Skip gcc.dg/guality/example.c on hppa-linux.
[official-gcc.git] / gcc / cfgloopmanip.c
blobaa538a221e1f7efdd092a4d63c6489e72fb3a5d4
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (class loop **, int,
36 class loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (class loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 class loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (class loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 auto_vec<edge> exits = get_loop_exit_edges (loop);
130 class loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 return ret;
163 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
164 enforce condition stated in description of fix_bb_placement. We
165 start from basic block FROM that had some of its successors removed, so that
166 his placement no longer has to be correct, and iteratively fix placement of
167 its predecessors that may change if placement of FROM changed. Also fix
168 placement of subloops of FROM->loop_father, that might also be altered due
169 to this change; the condition for them is similar, except that instead of
170 successors we consider edges coming out of the loops.
172 If the changes may invalidate the information about irreducible regions,
173 IRRED_INVALIDATED is set to true.
175 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
176 changed loop_father are collected there. */
178 static void
179 fix_bb_placements (basic_block from,
180 bool *irred_invalidated,
181 bitmap loop_closed_ssa_invalidated)
183 basic_block *queue, *qtop, *qbeg, *qend;
184 class loop *base_loop, *target_loop;
185 edge e;
187 /* We pass through blocks back-reachable from FROM, testing whether some
188 of their successors moved to outer loop. It may be necessary to
189 iterate several times, but it is finite, as we stop unless we move
190 the basic block up the loop structure. The whole story is a bit
191 more complicated due to presence of subloops, those are moved using
192 fix_loop_placement. */
194 base_loop = from->loop_father;
195 /* If we are already in the outermost loop, the basic blocks cannot be moved
196 outside of it. If FROM is the header of the base loop, it cannot be moved
197 outside of it, either. In both cases, we can end now. */
198 if (base_loop == current_loops->tree_root
199 || from == base_loop->header)
200 return;
202 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
203 bitmap_clear (in_queue);
204 bitmap_set_bit (in_queue, from->index);
205 /* Prevent us from going out of the base_loop. */
206 bitmap_set_bit (in_queue, base_loop->header->index);
208 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
209 qtop = queue + base_loop->num_nodes + 1;
210 qbeg = queue;
211 qend = queue + 1;
212 *qbeg = from;
214 while (qbeg != qend)
216 edge_iterator ei;
217 from = *qbeg;
218 qbeg++;
219 if (qbeg == qtop)
220 qbeg = queue;
221 bitmap_clear_bit (in_queue, from->index);
223 if (from->loop_father->header == from)
225 /* Subloop header, maybe move the loop upward. */
226 if (!fix_loop_placement (from->loop_father, irred_invalidated))
227 continue;
228 target_loop = loop_outer (from->loop_father);
229 if (loop_closed_ssa_invalidated)
231 basic_block *bbs = get_loop_body (from->loop_father);
232 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
233 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
234 free (bbs);
237 else
239 /* Ordinary basic block. */
240 if (!fix_bb_placement (from))
241 continue;
242 target_loop = from->loop_father;
243 if (loop_closed_ssa_invalidated)
244 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
247 FOR_EACH_EDGE (e, ei, from->succs)
249 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
250 *irred_invalidated = true;
253 /* Something has changed, insert predecessors into queue. */
254 FOR_EACH_EDGE (e, ei, from->preds)
256 basic_block pred = e->src;
257 class loop *nca;
259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
260 *irred_invalidated = true;
262 if (bitmap_bit_p (in_queue, pred->index))
263 continue;
265 /* If it is subloop, then it either was not moved, or
266 the path up the loop tree from base_loop do not contain
267 it. */
268 nca = find_common_loop (pred->loop_father, base_loop);
269 if (pred->loop_father != base_loop
270 && (nca == base_loop
271 || nca != pred->loop_father))
272 pred = pred->loop_father->header;
273 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
275 /* If PRED is already higher in the loop hierarchy than the
276 TARGET_LOOP to that we moved FROM, the change of the position
277 of FROM does not affect the position of PRED, so there is no
278 point in processing it. */
279 continue;
282 if (bitmap_bit_p (in_queue, pred->index))
283 continue;
285 /* Schedule the basic block. */
286 *qend = pred;
287 qend++;
288 if (qend == qtop)
289 qend = queue;
290 bitmap_set_bit (in_queue, pred->index);
293 free (queue);
296 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
297 and update loop structures and dominators. Return true if we were able
298 to remove the path, false otherwise (and nothing is affected then). */
299 bool
300 remove_path (edge e, bool *irred_invalidated,
301 bitmap loop_closed_ssa_invalidated)
303 edge ae;
304 basic_block *rem_bbs, *bord_bbs, from, bb;
305 vec<basic_block> dom_bbs;
306 int i, nrem, n_bord_bbs;
307 bool local_irred_invalidated = false;
308 edge_iterator ei;
309 class loop *l, *f;
311 if (! irred_invalidated)
312 irred_invalidated = &local_irred_invalidated;
314 if (!can_remove_branch_p (e))
315 return false;
317 /* Keep track of whether we need to update information about irreducible
318 regions. This is the case if the removed area is a part of the
319 irreducible region, or if the set of basic blocks that belong to a loop
320 that is inside an irreducible region is changed, or if such a loop is
321 removed. */
322 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
323 *irred_invalidated = true;
325 /* We need to check whether basic blocks are dominated by the edge
326 e, but we only have basic block dominators. This is easy to
327 fix -- when e->dest has exactly one predecessor, this corresponds
328 to blocks dominated by e->dest, if not, split the edge. */
329 if (!single_pred_p (e->dest))
330 e = single_pred_edge (split_edge (e));
332 /* It may happen that by removing path we remove one or more loops
333 we belong to. In this case first unloop the loops, then proceed
334 normally. We may assume that e->dest is not a header of any loop,
335 as it now has exactly one predecessor. */
336 for (l = e->src->loop_father; loop_outer (l); l = f)
338 f = loop_outer (l);
339 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
340 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
343 /* Identify the path. */
344 nrem = find_path (e, &rem_bbs);
346 n_bord_bbs = 0;
347 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
348 auto_sbitmap seen (last_basic_block_for_fn (cfun));
349 bitmap_clear (seen);
351 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
352 for (i = 0; i < nrem; i++)
353 bitmap_set_bit (seen, rem_bbs[i]->index);
354 if (!*irred_invalidated)
355 FOR_EACH_EDGE (ae, ei, e->src->succs)
356 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
357 && !bitmap_bit_p (seen, ae->dest->index)
358 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
360 *irred_invalidated = true;
361 break;
364 for (i = 0; i < nrem; i++)
366 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
367 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
368 && !bitmap_bit_p (seen, ae->dest->index))
370 bitmap_set_bit (seen, ae->dest->index);
371 bord_bbs[n_bord_bbs++] = ae->dest;
373 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
374 *irred_invalidated = true;
378 /* Remove the path. */
379 from = e->src;
380 remove_branch (e);
381 dom_bbs.create (0);
383 /* Cancel loops contained in the path. */
384 for (i = 0; i < nrem; i++)
385 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
386 cancel_loop_tree (rem_bbs[i]->loop_father);
388 remove_bbs (rem_bbs, nrem);
389 free (rem_bbs);
391 /* Find blocks whose dominators may be affected. */
392 bitmap_clear (seen);
393 for (i = 0; i < n_bord_bbs; i++)
395 basic_block ldom;
397 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
398 if (bitmap_bit_p (seen, bb->index))
399 continue;
400 bitmap_set_bit (seen, bb->index);
402 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
403 ldom;
404 ldom = next_dom_son (CDI_DOMINATORS, ldom))
405 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
406 dom_bbs.safe_push (ldom);
409 /* Recount dominators. */
410 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
411 dom_bbs.release ();
412 free (bord_bbs);
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
417 fix_loop_placements (from->loop_father, irred_invalidated);
419 if (local_irred_invalidated
420 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
421 mark_irreducible_loops ();
423 return true;
426 /* Creates place for a new LOOP in loops structure of FN. */
428 void
429 place_new_loop (struct function *fn, class loop *loop)
431 loop->num = number_of_loops (fn);
432 vec_safe_push (loops_for_fn (fn)->larray, loop);
435 /* Given LOOP structure with filled header and latch, find the body of the
436 corresponding loop and add it to loops tree. Insert the LOOP as a son of
437 outer. */
439 void
440 add_loop (class loop *loop, class loop *outer)
442 basic_block *bbs;
443 int i, n;
444 class loop *subloop;
445 edge e;
446 edge_iterator ei;
448 /* Add it to loop structure. */
449 place_new_loop (cfun, loop);
450 flow_loop_tree_node_add (outer, loop);
452 /* Find its nodes. */
453 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
454 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
456 for (i = 0; i < n; i++)
458 if (bbs[i]->loop_father == outer)
460 remove_bb_from_loops (bbs[i]);
461 add_bb_to_loop (bbs[i], loop);
462 continue;
465 loop->num_nodes++;
467 /* If we find a direct subloop of OUTER, move it to LOOP. */
468 subloop = bbs[i]->loop_father;
469 if (loop_outer (subloop) == outer
470 && subloop->header == bbs[i])
472 flow_loop_tree_node_remove (subloop);
473 flow_loop_tree_node_add (loop, subloop);
477 /* Update the information about loop exit edges. */
478 for (i = 0; i < n; i++)
480 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
482 rescan_loop_exit (e, false, false);
486 free (bbs);
489 /* Scale profile of loop by P. */
491 void
492 scale_loop_frequencies (class loop *loop, profile_probability p)
494 basic_block *bbs;
496 bbs = get_loop_body (loop);
497 scale_bbs_frequencies (bbs, loop->num_nodes, p);
498 free (bbs);
501 /* Scale profile in LOOP by P.
502 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
503 to iterate too many times.
504 Before caling this function, preheader block profile should be already
505 scaled to final count. This is necessary because loop iterations are
506 determined by comparing header edge count to latch ege count and thus
507 they need to be scaled synchronously. */
509 void
510 scale_loop_profile (class loop *loop, profile_probability p,
511 gcov_type iteration_bound)
513 edge e, preheader_e;
514 edge_iterator ei;
516 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, ";; Scaling loop %i with scale ",
519 loop->num);
520 p.dump (dump_file);
521 fprintf (dump_file, " bounding iterations to %i\n",
522 (int)iteration_bound);
525 /* Scale the probabilities. */
526 scale_loop_frequencies (loop, p);
528 if (iteration_bound == 0)
529 return;
531 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
533 if (dump_file && (dump_flags & TDF_DETAILS))
535 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
536 (int)iterations);
539 /* See if loop is predicted to iterate too many times. */
540 if (iterations <= iteration_bound)
541 return;
543 preheader_e = loop_preheader_edge (loop);
545 /* We could handle also loops without preheaders, but bounding is
546 currently used only by optimizers that have preheaders constructed. */
547 gcc_checking_assert (preheader_e);
548 profile_count count_in = preheader_e->count ();
550 if (count_in > profile_count::zero ()
551 && loop->header->count.initialized_p ())
553 profile_count count_delta = profile_count::zero ();
555 e = single_exit (loop);
556 if (e)
558 edge other_e;
559 FOR_EACH_EDGE (other_e, ei, e->src->succs)
560 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
561 && e != other_e)
562 break;
564 /* Probability of exit must be 1/iterations. */
565 count_delta = e->count ();
566 e->probability = profile_probability::always ()
567 .apply_scale (1, iteration_bound);
568 other_e->probability = e->probability.invert ();
570 /* In code below we only handle the following two updates. */
571 if (other_e->dest != loop->header
572 && other_e->dest != loop->latch
573 && (dump_file && (dump_flags & TDF_DETAILS)))
575 fprintf (dump_file, ";; giving up on update of paths from "
576 "exit condition to latch\n");
579 else
580 if (dump_file && (dump_flags & TDF_DETAILS))
581 fprintf (dump_file, ";; Loop has multiple exit edges; "
582 "giving up on exit condition update\n");
584 /* Roughly speaking we want to reduce the loop body profile by the
585 difference of loop iterations. We however can do better if
586 we look at the actual profile, if it is available. */
587 p = profile_probability::always ();
589 count_in = count_in.apply_scale (iteration_bound, 1);
590 p = count_in.probability_in (loop->header->count);
591 if (!(p > profile_probability::never ()))
592 p = profile_probability::very_unlikely ();
594 if (p == profile_probability::always ()
595 || !p.initialized_p ())
596 return;
598 /* If latch exists, change its count, since we changed
599 probability of exit. Theoretically we should update everything from
600 source of exit edge to latch, but for vectorizer this is enough. */
601 if (loop->latch && loop->latch != e->src)
602 loop->latch->count += count_delta;
604 /* Scale the probabilities. */
605 scale_loop_frequencies (loop, p);
607 /* Change latch's count back. */
608 if (loop->latch && loop->latch != e->src)
609 loop->latch->count -= count_delta;
611 if (dump_file && (dump_flags & TDF_DETAILS))
612 fprintf (dump_file, ";; guessed iterations are now %i\n",
613 (int)expected_loop_iterations_unbounded (loop, NULL, true));
617 /* Recompute dominance information for basic blocks outside LOOP. */
619 static void
620 update_dominators_in_loop (class loop *loop)
622 vec<basic_block> dom_bbs = vNULL;
623 basic_block *body;
624 unsigned i;
626 auto_sbitmap seen (last_basic_block_for_fn (cfun));
627 bitmap_clear (seen);
628 body = get_loop_body (loop);
630 for (i = 0; i < loop->num_nodes; i++)
631 bitmap_set_bit (seen, body[i]->index);
633 for (i = 0; i < loop->num_nodes; i++)
635 basic_block ldom;
637 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 ldom;
639 ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 if (!bitmap_bit_p (seen, ldom->index))
642 bitmap_set_bit (seen, ldom->index);
643 dom_bbs.safe_push (ldom);
647 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648 free (body);
649 dom_bbs.release ();
652 /* Creates an if region as shown above. CONDITION is used to create
653 the test for the if.
656 | ------------- -------------
657 | | pred_bb | | pred_bb |
658 | ------------- -------------
659 | | |
660 | | | ENTRY_EDGE
661 | | ENTRY_EDGE V
662 | | ====> -------------
663 | | | cond_bb |
664 | | | CONDITION |
665 | | -------------
666 | V / \
667 | ------------- e_false / \ e_true
668 | | succ_bb | V V
669 | ------------- ----------- -----------
670 | | false_bb | | true_bb |
671 | ----------- -----------
672 | \ /
673 | \ /
674 | V V
675 | -------------
676 | | join_bb |
677 | -------------
678 | | exit_edge (result)
680 | -----------
681 | | succ_bb |
682 | -----------
686 edge
687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
690 basic_block cond_bb, true_bb, false_bb, join_bb;
691 edge e_true, e_false, exit_edge;
692 gcond *cond_stmt;
693 tree simple_cond;
694 gimple_stmt_iterator gsi;
696 cond_bb = split_edge (entry_edge);
698 /* Insert condition in cond_bb. */
699 gsi = gsi_last_bb (cond_bb);
700 simple_cond =
701 force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 false, GSI_NEW_STMT);
703 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704 gsi = gsi_last_bb (cond_bb);
705 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
707 join_bb = split_edge (single_succ_edge (cond_bb));
709 e_true = single_succ_edge (cond_bb);
710 true_bb = split_edge (e_true);
712 e_false = make_edge (cond_bb, join_bb, 0);
713 false_bb = split_edge (e_false);
715 e_true->flags &= ~EDGE_FALLTHRU;
716 e_true->flags |= EDGE_TRUE_VALUE;
717 e_false->flags &= ~EDGE_FALLTHRU;
718 e_false->flags |= EDGE_FALSE_VALUE;
720 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
725 exit_edge = single_succ_edge (join_bb);
727 if (single_pred_p (exit_edge->dest))
728 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
730 return exit_edge;
733 /* create_empty_loop_on_edge
735 | - pred_bb - ------ pred_bb ------
736 | | | | iv0 = initial_value |
737 | -----|----- ---------|-----------
738 | | ______ | entry_edge
739 | | entry_edge / | |
740 | | ====> | -V---V- loop_header -------------
741 | V | | iv_before = phi (iv0, iv_after) |
742 | - succ_bb - | ---|-----------------------------
743 | | | | |
744 | ----------- | ---V--- loop_body ---------------
745 | | | iv_after = iv_before + stride |
746 | | | if (iv_before < upper_bound) |
747 | | ---|--------------\--------------
748 | | | \ exit_e
749 | | V \
750 | | - loop_latch - V- succ_bb -
751 | | | | | |
752 | | /------------- -----------
753 | \ ___ /
755 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756 that is used before the increment of IV. IV_BEFORE should be used for
757 adding code to the body that uses the IV. OUTER is the outer loop in
758 which the new loop should be inserted.
760 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761 inserted on the loop entry edge. This implies that this function
762 should be used only when the UPPER_BOUND expression is a loop
763 invariant. */
765 class loop *
766 create_empty_loop_on_edge (edge entry_edge,
767 tree initial_value,
768 tree stride, tree upper_bound,
769 tree iv,
770 tree *iv_before,
771 tree *iv_after,
772 class loop *outer)
774 basic_block loop_header, loop_latch, succ_bb, pred_bb;
775 class loop *loop;
776 gimple_stmt_iterator gsi;
777 gimple_seq stmts;
778 gcond *cond_expr;
779 tree exit_test;
780 edge exit_e;
782 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
784 /* Create header, latch and wire up the loop. */
785 pred_bb = entry_edge->src;
786 loop_header = split_edge (entry_edge);
787 loop_latch = split_edge (single_succ_edge (loop_header));
788 succ_bb = single_succ (loop_latch);
789 make_edge (loop_header, succ_bb, 0);
790 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
792 /* Set immediate dominator information. */
793 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
797 /* Initialize a loop structure and put it in a loop hierarchy. */
798 loop = alloc_loop ();
799 loop->header = loop_header;
800 loop->latch = loop_latch;
801 add_loop (loop, outer);
803 /* TODO: Fix counts. */
804 scale_loop_frequencies (loop, profile_probability::even ());
806 /* Update dominators. */
807 update_dominators_in_loop (loop);
809 /* Modify edge flags. */
810 exit_e = single_exit (loop);
811 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
814 /* Construct IV code in loop. */
815 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816 if (stmts)
818 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819 gsi_commit_edge_inserts ();
822 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823 if (stmts)
825 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826 gsi_commit_edge_inserts ();
829 gsi = gsi_last_bb (loop_header);
830 create_iv (initial_value, stride, iv, loop, &gsi, false,
831 iv_before, iv_after);
833 /* Insert loop exit condition. */
834 cond_expr = gimple_build_cond
835 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
837 exit_test = gimple_cond_lhs (cond_expr);
838 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 false, GSI_NEW_STMT);
840 gimple_cond_set_lhs (cond_expr, exit_test);
841 gsi = gsi_last_bb (exit_e->src);
842 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
844 split_block_after_labels (loop_header);
846 return loop;
849 /* Remove the latch edge of a LOOP and update loops to indicate that
850 the LOOP was removed. After this function, original loop latch will
851 have no successor, which caller is expected to fix somehow.
853 If this may cause the information about irreducible regions to become
854 invalid, IRRED_INVALIDATED is set to true.
856 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
857 basic blocks that had non-trivial update on their loop_father.*/
859 void
860 unloop (class loop *loop, bool *irred_invalidated,
861 bitmap loop_closed_ssa_invalidated)
863 basic_block *body;
864 class loop *ploop;
865 unsigned i, n;
866 basic_block latch = loop->latch;
867 bool dummy = false;
869 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
870 *irred_invalidated = true;
872 /* This is relatively straightforward. The dominators are unchanged, as
873 loop header dominates loop latch, so the only thing we have to care of
874 is the placement of loops and basic blocks inside the loop tree. We
875 move them all to the loop->outer, and then let fix_bb_placements do
876 its work. */
878 body = get_loop_body (loop);
879 n = loop->num_nodes;
880 for (i = 0; i < n; i++)
881 if (body[i]->loop_father == loop)
883 remove_bb_from_loops (body[i]);
884 add_bb_to_loop (body[i], loop_outer (loop));
886 free (body);
888 while (loop->inner)
890 ploop = loop->inner;
891 flow_loop_tree_node_remove (ploop);
892 flow_loop_tree_node_add (loop_outer (loop), ploop);
895 /* Remove the loop and free its data. */
896 delete_loop (loop);
898 remove_edge (single_succ_edge (latch));
900 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
901 there is an irreducible region inside the cancelled loop, the flags will
902 be still correct. */
903 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
906 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
907 condition stated in description of fix_loop_placement holds for them.
908 It is used in case when we removed some edges coming out of LOOP, which
909 may cause the right placement of LOOP inside loop tree to change.
911 IRRED_INVALIDATED is set to true if a change in the loop structures might
912 invalidate the information about irreducible regions. */
914 static void
915 fix_loop_placements (class loop *loop, bool *irred_invalidated)
917 class loop *outer;
919 while (loop_outer (loop))
921 outer = loop_outer (loop);
922 if (!fix_loop_placement (loop, irred_invalidated))
923 break;
925 /* Changing the placement of a loop in the loop tree may alter the
926 validity of condition 2) of the description of fix_bb_placement
927 for its preheader, because the successor is the header and belongs
928 to the loop. So call fix_bb_placements to fix up the placement
929 of the preheader and (possibly) of its predecessors. */
930 fix_bb_placements (loop_preheader_edge (loop)->src,
931 irred_invalidated, NULL);
932 loop = outer;
936 /* Duplicate loop bounds and other information we store about
937 the loop into its duplicate. */
939 void
940 copy_loop_info (class loop *loop, class loop *target)
942 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
943 target->any_upper_bound = loop->any_upper_bound;
944 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
945 target->any_likely_upper_bound = loop->any_likely_upper_bound;
946 target->nb_iterations_likely_upper_bound
947 = loop->nb_iterations_likely_upper_bound;
948 target->any_estimate = loop->any_estimate;
949 target->nb_iterations_estimate = loop->nb_iterations_estimate;
950 target->estimate_state = loop->estimate_state;
951 target->safelen = loop->safelen;
952 target->simdlen = loop->simdlen;
953 target->constraints = loop->constraints;
954 target->can_be_parallel = loop->can_be_parallel;
955 target->warned_aggressive_loop_optimizations
956 |= loop->warned_aggressive_loop_optimizations;
957 target->dont_vectorize = loop->dont_vectorize;
958 target->force_vectorize = loop->force_vectorize;
959 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
960 target->finite_p = loop->finite_p;
961 target->unroll = loop->unroll;
962 target->owned_clique = loop->owned_clique;
965 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
966 created loop into loops structure. If AFTER is non-null
967 the new loop is added at AFTER->next, otherwise in front of TARGETs
968 sibling list. */
969 class loop *
970 duplicate_loop (class loop *loop, class loop *target, class loop *after)
972 class loop *cloop;
973 cloop = alloc_loop ();
974 place_new_loop (cfun, cloop);
976 copy_loop_info (loop, cloop);
978 /* Mark the new loop as copy of LOOP. */
979 set_loop_copy (loop, cloop);
981 /* Add it to target. */
982 flow_loop_tree_node_add (target, cloop, after);
984 return cloop;
987 /* Copies structure of subloops of LOOP into TARGET loop, placing
988 newly created loops into loop tree at the end of TARGETs sibling
989 list in the original order. */
990 void
991 duplicate_subloops (class loop *loop, class loop *target)
993 class loop *aloop, *cloop, *tail;
995 for (tail = target->inner; tail && tail->next; tail = tail->next)
997 for (aloop = loop->inner; aloop; aloop = aloop->next)
999 cloop = duplicate_loop (aloop, target, tail);
1000 tail = cloop;
1001 gcc_assert(!tail->next);
1002 duplicate_subloops (aloop, cloop);
1006 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1007 into TARGET loop, placing newly created loops into loop tree adding
1008 them to TARGETs sibling list at the end in order. */
1009 static void
1010 copy_loops_to (class loop **copied_loops, int n, class loop *target)
1012 class loop *aloop, *tail;
1013 int i;
1015 for (tail = target->inner; tail && tail->next; tail = tail->next)
1017 for (i = 0; i < n; i++)
1019 aloop = duplicate_loop (copied_loops[i], target, tail);
1020 tail = aloop;
1021 gcc_assert(!tail->next);
1022 duplicate_subloops (copied_loops[i], aloop);
1026 /* Redirects edge E to basic block DEST. */
1027 static void
1028 loop_redirect_edge (edge e, basic_block dest)
1030 if (e->dest == dest)
1031 return;
1033 redirect_edge_and_branch_force (e, dest);
1036 /* Check whether LOOP's body can be duplicated. */
1037 bool
1038 can_duplicate_loop_p (const class loop *loop)
1040 int ret;
1041 basic_block *bbs = get_loop_body (loop);
1043 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1044 free (bbs);
1046 return ret;
1049 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1050 loop structure and dominators (order of inner subloops is retained).
1051 E's destination must be LOOP header for this to work, i.e. it must be entry
1052 or latch edge of this loop; these are unique, as the loops must have
1053 preheaders for this function to work correctly (in case E is latch, the
1054 function unrolls the loop, if E is entry edge, it peels the loop). Store
1055 edges created by copying ORIG edge from copies corresponding to set bits in
1056 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1057 are numbered in order given by control flow through them) into TO_REMOVE
1058 array. Returns false if duplication is
1059 impossible. */
1061 bool
1062 duplicate_loop_body_to_header_edge (class loop *loop, edge e,
1063 unsigned int ndupl, sbitmap wont_exit,
1064 edge orig, vec<edge> *to_remove, int flags)
1066 class loop *target, *aloop;
1067 class loop **orig_loops;
1068 unsigned n_orig_loops;
1069 basic_block header = loop->header, latch = loop->latch;
1070 basic_block *new_bbs, *bbs, *first_active;
1071 basic_block new_bb, bb, first_active_latch = NULL;
1072 edge ae, latch_edge;
1073 edge spec_edges[2], new_spec_edges[2];
1074 const int SE_LATCH = 0;
1075 const int SE_ORIG = 1;
1076 unsigned i, j, n;
1077 int is_latch = (latch == e->src);
1078 profile_probability *scale_step = NULL;
1079 profile_probability scale_main = profile_probability::always ();
1080 profile_probability scale_act = profile_probability::always ();
1081 profile_count after_exit_num = profile_count::zero (),
1082 after_exit_den = profile_count::zero ();
1083 bool scale_after_exit = false;
1084 int add_irreducible_flag;
1085 basic_block place_after;
1086 bitmap bbs_to_scale = NULL;
1087 bitmap_iterator bi;
1089 gcc_assert (e->dest == loop->header);
1090 gcc_assert (ndupl > 0);
1092 if (orig)
1094 /* Orig must be edge out of the loop. */
1095 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1096 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1099 n = loop->num_nodes;
1100 bbs = get_loop_body_in_dom_order (loop);
1101 gcc_assert (bbs[0] == loop->header);
1102 gcc_assert (bbs[n - 1] == loop->latch);
1104 /* Check whether duplication is possible. */
1105 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1107 free (bbs);
1108 return false;
1110 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1112 /* In case we are doing loop peeling and the loop is in the middle of
1113 irreducible region, the peeled copies will be inside it too. */
1114 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1115 gcc_assert (!is_latch || !add_irreducible_flag);
1117 /* Find edge from latch. */
1118 latch_edge = loop_latch_edge (loop);
1120 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1122 /* Calculate coefficients by that we have to scale counts
1123 of duplicated loop bodies. */
1124 profile_count count_in = header->count;
1125 profile_count count_le = latch_edge->count ();
1126 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1127 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1128 profile_probability prob_pass_wont_exit =
1129 (count_le + count_out_orig).probability_in (count_in);
1131 if (orig && orig->probability.initialized_p ()
1132 && !(orig->probability == profile_probability::always ()))
1134 /* The blocks that are dominated by a removed exit edge ORIG have
1135 frequencies scaled by this. */
1136 if (orig->count ().initialized_p ())
1138 after_exit_num = orig->src->count;
1139 after_exit_den = after_exit_num - orig->count ();
1140 scale_after_exit = true;
1142 bbs_to_scale = BITMAP_ALLOC (NULL);
1143 for (i = 0; i < n; i++)
1145 if (bbs[i] != orig->src
1146 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1147 bitmap_set_bit (bbs_to_scale, i);
1151 scale_step = XNEWVEC (profile_probability, ndupl);
1153 for (i = 1; i <= ndupl; i++)
1154 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1155 ? prob_pass_wont_exit
1156 : prob_pass_thru;
1158 /* Complete peeling is special as the probability of exit in last
1159 copy becomes 1. */
1160 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1162 profile_count wanted_count = e->count ();
1164 gcc_assert (!is_latch);
1165 /* First copy has count of incoming edge. Each subsequent
1166 count should be reduced by prob_pass_wont_exit. Caller
1167 should've managed the flags so all except for original loop
1168 has won't exist set. */
1169 scale_act = wanted_count.probability_in (count_in);
1170 /* Now simulate the duplication adjustments and compute header
1171 frequency of the last copy. */
1172 for (i = 0; i < ndupl; i++)
1173 wanted_count = wanted_count.apply_probability (scale_step [i]);
1174 scale_main = wanted_count.probability_in (count_in);
1176 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1177 First iteration will be original loop followed by duplicated bodies.
1178 It is necessary to scale down the original so we get right overall
1179 number of iterations. */
1180 else if (is_latch)
1182 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1183 ? prob_pass_wont_exit
1184 : prob_pass_thru;
1185 profile_probability p = prob_pass_main;
1186 profile_count scale_main_den = count_in;
1187 for (i = 0; i < ndupl; i++)
1189 scale_main_den += count_in.apply_probability (p);
1190 p = p * scale_step[i];
1192 /* If original loop is executed COUNT_IN times, the unrolled
1193 loop will account SCALE_MAIN_DEN times. */
1194 scale_main = count_in.probability_in (scale_main_den);
1195 scale_act = scale_main * prob_pass_main;
1197 else
1199 profile_count preheader_count = e->count ();
1200 for (i = 0; i < ndupl; i++)
1201 scale_main = scale_main * scale_step[i];
1202 scale_act = preheader_count.probability_in (count_in);
1206 /* Loop the new bbs will belong to. */
1207 target = e->src->loop_father;
1209 /* Original loops. */
1210 n_orig_loops = 0;
1211 for (aloop = loop->inner; aloop; aloop = aloop->next)
1212 n_orig_loops++;
1213 orig_loops = XNEWVEC (class loop *, n_orig_loops);
1214 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1215 orig_loops[i] = aloop;
1217 set_loop_copy (loop, target);
1219 first_active = XNEWVEC (basic_block, n);
1220 if (is_latch)
1222 memcpy (first_active, bbs, n * sizeof (basic_block));
1223 first_active_latch = latch;
1226 spec_edges[SE_ORIG] = orig;
1227 spec_edges[SE_LATCH] = latch_edge;
1229 place_after = e->src;
1230 for (j = 0; j < ndupl; j++)
1232 /* Copy loops. */
1233 copy_loops_to (orig_loops, n_orig_loops, target);
1235 /* Copy bbs. */
1236 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1237 place_after, true);
1238 place_after = new_spec_edges[SE_LATCH]->src;
1240 if (flags & DLTHE_RECORD_COPY_NUMBER)
1241 for (i = 0; i < n; i++)
1243 gcc_assert (!new_bbs[i]->aux);
1244 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1247 /* Note whether the blocks and edges belong to an irreducible loop. */
1248 if (add_irreducible_flag)
1250 for (i = 0; i < n; i++)
1251 new_bbs[i]->flags |= BB_DUPLICATED;
1252 for (i = 0; i < n; i++)
1254 edge_iterator ei;
1255 new_bb = new_bbs[i];
1256 if (new_bb->loop_father == target)
1257 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1259 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1260 if ((ae->dest->flags & BB_DUPLICATED)
1261 && (ae->src->loop_father == target
1262 || ae->dest->loop_father == target))
1263 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1265 for (i = 0; i < n; i++)
1266 new_bbs[i]->flags &= ~BB_DUPLICATED;
1269 /* Redirect the special edges. */
1270 if (is_latch)
1272 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1273 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1274 loop->header);
1275 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1276 latch = loop->latch = new_bbs[n - 1];
1277 e = latch_edge = new_spec_edges[SE_LATCH];
1279 else
1281 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1282 loop->header);
1283 redirect_edge_and_branch_force (e, new_bbs[0]);
1284 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1285 e = new_spec_edges[SE_LATCH];
1288 /* Record exit edge in this copy. */
1289 if (orig && bitmap_bit_p (wont_exit, j + 1))
1291 if (to_remove)
1292 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1293 force_edge_cold (new_spec_edges[SE_ORIG], true);
1295 /* Scale the frequencies of the blocks dominated by the exit. */
1296 if (bbs_to_scale && scale_after_exit)
1298 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1299 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1300 after_exit_den);
1304 /* Record the first copy in the control flow order if it is not
1305 the original loop (i.e. in case of peeling). */
1306 if (!first_active_latch)
1308 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1309 first_active_latch = new_bbs[n - 1];
1312 /* Set counts and frequencies. */
1313 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1315 scale_bbs_frequencies (new_bbs, n, scale_act);
1316 scale_act = scale_act * scale_step[j];
1319 free (new_bbs);
1320 free (orig_loops);
1322 /* Record the exit edge in the original loop body, and update the frequencies. */
1323 if (orig && bitmap_bit_p (wont_exit, 0))
1325 if (to_remove)
1326 to_remove->safe_push (orig);
1327 force_edge_cold (orig, true);
1329 /* Scale the frequencies of the blocks dominated by the exit. */
1330 if (bbs_to_scale && scale_after_exit)
1332 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1333 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1334 after_exit_den);
1338 /* Update the original loop. */
1339 if (!is_latch)
1340 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1341 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1343 scale_bbs_frequencies (bbs, n, scale_main);
1344 free (scale_step);
1347 /* Update dominators of outer blocks if affected. */
1348 for (i = 0; i < n; i++)
1350 basic_block dominated, dom_bb;
1351 unsigned j;
1353 bb = bbs[i];
1354 bb->aux = 0;
1356 auto_vec<basic_block> dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1357 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1359 if (flow_bb_inside_loop_p (loop, dominated))
1360 continue;
1361 dom_bb = nearest_common_dominator (
1362 CDI_DOMINATORS, first_active[i], first_active_latch);
1363 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1366 free (first_active);
1368 free (bbs);
1369 BITMAP_FREE (bbs_to_scale);
1371 return true;
1374 /* A callback for make_forwarder block, to redirect all edges except for
1375 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1376 whether to redirect it. */
1378 edge mfb_kj_edge;
1379 bool
1380 mfb_keep_just (edge e)
1382 return e != mfb_kj_edge;
1385 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1387 static bool
1388 has_preds_from_loop (basic_block block, class loop *loop)
1390 edge e;
1391 edge_iterator ei;
1393 FOR_EACH_EDGE (e, ei, block->preds)
1394 if (e->src->loop_father == loop)
1395 return true;
1396 return false;
1399 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1400 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1401 entry; otherwise we also force preheader block to have only one successor.
1402 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1403 to be a fallthru predecessor to the loop header and to have only
1404 predecessors from outside of the loop.
1405 The function also updates dominators. */
1407 basic_block
1408 create_preheader (class loop *loop, int flags)
1410 edge e;
1411 basic_block dummy;
1412 int nentry = 0;
1413 bool irred = false;
1414 bool latch_edge_was_fallthru;
1415 edge one_succ_pred = NULL, single_entry = NULL;
1416 edge_iterator ei;
1418 FOR_EACH_EDGE (e, ei, loop->header->preds)
1420 if (e->src == loop->latch)
1421 continue;
1422 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1423 nentry++;
1424 single_entry = e;
1425 if (single_succ_p (e->src))
1426 one_succ_pred = e;
1428 gcc_assert (nentry);
1429 if (nentry == 1)
1431 bool need_forwarder_block = false;
1433 /* We do not allow entry block to be the loop preheader, since we
1434 cannot emit code there. */
1435 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1436 need_forwarder_block = true;
1437 else
1439 /* If we want simple preheaders, also force the preheader to have
1440 just a single successor and a normal edge. */
1441 if ((flags & CP_SIMPLE_PREHEADERS)
1442 && ((single_entry->flags & EDGE_COMPLEX)
1443 || !single_succ_p (single_entry->src)))
1444 need_forwarder_block = true;
1445 /* If we want fallthru preheaders, also create forwarder block when
1446 preheader ends with a jump or has predecessors from loop. */
1447 else if ((flags & CP_FALLTHRU_PREHEADERS)
1448 && (JUMP_P (BB_END (single_entry->src))
1449 || has_preds_from_loop (single_entry->src, loop)))
1450 need_forwarder_block = true;
1452 if (! need_forwarder_block)
1453 return NULL;
1456 mfb_kj_edge = loop_latch_edge (loop);
1457 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1458 if (nentry == 1
1459 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1460 || (single_entry->flags & EDGE_CROSSING) == 0))
1461 dummy = split_edge (single_entry);
1462 else
1464 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1465 dummy = fallthru->src;
1466 loop->header = fallthru->dest;
1469 /* Try to be clever in placing the newly created preheader. The idea is to
1470 avoid breaking any "fallthruness" relationship between blocks.
1472 The preheader was created just before the header and all incoming edges
1473 to the header were redirected to the preheader, except the latch edge.
1474 So the only problematic case is when this latch edge was a fallthru
1475 edge: it is not anymore after the preheader creation so we have broken
1476 the fallthruness. We're therefore going to look for a better place. */
1477 if (latch_edge_was_fallthru)
1479 if (one_succ_pred)
1480 e = one_succ_pred;
1481 else
1482 e = EDGE_PRED (dummy, 0);
1484 move_block_after (dummy, e->src);
1487 if (irred)
1489 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1490 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1493 if (dump_file)
1494 fprintf (dump_file, "Created preheader block for loop %i\n",
1495 loop->num);
1497 if (flags & CP_FALLTHRU_PREHEADERS)
1498 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1499 && !JUMP_P (BB_END (dummy)));
1501 return dummy;
1504 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1506 void
1507 create_preheaders (int flags)
1509 if (!current_loops)
1510 return;
1512 for (auto loop : loops_list (cfun, 0))
1513 create_preheader (loop, flags);
1514 loops_state_set (LOOPS_HAVE_PREHEADERS);
1517 /* Forces all loop latches to have only single successor. */
1519 void
1520 force_single_succ_latches (void)
1522 edge e;
1524 for (auto loop : loops_list (cfun, 0))
1526 if (loop->latch != loop->header && single_succ_p (loop->latch))
1527 continue;
1529 e = find_edge (loop->latch, loop->header);
1530 gcc_checking_assert (e != NULL);
1532 split_edge (e);
1534 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1537 /* This function is called from loop_version. It splits the entry edge
1538 of the loop we want to version, adds the versioning condition, and
1539 adjust the edges to the two versions of the loop appropriately.
1540 e is an incoming edge. Returns the basic block containing the
1541 condition.
1543 --- edge e ---- > [second_head]
1545 Split it and insert new conditional expression and adjust edges.
1547 --- edge e ---> [cond expr] ---> [first_head]
1549 +---------> [second_head]
1551 THEN_PROB is the probability of then branch of the condition.
1552 ELSE_PROB is the probability of else branch. Note that they may be both
1553 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1554 IFN_LOOP_DIST_ALIAS. */
1556 static basic_block
1557 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1558 edge e, void *cond_expr,
1559 profile_probability then_prob,
1560 profile_probability else_prob)
1562 basic_block new_head = NULL;
1563 edge e1;
1565 gcc_assert (e->dest == second_head);
1567 /* Split edge 'e'. This will create a new basic block, where we can
1568 insert conditional expr. */
1569 new_head = split_edge (e);
1571 lv_add_condition_to_bb (first_head, second_head, new_head,
1572 cond_expr);
1574 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1575 e = single_succ_edge (new_head);
1576 e1 = make_edge (new_head, first_head,
1577 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1578 e1->probability = then_prob;
1579 e->probability = else_prob;
1581 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1582 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1584 /* Adjust loop header phi nodes. */
1585 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1587 return new_head;
1590 /* Main entry point for Loop Versioning transformation.
1592 This transformation given a condition and a loop, creates
1593 -if (condition) { loop_copy1 } else { loop_copy2 },
1594 where loop_copy1 is the loop transformed in one way, and loop_copy2
1595 is the loop transformed in another way (or unchanged). COND_EXPR
1596 may be a run time test for things that were not resolved by static
1597 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1599 If non-NULL, CONDITION_BB is set to the basic block containing the
1600 condition.
1602 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1603 is the ratio by that the frequencies in the original loop should
1604 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1605 new loop should be scaled.
1607 If PLACE_AFTER is true, we place the new loop after LOOP in the
1608 instruction stream, otherwise it is placed before LOOP. */
1610 class loop *
1611 loop_version (class loop *loop,
1612 void *cond_expr, basic_block *condition_bb,
1613 profile_probability then_prob, profile_probability else_prob,
1614 profile_probability then_scale, profile_probability else_scale,
1615 bool place_after)
1617 basic_block first_head, second_head;
1618 edge entry, latch_edge;
1619 int irred_flag;
1620 class loop *nloop;
1621 basic_block cond_bb;
1623 /* Record entry and latch edges for the loop */
1624 entry = loop_preheader_edge (loop);
1625 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1626 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1628 /* Note down head of loop as first_head. */
1629 first_head = entry->dest;
1631 /* 1) Duplicate loop on the entry edge. */
1632 if (!cfg_hook_duplicate_loop_body_to_header_edge (loop, entry, 1, NULL, NULL,
1633 NULL, 0))
1635 entry->flags |= irred_flag;
1636 return NULL;
1639 /* 2) loopify the duplicated new loop. */
1640 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1641 nloop = alloc_loop ();
1642 class loop *outer = loop_outer (latch_edge->dest->loop_father);
1643 edge new_header_edge = single_pred_edge (get_bb_copy (loop->header));
1644 nloop->header = new_header_edge->dest;
1645 nloop->latch = latch_edge->src;
1646 loop_redirect_edge (latch_edge, nloop->header);
1648 /* Compute new loop. */
1649 add_loop (nloop, outer);
1650 copy_loop_info (loop, nloop);
1651 set_loop_copy (loop, nloop);
1653 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1654 lv_flush_pending_stmts (latch_edge);
1656 /* After duplication entry edge now points to new loop head block.
1657 Note down new head as second_head. */
1658 second_head = entry->dest;
1660 /* 3) Split loop entry edge and insert new block with cond expr. */
1661 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1662 entry, cond_expr, then_prob, else_prob);
1663 if (condition_bb)
1664 *condition_bb = cond_bb;
1666 if (!cond_bb)
1668 entry->flags |= irred_flag;
1669 return NULL;
1672 /* Add cond_bb to appropriate loop. */
1673 if (cond_bb->loop_father)
1674 remove_bb_from_loops (cond_bb);
1675 add_bb_to_loop (cond_bb, outer);
1677 /* 4) Scale the original loop and new loop frequency. */
1678 scale_loop_frequencies (loop, then_scale);
1679 scale_loop_frequencies (nloop, else_scale);
1680 update_dominators_in_loop (loop);
1681 update_dominators_in_loop (nloop);
1683 /* Adjust irreducible flag. */
1684 if (irred_flag)
1686 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1687 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1688 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1689 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1692 if (place_after)
1694 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1695 unsigned i;
1697 after = loop->latch;
1699 for (i = 0; i < nloop->num_nodes; i++)
1701 move_block_after (bbs[i], after);
1702 after = bbs[i];
1704 free (bbs);
1707 /* At this point condition_bb is loop preheader with two successors,
1708 first_head and second_head. Make sure that loop preheader has only
1709 one successor. */
1710 split_edge (loop_preheader_edge (loop));
1711 split_edge (loop_preheader_edge (nloop));
1713 return nloop;