* Makefile.in (ssa.o, regclass.o): Depend on $(EXPR_H).
[official-gcc.git] / gcc / regclass.c
blob001015f7c2efcf870ad79322101a5dd04a3bda71
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "expr.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "basic-block.h"
35 #include "regs.h"
36 #include "function.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "reload.h"
40 #include "real.h"
41 #include "toplev.h"
42 #include "output.h"
43 #include "ggc.h"
45 #ifndef REGISTER_MOVE_COST
46 #define REGISTER_MOVE_COST(m, x, y) 2
47 #endif
49 static void init_reg_sets_1 PARAMS ((void));
50 static void init_reg_modes PARAMS ((void));
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* Indexed by hard register number, contains 1 for registers that are
99 fixed use or call used registers that cannot hold quantities across
100 calls even if we are willing to save and restore them. call fixed
101 registers are a subset of call used registers. */
103 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
105 /* The same info as a HARD_REG_SET. */
107 HARD_REG_SET call_fixed_reg_set;
109 /* Number of non-fixed registers. */
111 int n_non_fixed_regs;
113 /* Indexed by hard register number, contains 1 for registers
114 that are being used for global register decls.
115 These must be exempt from ordinary flow analysis
116 and are also considered fixed. */
118 char global_regs[FIRST_PSEUDO_REGISTER];
120 /* Table of register numbers in the order in which to try to use them. */
121 #ifdef REG_ALLOC_ORDER
122 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
124 /* The inverse of reg_alloc_order. */
125 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
126 #endif
128 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
130 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
132 /* The same information, but as an array of unsigned ints. We copy from
133 these unsigned ints to the table above. We do this so the tm.h files
134 do not have to be aware of the wordsize for machines with <= 64 regs. */
136 #define N_REG_INTS \
137 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
139 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
140 = REG_CLASS_CONTENTS;
142 /* For each reg class, number of regs it contains. */
144 unsigned int reg_class_size[N_REG_CLASSES];
146 /* For each reg class, table listing all the containing classes. */
148 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
150 /* For each reg class, table listing all the classes contained in it. */
152 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 a largest reg class contained in their union. */
157 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* For each pair of reg classes,
160 the smallest reg class containing their union. */
162 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
164 /* Array containing all of the register names. Unless
165 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
167 #ifdef DEBUG_REGISTER_NAMES
168 const char * reg_names[] = REGISTER_NAMES;
169 #endif
171 /* For each hard register, the widest mode object that it can contain.
172 This will be a MODE_INT mode if the register can hold integers. Otherwise
173 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
174 register. */
176 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
178 /* 1 if class does contain register of given mode. */
180 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
182 /* Maximum cost of moving from a register in one class to a register in
183 another class. Based on REGISTER_MOVE_COST. */
185 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
187 /* Similar, but here we don't have to move if the first index is a subset
188 of the second so in that case the cost is zero. */
190 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
192 /* Similar, but here we don't have to move if the first index is a superset
193 of the second so in that case the cost is zero. */
195 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
197 #ifdef FORBIDDEN_INC_DEC_CLASSES
199 /* These are the classes that regs which are auto-incremented or decremented
200 cannot be put in. */
202 static int forbidden_inc_dec_class[N_REG_CLASSES];
204 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
205 context. */
207 static char *in_inc_dec;
209 #endif /* FORBIDDEN_INC_DEC_CLASSES */
211 #ifdef CLASS_CANNOT_CHANGE_MODE
213 /* These are the classes containing only registers that can be used in
214 a SUBREG expression that changes the mode of the register in some
215 way that is illegal. */
217 static int class_can_change_mode[N_REG_CLASSES];
219 /* Registers, including pseudos, which change modes in some way that
220 is illegal. */
222 static regset reg_changes_mode;
224 #endif /* CLASS_CANNOT_CHANGE_MODE */
226 #ifdef HAVE_SECONDARY_RELOADS
228 /* Sample MEM values for use by memory_move_secondary_cost. */
230 static rtx top_of_stack[MAX_MACHINE_MODE];
232 #endif /* HAVE_SECONDARY_RELOADS */
234 /* Linked list of reg_info structures allocated for reg_n_info array.
235 Grouping all of the allocated structures together in one lump
236 means only one call to bzero to clear them, rather than n smaller
237 calls. */
238 struct reg_info_data {
239 struct reg_info_data *next; /* next set of reg_info structures */
240 size_t min_index; /* minimum index # */
241 size_t max_index; /* maximum index # */
242 char used_p; /* non-zero if this has been used previously */
243 reg_info data[1]; /* beginning of the reg_info data */
246 static struct reg_info_data *reg_info_head;
248 /* No more global register variables may be declared; true once
249 regclass has been initialized. */
251 static int no_global_reg_vars = 0;
254 /* Function called only once to initialize the above data on reg usage.
255 Once this is done, various switches may override. */
257 void
258 init_reg_sets ()
260 register int i, j;
262 /* First copy the register information from the initial int form into
263 the regsets. */
265 for (i = 0; i < N_REG_CLASSES; i++)
267 CLEAR_HARD_REG_SET (reg_class_contents[i]);
269 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
270 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
271 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
272 SET_HARD_REG_BIT (reg_class_contents[i], j);
275 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
276 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
277 memset (global_regs, 0, sizeof global_regs);
279 /* Do any additional initialization regsets may need */
280 INIT_ONCE_REG_SET ();
282 #ifdef REG_ALLOC_ORDER
283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
284 inv_reg_alloc_order[reg_alloc_order[i]] = i;
285 #endif
288 /* After switches have been processed, which perhaps alter
289 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
291 static void
292 init_reg_sets_1 ()
294 register unsigned int i, j;
295 register unsigned int /* enum machine_mode */ m;
296 char allocatable_regs_of_mode [MAX_MACHINE_MODE];
298 /* This macro allows the fixed or call-used registers
299 and the register classes to depend on target flags. */
301 #ifdef CONDITIONAL_REGISTER_USAGE
302 CONDITIONAL_REGISTER_USAGE;
303 #endif
305 /* Compute number of hard regs in each class. */
307 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
308 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
310 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
311 reg_class_size[i]++;
313 /* Initialize the table of subunions.
314 reg_class_subunion[I][J] gets the largest-numbered reg-class
315 that is contained in the union of classes I and J. */
317 for (i = 0; i < N_REG_CLASSES; i++)
319 for (j = 0; j < N_REG_CLASSES; j++)
321 #ifdef HARD_REG_SET
322 register /* Declare it register if it's a scalar. */
323 #endif
324 HARD_REG_SET c;
325 register int k;
327 COPY_HARD_REG_SET (c, reg_class_contents[i]);
328 IOR_HARD_REG_SET (c, reg_class_contents[j]);
329 for (k = 0; k < N_REG_CLASSES; k++)
331 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
332 subclass1);
333 continue;
335 subclass1:
336 /* keep the largest subclass */ /* SPEE 900308 */
337 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
338 reg_class_contents[(int) reg_class_subunion[i][j]],
339 subclass2);
340 reg_class_subunion[i][j] = (enum reg_class) k;
341 subclass2:
347 /* Initialize the table of superunions.
348 reg_class_superunion[I][J] gets the smallest-numbered reg-class
349 containing the union of classes I and J. */
351 for (i = 0; i < N_REG_CLASSES; i++)
353 for (j = 0; j < N_REG_CLASSES; j++)
355 #ifdef HARD_REG_SET
356 register /* Declare it register if it's a scalar. */
357 #endif
358 HARD_REG_SET c;
359 register int k;
361 COPY_HARD_REG_SET (c, reg_class_contents[i]);
362 IOR_HARD_REG_SET (c, reg_class_contents[j]);
363 for (k = 0; k < N_REG_CLASSES; k++)
364 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
366 superclass:
367 reg_class_superunion[i][j] = (enum reg_class) k;
371 /* Initialize the tables of subclasses and superclasses of each reg class.
372 First clear the whole table, then add the elements as they are found. */
374 for (i = 0; i < N_REG_CLASSES; i++)
376 for (j = 0; j < N_REG_CLASSES; j++)
378 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
379 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
383 for (i = 0; i < N_REG_CLASSES; i++)
385 if (i == (int) NO_REGS)
386 continue;
388 for (j = i + 1; j < N_REG_CLASSES; j++)
390 enum reg_class *p;
392 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
393 subclass);
394 continue;
395 subclass:
396 /* Reg class I is a subclass of J.
397 Add J to the table of superclasses of I. */
398 p = &reg_class_superclasses[i][0];
399 while (*p != LIM_REG_CLASSES) p++;
400 *p = (enum reg_class) j;
401 /* Add I to the table of superclasses of J. */
402 p = &reg_class_subclasses[j][0];
403 while (*p != LIM_REG_CLASSES) p++;
404 *p = (enum reg_class) i;
408 /* Initialize "constant" tables. */
410 CLEAR_HARD_REG_SET (fixed_reg_set);
411 CLEAR_HARD_REG_SET (call_used_reg_set);
412 CLEAR_HARD_REG_SET (call_fixed_reg_set);
414 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
416 n_non_fixed_regs = 0;
418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
420 if (fixed_regs[i])
421 SET_HARD_REG_BIT (fixed_reg_set, i);
422 else
423 n_non_fixed_regs++;
425 if (call_used_regs[i])
426 SET_HARD_REG_BIT (call_used_reg_set, i);
427 if (call_fixed_regs[i])
428 SET_HARD_REG_BIT (call_fixed_reg_set, i);
429 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
430 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
432 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
433 memset (allocatable_regs_of_mode, 0, sizeof (allocatable_regs_of_mode));
434 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
435 for (i = 0; i < N_REG_CLASSES; i++)
436 if (CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
437 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
438 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
439 && HARD_REGNO_MODE_OK (j, m))
441 contains_reg_of_mode [i][m] = 1;
442 allocatable_regs_of_mode [m] = 1;
443 break;
446 /* Initialize the move cost table. Find every subset of each class
447 and take the maximum cost of moving any subset to any other. */
449 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
450 if (allocatable_regs_of_mode [m])
452 for (i = 0; i < N_REG_CLASSES; i++)
453 if (contains_reg_of_mode [i][m])
454 for (j = 0; j < N_REG_CLASSES; j++)
456 int cost;
457 enum reg_class *p1, *p2;
459 if (!contains_reg_of_mode [j][m])
461 move_cost[m][i][j] = 65536;
462 may_move_in_cost[m][i][j] = 65536;
463 may_move_out_cost[m][i][j] = 65536;
465 else
467 cost = i == j ? 2 : REGISTER_MOVE_COST (m, i, j);
469 for (p2 = &reg_class_subclasses[j][0];
470 *p2 != LIM_REG_CLASSES;
471 p2++)
472 if (*p2 != i && contains_reg_of_mode [*p2][m])
473 cost = MAX (cost, move_cost [m][i][*p2]);
475 for (p1 = &reg_class_subclasses[i][0];
476 *p1 != LIM_REG_CLASSES;
477 p1++)
478 if (*p1 != j && contains_reg_of_mode [*p1][m])
479 cost = MAX (cost, move_cost [m][*p1][j]);
481 move_cost[m][i][j] = cost;
483 if (reg_class_subset_p (i, j))
484 may_move_in_cost[m][i][j] = 0;
485 else
486 may_move_in_cost[m][i][j] = cost;
488 if (reg_class_subset_p (j, i))
489 may_move_out_cost[m][i][j] = 0;
490 else
491 may_move_out_cost[m][i][j] = cost;
494 else
495 for (j = 0; j < N_REG_CLASSES; j++)
497 move_cost[m][i][j] = 65536;
498 may_move_in_cost[m][i][j] = 65536;
499 may_move_out_cost[m][i][j] = 65536;
503 #ifdef CLASS_CANNOT_CHANGE_MODE
505 HARD_REG_SET c;
506 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
508 for (i = 0; i < N_REG_CLASSES; i++)
510 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
511 class_can_change_mode [i] = 0;
512 continue;
513 ok_class:
514 class_can_change_mode [i] = 1;
517 #endif /* CLASS_CANNOT_CHANGE_MODE */
520 /* Compute the table of register modes.
521 These values are used to record death information for individual registers
522 (as opposed to a multi-register mode). */
524 static void
525 init_reg_modes ()
527 register int i;
529 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
531 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
533 /* If we couldn't find a valid mode, just use the previous mode.
534 ??? One situation in which we need to do this is on the mips where
535 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
536 to use DF mode for the even registers and VOIDmode for the odd
537 (for the cpu models where the odd ones are inaccessible). */
538 if (reg_raw_mode[i] == VOIDmode)
539 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
543 /* Finish initializing the register sets and
544 initialize the register modes. */
546 void
547 init_regs ()
549 /* This finishes what was started by init_reg_sets, but couldn't be done
550 until after register usage was specified. */
551 init_reg_sets_1 ();
553 init_reg_modes ();
555 #ifdef HAVE_SECONDARY_RELOADS
557 /* Make some fake stack-frame MEM references for use in
558 memory_move_secondary_cost. */
559 int i;
561 for (i = 0; i < MAX_MACHINE_MODE; i++)
562 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
563 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
565 #endif
568 #ifdef HAVE_SECONDARY_RELOADS
570 /* Compute extra cost of moving registers to/from memory due to reloads.
571 Only needed if secondary reloads are required for memory moves. */
574 memory_move_secondary_cost (mode, class, in)
575 enum machine_mode mode;
576 enum reg_class class;
577 int in;
579 enum reg_class altclass;
580 int partial_cost = 0;
581 /* We need a memory reference to feed to SECONDARY... macros. */
582 /* mem may be unused even if the SECONDARY_ macros are defined. */
583 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
586 if (in)
588 #ifdef SECONDARY_INPUT_RELOAD_CLASS
589 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
590 #else
591 altclass = NO_REGS;
592 #endif
594 else
596 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
597 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
598 #else
599 altclass = NO_REGS;
600 #endif
603 if (altclass == NO_REGS)
604 return 0;
606 if (in)
607 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
608 else
609 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
611 if (class == altclass)
612 /* This isn't simply a copy-to-temporary situation. Can't guess
613 what it is, so MEMORY_MOVE_COST really ought not to be calling
614 here in that case.
616 I'm tempted to put in an abort here, but returning this will
617 probably only give poor estimates, which is what we would've
618 had before this code anyways. */
619 return partial_cost;
621 /* Check if the secondary reload register will also need a
622 secondary reload. */
623 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
625 #endif
627 /* Return a machine mode that is legitimate for hard reg REGNO and large
628 enough to save nregs. If we can't find one, return VOIDmode. */
630 enum machine_mode
631 choose_hard_reg_mode (regno, nregs)
632 unsigned int regno ATTRIBUTE_UNUSED;
633 unsigned int nregs;
635 unsigned int /* enum machine_mode */ m;
636 enum machine_mode found_mode = VOIDmode, mode;
638 /* We first look for the largest integer mode that can be validly
639 held in REGNO. If none, we look for the largest floating-point mode.
640 If we still didn't find a valid mode, try CCmode. */
642 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
643 mode != VOIDmode;
644 mode = GET_MODE_WIDER_MODE (mode))
645 if (HARD_REGNO_NREGS (regno, mode) == nregs
646 && HARD_REGNO_MODE_OK (regno, mode))
647 found_mode = mode;
649 if (found_mode != VOIDmode)
650 return found_mode;
652 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
653 mode != VOIDmode;
654 mode = GET_MODE_WIDER_MODE (mode))
655 if (HARD_REGNO_NREGS (regno, mode) == nregs
656 && HARD_REGNO_MODE_OK (regno, mode))
657 found_mode = mode;
659 if (found_mode != VOIDmode)
660 return found_mode;
662 /* Iterate over all of the CCmodes. */
663 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
665 mode = (enum machine_mode) m;
666 if (HARD_REGNO_NREGS (regno, mode) == nregs
667 && HARD_REGNO_MODE_OK (regno, mode))
668 return mode;
671 /* We can't find a mode valid for this register. */
672 return VOIDmode;
675 /* Specify the usage characteristics of the register named NAME.
676 It should be a fixed register if FIXED and a
677 call-used register if CALL_USED. */
679 void
680 fix_register (name, fixed, call_used)
681 const char *name;
682 int fixed, call_used;
684 int i;
686 /* Decode the name and update the primary form of
687 the register info. */
689 if ((i = decode_reg_name (name)) >= 0)
691 if ((i == STACK_POINTER_REGNUM
692 #ifdef HARD_FRAME_POINTER_REGNUM
693 || i == HARD_FRAME_POINTER_REGNUM
694 #else
695 || i == FRAME_POINTER_REGNUM
696 #endif
698 && (fixed == 0 || call_used == 0))
700 static const char * const what_option[2][2] = {
701 { "call-saved", "call-used" },
702 { "no-such-option", "fixed" }};
704 error ("can't use '%s' as a %s register", name,
705 what_option[fixed][call_used]);
707 else
709 fixed_regs[i] = fixed;
710 call_used_regs[i] = call_used;
713 else
715 warning ("unknown register name: %s", name);
719 /* Mark register number I as global. */
721 void
722 globalize_reg (i)
723 int i;
725 if (fixed_regs[i] == 0 && no_global_reg_vars)
726 error ("global register variable follows a function definition");
728 if (global_regs[i])
730 warning ("register used for two global register variables");
731 return;
734 if (call_used_regs[i] && ! fixed_regs[i])
735 warning ("call-clobbered register used for global register variable");
737 global_regs[i] = 1;
739 /* If already fixed, nothing else to do. */
740 if (fixed_regs[i])
741 return;
743 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
744 n_non_fixed_regs--;
746 SET_HARD_REG_BIT (fixed_reg_set, i);
747 SET_HARD_REG_BIT (call_used_reg_set, i);
748 SET_HARD_REG_BIT (call_fixed_reg_set, i);
751 /* Now the data and code for the `regclass' pass, which happens
752 just before local-alloc. */
754 /* The `costs' struct records the cost of using a hard register of each class
755 and of using memory for each pseudo. We use this data to set up
756 register class preferences. */
758 struct costs
760 int cost[N_REG_CLASSES];
761 int mem_cost;
764 /* Structure used to record preferrences of given pseudo. */
765 struct reg_pref
767 /* (enum reg_class) prefclass is the preferred class. */
768 char prefclass;
770 /* altclass is a register class that we should use for allocating
771 pseudo if no register in the preferred class is available.
772 If no register in this class is available, memory is preferred.
774 It might appear to be more general to have a bitmask of classes here,
775 but since it is recommended that there be a class corresponding to the
776 union of most major pair of classes, that generality is not required. */
777 char altclass;
780 /* Record the cost of each class for each pseudo. */
782 static struct costs *costs;
784 /* Initialized once, and used to initialize cost values for each insn. */
786 static struct costs init_cost;
788 /* Record preferrences of each pseudo.
789 This is available after `regclass' is run. */
791 static struct reg_pref *reg_pref;
793 /* Allocated buffers for reg_pref. */
795 static struct reg_pref *reg_pref_buffer;
797 /* Account for the fact that insns within a loop are executed very commonly,
798 but don't keep doing this as loops go too deep. */
800 static int loop_cost;
802 static rtx scan_one_insn PARAMS ((rtx, int));
803 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
804 static void dump_regclass PARAMS ((FILE *));
805 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
806 const char **, rtx,
807 struct costs *, struct reg_pref *));
808 static int copy_cost PARAMS ((rtx, enum machine_mode,
809 enum reg_class, int));
810 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
811 #ifdef FORBIDDEN_INC_DEC_CLASSES
812 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
813 #endif
814 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
816 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
817 This function is sometimes called before the info has been computed.
818 When that happens, just return GENERAL_REGS, which is innocuous. */
820 enum reg_class
821 reg_preferred_class (regno)
822 int regno;
824 if (reg_pref == 0)
825 return GENERAL_REGS;
826 return (enum reg_class) reg_pref[regno].prefclass;
829 enum reg_class
830 reg_alternate_class (regno)
831 int regno;
833 if (reg_pref == 0)
834 return ALL_REGS;
836 return (enum reg_class) reg_pref[regno].altclass;
839 /* Initialize some global data for this pass. */
841 void
842 regclass_init ()
844 int i;
846 init_cost.mem_cost = 10000;
847 for (i = 0; i < N_REG_CLASSES; i++)
848 init_cost.cost[i] = 10000;
850 /* This prevents dump_flow_info from losing if called
851 before regclass is run. */
852 reg_pref = NULL;
854 /* No more global register variables may be declared. */
855 no_global_reg_vars = 1;
858 /* Dump register costs. */
859 static void
860 dump_regclass (dump)
861 FILE *dump;
863 static const char *const reg_class_names[] = REG_CLASS_NAMES;
864 int i;
865 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
867 int /* enum reg_class */ class;
868 if (REG_N_REFS (i))
870 fprintf (dump, " Register %i costs:", i);
871 for (class = 0; class < (int) N_REG_CLASSES; class++)
872 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
873 #ifdef FORBIDDEN_INC_DEC_CLASSES
874 && (!in_inc_dec[i]
875 || !forbidden_inc_dec_class[(enum reg_class) class])
876 #endif
877 #ifdef CLASS_CANNOT_CHANGE_MODE
878 && (!REGNO_REG_SET_P (reg_changes_mode, i)
879 || class_can_change_mode [(enum reg_class) class])
880 #endif
882 fprintf (dump, " %s:%i", reg_class_names[class],
883 costs[i].cost[(enum reg_class) class]);
884 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
890 /* Calculate the costs of insn operands. */
892 static void
893 record_operand_costs (insn, op_costs, reg_pref)
894 rtx insn;
895 struct costs *op_costs;
896 struct reg_pref *reg_pref;
898 const char *constraints[MAX_RECOG_OPERANDS];
899 enum machine_mode modes[MAX_RECOG_OPERANDS];
900 int i;
902 for (i = 0; i < recog_data.n_operands; i++)
904 constraints[i] = recog_data.constraints[i];
905 modes[i] = recog_data.operand_mode[i];
908 /* If we get here, we are set up to record the costs of all the
909 operands for this insn. Start by initializing the costs.
910 Then handle any address registers. Finally record the desired
911 classes for any pseudos, doing it twice if some pair of
912 operands are commutative. */
914 for (i = 0; i < recog_data.n_operands; i++)
916 op_costs[i] = init_cost;
918 if (GET_CODE (recog_data.operand[i]) == SUBREG)
920 rtx inner = SUBREG_REG (recog_data.operand[i]);
921 #ifdef CLASS_CANNOT_CHANGE_MODE
922 if (GET_CODE (inner) == REG
923 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
924 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
925 #endif
926 recog_data.operand[i] = inner;
929 if (GET_CODE (recog_data.operand[i]) == MEM)
930 record_address_regs (XEXP (recog_data.operand[i], 0),
931 BASE_REG_CLASS, loop_cost * 2);
932 else if (constraints[i][0] == 'p')
933 record_address_regs (recog_data.operand[i],
934 BASE_REG_CLASS, loop_cost * 2);
937 /* Check for commutative in a separate loop so everything will
938 have been initialized. We must do this even if one operand
939 is a constant--see addsi3 in m68k.md. */
941 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
942 if (constraints[i][0] == '%')
944 const char *xconstraints[MAX_RECOG_OPERANDS];
945 int j;
947 /* Handle commutative operands by swapping the constraints.
948 We assume the modes are the same. */
950 for (j = 0; j < recog_data.n_operands; j++)
951 xconstraints[j] = constraints[j];
953 xconstraints[i] = constraints[i+1];
954 xconstraints[i+1] = constraints[i];
955 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
956 recog_data.operand, modes,
957 xconstraints, insn, op_costs, reg_pref);
960 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
961 recog_data.operand, modes,
962 constraints, insn, op_costs, reg_pref);
965 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
966 time it would save code to put a certain register in a certain class.
967 PASS, when nonzero, inhibits some optimizations which need only be done
968 once.
969 Return the last insn processed, so that the scan can be continued from
970 there. */
972 static rtx
973 scan_one_insn (insn, pass)
974 rtx insn;
975 int pass;
977 enum rtx_code code = GET_CODE (insn);
978 enum rtx_code pat_code;
979 rtx set, note;
980 int i, j;
981 struct costs op_costs[MAX_RECOG_OPERANDS];
983 if (GET_RTX_CLASS (code) != 'i')
984 return insn;
986 pat_code = GET_CODE (PATTERN (insn));
987 if (pat_code == USE
988 || pat_code == CLOBBER
989 || pat_code == ASM_INPUT
990 || pat_code == ADDR_VEC
991 || pat_code == ADDR_DIFF_VEC)
992 return insn;
994 set = single_set (insn);
995 extract_insn (insn);
997 /* If this insn loads a parameter from its stack slot, then
998 it represents a savings, rather than a cost, if the
999 parameter is stored in memory. Record this fact. */
1001 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
1002 && GET_CODE (SET_SRC (set)) == MEM
1003 && (note = find_reg_note (insn, REG_EQUIV,
1004 NULL_RTX)) != 0
1005 && GET_CODE (XEXP (note, 0)) == MEM)
1007 costs[REGNO (SET_DEST (set))].mem_cost
1008 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1009 GENERAL_REGS, 1)
1010 * loop_cost);
1011 record_address_regs (XEXP (SET_SRC (set), 0),
1012 BASE_REG_CLASS, loop_cost * 2);
1013 return insn;
1016 /* Improve handling of two-address insns such as
1017 (set X (ashift CONST Y)) where CONST must be made to
1018 match X. Change it into two insns: (set X CONST)
1019 (set X (ashift X Y)). If we left this for reloading, it
1020 would probably get three insns because X and Y might go
1021 in the same place. This prevents X and Y from receiving
1022 the same hard reg.
1024 We can only do this if the modes of operands 0 and 1
1025 (which might not be the same) are tieable and we only need
1026 do this during our first pass. */
1028 if (pass == 0 && optimize
1029 && recog_data.n_operands >= 3
1030 && recog_data.constraints[1][0] == '0'
1031 && recog_data.constraints[1][1] == 0
1032 && CONSTANT_P (recog_data.operand[1])
1033 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1034 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1035 && GET_CODE (recog_data.operand[0]) == REG
1036 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1037 recog_data.operand_mode[1]))
1039 rtx previnsn = prev_real_insn (insn);
1040 rtx dest
1041 = gen_lowpart (recog_data.operand_mode[1],
1042 recog_data.operand[0]);
1043 rtx newinsn
1044 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1046 /* If this insn was the start of a basic block,
1047 include the new insn in that block.
1048 We need not check for code_label here;
1049 while a basic block can start with a code_label,
1050 INSN could not be at the beginning of that block. */
1051 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
1053 int b;
1054 for (b = 0; b < n_basic_blocks; b++)
1055 if (insn == BLOCK_HEAD (b))
1056 BLOCK_HEAD (b) = newinsn;
1059 /* This makes one more setting of new insns's dest. */
1060 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1062 *recog_data.operand_loc[1] = recog_data.operand[0];
1063 for (i = recog_data.n_dups - 1; i >= 0; i--)
1064 if (recog_data.dup_num[i] == 1)
1065 *recog_data.dup_loc[i] = recog_data.operand[0];
1067 return PREV_INSN (newinsn);
1070 record_operand_costs (insn, op_costs, reg_pref);
1072 /* Now add the cost for each operand to the total costs for
1073 its register. */
1075 for (i = 0; i < recog_data.n_operands; i++)
1076 if (GET_CODE (recog_data.operand[i]) == REG
1077 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1079 int regno = REGNO (recog_data.operand[i]);
1080 struct costs *p = &costs[regno], *q = &op_costs[i];
1082 p->mem_cost += q->mem_cost * loop_cost;
1083 for (j = 0; j < N_REG_CLASSES; j++)
1084 p->cost[j] += q->cost[j] * loop_cost;
1087 return insn;
1090 /* This is a pass of the compiler that scans all instructions
1091 and calculates the preferred class for each pseudo-register.
1092 This information can be accessed later by calling `reg_preferred_class'.
1093 This pass comes just before local register allocation. */
1095 void
1096 regclass (f, nregs, dump)
1097 rtx f;
1098 int nregs;
1099 FILE *dump;
1101 register rtx insn;
1102 register int i;
1103 int pass;
1105 init_recog ();
1107 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1109 #ifdef CLASS_CANNOT_CHANGE_MODE
1110 reg_changes_mode = BITMAP_XMALLOC();
1111 #endif
1113 #ifdef FORBIDDEN_INC_DEC_CLASSES
1115 in_inc_dec = (char *) xmalloc (nregs);
1117 /* Initialize information about which register classes can be used for
1118 pseudos that are auto-incremented or auto-decremented. It would
1119 seem better to put this in init_reg_sets, but we need to be able
1120 to allocate rtx, which we can't do that early. */
1122 for (i = 0; i < N_REG_CLASSES; i++)
1124 rtx r = gen_rtx_REG (VOIDmode, 0);
1125 enum machine_mode m;
1126 register int j;
1128 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1129 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1131 REGNO (r) = j;
1133 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1134 m = (enum machine_mode) ((int) m + 1))
1135 if (HARD_REGNO_MODE_OK (j, m))
1137 PUT_MODE (r, m);
1139 /* If a register is not directly suitable for an
1140 auto-increment or decrement addressing mode and
1141 requires secondary reloads, disallow its class from
1142 being used in such addresses. */
1144 if ((0
1145 #ifdef SECONDARY_RELOAD_CLASS
1146 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1147 != NO_REGS)
1148 #else
1149 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1150 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1151 != NO_REGS)
1152 #endif
1153 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1154 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1155 != NO_REGS)
1156 #endif
1157 #endif
1159 && ! auto_inc_dec_reg_p (r, m))
1160 forbidden_inc_dec_class[i] = 1;
1164 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1166 /* Normally we scan the insns once and determine the best class to use for
1167 each register. However, if -fexpensive_optimizations are on, we do so
1168 twice, the second time using the tentative best classes to guide the
1169 selection. */
1171 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1173 int index;
1175 if (dump)
1176 fprintf (dump, "\n\nPass %i\n\n",pass);
1177 /* Zero out our accumulation of the cost of each class for each reg. */
1179 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1181 #ifdef FORBIDDEN_INC_DEC_CLASSES
1182 memset (in_inc_dec, 0, nregs);
1183 #endif
1185 /* Scan the instructions and record each time it would
1186 save code to put a certain register in a certain class. */
1188 if (!optimize)
1190 loop_cost = 1;
1191 for (insn = f; insn; insn = NEXT_INSN (insn))
1192 insn = scan_one_insn (insn, pass);
1194 else
1195 for (index = 0; index < n_basic_blocks; index++)
1197 basic_block bb = BASIC_BLOCK (index);
1199 /* Show that an insn inside a loop is likely to be executed three
1200 times more than insns outside a loop. This is much more
1201 aggressive than the assumptions made elsewhere and is being
1202 tried as an experiment. */
1203 if (optimize_size)
1204 loop_cost = 1;
1205 else
1206 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1207 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1209 insn = scan_one_insn (insn, pass);
1210 if (insn == bb->end)
1211 break;
1215 /* Now for each register look at how desirable each class is
1216 and find which class is preferred. Store that in
1217 `prefclass'. Record in `altclass' the largest register
1218 class any of whose registers is better than memory. */
1220 if (pass == 0)
1221 reg_pref = reg_pref_buffer;
1223 if (dump)
1225 dump_regclass (dump);
1226 fprintf (dump,"\n");
1228 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1230 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1231 enum reg_class best = ALL_REGS, alt = NO_REGS;
1232 /* This is an enum reg_class, but we call it an int
1233 to save lots of casts. */
1234 register int class;
1235 register struct costs *p = &costs[i];
1237 /* In non-optimizing compilation REG_N_REFS is not initialized
1238 yet. */
1239 if (optimize && !REG_N_REFS (i))
1240 continue;
1242 for (class = (int) ALL_REGS - 1; class > 0; class--)
1244 /* Ignore classes that are too small for this operand or
1245 invalid for a operand that was auto-incremented. */
1246 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1247 #ifdef FORBIDDEN_INC_DEC_CLASSES
1248 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1249 #endif
1250 #ifdef CLASS_CANNOT_CHANGE_MODE
1251 || (REGNO_REG_SET_P (reg_changes_mode, i)
1252 && ! class_can_change_mode [class])
1253 #endif
1256 else if (p->cost[class] < best_cost)
1258 best_cost = p->cost[class];
1259 best = (enum reg_class) class;
1261 else if (p->cost[class] == best_cost)
1262 best = reg_class_subunion[(int)best][class];
1265 /* Record the alternate register class; i.e., a class for which
1266 every register in it is better than using memory. If adding a
1267 class would make a smaller class (i.e., no union of just those
1268 classes exists), skip that class. The major unions of classes
1269 should be provided as a register class. Don't do this if we
1270 will be doing it again later. */
1272 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1273 for (class = 0; class < N_REG_CLASSES; class++)
1274 if (p->cost[class] < p->mem_cost
1275 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1276 > reg_class_size[(int) alt])
1277 #ifdef FORBIDDEN_INC_DEC_CLASSES
1278 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1279 #endif
1280 #ifdef CLASS_CANNOT_CHANGE_MODE
1281 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1282 && ! class_can_change_mode [class])
1283 #endif
1285 alt = reg_class_subunion[(int) alt][class];
1287 /* If we don't add any classes, nothing to try. */
1288 if (alt == best)
1289 alt = NO_REGS;
1291 if (dump
1292 && (reg_pref[i].prefclass != (int) best
1293 || reg_pref[i].altclass != (int) alt))
1295 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1296 fprintf (dump, " Register %i", i);
1297 if (alt == ALL_REGS || best == ALL_REGS)
1298 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1299 else if (alt == NO_REGS)
1300 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1301 else
1302 fprintf (dump, " pref %s, else %s\n",
1303 reg_class_names[(int) best],
1304 reg_class_names[(int) alt]);
1307 /* We cast to (int) because (char) hits bugs in some compilers. */
1308 reg_pref[i].prefclass = (int) best;
1309 reg_pref[i].altclass = (int) alt;
1313 #ifdef FORBIDDEN_INC_DEC_CLASSES
1314 free (in_inc_dec);
1315 #endif
1316 #ifdef CLASS_CANNOT_CHANGE_MODE
1317 BITMAP_XFREE (reg_changes_mode);
1318 #endif
1319 free (costs);
1322 /* Record the cost of using memory or registers of various classes for
1323 the operands in INSN.
1325 N_ALTS is the number of alternatives.
1327 N_OPS is the number of operands.
1329 OPS is an array of the operands.
1331 MODES are the modes of the operands, in case any are VOIDmode.
1333 CONSTRAINTS are the constraints to use for the operands. This array
1334 is modified by this procedure.
1336 This procedure works alternative by alternative. For each alternative
1337 we assume that we will be able to allocate all pseudos to their ideal
1338 register class and calculate the cost of using that alternative. Then
1339 we compute for each operand that is a pseudo-register, the cost of
1340 having the pseudo allocated to each register class and using it in that
1341 alternative. To this cost is added the cost of the alternative.
1343 The cost of each class for this insn is its lowest cost among all the
1344 alternatives. */
1346 static void
1347 record_reg_classes (n_alts, n_ops, ops, modes,
1348 constraints, insn, op_costs, reg_pref)
1349 int n_alts;
1350 int n_ops;
1351 rtx *ops;
1352 enum machine_mode *modes;
1353 const char **constraints;
1354 rtx insn;
1355 struct costs *op_costs;
1356 struct reg_pref *reg_pref;
1358 int alt;
1359 int i, j;
1360 rtx set;
1362 /* Process each alternative, each time minimizing an operand's cost with
1363 the cost for each operand in that alternative. */
1365 for (alt = 0; alt < n_alts; alt++)
1367 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1368 int alt_fail = 0;
1369 int alt_cost = 0;
1370 enum reg_class classes[MAX_RECOG_OPERANDS];
1371 int allows_mem[MAX_RECOG_OPERANDS];
1372 int class;
1374 for (i = 0; i < n_ops; i++)
1376 const char *p = constraints[i];
1377 rtx op = ops[i];
1378 enum machine_mode mode = modes[i];
1379 int allows_addr = 0;
1380 int win = 0;
1381 unsigned char c;
1383 /* Initially show we know nothing about the register class. */
1384 classes[i] = NO_REGS;
1385 allows_mem[i] = 0;
1387 /* If this operand has no constraints at all, we can conclude
1388 nothing about it since anything is valid. */
1390 if (*p == 0)
1392 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1393 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1395 continue;
1398 /* If this alternative is only relevant when this operand
1399 matches a previous operand, we do different things depending
1400 on whether this operand is a pseudo-reg or not. We must process
1401 any modifiers for the operand before we can make this test. */
1403 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1404 p++;
1406 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1408 /* Copy class and whether memory is allowed from the matching
1409 alternative. Then perform any needed cost computations
1410 and/or adjustments. */
1411 j = p[0] - '0';
1412 classes[i] = classes[j];
1413 allows_mem[i] = allows_mem[j];
1415 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1417 /* If this matches the other operand, we have no added
1418 cost and we win. */
1419 if (rtx_equal_p (ops[j], op))
1420 win = 1;
1422 /* If we can put the other operand into a register, add to
1423 the cost of this alternative the cost to copy this
1424 operand to the register used for the other operand. */
1426 else if (classes[j] != NO_REGS)
1427 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1429 else if (GET_CODE (ops[j]) != REG
1430 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1432 /* This op is a pseudo but the one it matches is not. */
1434 /* If we can't put the other operand into a register, this
1435 alternative can't be used. */
1437 if (classes[j] == NO_REGS)
1438 alt_fail = 1;
1440 /* Otherwise, add to the cost of this alternative the cost
1441 to copy the other operand to the register used for this
1442 operand. */
1444 else
1445 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1447 else
1449 /* The costs of this operand are not the same as the other
1450 operand since move costs are not symmetric. Moreover,
1451 if we cannot tie them, this alternative needs to do a
1452 copy, which is one instruction. */
1454 struct costs *pp = &this_op_costs[i];
1456 for (class = 0; class < N_REG_CLASSES; class++)
1457 pp->cost[class]
1458 = ((recog_data.operand_type[i] != OP_OUT
1459 ? may_move_in_cost[mode][class][(int) classes[i]]
1460 : 0)
1461 + (recog_data.operand_type[i] != OP_IN
1462 ? may_move_out_cost[mode][(int) classes[i]][class]
1463 : 0));
1465 /* If the alternative actually allows memory, make things
1466 a bit cheaper since we won't need an extra insn to
1467 load it. */
1469 pp->mem_cost
1470 = ((recog_data.operand_type[i] != OP_IN
1471 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1472 : 0)
1473 + (recog_data.operand_type[i] != OP_OUT
1474 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1475 : 0) - allows_mem[i]);
1477 /* If we have assigned a class to this register in our
1478 first pass, add a cost to this alternative corresponding
1479 to what we would add if this register were not in the
1480 appropriate class. */
1482 if (reg_pref)
1483 alt_cost
1484 += (may_move_in_cost[mode]
1485 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1486 [(int) classes[i]]);
1488 if (REGNO (ops[i]) != REGNO (ops[j])
1489 && ! find_reg_note (insn, REG_DEAD, op))
1490 alt_cost += 2;
1492 /* This is in place of ordinary cost computation
1493 for this operand, so skip to the end of the
1494 alternative (should be just one character). */
1495 while (*p && *p++ != ',')
1498 constraints[i] = p;
1499 continue;
1503 /* Scan all the constraint letters. See if the operand matches
1504 any of the constraints. Collect the valid register classes
1505 and see if this operand accepts memory. */
1507 while (*p && (c = *p++) != ',')
1508 switch (c)
1510 case '*':
1511 /* Ignore the next letter for this pass. */
1512 p++;
1513 break;
1515 case '?':
1516 alt_cost += 2;
1517 case '!': case '#': case '&':
1518 case '0': case '1': case '2': case '3': case '4':
1519 case '5': case '6': case '7': case '8': case '9':
1520 break;
1522 case 'p':
1523 allows_addr = 1;
1524 win = address_operand (op, GET_MODE (op));
1525 /* We know this operand is an address, so we want it to be
1526 allocated to a register that can be the base of an
1527 address, ie BASE_REG_CLASS. */
1528 classes[i]
1529 = reg_class_subunion[(int) classes[i]]
1530 [(int) BASE_REG_CLASS];
1531 break;
1533 case 'm': case 'o': case 'V':
1534 /* It doesn't seem worth distinguishing between offsettable
1535 and non-offsettable addresses here. */
1536 allows_mem[i] = 1;
1537 if (GET_CODE (op) == MEM)
1538 win = 1;
1539 break;
1541 case '<':
1542 if (GET_CODE (op) == MEM
1543 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1544 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1545 win = 1;
1546 break;
1548 case '>':
1549 if (GET_CODE (op) == MEM
1550 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1551 || GET_CODE (XEXP (op, 0)) == POST_INC))
1552 win = 1;
1553 break;
1555 case 'E':
1556 #ifndef REAL_ARITHMETIC
1557 /* Match any floating double constant, but only if
1558 we can examine the bits of it reliably. */
1559 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1560 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1561 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1562 break;
1563 #endif
1564 if (GET_CODE (op) == CONST_DOUBLE)
1565 win = 1;
1566 break;
1568 case 'F':
1569 if (GET_CODE (op) == CONST_DOUBLE)
1570 win = 1;
1571 break;
1573 case 'G':
1574 case 'H':
1575 if (GET_CODE (op) == CONST_DOUBLE
1576 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1577 win = 1;
1578 break;
1580 case 's':
1581 if (GET_CODE (op) == CONST_INT
1582 || (GET_CODE (op) == CONST_DOUBLE
1583 && GET_MODE (op) == VOIDmode))
1584 break;
1585 case 'i':
1586 if (CONSTANT_P (op)
1587 #ifdef LEGITIMATE_PIC_OPERAND_P
1588 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1589 #endif
1591 win = 1;
1592 break;
1594 case 'n':
1595 if (GET_CODE (op) == CONST_INT
1596 || (GET_CODE (op) == CONST_DOUBLE
1597 && GET_MODE (op) == VOIDmode))
1598 win = 1;
1599 break;
1601 case 'I':
1602 case 'J':
1603 case 'K':
1604 case 'L':
1605 case 'M':
1606 case 'N':
1607 case 'O':
1608 case 'P':
1609 if (GET_CODE (op) == CONST_INT
1610 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1611 win = 1;
1612 break;
1614 case 'X':
1615 win = 1;
1616 break;
1618 case 'g':
1619 if (GET_CODE (op) == MEM
1620 || (CONSTANT_P (op)
1621 #ifdef LEGITIMATE_PIC_OPERAND_P
1622 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1623 #endif
1625 win = 1;
1626 allows_mem[i] = 1;
1627 case 'r':
1628 classes[i]
1629 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1630 break;
1632 default:
1633 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1634 classes[i]
1635 = reg_class_subunion[(int) classes[i]]
1636 [(int) REG_CLASS_FROM_LETTER (c)];
1637 #ifdef EXTRA_CONSTRAINT
1638 else if (EXTRA_CONSTRAINT (op, c))
1639 win = 1;
1640 #endif
1641 break;
1644 constraints[i] = p;
1646 /* How we account for this operand now depends on whether it is a
1647 pseudo register or not. If it is, we first check if any
1648 register classes are valid. If not, we ignore this alternative,
1649 since we want to assume that all pseudos get allocated for
1650 register preferencing. If some register class is valid, compute
1651 the costs of moving the pseudo into that class. */
1653 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1655 if (classes[i] == NO_REGS)
1657 /* We must always fail if the operand is a REG, but
1658 we did not find a suitable class.
1660 Otherwise we may perform an uninitialized read
1661 from this_op_costs after the `continue' statement
1662 below. */
1663 alt_fail = 1;
1665 else
1667 struct costs *pp = &this_op_costs[i];
1669 for (class = 0; class < N_REG_CLASSES; class++)
1670 pp->cost[class]
1671 = ((recog_data.operand_type[i] != OP_OUT
1672 ? may_move_in_cost[mode][class][(int) classes[i]]
1673 : 0)
1674 + (recog_data.operand_type[i] != OP_IN
1675 ? may_move_out_cost[mode][(int) classes[i]][class]
1676 : 0));
1678 /* If the alternative actually allows memory, make things
1679 a bit cheaper since we won't need an extra insn to
1680 load it. */
1682 pp->mem_cost
1683 = ((recog_data.operand_type[i] != OP_IN
1684 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1685 : 0)
1686 + (recog_data.operand_type[i] != OP_OUT
1687 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1688 : 0) - allows_mem[i]);
1690 /* If we have assigned a class to this register in our
1691 first pass, add a cost to this alternative corresponding
1692 to what we would add if this register were not in the
1693 appropriate class. */
1695 if (reg_pref)
1696 alt_cost
1697 += (may_move_in_cost[mode]
1698 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1699 [(int) classes[i]]);
1703 /* Otherwise, if this alternative wins, either because we
1704 have already determined that or if we have a hard register of
1705 the proper class, there is no cost for this alternative. */
1707 else if (win
1708 || (GET_CODE (op) == REG
1709 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1712 /* If registers are valid, the cost of this alternative includes
1713 copying the object to and/or from a register. */
1715 else if (classes[i] != NO_REGS)
1717 if (recog_data.operand_type[i] != OP_OUT)
1718 alt_cost += copy_cost (op, mode, classes[i], 1);
1720 if (recog_data.operand_type[i] != OP_IN)
1721 alt_cost += copy_cost (op, mode, classes[i], 0);
1724 /* The only other way this alternative can be used is if this is a
1725 constant that could be placed into memory. */
1727 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1728 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1729 else
1730 alt_fail = 1;
1733 if (alt_fail)
1734 continue;
1736 /* Finally, update the costs with the information we've calculated
1737 about this alternative. */
1739 for (i = 0; i < n_ops; i++)
1740 if (GET_CODE (ops[i]) == REG
1741 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1743 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1744 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1746 pp->mem_cost = MIN (pp->mem_cost,
1747 (qq->mem_cost + alt_cost) * scale);
1749 for (class = 0; class < N_REG_CLASSES; class++)
1750 pp->cost[class] = MIN (pp->cost[class],
1751 (qq->cost[class] + alt_cost) * scale);
1755 /* If this insn is a single set copying operand 1 to operand 0
1756 and one operand is a pseudo with the other a hard reg or a pseudo
1757 that prefers a register that is in its own register class then
1758 we may want to adjust the cost of that register class to -1.
1760 Avoid the adjustment if the source does not die to avoid stressing of
1761 register allocator by preferrencing two coliding registers into single
1762 class.
1764 Also avoid the adjustment if a copy between registers of the class
1765 is expensive (ten times the cost of a default copy is considered
1766 arbitrarily expensive). This avoids losing when the preferred class
1767 is very expensive as the source of a copy instruction. */
1769 if ((set = single_set (insn)) != 0
1770 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1771 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1772 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1773 for (i = 0; i <= 1; i++)
1774 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1776 unsigned int regno = REGNO (ops[!i]);
1777 enum machine_mode mode = GET_MODE (ops[!i]);
1778 int class;
1779 unsigned int nr;
1781 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1783 enum reg_class pref = reg_pref[regno].prefclass;
1785 if ((reg_class_size[(unsigned char) pref]
1786 == CLASS_MAX_NREGS (pref, mode))
1787 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1788 op_costs[i].cost[(unsigned char) pref] = -1;
1790 else if (regno < FIRST_PSEUDO_REGISTER)
1791 for (class = 0; class < N_REG_CLASSES; class++)
1792 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1793 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1795 if (reg_class_size[class] == 1)
1796 op_costs[i].cost[class] = -1;
1797 else
1799 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1801 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1802 regno + nr))
1803 break;
1806 if (nr == HARD_REGNO_NREGS (regno,mode))
1807 op_costs[i].cost[class] = -1;
1813 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1814 TO_P is zero) a register of class CLASS in mode MODE.
1816 X must not be a pseudo. */
1818 static int
1819 copy_cost (x, mode, class, to_p)
1820 rtx x;
1821 enum machine_mode mode ATTRIBUTE_UNUSED;
1822 enum reg_class class;
1823 int to_p ATTRIBUTE_UNUSED;
1825 #ifdef HAVE_SECONDARY_RELOADS
1826 enum reg_class secondary_class = NO_REGS;
1827 #endif
1829 /* If X is a SCRATCH, there is actually nothing to move since we are
1830 assuming optimal allocation. */
1832 if (GET_CODE (x) == SCRATCH)
1833 return 0;
1835 /* Get the class we will actually use for a reload. */
1836 class = PREFERRED_RELOAD_CLASS (x, class);
1838 #ifdef HAVE_SECONDARY_RELOADS
1839 /* If we need a secondary reload (we assume here that we are using
1840 the secondary reload as an intermediate, not a scratch register), the
1841 cost is that to load the input into the intermediate register, then
1842 to copy them. We use a special value of TO_P to avoid recursion. */
1844 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1845 if (to_p == 1)
1846 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1847 #endif
1849 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1850 if (! to_p)
1851 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1852 #endif
1854 if (secondary_class != NO_REGS)
1855 return (move_cost[mode][(int) secondary_class][(int) class]
1856 + copy_cost (x, mode, secondary_class, 2));
1857 #endif /* HAVE_SECONDARY_RELOADS */
1859 /* For memory, use the memory move cost, for (hard) registers, use the
1860 cost to move between the register classes, and use 2 for everything
1861 else (constants). */
1863 if (GET_CODE (x) == MEM || class == NO_REGS)
1864 return MEMORY_MOVE_COST (mode, class, to_p);
1866 else if (GET_CODE (x) == REG)
1867 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1869 else
1870 /* If this is a constant, we may eventually want to call rtx_cost here. */
1871 return COSTS_N_INSNS (1);
1874 /* Record the pseudo registers we must reload into hard registers
1875 in a subexpression of a memory address, X.
1877 CLASS is the class that the register needs to be in and is either
1878 BASE_REG_CLASS or INDEX_REG_CLASS.
1880 SCALE is twice the amount to multiply the cost by (it is twice so we
1881 can represent half-cost adjustments). */
1883 static void
1884 record_address_regs (x, class, scale)
1885 rtx x;
1886 enum reg_class class;
1887 int scale;
1889 register enum rtx_code code = GET_CODE (x);
1891 switch (code)
1893 case CONST_INT:
1894 case CONST:
1895 case CC0:
1896 case PC:
1897 case SYMBOL_REF:
1898 case LABEL_REF:
1899 return;
1901 case PLUS:
1902 /* When we have an address that is a sum,
1903 we must determine whether registers are "base" or "index" regs.
1904 If there is a sum of two registers, we must choose one to be
1905 the "base". Luckily, we can use the REG_POINTER to make a good
1906 choice most of the time. We only need to do this on machines
1907 that can have two registers in an address and where the base
1908 and index register classes are different.
1910 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1911 that seems bogus since it should only be set when we are sure
1912 the register is being used as a pointer. */
1915 rtx arg0 = XEXP (x, 0);
1916 rtx arg1 = XEXP (x, 1);
1917 register enum rtx_code code0 = GET_CODE (arg0);
1918 register enum rtx_code code1 = GET_CODE (arg1);
1920 /* Look inside subregs. */
1921 if (code0 == SUBREG)
1922 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1923 if (code1 == SUBREG)
1924 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1926 /* If this machine only allows one register per address, it must
1927 be in the first operand. */
1929 if (MAX_REGS_PER_ADDRESS == 1)
1930 record_address_regs (arg0, class, scale);
1932 /* If index and base registers are the same on this machine, just
1933 record registers in any non-constant operands. We assume here,
1934 as well as in the tests below, that all addresses are in
1935 canonical form. */
1937 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1939 record_address_regs (arg0, class, scale);
1940 if (! CONSTANT_P (arg1))
1941 record_address_regs (arg1, class, scale);
1944 /* If the second operand is a constant integer, it doesn't change
1945 what class the first operand must be. */
1947 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1948 record_address_regs (arg0, class, scale);
1950 /* If the second operand is a symbolic constant, the first operand
1951 must be an index register. */
1953 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1954 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1956 /* If both operands are registers but one is already a hard register
1957 of index or base class, give the other the class that the hard
1958 register is not. */
1960 #ifdef REG_OK_FOR_BASE_P
1961 else if (code0 == REG && code1 == REG
1962 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1963 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1964 record_address_regs (arg1,
1965 REG_OK_FOR_BASE_P (arg0)
1966 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1967 scale);
1968 else if (code0 == REG && code1 == REG
1969 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1970 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1971 record_address_regs (arg0,
1972 REG_OK_FOR_BASE_P (arg1)
1973 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1974 scale);
1975 #endif
1977 /* If one operand is known to be a pointer, it must be the base
1978 with the other operand the index. Likewise if the other operand
1979 is a MULT. */
1981 else if ((code0 == REG && REG_POINTER (arg0))
1982 || code1 == MULT)
1984 record_address_regs (arg0, BASE_REG_CLASS, scale);
1985 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1987 else if ((code1 == REG && REG_POINTER (arg1))
1988 || code0 == MULT)
1990 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1991 record_address_regs (arg1, BASE_REG_CLASS, scale);
1994 /* Otherwise, count equal chances that each might be a base
1995 or index register. This case should be rare. */
1997 else
1999 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
2000 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2001 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
2002 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2005 break;
2007 /* Double the importance of a pseudo register that is incremented
2008 or decremented, since it would take two extra insns
2009 if it ends up in the wrong place. */
2010 case POST_MODIFY:
2011 case PRE_MODIFY:
2012 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
2013 if (REG_P (XEXP (XEXP (x, 1), 1)))
2014 record_address_regs (XEXP (XEXP (x, 1), 1),
2015 INDEX_REG_CLASS, 2 * scale);
2016 break;
2018 case POST_INC:
2019 case PRE_INC:
2020 case POST_DEC:
2021 case PRE_DEC:
2022 /* Double the importance of a pseudo register that is incremented
2023 or decremented, since it would take two extra insns
2024 if it ends up in the wrong place. If the operand is a pseudo,
2025 show it is being used in an INC_DEC context. */
2027 #ifdef FORBIDDEN_INC_DEC_CLASSES
2028 if (GET_CODE (XEXP (x, 0)) == REG
2029 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2030 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2031 #endif
2033 record_address_regs (XEXP (x, 0), class, 2 * scale);
2034 break;
2036 case REG:
2038 register struct costs *pp = &costs[REGNO (x)];
2039 register int i;
2041 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2043 for (i = 0; i < N_REG_CLASSES; i++)
2044 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2046 break;
2048 default:
2050 register const char *fmt = GET_RTX_FORMAT (code);
2051 register int i;
2052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 if (fmt[i] == 'e')
2054 record_address_regs (XEXP (x, i), class, scale);
2059 #ifdef FORBIDDEN_INC_DEC_CLASSES
2061 /* Return 1 if REG is valid as an auto-increment memory reference
2062 to an object of MODE. */
2064 static int
2065 auto_inc_dec_reg_p (reg, mode)
2066 rtx reg;
2067 enum machine_mode mode;
2069 if (HAVE_POST_INCREMENT
2070 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2071 return 1;
2073 if (HAVE_POST_DECREMENT
2074 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2075 return 1;
2077 if (HAVE_PRE_INCREMENT
2078 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2079 return 1;
2081 if (HAVE_PRE_DECREMENT
2082 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2083 return 1;
2085 return 0;
2087 #endif
2089 static short *renumber;
2090 static size_t regno_allocated;
2091 static unsigned int reg_n_max;
2093 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2094 reg_scan and flow_analysis that are indexed by the register number. If
2095 NEW_P is non zero, initialize all of the registers, otherwise only
2096 initialize the new registers allocated. The same table is kept from
2097 function to function, only reallocating it when we need more room. If
2098 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2100 void
2101 allocate_reg_info (num_regs, new_p, renumber_p)
2102 size_t num_regs;
2103 int new_p;
2104 int renumber_p;
2106 size_t size_info;
2107 size_t size_renumber;
2108 size_t min = (new_p) ? 0 : reg_n_max;
2109 struct reg_info_data *reg_data;
2111 if (num_regs > regno_allocated)
2113 size_t old_allocated = regno_allocated;
2115 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2116 size_renumber = regno_allocated * sizeof (short);
2118 if (!reg_n_info)
2120 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2121 renumber = (short *) xmalloc (size_renumber);
2122 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2123 * sizeof (struct reg_pref));
2126 else
2128 VARRAY_GROW (reg_n_info, regno_allocated);
2130 if (new_p) /* if we're zapping everything, no need to realloc */
2132 free ((char *)renumber);
2133 free ((char *)reg_pref);
2134 renumber = (short *) xmalloc (size_renumber);
2135 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2136 * sizeof (struct reg_pref));
2139 else
2141 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2142 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2143 regno_allocated
2144 * sizeof (struct reg_pref));
2148 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2149 + sizeof (struct reg_info_data) - sizeof (reg_info);
2150 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2151 reg_data->min_index = old_allocated;
2152 reg_data->max_index = regno_allocated - 1;
2153 reg_data->next = reg_info_head;
2154 reg_info_head = reg_data;
2157 reg_n_max = num_regs;
2158 if (min < num_regs)
2160 /* Loop through each of the segments allocated for the actual
2161 reg_info pages, and set up the pointers, zero the pages, etc. */
2162 for (reg_data = reg_info_head;
2163 reg_data && reg_data->max_index >= min;
2164 reg_data = reg_data->next)
2166 size_t min_index = reg_data->min_index;
2167 size_t max_index = reg_data->max_index;
2168 size_t max = MIN (max_index, num_regs);
2169 size_t local_min = min - min_index;
2170 size_t i;
2172 if (reg_data->min_index > num_regs)
2173 continue;
2175 if (min < min_index)
2176 local_min = 0;
2177 if (!reg_data->used_p) /* page just allocated with calloc */
2178 reg_data->used_p = 1; /* no need to zero */
2179 else
2180 memset ((char *) &reg_data->data[local_min], 0,
2181 sizeof (reg_info) * (max - min_index - local_min + 1));
2183 for (i = min_index+local_min; i <= max; i++)
2185 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2186 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2187 renumber[i] = -1;
2188 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2189 reg_pref_buffer[i].altclass = (char) NO_REGS;
2194 /* If {pref,alt}class have already been allocated, update the pointers to
2195 the newly realloced ones. */
2196 if (reg_pref)
2197 reg_pref = reg_pref_buffer;
2199 if (renumber_p)
2200 reg_renumber = renumber;
2202 /* Tell the regset code about the new number of registers */
2203 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2206 /* Free up the space allocated by allocate_reg_info. */
2207 void
2208 free_reg_info ()
2210 if (reg_n_info)
2212 struct reg_info_data *reg_data;
2213 struct reg_info_data *reg_next;
2215 VARRAY_FREE (reg_n_info);
2216 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2218 reg_next = reg_data->next;
2219 free ((char *)reg_data);
2222 free (reg_pref_buffer);
2223 reg_pref_buffer = (struct reg_pref *)0;
2224 reg_info_head = (struct reg_info_data *)0;
2225 renumber = (short *)0;
2227 regno_allocated = 0;
2228 reg_n_max = 0;
2231 /* This is the `regscan' pass of the compiler, run just before cse
2232 and again just before loop.
2234 It finds the first and last use of each pseudo-register
2235 and records them in the vectors regno_first_uid, regno_last_uid
2236 and counts the number of sets in the vector reg_n_sets.
2238 REPEAT is nonzero the second time this is called. */
2240 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2241 Always at least 3, since the combiner could put that many together
2242 and we want this to remain correct for all the remaining passes.
2243 This corresponds to the maximum number of times note_stores will call
2244 a function for any insn. */
2246 int max_parallel;
2248 /* Used as a temporary to record the largest number of registers in
2249 PARALLEL in a SET_DEST. This is added to max_parallel. */
2251 static int max_set_parallel;
2253 void
2254 reg_scan (f, nregs, repeat)
2255 rtx f;
2256 unsigned int nregs;
2257 int repeat ATTRIBUTE_UNUSED;
2259 register rtx insn;
2261 allocate_reg_info (nregs, TRUE, FALSE);
2262 max_parallel = 3;
2263 max_set_parallel = 0;
2265 for (insn = f; insn; insn = NEXT_INSN (insn))
2266 if (GET_CODE (insn) == INSN
2267 || GET_CODE (insn) == CALL_INSN
2268 || GET_CODE (insn) == JUMP_INSN)
2270 if (GET_CODE (PATTERN (insn)) == PARALLEL
2271 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2272 max_parallel = XVECLEN (PATTERN (insn), 0);
2273 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2275 if (REG_NOTES (insn))
2276 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2279 max_parallel += max_set_parallel;
2282 /* Update 'regscan' information by looking at the insns
2283 from FIRST to LAST. Some new REGs have been created,
2284 and any REG with number greater than OLD_MAX_REGNO is
2285 such a REG. We only update information for those. */
2287 void
2288 reg_scan_update (first, last, old_max_regno)
2289 rtx first;
2290 rtx last;
2291 unsigned int old_max_regno;
2293 register rtx insn;
2295 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2297 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2298 if (GET_CODE (insn) == INSN
2299 || GET_CODE (insn) == CALL_INSN
2300 || GET_CODE (insn) == JUMP_INSN)
2302 if (GET_CODE (PATTERN (insn)) == PARALLEL
2303 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2304 max_parallel = XVECLEN (PATTERN (insn), 0);
2305 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2307 if (REG_NOTES (insn))
2308 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2312 /* X is the expression to scan. INSN is the insn it appears in.
2313 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2314 We should only record information for REGs with numbers
2315 greater than or equal to MIN_REGNO. */
2317 static void
2318 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2319 rtx x;
2320 rtx insn;
2321 int note_flag;
2322 unsigned int min_regno;
2324 register enum rtx_code code;
2325 register rtx dest;
2326 register rtx note;
2328 code = GET_CODE (x);
2329 switch (code)
2331 case CONST:
2332 case CONST_INT:
2333 case CONST_DOUBLE:
2334 case CC0:
2335 case PC:
2336 case SYMBOL_REF:
2337 case LABEL_REF:
2338 case ADDR_VEC:
2339 case ADDR_DIFF_VEC:
2340 return;
2342 case REG:
2344 unsigned int regno = REGNO (x);
2346 if (regno >= min_regno)
2348 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2349 if (!note_flag)
2350 REGNO_LAST_UID (regno) = INSN_UID (insn);
2351 if (REGNO_FIRST_UID (regno) == 0)
2352 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2355 break;
2357 case EXPR_LIST:
2358 if (XEXP (x, 0))
2359 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2360 if (XEXP (x, 1))
2361 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2362 break;
2364 case INSN_LIST:
2365 if (XEXP (x, 1))
2366 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2367 break;
2369 case SET:
2370 /* Count a set of the destination if it is a register. */
2371 for (dest = SET_DEST (x);
2372 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2373 || GET_CODE (dest) == ZERO_EXTEND;
2374 dest = XEXP (dest, 0))
2377 /* For a PARALLEL, record the number of things (less the usual one for a
2378 SET) that are set. */
2379 if (GET_CODE (dest) == PARALLEL)
2380 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2382 if (GET_CODE (dest) == REG
2383 && REGNO (dest) >= min_regno)
2384 REG_N_SETS (REGNO (dest))++;
2386 /* If this is setting a pseudo from another pseudo or the sum of a
2387 pseudo and a constant integer and the other pseudo is known to be
2388 a pointer, set the destination to be a pointer as well.
2390 Likewise if it is setting the destination from an address or from a
2391 value equivalent to an address or to the sum of an address and
2392 something else.
2394 But don't do any of this if the pseudo corresponds to a user
2395 variable since it should have already been set as a pointer based
2396 on the type. */
2398 if (GET_CODE (SET_DEST (x)) == REG
2399 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2400 && REGNO (SET_DEST (x)) >= min_regno
2401 /* If the destination pseudo is set more than once, then other
2402 sets might not be to a pointer value (consider access to a
2403 union in two threads of control in the presense of global
2404 optimizations). So only set REG_POINTER on the destination
2405 pseudo if this is the only set of that pseudo. */
2406 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2407 && ! REG_USERVAR_P (SET_DEST (x))
2408 && ! REG_POINTER (SET_DEST (x))
2409 && ((GET_CODE (SET_SRC (x)) == REG
2410 && REG_POINTER (SET_SRC (x)))
2411 || ((GET_CODE (SET_SRC (x)) == PLUS
2412 || GET_CODE (SET_SRC (x)) == LO_SUM)
2413 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2414 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2415 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2416 || GET_CODE (SET_SRC (x)) == CONST
2417 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2418 || GET_CODE (SET_SRC (x)) == LABEL_REF
2419 || (GET_CODE (SET_SRC (x)) == HIGH
2420 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2421 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2422 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2423 || ((GET_CODE (SET_SRC (x)) == PLUS
2424 || GET_CODE (SET_SRC (x)) == LO_SUM)
2425 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2426 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2427 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2428 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2429 && (GET_CODE (XEXP (note, 0)) == CONST
2430 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2431 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2432 REG_POINTER (SET_DEST (x)) = 1;
2434 /* ... fall through ... */
2436 default:
2438 register const char *fmt = GET_RTX_FORMAT (code);
2439 register int i;
2440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2442 if (fmt[i] == 'e')
2443 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2444 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2446 register int j;
2447 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2448 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2455 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2456 is also in C2. */
2459 reg_class_subset_p (c1, c2)
2460 register enum reg_class c1;
2461 register enum reg_class c2;
2463 if (c1 == c2) return 1;
2465 if (c2 == ALL_REGS)
2466 win:
2467 return 1;
2468 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2469 reg_class_contents[(int)c2],
2470 win);
2471 return 0;
2474 /* Return nonzero if there is a register that is in both C1 and C2. */
2477 reg_classes_intersect_p (c1, c2)
2478 register enum reg_class c1;
2479 register enum reg_class c2;
2481 #ifdef HARD_REG_SET
2482 register
2483 #endif
2484 HARD_REG_SET c;
2486 if (c1 == c2) return 1;
2488 if (c1 == ALL_REGS || c2 == ALL_REGS)
2489 return 1;
2491 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2492 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2494 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2495 return 1;
2497 lose:
2498 return 0;
2501 /* Release any memory allocated by register sets. */
2503 void
2504 regset_release_memory ()
2506 bitmap_release_memory ();