set the address register to the first location in the text
7730 section here, but that didn't accomplish anything since we already
7731 have a line note for the opening brace of the first function. */
7733 /* Generate the line number to PC correspondence table, encoded as
7734 a series of state machine operations. */
7735 current_file = 1;
7736 current_line = 1;
7737 if (last_text_section == in_unlikely_executed_text
7738 || (last_text_section == in_named
7739 && last_text_section_name == unlikely_text_section_name))
7740 strcpy (prev_line_label, unlikely_section_label);
7741 else
7742 strcpy (prev_line_label, text_section_label);
7743 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7745 dw_line_info_ref line_info = &line_info_table[lt_index];
7747 #if 0
7748 /* Disable this optimization for now; GDB wants to see two line notes
7749 at the beginning of a function so it can find the end of the
7750 prologue. */
7752 /* Don't emit anything for redundant notes. Just updating the
7753 address doesn't accomplish anything, because we already assume
7754 that anything after the last address is this line. */
7755 if (line_info->dw_line_num == current_line
7756 && line_info->dw_file_num == current_file)
7757 continue;
7758 #endif
7760 /* Emit debug info for the address of the current line.
7762 Unfortunately, we have little choice here currently, and must always
7763 use the most general form. GCC does not know the address delta
7764 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7765 attributes which will give an upper bound on the address range. We
7766 could perhaps use length attributes to determine when it is safe to
7767 use DW_LNS_fixed_advance_pc. */
7769 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7770 if (0)
7772 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7773 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7774 "DW_LNS_fixed_advance_pc");
7775 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7777 else
7779 /* This can handle any delta. This takes
7780 4+DWARF2_ADDR_SIZE bytes. */
7781 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7782 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7783 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7784 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7787 strcpy (prev_line_label, line_label);
7789 /* Emit debug info for the source file of the current line, if
7790 different from the previous line. */
7791 if (line_info->dw_file_num != current_file)
7793 current_file = line_info->dw_file_num;
7794 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7795 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7796 VARRAY_CHAR_PTR (file_table,
7797 current_file));
7800 /* Emit debug info for the current line number, choosing the encoding
7801 that uses the least amount of space. */
7802 if (line_info->dw_line_num != current_line)
7804 line_offset = line_info->dw_line_num - current_line;
7805 line_delta = line_offset - DWARF_LINE_BASE;
7806 current_line = line_info->dw_line_num;
7807 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7808 /* This can handle deltas from -10 to 234, using the current
7809 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7810 takes 1 byte. */
7811 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7812 "line %lu", current_line);
7813 else
7815 /* This can handle any delta. This takes at least 4 bytes,
7816 depending on the value being encoded. */
7817 dw2_asm_output_data (1, DW_LNS_advance_line,
7818 "advance to line %lu", current_line);
7819 dw2_asm_output_data_sleb128 (line_offset, NULL);
7820 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7823 else
7824 /* We still need to start a new row, so output a copy insn. */
7825 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7828 /* Emit debug info for the address of the end of the function. */
7829 if (0)
7831 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7832 "DW_LNS_fixed_advance_pc");
7833 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7835 else
7837 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7838 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7839 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7840 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7843 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7844 dw2_asm_output_data_uleb128 (1, NULL);
7845 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7847 function = 0;
7848 current_file = 1;
7849 current_line = 1;
7850 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7852 dw_separate_line_info_ref line_info
7853 = &separate_line_info_table[lt_index];
7855 #if 0
7856 /* Don't emit anything for redundant notes. */
7857 if (line_info->dw_line_num == current_line
7858 && line_info->dw_file_num == current_file
7859 && line_info->function == function)
7860 goto cont;
7861 #endif
7863 /* Emit debug info for the address of the current line. If this is
7864 a new function, or the first line of a function, then we need
7865 to handle it differently. */
7866 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7867 lt_index);
7868 if (function != line_info->function)
7870 function = line_info->function;
7872 /* Set the address register to the first line in the function. */
7873 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7874 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7875 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7876 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7878 else
7880 /* ??? See the DW_LNS_advance_pc comment above. */
7881 if (0)
7883 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7884 "DW_LNS_fixed_advance_pc");
7885 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7887 else
7889 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7890 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7891 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7892 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7896 strcpy (prev_line_label, line_label);
7898 /* Emit debug info for the source file of the current line, if
7899 different from the previous line. */
7900 if (line_info->dw_file_num != current_file)
7902 current_file = line_info->dw_file_num;
7903 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7904 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7905 VARRAY_CHAR_PTR (file_table,
7906 current_file));
7909 /* Emit debug info for the current line number, choosing the encoding
7910 that uses the least amount of space. */
7911 if (line_info->dw_line_num != current_line)
7913 line_offset = line_info->dw_line_num - current_line;
7914 line_delta = line_offset - DWARF_LINE_BASE;
7915 current_line = line_info->dw_line_num;
7916 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7917 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7918 "line %lu", current_line);
7919 else
7921 dw2_asm_output_data (1, DW_LNS_advance_line,
7922 "advance to line %lu", current_line);
7923 dw2_asm_output_data_sleb128 (line_offset, NULL);
7924 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7927 else
7928 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7930 #if 0
7931 cont:
7932 #endif
7934 lt_index++;
7936 /* If we're done with a function, end its sequence. */
7937 if (lt_index == separate_line_info_table_in_use
7938 || separate_line_info_table[lt_index].function != function)
7940 current_file = 1;
7941 current_line = 1;
7943 /* Emit debug info for the address of the end of the function. */
7944 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7945 if (0)
7947 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7948 "DW_LNS_fixed_advance_pc");
7949 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7951 else
7953 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7954 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7955 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7956 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7959 /* Output the marker for the end of this sequence. */
7960 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7961 dw2_asm_output_data_uleb128 (1, NULL);
7962 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7966 /* Output the marker for the end of the line number info. */
7967 ASM_OUTPUT_LABEL (asm_out_file, l2);
7970 /* Given a pointer to a tree node for some base type, return a pointer to
7971 a DIE that describes the given type.
7973 This routine must only be called for GCC type nodes that correspond to
7974 Dwarf base (fundamental) types. */
7976 static dw_die_ref
7977 base_type_die (tree type)
7979 dw_die_ref base_type_result;
7980 const char *type_name;
7981 enum dwarf_type encoding;
7982 tree name = TYPE_NAME (type);
7984 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7985 return 0;
7987 if (name)
7989 if (TREE_CODE (name) == TYPE_DECL)
7990 name = DECL_NAME (name);
7992 type_name = IDENTIFIER_POINTER (name);
7994 else
7995 type_name = "__unknown__";
7997 switch (TREE_CODE (type))
7999 case INTEGER_TYPE:
8000 /* Carefully distinguish the C character types, without messing
8001 up if the language is not C. Note that we check only for the names
8002 that contain spaces; other names might occur by coincidence in other
8003 languages. */
8004 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8005 && (type == char_type_node
8006 || ! strcmp (type_name, "signed char")
8007 || ! strcmp (type_name, "unsigned char"))))
8009 if (TYPE_UNSIGNED (type))
8010 encoding = DW_ATE_unsigned;
8011 else
8012 encoding = DW_ATE_signed;
8013 break;
8015 /* else fall through. */
8017 case CHAR_TYPE:
8018 /* GNU Pascal/Ada CHAR type. Not used in C. */
8019 if (TYPE_UNSIGNED (type))
8020 encoding = DW_ATE_unsigned_char;
8021 else
8022 encoding = DW_ATE_signed_char;
8023 break;
8025 case REAL_TYPE:
8026 encoding = DW_ATE_float;
8027 break;
8029 /* Dwarf2 doesn't know anything about complex ints, so use
8030 a user defined type for it. */
8031 case COMPLEX_TYPE:
8032 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8033 encoding = DW_ATE_complex_float;
8034 else
8035 encoding = DW_ATE_lo_user;
8036 break;
8038 case BOOLEAN_TYPE:
8039 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8040 encoding = DW_ATE_boolean;
8041 break;
8043 default:
8044 /* No other TREE_CODEs are Dwarf fundamental types. */
8045 gcc_unreachable ();
8048 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8049 if (demangle_name_func)
8050 type_name = (*demangle_name_func) (type_name);
8052 add_AT_string (base_type_result, DW_AT_name, type_name);
8053 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8054 int_size_in_bytes (type));
8055 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8057 return base_type_result;
8060 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8061 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8062 a given type is generally the same as the given type, except that if the
8063 given type is a pointer or reference type, then the root type of the given
8064 type is the root type of the "basis" type for the pointer or reference
8065 type. (This definition of the "root" type is recursive.) Also, the root
8066 type of a `const' qualified type or a `volatile' qualified type is the
8067 root type of the given type without the qualifiers. */
8069 static tree
8070 root_type (tree type)
8072 if (TREE_CODE (type) == ERROR_MARK)
8073 return error_mark_node;
8075 switch (TREE_CODE (type))
8077 case ERROR_MARK:
8078 return error_mark_node;
8080 case POINTER_TYPE:
8081 case REFERENCE_TYPE:
8082 return type_main_variant (root_type (TREE_TYPE (type)));
8084 default:
8085 return type_main_variant (type);
8089 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8090 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8092 static inline int
8093 is_base_type (tree type)
8095 switch (TREE_CODE (type))
8097 case ERROR_MARK:
8098 case VOID_TYPE:
8099 case INTEGER_TYPE:
8100 case REAL_TYPE:
8101 case COMPLEX_TYPE:
8102 case BOOLEAN_TYPE:
8103 case CHAR_TYPE:
8104 return 1;
8106 case ARRAY_TYPE:
8107 case RECORD_TYPE:
8108 case UNION_TYPE:
8109 case QUAL_UNION_TYPE:
8110 case ENUMERAL_TYPE:
8111 case FUNCTION_TYPE:
8112 case METHOD_TYPE:
8113 case POINTER_TYPE:
8114 case REFERENCE_TYPE:
8115 case OFFSET_TYPE:
8116 case LANG_TYPE:
8117 case VECTOR_TYPE:
8118 return 0;
8120 default:
8121 gcc_unreachable ();
8124 return 0;
8127 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8128 node, return the size in bits for the type if it is a constant, or else
8129 return the alignment for the type if the type's size is not constant, or
8130 else return BITS_PER_WORD if the type actually turns out to be an
8131 ERROR_MARK node. */
8133 static inline unsigned HOST_WIDE_INT
8134 simple_type_size_in_bits (tree type)
8136 if (TREE_CODE (type) == ERROR_MARK)
8137 return BITS_PER_WORD;
8138 else if (TYPE_SIZE (type) == NULL_TREE)
8139 return 0;
8140 else if (host_integerp (TYPE_SIZE (type), 1))
8141 return tree_low_cst (TYPE_SIZE (type), 1);
8142 else
8143 return TYPE_ALIGN (type);
8146 /* Return true if the debug information for the given type should be
8147 emitted as a subrange type. */
8149 static inline bool
8150 is_subrange_type (tree type)
8152 tree subtype = TREE_TYPE (type);
8154 /* Subrange types are identified by the fact that they are integer
8155 types, and that they have a subtype which is either an integer type
8156 or an enumeral type. */
8158 if (TREE_CODE (type) != INTEGER_TYPE
8159 || subtype == NULL_TREE)
8160 return false;
8162 if (TREE_CODE (subtype) != INTEGER_TYPE
8163 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8164 return false;
8166 if (TREE_CODE (type) == TREE_CODE (subtype)
8167 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8168 && TYPE_MIN_VALUE (type) != NULL
8169 && TYPE_MIN_VALUE (subtype) != NULL
8170 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8171 && TYPE_MAX_VALUE (type) != NULL
8172 && TYPE_MAX_VALUE (subtype) != NULL
8173 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8175 /* The type and its subtype have the same representation. If in
8176 addition the two types also have the same name, then the given
8177 type is not a subrange type, but rather a plain base type. */
8178 /* FIXME: brobecker/2004-03-22:
8179 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8180 therefore be sufficient to check the TYPE_SIZE node pointers
8181 rather than checking the actual size. Unfortunately, we have
8182 found some cases, such as in the Ada "integer" type, where
8183 this is not the case. Until this problem is solved, we need to
8184 keep checking the actual size. */
8185 tree type_name = TYPE_NAME (type);
8186 tree subtype_name = TYPE_NAME (subtype);
8188 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8189 type_name = DECL_NAME (type_name);
8191 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8192 subtype_name = DECL_NAME (subtype_name);
8194 if (type_name == subtype_name)
8195 return false;
8198 return true;
8201 /* Given a pointer to a tree node for a subrange type, return a pointer
8202 to a DIE that describes the given type. */
8204 static dw_die_ref
8205 subrange_type_die (tree type, dw_die_ref context_die)
8207 dw_die_ref subtype_die;
8208 dw_die_ref subrange_die;
8209 tree name = TYPE_NAME (type);
8210 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8211 tree subtype = TREE_TYPE (type);
8213 if (context_die == NULL)
8214 context_die = comp_unit_die;
8216 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8217 subtype_die = gen_enumeration_type_die (subtype, context_die);
8218 else
8219 subtype_die = base_type_die (subtype);
8221 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8223 if (name != NULL)
8225 if (TREE_CODE (name) == TYPE_DECL)
8226 name = DECL_NAME (name);
8227 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8230 if (int_size_in_bytes (subtype) != size_in_bytes)
8232 /* The size of the subrange type and its base type do not match,
8233 so we need to generate a size attribute for the subrange type. */
8234 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8237 if (TYPE_MIN_VALUE (type) != NULL)
8238 add_bound_info (subrange_die, DW_AT_lower_bound,
8239 TYPE_MIN_VALUE (type));
8240 if (TYPE_MAX_VALUE (type) != NULL)
8241 add_bound_info (subrange_die, DW_AT_upper_bound,
8242 TYPE_MAX_VALUE (type));
8243 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8245 return subrange_die;
8248 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8249 entry that chains various modifiers in front of the given type. */
8251 static dw_die_ref
8252 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8253 dw_die_ref context_die)
8255 enum tree_code code = TREE_CODE (type);
8256 dw_die_ref mod_type_die = NULL;
8257 dw_die_ref sub_die = NULL;
8258 tree item_type = NULL;
8260 if (code != ERROR_MARK)
8262 tree qualified_type;
8264 /* See if we already have the appropriately qualified variant of
8265 this type. */
8266 qualified_type
8267 = get_qualified_type (type,
8268 ((is_const_type ? TYPE_QUAL_CONST : 0)
8269 | (is_volatile_type
8270 ? TYPE_QUAL_VOLATILE : 0)));
8272 /* If we do, then we can just use its DIE, if it exists. */
8273 if (qualified_type)
8275 mod_type_die = lookup_type_die (qualified_type);
8276 if (mod_type_die)
8277 return mod_type_die;
8280 /* Handle C typedef types. */
8281 if (qualified_type && TYPE_NAME (qualified_type)
8282 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8283 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8285 tree type_name = TYPE_NAME (qualified_type);
8286 tree dtype = TREE_TYPE (type_name);
8288 if (qualified_type == dtype)
8290 /* For a named type, use the typedef. */
8291 gen_type_die (qualified_type, context_die);
8292 mod_type_die = lookup_type_die (qualified_type);
8294 else if (is_const_type < TYPE_READONLY (dtype)
8295 || is_volatile_type < TYPE_VOLATILE (dtype))
8296 /* cv-unqualified version of named type. Just use the unnamed
8297 type to which it refers. */
8298 mod_type_die
8299 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8300 is_const_type, is_volatile_type,
8301 context_die);
8303 /* Else cv-qualified version of named type; fall through. */
8306 if (mod_type_die)
8307 /* OK. */
8309 else if (is_const_type)
8311 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8312 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8314 else if (is_volatile_type)
8316 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8317 sub_die = modified_type_die (type, 0, 0, context_die);
8319 else if (code == POINTER_TYPE)
8321 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8322 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8323 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8324 #if 0
8325 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8326 #endif
8327 item_type = TREE_TYPE (type);
8329 else if (code == REFERENCE_TYPE)
8331 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8332 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8333 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8334 #if 0
8335 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8336 #endif
8337 item_type = TREE_TYPE (type);
8339 else if (is_subrange_type (type))
8340 mod_type_die = subrange_type_die (type, context_die);
8341 else if (is_base_type (type))
8342 mod_type_die = base_type_die (type);
8343 else
8345 gen_type_die (type, context_die);
8347 /* We have to get the type_main_variant here (and pass that to the
8348 `lookup_type_die' routine) because the ..._TYPE node we have
8349 might simply be a *copy* of some original type node (where the
8350 copy was created to help us keep track of typedef names) and
8351 that copy might have a different TYPE_UID from the original
8352 ..._TYPE node. */
8353 if (TREE_CODE (type) != VECTOR_TYPE)
8354 mod_type_die = lookup_type_die (type_main_variant (type));
8355 else
8356 /* Vectors have the debugging information in the type,
8357 not the main variant. */
8358 mod_type_die = lookup_type_die (type);
8359 gcc_assert (mod_type_die);
8362 /* We want to equate the qualified type to the die below. */
8363 type = qualified_type;
8366 if (type)
8367 equate_type_number_to_die (type, mod_type_die);
8368 if (item_type)
8369 /* We must do this after the equate_type_number_to_die call, in case
8370 this is a recursive type. This ensures that the modified_type_die
8371 recursion will terminate even if the type is recursive. Recursive
8372 types are possible in Ada. */
8373 sub_die = modified_type_die (item_type,
8374 TYPE_READONLY (item_type),
8375 TYPE_VOLATILE (item_type),
8376 context_die);
8378 if (sub_die != NULL)
8379 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8381 return mod_type_die;
8384 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8385 an enumerated type. */
8387 static inline int
8388 type_is_enum (tree type)
8390 return TREE_CODE (type) == ENUMERAL_TYPE;
8393 /* Return the DBX register number described by a given RTL node. */
8395 static unsigned int
8396 dbx_reg_number (rtx rtl)
8398 unsigned regno = REGNO (rtl);
8400 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8402 return DBX_REGISTER_NUMBER (regno);
8405 /* Return a location descriptor that designates a machine register or
8406 zero if there is none. */
8408 static dw_loc_descr_ref
8409 reg_loc_descriptor (rtx rtl)
8411 unsigned reg;
8412 rtx regs;
8414 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8415 return 0;
8417 reg = dbx_reg_number (rtl);
8418 regs = targetm.dwarf_register_span (rtl);
8420 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8421 || regs)
8422 return multiple_reg_loc_descriptor (rtl, regs);
8423 else
8424 return one_reg_loc_descriptor (reg);
8427 /* Return a location descriptor that designates a machine register for
8428 a given hard register number. */
8430 static dw_loc_descr_ref
8431 one_reg_loc_descriptor (unsigned int regno)
8433 if (regno <= 31)
8434 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8435 else
8436 return new_loc_descr (DW_OP_regx, regno, 0);
8439 /* Given an RTL of a register, return a location descriptor that
8440 designates a value that spans more than one register. */
8442 static dw_loc_descr_ref
8443 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8445 int nregs, size, i;
8446 unsigned reg;
8447 dw_loc_descr_ref loc_result = NULL;
8449 reg = dbx_reg_number (rtl);
8450 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8452 /* Simple, contiguous registers. */
8453 if (regs == NULL_RTX)
8455 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8457 loc_result = NULL;
8458 while (nregs--)
8460 dw_loc_descr_ref t;
8462 t = one_reg_loc_descriptor (reg);
8463 add_loc_descr (&loc_result, t);
8464 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8465 ++reg;
8467 return loc_result;
8470 /* Now onto stupid register sets in non contiguous locations. */
8472 gcc_assert (GET_CODE (regs) == PARALLEL);
8474 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8475 loc_result = NULL;
8477 for (i = 0; i < XVECLEN (regs, 0); ++i)
8479 dw_loc_descr_ref t;
8481 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8482 add_loc_descr (&loc_result, t);
8483 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8484 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8486 return loc_result;
8489 /* Return a location descriptor that designates a constant. */
8491 static dw_loc_descr_ref
8492 int_loc_descriptor (HOST_WIDE_INT i)
8494 enum dwarf_location_atom op;
8496 /* Pick the smallest representation of a constant, rather than just
8497 defaulting to the LEB encoding. */
8498 if (i >= 0)
8500 if (i <= 31)
8501 op = DW_OP_lit0 + i;
8502 else if (i <= 0xff)
8503 op = DW_OP_const1u;
8504 else if (i <= 0xffff)
8505 op = DW_OP_const2u;
8506 else if (HOST_BITS_PER_WIDE_INT == 32
8507 || i <= 0xffffffff)
8508 op = DW_OP_const4u;
8509 else
8510 op = DW_OP_constu;
8512 else
8514 if (i >= -0x80)
8515 op = DW_OP_const1s;
8516 else if (i >= -0x8000)
8517 op = DW_OP_const2s;
8518 else if (HOST_BITS_PER_WIDE_INT == 32
8519 || i >= -0x80000000)
8520 op = DW_OP_const4s;
8521 else
8522 op = DW_OP_consts;
8525 return new_loc_descr (op, i, 0);
8528 /* Return a location descriptor that designates a base+offset location. */
8530 static dw_loc_descr_ref
8531 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8533 dw_loc_descr_ref loc_result;
8534 /* For the "frame base", we use the frame pointer or stack pointer
8535 registers, since the RTL for local variables is relative to one of
8536 them. */
8537 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8538 ? HARD_FRAME_POINTER_REGNUM
8539 : STACK_POINTER_REGNUM);
8541 if (reg == fp_reg && can_use_fbreg)
8542 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8543 else if (reg <= 31)
8544 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8545 else
8546 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8548 return loc_result;
8551 /* Return true if this RTL expression describes a base+offset calculation. */
8553 static inline int
8554 is_based_loc (rtx rtl)
8556 return (GET_CODE (rtl) == PLUS
8557 && ((REG_P (XEXP (rtl, 0))
8558 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8559 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8562 /* The following routine converts the RTL for a variable or parameter
8563 (resident in memory) into an equivalent Dwarf representation of a
8564 mechanism for getting the address of that same variable onto the top of a
8565 hypothetical "address evaluation" stack.
8567 When creating memory location descriptors, we are effectively transforming
8568 the RTL for a memory-resident object into its Dwarf postfix expression
8569 equivalent. This routine recursively descends an RTL tree, turning
8570 it into Dwarf postfix code as it goes.
8572 MODE is the mode of the memory reference, needed to handle some
8573 autoincrement addressing modes.
8575 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8576 list for RTL. We can't use it when we are emitting location list for
8577 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8578 which describes how frame base changes when !frame_pointer_needed.
8580 Return 0 if we can't represent the location. */
8582 static dw_loc_descr_ref
8583 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8585 dw_loc_descr_ref mem_loc_result = NULL;
8586 enum dwarf_location_atom op;
8588 /* Note that for a dynamically sized array, the location we will generate a
8589 description of here will be the lowest numbered location which is
8590 actually within the array. That's *not* necessarily the same as the
8591 zeroth element of the array. */
8593 rtl = targetm.delegitimize_address (rtl);
8595 switch (GET_CODE (rtl))
8597 case POST_INC:
8598 case POST_DEC:
8599 case POST_MODIFY:
8600 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8601 just fall into the SUBREG code. */
8603 /* ... fall through ... */
8605 case SUBREG:
8606 /* The case of a subreg may arise when we have a local (register)
8607 variable or a formal (register) parameter which doesn't quite fill
8608 up an entire register. For now, just assume that it is
8609 legitimate to make the Dwarf info refer to the whole register which
8610 contains the given subreg. */
8611 rtl = SUBREG_REG (rtl);
8613 /* ... fall through ... */
8615 case REG:
8616 /* Whenever a register number forms a part of the description of the
8617 method for calculating the (dynamic) address of a memory resident
8618 object, DWARF rules require the register number be referred to as
8619 a "base register". This distinction is not based in any way upon
8620 what category of register the hardware believes the given register
8621 belongs to. This is strictly DWARF terminology we're dealing with
8622 here. Note that in cases where the location of a memory-resident
8623 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8624 OP_CONST (0)) the actual DWARF location descriptor that we generate
8625 may just be OP_BASEREG (basereg). This may look deceptively like
8626 the object in question was allocated to a register (rather than in
8627 memory) so DWARF consumers need to be aware of the subtle
8628 distinction between OP_REG and OP_BASEREG. */
8629 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8630 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8631 can_use_fbreg);
8632 break;
8634 case MEM:
8635 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8636 can_use_fbreg);
8637 if (mem_loc_result != 0)
8638 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8639 break;
8641 case LO_SUM:
8642 rtl = XEXP (rtl, 1);
8644 /* ... fall through ... */
8646 case LABEL_REF:
8647 /* Some ports can transform a symbol ref into a label ref, because
8648 the symbol ref is too far away and has to be dumped into a constant
8649 pool. */
8650 case CONST:
8651 case SYMBOL_REF:
8652 /* Alternatively, the symbol in the constant pool might be referenced
8653 by a different symbol. */
8654 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8656 bool marked;
8657 rtx tmp = get_pool_constant_mark (rtl, &marked);
8659 if (GET_CODE (tmp) == SYMBOL_REF)
8661 rtl = tmp;
8662 if (CONSTANT_POOL_ADDRESS_P (tmp))
8663 get_pool_constant_mark (tmp, &marked);
8664 else
8665 marked = true;
8668 /* If all references to this pool constant were optimized away,
8669 it was not output and thus we can't represent it.
8670 FIXME: might try to use DW_OP_const_value here, though
8671 DW_OP_piece complicates it. */
8672 if (!marked)
8673 return 0;
8676 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8677 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8678 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8679 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8680 break;
8682 case PRE_MODIFY:
8683 /* Extract the PLUS expression nested inside and fall into
8684 PLUS code below. */
8685 rtl = XEXP (rtl, 1);
8686 goto plus;
8688 case PRE_INC:
8689 case PRE_DEC:
8690 /* Turn these into a PLUS expression and fall into the PLUS code
8691 below. */
8692 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8693 GEN_INT (GET_CODE (rtl) == PRE_INC
8694 ? GET_MODE_UNIT_SIZE (mode)
8695 : -GET_MODE_UNIT_SIZE (mode)));
8697 /* ... fall through ... */
8699 case PLUS:
8700 plus:
8701 if (is_based_loc (rtl))
8702 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8703 INTVAL (XEXP (rtl, 1)),
8704 can_use_fbreg);
8705 else
8707 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8708 can_use_fbreg);
8709 if (mem_loc_result == 0)
8710 break;
8712 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8713 && INTVAL (XEXP (rtl, 1)) >= 0)
8714 add_loc_descr (&mem_loc_result,
8715 new_loc_descr (DW_OP_plus_uconst,
8716 INTVAL (XEXP (rtl, 1)), 0));
8717 else
8719 add_loc_descr (&mem_loc_result,
8720 mem_loc_descriptor (XEXP (rtl, 1), mode,
8721 can_use_fbreg));
8722 add_loc_descr (&mem_loc_result,
8723 new_loc_descr (DW_OP_plus, 0, 0));
8726 break;
8728 /* If a pseudo-reg is optimized away, it is possible for it to
8729 be replaced with a MEM containing a multiply or shift. */
8730 case MULT:
8731 op = DW_OP_mul;
8732 goto do_binop;
8734 case ASHIFT:
8735 op = DW_OP_shl;
8736 goto do_binop;
8738 case ASHIFTRT:
8739 op = DW_OP_shra;
8740 goto do_binop;
8742 case LSHIFTRT:
8743 op = DW_OP_shr;
8744 goto do_binop;
8746 do_binop:
8748 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8749 can_use_fbreg);
8750 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8751 can_use_fbreg);
8753 if (op0 == 0 || op1 == 0)
8754 break;
8756 mem_loc_result = op0;
8757 add_loc_descr (&mem_loc_result, op1);
8758 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8759 break;
8762 case CONST_INT:
8763 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8764 break;
8766 default:
8767 gcc_unreachable ();
8770 return mem_loc_result;
8773 /* Return a descriptor that describes the concatenation of two locations.
8774 This is typically a complex variable. */
8776 static dw_loc_descr_ref
8777 concat_loc_descriptor (rtx x0, rtx x1)
8779 dw_loc_descr_ref cc_loc_result = NULL;
8780 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8781 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8783 if (x0_ref == 0 || x1_ref == 0)
8784 return 0;
8786 cc_loc_result = x0_ref;
8787 add_loc_descr (&cc_loc_result,
8788 new_loc_descr (DW_OP_piece,
8789 GET_MODE_SIZE (GET_MODE (x0)), 0));
8791 add_loc_descr (&cc_loc_result, x1_ref);
8792 add_loc_descr (&cc_loc_result,
8793 new_loc_descr (DW_OP_piece,
8794 GET_MODE_SIZE (GET_MODE (x1)), 0));
8796 return cc_loc_result;
8799 /* Output a proper Dwarf location descriptor for a variable or parameter
8800 which is either allocated in a register or in a memory location. For a
8801 register, we just generate an OP_REG and the register number. For a
8802 memory location we provide a Dwarf postfix expression describing how to
8803 generate the (dynamic) address of the object onto the address stack.
8805 If we don't know how to describe it, return 0. */
8807 static dw_loc_descr_ref
8808 loc_descriptor (rtx rtl, bool can_use_fbreg)
8810 dw_loc_descr_ref loc_result = NULL;
8812 switch (GET_CODE (rtl))
8814 case SUBREG:
8815 /* The case of a subreg may arise when we have a local (register)
8816 variable or a formal (register) parameter which doesn't quite fill
8817 up an entire register. For now, just assume that it is
8818 legitimate to make the Dwarf info refer to the whole register which
8819 contains the given subreg. */
8820 rtl = SUBREG_REG (rtl);
8822 /* ... fall through ... */
8824 case REG:
8825 loc_result = reg_loc_descriptor (rtl);
8826 break;
8828 case MEM:
8829 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8830 can_use_fbreg);
8831 break;
8833 case CONCAT:
8834 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8835 break;
8837 case VAR_LOCATION:
8838 /* Single part. */
8839 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8841 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8842 break;
8845 rtl = XEXP (rtl, 1);
8846 /* FALLTHRU */
8848 case PARALLEL:
8850 rtvec par_elems = XVEC (rtl, 0);
8851 int num_elem = GET_NUM_ELEM (par_elems);
8852 enum machine_mode mode;
8853 int i;
8855 /* Create the first one, so we have something to add to. */
8856 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8857 can_use_fbreg);
8858 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8859 add_loc_descr (&loc_result,
8860 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8861 for (i = 1; i < num_elem; i++)
8863 dw_loc_descr_ref temp;
8865 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8866 can_use_fbreg);
8867 add_loc_descr (&loc_result, temp);
8868 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8869 add_loc_descr (&loc_result,
8870 new_loc_descr (DW_OP_piece,
8871 GET_MODE_SIZE (mode), 0));
8874 break;
8876 default:
8877 gcc_unreachable ();
8880 return loc_result;
8883 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8884 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8885 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8886 top-level invocation, and we require the address of LOC; is 0 if we require
8887 the value of LOC. */
8889 static dw_loc_descr_ref
8890 loc_descriptor_from_tree_1 (tree loc, int want_address)
8892 dw_loc_descr_ref ret, ret1;
8893 int have_address = 0;
8894 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8895 enum dwarf_location_atom op;
8897 /* ??? Most of the time we do not take proper care for sign/zero
8898 extending the values properly. Hopefully this won't be a real
8899 problem... */
8901 switch (TREE_CODE (loc))
8903 case ERROR_MARK:
8904 return 0;
8906 case PLACEHOLDER_EXPR:
8907 /* This case involves extracting fields from an object to determine the
8908 position of other fields. We don't try to encode this here. The
8909 only user of this is Ada, which encodes the needed information using
8910 the names of types. */
8911 return 0;
8913 case CALL_EXPR:
8914 return 0;
8916 case PREINCREMENT_EXPR:
8917 case PREDECREMENT_EXPR:
8918 case POSTINCREMENT_EXPR:
8919 case POSTDECREMENT_EXPR:
8920 /* There are no opcodes for these operations. */
8921 return 0;
8923 case ADDR_EXPR:
8924 /* If we already want an address, there's nothing we can do. */
8925 if (want_address)
8926 return 0;
8928 /* Otherwise, process the argument and look for the address. */
8929 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8931 case VAR_DECL:
8932 if (DECL_THREAD_LOCAL (loc))
8934 rtx rtl;
8936 #ifndef ASM_OUTPUT_DWARF_DTPREL
8937 /* If this is not defined, we have no way to emit the data. */
8938 return 0;
8939 #endif
8941 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8942 look up addresses of objects in the current module. */
8943 if (DECL_EXTERNAL (loc))
8944 return 0;
8946 rtl = rtl_for_decl_location (loc);
8947 if (rtl == NULL_RTX)
8948 return 0;
8950 if (!MEM_P (rtl))
8951 return 0;
8952 rtl = XEXP (rtl, 0);
8953 if (! CONSTANT_P (rtl))
8954 return 0;
8956 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8957 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8958 ret->dw_loc_oprnd1.v.val_addr = rtl;
8960 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8961 add_loc_descr (&ret, ret1);
8963 have_address = 1;
8964 break;
8966 /* FALLTHRU */
8968 case PARM_DECL:
8969 if (DECL_VALUE_EXPR (loc))
8970 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8971 /* FALLTHRU */
8973 case RESULT_DECL:
8975 rtx rtl = rtl_for_decl_location (loc);
8977 if (rtl == NULL_RTX)
8978 return 0;
8979 else if (GET_CODE (rtl) == CONST_INT)
8981 HOST_WIDE_INT val = INTVAL (rtl);
8982 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8983 val &= GET_MODE_MASK (DECL_MODE (loc));
8984 ret = int_loc_descriptor (val);
8986 else if (GET_CODE (rtl) == CONST_STRING)
8987 return 0;
8988 else if (CONSTANT_P (rtl))
8990 ret = new_loc_descr (DW_OP_addr, 0, 0);
8991 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8992 ret->dw_loc_oprnd1.v.val_addr = rtl;
8994 else
8996 enum machine_mode mode;
8998 /* Certain constructs can only be represented at top-level. */
8999 if (want_address == 2)
9000 return loc_descriptor (rtl, false);
9002 mode = GET_MODE (rtl);
9003 if (MEM_P (rtl))
9005 rtl = XEXP (rtl, 0);
9006 have_address = 1;
9008 ret = mem_loc_descriptor (rtl, mode, false);
9011 break;
9013 case INDIRECT_REF:
9014 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9015 have_address = 1;
9016 break;
9018 case COMPOUND_EXPR:
9019 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9021 case NOP_EXPR:
9022 case CONVERT_EXPR:
9023 case NON_LVALUE_EXPR:
9024 case VIEW_CONVERT_EXPR:
9025 case SAVE_EXPR:
9026 case MODIFY_EXPR:
9027 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9029 case COMPONENT_REF:
9030 case BIT_FIELD_REF:
9031 case ARRAY_REF:
9032 case ARRAY_RANGE_REF:
9034 tree obj, offset;
9035 HOST_WIDE_INT bitsize, bitpos, bytepos;
9036 enum machine_mode mode;
9037 int volatilep;
9039 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9040 &unsignedp, &volatilep, false);
9042 if (obj == loc)
9043 return 0;
9045 ret = loc_descriptor_from_tree_1 (obj, 1);
9046 if (ret == 0
9047 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9048 return 0;
9050 if (offset != NULL_TREE)
9052 /* Variable offset. */
9053 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9054 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9057 bytepos = bitpos / BITS_PER_UNIT;
9058 if (bytepos > 0)
9059 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9060 else if (bytepos < 0)
9062 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9063 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9066 have_address = 1;
9067 break;
9070 case INTEGER_CST:
9071 if (host_integerp (loc, 0))
9072 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9073 else
9074 return 0;
9075 break;
9077 case CONSTRUCTOR:
9079 /* Get an RTL for this, if something has been emitted. */
9080 rtx rtl = lookup_constant_def (loc);
9081 enum machine_mode mode;
9083 if (!rtl || !MEM_P (rtl))
9084 return 0;
9085 mode = GET_MODE (rtl);
9086 rtl = XEXP (rtl, 0);
9087 ret = mem_loc_descriptor (rtl, mode, false);
9088 have_address = 1;
9089 break;
9092 case TRUTH_AND_EXPR:
9093 case TRUTH_ANDIF_EXPR:
9094 case BIT_AND_EXPR:
9095 op = DW_OP_and;
9096 goto do_binop;
9098 case TRUTH_XOR_EXPR:
9099 case BIT_XOR_EXPR:
9100 op = DW_OP_xor;
9101 goto do_binop;
9103 case TRUTH_OR_EXPR:
9104 case TRUTH_ORIF_EXPR:
9105 case BIT_IOR_EXPR:
9106 op = DW_OP_or;
9107 goto do_binop;
9109 case FLOOR_DIV_EXPR:
9110 case CEIL_DIV_EXPR:
9111 case ROUND_DIV_EXPR:
9112 case TRUNC_DIV_EXPR:
9113 op = DW_OP_div;
9114 goto do_binop;
9116 case MINUS_EXPR:
9117 op = DW_OP_minus;
9118 goto do_binop;
9120 case FLOOR_MOD_EXPR:
9121 case CEIL_MOD_EXPR:
9122 case ROUND_MOD_EXPR:
9123 case TRUNC_MOD_EXPR:
9124 op = DW_OP_mod;
9125 goto do_binop;
9127 case MULT_EXPR:
9128 op = DW_OP_mul;
9129 goto do_binop;
9131 case LSHIFT_EXPR:
9132 op = DW_OP_shl;
9133 goto do_binop;
9135 case RSHIFT_EXPR:
9136 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9137 goto do_binop;
9139 case PLUS_EXPR:
9140 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9141 && host_integerp (TREE_OPERAND (loc, 1), 0))
9143 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9144 if (ret == 0)
9145 return 0;
9147 add_loc_descr (&ret,
9148 new_loc_descr (DW_OP_plus_uconst,
9149 tree_low_cst (TREE_OPERAND (loc, 1),
9151 0));
9152 break;
9155 op = DW_OP_plus;
9156 goto do_binop;
9158 case LE_EXPR:
9159 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9160 return 0;
9162 op = DW_OP_le;
9163 goto do_binop;
9165 case GE_EXPR:
9166 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9167 return 0;
9169 op = DW_OP_ge;
9170 goto do_binop;
9172 case LT_EXPR:
9173 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9174 return 0;
9176 op = DW_OP_lt;
9177 goto do_binop;
9179 case GT_EXPR:
9180 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9181 return 0;
9183 op = DW_OP_gt;
9184 goto do_binop;
9186 case EQ_EXPR:
9187 op = DW_OP_eq;
9188 goto do_binop;
9190 case NE_EXPR:
9191 op = DW_OP_ne;
9192 goto do_binop;
9194 do_binop:
9195 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9196 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9197 if (ret == 0 || ret1 == 0)
9198 return 0;
9200 add_loc_descr (&ret, ret1);
9201 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9202 break;
9204 case TRUTH_NOT_EXPR:
9205 case BIT_NOT_EXPR:
9206 op = DW_OP_not;
9207 goto do_unop;
9209 case ABS_EXPR:
9210 op = DW_OP_abs;
9211 goto do_unop;
9213 case NEGATE_EXPR:
9214 op = DW_OP_neg;
9215 goto do_unop;
9217 do_unop:
9218 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9219 if (ret == 0)
9220 return 0;
9222 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9223 break;
9225 case MIN_EXPR:
9226 case MAX_EXPR:
9228 const enum tree_code code =
9229 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9231 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9232 build2 (code, integer_type_node,
9233 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9234 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9237 /* ... fall through ... */
9239 case COND_EXPR:
9241 dw_loc_descr_ref lhs
9242 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9243 dw_loc_descr_ref rhs
9244 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9245 dw_loc_descr_ref bra_node, jump_node, tmp;
9247 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9248 if (ret == 0 || lhs == 0 || rhs == 0)
9249 return 0;
9251 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9252 add_loc_descr (&ret, bra_node);
9254 add_loc_descr (&ret, rhs);
9255 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9256 add_loc_descr (&ret, jump_node);
9258 add_loc_descr (&ret, lhs);
9259 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9260 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9262 /* ??? Need a node to point the skip at. Use a nop. */
9263 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9264 add_loc_descr (&ret, tmp);
9265 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9266 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9268 break;
9270 case FIX_TRUNC_EXPR:
9271 case FIX_CEIL_EXPR:
9272 case FIX_FLOOR_EXPR:
9273 case FIX_ROUND_EXPR:
9274 return 0;
9276 default:
9277 /* Leave front-end specific codes as simply unknown. This comes
9278 up, for instance, with the C STMT_EXPR. */
9279 if ((unsigned int) TREE_CODE (loc)
9280 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9281 return 0;
9283 #ifdef ENABLE_CHECKING
9284 /* Otherwise this is a generic code; we should just lists all of
9285 these explicitly. Aborting means we forgot one. */
9286 gcc_unreachable ();
9287 #else
9288 /* In a release build, we want to degrade gracefully: better to
9289 generate incomplete debugging information than to crash. */
9290 return NULL;
9291 #endif
9294 /* Show if we can't fill the request for an address. */
9295 if (want_address && !have_address)
9296 return 0;
9298 /* If we've got an address and don't want one, dereference. */
9299 if (!want_address && have_address)
9301 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9303 if (size > DWARF2_ADDR_SIZE || size == -1)
9304 return 0;
9305 else if (size == DWARF2_ADDR_SIZE)
9306 op = DW_OP_deref;
9307 else
9308 op = DW_OP_deref_size;
9310 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9313 return ret;
9316 static inline dw_loc_descr_ref
9317 loc_descriptor_from_tree (tree loc)
9319 return loc_descriptor_from_tree_1 (loc, 2);
9322 /* Given a value, round it up to the lowest multiple of `boundary'
9323 which is not less than the value itself. */
9325 static inline HOST_WIDE_INT
9326 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9328 return (((value + boundary - 1) / boundary) * boundary);
9331 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9332 pointer to the declared type for the relevant field variable, or return
9333 `integer_type_node' if the given node turns out to be an
9334 ERROR_MARK node. */
9336 static inline tree
9337 field_type (tree decl)
9339 tree type;
9341 if (TREE_CODE (decl) == ERROR_MARK)
9342 return integer_type_node;
9344 type = DECL_BIT_FIELD_TYPE (decl);
9345 if (type == NULL_TREE)
9346 type = TREE_TYPE (decl);
9348 return type;
9351 /* Given a pointer to a tree node, return the alignment in bits for
9352 it, or else return BITS_PER_WORD if the node actually turns out to
9353 be an ERROR_MARK node. */
9355 static inline unsigned
9356 simple_type_align_in_bits (tree type)
9358 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9361 static inline unsigned
9362 simple_decl_align_in_bits (tree decl)
9364 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9367 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9368 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9369 or return 0 if we are unable to determine what that offset is, either
9370 because the argument turns out to be a pointer to an ERROR_MARK node, or
9371 because the offset is actually variable. (We can't handle the latter case
9372 just yet). */
9374 static HOST_WIDE_INT
9375 field_byte_offset (tree decl)
9377 unsigned int type_align_in_bits;
9378 unsigned int decl_align_in_bits;
9379 unsigned HOST_WIDE_INT type_size_in_bits;
9380 HOST_WIDE_INT object_offset_in_bits;
9381 tree type;
9382 tree field_size_tree;
9383 HOST_WIDE_INT bitpos_int;
9384 HOST_WIDE_INT deepest_bitpos;
9385 unsigned HOST_WIDE_INT field_size_in_bits;
9387 if (TREE_CODE (decl) == ERROR_MARK)
9388 return 0;
9390 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9392 type = field_type (decl);
9393 field_size_tree = DECL_SIZE (decl);
9395 /* The size could be unspecified if there was an error, or for
9396 a flexible array member. */
9397 if (! field_size_tree)
9398 field_size_tree = bitsize_zero_node;
9400 /* We cannot yet cope with fields whose positions are variable, so
9401 for now, when we see such things, we simply return 0. Someday, we may
9402 be able to handle such cases, but it will be damn difficult. */
9403 if (! host_integerp (bit_position (decl), 0))
9404 return 0;
9406 bitpos_int = int_bit_position (decl);
9408 /* If we don't know the size of the field, pretend it's a full word. */
9409 if (host_integerp (field_size_tree, 1))
9410 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9411 else
9412 field_size_in_bits = BITS_PER_WORD;
9414 type_size_in_bits = simple_type_size_in_bits (type);
9415 type_align_in_bits = simple_type_align_in_bits (type);
9416 decl_align_in_bits = simple_decl_align_in_bits (decl);
9418 /* The GCC front-end doesn't make any attempt to keep track of the starting
9419 bit offset (relative to the start of the containing structure type) of the
9420 hypothetical "containing object" for a bit-field. Thus, when computing
9421 the byte offset value for the start of the "containing object" of a
9422 bit-field, we must deduce this information on our own. This can be rather
9423 tricky to do in some cases. For example, handling the following structure
9424 type definition when compiling for an i386/i486 target (which only aligns
9425 long long's to 32-bit boundaries) can be very tricky:
9427 struct S { int field1; long long field2:31; };
9429 Fortunately, there is a simple rule-of-thumb which can be used in such
9430 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9431 structure shown above. It decides to do this based upon one simple rule
9432 for bit-field allocation. GCC allocates each "containing object" for each
9433 bit-field at the first (i.e. lowest addressed) legitimate alignment
9434 boundary (based upon the required minimum alignment for the declared type
9435 of the field) which it can possibly use, subject to the condition that
9436 there is still enough available space remaining in the containing object
9437 (when allocated at the selected point) to fully accommodate all of the
9438 bits of the bit-field itself.
9440 This simple rule makes it obvious why GCC allocates 8 bytes for each
9441 object of the structure type shown above. When looking for a place to
9442 allocate the "containing object" for `field2', the compiler simply tries
9443 to allocate a 64-bit "containing object" at each successive 32-bit
9444 boundary (starting at zero) until it finds a place to allocate that 64-
9445 bit field such that at least 31 contiguous (and previously unallocated)
9446 bits remain within that selected 64 bit field. (As it turns out, for the
9447 example above, the compiler finds it is OK to allocate the "containing
9448 object" 64-bit field at bit-offset zero within the structure type.)
9450 Here we attempt to work backwards from the limited set of facts we're
9451 given, and we try to deduce from those facts, where GCC must have believed
9452 that the containing object started (within the structure type). The value
9453 we deduce is then used (by the callers of this routine) to generate
9454 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9455 and, in the case of DW_AT_location, regular fields as well). */
9457 /* Figure out the bit-distance from the start of the structure to the
9458 "deepest" bit of the bit-field. */
9459 deepest_bitpos = bitpos_int + field_size_in_bits;
9461 /* This is the tricky part. Use some fancy footwork to deduce where the
9462 lowest addressed bit of the containing object must be. */
9463 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9465 /* Round up to type_align by default. This works best for bitfields. */
9466 object_offset_in_bits += type_align_in_bits - 1;
9467 object_offset_in_bits /= type_align_in_bits;
9468 object_offset_in_bits *= type_align_in_bits;
9470 if (object_offset_in_bits > bitpos_int)
9472 /* Sigh, the decl must be packed. */
9473 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9475 /* Round up to decl_align instead. */
9476 object_offset_in_bits += decl_align_in_bits - 1;
9477 object_offset_in_bits /= decl_align_in_bits;
9478 object_offset_in_bits *= decl_align_in_bits;
9481 return object_offset_in_bits / BITS_PER_UNIT;
9484 /* The following routines define various Dwarf attributes and any data
9485 associated with them. */
9487 /* Add a location description attribute value to a DIE.
9489 This emits location attributes suitable for whole variables and
9490 whole parameters. Note that the location attributes for struct fields are
9491 generated by the routine `data_member_location_attribute' below. */
9493 static inline void
9494 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9495 dw_loc_descr_ref descr)
9497 if (descr != 0)
9498 add_AT_loc (die, attr_kind, descr);
9501 /* Attach the specialized form of location attribute used for data members of
9502 struct and union types. In the special case of a FIELD_DECL node which
9503 represents a bit-field, the "offset" part of this special location
9504 descriptor must indicate the distance in bytes from the lowest-addressed
9505 byte of the containing struct or union type to the lowest-addressed byte of
9506 the "containing object" for the bit-field. (See the `field_byte_offset'
9507 function above).
9509 For any given bit-field, the "containing object" is a hypothetical object
9510 (of some integral or enum type) within which the given bit-field lives. The
9511 type of this hypothetical "containing object" is always the same as the
9512 declared type of the individual bit-field itself (for GCC anyway... the
9513 DWARF spec doesn't actually mandate this). Note that it is the size (in
9514 bytes) of the hypothetical "containing object" which will be given in the
9515 DW_AT_byte_size attribute for this bit-field. (See the
9516 `byte_size_attribute' function below.) It is also used when calculating the
9517 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9518 function below.) */
9520 static void
9521 add_data_member_location_attribute (dw_die_ref die, tree decl)
9523 HOST_WIDE_INT offset;
9524 dw_loc_descr_ref loc_descr = 0;
9526 if (TREE_CODE (decl) == TREE_BINFO)
9528 /* We're working on the TAG_inheritance for a base class. */
9529 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9531 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9532 aren't at a fixed offset from all (sub)objects of the same
9533 type. We need to extract the appropriate offset from our
9534 vtable. The following dwarf expression means
9536 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9538 This is specific to the V3 ABI, of course. */
9540 dw_loc_descr_ref tmp;
9542 /* Make a copy of the object address. */
9543 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9544 add_loc_descr (&loc_descr, tmp);
9546 /* Extract the vtable address. */
9547 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9548 add_loc_descr (&loc_descr, tmp);
9550 /* Calculate the address of the offset. */
9551 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9552 gcc_assert (offset < 0);
9554 tmp = int_loc_descriptor (-offset);
9555 add_loc_descr (&loc_descr, tmp);
9556 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9557 add_loc_descr (&loc_descr, tmp);
9559 /* Extract the offset. */
9560 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9561 add_loc_descr (&loc_descr, tmp);
9563 /* Add it to the object address. */
9564 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9565 add_loc_descr (&loc_descr, tmp);
9567 else
9568 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9570 else
9571 offset = field_byte_offset (decl);
9573 if (! loc_descr)
9575 enum dwarf_location_atom op;
9577 /* The DWARF2 standard says that we should assume that the structure
9578 address is already on the stack, so we can specify a structure field
9579 address by using DW_OP_plus_uconst. */
9581 #ifdef MIPS_DEBUGGING_INFO
9582 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9583 operator correctly. It works only if we leave the offset on the
9584 stack. */
9585 op = DW_OP_constu;
9586 #else
9587 op = DW_OP_plus_uconst;
9588 #endif
9590 loc_descr = new_loc_descr (op, offset, 0);
9593 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9596 /* Writes integer values to dw_vec_const array. */
9598 static void
9599 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9601 while (size != 0)
9603 *dest++ = val & 0xff;
9604 val >>= 8;
9605 --size;
9609 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9611 static HOST_WIDE_INT
9612 extract_int (const unsigned char *src, unsigned int size)
9614 HOST_WIDE_INT val = 0;
9616 src += size;
9617 while (size != 0)
9619 val <<= 8;
9620 val |= *--src & 0xff;
9621 --size;
9623 return val;
9626 /* Writes floating point values to dw_vec_const array. */
9628 static void
9629 insert_float (rtx rtl, unsigned char *array)
9631 REAL_VALUE_TYPE rv;
9632 long val[4];
9633 int i;
9635 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9636 real_to_target (val, &rv, GET_MODE (rtl));
9638 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9639 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9641 insert_int (val[i], 4, array);
9642 array += 4;
9646 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9647 does not have a "location" either in memory or in a register. These
9648 things can arise in GNU C when a constant is passed as an actual parameter
9649 to an inlined function. They can also arise in C++ where declared
9650 constants do not necessarily get memory "homes". */
9652 static void
9653 add_const_value_attribute (dw_die_ref die, rtx rtl)
9655 switch (GET_CODE (rtl))
9657 case CONST_INT:
9659 HOST_WIDE_INT val = INTVAL (rtl);
9661 if (val < 0)
9662 add_AT_int (die, DW_AT_const_value, val);
9663 else
9664 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9666 break;
9668 case CONST_DOUBLE:
9669 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9670 floating-point constant. A CONST_DOUBLE is used whenever the
9671 constant requires more than one word in order to be adequately
9672 represented. We output CONST_DOUBLEs as blocks. */
9674 enum machine_mode mode = GET_MODE (rtl);
9676 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9678 unsigned int length = GET_MODE_SIZE (mode);
9679 unsigned char *array = ggc_alloc (length);
9681 insert_float (rtl, array);
9682 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9684 else
9686 /* ??? We really should be using HOST_WIDE_INT throughout. */
9687 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9689 add_AT_long_long (die, DW_AT_const_value,
9690 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9693 break;
9695 case CONST_VECTOR:
9697 enum machine_mode mode = GET_MODE (rtl);
9698 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9699 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9700 unsigned char *array = ggc_alloc (length * elt_size);
9701 unsigned int i;
9702 unsigned char *p;
9704 switch (GET_MODE_CLASS (mode))
9706 case MODE_VECTOR_INT:
9707 for (i = 0, p = array; i < length; i++, p += elt_size)
9709 rtx elt = CONST_VECTOR_ELT (rtl, i);
9710 HOST_WIDE_INT lo, hi;
9712 switch (GET_CODE (elt))
9714 case CONST_INT:
9715 lo = INTVAL (elt);
9716 hi = -(lo < 0);
9717 break;
9719 case CONST_DOUBLE:
9720 lo = CONST_DOUBLE_LOW (elt);
9721 hi = CONST_DOUBLE_HIGH (elt);
9722 break;
9724 default:
9725 gcc_unreachable ();
9728 if (elt_size <= sizeof (HOST_WIDE_INT))
9729 insert_int (lo, elt_size, p);
9730 else
9732 unsigned char *p0 = p;
9733 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9735 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9736 if (WORDS_BIG_ENDIAN)
9738 p0 = p1;
9739 p1 = p;
9741 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9742 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9745 break;
9747 case MODE_VECTOR_FLOAT:
9748 for (i = 0, p = array; i < length; i++, p += elt_size)
9750 rtx elt = CONST_VECTOR_ELT (rtl, i);
9751 insert_float (elt, p);
9753 break;
9755 default:
9756 gcc_unreachable ();
9759 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9761 break;
9763 case CONST_STRING:
9764 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9765 break;
9767 case SYMBOL_REF:
9768 case LABEL_REF:
9769 case CONST:
9770 add_AT_addr (die, DW_AT_const_value, rtl);
9771 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9772 break;
9774 case PLUS:
9775 /* In cases where an inlined instance of an inline function is passed
9776 the address of an `auto' variable (which is local to the caller) we
9777 can get a situation where the DECL_RTL of the artificial local
9778 variable (for the inlining) which acts as a stand-in for the
9779 corresponding formal parameter (of the inline function) will look
9780 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9781 exactly a compile-time constant expression, but it isn't the address
9782 of the (artificial) local variable either. Rather, it represents the
9783 *value* which the artificial local variable always has during its
9784 lifetime. We currently have no way to represent such quasi-constant
9785 values in Dwarf, so for now we just punt and generate nothing. */
9786 break;
9788 default:
9789 /* No other kinds of rtx should be possible here. */
9790 gcc_unreachable ();
9795 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9796 for use in a later add_const_value_attribute call. */
9798 static rtx
9799 rtl_for_decl_init (tree init, tree type)
9801 rtx rtl = NULL_RTX;
9803 /* If a variable is initialized with a string constant without embedded
9804 zeros, build CONST_STRING. */
9805 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9807 tree enttype = TREE_TYPE (type);
9808 tree domain = TYPE_DOMAIN (type);
9809 enum machine_mode mode = TYPE_MODE (enttype);
9811 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9812 && domain
9813 && integer_zerop (TYPE_MIN_VALUE (domain))
9814 && compare_tree_int (TYPE_MAX_VALUE (domain),
9815 TREE_STRING_LENGTH (init) - 1) == 0
9816 && ((size_t) TREE_STRING_LENGTH (init)
9817 == strlen (TREE_STRING_POINTER (init)) + 1))
9818 rtl = gen_rtx_CONST_STRING (VOIDmode,
9819 ggc_strdup (TREE_STRING_POINTER (init)));
9821 /* If the initializer is something that we know will expand into an
9822 immediate RTL constant, expand it now. Expanding anything else
9823 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9824 /* Aggregate, vector, and complex types may contain constructors that may
9825 result in code being generated when expand_expr is called, so we can't
9826 handle them here. Integer and float are useful and safe types to handle
9827 here. */
9828 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9829 && initializer_constant_valid_p (init, type) == null_pointer_node)
9831 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9833 /* If expand_expr returns a MEM, it wasn't immediate. */
9834 gcc_assert (!rtl || !MEM_P (rtl));
9837 return rtl;
9840 /* Generate RTL for the variable DECL to represent its location. */
9842 static rtx
9843 rtl_for_decl_location (tree decl)
9845 rtx rtl;
9847 /* Here we have to decide where we are going to say the parameter "lives"
9848 (as far as the debugger is concerned). We only have a couple of
9849 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9851 DECL_RTL normally indicates where the parameter lives during most of the
9852 activation of the function. If optimization is enabled however, this
9853 could be either NULL or else a pseudo-reg. Both of those cases indicate
9854 that the parameter doesn't really live anywhere (as far as the code
9855 generation parts of GCC are concerned) during most of the function's
9856 activation. That will happen (for example) if the parameter is never
9857 referenced within the function.
9859 We could just generate a location descriptor here for all non-NULL
9860 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9861 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9862 where DECL_RTL is NULL or is a pseudo-reg.
9864 Note however that we can only get away with using DECL_INCOMING_RTL as
9865 a backup substitute for DECL_RTL in certain limited cases. In cases
9866 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9867 we can be sure that the parameter was passed using the same type as it is
9868 declared to have within the function, and that its DECL_INCOMING_RTL
9869 points us to a place where a value of that type is passed.
9871 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9872 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9873 because in these cases DECL_INCOMING_RTL points us to a value of some
9874 type which is *different* from the type of the parameter itself. Thus,
9875 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9876 such cases, the debugger would end up (for example) trying to fetch a
9877 `float' from a place which actually contains the first part of a
9878 `double'. That would lead to really incorrect and confusing
9879 output at debug-time.
9881 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9882 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9883 are a couple of exceptions however. On little-endian machines we can
9884 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9885 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9886 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9887 when (on a little-endian machine) a non-prototyped function has a
9888 parameter declared to be of type `short' or `char'. In such cases,
9889 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9890 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9891 passed `int' value. If the debugger then uses that address to fetch
9892 a `short' or a `char' (on a little-endian machine) the result will be
9893 the correct data, so we allow for such exceptional cases below.
9895 Note that our goal here is to describe the place where the given formal
9896 parameter lives during most of the function's activation (i.e. between the
9897 end of the prologue and the start of the epilogue). We'll do that as best
9898 as we can. Note however that if the given formal parameter is modified
9899 sometime during the execution of the function, then a stack backtrace (at
9900 debug-time) will show the function as having been called with the *new*
9901 value rather than the value which was originally passed in. This happens
9902 rarely enough that it is not a major problem, but it *is* a problem, and
9903 I'd like to fix it.
9905 A future version of dwarf2out.c may generate two additional attributes for
9906 any given DW_TAG_formal_parameter DIE which will describe the "passed
9907 type" and the "passed location" for the given formal parameter in addition
9908 to the attributes we now generate to indicate the "declared type" and the
9909 "active location" for each parameter. This additional set of attributes
9910 could be used by debuggers for stack backtraces. Separately, note that
9911 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9912 This happens (for example) for inlined-instances of inline function formal
9913 parameters which are never referenced. This really shouldn't be
9914 happening. All PARM_DECL nodes should get valid non-NULL
9915 DECL_INCOMING_RTL values. FIXME. */
9917 /* Use DECL_RTL as the "location" unless we find something better. */
9918 rtl = DECL_RTL_IF_SET (decl);
9920 /* When generating abstract instances, ignore everything except
9921 constants, symbols living in memory, and symbols living in
9922 fixed registers. */
9923 if (! reload_completed)
9925 if (rtl
9926 && (CONSTANT_P (rtl)
9927 || (MEM_P (rtl)
9928 && CONSTANT_P (XEXP (rtl, 0)))
9929 || (REG_P (rtl)
9930 && TREE_CODE (decl) == VAR_DECL
9931 && TREE_STATIC (decl))))
9933 rtl = targetm.delegitimize_address (rtl);
9934 return rtl;
9936 rtl = NULL_RTX;
9938 else if (TREE_CODE (decl) == PARM_DECL)
9940 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9942 tree declared_type = TREE_TYPE (decl);
9943 tree passed_type = DECL_ARG_TYPE (decl);
9944 enum machine_mode dmode = TYPE_MODE (declared_type);
9945 enum machine_mode pmode = TYPE_MODE (passed_type);
9947 /* This decl represents a formal parameter which was optimized out.
9948 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9949 all cases where (rtl == NULL_RTX) just below. */
9950 if (dmode == pmode)
9951 rtl = DECL_INCOMING_RTL (decl);
9952 else if (SCALAR_INT_MODE_P (dmode)
9953 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9954 && DECL_INCOMING_RTL (decl))
9956 rtx inc = DECL_INCOMING_RTL (decl);
9957 if (REG_P (inc))
9958 rtl = inc;
9959 else if (MEM_P (inc))
9961 if (BYTES_BIG_ENDIAN)
9962 rtl = adjust_address_nv (inc, dmode,
9963 GET_MODE_SIZE (pmode)
9964 - GET_MODE_SIZE (dmode));
9965 else
9966 rtl = inc;
9971 /* If the parm was passed in registers, but lives on the stack, then
9972 make a big endian correction if the mode of the type of the
9973 parameter is not the same as the mode of the rtl. */
9974 /* ??? This is the same series of checks that are made in dbxout.c before
9975 we reach the big endian correction code there. It isn't clear if all
9976 of these checks are necessary here, but keeping them all is the safe
9977 thing to do. */
9978 else if (MEM_P (rtl)
9979 && XEXP (rtl, 0) != const0_rtx
9980 && ! CONSTANT_P (XEXP (rtl, 0))
9981 /* Not passed in memory. */
9982 && !MEM_P (DECL_INCOMING_RTL (decl))
9983 /* Not passed by invisible reference. */
9984 && (!REG_P (XEXP (rtl, 0))
9985 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9986 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9987 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9988 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9989 #endif
9991 /* Big endian correction check. */
9992 && BYTES_BIG_ENDIAN
9993 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9994 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9995 < UNITS_PER_WORD))
9997 int offset = (UNITS_PER_WORD
9998 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10000 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10001 plus_constant (XEXP (rtl, 0), offset));
10004 else if (TREE_CODE (decl) == VAR_DECL
10005 && rtl
10006 && MEM_P (rtl)
10007 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10008 && BYTES_BIG_ENDIAN)
10010 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10011 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10013 /* If a variable is declared "register" yet is smaller than
10014 a register, then if we store the variable to memory, it
10015 looks like we're storing a register-sized value, when in
10016 fact we are not. We need to adjust the offset of the
10017 storage location to reflect the actual value's bytes,
10018 else gdb will not be able to display it. */
10019 if (rsize > dsize)
10020 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10021 plus_constant (XEXP (rtl, 0), rsize-dsize));
10024 if (rtl != NULL_RTX)
10026 rtl = eliminate_regs (rtl, 0, NULL_RTX);
10027 #ifdef LEAF_REG_REMAP
10028 if (current_function_uses_only_leaf_regs)
10029 leaf_renumber_regs_insn (rtl);
10030 #endif
10033 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10034 and will have been substituted directly into all expressions that use it.
10035 C does not have such a concept, but C++ and other languages do. */
10036 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10037 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10039 if (rtl)
10040 rtl = targetm.delegitimize_address (rtl);
10042 /* If we don't look past the constant pool, we risk emitting a
10043 reference to a constant pool entry that isn't referenced from
10044 code, and thus is not emitted. */
10045 if (rtl)
10046 rtl = avoid_constant_pool_reference (rtl);
10048 return rtl;
10051 /* Return true if DECL's containing function has a frame base attribute.
10052 Return false otherwise. */
10054 static bool
10055 containing_function_has_frame_base (tree decl)
10057 tree declcontext = decl_function_context (decl);
10058 dw_die_ref context;
10059 dw_attr_ref attr;
10061 if (!declcontext)
10062 return false;
10064 context = lookup_decl_die (declcontext);
10065 if (!context)
10066 return false;
10068 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
10069 if (attr->dw_attr == DW_AT_frame_base)
10070 return true;
10071 return false;
10074 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10075 data attribute for a variable or a parameter. We generate the
10076 DW_AT_const_value attribute only in those cases where the given variable
10077 or parameter does not have a true "location" either in memory or in a
10078 register. This can happen (for example) when a constant is passed as an
10079 actual argument in a call to an inline function. (It's possible that
10080 these things can crop up in other ways also.) Note that one type of
10081 constant value which can be passed into an inlined function is a constant
10082 pointer. This can happen for example if an actual argument in an inlined
10083 function call evaluates to a compile-time constant address. */
10085 static void
10086 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10087 enum dwarf_attribute attr)
10089 rtx rtl;
10090 dw_loc_descr_ref descr;
10091 var_loc_list *loc_list;
10092 bool can_use_fb;
10093 struct var_loc_node *node;
10094 if (TREE_CODE (decl) == ERROR_MARK)
10095 return;
10097 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10098 || TREE_CODE (decl) == RESULT_DECL);
10100 can_use_fb = containing_function_has_frame_base (decl);
10102 /* See if we possibly have multiple locations for this variable. */
10103 loc_list = lookup_decl_loc (decl);
10105 /* If it truly has multiple locations, the first and last node will
10106 differ. */
10107 if (loc_list && loc_list->first != loc_list->last)
10109 const char *secname;
10110 const char *endname;
10111 dw_loc_list_ref list;
10112 rtx varloc;
10115 /* We need to figure out what section we should use as the base
10116 for the address ranges where a given location is valid.
10117 1. If this particular DECL has a section associated with it,
10118 use that.
10119 2. If this function has a section associated with it, use
10120 that.
10121 3. Otherwise, use the text section.
10122 XXX: If you split a variable across multiple sections, this
10123 won't notice. */
10125 if (DECL_SECTION_NAME (decl))
10127 tree sectree = DECL_SECTION_NAME (decl);
10128 secname = TREE_STRING_POINTER (sectree);
10130 else if (current_function_decl
10131 && DECL_SECTION_NAME (current_function_decl))
10133 tree sectree = DECL_SECTION_NAME (current_function_decl);
10134 secname = TREE_STRING_POINTER (sectree);
10136 else if (last_text_section == in_unlikely_executed_text
10137 || (last_text_section == in_named
10138 && last_text_section_name == unlikely_text_section_name))
10139 secname = unlikely_section_label;
10140 else
10141 secname = text_section_label;
10143 /* Now that we know what section we are using for a base,
10144 actually construct the list of locations.
10145 The first location information is what is passed to the
10146 function that creates the location list, and the remaining
10147 locations just get added on to that list.
10148 Note that we only know the start address for a location
10149 (IE location changes), so to build the range, we use
10150 the range [current location start, next location start].
10151 This means we have to special case the last node, and generate
10152 a range of [last location start, end of function label]. */
10154 node = loc_list->first;
10155 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10156 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10157 node->label, node->next->label, secname, 1);
10158 node = node->next;
10160 for (; node->next; node = node->next)
10161 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10163 /* The variable has a location between NODE->LABEL and
10164 NODE->NEXT->LABEL. */
10165 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10166 add_loc_descr_to_loc_list (&list,
10167 loc_descriptor (varloc,
10168 can_use_fb),
10169 node->label, node->next->label, secname);
10172 /* If the variable has a location at the last label
10173 it keeps its location until the end of function. */
10174 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10176 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10178 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10179 if (!current_function_decl)
10180 endname = text_end_label;
10181 else
10183 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10184 current_function_funcdef_no);
10185 endname = ggc_strdup (label_id);
10187 add_loc_descr_to_loc_list (&list,
10188 loc_descriptor (varloc,
10189 can_use_fb),
10190 node->label, endname, secname);
10193 /* Finally, add the location list to the DIE, and we are done. */
10194 add_AT_loc_list (die, attr, list);
10195 return;
10198 /* Try to get some constant RTL for this decl, and use that as the value of
10199 the location. */
10201 rtl = rtl_for_decl_location (decl);
10202 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10204 add_const_value_attribute (die, rtl);
10205 return;
10208 /* We couldn't get any rtl, and we had no >1 element location list, so try
10209 directly generating the location description from the tree. */
10210 descr = loc_descriptor_from_tree (decl);
10211 if (descr)
10213 add_AT_location_description (die, attr, descr);
10214 return;
10217 /* Lastly, if we have tried to generate the location otherwise, and it
10218 didn't work out (we wouldn't be here if we did), and we have a one entry
10219 location list, try generating a location from that. */
10220 if (loc_list && loc_list->first)
10222 node = loc_list->first;
10223 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10224 can_use_fb);
10225 if (descr)
10226 add_AT_location_description (die, attr, descr);
10230 /* If we don't have a copy of this variable in memory for some reason (such
10231 as a C++ member constant that doesn't have an out-of-line definition),
10232 we should tell the debugger about the constant value. */
10234 static void
10235 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10237 tree init = DECL_INITIAL (decl);
10238 tree type = TREE_TYPE (decl);
10239 rtx rtl;
10241 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10242 /* OK */;
10243 else
10244 return;
10246 rtl = rtl_for_decl_init (init, type);
10247 if (rtl)
10248 add_const_value_attribute (var_die, rtl);
10251 /* Generate a DW_AT_name attribute given some string value to be included as
10252 the value of the attribute. */
10254 static void
10255 add_name_attribute (dw_die_ref die, const char *name_string)
10257 if (name_string != NULL && *name_string != 0)
10259 if (demangle_name_func)
10260 name_string = (*demangle_name_func) (name_string);
10262 add_AT_string (die, DW_AT_name, name_string);
10266 /* Generate a DW_AT_comp_dir attribute for DIE. */
10268 static void
10269 add_comp_dir_attribute (dw_die_ref die)
10271 const char *wd = get_src_pwd ();
10272 if (wd != NULL)
10273 add_AT_string (die, DW_AT_comp_dir, wd);
10276 /* Given a tree node describing an array bound (either lower or upper) output
10277 a representation for that bound. */
10279 static void
10280 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10282 switch (TREE_CODE (bound))
10284 case ERROR_MARK:
10285 return;
10287 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10288 case INTEGER_CST:
10289 if (! host_integerp (bound, 0)
10290 || (bound_attr == DW_AT_lower_bound
10291 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10292 || (is_fortran () && integer_onep (bound)))))
10293 /* Use the default. */
10295 else
10296 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10297 break;
10299 case CONVERT_EXPR:
10300 case NOP_EXPR:
10301 case NON_LVALUE_EXPR:
10302 case VIEW_CONVERT_EXPR:
10303 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10304 break;
10306 case SAVE_EXPR:
10307 break;
10309 case VAR_DECL:
10310 case PARM_DECL:
10311 case RESULT_DECL:
10313 dw_die_ref decl_die = lookup_decl_die (bound);
10315 /* ??? Can this happen, or should the variable have been bound
10316 first? Probably it can, since I imagine that we try to create
10317 the types of parameters in the order in which they exist in
10318 the list, and won't have created a forward reference to a
10319 later parameter. */
10320 if (decl_die != NULL)
10321 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10322 break;
10325 default:
10327 /* Otherwise try to create a stack operation procedure to
10328 evaluate the value of the array bound. */
10330 dw_die_ref ctx, decl_die;
10331 dw_loc_descr_ref loc;
10333 loc = loc_descriptor_from_tree (bound);
10334 if (loc == NULL)
10335 break;
10337 if (current_function_decl == 0)
10338 ctx = comp_unit_die;
10339 else
10340 ctx = lookup_decl_die (current_function_decl);
10342 decl_die = new_die (DW_TAG_variable, ctx, bound);
10343 add_AT_flag (decl_die, DW_AT_artificial, 1);
10344 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10345 add_AT_loc (decl_die, DW_AT_location, loc);
10347 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10348 break;
10353 /* Note that the block of subscript information for an array type also
10354 includes information about the element type of type given array type. */
10356 static void
10357 add_subscript_info (dw_die_ref type_die, tree type)
10359 #ifndef MIPS_DEBUGGING_INFO
10360 unsigned dimension_number;
10361 #endif
10362 tree lower, upper;
10363 dw_die_ref subrange_die;
10365 /* The GNU compilers represent multidimensional array types as sequences of
10366 one dimensional array types whose element types are themselves array
10367 types. Here we squish that down, so that each multidimensional array
10368 type gets only one array_type DIE in the Dwarf debugging info. The draft
10369 Dwarf specification say that we are allowed to do this kind of
10370 compression in C (because there is no difference between an array or
10371 arrays and a multidimensional array in C) but for other source languages
10372 (e.g. Ada) we probably shouldn't do this. */
10374 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10375 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10376 We work around this by disabling this feature. See also
10377 gen_array_type_die. */
10378 #ifndef MIPS_DEBUGGING_INFO
10379 for (dimension_number = 0;
10380 TREE_CODE (type) == ARRAY_TYPE;
10381 type = TREE_TYPE (type), dimension_number++)
10382 #endif
10384 tree domain = TYPE_DOMAIN (type);
10386 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10387 and (in GNU C only) variable bounds. Handle all three forms
10388 here. */
10389 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10390 if (domain)
10392 /* We have an array type with specified bounds. */
10393 lower = TYPE_MIN_VALUE (domain);
10394 upper = TYPE_MAX_VALUE (domain);
10396 /* Define the index type. */
10397 if (TREE_TYPE (domain))
10399 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10400 TREE_TYPE field. We can't emit debug info for this
10401 because it is an unnamed integral type. */
10402 if (TREE_CODE (domain) == INTEGER_TYPE
10403 && TYPE_NAME (domain) == NULL_TREE
10404 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10405 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10407 else
10408 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10409 type_die);
10412 /* ??? If upper is NULL, the array has unspecified length,
10413 but it does have a lower bound. This happens with Fortran
10414 dimension arr(N:*)
10415 Since the debugger is definitely going to need to know N
10416 to produce useful results, go ahead and output the lower
10417 bound solo, and hope the debugger can cope. */
10419 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10420 if (upper)
10421 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10424 /* Otherwise we have an array type with an unspecified length. The
10425 DWARF-2 spec does not say how to handle this; let's just leave out the
10426 bounds. */
10430 static void
10431 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10433 unsigned size;
10435 switch (TREE_CODE (tree_node))
10437 case ERROR_MARK:
10438 size = 0;
10439 break;
10440 case ENUMERAL_TYPE:
10441 case RECORD_TYPE:
10442 case UNION_TYPE:
10443 case QUAL_UNION_TYPE:
10444 size = int_size_in_bytes (tree_node);
10445 break;
10446 case FIELD_DECL:
10447 /* For a data member of a struct or union, the DW_AT_byte_size is
10448 generally given as the number of bytes normally allocated for an
10449 object of the *declared* type of the member itself. This is true
10450 even for bit-fields. */
10451 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10452 break;
10453 default:
10454 gcc_unreachable ();
10457 /* Note that `size' might be -1 when we get to this point. If it is, that
10458 indicates that the byte size of the entity in question is variable. We
10459 have no good way of expressing this fact in Dwarf at the present time,
10460 so just let the -1 pass on through. */
10461 add_AT_unsigned (die, DW_AT_byte_size, size);
10464 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10465 which specifies the distance in bits from the highest order bit of the
10466 "containing object" for the bit-field to the highest order bit of the
10467 bit-field itself.
10469 For any given bit-field, the "containing object" is a hypothetical object
10470 (of some integral or enum type) within which the given bit-field lives. The
10471 type of this hypothetical "containing object" is always the same as the
10472 declared type of the individual bit-field itself. The determination of the
10473 exact location of the "containing object" for a bit-field is rather
10474 complicated. It's handled by the `field_byte_offset' function (above).
10476 Note that it is the size (in bytes) of the hypothetical "containing object"
10477 which will be given in the DW_AT_byte_size attribute for this bit-field.
10478 (See `byte_size_attribute' above). */
10480 static inline void
10481 add_bit_offset_attribute (dw_die_ref die, tree decl)
10483 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10484 tree type = DECL_BIT_FIELD_TYPE (decl);
10485 HOST_WIDE_INT bitpos_int;
10486 HOST_WIDE_INT highest_order_object_bit_offset;
10487 HOST_WIDE_INT highest_order_field_bit_offset;
10488 HOST_WIDE_INT unsigned bit_offset;
10490 /* Must be a field and a bit field. */
10491 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10493 /* We can't yet handle bit-fields whose offsets are variable, so if we
10494 encounter such things, just return without generating any attribute
10495 whatsoever. Likewise for variable or too large size. */
10496 if (! host_integerp (bit_position (decl), 0)
10497 || ! host_integerp (DECL_SIZE (decl), 1))
10498 return;
10500 bitpos_int = int_bit_position (decl);
10502 /* Note that the bit offset is always the distance (in bits) from the
10503 highest-order bit of the "containing object" to the highest-order bit of
10504 the bit-field itself. Since the "high-order end" of any object or field
10505 is different on big-endian and little-endian machines, the computation
10506 below must take account of these differences. */
10507 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10508 highest_order_field_bit_offset = bitpos_int;
10510 if (! BYTES_BIG_ENDIAN)
10512 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10513 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10516 bit_offset
10517 = (! BYTES_BIG_ENDIAN
10518 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10519 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10521 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10524 /* For a FIELD_DECL node which represents a bit field, output an attribute
10525 which specifies the length in bits of the given field. */
10527 static inline void
10528 add_bit_size_attribute (dw_die_ref die, tree decl)
10530 /* Must be a field and a bit field. */
10531 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10532 && DECL_BIT_FIELD_TYPE (decl));
10534 if (host_integerp (DECL_SIZE (decl), 1))
10535 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10538 /* If the compiled language is ANSI C, then add a 'prototyped'
10539 attribute, if arg types are given for the parameters of a function. */
10541 static inline void
10542 add_prototyped_attribute (dw_die_ref die, tree func_type)
10544 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10545 && TYPE_ARG_TYPES (func_type) != NULL)
10546 add_AT_flag (die, DW_AT_prototyped, 1);
10549 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10550 by looking in either the type declaration or object declaration
10551 equate table. */
10553 static inline void
10554 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10556 dw_die_ref origin_die = NULL;
10558 if (TREE_CODE (origin) != FUNCTION_DECL)
10560 /* We may have gotten separated from the block for the inlined
10561 function, if we're in an exception handler or some such; make
10562 sure that the abstract function has been written out.
10564 Doing this for nested functions is wrong, however; functions are
10565 distinct units, and our context might not even be inline. */
10566 tree fn = origin;
10568 if (TYPE_P (fn))
10569 fn = TYPE_STUB_DECL (fn);
10571 fn = decl_function_context (fn);
10572 if (fn)
10573 dwarf2out_abstract_function (fn);
10576 if (DECL_P (origin))
10577 origin_die = lookup_decl_die (origin);
10578 else if (TYPE_P (origin))
10579 origin_die = lookup_type_die (origin);
10581 /* XXX: Functions that are never lowered don't always have correct block
10582 trees (in the case of java, they simply have no block tree, in some other
10583 languages). For these functions, there is nothing we can really do to
10584 output correct debug info for inlined functions in all cases. Rather
10585 than abort, we'll just produce deficient debug info now, in that we will
10586 have variables without a proper abstract origin. In the future, when all
10587 functions are lowered, we should re-add a gcc_assert (origin_die)
10588 here. */
10590 if (origin_die)
10591 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10594 /* We do not currently support the pure_virtual attribute. */
10596 static inline void
10597 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10599 if (DECL_VINDEX (func_decl))
10601 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10603 if (host_integerp (DECL_VINDEX (func_decl), 0))
10604 add_AT_loc (die, DW_AT_vtable_elem_location,
10605 new_loc_descr (DW_OP_constu,
10606 tree_low_cst (DECL_VINDEX (func_decl), 0),
10607 0));
10609 /* GNU extension: Record what type this method came from originally. */
10610 if (debug_info_level > DINFO_LEVEL_TERSE)
10611 add_AT_die_ref (die, DW_AT_containing_type,
10612 lookup_type_die (DECL_CONTEXT (func_decl)));
10616 /* Add source coordinate attributes for the given decl. */
10618 static void
10619 add_src_coords_attributes (dw_die_ref die, tree decl)
10621 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10622 unsigned file_index = lookup_filename (s.file);
10624 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10625 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10628 /* Add a DW_AT_name attribute and source coordinate attribute for the
10629 given decl, but only if it actually has a name. */
10631 static void
10632 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10634 tree decl_name;
10636 decl_name = DECL_NAME (decl);
10637 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10639 add_name_attribute (die, dwarf2_name (decl, 0));
10640 if (! DECL_ARTIFICIAL (decl))
10641 add_src_coords_attributes (die, decl);
10643 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10644 && TREE_PUBLIC (decl)
10645 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10646 && !DECL_ABSTRACT (decl))
10647 add_AT_string (die, DW_AT_MIPS_linkage_name,
10648 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10651 #ifdef VMS_DEBUGGING_INFO
10652 /* Get the function's name, as described by its RTL. This may be different
10653 from the DECL_NAME name used in the source file. */
10654 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10656 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10657 XEXP (DECL_RTL (decl), 0));
10658 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10660 #endif
10663 /* Push a new declaration scope. */
10665 static void
10666 push_decl_scope (tree scope)
10668 VARRAY_PUSH_TREE (decl_scope_table, scope);
10671 /* Pop a declaration scope. */
10673 static inline void
10674 pop_decl_scope (void)
10676 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10678 VARRAY_POP (decl_scope_table);
10681 /* Return the DIE for the scope that immediately contains this type.
10682 Non-named types get global scope. Named types nested in other
10683 types get their containing scope if it's open, or global scope
10684 otherwise. All other types (i.e. function-local named types) get
10685 the current active scope. */
10687 static dw_die_ref
10688 scope_die_for (tree t, dw_die_ref context_die)
10690 dw_die_ref scope_die = NULL;
10691 tree containing_scope;
10692 int i;
10694 /* Non-types always go in the current scope. */
10695 gcc_assert (TYPE_P (t));
10697 containing_scope = TYPE_CONTEXT (t);
10699 /* Use the containing namespace if it was passed in (for a declaration). */
10700 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10702 if (context_die == lookup_decl_die (containing_scope))
10703 /* OK */;
10704 else
10705 containing_scope = NULL_TREE;
10708 /* Ignore function type "scopes" from the C frontend. They mean that
10709 a tagged type is local to a parmlist of a function declarator, but
10710 that isn't useful to DWARF. */
10711 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10712 containing_scope = NULL_TREE;
10714 if (containing_scope == NULL_TREE)
10715 scope_die = comp_unit_die;
10716 else if (TYPE_P (containing_scope))
10718 /* For types, we can just look up the appropriate DIE. But
10719 first we check to see if we're in the middle of emitting it
10720 so we know where the new DIE should go. */
10721 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10722 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10723 break;
10725 if (i < 0)
10727 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10728 || TREE_ASM_WRITTEN (containing_scope));
10730 /* If none of the current dies are suitable, we get file scope. */
10731 scope_die = comp_unit_die;
10733 else
10734 scope_die = lookup_type_die (containing_scope);
10736 else
10737 scope_die = context_die;
10739 return scope_die;
10742 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10744 static inline int
10745 local_scope_p (dw_die_ref context_die)
10747 for (; context_die; context_die = context_die->die_parent)
10748 if (context_die->die_tag == DW_TAG_inlined_subroutine
10749 || context_die->die_tag == DW_TAG_subprogram)
10750 return 1;
10752 return 0;
10755 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10756 whether or not to treat a DIE in this context as a declaration. */
10758 static inline int
10759 class_or_namespace_scope_p (dw_die_ref context_die)
10761 return (context_die
10762 && (context_die->die_tag == DW_TAG_structure_type
10763 || context_die->die_tag == DW_TAG_union_type
10764 || context_die->die_tag == DW_TAG_namespace));
10767 /* Many forms of DIEs require a "type description" attribute. This
10768 routine locates the proper "type descriptor" die for the type given
10769 by 'type', and adds a DW_AT_type attribute below the given die. */
10771 static void
10772 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10773 int decl_volatile, dw_die_ref context_die)
10775 enum tree_code code = TREE_CODE (type);
10776 dw_die_ref type_die = NULL;
10778 /* ??? If this type is an unnamed subrange type of an integral or
10779 floating-point type, use the inner type. This is because we have no
10780 support for unnamed types in base_type_die. This can happen if this is
10781 an Ada subrange type. Correct solution is emit a subrange type die. */
10782 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10783 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10784 type = TREE_TYPE (type), code = TREE_CODE (type);
10786 if (code == ERROR_MARK
10787 /* Handle a special case. For functions whose return type is void, we
10788 generate *no* type attribute. (Note that no object may have type
10789 `void', so this only applies to function return types). */
10790 || code == VOID_TYPE)
10791 return;
10793 type_die = modified_type_die (type,
10794 decl_const || TYPE_READONLY (type),
10795 decl_volatile || TYPE_VOLATILE (type),
10796 context_die);
10798 if (type_die != NULL)
10799 add_AT_die_ref (object_die, DW_AT_type, type_die);
10802 /* Given an object die, add the calling convention attribute for the
10803 function call type. */
10804 static void
10805 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10807 enum dwarf_calling_convention value = DW_CC_normal;
10809 value = targetm.dwarf_calling_convention (type);
10811 /* Only add the attribute if the backend requests it, and
10812 is not DW_CC_normal. */
10813 if (value && (value != DW_CC_normal))
10814 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10817 /* Given a tree pointer to a struct, class, union, or enum type node, return
10818 a pointer to the (string) tag name for the given type, or zero if the type
10819 was declared without a tag. */
10821 static const char *
10822 type_tag (tree type)
10824 const char *name = 0;
10826 if (TYPE_NAME (type) != 0)
10828 tree t = 0;
10830 /* Find the IDENTIFIER_NODE for the type name. */
10831 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10832 t = TYPE_NAME (type);
10834 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10835 a TYPE_DECL node, regardless of whether or not a `typedef' was
10836 involved. */
10837 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10838 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10839 t = DECL_NAME (TYPE_NAME (type));
10841 /* Now get the name as a string, or invent one. */
10842 if (t != 0)
10843 name = IDENTIFIER_POINTER (t);
10846 return (name == 0 || *name == '\0') ? 0 : name;
10849 /* Return the type associated with a data member, make a special check
10850 for bit field types. */
10852 static inline tree
10853 member_declared_type (tree member)
10855 return (DECL_BIT_FIELD_TYPE (member)
10856 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10859 /* Get the decl's label, as described by its RTL. This may be different
10860 from the DECL_NAME name used in the source file. */
10862 #if 0
10863 static const char *
10864 decl_start_label (tree decl)
10866 rtx x;
10867 const char *fnname;
10869 x = DECL_RTL (decl);
10870 gcc_assert (MEM_P (x));
10872 x = XEXP (x, 0);
10873 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10875 fnname = XSTR (x, 0);
10876 return fnname;
10878 #endif
10880 /* These routines generate the internal representation of the DIE's for
10881 the compilation unit. Debugging information is collected by walking
10882 the declaration trees passed in from dwarf2out_decl(). */
10884 static void
10885 gen_array_type_die (tree type, dw_die_ref context_die)
10887 dw_die_ref scope_die = scope_die_for (type, context_die);
10888 dw_die_ref array_die;
10889 tree element_type;
10891 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10892 the inner array type comes before the outer array type. Thus we must
10893 call gen_type_die before we call new_die. See below also. */
10894 #ifdef MIPS_DEBUGGING_INFO
10895 gen_type_die (TREE_TYPE (type), context_die);
10896 #endif
10898 array_die = new_die (DW_TAG_array_type, scope_die, type);
10899 add_name_attribute (array_die, type_tag (type));
10900 equate_type_number_to_die (type, array_die);
10902 if (TREE_CODE (type) == VECTOR_TYPE)
10904 /* The frontend feeds us a representation for the vector as a struct
10905 containing an array. Pull out the array type. */
10906 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10907 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10910 #if 0
10911 /* We default the array ordering. SDB will probably do
10912 the right things even if DW_AT_ordering is not present. It's not even
10913 an issue until we start to get into multidimensional arrays anyway. If
10914 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10915 then we'll have to put the DW_AT_ordering attribute back in. (But if
10916 and when we find out that we need to put these in, we will only do so
10917 for multidimensional arrays. */
10918 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10919 #endif
10921 #ifdef MIPS_DEBUGGING_INFO
10922 /* The SGI compilers handle arrays of unknown bound by setting
10923 AT_declaration and not emitting any subrange DIEs. */
10924 if (! TYPE_DOMAIN (type))
10925 add_AT_flag (array_die, DW_AT_declaration, 1);
10926 else
10927 #endif
10928 add_subscript_info (array_die, type);
10930 /* Add representation of the type of the elements of this array type. */
10931 element_type = TREE_TYPE (type);
10933 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10934 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10935 We work around this by disabling this feature. See also
10936 add_subscript_info. */
10937 #ifndef MIPS_DEBUGGING_INFO
10938 while (TREE_CODE (element_type) == ARRAY_TYPE)
10939 element_type = TREE_TYPE (element_type);
10941 gen_type_die (element_type, context_die);
10942 #endif
10944 add_type_attribute (array_die, element_type, 0, 0, context_die);
10947 #if 0
10948 static void
10949 gen_entry_point_die (tree decl, dw_die_ref context_die)
10951 tree origin = decl_ultimate_origin (decl);
10952 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10954 if (origin != NULL)
10955 add_abstract_origin_attribute (decl_die, origin);
10956 else
10958 add_name_and_src_coords_attributes (decl_die, decl);
10959 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10960 0, 0, context_die);
10963 if (DECL_ABSTRACT (decl))
10964 equate_decl_number_to_die (decl, decl_die);
10965 else
10966 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10968 #endif
10970 /* Walk through the list of incomplete types again, trying once more to
10971 emit full debugging info for them. */
10973 static void
10974 retry_incomplete_types (void)
10976 int i;
10978 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10979 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10982 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10984 static void
10985 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10987 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10989 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10990 be incomplete and such types are not marked. */
10991 add_abstract_origin_attribute (type_die, type);
10994 /* Generate a DIE to represent an inlined instance of a structure type. */
10996 static void
10997 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10999 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11001 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11002 be incomplete and such types are not marked. */
11003 add_abstract_origin_attribute (type_die, type);
11006 /* Generate a DIE to represent an inlined instance of a union type. */
11008 static void
11009 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11011 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11013 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11014 be incomplete and such types are not marked. */
11015 add_abstract_origin_attribute (type_die, type);
11018 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11019 include all of the information about the enumeration values also. Each
11020 enumerated type name/value is listed as a child of the enumerated type
11021 DIE. */
11023 static dw_die_ref
11024 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11026 dw_die_ref type_die = lookup_type_die (type);
11028 if (type_die == NULL)
11030 type_die = new_die (DW_TAG_enumeration_type,
11031 scope_die_for (type, context_die), type);
11032 equate_type_number_to_die (type, type_die);
11033 add_name_attribute (type_die, type_tag (type));
11035 else if (! TYPE_SIZE (type))
11036 return type_die;
11037 else
11038 remove_AT (type_die, DW_AT_declaration);
11040 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11041 given enum type is incomplete, do not generate the DW_AT_byte_size
11042 attribute or the DW_AT_element_list attribute. */
11043 if (TYPE_SIZE (type))
11045 tree link;
11047 TREE_ASM_WRITTEN (type) = 1;
11048 add_byte_size_attribute (type_die, type);
11049 if (TYPE_STUB_DECL (type) != NULL_TREE)
11050 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11052 /* If the first reference to this type was as the return type of an
11053 inline function, then it may not have a parent. Fix this now. */
11054 if (type_die->die_parent == NULL)
11055 add_child_die (scope_die_for (type, context_die), type_die);
11057 for (link = TYPE_VALUES (type);
11058 link != NULL; link = TREE_CHAIN (link))
11060 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11061 tree value = TREE_VALUE (link);
11063 add_name_attribute (enum_die,
11064 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11066 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11067 /* DWARF2 does not provide a way of indicating whether or
11068 not enumeration constants are signed or unsigned. GDB
11069 always assumes the values are signed, so we output all
11070 values as if they were signed. That means that
11071 enumeration constants with very large unsigned values
11072 will appear to have negative values in the debugger. */
11073 add_AT_int (enum_die, DW_AT_const_value,
11074 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11077 else
11078 add_AT_flag (type_die, DW_AT_declaration, 1);
11080 return type_die;
11083 /* Generate a DIE to represent either a real live formal parameter decl or to
11084 represent just the type of some formal parameter position in some function
11085 type.
11087 Note that this routine is a bit unusual because its argument may be a
11088 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11089 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11090 node. If it's the former then this function is being called to output a
11091 DIE to represent a formal parameter object (or some inlining thereof). If
11092 it's the latter, then this function is only being called to output a
11093 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11094 argument type of some subprogram type. */
11096 static dw_die_ref
11097 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11099 dw_die_ref parm_die
11100 = new_die (DW_TAG_formal_parameter, context_die, node);
11101 tree origin;
11103 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11105 case tcc_declaration:
11106 origin = decl_ultimate_origin (node);
11107 if (origin != NULL)
11108 add_abstract_origin_attribute (parm_die, origin);
11109 else
11111 add_name_and_src_coords_attributes (parm_die, node);
11112 add_type_attribute (parm_die, TREE_TYPE (node),
11113 TREE_READONLY (node),
11114 TREE_THIS_VOLATILE (node),
11115 context_die);
11116 if (DECL_ARTIFICIAL (node))
11117 add_AT_flag (parm_die, DW_AT_artificial, 1);
11120 equate_decl_number_to_die (node, parm_die);
11121 if (! DECL_ABSTRACT (node))
11122 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11124 break;
11126 case tcc_type:
11127 /* We were called with some kind of a ..._TYPE node. */
11128 add_type_attribute (parm_die, node, 0, 0, context_die);
11129 break;
11131 default:
11132 gcc_unreachable ();
11135 return parm_die;
11138 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11139 at the end of an (ANSI prototyped) formal parameters list. */
11141 static void
11142 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11144 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11147 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11148 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11149 parameters as specified in some function type specification (except for
11150 those which appear as part of a function *definition*). */
11152 static void
11153 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11155 tree link;
11156 tree formal_type = NULL;
11157 tree first_parm_type;
11158 tree arg;
11160 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11162 arg = DECL_ARGUMENTS (function_or_method_type);
11163 function_or_method_type = TREE_TYPE (function_or_method_type);
11165 else
11166 arg = NULL_TREE;
11168 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11170 /* Make our first pass over the list of formal parameter types and output a
11171 DW_TAG_formal_parameter DIE for each one. */
11172 for (link = first_parm_type; link; )
11174 dw_die_ref parm_die;
11176 formal_type = TREE_VALUE (link);
11177 if (formal_type == void_type_node)
11178 break;
11180 /* Output a (nameless) DIE to represent the formal parameter itself. */
11181 parm_die = gen_formal_parameter_die (formal_type, context_die);
11182 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11183 && link == first_parm_type)
11184 || (arg && DECL_ARTIFICIAL (arg)))
11185 add_AT_flag (parm_die, DW_AT_artificial, 1);
11187 link = TREE_CHAIN (link);
11188 if (arg)
11189 arg = TREE_CHAIN (arg);
11192 /* If this function type has an ellipsis, add a
11193 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11194 if (formal_type != void_type_node)
11195 gen_unspecified_parameters_die (function_or_method_type, context_die);
11197 /* Make our second (and final) pass over the list of formal parameter types
11198 and output DIEs to represent those types (as necessary). */
11199 for (link = TYPE_ARG_TYPES (function_or_method_type);
11200 link && TREE_VALUE (link);
11201 link = TREE_CHAIN (link))
11202 gen_type_die (TREE_VALUE (link), context_die);
11205 /* We want to generate the DIE for TYPE so that we can generate the
11206 die for MEMBER, which has been defined; we will need to refer back
11207 to the member declaration nested within TYPE. If we're trying to
11208 generate minimal debug info for TYPE, processing TYPE won't do the
11209 trick; we need to attach the member declaration by hand. */
11211 static void
11212 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11214 gen_type_die (type, context_die);
11216 /* If we're trying to avoid duplicate debug info, we may not have
11217 emitted the member decl for this function. Emit it now. */
11218 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11219 && ! lookup_decl_die (member))
11221 dw_die_ref type_die;
11222 gcc_assert (!decl_ultimate_origin (member));
11224 push_decl_scope (type);
11225 type_die = lookup_type_die (type);
11226 if (TREE_CODE (member) == FUNCTION_DECL)
11227 gen_subprogram_die (member, type_die);
11228 else if (TREE_CODE (member) == FIELD_DECL)
11230 /* Ignore the nameless fields that are used to skip bits but handle
11231 C++ anonymous unions and structs. */
11232 if (DECL_NAME (member) != NULL_TREE
11233 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11234 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11236 gen_type_die (member_declared_type (member), type_die);
11237 gen_field_die (member, type_die);
11240 else
11241 gen_variable_die (member, type_die);
11243 pop_decl_scope ();
11247 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11248 may later generate inlined and/or out-of-line instances of. */
11250 static void
11251 dwarf2out_abstract_function (tree decl)
11253 dw_die_ref old_die;
11254 tree save_fn;
11255 tree context;
11256 int was_abstract = DECL_ABSTRACT (decl);
11258 /* Make sure we have the actual abstract inline, not a clone. */
11259 decl = DECL_ORIGIN (decl);
11261 old_die = lookup_decl_die (decl);
11262 if (old_die && get_AT (old_die, DW_AT_inline))
11263 /* We've already generated the abstract instance. */
11264 return;
11266 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11267 we don't get confused by DECL_ABSTRACT. */
11268 if (debug_info_level > DINFO_LEVEL_TERSE)
11270 context = decl_class_context (decl);
11271 if (context)
11272 gen_type_die_for_member
11273 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11276 /* Pretend we've just finished compiling this function. */
11277 save_fn = current_function_decl;
11278 current_function_decl = decl;
11280 set_decl_abstract_flags (decl, 1);
11281 dwarf2out_decl (decl);
11282 if (! was_abstract)
11283 set_decl_abstract_flags (decl, 0);
11285 current_function_decl = save_fn;
11288 /* Generate a DIE to represent a declared function (either file-scope or
11289 block-local). */
11291 static void
11292 gen_subprogram_die (tree decl, dw_die_ref context_die)
11294 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11295 tree origin = decl_ultimate_origin (decl);
11296 dw_die_ref subr_die;
11297 rtx fp_reg;
11298 tree fn_arg_types;
11299 tree outer_scope;
11300 dw_die_ref old_die = lookup_decl_die (decl);
11301 int declaration = (current_function_decl != decl
11302 || class_or_namespace_scope_p (context_die));
11304 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11305 started to generate the abstract instance of an inline, decided to output
11306 its containing class, and proceeded to emit the declaration of the inline
11307 from the member list for the class. If so, DECLARATION takes priority;
11308 we'll get back to the abstract instance when done with the class. */
11310 /* The class-scope declaration DIE must be the primary DIE. */
11311 if (origin && declaration && class_or_namespace_scope_p (context_die))
11313 origin = NULL;
11314 gcc_assert (!old_die);
11317 if (origin != NULL)
11319 gcc_assert (!declaration || local_scope_p (context_die));
11321 /* Fixup die_parent for the abstract instance of a nested
11322 inline function. */
11323 if (old_die && old_die->die_parent == NULL)
11324 add_child_die (context_die, old_die);
11326 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11327 add_abstract_origin_attribute (subr_die, origin);
11329 else if (old_die)
11331 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11332 unsigned file_index = lookup_filename (s.file);
11334 if (!get_AT_flag (old_die, DW_AT_declaration)
11335 /* We can have a normal definition following an inline one in the
11336 case of redefinition of GNU C extern inlines.
11337 It seems reasonable to use AT_specification in this case. */
11338 && !get_AT (old_die, DW_AT_inline))
11340 /* Detect and ignore this case, where we are trying to output
11341 something we have already output. */
11342 return;
11345 /* If the definition comes from the same place as the declaration,
11346 maybe use the old DIE. We always want the DIE for this function
11347 that has the *_pc attributes to be under comp_unit_die so the
11348 debugger can find it. We also need to do this for abstract
11349 instances of inlines, since the spec requires the out-of-line copy
11350 to have the same parent. For local class methods, this doesn't
11351 apply; we just use the old DIE. */
11352 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11353 && (DECL_ARTIFICIAL (decl)
11354 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11355 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11356 == (unsigned) s.line))))
11358 subr_die = old_die;
11360 /* Clear out the declaration attribute and the formal parameters.
11361 Do not remove all children, because it is possible that this
11362 declaration die was forced using force_decl_die(). In such
11363 cases die that forced declaration die (e.g. TAG_imported_module)
11364 is one of the children that we do not want to remove. */
11365 remove_AT (subr_die, DW_AT_declaration);
11366 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11368 else
11370 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11371 add_AT_specification (subr_die, old_die);
11372 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11373 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11374 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11375 != (unsigned) s.line)
11376 add_AT_unsigned
11377 (subr_die, DW_AT_decl_line, s.line);
11380 else
11382 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11384 if (TREE_PUBLIC (decl))
11385 add_AT_flag (subr_die, DW_AT_external, 1);
11387 add_name_and_src_coords_attributes (subr_die, decl);
11388 if (debug_info_level > DINFO_LEVEL_TERSE)
11390 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11391 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11392 0, 0, context_die);
11395 add_pure_or_virtual_attribute (subr_die, decl);
11396 if (DECL_ARTIFICIAL (decl))
11397 add_AT_flag (subr_die, DW_AT_artificial, 1);
11399 if (TREE_PROTECTED (decl))
11400 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11401 else if (TREE_PRIVATE (decl))
11402 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11405 if (declaration)
11407 if (!old_die || !get_AT (old_die, DW_AT_inline))
11409 add_AT_flag (subr_die, DW_AT_declaration, 1);
11411 /* The first time we see a member function, it is in the context of
11412 the class to which it belongs. We make sure of this by emitting
11413 the class first. The next time is the definition, which is
11414 handled above. The two may come from the same source text.
11416 Note that force_decl_die() forces function declaration die. It is
11417 later reused to represent definition. */
11418 equate_decl_number_to_die (decl, subr_die);
11421 else if (DECL_ABSTRACT (decl))
11423 if (DECL_DECLARED_INLINE_P (decl))
11425 if (cgraph_function_possibly_inlined_p (decl))
11426 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11427 else
11428 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11430 else
11432 if (cgraph_function_possibly_inlined_p (decl))
11433 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11434 else
11435 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11438 equate_decl_number_to_die (decl, subr_die);
11440 else if (!DECL_EXTERNAL (decl))
11442 if (!old_die || !get_AT (old_die, DW_AT_inline))
11443 equate_decl_number_to_die (decl, subr_die);
11445 if (!flag_reorder_blocks_and_partition)
11447 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11448 current_function_funcdef_no);
11449 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11450 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11451 current_function_funcdef_no);
11452 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11454 add_pubname (decl, subr_die);
11455 add_arange (decl, subr_die);
11457 else
11458 { /* Do nothing for now; maybe need to duplicate die, one for
11459 hot section and ond for cold section, then use the hot/cold
11460 section begin/end labels to generate the aranges... */
11462 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11463 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11464 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11465 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11467 add_pubname (decl, subr_die);
11468 add_arange (decl, subr_die);
11469 add_arange (decl, subr_die);
11473 #ifdef MIPS_DEBUGGING_INFO
11474 /* Add a reference to the FDE for this routine. */
11475 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11476 #endif
11478 /* Define the "frame base" location for this routine. We use the
11479 frame pointer or stack pointer registers, since the RTL for local
11480 variables is relative to one of them. */
11481 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11483 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11484 DW_AT_frame_base);
11486 else
11488 fp_reg
11489 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11490 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11493 if (cfun->static_chain_decl)
11494 add_AT_location_description (subr_die, DW_AT_static_link,
11495 loc_descriptor_from_tree (cfun->static_chain_decl));
11498 /* Now output descriptions of the arguments for this function. This gets
11499 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11500 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11501 `...' at the end of the formal parameter list. In order to find out if
11502 there was a trailing ellipsis or not, we must instead look at the type
11503 associated with the FUNCTION_DECL. This will be a node of type
11504 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11505 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11506 an ellipsis at the end. */
11508 /* In the case where we are describing a mere function declaration, all we
11509 need to do here (and all we *can* do here) is to describe the *types* of
11510 its formal parameters. */
11511 if (debug_info_level <= DINFO_LEVEL_TERSE)
11513 else if (declaration)
11514 gen_formal_types_die (decl, subr_die);
11515 else
11517 /* Generate DIEs to represent all known formal parameters. */
11518 tree arg_decls = DECL_ARGUMENTS (decl);
11519 tree parm;
11521 /* When generating DIEs, generate the unspecified_parameters DIE
11522 instead if we come across the arg "__builtin_va_alist" */
11523 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11524 if (TREE_CODE (parm) == PARM_DECL)
11526 if (DECL_NAME (parm)
11527 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11528 "__builtin_va_alist"))
11529 gen_unspecified_parameters_die (parm, subr_die);
11530 else
11531 gen_decl_die (parm, subr_die);
11534 /* Decide whether we need an unspecified_parameters DIE at the end.
11535 There are 2 more cases to do this for: 1) the ansi ... declaration -
11536 this is detectable when the end of the arg list is not a
11537 void_type_node 2) an unprototyped function declaration (not a
11538 definition). This just means that we have no info about the
11539 parameters at all. */
11540 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11541 if (fn_arg_types != NULL)
11543 /* This is the prototyped case, check for.... */
11544 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11545 gen_unspecified_parameters_die (decl, subr_die);
11547 else if (DECL_INITIAL (decl) == NULL_TREE)
11548 gen_unspecified_parameters_die (decl, subr_die);
11551 /* Output Dwarf info for all of the stuff within the body of the function
11552 (if it has one - it may be just a declaration). */
11553 outer_scope = DECL_INITIAL (decl);
11555 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11556 a function. This BLOCK actually represents the outermost binding contour
11557 for the function, i.e. the contour in which the function's formal
11558 parameters and labels get declared. Curiously, it appears that the front
11559 end doesn't actually put the PARM_DECL nodes for the current function onto
11560 the BLOCK_VARS list for this outer scope, but are strung off of the
11561 DECL_ARGUMENTS list for the function instead.
11563 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11564 the LABEL_DECL nodes for the function however, and we output DWARF info
11565 for those in decls_for_scope. Just within the `outer_scope' there will be
11566 a BLOCK node representing the function's outermost pair of curly braces,
11567 and any blocks used for the base and member initializers of a C++
11568 constructor function. */
11569 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11571 /* Emit a DW_TAG_variable DIE for a named return value. */
11572 if (DECL_NAME (DECL_RESULT (decl)))
11573 gen_decl_die (DECL_RESULT (decl), subr_die);
11575 current_function_has_inlines = 0;
11576 decls_for_scope (outer_scope, subr_die, 0);
11578 #if 0 && defined (MIPS_DEBUGGING_INFO)
11579 if (current_function_has_inlines)
11581 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11582 if (! comp_unit_has_inlines)
11584 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11585 comp_unit_has_inlines = 1;
11588 #endif
11590 /* Add the calling convention attribute if requested. */
11591 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11595 /* Generate a DIE to represent a declared data object. */
11597 static void
11598 gen_variable_die (tree decl, dw_die_ref context_die)
11600 tree origin = decl_ultimate_origin (decl);
11601 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11603 dw_die_ref old_die = lookup_decl_die (decl);
11604 int declaration = (DECL_EXTERNAL (decl)
11605 || class_or_namespace_scope_p (context_die));
11607 if (origin != NULL)
11608 add_abstract_origin_attribute (var_die, origin);
11610 /* Loop unrolling can create multiple blocks that refer to the same
11611 static variable, so we must test for the DW_AT_declaration flag.
11613 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11614 copy decls and set the DECL_ABSTRACT flag on them instead of
11615 sharing them.
11617 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11618 else if (old_die && TREE_STATIC (decl)
11619 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11621 /* This is a definition of a C++ class level static. */
11622 add_AT_specification (var_die, old_die);
11623 if (DECL_NAME (decl))
11625 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11626 unsigned file_index = lookup_filename (s.file);
11628 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11629 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11631 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11632 != (unsigned) s.line)
11634 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11637 else
11639 add_name_and_src_coords_attributes (var_die, decl);
11640 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11641 TREE_THIS_VOLATILE (decl), context_die);
11643 if (TREE_PUBLIC (decl))
11644 add_AT_flag (var_die, DW_AT_external, 1);
11646 if (DECL_ARTIFICIAL (decl))
11647 add_AT_flag (var_die, DW_AT_artificial, 1);
11649 if (TREE_PROTECTED (decl))
11650 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11651 else if (TREE_PRIVATE (decl))
11652 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11655 if (declaration)
11656 add_AT_flag (var_die, DW_AT_declaration, 1);
11658 if (DECL_ABSTRACT (decl) || declaration)
11659 equate_decl_number_to_die (decl, var_die);
11661 if (! declaration && ! DECL_ABSTRACT (decl))
11663 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11664 add_pubname (decl, var_die);
11666 else
11667 tree_add_const_value_attribute (var_die, decl);
11670 /* Generate a DIE to represent a label identifier. */
11672 static void
11673 gen_label_die (tree decl, dw_die_ref context_die)
11675 tree origin = decl_ultimate_origin (decl);
11676 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11677 rtx insn;
11678 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11680 if (origin != NULL)
11681 add_abstract_origin_attribute (lbl_die, origin);
11682 else
11683 add_name_and_src_coords_attributes (lbl_die, decl);
11685 if (DECL_ABSTRACT (decl))
11686 equate_decl_number_to_die (decl, lbl_die);
11687 else
11689 insn = DECL_RTL_IF_SET (decl);
11691 /* Deleted labels are programmer specified labels which have been
11692 eliminated because of various optimizations. We still emit them
11693 here so that it is possible to put breakpoints on them. */
11694 if (insn
11695 && (LABEL_P (insn)
11696 || ((NOTE_P (insn)
11697 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11699 /* When optimization is enabled (via -O) some parts of the compiler
11700 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11701 represent source-level labels which were explicitly declared by
11702 the user. This really shouldn't be happening though, so catch
11703 it if it ever does happen. */
11704 gcc_assert (!INSN_DELETED_P (insn));
11706 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11707 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11712 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11713 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11715 static inline void
11716 add_high_low_attributes (tree stmt, dw_die_ref die)
11718 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11720 if (BLOCK_FRAGMENT_CHAIN (stmt))
11722 tree chain;
11724 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11726 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11729 add_ranges (chain);
11730 chain = BLOCK_FRAGMENT_CHAIN (chain);
11732 while (chain);
11733 add_ranges (NULL);
11735 else
11737 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11738 BLOCK_NUMBER (stmt));
11739 add_AT_lbl_id (die, DW_AT_low_pc, label);
11740 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11741 BLOCK_NUMBER (stmt));
11742 add_AT_lbl_id (die, DW_AT_high_pc, label);
11746 /* Generate a DIE for a lexical block. */
11748 static void
11749 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11751 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11753 if (! BLOCK_ABSTRACT (stmt))
11754 add_high_low_attributes (stmt, stmt_die);
11756 decls_for_scope (stmt, stmt_die, depth);
11759 /* Generate a DIE for an inlined subprogram. */
11761 static void
11762 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11764 tree decl = block_ultimate_origin (stmt);
11766 /* Emit info for the abstract instance first, if we haven't yet. We
11767 must emit this even if the block is abstract, otherwise when we
11768 emit the block below (or elsewhere), we may end up trying to emit
11769 a die whose origin die hasn't been emitted, and crashing. */
11770 dwarf2out_abstract_function (decl);
11772 if (! BLOCK_ABSTRACT (stmt))
11774 dw_die_ref subr_die
11775 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11777 add_abstract_origin_attribute (subr_die, decl);
11778 add_high_low_attributes (stmt, subr_die);
11780 decls_for_scope (stmt, subr_die, depth);
11781 current_function_has_inlines = 1;
11783 else
11784 /* We may get here if we're the outer block of function A that was
11785 inlined into function B that was inlined into function C. When
11786 generating debugging info for C, dwarf2out_abstract_function(B)
11787 would mark all inlined blocks as abstract, including this one.
11788 So, we wouldn't (and shouldn't) expect labels to be generated
11789 for this one. Instead, just emit debugging info for
11790 declarations within the block. This is particularly important
11791 in the case of initializers of arguments passed from B to us:
11792 if they're statement expressions containing declarations, we
11793 wouldn't generate dies for their abstract variables, and then,
11794 when generating dies for the real variables, we'd die (pun
11795 intended :-) */
11796 gen_lexical_block_die (stmt, context_die, depth);
11799 /* Generate a DIE for a field in a record, or structure. */
11801 static void
11802 gen_field_die (tree decl, dw_die_ref context_die)
11804 dw_die_ref decl_die;
11806 if (TREE_TYPE (decl) == error_mark_node)
11807 return;
11809 decl_die = new_die (DW_TAG_member, context_die, decl);
11810 add_name_and_src_coords_attributes (decl_die, decl);
11811 add_type_attribute (decl_die, member_declared_type (decl),
11812 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11813 context_die);
11815 if (DECL_BIT_FIELD_TYPE (decl))
11817 add_byte_size_attribute (decl_die, decl);
11818 add_bit_size_attribute (decl_die, decl);
11819 add_bit_offset_attribute (decl_die, decl);
11822 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11823 add_data_member_location_attribute (decl_die, decl);
11825 if (DECL_ARTIFICIAL (decl))
11826 add_AT_flag (decl_die, DW_AT_artificial, 1);
11828 if (TREE_PROTECTED (decl))
11829 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11830 else if (TREE_PRIVATE (decl))
11831 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11833 /* Equate decl number to die, so that we can look up this decl later on. */
11834 equate_decl_number_to_die (decl, decl_die);
11837 #if 0
11838 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11839 Use modified_type_die instead.
11840 We keep this code here just in case these types of DIEs may be needed to
11841 represent certain things in other languages (e.g. Pascal) someday. */
11843 static void
11844 gen_pointer_type_die (tree type, dw_die_ref context_die)
11846 dw_die_ref ptr_die
11847 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11849 equate_type_number_to_die (type, ptr_die);
11850 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11851 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11854 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11855 Use modified_type_die instead.
11856 We keep this code here just in case these types of DIEs may be needed to
11857 represent certain things in other languages (e.g. Pascal) someday. */
11859 static void
11860 gen_reference_type_die (tree type, dw_die_ref context_die)
11862 dw_die_ref ref_die
11863 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11865 equate_type_number_to_die (type, ref_die);
11866 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11867 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11869 #endif
11871 /* Generate a DIE for a pointer to a member type. */
11873 static void
11874 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11876 dw_die_ref ptr_die
11877 = new_die (DW_TAG_ptr_to_member_type,
11878 scope_die_for (type, context_die), type);
11880 equate_type_number_to_die (type, ptr_die);
11881 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11882 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11883 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11886 /* Generate the DIE for the compilation unit. */
11888 static dw_die_ref
11889 gen_compile_unit_die (const char *filename)
11891 dw_die_ref die;
11892 char producer[250];
11893 const char *language_string = lang_hooks.name;
11894 int language;
11896 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11898 if (filename)
11900 add_name_attribute (die, filename);
11901 /* Don't add cwd for <built-in>. */
11902 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11903 add_comp_dir_attribute (die);
11906 sprintf (producer, "%s %s", language_string, version_string);
11908 #ifdef MIPS_DEBUGGING_INFO
11909 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11910 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11911 not appear in the producer string, the debugger reaches the conclusion
11912 that the object file is stripped and has no debugging information.
11913 To get the MIPS/SGI debugger to believe that there is debugging
11914 information in the object file, we add a -g to the producer string. */
11915 if (debug_info_level > DINFO_LEVEL_TERSE)
11916 strcat (producer, " -g");
11917 #endif
11919 add_AT_string (die, DW_AT_producer, producer);
11921 if (strcmp (language_string, "GNU C++") == 0)
11922 language = DW_LANG_C_plus_plus;
11923 else if (strcmp (language_string, "GNU Ada") == 0)
11924 language = DW_LANG_Ada95;
11925 else if (strcmp (language_string, "GNU F77") == 0)
11926 language = DW_LANG_Fortran77;
11927 else if (strcmp (language_string, "GNU F95") == 0)
11928 language = DW_LANG_Fortran95;
11929 else if (strcmp (language_string, "GNU Pascal") == 0)
11930 language = DW_LANG_Pascal83;
11931 else if (strcmp (language_string, "GNU Java") == 0)
11932 language = DW_LANG_Java;
11933 else
11934 language = DW_LANG_C89;
11936 add_AT_unsigned (die, DW_AT_language, language);
11937 return die;
11940 /* Generate a DIE for a string type. */
11942 static void
11943 gen_string_type_die (tree type, dw_die_ref context_die)
11945 dw_die_ref type_die
11946 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11948 equate_type_number_to_die (type, type_die);
11950 /* ??? Fudge the string length attribute for now.
11951 TODO: add string length info. */
11952 #if 0
11953 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11954 bound_representation (upper_bound, 0, 'u');
11955 #endif
11958 /* Generate the DIE for a base class. */
11960 static void
11961 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11963 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11965 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11966 add_data_member_location_attribute (die, binfo);
11968 if (BINFO_VIRTUAL_P (binfo))
11969 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11971 if (access == access_public_node)
11972 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11973 else if (access == access_protected_node)
11974 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11977 /* Generate a DIE for a class member. */
11979 static void
11980 gen_member_die (tree type, dw_die_ref context_die)
11982 tree member;
11983 tree binfo = TYPE_BINFO (type);
11984 dw_die_ref child;
11986 /* If this is not an incomplete type, output descriptions of each of its
11987 members. Note that as we output the DIEs necessary to represent the
11988 members of this record or union type, we will also be trying to output
11989 DIEs to represent the *types* of those members. However the `type'
11990 function (above) will specifically avoid generating type DIEs for member
11991 types *within* the list of member DIEs for this (containing) type except
11992 for those types (of members) which are explicitly marked as also being
11993 members of this (containing) type themselves. The g++ front- end can
11994 force any given type to be treated as a member of some other (containing)
11995 type by setting the TYPE_CONTEXT of the given (member) type to point to
11996 the TREE node representing the appropriate (containing) type. */
11998 /* First output info about the base classes. */
11999 if (binfo)
12001 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
12002 int i;
12003 tree base;
12005 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12006 gen_inheritance_die (base,
12007 (accesses ? VEC_index (tree, accesses, i)
12008 : access_public_node), context_die);
12011 /* Now output info about the data members and type members. */
12012 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12014 /* If we thought we were generating minimal debug info for TYPE
12015 and then changed our minds, some of the member declarations
12016 may have already been defined. Don't define them again, but
12017 do put them in the right order. */
12019 child = lookup_decl_die (member);
12020 if (child)
12021 splice_child_die (context_die, child);
12022 else
12023 gen_decl_die (member, context_die);
12026 /* Now output info about the function members (if any). */
12027 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12029 /* Don't include clones in the member list. */
12030 if (DECL_ABSTRACT_ORIGIN (member))
12031 continue;
12033 child = lookup_decl_die (member);
12034 if (child)
12035 splice_child_die (context_die, child);
12036 else
12037 gen_decl_die (member, context_die);
12041 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12042 is set, we pretend that the type was never defined, so we only get the
12043 member DIEs needed by later specification DIEs. */
12045 static void
12046 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12048 dw_die_ref type_die = lookup_type_die (type);
12049 dw_die_ref scope_die = 0;
12050 int nested = 0;
12051 int complete = (TYPE_SIZE (type)
12052 && (! TYPE_STUB_DECL (type)
12053 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12054 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12056 if (type_die && ! complete)
12057 return;
12059 if (TYPE_CONTEXT (type) != NULL_TREE
12060 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12061 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12062 nested = 1;
12064 scope_die = scope_die_for (type, context_die);
12066 if (! type_die || (nested && scope_die == comp_unit_die))
12067 /* First occurrence of type or toplevel definition of nested class. */
12069 dw_die_ref old_die = type_die;
12071 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12072 ? DW_TAG_structure_type : DW_TAG_union_type,
12073 scope_die, type);
12074 equate_type_number_to_die (type, type_die);
12075 if (old_die)
12076 add_AT_specification (type_die, old_die);
12077 else
12078 add_name_attribute (type_die, type_tag (type));
12080 else
12081 remove_AT (type_die, DW_AT_declaration);
12083 /* If this type has been completed, then give it a byte_size attribute and
12084 then give a list of members. */
12085 if (complete && !ns_decl)
12087 /* Prevent infinite recursion in cases where the type of some member of
12088 this type is expressed in terms of this type itself. */
12089 TREE_ASM_WRITTEN (type) = 1;
12090 add_byte_size_attribute (type_die, type);
12091 if (TYPE_STUB_DECL (type) != NULL_TREE)
12092 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12094 /* If the first reference to this type was as the return type of an
12095 inline function, then it may not have a parent. Fix this now. */
12096 if (type_die->die_parent == NULL)
12097 add_child_die (scope_die, type_die);
12099 push_decl_scope (type);
12100 gen_member_die (type, type_die);
12101 pop_decl_scope ();
12103 /* GNU extension: Record what type our vtable lives in. */
12104 if (TYPE_VFIELD (type))
12106 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12108 gen_type_die (vtype, context_die);
12109 add_AT_die_ref (type_die, DW_AT_containing_type,
12110 lookup_type_die (vtype));
12113 else
12115 add_AT_flag (type_die, DW_AT_declaration, 1);
12117 /* We don't need to do this for function-local types. */
12118 if (TYPE_STUB_DECL (type)
12119 && ! decl_function_context (TYPE_STUB_DECL (type)))
12120 VARRAY_PUSH_TREE (incomplete_types, type);
12124 /* Generate a DIE for a subroutine _type_. */
12126 static void
12127 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12129 tree return_type = TREE_TYPE (type);
12130 dw_die_ref subr_die
12131 = new_die (DW_TAG_subroutine_type,
12132 scope_die_for (type, context_die), type);
12134 equate_type_number_to_die (type, subr_die);
12135 add_prototyped_attribute (subr_die, type);
12136 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12137 gen_formal_types_die (type, subr_die);
12140 /* Generate a DIE for a type definition. */
12142 static void
12143 gen_typedef_die (tree decl, dw_die_ref context_die)
12145 dw_die_ref type_die;
12146 tree origin;
12148 if (TREE_ASM_WRITTEN (decl))
12149 return;
12151 TREE_ASM_WRITTEN (decl) = 1;
12152 type_die = new_die (DW_TAG_typedef, context_die, decl);
12153 origin = decl_ultimate_origin (decl);
12154 if (origin != NULL)
12155 add_abstract_origin_attribute (type_die, origin);
12156 else
12158 tree type;
12160 add_name_and_src_coords_attributes (type_die, decl);
12161 if (DECL_ORIGINAL_TYPE (decl))
12163 type = DECL_ORIGINAL_TYPE (decl);
12165 gcc_assert (type != TREE_TYPE (decl));
12166 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12168 else
12169 type = TREE_TYPE (decl);
12171 add_type_attribute (type_die, type, TREE_READONLY (decl),
12172 TREE_THIS_VOLATILE (decl), context_die);
12175 if (DECL_ABSTRACT (decl))
12176 equate_decl_number_to_die (decl, type_die);
12179 /* Generate a type description DIE. */
12181 static void
12182 gen_type_die (tree type, dw_die_ref context_die)
12184 int need_pop;
12186 if (type == NULL_TREE || type == error_mark_node)
12187 return;
12189 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12190 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12192 if (TREE_ASM_WRITTEN (type))
12193 return;
12195 /* Prevent broken recursion; we can't hand off to the same type. */
12196 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12198 TREE_ASM_WRITTEN (type) = 1;
12199 gen_decl_die (TYPE_NAME (type), context_die);
12200 return;
12203 /* We are going to output a DIE to represent the unqualified version
12204 of this type (i.e. without any const or volatile qualifiers) so
12205 get the main variant (i.e. the unqualified version) of this type
12206 now. (Vectors are special because the debugging info is in the
12207 cloned type itself). */
12208 if (TREE_CODE (type) != VECTOR_TYPE)
12209 type = type_main_variant (type);
12211 if (TREE_ASM_WRITTEN (type))
12212 return;
12214 switch (TREE_CODE (type))
12216 case ERROR_MARK:
12217 break;
12219 case POINTER_TYPE:
12220 case REFERENCE_TYPE:
12221 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12222 ensures that the gen_type_die recursion will terminate even if the
12223 type is recursive. Recursive types are possible in Ada. */
12224 /* ??? We could perhaps do this for all types before the switch
12225 statement. */
12226 TREE_ASM_WRITTEN (type) = 1;
12228 /* For these types, all that is required is that we output a DIE (or a
12229 set of DIEs) to represent the "basis" type. */
12230 gen_type_die (TREE_TYPE (type), context_die);
12231 break;
12233 case OFFSET_TYPE:
12234 /* This code is used for C++ pointer-to-data-member types.
12235 Output a description of the relevant class type. */
12236 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12238 /* Output a description of the type of the object pointed to. */
12239 gen_type_die (TREE_TYPE (type), context_die);
12241 /* Now output a DIE to represent this pointer-to-data-member type
12242 itself. */
12243 gen_ptr_to_mbr_type_die (type, context_die);
12244 break;
12246 case FUNCTION_TYPE:
12247 /* Force out return type (in case it wasn't forced out already). */
12248 gen_type_die (TREE_TYPE (type), context_die);
12249 gen_subroutine_type_die (type, context_die);
12250 break;
12252 case METHOD_TYPE:
12253 /* Force out return type (in case it wasn't forced out already). */
12254 gen_type_die (TREE_TYPE (type), context_die);
12255 gen_subroutine_type_die (type, context_die);
12256 break;
12258 case ARRAY_TYPE:
12259 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12261 gen_type_die (TREE_TYPE (type), context_die);
12262 gen_string_type_die (type, context_die);
12264 else
12265 gen_array_type_die (type, context_die);
12266 break;
12268 case VECTOR_TYPE:
12269 gen_array_type_die (type, context_die);
12270 break;
12272 case ENUMERAL_TYPE:
12273 case RECORD_TYPE:
12274 case UNION_TYPE:
12275 case QUAL_UNION_TYPE:
12276 /* If this is a nested type whose containing class hasn't been written
12277 out yet, writing it out will cover this one, too. This does not apply
12278 to instantiations of member class templates; they need to be added to
12279 the containing class as they are generated. FIXME: This hurts the
12280 idea of combining type decls from multiple TUs, since we can't predict
12281 what set of template instantiations we'll get. */
12282 if (TYPE_CONTEXT (type)
12283 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12284 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12286 gen_type_die (TYPE_CONTEXT (type), context_die);
12288 if (TREE_ASM_WRITTEN (type))
12289 return;
12291 /* If that failed, attach ourselves to the stub. */
12292 push_decl_scope (TYPE_CONTEXT (type));
12293 context_die = lookup_type_die (TYPE_CONTEXT (type));
12294 need_pop = 1;
12296 else
12298 declare_in_namespace (type, context_die);
12299 need_pop = 0;
12302 if (TREE_CODE (type) == ENUMERAL_TYPE)
12303 gen_enumeration_type_die (type, context_die);
12304 else
12305 gen_struct_or_union_type_die (type, context_die);
12307 if (need_pop)
12308 pop_decl_scope ();
12310 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12311 it up if it is ever completed. gen_*_type_die will set it for us
12312 when appropriate. */
12313 return;
12315 case VOID_TYPE:
12316 case INTEGER_TYPE:
12317 case REAL_TYPE:
12318 case COMPLEX_TYPE:
12319 case BOOLEAN_TYPE:
12320 case CHAR_TYPE:
12321 /* No DIEs needed for fundamental types. */
12322 break;
12324 case LANG_TYPE:
12325 /* No Dwarf representation currently defined. */
12326 break;
12328 default:
12329 gcc_unreachable ();
12332 TREE_ASM_WRITTEN (type) = 1;
12335 /* Generate a DIE for a tagged type instantiation. */
12337 static void
12338 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12340 if (type == NULL_TREE || type == error_mark_node)
12341 return;
12343 /* We are going to output a DIE to represent the unqualified version of
12344 this type (i.e. without any const or volatile qualifiers) so make sure
12345 that we have the main variant (i.e. the unqualified version) of this
12346 type now. */
12347 gcc_assert (type == type_main_variant (type));
12349 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12350 an instance of an unresolved type. */
12352 switch (TREE_CODE (type))
12354 case ERROR_MARK:
12355 break;
12357 case ENUMERAL_TYPE:
12358 gen_inlined_enumeration_type_die (type, context_die);
12359 break;
12361 case RECORD_TYPE:
12362 gen_inlined_structure_type_die (type, context_die);
12363 break;
12365 case UNION_TYPE:
12366 case QUAL_UNION_TYPE:
12367 gen_inlined_union_type_die (type, context_die);
12368 break;
12370 default:
12371 gcc_unreachable ();
12375 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12376 things which are local to the given block. */
12378 static void
12379 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12381 int must_output_die = 0;
12382 tree origin;
12383 tree decl;
12384 enum tree_code origin_code;
12386 /* Ignore blocks that are NULL. */
12387 if (stmt == NULL_TREE)
12388 return;
12390 /* If the block is one fragment of a non-contiguous block, do not
12391 process the variables, since they will have been done by the
12392 origin block. Do process subblocks. */
12393 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12395 tree sub;
12397 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12398 gen_block_die (sub, context_die, depth + 1);
12400 return;
12403 /* Determine the "ultimate origin" of this block. This block may be an
12404 inlined instance of an inlined instance of inline function, so we have
12405 to trace all of the way back through the origin chain to find out what
12406 sort of node actually served as the original seed for the creation of
12407 the current block. */
12408 origin = block_ultimate_origin (stmt);
12409 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12411 /* Determine if we need to output any Dwarf DIEs at all to represent this
12412 block. */
12413 if (origin_code == FUNCTION_DECL)
12414 /* The outer scopes for inlinings *must* always be represented. We
12415 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12416 must_output_die = 1;
12417 else
12419 /* In the case where the current block represents an inlining of the
12420 "body block" of an inline function, we must *NOT* output any DIE for
12421 this block because we have already output a DIE to represent the whole
12422 inlined function scope and the "body block" of any function doesn't
12423 really represent a different scope according to ANSI C rules. So we
12424 check here to make sure that this block does not represent a "body
12425 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12426 if (! is_body_block (origin ? origin : stmt))
12428 /* Determine if this block directly contains any "significant"
12429 local declarations which we will need to output DIEs for. */
12430 if (debug_info_level > DINFO_LEVEL_TERSE)
12431 /* We are not in terse mode so *any* local declaration counts
12432 as being a "significant" one. */
12433 must_output_die = (BLOCK_VARS (stmt) != NULL
12434 && (TREE_USED (stmt)
12435 || TREE_ASM_WRITTEN (stmt)
12436 || BLOCK_ABSTRACT (stmt)));
12437 else
12438 /* We are in terse mode, so only local (nested) function
12439 definitions count as "significant" local declarations. */
12440 for (decl = BLOCK_VARS (stmt);
12441 decl != NULL; decl = TREE_CHAIN (decl))
12442 if (TREE_CODE (decl) == FUNCTION_DECL
12443 && DECL_INITIAL (decl))
12445 must_output_die = 1;
12446 break;
12451 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12452 DIE for any block which contains no significant local declarations at
12453 all. Rather, in such cases we just call `decls_for_scope' so that any
12454 needed Dwarf info for any sub-blocks will get properly generated. Note
12455 that in terse mode, our definition of what constitutes a "significant"
12456 local declaration gets restricted to include only inlined function
12457 instances and local (nested) function definitions. */
12458 if (must_output_die)
12460 if (origin_code == FUNCTION_DECL)
12461 gen_inlined_subroutine_die (stmt, context_die, depth);
12462 else
12463 gen_lexical_block_die (stmt, context_die, depth);
12465 else
12466 decls_for_scope (stmt, context_die, depth);
12469 /* Generate all of the decls declared within a given scope and (recursively)
12470 all of its sub-blocks. */
12472 static void
12473 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12475 tree decl;
12476 tree subblocks;
12478 /* Ignore NULL blocks. */
12479 if (stmt == NULL_TREE)
12480 return;
12482 if (TREE_USED (stmt))
12484 /* Output the DIEs to represent all of the data objects and typedefs
12485 declared directly within this block but not within any nested
12486 sub-blocks. Also, nested function and tag DIEs have been
12487 generated with a parent of NULL; fix that up now. */
12488 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12490 dw_die_ref die;
12492 if (TREE_CODE (decl) == FUNCTION_DECL)
12493 die = lookup_decl_die (decl);
12494 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12495 die = lookup_type_die (TREE_TYPE (decl));
12496 else
12497 die = NULL;
12499 if (die != NULL && die->die_parent == NULL)
12500 add_child_die (context_die, die);
12501 else
12502 gen_decl_die (decl, context_die);
12506 /* If we're at -g1, we're not interested in subblocks. */
12507 if (debug_info_level <= DINFO_LEVEL_TERSE)
12508 return;
12510 /* Output the DIEs to represent all sub-blocks (and the items declared
12511 therein) of this block. */
12512 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12513 subblocks != NULL;
12514 subblocks = BLOCK_CHAIN (subblocks))
12515 gen_block_die (subblocks, context_die, depth + 1);
12518 /* Is this a typedef we can avoid emitting? */
12520 static inline int
12521 is_redundant_typedef (tree decl)
12523 if (TYPE_DECL_IS_STUB (decl))
12524 return 1;
12526 if (DECL_ARTIFICIAL (decl)
12527 && DECL_CONTEXT (decl)
12528 && is_tagged_type (DECL_CONTEXT (decl))
12529 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12530 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12531 /* Also ignore the artificial member typedef for the class name. */
12532 return 1;
12534 return 0;
12537 /* Returns the DIE for decl or aborts. */
12539 static dw_die_ref
12540 force_decl_die (tree decl)
12542 dw_die_ref decl_die;
12543 unsigned saved_external_flag;
12544 tree save_fn = NULL_TREE;
12545 decl_die = lookup_decl_die (decl);
12546 if (!decl_die)
12548 dw_die_ref context_die;
12549 tree decl_context = DECL_CONTEXT (decl);
12550 if (decl_context)
12552 /* Find die that represents this context. */
12553 if (TYPE_P (decl_context))
12554 context_die = force_type_die (decl_context);
12555 else
12556 context_die = force_decl_die (decl_context);
12558 else
12559 context_die = comp_unit_die;
12561 switch (TREE_CODE (decl))
12563 case FUNCTION_DECL:
12564 /* Clear current_function_decl, so that gen_subprogram_die thinks
12565 that this is a declaration. At this point, we just want to force
12566 declaration die. */
12567 save_fn = current_function_decl;
12568 current_function_decl = NULL_TREE;
12569 gen_subprogram_die (decl, context_die);
12570 current_function_decl = save_fn;
12571 break;
12573 case VAR_DECL:
12574 /* Set external flag to force declaration die. Restore it after
12575 gen_decl_die() call. */
12576 saved_external_flag = DECL_EXTERNAL (decl);
12577 DECL_EXTERNAL (decl) = 1;
12578 gen_decl_die (decl, context_die);
12579 DECL_EXTERNAL (decl) = saved_external_flag;
12580 break;
12582 case NAMESPACE_DECL:
12583 dwarf2out_decl (decl);
12584 break;
12586 default:
12587 gcc_unreachable ();
12590 /* See if we can find the die for this deci now.
12591 If not then abort. */
12592 if (!decl_die)
12593 decl_die = lookup_decl_die (decl);
12594 gcc_assert (decl_die);
12597 return decl_die;
12600 /* Returns the DIE for decl or aborts. */
12602 static dw_die_ref
12603 force_type_die (tree type)
12605 dw_die_ref type_die;
12607 type_die = lookup_type_die (type);
12608 if (!type_die)
12610 dw_die_ref context_die;
12611 if (TYPE_CONTEXT (type))
12612 if (TYPE_P (TYPE_CONTEXT (type)))
12613 context_die = force_type_die (TYPE_CONTEXT (type));
12614 else
12615 context_die = force_decl_die (TYPE_CONTEXT (type));
12616 else
12617 context_die = comp_unit_die;
12619 gen_type_die (type, context_die);
12620 type_die = lookup_type_die (type);
12621 gcc_assert (type_die);
12623 return type_die;
12626 /* Force out any required namespaces to be able to output DECL,
12627 and return the new context_die for it, if it's changed. */
12629 static dw_die_ref
12630 setup_namespace_context (tree thing, dw_die_ref context_die)
12632 tree context = (DECL_P (thing)
12633 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12634 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12635 /* Force out the namespace. */
12636 context_die = force_decl_die (context);
12638 return context_die;
12641 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12642 type) within its namespace, if appropriate.
12644 For compatibility with older debuggers, namespace DIEs only contain
12645 declarations; all definitions are emitted at CU scope. */
12647 static void
12648 declare_in_namespace (tree thing, dw_die_ref context_die)
12650 dw_die_ref ns_context;
12652 if (debug_info_level <= DINFO_LEVEL_TERSE)
12653 return;
12655 /* If this decl is from an inlined function, then don't try to emit it in its
12656 namespace, as we will get confused. It would have already been emitted
12657 when the abstract instance of the inline function was emitted anyways. */
12658 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12659 return;
12661 ns_context = setup_namespace_context (thing, context_die);
12663 if (ns_context != context_die)
12665 if (DECL_P (thing))
12666 gen_decl_die (thing, ns_context);
12667 else
12668 gen_type_die (thing, ns_context);
12672 /* Generate a DIE for a namespace or namespace alias. */
12674 static void
12675 gen_namespace_die (tree decl)
12677 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12679 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12680 they are an alias of. */
12681 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12683 /* Output a real namespace. */
12684 dw_die_ref namespace_die
12685 = new_die (DW_TAG_namespace, context_die, decl);
12686 add_name_and_src_coords_attributes (namespace_die, decl);
12687 equate_decl_number_to_die (decl, namespace_die);
12689 else
12691 /* Output a namespace alias. */
12693 /* Force out the namespace we are an alias of, if necessary. */
12694 dw_die_ref origin_die
12695 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12697 /* Now create the namespace alias DIE. */
12698 dw_die_ref namespace_die
12699 = new_die (DW_TAG_imported_declaration, context_die, decl);
12700 add_name_and_src_coords_attributes (namespace_die, decl);
12701 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12702 equate_decl_number_to_die (decl, namespace_die);
12706 /* Generate Dwarf debug information for a decl described by DECL. */
12708 static void
12709 gen_decl_die (tree decl, dw_die_ref context_die)
12711 tree origin;
12713 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12714 return;
12716 switch (TREE_CODE (decl))
12718 case ERROR_MARK:
12719 break;
12721 case CONST_DECL:
12722 /* The individual enumerators of an enum type get output when we output
12723 the Dwarf representation of the relevant enum type itself. */
12724 break;
12726 case FUNCTION_DECL:
12727 /* Don't output any DIEs to represent mere function declarations,
12728 unless they are class members or explicit block externs. */
12729 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12730 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12731 break;
12733 #if 0
12734 /* FIXME */
12735 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12736 on local redeclarations of global functions. That seems broken. */
12737 if (current_function_decl != decl)
12738 /* This is only a declaration. */;
12739 #endif
12741 /* If we're emitting a clone, emit info for the abstract instance. */
12742 if (DECL_ORIGIN (decl) != decl)
12743 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12745 /* If we're emitting an out-of-line copy of an inline function,
12746 emit info for the abstract instance and set up to refer to it. */
12747 else if (cgraph_function_possibly_inlined_p (decl)
12748 && ! DECL_ABSTRACT (decl)
12749 && ! class_or_namespace_scope_p (context_die)
12750 /* dwarf2out_abstract_function won't emit a die if this is just
12751 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12752 that case, because that works only if we have a die. */
12753 && DECL_INITIAL (decl) != NULL_TREE)
12755 dwarf2out_abstract_function (decl);
12756 set_decl_origin_self (decl);
12759 /* Otherwise we're emitting the primary DIE for this decl. */
12760 else if (debug_info_level > DINFO_LEVEL_TERSE)
12762 /* Before we describe the FUNCTION_DECL itself, make sure that we
12763 have described its return type. */
12764 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12766 /* And its virtual context. */
12767 if (DECL_VINDEX (decl) != NULL_TREE)
12768 gen_type_die (DECL_CONTEXT (decl), context_die);
12770 /* And its containing type. */
12771 origin = decl_class_context (decl);
12772 if (origin != NULL_TREE)
12773 gen_type_die_for_member (origin, decl, context_die);
12775 /* And its containing namespace. */
12776 declare_in_namespace (decl, context_die);
12779 /* Now output a DIE to represent the function itself. */
12780 gen_subprogram_die (decl, context_die);
12781 break;
12783 case TYPE_DECL:
12784 /* If we are in terse mode, don't generate any DIEs to represent any
12785 actual typedefs. */
12786 if (debug_info_level <= DINFO_LEVEL_TERSE)
12787 break;
12789 /* In the special case of a TYPE_DECL node representing the declaration
12790 of some type tag, if the given TYPE_DECL is marked as having been
12791 instantiated from some other (original) TYPE_DECL node (e.g. one which
12792 was generated within the original definition of an inline function) we
12793 have to generate a special (abbreviated) DW_TAG_structure_type,
12794 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12795 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12797 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12798 break;
12801 if (is_redundant_typedef (decl))
12802 gen_type_die (TREE_TYPE (decl), context_die);
12803 else
12804 /* Output a DIE to represent the typedef itself. */
12805 gen_typedef_die (decl, context_die);
12806 break;
12808 case LABEL_DECL:
12809 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12810 gen_label_die (decl, context_die);
12811 break;
12813 case VAR_DECL:
12814 case RESULT_DECL:
12815 /* If we are in terse mode, don't generate any DIEs to represent any
12816 variable declarations or definitions. */
12817 if (debug_info_level <= DINFO_LEVEL_TERSE)
12818 break;
12820 /* Output any DIEs that are needed to specify the type of this data
12821 object. */
12822 gen_type_die (TREE_TYPE (decl), context_die);
12824 /* And its containing type. */
12825 origin = decl_class_context (decl);
12826 if (origin != NULL_TREE)
12827 gen_type_die_for_member (origin, decl, context_die);
12829 /* And its containing namespace. */
12830 declare_in_namespace (decl, context_die);
12832 /* Now output the DIE to represent the data object itself. This gets
12833 complicated because of the possibility that the VAR_DECL really
12834 represents an inlined instance of a formal parameter for an inline
12835 function. */
12836 origin = decl_ultimate_origin (decl);
12837 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12838 gen_formal_parameter_die (decl, context_die);
12839 else
12840 gen_variable_die (decl, context_die);
12841 break;
12843 case FIELD_DECL:
12844 /* Ignore the nameless fields that are used to skip bits but handle C++
12845 anonymous unions and structs. */
12846 if (DECL_NAME (decl) != NULL_TREE
12847 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12848 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12850 gen_type_die (member_declared_type (decl), context_die);
12851 gen_field_die (decl, context_die);
12853 break;
12855 case PARM_DECL:
12856 gen_type_die (TREE_TYPE (decl), context_die);
12857 gen_formal_parameter_die (decl, context_die);
12858 break;
12860 case NAMESPACE_DECL:
12861 gen_namespace_die (decl);
12862 break;
12864 default:
12865 /* Probably some frontend-internal decl. Assume we don't care. */
12866 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12867 break;
12871 /* Add Ada "use" clause information for SGI Workshop debugger. */
12873 void
12874 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12876 unsigned int file_index;
12878 if (filename != NULL)
12880 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12881 tree context_list_decl
12882 = build_decl (LABEL_DECL, get_identifier (context_list),
12883 void_type_node);
12885 TREE_PUBLIC (context_list_decl) = TRUE;
12886 add_name_attribute (unit_die, context_list);
12887 file_index = lookup_filename (filename);
12888 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12889 add_pubname (context_list_decl, unit_die);
12893 /* Output debug information for global decl DECL. Called from toplev.c after
12894 compilation proper has finished. */
12896 static void
12897 dwarf2out_global_decl (tree decl)
12899 /* Output DWARF2 information for file-scope tentative data object
12900 declarations, file-scope (extern) function declarations (which had no
12901 corresponding body) and file-scope tagged type declarations and
12902 definitions which have not yet been forced out. */
12903 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12904 dwarf2out_decl (decl);
12907 /* Output debug information for type decl DECL. Called from toplev.c
12908 and from language front ends (to record built-in types). */
12909 static void
12910 dwarf2out_type_decl (tree decl, int local)
12912 if (!local)
12913 dwarf2out_decl (decl);
12916 /* Output debug information for imported module or decl. */
12918 static void
12919 dwarf2out_imported_module_or_decl (tree decl, tree context)
12921 dw_die_ref imported_die, at_import_die;
12922 dw_die_ref scope_die;
12923 unsigned file_index;
12924 expanded_location xloc;
12926 if (debug_info_level <= DINFO_LEVEL_TERSE)
12927 return;
12929 gcc_assert (decl);
12931 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12932 We need decl DIE for reference and scope die. First, get DIE for the decl
12933 itself. */
12935 /* Get the scope die for decl context. Use comp_unit_die for global module
12936 or decl. If die is not found for non globals, force new die. */
12937 if (!context)
12938 scope_die = comp_unit_die;
12939 else if (TYPE_P (context))
12940 scope_die = force_type_die (context);
12941 else
12942 scope_die = force_decl_die (context);
12944 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12945 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12946 at_import_die = force_type_die (TREE_TYPE (decl));
12947 else
12949 at_import_die = lookup_decl_die (decl);
12950 if (!at_import_die)
12952 /* If we're trying to avoid duplicate debug info, we may not have
12953 emitted the member decl for this field. Emit it now. */
12954 if (TREE_CODE (decl) == FIELD_DECL)
12956 tree type = DECL_CONTEXT (decl);
12957 dw_die_ref type_context_die;
12959 if (TYPE_CONTEXT (type))
12960 if (TYPE_P (TYPE_CONTEXT (type)))
12961 type_context_die = force_type_die (TYPE_CONTEXT (type));
12962 else
12963 type_context_die = force_decl_die (TYPE_CONTEXT (type));
12964 else
12965 type_context_die = comp_unit_die;
12966 gen_type_die_for_member (type, decl, type_context_die);
12968 at_import_die = force_decl_die (decl);
12972 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12973 if (TREE_CODE (decl) == NAMESPACE_DECL)
12974 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12975 else
12976 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12978 xloc = expand_location (input_location);
12979 file_index = lookup_filename (xloc.file);
12980 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12981 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12982 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12985 /* Write the debugging output for DECL. */
12987 void
12988 dwarf2out_decl (tree decl)
12990 dw_die_ref context_die = comp_unit_die;
12992 switch (TREE_CODE (decl))
12994 case ERROR_MARK:
12995 return;
12997 case FUNCTION_DECL:
12998 /* What we would really like to do here is to filter out all mere
12999 file-scope declarations of file-scope functions which are never
13000 referenced later within this translation unit (and keep all of ones
13001 that *are* referenced later on) but we aren't clairvoyant, so we have
13002 no idea which functions will be referenced in the future (i.e. later
13003 on within the current translation unit). So here we just ignore all
13004 file-scope function declarations which are not also definitions. If
13005 and when the debugger needs to know something about these functions,
13006 it will have to hunt around and find the DWARF information associated
13007 with the definition of the function.
13009 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13010 nodes represent definitions and which ones represent mere
13011 declarations. We have to check DECL_INITIAL instead. That's because
13012 the C front-end supports some weird semantics for "extern inline"
13013 function definitions. These can get inlined within the current
13014 translation unit (an thus, we need to generate Dwarf info for their
13015 abstract instances so that the Dwarf info for the concrete inlined
13016 instances can have something to refer to) but the compiler never
13017 generates any out-of-lines instances of such things (despite the fact
13018 that they *are* definitions).
13020 The important point is that the C front-end marks these "extern
13021 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13022 them anyway. Note that the C++ front-end also plays some similar games
13023 for inline function definitions appearing within include files which
13024 also contain `#pragma interface' pragmas. */
13025 if (DECL_INITIAL (decl) == NULL_TREE)
13026 return;
13028 /* If we're a nested function, initially use a parent of NULL; if we're
13029 a plain function, this will be fixed up in decls_for_scope. If
13030 we're a method, it will be ignored, since we already have a DIE. */
13031 if (decl_function_context (decl)
13032 /* But if we're in terse mode, we don't care about scope. */
13033 && debug_info_level > DINFO_LEVEL_TERSE)
13034 context_die = NULL;
13035 break;
13037 case VAR_DECL:
13038 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13039 declaration and if the declaration was never even referenced from
13040 within this entire compilation unit. We suppress these DIEs in
13041 order to save space in the .debug section (by eliminating entries
13042 which are probably useless). Note that we must not suppress
13043 block-local extern declarations (whether used or not) because that
13044 would screw-up the debugger's name lookup mechanism and cause it to
13045 miss things which really ought to be in scope at a given point. */
13046 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13047 return;
13049 /* If we are in terse mode, don't generate any DIEs to represent any
13050 variable declarations or definitions. */
13051 if (debug_info_level <= DINFO_LEVEL_TERSE)
13052 return;
13053 break;
13055 case NAMESPACE_DECL:
13056 if (debug_info_level <= DINFO_LEVEL_TERSE)
13057 return;
13058 if (lookup_decl_die (decl) != NULL)
13059 return;
13060 break;
13062 case TYPE_DECL:
13063 /* Don't emit stubs for types unless they are needed by other DIEs. */
13064 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13065 return;
13067 /* Don't bother trying to generate any DIEs to represent any of the
13068 normal built-in types for the language we are compiling. */
13069 if (DECL_IS_BUILTIN (decl))
13071 /* OK, we need to generate one for `bool' so GDB knows what type
13072 comparisons have. */
13073 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13074 == DW_LANG_C_plus_plus)
13075 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13076 && ! DECL_IGNORED_P (decl))
13077 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13079 return;
13082 /* If we are in terse mode, don't generate any DIEs for types. */
13083 if (debug_info_level <= DINFO_LEVEL_TERSE)
13084 return;
13086 /* If we're a function-scope tag, initially use a parent of NULL;
13087 this will be fixed up in decls_for_scope. */
13088 if (decl_function_context (decl))
13089 context_die = NULL;
13091 break;
13093 default:
13094 return;
13097 gen_decl_die (decl, context_die);
13100 /* Output a marker (i.e. a label) for the beginning of the generated code for
13101 a lexical block. */
13103 static void
13104 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13105 unsigned int blocknum)
13107 current_function_section (current_function_decl);
13108 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13111 /* Output a marker (i.e. a label) for the end of the generated code for a
13112 lexical block. */
13114 static void
13115 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13117 current_function_section (current_function_decl);
13118 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13121 /* Returns nonzero if it is appropriate not to emit any debugging
13122 information for BLOCK, because it doesn't contain any instructions.
13124 Don't allow this for blocks with nested functions or local classes
13125 as we would end up with orphans, and in the presence of scheduling
13126 we may end up calling them anyway. */
13128 static bool
13129 dwarf2out_ignore_block (tree block)
13131 tree decl;
13133 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13134 if (TREE_CODE (decl) == FUNCTION_DECL
13135 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13136 return 0;
13138 return 1;
13141 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13142 dwarf2out.c) and return its "index". The index of each (known) filename is
13143 just a unique number which is associated with only that one filename. We
13144 need such numbers for the sake of generating labels (in the .debug_sfnames
13145 section) and references to those files numbers (in the .debug_srcinfo
13146 and.debug_macinfo sections). If the filename given as an argument is not
13147 found in our current list, add it to the list and assign it the next
13148 available unique index number. In order to speed up searches, we remember
13149 the index of the filename was looked up last. This handles the majority of
13150 all searches. */
13152 static unsigned
13153 lookup_filename (const char *file_name)
13155 size_t i, n;
13156 char *save_file_name;
13158 /* Check to see if the file name that was searched on the previous
13159 call matches this file name. If so, return the index. */
13160 if (file_table_last_lookup_index != 0)
13162 const char *last
13163 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13164 if (strcmp (file_name, last) == 0)
13165 return file_table_last_lookup_index;
13168 /* Didn't match the previous lookup, search the table. */
13169 n = VARRAY_ACTIVE_SIZE (file_table);
13170 for (i = 1; i < n; i++)
13171 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13173 file_table_last_lookup_index = i;
13174 return i;
13177 /* Add the new entry to the end of the filename table. */
13178 file_table_last_lookup_index = n;
13179 save_file_name = (char *) ggc_strdup (file_name);
13180 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13181 VARRAY_PUSH_UINT (file_table_emitted, 0);
13183 return i;
13186 static int
13187 maybe_emit_file (int fileno)
13189 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13191 if (!VARRAY_UINT (file_table_emitted, fileno))
13193 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13194 fprintf (asm_out_file, "\t.file %u ",
13195 VARRAY_UINT (file_table_emitted, fileno));
13196 output_quoted_string (asm_out_file,
13197 VARRAY_CHAR_PTR (file_table, fileno));
13198 fputc ('\n', asm_out_file);
13200 return VARRAY_UINT (file_table_emitted, fileno);
13202 else
13203 return fileno;
13206 static void
13207 init_file_table (void)
13209 /* Allocate the initial hunk of the file_table. */
13210 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13211 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13213 /* Skip the first entry - file numbers begin at 1. */
13214 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13215 VARRAY_PUSH_UINT (file_table_emitted, 0);
13216 file_table_last_lookup_index = 0;
13219 /* Called by the final INSN scan whenever we see a var location. We
13220 use it to drop labels in the right places, and throw the location in
13221 our lookup table. */
13223 static void
13224 dwarf2out_var_location (rtx loc_note)
13226 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13227 struct var_loc_node *newloc;
13228 rtx prev_insn;
13229 static rtx last_insn;
13230 static const char *last_label;
13231 tree decl;
13233 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13234 return;
13235 prev_insn = PREV_INSN (loc_note);
13237 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13238 /* If the insn we processed last time is the previous insn
13239 and it is also a var location note, use the label we emitted
13240 last time. */
13241 if (last_insn != NULL_RTX
13242 && last_insn == prev_insn
13243 && NOTE_P (prev_insn)
13244 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13246 newloc->label = last_label;
13248 else
13250 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13251 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13252 loclabel_num++;
13253 newloc->label = ggc_strdup (loclabel);
13255 newloc->var_loc_note = loc_note;
13256 newloc->next = NULL;
13258 if (last_text_section == in_unlikely_executed_text
13259 || (last_text_section == in_named
13260 && last_text_section_name == unlikely_text_section_name))
13261 newloc->section_label = unlikely_section_label;
13262 else
13263 newloc->section_label = text_section_label;
13265 last_insn = loc_note;
13266 last_label = newloc->label;
13267 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13268 if (DECL_DEBUG_EXPR (decl) && DECL_DEBUG_EXPR_IS_FROM (decl)
13269 && DECL_P (DECL_DEBUG_EXPR (decl)))
13270 decl = DECL_DEBUG_EXPR (decl);
13271 add_var_loc_to_decl (decl, newloc);
13274 /* We need to reset the locations at the beginning of each
13275 function. We can't do this in the end_function hook, because the
13276 declarations that use the locations won't have been outputted when
13277 that hook is called. */
13279 static void
13280 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13282 htab_empty (decl_loc_table);
13285 /* Output a label to mark the beginning of a source code line entry
13286 and record information relating to this source line, in
13287 'line_info_table' for later output of the .debug_line section. */
13289 static void
13290 dwarf2out_source_line (unsigned int line, const char *filename)
13292 if (debug_info_level >= DINFO_LEVEL_NORMAL
13293 && line != 0)
13295 current_function_section (current_function_decl);
13297 /* If requested, emit something human-readable. */
13298 if (flag_debug_asm)
13299 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13300 filename, line);
13302 if (DWARF2_ASM_LINE_DEBUG_INFO)
13304 unsigned file_num = lookup_filename (filename);
13306 file_num = maybe_emit_file (file_num);
13308 /* Emit the .loc directive understood by GNU as. */
13309 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13311 /* Indicate that line number info exists. */
13312 line_info_table_in_use++;
13314 /* Indicate that multiple line number tables exist. */
13315 if (DECL_SECTION_NAME (current_function_decl))
13316 separate_line_info_table_in_use++;
13318 else if (DECL_SECTION_NAME (current_function_decl))
13320 dw_separate_line_info_ref line_info;
13321 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13322 separate_line_info_table_in_use);
13324 /* Expand the line info table if necessary. */
13325 if (separate_line_info_table_in_use
13326 == separate_line_info_table_allocated)
13328 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13329 separate_line_info_table
13330 = ggc_realloc (separate_line_info_table,
13331 separate_line_info_table_allocated
13332 * sizeof (dw_separate_line_info_entry));
13333 memset (separate_line_info_table
13334 + separate_line_info_table_in_use,
13336 (LINE_INFO_TABLE_INCREMENT
13337 * sizeof (dw_separate_line_info_entry)));
13340 /* Add the new entry at the end of the line_info_table. */
13341 line_info
13342 = &separate_line_info_table[separate_line_info_table_in_use++];
13343 line_info->dw_file_num = lookup_filename (filename);
13344 line_info->dw_line_num = line;
13345 line_info->function = current_function_funcdef_no;
13347 else
13349 dw_line_info_ref line_info;
13351 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13352 line_info_table_in_use);
13354 /* Expand the line info table if necessary. */
13355 if (line_info_table_in_use == line_info_table_allocated)
13357 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13358 line_info_table
13359 = ggc_realloc (line_info_table,
13360 (line_info_table_allocated
13361 * sizeof (dw_line_info_entry)));
13362 memset (line_info_table + line_info_table_in_use, 0,
13363 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13366 /* Add the new entry at the end of the line_info_table. */
13367 line_info = &line_info_table[line_info_table_in_use++];
13368 line_info->dw_file_num = lookup_filename (filename);
13369 line_info->dw_line_num = line;
13374 /* Record the beginning of a new source file. */
13376 static void
13377 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13379 if (flag_eliminate_dwarf2_dups)
13381 /* Record the beginning of the file for break_out_includes. */
13382 dw_die_ref bincl_die;
13384 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13385 add_AT_string (bincl_die, DW_AT_name, filename);
13388 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13390 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13391 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13392 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13393 lineno);
13394 maybe_emit_file (lookup_filename (filename));
13395 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13396 "Filename we just started");
13400 /* Record the end of a source file. */
13402 static void
13403 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13405 if (flag_eliminate_dwarf2_dups)
13406 /* Record the end of the file for break_out_includes. */
13407 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13409 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13411 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13412 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13416 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13417 the tail part of the directive line, i.e. the part which is past the
13418 initial whitespace, #, whitespace, directive-name, whitespace part. */
13420 static void
13421 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13422 const char *buffer ATTRIBUTE_UNUSED)
13424 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13426 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13427 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13428 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13429 dw2_asm_output_nstring (buffer, -1, "The macro");
13433 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13434 the tail part of the directive line, i.e. the part which is past the
13435 initial whitespace, #, whitespace, directive-name, whitespace part. */
13437 static void
13438 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13439 const char *buffer ATTRIBUTE_UNUSED)
13441 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13443 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13444 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13445 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13446 dw2_asm_output_nstring (buffer, -1, "The macro");
13450 /* Set up for Dwarf output at the start of compilation. */
13452 static void
13453 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13455 init_file_table ();
13457 /* Allocate the decl_die_table. */
13458 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13459 decl_die_table_eq, NULL);
13461 /* Allocate the decl_loc_table. */
13462 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13463 decl_loc_table_eq, NULL);
13465 /* Allocate the initial hunk of the decl_scope_table. */
13466 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13468 /* Allocate the initial hunk of the abbrev_die_table. */
13469 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13470 * sizeof (dw_die_ref));
13471 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13472 /* Zero-th entry is allocated, but unused. */
13473 abbrev_die_table_in_use = 1;
13475 /* Allocate the initial hunk of the line_info_table. */
13476 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13477 * sizeof (dw_line_info_entry));
13478 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13480 /* Zero-th entry is allocated, but unused. */
13481 line_info_table_in_use = 1;
13483 /* Generate the initial DIE for the .debug section. Note that the (string)
13484 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13485 will (typically) be a relative pathname and that this pathname should be
13486 taken as being relative to the directory from which the compiler was
13487 invoked when the given (base) source file was compiled. We will fill
13488 in this value in dwarf2out_finish. */
13489 comp_unit_die = gen_compile_unit_die (NULL);
13491 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13493 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13495 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13496 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13497 DEBUG_ABBREV_SECTION_LABEL, 0);
13498 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13500 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13501 DEBUG_INFO_SECTION_LABEL, 0);
13502 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13503 DEBUG_LINE_SECTION_LABEL, 0);
13504 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13505 DEBUG_RANGES_SECTION_LABEL, 0);
13506 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13507 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13508 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13509 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13510 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13511 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13513 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13515 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13516 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13517 DEBUG_MACINFO_SECTION_LABEL, 0);
13518 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13521 text_section ();
13522 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13525 /* A helper function for dwarf2out_finish called through
13526 ht_forall. Emit one queued .debug_str string. */
13528 static int
13529 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13531 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13533 if (node->form == DW_FORM_strp)
13535 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13536 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13537 assemble_string (node->str, strlen (node->str) + 1);
13540 return 1;
13545 /* Clear the marks for a die and its children.
13546 Be cool if the mark isn't set. */
13548 static void
13549 prune_unmark_dies (dw_die_ref die)
13551 dw_die_ref c;
13552 die->die_mark = 0;
13553 for (c = die->die_child; c; c = c->die_sib)
13554 prune_unmark_dies (c);
13558 /* Given DIE that we're marking as used, find any other dies
13559 it references as attributes and mark them as used. */
13561 static void
13562 prune_unused_types_walk_attribs (dw_die_ref die)
13564 dw_attr_ref a;
13566 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13568 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13570 /* A reference to another DIE.
13571 Make sure that it will get emitted. */
13572 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13574 else if (a->dw_attr == DW_AT_decl_file)
13576 /* A reference to a file. Make sure the file name is emitted. */
13577 a->dw_attr_val.v.val_unsigned =
13578 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13584 /* Mark DIE as being used. If DOKIDS is true, then walk down
13585 to DIE's children. */
13587 static void
13588 prune_unused_types_mark (dw_die_ref die, int dokids)
13590 dw_die_ref c;
13592 if (die->die_mark == 0)
13594 /* We haven't done this node yet. Mark it as used. */
13595 die->die_mark = 1;
13597 /* We also have to mark its parents as used.
13598 (But we don't want to mark our parents' kids due to this.) */
13599 if (die->die_parent)
13600 prune_unused_types_mark (die->die_parent, 0);
13602 /* Mark any referenced nodes. */
13603 prune_unused_types_walk_attribs (die);
13605 /* If this node is a specification,
13606 also mark the definition, if it exists. */
13607 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13608 prune_unused_types_mark (die->die_definition, 1);
13611 if (dokids && die->die_mark != 2)
13613 /* We need to walk the children, but haven't done so yet.
13614 Remember that we've walked the kids. */
13615 die->die_mark = 2;
13617 /* Walk them. */
13618 for (c = die->die_child; c; c = c->die_sib)
13620 /* If this is an array type, we need to make sure our
13621 kids get marked, even if they're types. */
13622 if (die->die_tag == DW_TAG_array_type)
13623 prune_unused_types_mark (c, 1);
13624 else
13625 prune_unused_types_walk (c);
13631 /* Walk the tree DIE and mark types that we actually use. */
13633 static void
13634 prune_unused_types_walk (dw_die_ref die)
13636 dw_die_ref c;
13638 /* Don't do anything if this node is already marked. */
13639 if (die->die_mark)
13640 return;
13642 switch (die->die_tag) {
13643 case DW_TAG_const_type:
13644 case DW_TAG_packed_type:
13645 case DW_TAG_pointer_type:
13646 case DW_TAG_reference_type:
13647 case DW_TAG_volatile_type:
13648 case DW_TAG_typedef:
13649 case DW_TAG_array_type:
13650 case DW_TAG_structure_type:
13651 case DW_TAG_union_type:
13652 case DW_TAG_class_type:
13653 case DW_TAG_friend:
13654 case DW_TAG_variant_part:
13655 case DW_TAG_enumeration_type:
13656 case DW_TAG_subroutine_type:
13657 case DW_TAG_string_type:
13658 case DW_TAG_set_type:
13659 case DW_TAG_subrange_type:
13660 case DW_TAG_ptr_to_member_type:
13661 case DW_TAG_file_type:
13662 /* It's a type node --- don't mark it. */
13663 return;
13665 default:
13666 /* Mark everything else. */
13667 break;
13670 die->die_mark = 1;
13672 /* Now, mark any dies referenced from here. */
13673 prune_unused_types_walk_attribs (die);
13675 /* Mark children. */
13676 for (c = die->die_child; c; c = c->die_sib)
13677 prune_unused_types_walk (c);
13681 /* Remove from the tree DIE any dies that aren't marked. */
13683 static void
13684 prune_unused_types_prune (dw_die_ref die)
13686 dw_die_ref c, p, n;
13688 gcc_assert (die->die_mark);
13690 p = NULL;
13691 for (c = die->die_child; c; c = n)
13693 n = c->die_sib;
13694 if (c->die_mark)
13696 prune_unused_types_prune (c);
13697 p = c;
13699 else
13701 if (p)
13702 p->die_sib = n;
13703 else
13704 die->die_child = n;
13705 free_die (c);
13711 /* Remove dies representing declarations that we never use. */
13713 static void
13714 prune_unused_types (void)
13716 unsigned int i;
13717 limbo_die_node *node;
13719 /* Clear all the marks. */
13720 prune_unmark_dies (comp_unit_die);
13721 for (node = limbo_die_list; node; node = node->next)
13722 prune_unmark_dies (node->die);
13724 /* Set the mark on nodes that are actually used. */
13725 prune_unused_types_walk (comp_unit_die);
13726 for (node = limbo_die_list; node; node = node->next)
13727 prune_unused_types_walk (node->die);
13729 /* Also set the mark on nodes referenced from the
13730 pubname_table or arange_table. */
13731 for (i = 0; i < pubname_table_in_use; i++)
13732 prune_unused_types_mark (pubname_table[i].die, 1);
13733 for (i = 0; i < arange_table_in_use; i++)
13734 prune_unused_types_mark (arange_table[i], 1);
13736 /* Get rid of nodes that aren't marked. */
13737 prune_unused_types_prune (comp_unit_die);
13738 for (node = limbo_die_list; node; node = node->next)
13739 prune_unused_types_prune (node->die);
13741 /* Leave the marks clear. */
13742 prune_unmark_dies (comp_unit_die);
13743 for (node = limbo_die_list; node; node = node->next)
13744 prune_unmark_dies (node->die);
13747 /* Output stuff that dwarf requires at the end of every file,
13748 and generate the DWARF-2 debugging info. */
13750 static void
13751 dwarf2out_finish (const char *filename)
13753 limbo_die_node *node, *next_node;
13754 dw_die_ref die = 0;
13756 /* Add the name for the main input file now. We delayed this from
13757 dwarf2out_init to avoid complications with PCH. */
13758 add_name_attribute (comp_unit_die, filename);
13759 if (filename[0] != DIR_SEPARATOR)
13760 add_comp_dir_attribute (comp_unit_die);
13761 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13763 size_t i;
13764 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13765 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13766 /* Don't add cwd for <built-in>. */
13767 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13769 add_comp_dir_attribute (comp_unit_die);
13770 break;
13774 /* Traverse the limbo die list, and add parent/child links. The only
13775 dies without parents that should be here are concrete instances of
13776 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13777 For concrete instances, we can get the parent die from the abstract
13778 instance. */
13779 for (node = limbo_die_list; node; node = next_node)
13781 next_node = node->next;
13782 die = node->die;
13784 if (die->die_parent == NULL)
13786 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13788 if (origin)
13789 add_child_die (origin->die_parent, die);
13790 else if (die == comp_unit_die)
13792 else if (errorcount > 0 || sorrycount > 0)
13793 /* It's OK to be confused by errors in the input. */
13794 add_child_die (comp_unit_die, die);
13795 else
13797 /* In certain situations, the lexical block containing a
13798 nested function can be optimized away, which results
13799 in the nested function die being orphaned. Likewise
13800 with the return type of that nested function. Force
13801 this to be a child of the containing function.
13803 It may happen that even the containing function got fully
13804 inlined and optimized out. In that case we are lost and
13805 assign the empty child. This should not be big issue as
13806 the function is likely unreachable too. */
13807 tree context = NULL_TREE;
13809 gcc_assert (node->created_for);
13811 if (DECL_P (node->created_for))
13812 context = DECL_CONTEXT (node->created_for);
13813 else if (TYPE_P (node->created_for))
13814 context = TYPE_CONTEXT (node->created_for);
13816 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13818 origin = lookup_decl_die (context);
13819 if (origin)
13820 add_child_die (origin, die);
13821 else
13822 add_child_die (comp_unit_die, die);
13827 limbo_die_list = NULL;
13829 /* Walk through the list of incomplete types again, trying once more to
13830 emit full debugging info for them. */
13831 retry_incomplete_types ();
13833 /* We need to reverse all the dies before break_out_includes, or
13834 we'll see the end of an include file before the beginning. */
13835 reverse_all_dies (comp_unit_die);
13837 if (flag_eliminate_unused_debug_types)
13838 prune_unused_types ();
13840 /* Generate separate CUs for each of the include files we've seen.
13841 They will go into limbo_die_list. */
13842 if (flag_eliminate_dwarf2_dups)
13843 break_out_includes (comp_unit_die);
13845 /* Traverse the DIE's and add add sibling attributes to those DIE's
13846 that have children. */
13847 add_sibling_attributes (comp_unit_die);
13848 for (node = limbo_die_list; node; node = node->next)
13849 add_sibling_attributes (node->die);
13851 /* Output a terminator label for the .text section. */
13852 text_section ();
13853 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13855 /* Output the source line correspondence table. We must do this
13856 even if there is no line information. Otherwise, on an empty
13857 translation unit, we will generate a present, but empty,
13858 .debug_info section. IRIX 6.5 `nm' will then complain when
13859 examining the file. */
13860 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13862 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13863 output_line_info ();
13866 /* Output location list section if necessary. */
13867 if (have_location_lists)
13869 /* Output the location lists info. */
13870 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13871 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13872 DEBUG_LOC_SECTION_LABEL, 0);
13873 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13874 output_location_lists (die);
13875 have_location_lists = 0;
13878 /* We can only use the low/high_pc attributes if all of the code was
13879 in .text. */
13880 if (separate_line_info_table_in_use == 0)
13882 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13883 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13886 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13887 "base address". Use zero so that these addresses become absolute. */
13888 else if (have_location_lists || ranges_table_in_use)
13889 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13891 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13892 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13893 debug_line_section_label);
13895 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13896 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13898 /* Output all of the compilation units. We put the main one last so that
13899 the offsets are available to output_pubnames. */
13900 for (node = limbo_die_list; node; node = node->next)
13901 output_comp_unit (node->die, 0);
13903 output_comp_unit (comp_unit_die, 0);
13905 /* Output the abbreviation table. */
13906 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13907 output_abbrev_section ();
13909 /* Output public names table if necessary. */
13910 if (pubname_table_in_use)
13912 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13913 output_pubnames ();
13916 /* Output the address range information. We only put functions in the arange
13917 table, so don't write it out if we don't have any. */
13918 if (fde_table_in_use)
13920 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13921 output_aranges ();
13924 /* Output ranges section if necessary. */
13925 if (ranges_table_in_use)
13927 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13928 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13929 output_ranges ();
13932 /* Have to end the macro section. */
13933 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13935 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13936 dw2_asm_output_data (1, 0, "End compilation unit");
13939 /* If we emitted any DW_FORM_strp form attribute, output the string
13940 table too. */
13941 if (debug_str_hash)
13942 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13944 #else
13946 /* This should never be used, but its address is needed for comparisons. */
13947 const struct gcc_debug_hooks dwarf2_debug_hooks;
13949 #endif /* DWARF2_DEBUGGING_INFO */
13951 #include "gt-dwarf2out.h"