2018-01-10 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / fortran / resolve.c
blob195048354a8969085216208091b9f12b6dddf710
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
33 /* Types used in equivalence statements. */
35 enum seq_type
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
43 typedef struct code_stack
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
53 code_stack;
55 static code_stack *cs_base = NULL;
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
73 static int omp_workshare_flag;
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
82 /* The id of the last entry seen. */
83 static int current_entry_id;
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
92 bool
93 gfc_is_formal_arg (void)
95 return formal_arg_flag;
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
102 for (ns = ns->parent; ns; ns = ns->parent)
104 if (sym->ns == ns)
105 return true;
108 return false;
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
120 if (where)
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
130 return false;
133 return true;
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
147 if (ifc->generic)
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
181 return true;
185 static void resolve_symbol (gfc_symbol *sym);
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
193 gfc_symbol *ifc = sym->ts.interface;
195 if (!ifc)
196 return true;
198 if (ifc == sym)
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
214 if (ifc->result)
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
224 else
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
254 return true;
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
288 formal_arg_flag = true;
290 for (f = proc->formal; f; f = f->next)
292 gfc_array_spec *as;
294 sym = f->sym;
296 if (sym == NULL)
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
313 if (strcmp (proc->name, sym->name) == 0)
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
324 if (sym->attr.subroutine || sym->attr.external)
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
329 else
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
380 if (gfc_pure (proc))
382 if (sym->attr.flavor == FL_PROCEDURE)
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
392 else if (!sym->attr.pointer)
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
432 if (proc->attr.implicit_pure)
434 if (sym->attr.flavor == FL_PROCEDURE)
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
439 else if (!sym->attr.pointer)
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
451 if (gfc_elemental (proc))
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
491 if (sym->attr.flavor == FL_PROCEDURE)
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
513 if (sym->as != NULL)
515 gfc_error ("Argument %qs of statement function at %L must "
516 "be scalar", sym->name, &sym->declared_at);
517 continue;
520 if (sym->ts.type == BT_CHARACTER)
522 gfc_charlen *cl = sym->ts.u.cl;
523 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
525 gfc_error ("Character-valued argument %qs of statement "
526 "function at %L must have constant length",
527 sym->name, &sym->declared_at);
528 continue;
533 formal_arg_flag = false;
537 /* Work function called when searching for symbols that have argument lists
538 associated with them. */
540 static void
541 find_arglists (gfc_symbol *sym)
543 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
544 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
545 return;
547 resolve_formal_arglist (sym);
551 /* Given a namespace, resolve all formal argument lists within the namespace.
554 static void
555 resolve_formal_arglists (gfc_namespace *ns)
557 if (ns == NULL)
558 return;
560 gfc_traverse_ns (ns, find_arglists);
564 static void
565 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
567 bool t;
569 if (sym && sym->attr.flavor == FL_PROCEDURE
570 && sym->ns->parent
571 && sym->ns->parent->proc_name
572 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
573 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
574 gfc_error ("Contained procedure %qs at %L has the same name as its "
575 "encompassing procedure", sym->name, &sym->declared_at);
577 /* If this namespace is not a function or an entry master function,
578 ignore it. */
579 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
580 || sym->attr.entry_master)
581 return;
583 /* Try to find out of what the return type is. */
584 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
586 t = gfc_set_default_type (sym->result, 0, ns);
588 if (!t && !sym->result->attr.untyped)
590 if (sym->result == sym)
591 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
592 sym->name, &sym->declared_at);
593 else if (!sym->result->attr.proc_pointer)
594 gfc_error ("Result %qs of contained function %qs at %L has "
595 "no IMPLICIT type", sym->result->name, sym->name,
596 &sym->result->declared_at);
597 sym->result->attr.untyped = 1;
601 /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character
602 type, lists the only ways a character length value of * can be used:
603 dummy arguments of procedures, named constants, and function results
604 in external functions. Internal function results and results of module
605 procedures are not on this list, ergo, not permitted. */
607 if (sym->result->ts.type == BT_CHARACTER)
609 gfc_charlen *cl = sym->result->ts.u.cl;
610 if ((!cl || !cl->length) && !sym->result->ts.deferred)
612 /* See if this is a module-procedure and adapt error message
613 accordingly. */
614 bool module_proc;
615 gcc_assert (ns->parent && ns->parent->proc_name);
616 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
618 gfc_error (module_proc
619 ? G_("Character-valued module procedure %qs at %L"
620 " must not be assumed length")
621 : G_("Character-valued internal function %qs at %L"
622 " must not be assumed length"),
623 sym->name, &sym->declared_at);
629 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
630 introduce duplicates. */
632 static void
633 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
635 gfc_formal_arglist *f, *new_arglist;
636 gfc_symbol *new_sym;
638 for (; new_args != NULL; new_args = new_args->next)
640 new_sym = new_args->sym;
641 /* See if this arg is already in the formal argument list. */
642 for (f = proc->formal; f; f = f->next)
644 if (new_sym == f->sym)
645 break;
648 if (f)
649 continue;
651 /* Add a new argument. Argument order is not important. */
652 new_arglist = gfc_get_formal_arglist ();
653 new_arglist->sym = new_sym;
654 new_arglist->next = proc->formal;
655 proc->formal = new_arglist;
660 /* Flag the arguments that are not present in all entries. */
662 static void
663 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
665 gfc_formal_arglist *f, *head;
666 head = new_args;
668 for (f = proc->formal; f; f = f->next)
670 if (f->sym == NULL)
671 continue;
673 for (new_args = head; new_args; new_args = new_args->next)
675 if (new_args->sym == f->sym)
676 break;
679 if (new_args)
680 continue;
682 f->sym->attr.not_always_present = 1;
687 /* Resolve alternate entry points. If a symbol has multiple entry points we
688 create a new master symbol for the main routine, and turn the existing
689 symbol into an entry point. */
691 static void
692 resolve_entries (gfc_namespace *ns)
694 gfc_namespace *old_ns;
695 gfc_code *c;
696 gfc_symbol *proc;
697 gfc_entry_list *el;
698 char name[GFC_MAX_SYMBOL_LEN + 1];
699 static int master_count = 0;
701 if (ns->proc_name == NULL)
702 return;
704 /* No need to do anything if this procedure doesn't have alternate entry
705 points. */
706 if (!ns->entries)
707 return;
709 /* We may already have resolved alternate entry points. */
710 if (ns->proc_name->attr.entry_master)
711 return;
713 /* If this isn't a procedure something has gone horribly wrong. */
714 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
716 /* Remember the current namespace. */
717 old_ns = gfc_current_ns;
719 gfc_current_ns = ns;
721 /* Add the main entry point to the list of entry points. */
722 el = gfc_get_entry_list ();
723 el->sym = ns->proc_name;
724 el->id = 0;
725 el->next = ns->entries;
726 ns->entries = el;
727 ns->proc_name->attr.entry = 1;
729 /* If it is a module function, it needs to be in the right namespace
730 so that gfc_get_fake_result_decl can gather up the results. The
731 need for this arose in get_proc_name, where these beasts were
732 left in their own namespace, to keep prior references linked to
733 the entry declaration.*/
734 if (ns->proc_name->attr.function
735 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
736 el->sym->ns = ns;
738 /* Do the same for entries where the master is not a module
739 procedure. These are retained in the module namespace because
740 of the module procedure declaration. */
741 for (el = el->next; el; el = el->next)
742 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
743 && el->sym->attr.mod_proc)
744 el->sym->ns = ns;
745 el = ns->entries;
747 /* Add an entry statement for it. */
748 c = gfc_get_code (EXEC_ENTRY);
749 c->ext.entry = el;
750 c->next = ns->code;
751 ns->code = c;
753 /* Create a new symbol for the master function. */
754 /* Give the internal function a unique name (within this file).
755 Also include the function name so the user has some hope of figuring
756 out what is going on. */
757 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
758 master_count++, ns->proc_name->name);
759 gfc_get_ha_symbol (name, &proc);
760 gcc_assert (proc != NULL);
762 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
763 if (ns->proc_name->attr.subroutine)
764 gfc_add_subroutine (&proc->attr, proc->name, NULL);
765 else
767 gfc_symbol *sym;
768 gfc_typespec *ts, *fts;
769 gfc_array_spec *as, *fas;
770 gfc_add_function (&proc->attr, proc->name, NULL);
771 proc->result = proc;
772 fas = ns->entries->sym->as;
773 fas = fas ? fas : ns->entries->sym->result->as;
774 fts = &ns->entries->sym->result->ts;
775 if (fts->type == BT_UNKNOWN)
776 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
777 for (el = ns->entries->next; el; el = el->next)
779 ts = &el->sym->result->ts;
780 as = el->sym->as;
781 as = as ? as : el->sym->result->as;
782 if (ts->type == BT_UNKNOWN)
783 ts = gfc_get_default_type (el->sym->result->name, NULL);
785 if (! gfc_compare_types (ts, fts)
786 || (el->sym->result->attr.dimension
787 != ns->entries->sym->result->attr.dimension)
788 || (el->sym->result->attr.pointer
789 != ns->entries->sym->result->attr.pointer))
790 break;
791 else if (as && fas && ns->entries->sym->result != el->sym->result
792 && gfc_compare_array_spec (as, fas) == 0)
793 gfc_error ("Function %s at %L has entries with mismatched "
794 "array specifications", ns->entries->sym->name,
795 &ns->entries->sym->declared_at);
796 /* The characteristics need to match and thus both need to have
797 the same string length, i.e. both len=*, or both len=4.
798 Having both len=<variable> is also possible, but difficult to
799 check at compile time. */
800 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
801 && (((ts->u.cl->length && !fts->u.cl->length)
802 ||(!ts->u.cl->length && fts->u.cl->length))
803 || (ts->u.cl->length
804 && ts->u.cl->length->expr_type
805 != fts->u.cl->length->expr_type)
806 || (ts->u.cl->length
807 && ts->u.cl->length->expr_type == EXPR_CONSTANT
808 && mpz_cmp (ts->u.cl->length->value.integer,
809 fts->u.cl->length->value.integer) != 0)))
810 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
811 "entries returning variables of different "
812 "string lengths", ns->entries->sym->name,
813 &ns->entries->sym->declared_at);
816 if (el == NULL)
818 sym = ns->entries->sym->result;
819 /* All result types the same. */
820 proc->ts = *fts;
821 if (sym->attr.dimension)
822 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
823 if (sym->attr.pointer)
824 gfc_add_pointer (&proc->attr, NULL);
826 else
828 /* Otherwise the result will be passed through a union by
829 reference. */
830 proc->attr.mixed_entry_master = 1;
831 for (el = ns->entries; el; el = el->next)
833 sym = el->sym->result;
834 if (sym->attr.dimension)
836 if (el == ns->entries)
837 gfc_error ("FUNCTION result %s can't be an array in "
838 "FUNCTION %s at %L", sym->name,
839 ns->entries->sym->name, &sym->declared_at);
840 else
841 gfc_error ("ENTRY result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
845 else if (sym->attr.pointer)
847 if (el == ns->entries)
848 gfc_error ("FUNCTION result %s can't be a POINTER in "
849 "FUNCTION %s at %L", sym->name,
850 ns->entries->sym->name, &sym->declared_at);
851 else
852 gfc_error ("ENTRY result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
856 else
858 ts = &sym->ts;
859 if (ts->type == BT_UNKNOWN)
860 ts = gfc_get_default_type (sym->name, NULL);
861 switch (ts->type)
863 case BT_INTEGER:
864 if (ts->kind == gfc_default_integer_kind)
865 sym = NULL;
866 break;
867 case BT_REAL:
868 if (ts->kind == gfc_default_real_kind
869 || ts->kind == gfc_default_double_kind)
870 sym = NULL;
871 break;
872 case BT_COMPLEX:
873 if (ts->kind == gfc_default_complex_kind)
874 sym = NULL;
875 break;
876 case BT_LOGICAL:
877 if (ts->kind == gfc_default_logical_kind)
878 sym = NULL;
879 break;
880 case BT_UNKNOWN:
881 /* We will issue error elsewhere. */
882 sym = NULL;
883 break;
884 default:
885 break;
887 if (sym)
889 if (el == ns->entries)
890 gfc_error ("FUNCTION result %s can't be of type %s "
891 "in FUNCTION %s at %L", sym->name,
892 gfc_typename (ts), ns->entries->sym->name,
893 &sym->declared_at);
894 else
895 gfc_error ("ENTRY result %s can't be of type %s "
896 "in FUNCTION %s at %L", sym->name,
897 gfc_typename (ts), ns->entries->sym->name,
898 &sym->declared_at);
904 proc->attr.access = ACCESS_PRIVATE;
905 proc->attr.entry_master = 1;
907 /* Merge all the entry point arguments. */
908 for (el = ns->entries; el; el = el->next)
909 merge_argument_lists (proc, el->sym->formal);
911 /* Check the master formal arguments for any that are not
912 present in all entry points. */
913 for (el = ns->entries; el; el = el->next)
914 check_argument_lists (proc, el->sym->formal);
916 /* Use the master function for the function body. */
917 ns->proc_name = proc;
919 /* Finalize the new symbols. */
920 gfc_commit_symbols ();
922 /* Restore the original namespace. */
923 gfc_current_ns = old_ns;
927 /* Resolve common variables. */
928 static void
929 resolve_common_vars (gfc_common_head *common_block, bool named_common)
931 gfc_symbol *csym = common_block->head;
933 for (; csym; csym = csym->common_next)
935 /* gfc_add_in_common may have been called before, but the reported errors
936 have been ignored to continue parsing.
937 We do the checks again here. */
938 if (!csym->attr.use_assoc)
939 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
941 if (csym->value || csym->attr.data)
943 if (!csym->ns->is_block_data)
944 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
945 "but only in BLOCK DATA initialization is "
946 "allowed", csym->name, &csym->declared_at);
947 else if (!named_common)
948 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
949 "in a blank COMMON but initialization is only "
950 "allowed in named common blocks", csym->name,
951 &csym->declared_at);
954 if (UNLIMITED_POLY (csym))
955 gfc_error_now ("%qs in cannot appear in COMMON at %L "
956 "[F2008:C5100]", csym->name, &csym->declared_at);
958 if (csym->ts.type != BT_DERIVED)
959 continue;
961 if (!(csym->ts.u.derived->attr.sequence
962 || csym->ts.u.derived->attr.is_bind_c))
963 gfc_error_now ("Derived type variable %qs in COMMON at %L "
964 "has neither the SEQUENCE nor the BIND(C) "
965 "attribute", csym->name, &csym->declared_at);
966 if (csym->ts.u.derived->attr.alloc_comp)
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has an ultimate component that is "
969 "allocatable", csym->name, &csym->declared_at);
970 if (gfc_has_default_initializer (csym->ts.u.derived))
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "may not have default initializer", csym->name,
973 &csym->declared_at);
975 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
976 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
980 /* Resolve common blocks. */
981 static void
982 resolve_common_blocks (gfc_symtree *common_root)
984 gfc_symbol *sym;
985 gfc_gsymbol * gsym;
987 if (common_root == NULL)
988 return;
990 if (common_root->left)
991 resolve_common_blocks (common_root->left);
992 if (common_root->right)
993 resolve_common_blocks (common_root->right);
995 resolve_common_vars (common_root->n.common, true);
997 /* The common name is a global name - in Fortran 2003 also if it has a
998 C binding name, since Fortran 2008 only the C binding name is a global
999 identifier. */
1000 if (!common_root->n.common->binding_label
1001 || gfc_notification_std (GFC_STD_F2008))
1003 gsym = gfc_find_gsymbol (gfc_gsym_root,
1004 common_root->n.common->name);
1006 if (gsym && gfc_notification_std (GFC_STD_F2008)
1007 && gsym->type == GSYM_COMMON
1008 && ((common_root->n.common->binding_label
1009 && (!gsym->binding_label
1010 || strcmp (common_root->n.common->binding_label,
1011 gsym->binding_label) != 0))
1012 || (!common_root->n.common->binding_label
1013 && gsym->binding_label)))
1015 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1016 "identifier and must thus have the same binding name "
1017 "as the same-named COMMON block at %L: %s vs %s",
1018 common_root->n.common->name, &common_root->n.common->where,
1019 &gsym->where,
1020 common_root->n.common->binding_label
1021 ? common_root->n.common->binding_label : "(blank)",
1022 gsym->binding_label ? gsym->binding_label : "(blank)");
1023 return;
1026 if (gsym && gsym->type != GSYM_COMMON
1027 && !common_root->n.common->binding_label)
1029 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1030 "as entity at %L",
1031 common_root->n.common->name, &common_root->n.common->where,
1032 &gsym->where);
1033 return;
1035 if (gsym && gsym->type != GSYM_COMMON)
1037 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1038 "%L sharing the identifier with global non-COMMON-block "
1039 "entity at %L", common_root->n.common->name,
1040 &common_root->n.common->where, &gsym->where);
1041 return;
1043 if (!gsym)
1045 gsym = gfc_get_gsymbol (common_root->n.common->name);
1046 gsym->type = GSYM_COMMON;
1047 gsym->where = common_root->n.common->where;
1048 gsym->defined = 1;
1050 gsym->used = 1;
1053 if (common_root->n.common->binding_label)
1055 gsym = gfc_find_gsymbol (gfc_gsym_root,
1056 common_root->n.common->binding_label);
1057 if (gsym && gsym->type != GSYM_COMMON)
1059 gfc_error ("COMMON block at %L with binding label %qs uses the same "
1060 "global identifier as entity at %L",
1061 &common_root->n.common->where,
1062 common_root->n.common->binding_label, &gsym->where);
1063 return;
1065 if (!gsym)
1067 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1068 gsym->type = GSYM_COMMON;
1069 gsym->where = common_root->n.common->where;
1070 gsym->defined = 1;
1072 gsym->used = 1;
1075 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1076 if (sym == NULL)
1077 return;
1079 if (sym->attr.flavor == FL_PARAMETER)
1080 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1081 sym->name, &common_root->n.common->where, &sym->declared_at);
1083 if (sym->attr.external)
1084 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1085 sym->name, &common_root->n.common->where);
1087 if (sym->attr.intrinsic)
1088 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1089 sym->name, &common_root->n.common->where);
1090 else if (sym->attr.result
1091 || gfc_is_function_return_value (sym, gfc_current_ns))
1092 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1093 "that is also a function result", sym->name,
1094 &common_root->n.common->where);
1095 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1096 && sym->attr.proc != PROC_ST_FUNCTION)
1097 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1098 "that is also a global procedure", sym->name,
1099 &common_root->n.common->where);
1103 /* Resolve contained function types. Because contained functions can call one
1104 another, they have to be worked out before any of the contained procedures
1105 can be resolved.
1107 The good news is that if a function doesn't already have a type, the only
1108 way it can get one is through an IMPLICIT type or a RESULT variable, because
1109 by definition contained functions are contained namespace they're contained
1110 in, not in a sibling or parent namespace. */
1112 static void
1113 resolve_contained_functions (gfc_namespace *ns)
1115 gfc_namespace *child;
1116 gfc_entry_list *el;
1118 resolve_formal_arglists (ns);
1120 for (child = ns->contained; child; child = child->sibling)
1122 /* Resolve alternate entry points first. */
1123 resolve_entries (child);
1125 /* Then check function return types. */
1126 resolve_contained_fntype (child->proc_name, child);
1127 for (el = child->entries; el; el = el->next)
1128 resolve_contained_fntype (el->sym, child);
1134 /* A Parameterized Derived Type constructor must contain values for
1135 the PDT KIND parameters or they must have a default initializer.
1136 Go through the constructor picking out the KIND expressions,
1137 storing them in 'param_list' and then call gfc_get_pdt_instance
1138 to obtain the PDT instance. */
1140 static gfc_actual_arglist *param_list, *param_tail, *param;
1142 static bool
1143 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1145 param = gfc_get_actual_arglist ();
1146 if (!param_list)
1147 param_list = param_tail = param;
1148 else
1150 param_tail->next = param;
1151 param_tail = param_tail->next;
1154 param_tail->name = c->name;
1155 if (expr)
1156 param_tail->expr = gfc_copy_expr (expr);
1157 else if (c->initializer)
1158 param_tail->expr = gfc_copy_expr (c->initializer);
1159 else
1161 param_tail->spec_type = SPEC_ASSUMED;
1162 if (c->attr.pdt_kind)
1164 gfc_error ("The KIND parameter %qs in the PDT constructor "
1165 "at %C has no value", param->name);
1166 return false;
1170 return true;
1173 static bool
1174 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1175 gfc_symbol *derived)
1177 gfc_constructor *cons = NULL;
1178 gfc_component *comp;
1179 bool t = true;
1181 if (expr && expr->expr_type == EXPR_STRUCTURE)
1182 cons = gfc_constructor_first (expr->value.constructor);
1183 else if (constr)
1184 cons = *constr;
1185 gcc_assert (cons);
1187 comp = derived->components;
1189 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1191 if (cons->expr
1192 && cons->expr->expr_type == EXPR_STRUCTURE
1193 && comp->ts.type == BT_DERIVED)
1195 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1196 if (!t)
1197 return t;
1199 else if (comp->ts.type == BT_DERIVED)
1201 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1202 if (!t)
1203 return t;
1205 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1206 && derived->attr.pdt_template)
1208 t = get_pdt_spec_expr (comp, cons->expr);
1209 if (!t)
1210 return t;
1213 return t;
1217 static bool resolve_fl_derived0 (gfc_symbol *sym);
1218 static bool resolve_fl_struct (gfc_symbol *sym);
1221 /* Resolve all of the elements of a structure constructor and make sure that
1222 the types are correct. The 'init' flag indicates that the given
1223 constructor is an initializer. */
1225 static bool
1226 resolve_structure_cons (gfc_expr *expr, int init)
1228 gfc_constructor *cons;
1229 gfc_component *comp;
1230 bool t;
1231 symbol_attribute a;
1233 t = true;
1235 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1237 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1238 resolve_fl_derived0 (expr->ts.u.derived);
1239 else
1240 resolve_fl_struct (expr->ts.u.derived);
1242 /* If this is a Parameterized Derived Type template, find the
1243 instance corresponding to the PDT kind parameters. */
1244 if (expr->ts.u.derived->attr.pdt_template)
1246 param_list = NULL;
1247 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1248 if (!t)
1249 return t;
1250 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1252 expr->param_list = gfc_copy_actual_arglist (param_list);
1254 if (param_list)
1255 gfc_free_actual_arglist (param_list);
1257 if (!expr->ts.u.derived->attr.pdt_type)
1258 return false;
1262 cons = gfc_constructor_first (expr->value.constructor);
1264 /* A constructor may have references if it is the result of substituting a
1265 parameter variable. In this case we just pull out the component we
1266 want. */
1267 if (expr->ref)
1268 comp = expr->ref->u.c.sym->components;
1269 else
1270 comp = expr->ts.u.derived->components;
1272 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1274 int rank;
1276 if (!cons->expr)
1277 continue;
1279 /* Unions use an EXPR_NULL contrived expression to tell the translation
1280 phase to generate an initializer of the appropriate length.
1281 Ignore it here. */
1282 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1283 continue;
1285 if (!gfc_resolve_expr (cons->expr))
1287 t = false;
1288 continue;
1291 rank = comp->as ? comp->as->rank : 0;
1292 if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->as)
1293 rank = CLASS_DATA (comp)->as->rank;
1295 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1296 && (comp->attr.allocatable || cons->expr->rank))
1298 gfc_error ("The rank of the element in the structure "
1299 "constructor at %L does not match that of the "
1300 "component (%d/%d)", &cons->expr->where,
1301 cons->expr->rank, rank);
1302 t = false;
1305 /* If we don't have the right type, try to convert it. */
1307 if (!comp->attr.proc_pointer &&
1308 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1310 if (strcmp (comp->name, "_extends") == 0)
1312 /* Can afford to be brutal with the _extends initializer.
1313 The derived type can get lost because it is PRIVATE
1314 but it is not usage constrained by the standard. */
1315 cons->expr->ts = comp->ts;
1317 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1319 gfc_error ("The element in the structure constructor at %L, "
1320 "for pointer component %qs, is %s but should be %s",
1321 &cons->expr->where, comp->name,
1322 gfc_basic_typename (cons->expr->ts.type),
1323 gfc_basic_typename (comp->ts.type));
1324 t = false;
1326 else
1328 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1329 if (t)
1330 t = t2;
1334 /* For strings, the length of the constructor should be the same as
1335 the one of the structure, ensure this if the lengths are known at
1336 compile time and when we are dealing with PARAMETER or structure
1337 constructors. */
1338 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1339 && comp->ts.u.cl->length
1340 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1341 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1342 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1343 && cons->expr->rank != 0
1344 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1345 comp->ts.u.cl->length->value.integer) != 0)
1347 if (cons->expr->expr_type == EXPR_VARIABLE
1348 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1350 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1351 to make use of the gfc_resolve_character_array_constructor
1352 machinery. The expression is later simplified away to
1353 an array of string literals. */
1354 gfc_expr *para = cons->expr;
1355 cons->expr = gfc_get_expr ();
1356 cons->expr->ts = para->ts;
1357 cons->expr->where = para->where;
1358 cons->expr->expr_type = EXPR_ARRAY;
1359 cons->expr->rank = para->rank;
1360 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1361 gfc_constructor_append_expr (&cons->expr->value.constructor,
1362 para, &cons->expr->where);
1365 if (cons->expr->expr_type == EXPR_ARRAY)
1367 /* Rely on the cleanup of the namespace to deal correctly with
1368 the old charlen. (There was a block here that attempted to
1369 remove the charlen but broke the chain in so doing.) */
1370 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1371 cons->expr->ts.u.cl->length_from_typespec = true;
1372 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1373 gfc_resolve_character_array_constructor (cons->expr);
1377 if (cons->expr->expr_type == EXPR_NULL
1378 && !(comp->attr.pointer || comp->attr.allocatable
1379 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1380 || (comp->ts.type == BT_CLASS
1381 && (CLASS_DATA (comp)->attr.class_pointer
1382 || CLASS_DATA (comp)->attr.allocatable))))
1384 t = false;
1385 gfc_error ("The NULL in the structure constructor at %L is "
1386 "being applied to component %qs, which is neither "
1387 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1388 comp->name);
1391 if (comp->attr.proc_pointer && comp->ts.interface)
1393 /* Check procedure pointer interface. */
1394 gfc_symbol *s2 = NULL;
1395 gfc_component *c2;
1396 const char *name;
1397 char err[200];
1399 c2 = gfc_get_proc_ptr_comp (cons->expr);
1400 if (c2)
1402 s2 = c2->ts.interface;
1403 name = c2->name;
1405 else if (cons->expr->expr_type == EXPR_FUNCTION)
1407 s2 = cons->expr->symtree->n.sym->result;
1408 name = cons->expr->symtree->n.sym->result->name;
1410 else if (cons->expr->expr_type != EXPR_NULL)
1412 s2 = cons->expr->symtree->n.sym;
1413 name = cons->expr->symtree->n.sym->name;
1416 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1417 err, sizeof (err), NULL, NULL))
1419 gfc_error_opt (OPT_Wargument_mismatch,
1420 "Interface mismatch for procedure-pointer "
1421 "component %qs in structure constructor at %L:"
1422 " %s", comp->name, &cons->expr->where, err);
1423 return false;
1427 if (!comp->attr.pointer || comp->attr.proc_pointer
1428 || cons->expr->expr_type == EXPR_NULL)
1429 continue;
1431 a = gfc_expr_attr (cons->expr);
1433 if (!a.pointer && !a.target)
1435 t = false;
1436 gfc_error ("The element in the structure constructor at %L, "
1437 "for pointer component %qs should be a POINTER or "
1438 "a TARGET", &cons->expr->where, comp->name);
1441 if (init)
1443 /* F08:C461. Additional checks for pointer initialization. */
1444 if (a.allocatable)
1446 t = false;
1447 gfc_error ("Pointer initialization target at %L "
1448 "must not be ALLOCATABLE", &cons->expr->where);
1450 if (!a.save)
1452 t = false;
1453 gfc_error ("Pointer initialization target at %L "
1454 "must have the SAVE attribute", &cons->expr->where);
1458 /* F2003, C1272 (3). */
1459 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1460 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1461 || gfc_is_coindexed (cons->expr));
1462 if (impure && gfc_pure (NULL))
1464 t = false;
1465 gfc_error ("Invalid expression in the structure constructor for "
1466 "pointer component %qs at %L in PURE procedure",
1467 comp->name, &cons->expr->where);
1470 if (impure)
1471 gfc_unset_implicit_pure (NULL);
1474 return t;
1478 /****************** Expression name resolution ******************/
1480 /* Returns 0 if a symbol was not declared with a type or
1481 attribute declaration statement, nonzero otherwise. */
1483 static int
1484 was_declared (gfc_symbol *sym)
1486 symbol_attribute a;
1488 a = sym->attr;
1490 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1491 return 1;
1493 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1494 || a.optional || a.pointer || a.save || a.target || a.volatile_
1495 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1496 || a.asynchronous || a.codimension)
1497 return 1;
1499 return 0;
1503 /* Determine if a symbol is generic or not. */
1505 static int
1506 generic_sym (gfc_symbol *sym)
1508 gfc_symbol *s;
1510 if (sym->attr.generic ||
1511 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1512 return 1;
1514 if (was_declared (sym) || sym->ns->parent == NULL)
1515 return 0;
1517 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1519 if (s != NULL)
1521 if (s == sym)
1522 return 0;
1523 else
1524 return generic_sym (s);
1527 return 0;
1531 /* Determine if a symbol is specific or not. */
1533 static int
1534 specific_sym (gfc_symbol *sym)
1536 gfc_symbol *s;
1538 if (sym->attr.if_source == IFSRC_IFBODY
1539 || sym->attr.proc == PROC_MODULE
1540 || sym->attr.proc == PROC_INTERNAL
1541 || sym->attr.proc == PROC_ST_FUNCTION
1542 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1543 || sym->attr.external)
1544 return 1;
1546 if (was_declared (sym) || sym->ns->parent == NULL)
1547 return 0;
1549 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1551 return (s == NULL) ? 0 : specific_sym (s);
1555 /* Figure out if the procedure is specific, generic or unknown. */
1557 enum proc_type
1558 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1560 static proc_type
1561 procedure_kind (gfc_symbol *sym)
1563 if (generic_sym (sym))
1564 return PTYPE_GENERIC;
1566 if (specific_sym (sym))
1567 return PTYPE_SPECIFIC;
1569 return PTYPE_UNKNOWN;
1572 /* Check references to assumed size arrays. The flag need_full_assumed_size
1573 is nonzero when matching actual arguments. */
1575 static int need_full_assumed_size = 0;
1577 static bool
1578 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1580 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1581 return false;
1583 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1584 What should it be? */
1585 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1586 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1587 && (e->ref->u.ar.type == AR_FULL))
1589 gfc_error ("The upper bound in the last dimension must "
1590 "appear in the reference to the assumed size "
1591 "array %qs at %L", sym->name, &e->where);
1592 return true;
1594 return false;
1598 /* Look for bad assumed size array references in argument expressions
1599 of elemental and array valued intrinsic procedures. Since this is
1600 called from procedure resolution functions, it only recurses at
1601 operators. */
1603 static bool
1604 resolve_assumed_size_actual (gfc_expr *e)
1606 if (e == NULL)
1607 return false;
1609 switch (e->expr_type)
1611 case EXPR_VARIABLE:
1612 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1613 return true;
1614 break;
1616 case EXPR_OP:
1617 if (resolve_assumed_size_actual (e->value.op.op1)
1618 || resolve_assumed_size_actual (e->value.op.op2))
1619 return true;
1620 break;
1622 default:
1623 break;
1625 return false;
1629 /* Check a generic procedure, passed as an actual argument, to see if
1630 there is a matching specific name. If none, it is an error, and if
1631 more than one, the reference is ambiguous. */
1632 static int
1633 count_specific_procs (gfc_expr *e)
1635 int n;
1636 gfc_interface *p;
1637 gfc_symbol *sym;
1639 n = 0;
1640 sym = e->symtree->n.sym;
1642 for (p = sym->generic; p; p = p->next)
1643 if (strcmp (sym->name, p->sym->name) == 0)
1645 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1646 sym->name);
1647 n++;
1650 if (n > 1)
1651 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1652 &e->where);
1654 if (n == 0)
1655 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1656 "argument at %L", sym->name, &e->where);
1658 return n;
1662 /* See if a call to sym could possibly be a not allowed RECURSION because of
1663 a missing RECURSIVE declaration. This means that either sym is the current
1664 context itself, or sym is the parent of a contained procedure calling its
1665 non-RECURSIVE containing procedure.
1666 This also works if sym is an ENTRY. */
1668 static bool
1669 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1671 gfc_symbol* proc_sym;
1672 gfc_symbol* context_proc;
1673 gfc_namespace* real_context;
1675 if (sym->attr.flavor == FL_PROGRAM
1676 || gfc_fl_struct (sym->attr.flavor))
1677 return false;
1679 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1681 /* If we've got an ENTRY, find real procedure. */
1682 if (sym->attr.entry && sym->ns->entries)
1683 proc_sym = sym->ns->entries->sym;
1684 else
1685 proc_sym = sym;
1687 /* If sym is RECURSIVE, all is well of course. */
1688 if (proc_sym->attr.recursive || flag_recursive)
1689 return false;
1691 /* Find the context procedure's "real" symbol if it has entries.
1692 We look for a procedure symbol, so recurse on the parents if we don't
1693 find one (like in case of a BLOCK construct). */
1694 for (real_context = context; ; real_context = real_context->parent)
1696 /* We should find something, eventually! */
1697 gcc_assert (real_context);
1699 context_proc = (real_context->entries ? real_context->entries->sym
1700 : real_context->proc_name);
1702 /* In some special cases, there may not be a proc_name, like for this
1703 invalid code:
1704 real(bad_kind()) function foo () ...
1705 when checking the call to bad_kind ().
1706 In these cases, we simply return here and assume that the
1707 call is ok. */
1708 if (!context_proc)
1709 return false;
1711 if (context_proc->attr.flavor != FL_LABEL)
1712 break;
1715 /* A call from sym's body to itself is recursion, of course. */
1716 if (context_proc == proc_sym)
1717 return true;
1719 /* The same is true if context is a contained procedure and sym the
1720 containing one. */
1721 if (context_proc->attr.contained)
1723 gfc_symbol* parent_proc;
1725 gcc_assert (context->parent);
1726 parent_proc = (context->parent->entries ? context->parent->entries->sym
1727 : context->parent->proc_name);
1729 if (parent_proc == proc_sym)
1730 return true;
1733 return false;
1737 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1738 its typespec and formal argument list. */
1740 bool
1741 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1743 gfc_intrinsic_sym* isym = NULL;
1744 const char* symstd;
1746 if (sym->formal)
1747 return true;
1749 /* Already resolved. */
1750 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1751 return true;
1753 /* We already know this one is an intrinsic, so we don't call
1754 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1755 gfc_find_subroutine directly to check whether it is a function or
1756 subroutine. */
1758 if (sym->intmod_sym_id && sym->attr.subroutine)
1760 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1761 isym = gfc_intrinsic_subroutine_by_id (id);
1763 else if (sym->intmod_sym_id)
1765 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1766 isym = gfc_intrinsic_function_by_id (id);
1768 else if (!sym->attr.subroutine)
1769 isym = gfc_find_function (sym->name);
1771 if (isym && !sym->attr.subroutine)
1773 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1774 && !sym->attr.implicit_type)
1775 gfc_warning (OPT_Wsurprising,
1776 "Type specified for intrinsic function %qs at %L is"
1777 " ignored", sym->name, &sym->declared_at);
1779 if (!sym->attr.function &&
1780 !gfc_add_function(&sym->attr, sym->name, loc))
1781 return false;
1783 sym->ts = isym->ts;
1785 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1787 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1789 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1790 " specifier", sym->name, &sym->declared_at);
1791 return false;
1794 if (!sym->attr.subroutine &&
1795 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1796 return false;
1798 else
1800 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1801 &sym->declared_at);
1802 return false;
1805 gfc_copy_formal_args_intr (sym, isym, NULL);
1807 sym->attr.pure = isym->pure;
1808 sym->attr.elemental = isym->elemental;
1810 /* Check it is actually available in the standard settings. */
1811 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1813 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1814 "available in the current standard settings but %s. Use "
1815 "an appropriate %<-std=*%> option or enable "
1816 "%<-fall-intrinsics%> in order to use it.",
1817 sym->name, &sym->declared_at, symstd);
1818 return false;
1821 return true;
1825 /* Resolve a procedure expression, like passing it to a called procedure or as
1826 RHS for a procedure pointer assignment. */
1828 static bool
1829 resolve_procedure_expression (gfc_expr* expr)
1831 gfc_symbol* sym;
1833 if (expr->expr_type != EXPR_VARIABLE)
1834 return true;
1835 gcc_assert (expr->symtree);
1837 sym = expr->symtree->n.sym;
1839 if (sym->attr.intrinsic)
1840 gfc_resolve_intrinsic (sym, &expr->where);
1842 if (sym->attr.flavor != FL_PROCEDURE
1843 || (sym->attr.function && sym->result == sym))
1844 return true;
1846 /* A non-RECURSIVE procedure that is used as procedure expression within its
1847 own body is in danger of being called recursively. */
1848 if (is_illegal_recursion (sym, gfc_current_ns))
1849 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1850 " itself recursively. Declare it RECURSIVE or use"
1851 " %<-frecursive%>", sym->name, &expr->where);
1853 return true;
1857 /* Resolve an actual argument list. Most of the time, this is just
1858 resolving the expressions in the list.
1859 The exception is that we sometimes have to decide whether arguments
1860 that look like procedure arguments are really simple variable
1861 references. */
1863 static bool
1864 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1865 bool no_formal_args)
1867 gfc_symbol *sym;
1868 gfc_symtree *parent_st;
1869 gfc_expr *e;
1870 gfc_component *comp;
1871 int save_need_full_assumed_size;
1872 bool return_value = false;
1873 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1875 actual_arg = true;
1876 first_actual_arg = true;
1878 for (; arg; arg = arg->next)
1880 e = arg->expr;
1881 if (e == NULL)
1883 /* Check the label is a valid branching target. */
1884 if (arg->label)
1886 if (arg->label->defined == ST_LABEL_UNKNOWN)
1888 gfc_error ("Label %d referenced at %L is never defined",
1889 arg->label->value, &arg->label->where);
1890 goto cleanup;
1893 first_actual_arg = false;
1894 continue;
1897 if (e->expr_type == EXPR_VARIABLE
1898 && e->symtree->n.sym->attr.generic
1899 && no_formal_args
1900 && count_specific_procs (e) != 1)
1901 goto cleanup;
1903 if (e->ts.type != BT_PROCEDURE)
1905 save_need_full_assumed_size = need_full_assumed_size;
1906 if (e->expr_type != EXPR_VARIABLE)
1907 need_full_assumed_size = 0;
1908 if (!gfc_resolve_expr (e))
1909 goto cleanup;
1910 need_full_assumed_size = save_need_full_assumed_size;
1911 goto argument_list;
1914 /* See if the expression node should really be a variable reference. */
1916 sym = e->symtree->n.sym;
1918 if (sym->attr.flavor == FL_PROCEDURE
1919 || sym->attr.intrinsic
1920 || sym->attr.external)
1922 int actual_ok;
1924 /* If a procedure is not already determined to be something else
1925 check if it is intrinsic. */
1926 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1927 sym->attr.intrinsic = 1;
1929 if (sym->attr.proc == PROC_ST_FUNCTION)
1931 gfc_error ("Statement function %qs at %L is not allowed as an "
1932 "actual argument", sym->name, &e->where);
1935 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1936 sym->attr.subroutine);
1937 if (sym->attr.intrinsic && actual_ok == 0)
1939 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1940 "actual argument", sym->name, &e->where);
1943 if (sym->attr.contained && !sym->attr.use_assoc
1944 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1946 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1947 " used as actual argument at %L",
1948 sym->name, &e->where))
1949 goto cleanup;
1952 if (sym->attr.elemental && !sym->attr.intrinsic)
1954 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1955 "allowed as an actual argument at %L", sym->name,
1956 &e->where);
1959 /* Check if a generic interface has a specific procedure
1960 with the same name before emitting an error. */
1961 if (sym->attr.generic && count_specific_procs (e) != 1)
1962 goto cleanup;
1964 /* Just in case a specific was found for the expression. */
1965 sym = e->symtree->n.sym;
1967 /* If the symbol is the function that names the current (or
1968 parent) scope, then we really have a variable reference. */
1970 if (gfc_is_function_return_value (sym, sym->ns))
1971 goto got_variable;
1973 /* If all else fails, see if we have a specific intrinsic. */
1974 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1976 gfc_intrinsic_sym *isym;
1978 isym = gfc_find_function (sym->name);
1979 if (isym == NULL || !isym->specific)
1981 gfc_error ("Unable to find a specific INTRINSIC procedure "
1982 "for the reference %qs at %L", sym->name,
1983 &e->where);
1984 goto cleanup;
1986 sym->ts = isym->ts;
1987 sym->attr.intrinsic = 1;
1988 sym->attr.function = 1;
1991 if (!gfc_resolve_expr (e))
1992 goto cleanup;
1993 goto argument_list;
1996 /* See if the name is a module procedure in a parent unit. */
1998 if (was_declared (sym) || sym->ns->parent == NULL)
1999 goto got_variable;
2001 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2003 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2004 goto cleanup;
2007 if (parent_st == NULL)
2008 goto got_variable;
2010 sym = parent_st->n.sym;
2011 e->symtree = parent_st; /* Point to the right thing. */
2013 if (sym->attr.flavor == FL_PROCEDURE
2014 || sym->attr.intrinsic
2015 || sym->attr.external)
2017 if (!gfc_resolve_expr (e))
2018 goto cleanup;
2019 goto argument_list;
2022 got_variable:
2023 e->expr_type = EXPR_VARIABLE;
2024 e->ts = sym->ts;
2025 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2026 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2027 && CLASS_DATA (sym)->as))
2029 e->rank = sym->ts.type == BT_CLASS
2030 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2031 e->ref = gfc_get_ref ();
2032 e->ref->type = REF_ARRAY;
2033 e->ref->u.ar.type = AR_FULL;
2034 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2035 ? CLASS_DATA (sym)->as : sym->as;
2038 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2039 primary.c (match_actual_arg). If above code determines that it
2040 is a variable instead, it needs to be resolved as it was not
2041 done at the beginning of this function. */
2042 save_need_full_assumed_size = need_full_assumed_size;
2043 if (e->expr_type != EXPR_VARIABLE)
2044 need_full_assumed_size = 0;
2045 if (!gfc_resolve_expr (e))
2046 goto cleanup;
2047 need_full_assumed_size = save_need_full_assumed_size;
2049 argument_list:
2050 /* Check argument list functions %VAL, %LOC and %REF. There is
2051 nothing to do for %REF. */
2052 if (arg->name && arg->name[0] == '%')
2054 if (strncmp ("%VAL", arg->name, 4) == 0)
2056 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2058 gfc_error ("By-value argument at %L is not of numeric "
2059 "type", &e->where);
2060 goto cleanup;
2063 if (e->rank)
2065 gfc_error ("By-value argument at %L cannot be an array or "
2066 "an array section", &e->where);
2067 goto cleanup;
2070 /* Intrinsics are still PROC_UNKNOWN here. However,
2071 since same file external procedures are not resolvable
2072 in gfortran, it is a good deal easier to leave them to
2073 intrinsic.c. */
2074 if (ptype != PROC_UNKNOWN
2075 && ptype != PROC_DUMMY
2076 && ptype != PROC_EXTERNAL
2077 && ptype != PROC_MODULE)
2079 gfc_error ("By-value argument at %L is not allowed "
2080 "in this context", &e->where);
2081 goto cleanup;
2085 /* Statement functions have already been excluded above. */
2086 else if (strncmp ("%LOC", arg->name, 4) == 0
2087 && e->ts.type == BT_PROCEDURE)
2089 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2091 gfc_error ("Passing internal procedure at %L by location "
2092 "not allowed", &e->where);
2093 goto cleanup;
2098 comp = gfc_get_proc_ptr_comp(e);
2099 if (e->expr_type == EXPR_VARIABLE
2100 && comp && comp->attr.elemental)
2102 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2103 "allowed as an actual argument at %L", comp->name,
2104 &e->where);
2107 /* Fortran 2008, C1237. */
2108 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2109 && gfc_has_ultimate_pointer (e))
2111 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2112 "component", &e->where);
2113 goto cleanup;
2116 first_actual_arg = false;
2119 return_value = true;
2121 cleanup:
2122 actual_arg = actual_arg_sav;
2123 first_actual_arg = first_actual_arg_sav;
2125 return return_value;
2129 /* Do the checks of the actual argument list that are specific to elemental
2130 procedures. If called with c == NULL, we have a function, otherwise if
2131 expr == NULL, we have a subroutine. */
2133 static bool
2134 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2136 gfc_actual_arglist *arg0;
2137 gfc_actual_arglist *arg;
2138 gfc_symbol *esym = NULL;
2139 gfc_intrinsic_sym *isym = NULL;
2140 gfc_expr *e = NULL;
2141 gfc_intrinsic_arg *iformal = NULL;
2142 gfc_formal_arglist *eformal = NULL;
2143 bool formal_optional = false;
2144 bool set_by_optional = false;
2145 int i;
2146 int rank = 0;
2148 /* Is this an elemental procedure? */
2149 if (expr && expr->value.function.actual != NULL)
2151 if (expr->value.function.esym != NULL
2152 && expr->value.function.esym->attr.elemental)
2154 arg0 = expr->value.function.actual;
2155 esym = expr->value.function.esym;
2157 else if (expr->value.function.isym != NULL
2158 && expr->value.function.isym->elemental)
2160 arg0 = expr->value.function.actual;
2161 isym = expr->value.function.isym;
2163 else
2164 return true;
2166 else if (c && c->ext.actual != NULL)
2168 arg0 = c->ext.actual;
2170 if (c->resolved_sym)
2171 esym = c->resolved_sym;
2172 else
2173 esym = c->symtree->n.sym;
2174 gcc_assert (esym);
2176 if (!esym->attr.elemental)
2177 return true;
2179 else
2180 return true;
2182 /* The rank of an elemental is the rank of its array argument(s). */
2183 for (arg = arg0; arg; arg = arg->next)
2185 if (arg->expr != NULL && arg->expr->rank != 0)
2187 rank = arg->expr->rank;
2188 if (arg->expr->expr_type == EXPR_VARIABLE
2189 && arg->expr->symtree->n.sym->attr.optional)
2190 set_by_optional = true;
2192 /* Function specific; set the result rank and shape. */
2193 if (expr)
2195 expr->rank = rank;
2196 if (!expr->shape && arg->expr->shape)
2198 expr->shape = gfc_get_shape (rank);
2199 for (i = 0; i < rank; i++)
2200 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2203 break;
2207 /* If it is an array, it shall not be supplied as an actual argument
2208 to an elemental procedure unless an array of the same rank is supplied
2209 as an actual argument corresponding to a nonoptional dummy argument of
2210 that elemental procedure(12.4.1.5). */
2211 formal_optional = false;
2212 if (isym)
2213 iformal = isym->formal;
2214 else
2215 eformal = esym->formal;
2217 for (arg = arg0; arg; arg = arg->next)
2219 if (eformal)
2221 if (eformal->sym && eformal->sym->attr.optional)
2222 formal_optional = true;
2223 eformal = eformal->next;
2225 else if (isym && iformal)
2227 if (iformal->optional)
2228 formal_optional = true;
2229 iformal = iformal->next;
2231 else if (isym)
2232 formal_optional = true;
2234 if (pedantic && arg->expr != NULL
2235 && arg->expr->expr_type == EXPR_VARIABLE
2236 && arg->expr->symtree->n.sym->attr.optional
2237 && formal_optional
2238 && arg->expr->rank
2239 && (set_by_optional || arg->expr->rank != rank)
2240 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2242 gfc_warning (OPT_Wpedantic,
2243 "%qs at %L is an array and OPTIONAL; IF IT IS "
2244 "MISSING, it cannot be the actual argument of an "
2245 "ELEMENTAL procedure unless there is a non-optional "
2246 "argument with the same rank (12.4.1.5)",
2247 arg->expr->symtree->n.sym->name, &arg->expr->where);
2251 for (arg = arg0; arg; arg = arg->next)
2253 if (arg->expr == NULL || arg->expr->rank == 0)
2254 continue;
2256 /* Being elemental, the last upper bound of an assumed size array
2257 argument must be present. */
2258 if (resolve_assumed_size_actual (arg->expr))
2259 return false;
2261 /* Elemental procedure's array actual arguments must conform. */
2262 if (e != NULL)
2264 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2265 return false;
2267 else
2268 e = arg->expr;
2271 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2272 is an array, the intent inout/out variable needs to be also an array. */
2273 if (rank > 0 && esym && expr == NULL)
2274 for (eformal = esym->formal, arg = arg0; arg && eformal;
2275 arg = arg->next, eformal = eformal->next)
2276 if ((eformal->sym->attr.intent == INTENT_OUT
2277 || eformal->sym->attr.intent == INTENT_INOUT)
2278 && arg->expr && arg->expr->rank == 0)
2280 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2281 "ELEMENTAL subroutine %qs is a scalar, but another "
2282 "actual argument is an array", &arg->expr->where,
2283 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2284 : "INOUT", eformal->sym->name, esym->name);
2285 return false;
2287 return true;
2291 /* This function does the checking of references to global procedures
2292 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2293 77 and 95 standards. It checks for a gsymbol for the name, making
2294 one if it does not already exist. If it already exists, then the
2295 reference being resolved must correspond to the type of gsymbol.
2296 Otherwise, the new symbol is equipped with the attributes of the
2297 reference. The corresponding code that is called in creating
2298 global entities is parse.c.
2300 In addition, for all but -std=legacy, the gsymbols are used to
2301 check the interfaces of external procedures from the same file.
2302 The namespace of the gsymbol is resolved and then, once this is
2303 done the interface is checked. */
2306 static bool
2307 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2309 if (!gsym_ns->proc_name->attr.recursive)
2310 return true;
2312 if (sym->ns == gsym_ns)
2313 return false;
2315 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2316 return false;
2318 return true;
2321 static bool
2322 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2324 if (gsym_ns->entries)
2326 gfc_entry_list *entry = gsym_ns->entries;
2328 for (; entry; entry = entry->next)
2330 if (strcmp (sym->name, entry->sym->name) == 0)
2332 if (strcmp (gsym_ns->proc_name->name,
2333 sym->ns->proc_name->name) == 0)
2334 return false;
2336 if (sym->ns->parent
2337 && strcmp (gsym_ns->proc_name->name,
2338 sym->ns->parent->proc_name->name) == 0)
2339 return false;
2343 return true;
2347 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2349 bool
2350 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2352 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2354 for ( ; arg; arg = arg->next)
2356 if (!arg->sym)
2357 continue;
2359 if (arg->sym->attr.allocatable) /* (2a) */
2361 strncpy (errmsg, _("allocatable argument"), err_len);
2362 return true;
2364 else if (arg->sym->attr.asynchronous)
2366 strncpy (errmsg, _("asynchronous argument"), err_len);
2367 return true;
2369 else if (arg->sym->attr.optional)
2371 strncpy (errmsg, _("optional argument"), err_len);
2372 return true;
2374 else if (arg->sym->attr.pointer)
2376 strncpy (errmsg, _("pointer argument"), err_len);
2377 return true;
2379 else if (arg->sym->attr.target)
2381 strncpy (errmsg, _("target argument"), err_len);
2382 return true;
2384 else if (arg->sym->attr.value)
2386 strncpy (errmsg, _("value argument"), err_len);
2387 return true;
2389 else if (arg->sym->attr.volatile_)
2391 strncpy (errmsg, _("volatile argument"), err_len);
2392 return true;
2394 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2396 strncpy (errmsg, _("assumed-shape argument"), err_len);
2397 return true;
2399 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2401 strncpy (errmsg, _("assumed-rank argument"), err_len);
2402 return true;
2404 else if (arg->sym->attr.codimension) /* (2c) */
2406 strncpy (errmsg, _("coarray argument"), err_len);
2407 return true;
2409 else if (false) /* (2d) TODO: parametrized derived type */
2411 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2412 return true;
2414 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2416 strncpy (errmsg, _("polymorphic argument"), err_len);
2417 return true;
2419 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2421 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2422 return true;
2424 else if (arg->sym->ts.type == BT_ASSUMED)
2426 /* As assumed-type is unlimited polymorphic (cf. above).
2427 See also TS 29113, Note 6.1. */
2428 strncpy (errmsg, _("assumed-type argument"), err_len);
2429 return true;
2433 if (sym->attr.function)
2435 gfc_symbol *res = sym->result ? sym->result : sym;
2437 if (res->attr.dimension) /* (3a) */
2439 strncpy (errmsg, _("array result"), err_len);
2440 return true;
2442 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2444 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2445 return true;
2447 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2448 && res->ts.u.cl->length
2449 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2451 strncpy (errmsg, _("result with non-constant character length"), err_len);
2452 return true;
2456 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2458 strncpy (errmsg, _("elemental procedure"), err_len);
2459 return true;
2461 else if (sym->attr.is_bind_c) /* (5) */
2463 strncpy (errmsg, _("bind(c) procedure"), err_len);
2464 return true;
2467 return false;
2471 static void
2472 resolve_global_procedure (gfc_symbol *sym, locus *where,
2473 gfc_actual_arglist **actual, int sub)
2475 gfc_gsymbol * gsym;
2476 gfc_namespace *ns;
2477 enum gfc_symbol_type type;
2478 char reason[200];
2480 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2482 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2484 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2485 gfc_global_used (gsym, where);
2487 if ((sym->attr.if_source == IFSRC_UNKNOWN
2488 || sym->attr.if_source == IFSRC_IFBODY)
2489 && gsym->type != GSYM_UNKNOWN
2490 && !gsym->binding_label
2491 && gsym->ns
2492 && gsym->ns->resolved != -1
2493 && gsym->ns->proc_name
2494 && not_in_recursive (sym, gsym->ns)
2495 && not_entry_self_reference (sym, gsym->ns))
2497 gfc_symbol *def_sym;
2499 /* Resolve the gsymbol namespace if needed. */
2500 if (!gsym->ns->resolved)
2502 gfc_dt_list *old_dt_list;
2504 /* Stash away derived types so that the backend_decls do not
2505 get mixed up. */
2506 old_dt_list = gfc_derived_types;
2507 gfc_derived_types = NULL;
2509 gfc_resolve (gsym->ns);
2511 /* Store the new derived types with the global namespace. */
2512 if (gfc_derived_types)
2513 gsym->ns->derived_types = gfc_derived_types;
2515 /* Restore the derived types of this namespace. */
2516 gfc_derived_types = old_dt_list;
2519 /* Make sure that translation for the gsymbol occurs before
2520 the procedure currently being resolved. */
2521 ns = gfc_global_ns_list;
2522 for (; ns && ns != gsym->ns; ns = ns->sibling)
2524 if (ns->sibling == gsym->ns)
2526 ns->sibling = gsym->ns->sibling;
2527 gsym->ns->sibling = gfc_global_ns_list;
2528 gfc_global_ns_list = gsym->ns;
2529 break;
2533 def_sym = gsym->ns->proc_name;
2535 /* This can happen if a binding name has been specified. */
2536 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2537 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2539 if (def_sym->attr.entry_master)
2541 gfc_entry_list *entry;
2542 for (entry = gsym->ns->entries; entry; entry = entry->next)
2543 if (strcmp (entry->sym->name, sym->name) == 0)
2545 def_sym = entry->sym;
2546 break;
2550 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2552 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2553 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2554 gfc_typename (&def_sym->ts));
2555 goto done;
2558 if (sym->attr.if_source == IFSRC_UNKNOWN
2559 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2561 gfc_error ("Explicit interface required for %qs at %L: %s",
2562 sym->name, &sym->declared_at, reason);
2563 goto done;
2566 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2567 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2568 gfc_errors_to_warnings (true);
2570 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2571 reason, sizeof(reason), NULL, NULL))
2573 gfc_error_opt (OPT_Wargument_mismatch,
2574 "Interface mismatch in global procedure %qs at %L:"
2575 " %s", sym->name, &sym->declared_at, reason);
2576 goto done;
2579 if (!pedantic
2580 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2581 && !(gfc_option.warn_std & GFC_STD_GNU)))
2582 gfc_errors_to_warnings (true);
2584 if (sym->attr.if_source != IFSRC_IFBODY)
2585 gfc_procedure_use (def_sym, actual, where);
2588 done:
2589 gfc_errors_to_warnings (false);
2591 if (gsym->type == GSYM_UNKNOWN)
2593 gsym->type = type;
2594 gsym->where = *where;
2597 gsym->used = 1;
2601 /************* Function resolution *************/
2603 /* Resolve a function call known to be generic.
2604 Section 14.1.2.4.1. */
2606 static match
2607 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2609 gfc_symbol *s;
2611 if (sym->attr.generic)
2613 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2614 if (s != NULL)
2616 expr->value.function.name = s->name;
2617 expr->value.function.esym = s;
2619 if (s->ts.type != BT_UNKNOWN)
2620 expr->ts = s->ts;
2621 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2622 expr->ts = s->result->ts;
2624 if (s->as != NULL)
2625 expr->rank = s->as->rank;
2626 else if (s->result != NULL && s->result->as != NULL)
2627 expr->rank = s->result->as->rank;
2629 gfc_set_sym_referenced (expr->value.function.esym);
2631 return MATCH_YES;
2634 /* TODO: Need to search for elemental references in generic
2635 interface. */
2638 if (sym->attr.intrinsic)
2639 return gfc_intrinsic_func_interface (expr, 0);
2641 return MATCH_NO;
2645 static bool
2646 resolve_generic_f (gfc_expr *expr)
2648 gfc_symbol *sym;
2649 match m;
2650 gfc_interface *intr = NULL;
2652 sym = expr->symtree->n.sym;
2654 for (;;)
2656 m = resolve_generic_f0 (expr, sym);
2657 if (m == MATCH_YES)
2658 return true;
2659 else if (m == MATCH_ERROR)
2660 return false;
2662 generic:
2663 if (!intr)
2664 for (intr = sym->generic; intr; intr = intr->next)
2665 if (gfc_fl_struct (intr->sym->attr.flavor))
2666 break;
2668 if (sym->ns->parent == NULL)
2669 break;
2670 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2672 if (sym == NULL)
2673 break;
2674 if (!generic_sym (sym))
2675 goto generic;
2678 /* Last ditch attempt. See if the reference is to an intrinsic
2679 that possesses a matching interface. 14.1.2.4 */
2680 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2682 if (gfc_init_expr_flag)
2683 gfc_error ("Function %qs in initialization expression at %L "
2684 "must be an intrinsic function",
2685 expr->symtree->n.sym->name, &expr->where);
2686 else
2687 gfc_error ("There is no specific function for the generic %qs "
2688 "at %L", expr->symtree->n.sym->name, &expr->where);
2689 return false;
2692 if (intr)
2694 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2695 NULL, false))
2696 return false;
2697 if (!gfc_use_derived (expr->ts.u.derived))
2698 return false;
2699 return resolve_structure_cons (expr, 0);
2702 m = gfc_intrinsic_func_interface (expr, 0);
2703 if (m == MATCH_YES)
2704 return true;
2706 if (m == MATCH_NO)
2707 gfc_error ("Generic function %qs at %L is not consistent with a "
2708 "specific intrinsic interface", expr->symtree->n.sym->name,
2709 &expr->where);
2711 return false;
2715 /* Resolve a function call known to be specific. */
2717 static match
2718 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2720 match m;
2722 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2724 if (sym->attr.dummy)
2726 sym->attr.proc = PROC_DUMMY;
2727 goto found;
2730 sym->attr.proc = PROC_EXTERNAL;
2731 goto found;
2734 if (sym->attr.proc == PROC_MODULE
2735 || sym->attr.proc == PROC_ST_FUNCTION
2736 || sym->attr.proc == PROC_INTERNAL)
2737 goto found;
2739 if (sym->attr.intrinsic)
2741 m = gfc_intrinsic_func_interface (expr, 1);
2742 if (m == MATCH_YES)
2743 return MATCH_YES;
2744 if (m == MATCH_NO)
2745 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2746 "with an intrinsic", sym->name, &expr->where);
2748 return MATCH_ERROR;
2751 return MATCH_NO;
2753 found:
2754 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2756 if (sym->result)
2757 expr->ts = sym->result->ts;
2758 else
2759 expr->ts = sym->ts;
2760 expr->value.function.name = sym->name;
2761 expr->value.function.esym = sym;
2762 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2763 error(s). */
2764 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2765 return MATCH_ERROR;
2766 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2767 expr->rank = CLASS_DATA (sym)->as->rank;
2768 else if (sym->as != NULL)
2769 expr->rank = sym->as->rank;
2771 return MATCH_YES;
2775 static bool
2776 resolve_specific_f (gfc_expr *expr)
2778 gfc_symbol *sym;
2779 match m;
2781 sym = expr->symtree->n.sym;
2783 for (;;)
2785 m = resolve_specific_f0 (sym, expr);
2786 if (m == MATCH_YES)
2787 return true;
2788 if (m == MATCH_ERROR)
2789 return false;
2791 if (sym->ns->parent == NULL)
2792 break;
2794 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2796 if (sym == NULL)
2797 break;
2800 gfc_error ("Unable to resolve the specific function %qs at %L",
2801 expr->symtree->n.sym->name, &expr->where);
2803 return true;
2806 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2807 candidates in CANDIDATES_LEN. */
2809 static void
2810 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2811 char **&candidates,
2812 size_t &candidates_len)
2814 gfc_symtree *p;
2816 if (sym == NULL)
2817 return;
2818 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2819 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2820 vec_push (candidates, candidates_len, sym->name);
2822 p = sym->left;
2823 if (p)
2824 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2826 p = sym->right;
2827 if (p)
2828 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2832 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2834 const char*
2835 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2837 char **candidates = NULL;
2838 size_t candidates_len = 0;
2839 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2840 return gfc_closest_fuzzy_match (fn, candidates);
2844 /* Resolve a procedure call not known to be generic nor specific. */
2846 static bool
2847 resolve_unknown_f (gfc_expr *expr)
2849 gfc_symbol *sym;
2850 gfc_typespec *ts;
2852 sym = expr->symtree->n.sym;
2854 if (sym->attr.dummy)
2856 sym->attr.proc = PROC_DUMMY;
2857 expr->value.function.name = sym->name;
2858 goto set_type;
2861 /* See if we have an intrinsic function reference. */
2863 if (gfc_is_intrinsic (sym, 0, expr->where))
2865 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2866 return true;
2867 return false;
2870 /* The reference is to an external name. */
2872 sym->attr.proc = PROC_EXTERNAL;
2873 expr->value.function.name = sym->name;
2874 expr->value.function.esym = expr->symtree->n.sym;
2876 if (sym->as != NULL)
2877 expr->rank = sym->as->rank;
2879 /* Type of the expression is either the type of the symbol or the
2880 default type of the symbol. */
2882 set_type:
2883 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2885 if (sym->ts.type != BT_UNKNOWN)
2886 expr->ts = sym->ts;
2887 else
2889 ts = gfc_get_default_type (sym->name, sym->ns);
2891 if (ts->type == BT_UNKNOWN)
2893 const char *guessed
2894 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2895 if (guessed)
2896 gfc_error ("Function %qs at %L has no IMPLICIT type"
2897 "; did you mean %qs?",
2898 sym->name, &expr->where, guessed);
2899 else
2900 gfc_error ("Function %qs at %L has no IMPLICIT type",
2901 sym->name, &expr->where);
2902 return false;
2904 else
2905 expr->ts = *ts;
2908 return true;
2912 /* Return true, if the symbol is an external procedure. */
2913 static bool
2914 is_external_proc (gfc_symbol *sym)
2916 if (!sym->attr.dummy && !sym->attr.contained
2917 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2918 && sym->attr.proc != PROC_ST_FUNCTION
2919 && !sym->attr.proc_pointer
2920 && !sym->attr.use_assoc
2921 && sym->name)
2922 return true;
2924 return false;
2928 /* Figure out if a function reference is pure or not. Also set the name
2929 of the function for a potential error message. Return nonzero if the
2930 function is PURE, zero if not. */
2931 static int
2932 pure_stmt_function (gfc_expr *, gfc_symbol *);
2934 static int
2935 pure_function (gfc_expr *e, const char **name)
2937 int pure;
2938 gfc_component *comp;
2940 *name = NULL;
2942 if (e->symtree != NULL
2943 && e->symtree->n.sym != NULL
2944 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2945 return pure_stmt_function (e, e->symtree->n.sym);
2947 comp = gfc_get_proc_ptr_comp (e);
2948 if (comp)
2950 pure = gfc_pure (comp->ts.interface);
2951 *name = comp->name;
2953 else if (e->value.function.esym)
2955 pure = gfc_pure (e->value.function.esym);
2956 *name = e->value.function.esym->name;
2958 else if (e->value.function.isym)
2960 pure = e->value.function.isym->pure
2961 || e->value.function.isym->elemental;
2962 *name = e->value.function.isym->name;
2964 else
2966 /* Implicit functions are not pure. */
2967 pure = 0;
2968 *name = e->value.function.name;
2971 return pure;
2975 static bool
2976 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
2977 int *f ATTRIBUTE_UNUSED)
2979 const char *name;
2981 /* Don't bother recursing into other statement functions
2982 since they will be checked individually for purity. */
2983 if (e->expr_type != EXPR_FUNCTION
2984 || !e->symtree
2985 || e->symtree->n.sym == sym
2986 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2987 return false;
2989 return pure_function (e, &name) ? false : true;
2993 static int
2994 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
2996 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3000 /* Check if an impure function is allowed in the current context. */
3002 static bool check_pure_function (gfc_expr *e)
3004 const char *name = NULL;
3005 if (!pure_function (e, &name) && name)
3007 if (forall_flag)
3009 gfc_error ("Reference to impure function %qs at %L inside a "
3010 "FORALL %s", name, &e->where,
3011 forall_flag == 2 ? "mask" : "block");
3012 return false;
3014 else if (gfc_do_concurrent_flag)
3016 gfc_error ("Reference to impure function %qs at %L inside a "
3017 "DO CONCURRENT %s", name, &e->where,
3018 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3019 return false;
3021 else if (gfc_pure (NULL))
3023 gfc_error ("Reference to impure function %qs at %L "
3024 "within a PURE procedure", name, &e->where);
3025 return false;
3027 gfc_unset_implicit_pure (NULL);
3029 return true;
3033 /* Update current procedure's array_outer_dependency flag, considering
3034 a call to procedure SYM. */
3036 static void
3037 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3039 /* Check to see if this is a sibling function that has not yet
3040 been resolved. */
3041 gfc_namespace *sibling = gfc_current_ns->sibling;
3042 for (; sibling; sibling = sibling->sibling)
3044 if (sibling->proc_name == sym)
3046 gfc_resolve (sibling);
3047 break;
3051 /* If SYM has references to outer arrays, so has the procedure calling
3052 SYM. If SYM is a procedure pointer, we can assume the worst. */
3053 if (sym->attr.array_outer_dependency
3054 || sym->attr.proc_pointer)
3055 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3059 /* Resolve a function call, which means resolving the arguments, then figuring
3060 out which entity the name refers to. */
3062 static bool
3063 resolve_function (gfc_expr *expr)
3065 gfc_actual_arglist *arg;
3066 gfc_symbol *sym;
3067 bool t;
3068 int temp;
3069 procedure_type p = PROC_INTRINSIC;
3070 bool no_formal_args;
3072 sym = NULL;
3073 if (expr->symtree)
3074 sym = expr->symtree->n.sym;
3076 /* If this is a procedure pointer component, it has already been resolved. */
3077 if (gfc_is_proc_ptr_comp (expr))
3078 return true;
3080 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3081 another caf_get. */
3082 if (sym && sym->attr.intrinsic
3083 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3084 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3085 return true;
3087 if (sym && sym->attr.intrinsic
3088 && !gfc_resolve_intrinsic (sym, &expr->where))
3089 return false;
3091 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3093 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3094 return false;
3097 /* If this ia a deferred TBP with an abstract interface (which may
3098 of course be referenced), expr->value.function.esym will be set. */
3099 if (sym && sym->attr.abstract && !expr->value.function.esym)
3101 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3102 sym->name, &expr->where);
3103 return false;
3106 /* Switch off assumed size checking and do this again for certain kinds
3107 of procedure, once the procedure itself is resolved. */
3108 need_full_assumed_size++;
3110 if (expr->symtree && expr->symtree->n.sym)
3111 p = expr->symtree->n.sym->attr.proc;
3113 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3114 inquiry_argument = true;
3115 no_formal_args = sym && is_external_proc (sym)
3116 && gfc_sym_get_dummy_args (sym) == NULL;
3118 if (!resolve_actual_arglist (expr->value.function.actual,
3119 p, no_formal_args))
3121 inquiry_argument = false;
3122 return false;
3125 inquiry_argument = false;
3127 /* Resume assumed_size checking. */
3128 need_full_assumed_size--;
3130 /* If the procedure is external, check for usage. */
3131 if (sym && is_external_proc (sym))
3132 resolve_global_procedure (sym, &expr->where,
3133 &expr->value.function.actual, 0);
3135 if (sym && sym->ts.type == BT_CHARACTER
3136 && sym->ts.u.cl
3137 && sym->ts.u.cl->length == NULL
3138 && !sym->attr.dummy
3139 && !sym->ts.deferred
3140 && expr->value.function.esym == NULL
3141 && !sym->attr.contained)
3143 /* Internal procedures are taken care of in resolve_contained_fntype. */
3144 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3145 "be used at %L since it is not a dummy argument",
3146 sym->name, &expr->where);
3147 return false;
3150 /* See if function is already resolved. */
3152 if (expr->value.function.name != NULL
3153 || expr->value.function.isym != NULL)
3155 if (expr->ts.type == BT_UNKNOWN)
3156 expr->ts = sym->ts;
3157 t = true;
3159 else
3161 /* Apply the rules of section 14.1.2. */
3163 switch (procedure_kind (sym))
3165 case PTYPE_GENERIC:
3166 t = resolve_generic_f (expr);
3167 break;
3169 case PTYPE_SPECIFIC:
3170 t = resolve_specific_f (expr);
3171 break;
3173 case PTYPE_UNKNOWN:
3174 t = resolve_unknown_f (expr);
3175 break;
3177 default:
3178 gfc_internal_error ("resolve_function(): bad function type");
3182 /* If the expression is still a function (it might have simplified),
3183 then we check to see if we are calling an elemental function. */
3185 if (expr->expr_type != EXPR_FUNCTION)
3186 return t;
3188 temp = need_full_assumed_size;
3189 need_full_assumed_size = 0;
3191 if (!resolve_elemental_actual (expr, NULL))
3192 return false;
3194 if (omp_workshare_flag
3195 && expr->value.function.esym
3196 && ! gfc_elemental (expr->value.function.esym))
3198 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3199 "in WORKSHARE construct", expr->value.function.esym->name,
3200 &expr->where);
3201 t = false;
3204 #define GENERIC_ID expr->value.function.isym->id
3205 else if (expr->value.function.actual != NULL
3206 && expr->value.function.isym != NULL
3207 && GENERIC_ID != GFC_ISYM_LBOUND
3208 && GENERIC_ID != GFC_ISYM_LCOBOUND
3209 && GENERIC_ID != GFC_ISYM_UCOBOUND
3210 && GENERIC_ID != GFC_ISYM_LEN
3211 && GENERIC_ID != GFC_ISYM_LOC
3212 && GENERIC_ID != GFC_ISYM_C_LOC
3213 && GENERIC_ID != GFC_ISYM_PRESENT)
3215 /* Array intrinsics must also have the last upper bound of an
3216 assumed size array argument. UBOUND and SIZE have to be
3217 excluded from the check if the second argument is anything
3218 than a constant. */
3220 for (arg = expr->value.function.actual; arg; arg = arg->next)
3222 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3223 && arg == expr->value.function.actual
3224 && arg->next != NULL && arg->next->expr)
3226 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3227 break;
3229 if (arg->next->name && strncmp (arg->next->name, "kind", 4) == 0)
3230 break;
3232 if ((int)mpz_get_si (arg->next->expr->value.integer)
3233 < arg->expr->rank)
3234 break;
3237 if (arg->expr != NULL
3238 && arg->expr->rank > 0
3239 && resolve_assumed_size_actual (arg->expr))
3240 return false;
3243 #undef GENERIC_ID
3245 need_full_assumed_size = temp;
3247 if (!check_pure_function(expr))
3248 t = false;
3250 /* Functions without the RECURSIVE attribution are not allowed to
3251 * call themselves. */
3252 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3254 gfc_symbol *esym;
3255 esym = expr->value.function.esym;
3257 if (is_illegal_recursion (esym, gfc_current_ns))
3259 if (esym->attr.entry && esym->ns->entries)
3260 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3261 " function %qs is not RECURSIVE",
3262 esym->name, &expr->where, esym->ns->entries->sym->name);
3263 else
3264 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3265 " is not RECURSIVE", esym->name, &expr->where);
3267 t = false;
3271 /* Character lengths of use associated functions may contains references to
3272 symbols not referenced from the current program unit otherwise. Make sure
3273 those symbols are marked as referenced. */
3275 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3276 && expr->value.function.esym->attr.use_assoc)
3278 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3281 /* Make sure that the expression has a typespec that works. */
3282 if (expr->ts.type == BT_UNKNOWN)
3284 if (expr->symtree->n.sym->result
3285 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3286 && !expr->symtree->n.sym->result->attr.proc_pointer)
3287 expr->ts = expr->symtree->n.sym->result->ts;
3290 if (!expr->ref && !expr->value.function.isym)
3292 if (expr->value.function.esym)
3293 update_current_proc_array_outer_dependency (expr->value.function.esym);
3294 else
3295 update_current_proc_array_outer_dependency (sym);
3297 else if (expr->ref)
3298 /* typebound procedure: Assume the worst. */
3299 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3301 return t;
3305 /************* Subroutine resolution *************/
3307 static bool
3308 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3310 if (gfc_pure (sym))
3311 return true;
3313 if (forall_flag)
3315 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3316 name, loc);
3317 return false;
3319 else if (gfc_do_concurrent_flag)
3321 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3322 "PURE", name, loc);
3323 return false;
3325 else if (gfc_pure (NULL))
3327 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3328 return false;
3331 gfc_unset_implicit_pure (NULL);
3332 return true;
3336 static match
3337 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3339 gfc_symbol *s;
3341 if (sym->attr.generic)
3343 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3344 if (s != NULL)
3346 c->resolved_sym = s;
3347 if (!pure_subroutine (s, s->name, &c->loc))
3348 return MATCH_ERROR;
3349 return MATCH_YES;
3352 /* TODO: Need to search for elemental references in generic interface. */
3355 if (sym->attr.intrinsic)
3356 return gfc_intrinsic_sub_interface (c, 0);
3358 return MATCH_NO;
3362 static bool
3363 resolve_generic_s (gfc_code *c)
3365 gfc_symbol *sym;
3366 match m;
3368 sym = c->symtree->n.sym;
3370 for (;;)
3372 m = resolve_generic_s0 (c, sym);
3373 if (m == MATCH_YES)
3374 return true;
3375 else if (m == MATCH_ERROR)
3376 return false;
3378 generic:
3379 if (sym->ns->parent == NULL)
3380 break;
3381 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3383 if (sym == NULL)
3384 break;
3385 if (!generic_sym (sym))
3386 goto generic;
3389 /* Last ditch attempt. See if the reference is to an intrinsic
3390 that possesses a matching interface. 14.1.2.4 */
3391 sym = c->symtree->n.sym;
3393 if (!gfc_is_intrinsic (sym, 1, c->loc))
3395 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3396 sym->name, &c->loc);
3397 return false;
3400 m = gfc_intrinsic_sub_interface (c, 0);
3401 if (m == MATCH_YES)
3402 return true;
3403 if (m == MATCH_NO)
3404 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3405 "intrinsic subroutine interface", sym->name, &c->loc);
3407 return false;
3411 /* Resolve a subroutine call known to be specific. */
3413 static match
3414 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3416 match m;
3418 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3420 if (sym->attr.dummy)
3422 sym->attr.proc = PROC_DUMMY;
3423 goto found;
3426 sym->attr.proc = PROC_EXTERNAL;
3427 goto found;
3430 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3431 goto found;
3433 if (sym->attr.intrinsic)
3435 m = gfc_intrinsic_sub_interface (c, 1);
3436 if (m == MATCH_YES)
3437 return MATCH_YES;
3438 if (m == MATCH_NO)
3439 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3440 "with an intrinsic", sym->name, &c->loc);
3442 return MATCH_ERROR;
3445 return MATCH_NO;
3447 found:
3448 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3450 c->resolved_sym = sym;
3451 if (!pure_subroutine (sym, sym->name, &c->loc))
3452 return MATCH_ERROR;
3454 return MATCH_YES;
3458 static bool
3459 resolve_specific_s (gfc_code *c)
3461 gfc_symbol *sym;
3462 match m;
3464 sym = c->symtree->n.sym;
3466 for (;;)
3468 m = resolve_specific_s0 (c, sym);
3469 if (m == MATCH_YES)
3470 return true;
3471 if (m == MATCH_ERROR)
3472 return false;
3474 if (sym->ns->parent == NULL)
3475 break;
3477 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3479 if (sym == NULL)
3480 break;
3483 sym = c->symtree->n.sym;
3484 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3485 sym->name, &c->loc);
3487 return false;
3491 /* Resolve a subroutine call not known to be generic nor specific. */
3493 static bool
3494 resolve_unknown_s (gfc_code *c)
3496 gfc_symbol *sym;
3498 sym = c->symtree->n.sym;
3500 if (sym->attr.dummy)
3502 sym->attr.proc = PROC_DUMMY;
3503 goto found;
3506 /* See if we have an intrinsic function reference. */
3508 if (gfc_is_intrinsic (sym, 1, c->loc))
3510 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3511 return true;
3512 return false;
3515 /* The reference is to an external name. */
3517 found:
3518 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3520 c->resolved_sym = sym;
3522 return pure_subroutine (sym, sym->name, &c->loc);
3526 /* Resolve a subroutine call. Although it was tempting to use the same code
3527 for functions, subroutines and functions are stored differently and this
3528 makes things awkward. */
3530 static bool
3531 resolve_call (gfc_code *c)
3533 bool t;
3534 procedure_type ptype = PROC_INTRINSIC;
3535 gfc_symbol *csym, *sym;
3536 bool no_formal_args;
3538 csym = c->symtree ? c->symtree->n.sym : NULL;
3540 if (csym && csym->ts.type != BT_UNKNOWN)
3542 gfc_error ("%qs at %L has a type, which is not consistent with "
3543 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3544 return false;
3547 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3549 gfc_symtree *st;
3550 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3551 sym = st ? st->n.sym : NULL;
3552 if (sym && csym != sym
3553 && sym->ns == gfc_current_ns
3554 && sym->attr.flavor == FL_PROCEDURE
3555 && sym->attr.contained)
3557 sym->refs++;
3558 if (csym->attr.generic)
3559 c->symtree->n.sym = sym;
3560 else
3561 c->symtree = st;
3562 csym = c->symtree->n.sym;
3566 /* If this ia a deferred TBP, c->expr1 will be set. */
3567 if (!c->expr1 && csym)
3569 if (csym->attr.abstract)
3571 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3572 csym->name, &c->loc);
3573 return false;
3576 /* Subroutines without the RECURSIVE attribution are not allowed to
3577 call themselves. */
3578 if (is_illegal_recursion (csym, gfc_current_ns))
3580 if (csym->attr.entry && csym->ns->entries)
3581 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3582 "as subroutine %qs is not RECURSIVE",
3583 csym->name, &c->loc, csym->ns->entries->sym->name);
3584 else
3585 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3586 "as it is not RECURSIVE", csym->name, &c->loc);
3588 t = false;
3592 /* Switch off assumed size checking and do this again for certain kinds
3593 of procedure, once the procedure itself is resolved. */
3594 need_full_assumed_size++;
3596 if (csym)
3597 ptype = csym->attr.proc;
3599 no_formal_args = csym && is_external_proc (csym)
3600 && gfc_sym_get_dummy_args (csym) == NULL;
3601 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3602 return false;
3604 /* Resume assumed_size checking. */
3605 need_full_assumed_size--;
3607 /* If external, check for usage. */
3608 if (csym && is_external_proc (csym))
3609 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3611 t = true;
3612 if (c->resolved_sym == NULL)
3614 c->resolved_isym = NULL;
3615 switch (procedure_kind (csym))
3617 case PTYPE_GENERIC:
3618 t = resolve_generic_s (c);
3619 break;
3621 case PTYPE_SPECIFIC:
3622 t = resolve_specific_s (c);
3623 break;
3625 case PTYPE_UNKNOWN:
3626 t = resolve_unknown_s (c);
3627 break;
3629 default:
3630 gfc_internal_error ("resolve_subroutine(): bad function type");
3634 /* Some checks of elemental subroutine actual arguments. */
3635 if (!resolve_elemental_actual (NULL, c))
3636 return false;
3638 if (!c->expr1)
3639 update_current_proc_array_outer_dependency (csym);
3640 else
3641 /* Typebound procedure: Assume the worst. */
3642 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3644 return t;
3648 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3649 op1->shape and op2->shape are non-NULL return true if their shapes
3650 match. If both op1->shape and op2->shape are non-NULL return false
3651 if their shapes do not match. If either op1->shape or op2->shape is
3652 NULL, return true. */
3654 static bool
3655 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3657 bool t;
3658 int i;
3660 t = true;
3662 if (op1->shape != NULL && op2->shape != NULL)
3664 for (i = 0; i < op1->rank; i++)
3666 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3668 gfc_error ("Shapes for operands at %L and %L are not conformable",
3669 &op1->where, &op2->where);
3670 t = false;
3671 break;
3676 return t;
3679 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3680 For example A .AND. B becomes IAND(A, B). */
3681 static gfc_expr *
3682 logical_to_bitwise (gfc_expr *e)
3684 gfc_expr *tmp, *op1, *op2;
3685 gfc_isym_id isym;
3686 gfc_actual_arglist *args = NULL;
3688 gcc_assert (e->expr_type == EXPR_OP);
3690 isym = GFC_ISYM_NONE;
3691 op1 = e->value.op.op1;
3692 op2 = e->value.op.op2;
3694 switch (e->value.op.op)
3696 case INTRINSIC_NOT:
3697 isym = GFC_ISYM_NOT;
3698 break;
3699 case INTRINSIC_AND:
3700 isym = GFC_ISYM_IAND;
3701 break;
3702 case INTRINSIC_OR:
3703 isym = GFC_ISYM_IOR;
3704 break;
3705 case INTRINSIC_NEQV:
3706 isym = GFC_ISYM_IEOR;
3707 break;
3708 case INTRINSIC_EQV:
3709 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3710 Change the old expression to NEQV, which will get replaced by IEOR,
3711 and wrap it in NOT. */
3712 tmp = gfc_copy_expr (e);
3713 tmp->value.op.op = INTRINSIC_NEQV;
3714 tmp = logical_to_bitwise (tmp);
3715 isym = GFC_ISYM_NOT;
3716 op1 = tmp;
3717 op2 = NULL;
3718 break;
3719 default:
3720 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3723 /* Inherit the original operation's operands as arguments. */
3724 args = gfc_get_actual_arglist ();
3725 args->expr = op1;
3726 if (op2)
3728 args->next = gfc_get_actual_arglist ();
3729 args->next->expr = op2;
3732 /* Convert the expression to a function call. */
3733 e->expr_type = EXPR_FUNCTION;
3734 e->value.function.actual = args;
3735 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3736 e->value.function.name = e->value.function.isym->name;
3737 e->value.function.esym = NULL;
3739 /* Make up a pre-resolved function call symtree if we need to. */
3740 if (!e->symtree || !e->symtree->n.sym)
3742 gfc_symbol *sym;
3743 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3744 sym = e->symtree->n.sym;
3745 sym->result = sym;
3746 sym->attr.flavor = FL_PROCEDURE;
3747 sym->attr.function = 1;
3748 sym->attr.elemental = 1;
3749 sym->attr.pure = 1;
3750 sym->attr.referenced = 1;
3751 gfc_intrinsic_symbol (sym);
3752 gfc_commit_symbol (sym);
3755 args->name = e->value.function.isym->formal->name;
3756 if (e->value.function.isym->formal->next)
3757 args->next->name = e->value.function.isym->formal->next->name;
3759 return e;
3762 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3763 candidates in CANDIDATES_LEN. */
3764 static void
3765 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3766 char **&candidates,
3767 size_t &candidates_len)
3769 gfc_symtree *p;
3771 if (uop == NULL)
3772 return;
3774 /* Not sure how to properly filter here. Use all for a start.
3775 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3776 these as i suppose they don't make terribly sense. */
3778 if (uop->n.uop->op != NULL)
3779 vec_push (candidates, candidates_len, uop->name);
3781 p = uop->left;
3782 if (p)
3783 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3785 p = uop->right;
3786 if (p)
3787 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3790 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3792 static const char*
3793 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3795 char **candidates = NULL;
3796 size_t candidates_len = 0;
3797 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3798 return gfc_closest_fuzzy_match (op, candidates);
3802 /* Resolve an operator expression node. This can involve replacing the
3803 operation with a user defined function call. */
3805 static bool
3806 resolve_operator (gfc_expr *e)
3808 gfc_expr *op1, *op2;
3809 char msg[200];
3810 bool dual_locus_error;
3811 bool t;
3813 /* Resolve all subnodes-- give them types. */
3815 switch (e->value.op.op)
3817 default:
3818 if (!gfc_resolve_expr (e->value.op.op2))
3819 return false;
3821 /* Fall through. */
3823 case INTRINSIC_NOT:
3824 case INTRINSIC_UPLUS:
3825 case INTRINSIC_UMINUS:
3826 case INTRINSIC_PARENTHESES:
3827 if (!gfc_resolve_expr (e->value.op.op1))
3828 return false;
3829 break;
3832 /* Typecheck the new node. */
3834 op1 = e->value.op.op1;
3835 op2 = e->value.op.op2;
3836 dual_locus_error = false;
3838 if ((op1 && op1->expr_type == EXPR_NULL)
3839 || (op2 && op2->expr_type == EXPR_NULL))
3841 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3842 goto bad_op;
3845 switch (e->value.op.op)
3847 case INTRINSIC_UPLUS:
3848 case INTRINSIC_UMINUS:
3849 if (op1->ts.type == BT_INTEGER
3850 || op1->ts.type == BT_REAL
3851 || op1->ts.type == BT_COMPLEX)
3853 e->ts = op1->ts;
3854 break;
3857 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3858 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3859 goto bad_op;
3861 case INTRINSIC_PLUS:
3862 case INTRINSIC_MINUS:
3863 case INTRINSIC_TIMES:
3864 case INTRINSIC_DIVIDE:
3865 case INTRINSIC_POWER:
3866 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3868 gfc_type_convert_binary (e, 1);
3869 break;
3872 sprintf (msg,
3873 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3874 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3875 gfc_typename (&op2->ts));
3876 goto bad_op;
3878 case INTRINSIC_CONCAT:
3879 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3880 && op1->ts.kind == op2->ts.kind)
3882 e->ts.type = BT_CHARACTER;
3883 e->ts.kind = op1->ts.kind;
3884 break;
3887 sprintf (msg,
3888 _("Operands of string concatenation operator at %%L are %s/%s"),
3889 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3890 goto bad_op;
3892 case INTRINSIC_AND:
3893 case INTRINSIC_OR:
3894 case INTRINSIC_EQV:
3895 case INTRINSIC_NEQV:
3896 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3898 e->ts.type = BT_LOGICAL;
3899 e->ts.kind = gfc_kind_max (op1, op2);
3900 if (op1->ts.kind < e->ts.kind)
3901 gfc_convert_type (op1, &e->ts, 2);
3902 else if (op2->ts.kind < e->ts.kind)
3903 gfc_convert_type (op2, &e->ts, 2);
3904 break;
3907 /* Logical ops on integers become bitwise ops with -fdec. */
3908 else if (flag_dec
3909 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3911 e->ts.type = BT_INTEGER;
3912 e->ts.kind = gfc_kind_max (op1, op2);
3913 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
3914 gfc_convert_type (op1, &e->ts, 1);
3915 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
3916 gfc_convert_type (op2, &e->ts, 1);
3917 e = logical_to_bitwise (e);
3918 return resolve_function (e);
3921 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
3922 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3923 gfc_typename (&op2->ts));
3925 goto bad_op;
3927 case INTRINSIC_NOT:
3928 /* Logical ops on integers become bitwise ops with -fdec. */
3929 if (flag_dec && op1->ts.type == BT_INTEGER)
3931 e->ts.type = BT_INTEGER;
3932 e->ts.kind = op1->ts.kind;
3933 e = logical_to_bitwise (e);
3934 return resolve_function (e);
3937 if (op1->ts.type == BT_LOGICAL)
3939 e->ts.type = BT_LOGICAL;
3940 e->ts.kind = op1->ts.kind;
3941 break;
3944 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
3945 gfc_typename (&op1->ts));
3946 goto bad_op;
3948 case INTRINSIC_GT:
3949 case INTRINSIC_GT_OS:
3950 case INTRINSIC_GE:
3951 case INTRINSIC_GE_OS:
3952 case INTRINSIC_LT:
3953 case INTRINSIC_LT_OS:
3954 case INTRINSIC_LE:
3955 case INTRINSIC_LE_OS:
3956 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
3958 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
3959 goto bad_op;
3962 /* Fall through. */
3964 case INTRINSIC_EQ:
3965 case INTRINSIC_EQ_OS:
3966 case INTRINSIC_NE:
3967 case INTRINSIC_NE_OS:
3968 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3969 && op1->ts.kind == op2->ts.kind)
3971 e->ts.type = BT_LOGICAL;
3972 e->ts.kind = gfc_default_logical_kind;
3973 break;
3976 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3978 gfc_type_convert_binary (e, 1);
3980 e->ts.type = BT_LOGICAL;
3981 e->ts.kind = gfc_default_logical_kind;
3983 if (warn_compare_reals)
3985 gfc_intrinsic_op op = e->value.op.op;
3987 /* Type conversion has made sure that the types of op1 and op2
3988 agree, so it is only necessary to check the first one. */
3989 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
3990 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
3991 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
3993 const char *msg;
3995 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
3996 msg = "Equality comparison for %s at %L";
3997 else
3998 msg = "Inequality comparison for %s at %L";
4000 gfc_warning (OPT_Wcompare_reals, msg,
4001 gfc_typename (&op1->ts), &op1->where);
4005 break;
4008 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4009 sprintf (msg,
4010 _("Logicals at %%L must be compared with %s instead of %s"),
4011 (e->value.op.op == INTRINSIC_EQ
4012 || e->value.op.op == INTRINSIC_EQ_OS)
4013 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4014 else
4015 sprintf (msg,
4016 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4017 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4018 gfc_typename (&op2->ts));
4020 goto bad_op;
4022 case INTRINSIC_USER:
4023 if (e->value.op.uop->op == NULL)
4025 const char *name = e->value.op.uop->name;
4026 const char *guessed;
4027 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4028 if (guessed)
4029 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4030 name, guessed);
4031 else
4032 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4034 else if (op2 == NULL)
4035 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4036 e->value.op.uop->name, gfc_typename (&op1->ts));
4037 else
4039 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4040 e->value.op.uop->name, gfc_typename (&op1->ts),
4041 gfc_typename (&op2->ts));
4042 e->value.op.uop->op->sym->attr.referenced = 1;
4045 goto bad_op;
4047 case INTRINSIC_PARENTHESES:
4048 e->ts = op1->ts;
4049 if (e->ts.type == BT_CHARACTER)
4050 e->ts.u.cl = op1->ts.u.cl;
4051 break;
4053 default:
4054 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4057 /* Deal with arrayness of an operand through an operator. */
4059 t = true;
4061 switch (e->value.op.op)
4063 case INTRINSIC_PLUS:
4064 case INTRINSIC_MINUS:
4065 case INTRINSIC_TIMES:
4066 case INTRINSIC_DIVIDE:
4067 case INTRINSIC_POWER:
4068 case INTRINSIC_CONCAT:
4069 case INTRINSIC_AND:
4070 case INTRINSIC_OR:
4071 case INTRINSIC_EQV:
4072 case INTRINSIC_NEQV:
4073 case INTRINSIC_EQ:
4074 case INTRINSIC_EQ_OS:
4075 case INTRINSIC_NE:
4076 case INTRINSIC_NE_OS:
4077 case INTRINSIC_GT:
4078 case INTRINSIC_GT_OS:
4079 case INTRINSIC_GE:
4080 case INTRINSIC_GE_OS:
4081 case INTRINSIC_LT:
4082 case INTRINSIC_LT_OS:
4083 case INTRINSIC_LE:
4084 case INTRINSIC_LE_OS:
4086 if (op1->rank == 0 && op2->rank == 0)
4087 e->rank = 0;
4089 if (op1->rank == 0 && op2->rank != 0)
4091 e->rank = op2->rank;
4093 if (e->shape == NULL)
4094 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4097 if (op1->rank != 0 && op2->rank == 0)
4099 e->rank = op1->rank;
4101 if (e->shape == NULL)
4102 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4105 if (op1->rank != 0 && op2->rank != 0)
4107 if (op1->rank == op2->rank)
4109 e->rank = op1->rank;
4110 if (e->shape == NULL)
4112 t = compare_shapes (op1, op2);
4113 if (!t)
4114 e->shape = NULL;
4115 else
4116 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4119 else
4121 /* Allow higher level expressions to work. */
4122 e->rank = 0;
4124 /* Try user-defined operators, and otherwise throw an error. */
4125 dual_locus_error = true;
4126 sprintf (msg,
4127 _("Inconsistent ranks for operator at %%L and %%L"));
4128 goto bad_op;
4132 break;
4134 case INTRINSIC_PARENTHESES:
4135 case INTRINSIC_NOT:
4136 case INTRINSIC_UPLUS:
4137 case INTRINSIC_UMINUS:
4138 /* Simply copy arrayness attribute */
4139 e->rank = op1->rank;
4141 if (e->shape == NULL)
4142 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4144 break;
4146 default:
4147 break;
4150 /* Attempt to simplify the expression. */
4151 if (t)
4153 t = gfc_simplify_expr (e, 0);
4154 /* Some calls do not succeed in simplification and return false
4155 even though there is no error; e.g. variable references to
4156 PARAMETER arrays. */
4157 if (!gfc_is_constant_expr (e))
4158 t = true;
4160 return t;
4162 bad_op:
4165 match m = gfc_extend_expr (e);
4166 if (m == MATCH_YES)
4167 return true;
4168 if (m == MATCH_ERROR)
4169 return false;
4172 if (dual_locus_error)
4173 gfc_error (msg, &op1->where, &op2->where);
4174 else
4175 gfc_error (msg, &e->where);
4177 return false;
4181 /************** Array resolution subroutines **************/
4183 enum compare_result
4184 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4186 /* Compare two integer expressions. */
4188 static compare_result
4189 compare_bound (gfc_expr *a, gfc_expr *b)
4191 int i;
4193 if (a == NULL || a->expr_type != EXPR_CONSTANT
4194 || b == NULL || b->expr_type != EXPR_CONSTANT)
4195 return CMP_UNKNOWN;
4197 /* If either of the types isn't INTEGER, we must have
4198 raised an error earlier. */
4200 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4201 return CMP_UNKNOWN;
4203 i = mpz_cmp (a->value.integer, b->value.integer);
4205 if (i < 0)
4206 return CMP_LT;
4207 if (i > 0)
4208 return CMP_GT;
4209 return CMP_EQ;
4213 /* Compare an integer expression with an integer. */
4215 static compare_result
4216 compare_bound_int (gfc_expr *a, int b)
4218 int i;
4220 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4221 return CMP_UNKNOWN;
4223 if (a->ts.type != BT_INTEGER)
4224 gfc_internal_error ("compare_bound_int(): Bad expression");
4226 i = mpz_cmp_si (a->value.integer, b);
4228 if (i < 0)
4229 return CMP_LT;
4230 if (i > 0)
4231 return CMP_GT;
4232 return CMP_EQ;
4236 /* Compare an integer expression with a mpz_t. */
4238 static compare_result
4239 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4241 int i;
4243 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4244 return CMP_UNKNOWN;
4246 if (a->ts.type != BT_INTEGER)
4247 gfc_internal_error ("compare_bound_int(): Bad expression");
4249 i = mpz_cmp (a->value.integer, b);
4251 if (i < 0)
4252 return CMP_LT;
4253 if (i > 0)
4254 return CMP_GT;
4255 return CMP_EQ;
4259 /* Compute the last value of a sequence given by a triplet.
4260 Return 0 if it wasn't able to compute the last value, or if the
4261 sequence if empty, and 1 otherwise. */
4263 static int
4264 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4265 gfc_expr *stride, mpz_t last)
4267 mpz_t rem;
4269 if (start == NULL || start->expr_type != EXPR_CONSTANT
4270 || end == NULL || end->expr_type != EXPR_CONSTANT
4271 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4272 return 0;
4274 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4275 || (stride != NULL && stride->ts.type != BT_INTEGER))
4276 return 0;
4278 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4280 if (compare_bound (start, end) == CMP_GT)
4281 return 0;
4282 mpz_set (last, end->value.integer);
4283 return 1;
4286 if (compare_bound_int (stride, 0) == CMP_GT)
4288 /* Stride is positive */
4289 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4290 return 0;
4292 else
4294 /* Stride is negative */
4295 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4296 return 0;
4299 mpz_init (rem);
4300 mpz_sub (rem, end->value.integer, start->value.integer);
4301 mpz_tdiv_r (rem, rem, stride->value.integer);
4302 mpz_sub (last, end->value.integer, rem);
4303 mpz_clear (rem);
4305 return 1;
4309 /* Compare a single dimension of an array reference to the array
4310 specification. */
4312 static bool
4313 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4315 mpz_t last_value;
4317 if (ar->dimen_type[i] == DIMEN_STAR)
4319 gcc_assert (ar->stride[i] == NULL);
4320 /* This implies [*] as [*:] and [*:3] are not possible. */
4321 if (ar->start[i] == NULL)
4323 gcc_assert (ar->end[i] == NULL);
4324 return true;
4328 /* Given start, end and stride values, calculate the minimum and
4329 maximum referenced indexes. */
4331 switch (ar->dimen_type[i])
4333 case DIMEN_VECTOR:
4334 case DIMEN_THIS_IMAGE:
4335 break;
4337 case DIMEN_STAR:
4338 case DIMEN_ELEMENT:
4339 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4341 if (i < as->rank)
4342 gfc_warning (0, "Array reference at %L is out of bounds "
4343 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4344 mpz_get_si (ar->start[i]->value.integer),
4345 mpz_get_si (as->lower[i]->value.integer), i+1);
4346 else
4347 gfc_warning (0, "Array reference at %L is out of bounds "
4348 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4349 mpz_get_si (ar->start[i]->value.integer),
4350 mpz_get_si (as->lower[i]->value.integer),
4351 i + 1 - as->rank);
4352 return true;
4354 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4356 if (i < as->rank)
4357 gfc_warning (0, "Array reference at %L is out of bounds "
4358 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4359 mpz_get_si (ar->start[i]->value.integer),
4360 mpz_get_si (as->upper[i]->value.integer), i+1);
4361 else
4362 gfc_warning (0, "Array reference at %L is out of bounds "
4363 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4364 mpz_get_si (ar->start[i]->value.integer),
4365 mpz_get_si (as->upper[i]->value.integer),
4366 i + 1 - as->rank);
4367 return true;
4370 break;
4372 case DIMEN_RANGE:
4374 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4375 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4377 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4379 /* Check for zero stride, which is not allowed. */
4380 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4382 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4383 return false;
4386 /* if start == len || (stride > 0 && start < len)
4387 || (stride < 0 && start > len),
4388 then the array section contains at least one element. In this
4389 case, there is an out-of-bounds access if
4390 (start < lower || start > upper). */
4391 if (compare_bound (AR_START, AR_END) == CMP_EQ
4392 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4393 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4394 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4395 && comp_start_end == CMP_GT))
4397 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4399 gfc_warning (0, "Lower array reference at %L is out of bounds "
4400 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4401 mpz_get_si (AR_START->value.integer),
4402 mpz_get_si (as->lower[i]->value.integer), i+1);
4403 return true;
4405 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4407 gfc_warning (0, "Lower array reference at %L is out of bounds "
4408 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4409 mpz_get_si (AR_START->value.integer),
4410 mpz_get_si (as->upper[i]->value.integer), i+1);
4411 return true;
4415 /* If we can compute the highest index of the array section,
4416 then it also has to be between lower and upper. */
4417 mpz_init (last_value);
4418 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4419 last_value))
4421 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4423 gfc_warning (0, "Upper array reference at %L is out of bounds "
4424 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4425 mpz_get_si (last_value),
4426 mpz_get_si (as->lower[i]->value.integer), i+1);
4427 mpz_clear (last_value);
4428 return true;
4430 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4432 gfc_warning (0, "Upper array reference at %L is out of bounds "
4433 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4434 mpz_get_si (last_value),
4435 mpz_get_si (as->upper[i]->value.integer), i+1);
4436 mpz_clear (last_value);
4437 return true;
4440 mpz_clear (last_value);
4442 #undef AR_START
4443 #undef AR_END
4445 break;
4447 default:
4448 gfc_internal_error ("check_dimension(): Bad array reference");
4451 return true;
4455 /* Compare an array reference with an array specification. */
4457 static bool
4458 compare_spec_to_ref (gfc_array_ref *ar)
4460 gfc_array_spec *as;
4461 int i;
4463 as = ar->as;
4464 i = as->rank - 1;
4465 /* TODO: Full array sections are only allowed as actual parameters. */
4466 if (as->type == AS_ASSUMED_SIZE
4467 && (/*ar->type == AR_FULL
4468 ||*/ (ar->type == AR_SECTION
4469 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4471 gfc_error ("Rightmost upper bound of assumed size array section "
4472 "not specified at %L", &ar->where);
4473 return false;
4476 if (ar->type == AR_FULL)
4477 return true;
4479 if (as->rank != ar->dimen)
4481 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4482 &ar->where, ar->dimen, as->rank);
4483 return false;
4486 /* ar->codimen == 0 is a local array. */
4487 if (as->corank != ar->codimen && ar->codimen != 0)
4489 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4490 &ar->where, ar->codimen, as->corank);
4491 return false;
4494 for (i = 0; i < as->rank; i++)
4495 if (!check_dimension (i, ar, as))
4496 return false;
4498 /* Local access has no coarray spec. */
4499 if (ar->codimen != 0)
4500 for (i = as->rank; i < as->rank + as->corank; i++)
4502 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4503 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4505 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4506 i + 1 - as->rank, &ar->where);
4507 return false;
4509 if (!check_dimension (i, ar, as))
4510 return false;
4513 return true;
4517 /* Resolve one part of an array index. */
4519 static bool
4520 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4521 int force_index_integer_kind)
4523 gfc_typespec ts;
4525 if (index == NULL)
4526 return true;
4528 if (!gfc_resolve_expr (index))
4529 return false;
4531 if (check_scalar && index->rank != 0)
4533 gfc_error ("Array index at %L must be scalar", &index->where);
4534 return false;
4537 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4539 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4540 &index->where, gfc_basic_typename (index->ts.type));
4541 return false;
4544 if (index->ts.type == BT_REAL)
4545 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4546 &index->where))
4547 return false;
4549 if ((index->ts.kind != gfc_index_integer_kind
4550 && force_index_integer_kind)
4551 || index->ts.type != BT_INTEGER)
4553 gfc_clear_ts (&ts);
4554 ts.type = BT_INTEGER;
4555 ts.kind = gfc_index_integer_kind;
4557 gfc_convert_type_warn (index, &ts, 2, 0);
4560 return true;
4563 /* Resolve one part of an array index. */
4565 bool
4566 gfc_resolve_index (gfc_expr *index, int check_scalar)
4568 return gfc_resolve_index_1 (index, check_scalar, 1);
4571 /* Resolve a dim argument to an intrinsic function. */
4573 bool
4574 gfc_resolve_dim_arg (gfc_expr *dim)
4576 if (dim == NULL)
4577 return true;
4579 if (!gfc_resolve_expr (dim))
4580 return false;
4582 if (dim->rank != 0)
4584 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4585 return false;
4589 if (dim->ts.type != BT_INTEGER)
4591 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4592 return false;
4595 if (dim->ts.kind != gfc_index_integer_kind)
4597 gfc_typespec ts;
4599 gfc_clear_ts (&ts);
4600 ts.type = BT_INTEGER;
4601 ts.kind = gfc_index_integer_kind;
4603 gfc_convert_type_warn (dim, &ts, 2, 0);
4606 return true;
4609 /* Given an expression that contains array references, update those array
4610 references to point to the right array specifications. While this is
4611 filled in during matching, this information is difficult to save and load
4612 in a module, so we take care of it here.
4614 The idea here is that the original array reference comes from the
4615 base symbol. We traverse the list of reference structures, setting
4616 the stored reference to references. Component references can
4617 provide an additional array specification. */
4619 static void
4620 find_array_spec (gfc_expr *e)
4622 gfc_array_spec *as;
4623 gfc_component *c;
4624 gfc_ref *ref;
4626 if (e->symtree->n.sym->ts.type == BT_CLASS)
4627 as = CLASS_DATA (e->symtree->n.sym)->as;
4628 else
4629 as = e->symtree->n.sym->as;
4631 for (ref = e->ref; ref; ref = ref->next)
4632 switch (ref->type)
4634 case REF_ARRAY:
4635 if (as == NULL)
4636 gfc_internal_error ("find_array_spec(): Missing spec");
4638 ref->u.ar.as = as;
4639 as = NULL;
4640 break;
4642 case REF_COMPONENT:
4643 c = ref->u.c.component;
4644 if (c->attr.dimension)
4646 if (as != NULL)
4647 gfc_internal_error ("find_array_spec(): unused as(1)");
4648 as = c->as;
4651 break;
4653 case REF_SUBSTRING:
4654 break;
4657 if (as != NULL)
4658 gfc_internal_error ("find_array_spec(): unused as(2)");
4662 /* Resolve an array reference. */
4664 static bool
4665 resolve_array_ref (gfc_array_ref *ar)
4667 int i, check_scalar;
4668 gfc_expr *e;
4670 for (i = 0; i < ar->dimen + ar->codimen; i++)
4672 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4674 /* Do not force gfc_index_integer_kind for the start. We can
4675 do fine with any integer kind. This avoids temporary arrays
4676 created for indexing with a vector. */
4677 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4678 return false;
4679 if (!gfc_resolve_index (ar->end[i], check_scalar))
4680 return false;
4681 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4682 return false;
4684 e = ar->start[i];
4686 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4687 switch (e->rank)
4689 case 0:
4690 ar->dimen_type[i] = DIMEN_ELEMENT;
4691 break;
4693 case 1:
4694 ar->dimen_type[i] = DIMEN_VECTOR;
4695 if (e->expr_type == EXPR_VARIABLE
4696 && e->symtree->n.sym->ts.type == BT_DERIVED)
4697 ar->start[i] = gfc_get_parentheses (e);
4698 break;
4700 default:
4701 gfc_error ("Array index at %L is an array of rank %d",
4702 &ar->c_where[i], e->rank);
4703 return false;
4706 /* Fill in the upper bound, which may be lower than the
4707 specified one for something like a(2:10:5), which is
4708 identical to a(2:7:5). Only relevant for strides not equal
4709 to one. Don't try a division by zero. */
4710 if (ar->dimen_type[i] == DIMEN_RANGE
4711 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4712 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4713 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4715 mpz_t size, end;
4717 if (gfc_ref_dimen_size (ar, i, &size, &end))
4719 if (ar->end[i] == NULL)
4721 ar->end[i] =
4722 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4723 &ar->where);
4724 mpz_set (ar->end[i]->value.integer, end);
4726 else if (ar->end[i]->ts.type == BT_INTEGER
4727 && ar->end[i]->expr_type == EXPR_CONSTANT)
4729 mpz_set (ar->end[i]->value.integer, end);
4731 else
4732 gcc_unreachable ();
4734 mpz_clear (size);
4735 mpz_clear (end);
4740 if (ar->type == AR_FULL)
4742 if (ar->as->rank == 0)
4743 ar->type = AR_ELEMENT;
4745 /* Make sure array is the same as array(:,:), this way
4746 we don't need to special case all the time. */
4747 ar->dimen = ar->as->rank;
4748 for (i = 0; i < ar->dimen; i++)
4750 ar->dimen_type[i] = DIMEN_RANGE;
4752 gcc_assert (ar->start[i] == NULL);
4753 gcc_assert (ar->end[i] == NULL);
4754 gcc_assert (ar->stride[i] == NULL);
4758 /* If the reference type is unknown, figure out what kind it is. */
4760 if (ar->type == AR_UNKNOWN)
4762 ar->type = AR_ELEMENT;
4763 for (i = 0; i < ar->dimen; i++)
4764 if (ar->dimen_type[i] == DIMEN_RANGE
4765 || ar->dimen_type[i] == DIMEN_VECTOR)
4767 ar->type = AR_SECTION;
4768 break;
4772 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4773 return false;
4775 if (ar->as->corank && ar->codimen == 0)
4777 int n;
4778 ar->codimen = ar->as->corank;
4779 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4780 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4783 return true;
4787 static bool
4788 resolve_substring (gfc_ref *ref)
4790 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4792 if (ref->u.ss.start != NULL)
4794 if (!gfc_resolve_expr (ref->u.ss.start))
4795 return false;
4797 if (ref->u.ss.start->ts.type != BT_INTEGER)
4799 gfc_error ("Substring start index at %L must be of type INTEGER",
4800 &ref->u.ss.start->where);
4801 return false;
4804 if (ref->u.ss.start->rank != 0)
4806 gfc_error ("Substring start index at %L must be scalar",
4807 &ref->u.ss.start->where);
4808 return false;
4811 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4812 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4813 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4815 gfc_error ("Substring start index at %L is less than one",
4816 &ref->u.ss.start->where);
4817 return false;
4821 if (ref->u.ss.end != NULL)
4823 if (!gfc_resolve_expr (ref->u.ss.end))
4824 return false;
4826 if (ref->u.ss.end->ts.type != BT_INTEGER)
4828 gfc_error ("Substring end index at %L must be of type INTEGER",
4829 &ref->u.ss.end->where);
4830 return false;
4833 if (ref->u.ss.end->rank != 0)
4835 gfc_error ("Substring end index at %L must be scalar",
4836 &ref->u.ss.end->where);
4837 return false;
4840 if (ref->u.ss.length != NULL
4841 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4842 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4843 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4845 gfc_error ("Substring end index at %L exceeds the string length",
4846 &ref->u.ss.start->where);
4847 return false;
4850 if (compare_bound_mpz_t (ref->u.ss.end,
4851 gfc_integer_kinds[k].huge) == CMP_GT
4852 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4853 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4855 gfc_error ("Substring end index at %L is too large",
4856 &ref->u.ss.end->where);
4857 return false;
4861 return true;
4865 /* This function supplies missing substring charlens. */
4867 void
4868 gfc_resolve_substring_charlen (gfc_expr *e)
4870 gfc_ref *char_ref;
4871 gfc_expr *start, *end;
4872 gfc_typespec *ts = NULL;
4874 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4876 if (char_ref->type == REF_SUBSTRING)
4877 break;
4878 if (char_ref->type == REF_COMPONENT)
4879 ts = &char_ref->u.c.component->ts;
4882 if (!char_ref)
4883 return;
4885 gcc_assert (char_ref->next == NULL);
4887 if (e->ts.u.cl)
4889 if (e->ts.u.cl->length)
4890 gfc_free_expr (e->ts.u.cl->length);
4891 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4892 return;
4895 e->ts.type = BT_CHARACTER;
4896 e->ts.kind = gfc_default_character_kind;
4898 if (!e->ts.u.cl)
4899 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4901 if (char_ref->u.ss.start)
4902 start = gfc_copy_expr (char_ref->u.ss.start);
4903 else
4904 start = gfc_get_int_expr (gfc_charlen_int_kind, NULL, 1);
4906 if (char_ref->u.ss.end)
4907 end = gfc_copy_expr (char_ref->u.ss.end);
4908 else if (e->expr_type == EXPR_VARIABLE)
4910 if (!ts)
4911 ts = &e->symtree->n.sym->ts;
4912 end = gfc_copy_expr (ts->u.cl->length);
4914 else
4915 end = NULL;
4917 if (!start || !end)
4919 gfc_free_expr (start);
4920 gfc_free_expr (end);
4921 return;
4924 /* Length = (end - start + 1). */
4925 e->ts.u.cl->length = gfc_subtract (end, start);
4926 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
4927 gfc_get_int_expr (gfc_charlen_int_kind,
4928 NULL, 1));
4930 /* F2008, 6.4.1: Both the starting point and the ending point shall
4931 be within the range 1, 2, ..., n unless the starting point exceeds
4932 the ending point, in which case the substring has length zero. */
4934 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
4935 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
4937 e->ts.u.cl->length->ts.type = BT_INTEGER;
4938 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
4940 /* Make sure that the length is simplified. */
4941 gfc_simplify_expr (e->ts.u.cl->length, 1);
4942 gfc_resolve_expr (e->ts.u.cl->length);
4946 /* Resolve subtype references. */
4948 static bool
4949 resolve_ref (gfc_expr *expr)
4951 int current_part_dimension, n_components, seen_part_dimension;
4952 gfc_ref *ref;
4954 for (ref = expr->ref; ref; ref = ref->next)
4955 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
4957 find_array_spec (expr);
4958 break;
4961 for (ref = expr->ref; ref; ref = ref->next)
4962 switch (ref->type)
4964 case REF_ARRAY:
4965 if (!resolve_array_ref (&ref->u.ar))
4966 return false;
4967 break;
4969 case REF_COMPONENT:
4970 break;
4972 case REF_SUBSTRING:
4973 if (!resolve_substring (ref))
4974 return false;
4975 break;
4978 /* Check constraints on part references. */
4980 current_part_dimension = 0;
4981 seen_part_dimension = 0;
4982 n_components = 0;
4984 for (ref = expr->ref; ref; ref = ref->next)
4986 switch (ref->type)
4988 case REF_ARRAY:
4989 switch (ref->u.ar.type)
4991 case AR_FULL:
4992 /* Coarray scalar. */
4993 if (ref->u.ar.as->rank == 0)
4995 current_part_dimension = 0;
4996 break;
4998 /* Fall through. */
4999 case AR_SECTION:
5000 current_part_dimension = 1;
5001 break;
5003 case AR_ELEMENT:
5004 current_part_dimension = 0;
5005 break;
5007 case AR_UNKNOWN:
5008 gfc_internal_error ("resolve_ref(): Bad array reference");
5011 break;
5013 case REF_COMPONENT:
5014 if (current_part_dimension || seen_part_dimension)
5016 /* F03:C614. */
5017 if (ref->u.c.component->attr.pointer
5018 || ref->u.c.component->attr.proc_pointer
5019 || (ref->u.c.component->ts.type == BT_CLASS
5020 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5022 gfc_error ("Component to the right of a part reference "
5023 "with nonzero rank must not have the POINTER "
5024 "attribute at %L", &expr->where);
5025 return false;
5027 else if (ref->u.c.component->attr.allocatable
5028 || (ref->u.c.component->ts.type == BT_CLASS
5029 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5032 gfc_error ("Component to the right of a part reference "
5033 "with nonzero rank must not have the ALLOCATABLE "
5034 "attribute at %L", &expr->where);
5035 return false;
5039 n_components++;
5040 break;
5042 case REF_SUBSTRING:
5043 break;
5046 if (((ref->type == REF_COMPONENT && n_components > 1)
5047 || ref->next == NULL)
5048 && current_part_dimension
5049 && seen_part_dimension)
5051 gfc_error ("Two or more part references with nonzero rank must "
5052 "not be specified at %L", &expr->where);
5053 return false;
5056 if (ref->type == REF_COMPONENT)
5058 if (current_part_dimension)
5059 seen_part_dimension = 1;
5061 /* reset to make sure */
5062 current_part_dimension = 0;
5066 return true;
5070 /* Given an expression, determine its shape. This is easier than it sounds.
5071 Leaves the shape array NULL if it is not possible to determine the shape. */
5073 static void
5074 expression_shape (gfc_expr *e)
5076 mpz_t array[GFC_MAX_DIMENSIONS];
5077 int i;
5079 if (e->rank <= 0 || e->shape != NULL)
5080 return;
5082 for (i = 0; i < e->rank; i++)
5083 if (!gfc_array_dimen_size (e, i, &array[i]))
5084 goto fail;
5086 e->shape = gfc_get_shape (e->rank);
5088 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5090 return;
5092 fail:
5093 for (i--; i >= 0; i--)
5094 mpz_clear (array[i]);
5098 /* Given a variable expression node, compute the rank of the expression by
5099 examining the base symbol and any reference structures it may have. */
5101 void
5102 expression_rank (gfc_expr *e)
5104 gfc_ref *ref;
5105 int i, rank;
5107 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5108 could lead to serious confusion... */
5109 gcc_assert (e->expr_type != EXPR_COMPCALL);
5111 if (e->ref == NULL)
5113 if (e->expr_type == EXPR_ARRAY)
5114 goto done;
5115 /* Constructors can have a rank different from one via RESHAPE(). */
5117 if (e->symtree == NULL)
5119 e->rank = 0;
5120 goto done;
5123 e->rank = (e->symtree->n.sym->as == NULL)
5124 ? 0 : e->symtree->n.sym->as->rank;
5125 goto done;
5128 rank = 0;
5130 for (ref = e->ref; ref; ref = ref->next)
5132 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5133 && ref->u.c.component->attr.function && !ref->next)
5134 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5136 if (ref->type != REF_ARRAY)
5137 continue;
5139 if (ref->u.ar.type == AR_FULL)
5141 rank = ref->u.ar.as->rank;
5142 break;
5145 if (ref->u.ar.type == AR_SECTION)
5147 /* Figure out the rank of the section. */
5148 if (rank != 0)
5149 gfc_internal_error ("expression_rank(): Two array specs");
5151 for (i = 0; i < ref->u.ar.dimen; i++)
5152 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5153 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5154 rank++;
5156 break;
5160 e->rank = rank;
5162 done:
5163 expression_shape (e);
5167 static void
5168 add_caf_get_intrinsic (gfc_expr *e)
5170 gfc_expr *wrapper, *tmp_expr;
5171 gfc_ref *ref;
5172 int n;
5174 for (ref = e->ref; ref; ref = ref->next)
5175 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5176 break;
5177 if (ref == NULL)
5178 return;
5180 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5181 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5182 return;
5184 tmp_expr = XCNEW (gfc_expr);
5185 *tmp_expr = *e;
5186 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5187 "caf_get", tmp_expr->where, 1, tmp_expr);
5188 wrapper->ts = e->ts;
5189 wrapper->rank = e->rank;
5190 if (e->rank)
5191 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5192 *e = *wrapper;
5193 free (wrapper);
5197 static void
5198 remove_caf_get_intrinsic (gfc_expr *e)
5200 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5201 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5202 gfc_expr *e2 = e->value.function.actual->expr;
5203 e->value.function.actual->expr = NULL;
5204 gfc_free_actual_arglist (e->value.function.actual);
5205 gfc_free_shape (&e->shape, e->rank);
5206 *e = *e2;
5207 free (e2);
5211 /* Resolve a variable expression. */
5213 static bool
5214 resolve_variable (gfc_expr *e)
5216 gfc_symbol *sym;
5217 bool t;
5219 t = true;
5221 if (e->symtree == NULL)
5222 return false;
5223 sym = e->symtree->n.sym;
5225 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5226 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5227 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5229 if (!actual_arg || inquiry_argument)
5231 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5232 "be used as actual argument", sym->name, &e->where);
5233 return false;
5236 /* TS 29113, 407b. */
5237 else if (e->ts.type == BT_ASSUMED)
5239 if (!actual_arg)
5241 gfc_error ("Assumed-type variable %s at %L may only be used "
5242 "as actual argument", sym->name, &e->where);
5243 return false;
5245 else if (inquiry_argument && !first_actual_arg)
5247 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5248 for all inquiry functions in resolve_function; the reason is
5249 that the function-name resolution happens too late in that
5250 function. */
5251 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5252 "an inquiry function shall be the first argument",
5253 sym->name, &e->where);
5254 return false;
5257 /* TS 29113, C535b. */
5258 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5259 && CLASS_DATA (sym)->as
5260 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5261 || (sym->ts.type != BT_CLASS && sym->as
5262 && sym->as->type == AS_ASSUMED_RANK))
5264 if (!actual_arg)
5266 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5267 "actual argument", sym->name, &e->where);
5268 return false;
5270 else if (inquiry_argument && !first_actual_arg)
5272 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5273 for all inquiry functions in resolve_function; the reason is
5274 that the function-name resolution happens too late in that
5275 function. */
5276 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5277 "to an inquiry function shall be the first argument",
5278 sym->name, &e->where);
5279 return false;
5283 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5284 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5285 && e->ref->next == NULL))
5287 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5288 "a subobject reference", sym->name, &e->ref->u.ar.where);
5289 return false;
5291 /* TS 29113, 407b. */
5292 else if (e->ts.type == BT_ASSUMED && e->ref
5293 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5294 && e->ref->next == NULL))
5296 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5297 "reference", sym->name, &e->ref->u.ar.where);
5298 return false;
5301 /* TS 29113, C535b. */
5302 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5303 && CLASS_DATA (sym)->as
5304 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5305 || (sym->ts.type != BT_CLASS && sym->as
5306 && sym->as->type == AS_ASSUMED_RANK))
5307 && e->ref
5308 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5309 && e->ref->next == NULL))
5311 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5312 "reference", sym->name, &e->ref->u.ar.where);
5313 return false;
5316 /* For variables that are used in an associate (target => object) where
5317 the object's basetype is array valued while the target is scalar,
5318 the ts' type of the component refs is still array valued, which
5319 can't be translated that way. */
5320 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5321 && sym->assoc->target->ts.type == BT_CLASS
5322 && CLASS_DATA (sym->assoc->target)->as)
5324 gfc_ref *ref = e->ref;
5325 while (ref)
5327 switch (ref->type)
5329 case REF_COMPONENT:
5330 ref->u.c.sym = sym->ts.u.derived;
5331 /* Stop the loop. */
5332 ref = NULL;
5333 break;
5334 default:
5335 ref = ref->next;
5336 break;
5341 /* If this is an associate-name, it may be parsed with an array reference
5342 in error even though the target is scalar. Fail directly in this case.
5343 TODO Understand why class scalar expressions must be excluded. */
5344 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5346 if (sym->ts.type == BT_CLASS)
5347 gfc_fix_class_refs (e);
5348 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5349 return false;
5352 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5353 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5355 /* On the other hand, the parser may not have known this is an array;
5356 in this case, we have to add a FULL reference. */
5357 if (sym->assoc && sym->attr.dimension && !e->ref)
5359 e->ref = gfc_get_ref ();
5360 e->ref->type = REF_ARRAY;
5361 e->ref->u.ar.type = AR_FULL;
5362 e->ref->u.ar.dimen = 0;
5365 /* Like above, but for class types, where the checking whether an array
5366 ref is present is more complicated. Furthermore make sure not to add
5367 the full array ref to _vptr or _len refs. */
5368 if (sym->assoc && sym->ts.type == BT_CLASS
5369 && CLASS_DATA (sym)->attr.dimension
5370 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5372 gfc_ref *ref, *newref;
5374 newref = gfc_get_ref ();
5375 newref->type = REF_ARRAY;
5376 newref->u.ar.type = AR_FULL;
5377 newref->u.ar.dimen = 0;
5378 /* Because this is an associate var and the first ref either is a ref to
5379 the _data component or not, no traversal of the ref chain is
5380 needed. The array ref needs to be inserted after the _data ref,
5381 or when that is not present, which may happend for polymorphic
5382 types, then at the first position. */
5383 ref = e->ref;
5384 if (!ref)
5385 e->ref = newref;
5386 else if (ref->type == REF_COMPONENT
5387 && strcmp ("_data", ref->u.c.component->name) == 0)
5389 if (!ref->next || ref->next->type != REF_ARRAY)
5391 newref->next = ref->next;
5392 ref->next = newref;
5394 else
5395 /* Array ref present already. */
5396 gfc_free_ref_list (newref);
5398 else if (ref->type == REF_ARRAY)
5399 /* Array ref present already. */
5400 gfc_free_ref_list (newref);
5401 else
5403 newref->next = ref;
5404 e->ref = newref;
5408 if (e->ref && !resolve_ref (e))
5409 return false;
5411 if (sym->attr.flavor == FL_PROCEDURE
5412 && (!sym->attr.function
5413 || (sym->attr.function && sym->result
5414 && sym->result->attr.proc_pointer
5415 && !sym->result->attr.function)))
5417 e->ts.type = BT_PROCEDURE;
5418 goto resolve_procedure;
5421 if (sym->ts.type != BT_UNKNOWN)
5422 gfc_variable_attr (e, &e->ts);
5423 else if (sym->attr.flavor == FL_PROCEDURE
5424 && sym->attr.function && sym->result
5425 && sym->result->ts.type != BT_UNKNOWN
5426 && sym->result->attr.proc_pointer)
5427 e->ts = sym->result->ts;
5428 else
5430 /* Must be a simple variable reference. */
5431 if (!gfc_set_default_type (sym, 1, sym->ns))
5432 return false;
5433 e->ts = sym->ts;
5436 if (check_assumed_size_reference (sym, e))
5437 return false;
5439 /* Deal with forward references to entries during gfc_resolve_code, to
5440 satisfy, at least partially, 12.5.2.5. */
5441 if (gfc_current_ns->entries
5442 && current_entry_id == sym->entry_id
5443 && cs_base
5444 && cs_base->current
5445 && cs_base->current->op != EXEC_ENTRY)
5447 gfc_entry_list *entry;
5448 gfc_formal_arglist *formal;
5449 int n;
5450 bool seen, saved_specification_expr;
5452 /* If the symbol is a dummy... */
5453 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5455 entry = gfc_current_ns->entries;
5456 seen = false;
5458 /* ...test if the symbol is a parameter of previous entries. */
5459 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5460 for (formal = entry->sym->formal; formal; formal = formal->next)
5462 if (formal->sym && sym->name == formal->sym->name)
5464 seen = true;
5465 break;
5469 /* If it has not been seen as a dummy, this is an error. */
5470 if (!seen)
5472 if (specification_expr)
5473 gfc_error ("Variable %qs, used in a specification expression"
5474 ", is referenced at %L before the ENTRY statement "
5475 "in which it is a parameter",
5476 sym->name, &cs_base->current->loc);
5477 else
5478 gfc_error ("Variable %qs is used at %L before the ENTRY "
5479 "statement in which it is a parameter",
5480 sym->name, &cs_base->current->loc);
5481 t = false;
5485 /* Now do the same check on the specification expressions. */
5486 saved_specification_expr = specification_expr;
5487 specification_expr = true;
5488 if (sym->ts.type == BT_CHARACTER
5489 && !gfc_resolve_expr (sym->ts.u.cl->length))
5490 t = false;
5492 if (sym->as)
5493 for (n = 0; n < sym->as->rank; n++)
5495 if (!gfc_resolve_expr (sym->as->lower[n]))
5496 t = false;
5497 if (!gfc_resolve_expr (sym->as->upper[n]))
5498 t = false;
5500 specification_expr = saved_specification_expr;
5502 if (t)
5503 /* Update the symbol's entry level. */
5504 sym->entry_id = current_entry_id + 1;
5507 /* If a symbol has been host_associated mark it. This is used latter,
5508 to identify if aliasing is possible via host association. */
5509 if (sym->attr.flavor == FL_VARIABLE
5510 && gfc_current_ns->parent
5511 && (gfc_current_ns->parent == sym->ns
5512 || (gfc_current_ns->parent->parent
5513 && gfc_current_ns->parent->parent == sym->ns)))
5514 sym->attr.host_assoc = 1;
5516 if (gfc_current_ns->proc_name
5517 && sym->attr.dimension
5518 && (sym->ns != gfc_current_ns
5519 || sym->attr.use_assoc
5520 || sym->attr.in_common))
5521 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5523 resolve_procedure:
5524 if (t && !resolve_procedure_expression (e))
5525 t = false;
5527 /* F2008, C617 and C1229. */
5528 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5529 && gfc_is_coindexed (e))
5531 gfc_ref *ref, *ref2 = NULL;
5533 for (ref = e->ref; ref; ref = ref->next)
5535 if (ref->type == REF_COMPONENT)
5536 ref2 = ref;
5537 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5538 break;
5541 for ( ; ref; ref = ref->next)
5542 if (ref->type == REF_COMPONENT)
5543 break;
5545 /* Expression itself is not coindexed object. */
5546 if (ref && e->ts.type == BT_CLASS)
5548 gfc_error ("Polymorphic subobject of coindexed object at %L",
5549 &e->where);
5550 t = false;
5553 /* Expression itself is coindexed object. */
5554 if (ref == NULL)
5556 gfc_component *c;
5557 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5558 for ( ; c; c = c->next)
5559 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5561 gfc_error ("Coindexed object with polymorphic allocatable "
5562 "subcomponent at %L", &e->where);
5563 t = false;
5564 break;
5569 if (t)
5570 expression_rank (e);
5572 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5573 add_caf_get_intrinsic (e);
5575 return t;
5579 /* Checks to see that the correct symbol has been host associated.
5580 The only situation where this arises is that in which a twice
5581 contained function is parsed after the host association is made.
5582 Therefore, on detecting this, change the symbol in the expression
5583 and convert the array reference into an actual arglist if the old
5584 symbol is a variable. */
5585 static bool
5586 check_host_association (gfc_expr *e)
5588 gfc_symbol *sym, *old_sym;
5589 gfc_symtree *st;
5590 int n;
5591 gfc_ref *ref;
5592 gfc_actual_arglist *arg, *tail = NULL;
5593 bool retval = e->expr_type == EXPR_FUNCTION;
5595 /* If the expression is the result of substitution in
5596 interface.c(gfc_extend_expr) because there is no way in
5597 which the host association can be wrong. */
5598 if (e->symtree == NULL
5599 || e->symtree->n.sym == NULL
5600 || e->user_operator)
5601 return retval;
5603 old_sym = e->symtree->n.sym;
5605 if (gfc_current_ns->parent
5606 && old_sym->ns != gfc_current_ns)
5608 /* Use the 'USE' name so that renamed module symbols are
5609 correctly handled. */
5610 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5612 if (sym && old_sym != sym
5613 && sym->ts.type == old_sym->ts.type
5614 && sym->attr.flavor == FL_PROCEDURE
5615 && sym->attr.contained)
5617 /* Clear the shape, since it might not be valid. */
5618 gfc_free_shape (&e->shape, e->rank);
5620 /* Give the expression the right symtree! */
5621 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5622 gcc_assert (st != NULL);
5624 if (old_sym->attr.flavor == FL_PROCEDURE
5625 || e->expr_type == EXPR_FUNCTION)
5627 /* Original was function so point to the new symbol, since
5628 the actual argument list is already attached to the
5629 expression. */
5630 e->value.function.esym = NULL;
5631 e->symtree = st;
5633 else
5635 /* Original was variable so convert array references into
5636 an actual arglist. This does not need any checking now
5637 since resolve_function will take care of it. */
5638 e->value.function.actual = NULL;
5639 e->expr_type = EXPR_FUNCTION;
5640 e->symtree = st;
5642 /* Ambiguity will not arise if the array reference is not
5643 the last reference. */
5644 for (ref = e->ref; ref; ref = ref->next)
5645 if (ref->type == REF_ARRAY && ref->next == NULL)
5646 break;
5648 gcc_assert (ref->type == REF_ARRAY);
5650 /* Grab the start expressions from the array ref and
5651 copy them into actual arguments. */
5652 for (n = 0; n < ref->u.ar.dimen; n++)
5654 arg = gfc_get_actual_arglist ();
5655 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5656 if (e->value.function.actual == NULL)
5657 tail = e->value.function.actual = arg;
5658 else
5660 tail->next = arg;
5661 tail = arg;
5665 /* Dump the reference list and set the rank. */
5666 gfc_free_ref_list (e->ref);
5667 e->ref = NULL;
5668 e->rank = sym->as ? sym->as->rank : 0;
5671 gfc_resolve_expr (e);
5672 sym->refs++;
5675 /* This might have changed! */
5676 return e->expr_type == EXPR_FUNCTION;
5680 static void
5681 gfc_resolve_character_operator (gfc_expr *e)
5683 gfc_expr *op1 = e->value.op.op1;
5684 gfc_expr *op2 = e->value.op.op2;
5685 gfc_expr *e1 = NULL;
5686 gfc_expr *e2 = NULL;
5688 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5690 if (op1->ts.u.cl && op1->ts.u.cl->length)
5691 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5692 else if (op1->expr_type == EXPR_CONSTANT)
5693 e1 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5694 op1->value.character.length);
5696 if (op2->ts.u.cl && op2->ts.u.cl->length)
5697 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5698 else if (op2->expr_type == EXPR_CONSTANT)
5699 e2 = gfc_get_int_expr (gfc_charlen_int_kind, NULL,
5700 op2->value.character.length);
5702 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5704 if (!e1 || !e2)
5706 gfc_free_expr (e1);
5707 gfc_free_expr (e2);
5709 return;
5712 e->ts.u.cl->length = gfc_add (e1, e2);
5713 e->ts.u.cl->length->ts.type = BT_INTEGER;
5714 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5715 gfc_simplify_expr (e->ts.u.cl->length, 0);
5716 gfc_resolve_expr (e->ts.u.cl->length);
5718 return;
5722 /* Ensure that an character expression has a charlen and, if possible, a
5723 length expression. */
5725 static void
5726 fixup_charlen (gfc_expr *e)
5728 /* The cases fall through so that changes in expression type and the need
5729 for multiple fixes are picked up. In all circumstances, a charlen should
5730 be available for the middle end to hang a backend_decl on. */
5731 switch (e->expr_type)
5733 case EXPR_OP:
5734 gfc_resolve_character_operator (e);
5735 /* FALLTHRU */
5737 case EXPR_ARRAY:
5738 if (e->expr_type == EXPR_ARRAY)
5739 gfc_resolve_character_array_constructor (e);
5740 /* FALLTHRU */
5742 case EXPR_SUBSTRING:
5743 if (!e->ts.u.cl && e->ref)
5744 gfc_resolve_substring_charlen (e);
5745 /* FALLTHRU */
5747 default:
5748 if (!e->ts.u.cl)
5749 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5751 break;
5756 /* Update an actual argument to include the passed-object for type-bound
5757 procedures at the right position. */
5759 static gfc_actual_arglist*
5760 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5761 const char *name)
5763 gcc_assert (argpos > 0);
5765 if (argpos == 1)
5767 gfc_actual_arglist* result;
5769 result = gfc_get_actual_arglist ();
5770 result->expr = po;
5771 result->next = lst;
5772 if (name)
5773 result->name = name;
5775 return result;
5778 if (lst)
5779 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5780 else
5781 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5782 return lst;
5786 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5788 static gfc_expr*
5789 extract_compcall_passed_object (gfc_expr* e)
5791 gfc_expr* po;
5793 gcc_assert (e->expr_type == EXPR_COMPCALL);
5795 if (e->value.compcall.base_object)
5796 po = gfc_copy_expr (e->value.compcall.base_object);
5797 else
5799 po = gfc_get_expr ();
5800 po->expr_type = EXPR_VARIABLE;
5801 po->symtree = e->symtree;
5802 po->ref = gfc_copy_ref (e->ref);
5803 po->where = e->where;
5806 if (!gfc_resolve_expr (po))
5807 return NULL;
5809 return po;
5813 /* Update the arglist of an EXPR_COMPCALL expression to include the
5814 passed-object. */
5816 static bool
5817 update_compcall_arglist (gfc_expr* e)
5819 gfc_expr* po;
5820 gfc_typebound_proc* tbp;
5822 tbp = e->value.compcall.tbp;
5824 if (tbp->error)
5825 return false;
5827 po = extract_compcall_passed_object (e);
5828 if (!po)
5829 return false;
5831 if (tbp->nopass || e->value.compcall.ignore_pass)
5833 gfc_free_expr (po);
5834 return true;
5837 if (tbp->pass_arg_num <= 0)
5838 return false;
5840 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5841 tbp->pass_arg_num,
5842 tbp->pass_arg);
5844 return true;
5848 /* Extract the passed object from a PPC call (a copy of it). */
5850 static gfc_expr*
5851 extract_ppc_passed_object (gfc_expr *e)
5853 gfc_expr *po;
5854 gfc_ref **ref;
5856 po = gfc_get_expr ();
5857 po->expr_type = EXPR_VARIABLE;
5858 po->symtree = e->symtree;
5859 po->ref = gfc_copy_ref (e->ref);
5860 po->where = e->where;
5862 /* Remove PPC reference. */
5863 ref = &po->ref;
5864 while ((*ref)->next)
5865 ref = &(*ref)->next;
5866 gfc_free_ref_list (*ref);
5867 *ref = NULL;
5869 if (!gfc_resolve_expr (po))
5870 return NULL;
5872 return po;
5876 /* Update the actual arglist of a procedure pointer component to include the
5877 passed-object. */
5879 static bool
5880 update_ppc_arglist (gfc_expr* e)
5882 gfc_expr* po;
5883 gfc_component *ppc;
5884 gfc_typebound_proc* tb;
5886 ppc = gfc_get_proc_ptr_comp (e);
5887 if (!ppc)
5888 return false;
5890 tb = ppc->tb;
5892 if (tb->error)
5893 return false;
5894 else if (tb->nopass)
5895 return true;
5897 po = extract_ppc_passed_object (e);
5898 if (!po)
5899 return false;
5901 /* F08:R739. */
5902 if (po->rank != 0)
5904 gfc_error ("Passed-object at %L must be scalar", &e->where);
5905 return false;
5908 /* F08:C611. */
5909 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
5911 gfc_error ("Base object for procedure-pointer component call at %L is of"
5912 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
5913 return false;
5916 gcc_assert (tb->pass_arg_num > 0);
5917 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5918 tb->pass_arg_num,
5919 tb->pass_arg);
5921 return true;
5925 /* Check that the object a TBP is called on is valid, i.e. it must not be
5926 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
5928 static bool
5929 check_typebound_baseobject (gfc_expr* e)
5931 gfc_expr* base;
5932 bool return_value = false;
5934 base = extract_compcall_passed_object (e);
5935 if (!base)
5936 return false;
5938 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
5940 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
5941 return false;
5943 /* F08:C611. */
5944 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
5946 gfc_error ("Base object for type-bound procedure call at %L is of"
5947 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
5948 goto cleanup;
5951 /* F08:C1230. If the procedure called is NOPASS,
5952 the base object must be scalar. */
5953 if (e->value.compcall.tbp->nopass && base->rank != 0)
5955 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
5956 " be scalar", &e->where);
5957 goto cleanup;
5960 return_value = true;
5962 cleanup:
5963 gfc_free_expr (base);
5964 return return_value;
5968 /* Resolve a call to a type-bound procedure, either function or subroutine,
5969 statically from the data in an EXPR_COMPCALL expression. The adapted
5970 arglist and the target-procedure symtree are returned. */
5972 static bool
5973 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
5974 gfc_actual_arglist** actual)
5976 gcc_assert (e->expr_type == EXPR_COMPCALL);
5977 gcc_assert (!e->value.compcall.tbp->is_generic);
5979 /* Update the actual arglist for PASS. */
5980 if (!update_compcall_arglist (e))
5981 return false;
5983 *actual = e->value.compcall.actual;
5984 *target = e->value.compcall.tbp->u.specific;
5986 gfc_free_ref_list (e->ref);
5987 e->ref = NULL;
5988 e->value.compcall.actual = NULL;
5990 /* If we find a deferred typebound procedure, check for derived types
5991 that an overriding typebound procedure has not been missed. */
5992 if (e->value.compcall.name
5993 && !e->value.compcall.tbp->non_overridable
5994 && e->value.compcall.base_object
5995 && e->value.compcall.base_object->ts.type == BT_DERIVED)
5997 gfc_symtree *st;
5998 gfc_symbol *derived;
6000 /* Use the derived type of the base_object. */
6001 derived = e->value.compcall.base_object->ts.u.derived;
6002 st = NULL;
6004 /* If necessary, go through the inheritance chain. */
6005 while (!st && derived)
6007 /* Look for the typebound procedure 'name'. */
6008 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6009 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6010 e->value.compcall.name);
6011 if (!st)
6012 derived = gfc_get_derived_super_type (derived);
6015 /* Now find the specific name in the derived type namespace. */
6016 if (st && st->n.tb && st->n.tb->u.specific)
6017 gfc_find_sym_tree (st->n.tb->u.specific->name,
6018 derived->ns, 1, &st);
6019 if (st)
6020 *target = st;
6022 return true;
6026 /* Get the ultimate declared type from an expression. In addition,
6027 return the last class/derived type reference and the copy of the
6028 reference list. If check_types is set true, derived types are
6029 identified as well as class references. */
6030 static gfc_symbol*
6031 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6032 gfc_expr *e, bool check_types)
6034 gfc_symbol *declared;
6035 gfc_ref *ref;
6037 declared = NULL;
6038 if (class_ref)
6039 *class_ref = NULL;
6040 if (new_ref)
6041 *new_ref = gfc_copy_ref (e->ref);
6043 for (ref = e->ref; ref; ref = ref->next)
6045 if (ref->type != REF_COMPONENT)
6046 continue;
6048 if ((ref->u.c.component->ts.type == BT_CLASS
6049 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6050 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6052 declared = ref->u.c.component->ts.u.derived;
6053 if (class_ref)
6054 *class_ref = ref;
6058 if (declared == NULL)
6059 declared = e->symtree->n.sym->ts.u.derived;
6061 return declared;
6065 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6066 which of the specific bindings (if any) matches the arglist and transform
6067 the expression into a call of that binding. */
6069 static bool
6070 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6072 gfc_typebound_proc* genproc;
6073 const char* genname;
6074 gfc_symtree *st;
6075 gfc_symbol *derived;
6077 gcc_assert (e->expr_type == EXPR_COMPCALL);
6078 genname = e->value.compcall.name;
6079 genproc = e->value.compcall.tbp;
6081 if (!genproc->is_generic)
6082 return true;
6084 /* Try the bindings on this type and in the inheritance hierarchy. */
6085 for (; genproc; genproc = genproc->overridden)
6087 gfc_tbp_generic* g;
6089 gcc_assert (genproc->is_generic);
6090 for (g = genproc->u.generic; g; g = g->next)
6092 gfc_symbol* target;
6093 gfc_actual_arglist* args;
6094 bool matches;
6096 gcc_assert (g->specific);
6098 if (g->specific->error)
6099 continue;
6101 target = g->specific->u.specific->n.sym;
6103 /* Get the right arglist by handling PASS/NOPASS. */
6104 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6105 if (!g->specific->nopass)
6107 gfc_expr* po;
6108 po = extract_compcall_passed_object (e);
6109 if (!po)
6111 gfc_free_actual_arglist (args);
6112 return false;
6115 gcc_assert (g->specific->pass_arg_num > 0);
6116 gcc_assert (!g->specific->error);
6117 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6118 g->specific->pass_arg);
6120 resolve_actual_arglist (args, target->attr.proc,
6121 is_external_proc (target)
6122 && gfc_sym_get_dummy_args (target) == NULL);
6124 /* Check if this arglist matches the formal. */
6125 matches = gfc_arglist_matches_symbol (&args, target);
6127 /* Clean up and break out of the loop if we've found it. */
6128 gfc_free_actual_arglist (args);
6129 if (matches)
6131 e->value.compcall.tbp = g->specific;
6132 genname = g->specific_st->name;
6133 /* Pass along the name for CLASS methods, where the vtab
6134 procedure pointer component has to be referenced. */
6135 if (name)
6136 *name = genname;
6137 goto success;
6142 /* Nothing matching found! */
6143 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6144 " %qs at %L", genname, &e->where);
6145 return false;
6147 success:
6148 /* Make sure that we have the right specific instance for the name. */
6149 derived = get_declared_from_expr (NULL, NULL, e, true);
6151 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6152 if (st)
6153 e->value.compcall.tbp = st->n.tb;
6155 return true;
6159 /* Resolve a call to a type-bound subroutine. */
6161 static bool
6162 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6164 gfc_actual_arglist* newactual;
6165 gfc_symtree* target;
6167 /* Check that's really a SUBROUTINE. */
6168 if (!c->expr1->value.compcall.tbp->subroutine)
6170 gfc_error ("%qs at %L should be a SUBROUTINE",
6171 c->expr1->value.compcall.name, &c->loc);
6172 return false;
6175 if (!check_typebound_baseobject (c->expr1))
6176 return false;
6178 /* Pass along the name for CLASS methods, where the vtab
6179 procedure pointer component has to be referenced. */
6180 if (name)
6181 *name = c->expr1->value.compcall.name;
6183 if (!resolve_typebound_generic_call (c->expr1, name))
6184 return false;
6186 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6187 if (overridable)
6188 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6190 /* Transform into an ordinary EXEC_CALL for now. */
6192 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6193 return false;
6195 c->ext.actual = newactual;
6196 c->symtree = target;
6197 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6199 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6201 gfc_free_expr (c->expr1);
6202 c->expr1 = gfc_get_expr ();
6203 c->expr1->expr_type = EXPR_FUNCTION;
6204 c->expr1->symtree = target;
6205 c->expr1->where = c->loc;
6207 return resolve_call (c);
6211 /* Resolve a component-call expression. */
6212 static bool
6213 resolve_compcall (gfc_expr* e, const char **name)
6215 gfc_actual_arglist* newactual;
6216 gfc_symtree* target;
6218 /* Check that's really a FUNCTION. */
6219 if (!e->value.compcall.tbp->function)
6221 gfc_error ("%qs at %L should be a FUNCTION",
6222 e->value.compcall.name, &e->where);
6223 return false;
6226 /* These must not be assign-calls! */
6227 gcc_assert (!e->value.compcall.assign);
6229 if (!check_typebound_baseobject (e))
6230 return false;
6232 /* Pass along the name for CLASS methods, where the vtab
6233 procedure pointer component has to be referenced. */
6234 if (name)
6235 *name = e->value.compcall.name;
6237 if (!resolve_typebound_generic_call (e, name))
6238 return false;
6239 gcc_assert (!e->value.compcall.tbp->is_generic);
6241 /* Take the rank from the function's symbol. */
6242 if (e->value.compcall.tbp->u.specific->n.sym->as)
6243 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6245 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6246 arglist to the TBP's binding target. */
6248 if (!resolve_typebound_static (e, &target, &newactual))
6249 return false;
6251 e->value.function.actual = newactual;
6252 e->value.function.name = NULL;
6253 e->value.function.esym = target->n.sym;
6254 e->value.function.isym = NULL;
6255 e->symtree = target;
6256 e->ts = target->n.sym->ts;
6257 e->expr_type = EXPR_FUNCTION;
6259 /* Resolution is not necessary if this is a class subroutine; this
6260 function only has to identify the specific proc. Resolution of
6261 the call will be done next in resolve_typebound_call. */
6262 return gfc_resolve_expr (e);
6266 static bool resolve_fl_derived (gfc_symbol *sym);
6269 /* Resolve a typebound function, or 'method'. First separate all
6270 the non-CLASS references by calling resolve_compcall directly. */
6272 static bool
6273 resolve_typebound_function (gfc_expr* e)
6275 gfc_symbol *declared;
6276 gfc_component *c;
6277 gfc_ref *new_ref;
6278 gfc_ref *class_ref;
6279 gfc_symtree *st;
6280 const char *name;
6281 gfc_typespec ts;
6282 gfc_expr *expr;
6283 bool overridable;
6285 st = e->symtree;
6287 /* Deal with typebound operators for CLASS objects. */
6288 expr = e->value.compcall.base_object;
6289 overridable = !e->value.compcall.tbp->non_overridable;
6290 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6292 /* If the base_object is not a variable, the corresponding actual
6293 argument expression must be stored in e->base_expression so
6294 that the corresponding tree temporary can be used as the base
6295 object in gfc_conv_procedure_call. */
6296 if (expr->expr_type != EXPR_VARIABLE)
6298 gfc_actual_arglist *args;
6300 for (args= e->value.function.actual; args; args = args->next)
6302 if (expr == args->expr)
6303 expr = args->expr;
6307 /* Since the typebound operators are generic, we have to ensure
6308 that any delays in resolution are corrected and that the vtab
6309 is present. */
6310 ts = expr->ts;
6311 declared = ts.u.derived;
6312 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6313 if (c->ts.u.derived == NULL)
6314 c->ts.u.derived = gfc_find_derived_vtab (declared);
6316 if (!resolve_compcall (e, &name))
6317 return false;
6319 /* Use the generic name if it is there. */
6320 name = name ? name : e->value.function.esym->name;
6321 e->symtree = expr->symtree;
6322 e->ref = gfc_copy_ref (expr->ref);
6323 get_declared_from_expr (&class_ref, NULL, e, false);
6325 /* Trim away the extraneous references that emerge from nested
6326 use of interface.c (extend_expr). */
6327 if (class_ref && class_ref->next)
6329 gfc_free_ref_list (class_ref->next);
6330 class_ref->next = NULL;
6332 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6334 gfc_free_ref_list (e->ref);
6335 e->ref = NULL;
6338 gfc_add_vptr_component (e);
6339 gfc_add_component_ref (e, name);
6340 e->value.function.esym = NULL;
6341 if (expr->expr_type != EXPR_VARIABLE)
6342 e->base_expr = expr;
6343 return true;
6346 if (st == NULL)
6347 return resolve_compcall (e, NULL);
6349 if (!resolve_ref (e))
6350 return false;
6352 /* Get the CLASS declared type. */
6353 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6355 if (!resolve_fl_derived (declared))
6356 return false;
6358 /* Weed out cases of the ultimate component being a derived type. */
6359 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6360 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6362 gfc_free_ref_list (new_ref);
6363 return resolve_compcall (e, NULL);
6366 c = gfc_find_component (declared, "_data", true, true, NULL);
6367 declared = c->ts.u.derived;
6369 /* Treat the call as if it is a typebound procedure, in order to roll
6370 out the correct name for the specific function. */
6371 if (!resolve_compcall (e, &name))
6373 gfc_free_ref_list (new_ref);
6374 return false;
6376 ts = e->ts;
6378 if (overridable)
6380 /* Convert the expression to a procedure pointer component call. */
6381 e->value.function.esym = NULL;
6382 e->symtree = st;
6384 if (new_ref)
6385 e->ref = new_ref;
6387 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6388 gfc_add_vptr_component (e);
6389 gfc_add_component_ref (e, name);
6391 /* Recover the typespec for the expression. This is really only
6392 necessary for generic procedures, where the additional call
6393 to gfc_add_component_ref seems to throw the collection of the
6394 correct typespec. */
6395 e->ts = ts;
6397 else if (new_ref)
6398 gfc_free_ref_list (new_ref);
6400 return true;
6403 /* Resolve a typebound subroutine, or 'method'. First separate all
6404 the non-CLASS references by calling resolve_typebound_call
6405 directly. */
6407 static bool
6408 resolve_typebound_subroutine (gfc_code *code)
6410 gfc_symbol *declared;
6411 gfc_component *c;
6412 gfc_ref *new_ref;
6413 gfc_ref *class_ref;
6414 gfc_symtree *st;
6415 const char *name;
6416 gfc_typespec ts;
6417 gfc_expr *expr;
6418 bool overridable;
6420 st = code->expr1->symtree;
6422 /* Deal with typebound operators for CLASS objects. */
6423 expr = code->expr1->value.compcall.base_object;
6424 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6425 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6427 /* If the base_object is not a variable, the corresponding actual
6428 argument expression must be stored in e->base_expression so
6429 that the corresponding tree temporary can be used as the base
6430 object in gfc_conv_procedure_call. */
6431 if (expr->expr_type != EXPR_VARIABLE)
6433 gfc_actual_arglist *args;
6435 args= code->expr1->value.function.actual;
6436 for (; args; args = args->next)
6437 if (expr == args->expr)
6438 expr = args->expr;
6441 /* Since the typebound operators are generic, we have to ensure
6442 that any delays in resolution are corrected and that the vtab
6443 is present. */
6444 declared = expr->ts.u.derived;
6445 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6446 if (c->ts.u.derived == NULL)
6447 c->ts.u.derived = gfc_find_derived_vtab (declared);
6449 if (!resolve_typebound_call (code, &name, NULL))
6450 return false;
6452 /* Use the generic name if it is there. */
6453 name = name ? name : code->expr1->value.function.esym->name;
6454 code->expr1->symtree = expr->symtree;
6455 code->expr1->ref = gfc_copy_ref (expr->ref);
6457 /* Trim away the extraneous references that emerge from nested
6458 use of interface.c (extend_expr). */
6459 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6460 if (class_ref && class_ref->next)
6462 gfc_free_ref_list (class_ref->next);
6463 class_ref->next = NULL;
6465 else if (code->expr1->ref && !class_ref)
6467 gfc_free_ref_list (code->expr1->ref);
6468 code->expr1->ref = NULL;
6471 /* Now use the procedure in the vtable. */
6472 gfc_add_vptr_component (code->expr1);
6473 gfc_add_component_ref (code->expr1, name);
6474 code->expr1->value.function.esym = NULL;
6475 if (expr->expr_type != EXPR_VARIABLE)
6476 code->expr1->base_expr = expr;
6477 return true;
6480 if (st == NULL)
6481 return resolve_typebound_call (code, NULL, NULL);
6483 if (!resolve_ref (code->expr1))
6484 return false;
6486 /* Get the CLASS declared type. */
6487 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6489 /* Weed out cases of the ultimate component being a derived type. */
6490 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6491 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6493 gfc_free_ref_list (new_ref);
6494 return resolve_typebound_call (code, NULL, NULL);
6497 if (!resolve_typebound_call (code, &name, &overridable))
6499 gfc_free_ref_list (new_ref);
6500 return false;
6502 ts = code->expr1->ts;
6504 if (overridable)
6506 /* Convert the expression to a procedure pointer component call. */
6507 code->expr1->value.function.esym = NULL;
6508 code->expr1->symtree = st;
6510 if (new_ref)
6511 code->expr1->ref = new_ref;
6513 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6514 gfc_add_vptr_component (code->expr1);
6515 gfc_add_component_ref (code->expr1, name);
6517 /* Recover the typespec for the expression. This is really only
6518 necessary for generic procedures, where the additional call
6519 to gfc_add_component_ref seems to throw the collection of the
6520 correct typespec. */
6521 code->expr1->ts = ts;
6523 else if (new_ref)
6524 gfc_free_ref_list (new_ref);
6526 return true;
6530 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6532 static bool
6533 resolve_ppc_call (gfc_code* c)
6535 gfc_component *comp;
6537 comp = gfc_get_proc_ptr_comp (c->expr1);
6538 gcc_assert (comp != NULL);
6540 c->resolved_sym = c->expr1->symtree->n.sym;
6541 c->expr1->expr_type = EXPR_VARIABLE;
6543 if (!comp->attr.subroutine)
6544 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6546 if (!resolve_ref (c->expr1))
6547 return false;
6549 if (!update_ppc_arglist (c->expr1))
6550 return false;
6552 c->ext.actual = c->expr1->value.compcall.actual;
6554 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6555 !(comp->ts.interface
6556 && comp->ts.interface->formal)))
6557 return false;
6559 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6560 return false;
6562 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6564 return true;
6568 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6570 static bool
6571 resolve_expr_ppc (gfc_expr* e)
6573 gfc_component *comp;
6575 comp = gfc_get_proc_ptr_comp (e);
6576 gcc_assert (comp != NULL);
6578 /* Convert to EXPR_FUNCTION. */
6579 e->expr_type = EXPR_FUNCTION;
6580 e->value.function.isym = NULL;
6581 e->value.function.actual = e->value.compcall.actual;
6582 e->ts = comp->ts;
6583 if (comp->as != NULL)
6584 e->rank = comp->as->rank;
6586 if (!comp->attr.function)
6587 gfc_add_function (&comp->attr, comp->name, &e->where);
6589 if (!resolve_ref (e))
6590 return false;
6592 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6593 !(comp->ts.interface
6594 && comp->ts.interface->formal)))
6595 return false;
6597 if (!update_ppc_arglist (e))
6598 return false;
6600 if (!check_pure_function(e))
6601 return false;
6603 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6605 return true;
6609 static bool
6610 gfc_is_expandable_expr (gfc_expr *e)
6612 gfc_constructor *con;
6614 if (e->expr_type == EXPR_ARRAY)
6616 /* Traverse the constructor looking for variables that are flavor
6617 parameter. Parameters must be expanded since they are fully used at
6618 compile time. */
6619 con = gfc_constructor_first (e->value.constructor);
6620 for (; con; con = gfc_constructor_next (con))
6622 if (con->expr->expr_type == EXPR_VARIABLE
6623 && con->expr->symtree
6624 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6625 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6626 return true;
6627 if (con->expr->expr_type == EXPR_ARRAY
6628 && gfc_is_expandable_expr (con->expr))
6629 return true;
6633 return false;
6637 /* Sometimes variables in specification expressions of the result
6638 of module procedures in submodules wind up not being the 'real'
6639 dummy. Find this, if possible, in the namespace of the first
6640 formal argument. */
6642 static void
6643 fixup_unique_dummy (gfc_expr *e)
6645 gfc_symtree *st = NULL;
6646 gfc_symbol *s = NULL;
6648 if (e->symtree->n.sym->ns->proc_name
6649 && e->symtree->n.sym->ns->proc_name->formal)
6650 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6652 if (s != NULL)
6653 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6655 if (st != NULL
6656 && st->n.sym != NULL
6657 && st->n.sym->attr.dummy)
6658 e->symtree = st;
6661 /* Resolve an expression. That is, make sure that types of operands agree
6662 with their operators, intrinsic operators are converted to function calls
6663 for overloaded types and unresolved function references are resolved. */
6665 bool
6666 gfc_resolve_expr (gfc_expr *e)
6668 bool t;
6669 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6671 if (e == NULL)
6672 return true;
6674 /* inquiry_argument only applies to variables. */
6675 inquiry_save = inquiry_argument;
6676 actual_arg_save = actual_arg;
6677 first_actual_arg_save = first_actual_arg;
6679 if (e->expr_type != EXPR_VARIABLE)
6681 inquiry_argument = false;
6682 actual_arg = false;
6683 first_actual_arg = false;
6685 else if (e->symtree != NULL
6686 && *e->symtree->name == '@'
6687 && e->symtree->n.sym->attr.dummy)
6689 /* Deal with submodule specification expressions that are not
6690 found to be referenced in module.c(read_cleanup). */
6691 fixup_unique_dummy (e);
6694 switch (e->expr_type)
6696 case EXPR_OP:
6697 t = resolve_operator (e);
6698 break;
6700 case EXPR_FUNCTION:
6701 case EXPR_VARIABLE:
6703 if (check_host_association (e))
6704 t = resolve_function (e);
6705 else
6706 t = resolve_variable (e);
6708 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6709 && e->ref->type != REF_SUBSTRING)
6710 gfc_resolve_substring_charlen (e);
6712 break;
6714 case EXPR_COMPCALL:
6715 t = resolve_typebound_function (e);
6716 break;
6718 case EXPR_SUBSTRING:
6719 t = resolve_ref (e);
6720 break;
6722 case EXPR_CONSTANT:
6723 case EXPR_NULL:
6724 t = true;
6725 break;
6727 case EXPR_PPC:
6728 t = resolve_expr_ppc (e);
6729 break;
6731 case EXPR_ARRAY:
6732 t = false;
6733 if (!resolve_ref (e))
6734 break;
6736 t = gfc_resolve_array_constructor (e);
6737 /* Also try to expand a constructor. */
6738 if (t)
6740 expression_rank (e);
6741 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6742 gfc_expand_constructor (e, false);
6745 /* This provides the opportunity for the length of constructors with
6746 character valued function elements to propagate the string length
6747 to the expression. */
6748 if (t && e->ts.type == BT_CHARACTER)
6750 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6751 here rather then add a duplicate test for it above. */
6752 gfc_expand_constructor (e, false);
6753 t = gfc_resolve_character_array_constructor (e);
6756 break;
6758 case EXPR_STRUCTURE:
6759 t = resolve_ref (e);
6760 if (!t)
6761 break;
6763 t = resolve_structure_cons (e, 0);
6764 if (!t)
6765 break;
6767 t = gfc_simplify_expr (e, 0);
6768 break;
6770 default:
6771 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6774 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6775 fixup_charlen (e);
6777 inquiry_argument = inquiry_save;
6778 actual_arg = actual_arg_save;
6779 first_actual_arg = first_actual_arg_save;
6781 return t;
6785 /* Resolve an expression from an iterator. They must be scalar and have
6786 INTEGER or (optionally) REAL type. */
6788 static bool
6789 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6790 const char *name_msgid)
6792 if (!gfc_resolve_expr (expr))
6793 return false;
6795 if (expr->rank != 0)
6797 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6798 return false;
6801 if (expr->ts.type != BT_INTEGER)
6803 if (expr->ts.type == BT_REAL)
6805 if (real_ok)
6806 return gfc_notify_std (GFC_STD_F95_DEL,
6807 "%s at %L must be integer",
6808 _(name_msgid), &expr->where);
6809 else
6811 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6812 &expr->where);
6813 return false;
6816 else
6818 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6819 return false;
6822 return true;
6826 /* Resolve the expressions in an iterator structure. If REAL_OK is
6827 false allow only INTEGER type iterators, otherwise allow REAL types.
6828 Set own_scope to true for ac-implied-do and data-implied-do as those
6829 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6831 bool
6832 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6834 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6835 return false;
6837 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6838 _("iterator variable")))
6839 return false;
6841 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6842 "Start expression in DO loop"))
6843 return false;
6845 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6846 "End expression in DO loop"))
6847 return false;
6849 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6850 "Step expression in DO loop"))
6851 return false;
6853 if (iter->step->expr_type == EXPR_CONSTANT)
6855 if ((iter->step->ts.type == BT_INTEGER
6856 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6857 || (iter->step->ts.type == BT_REAL
6858 && mpfr_sgn (iter->step->value.real) == 0))
6860 gfc_error ("Step expression in DO loop at %L cannot be zero",
6861 &iter->step->where);
6862 return false;
6866 /* Convert start, end, and step to the same type as var. */
6867 if (iter->start->ts.kind != iter->var->ts.kind
6868 || iter->start->ts.type != iter->var->ts.type)
6869 gfc_convert_type (iter->start, &iter->var->ts, 1);
6871 if (iter->end->ts.kind != iter->var->ts.kind
6872 || iter->end->ts.type != iter->var->ts.type)
6873 gfc_convert_type (iter->end, &iter->var->ts, 1);
6875 if (iter->step->ts.kind != iter->var->ts.kind
6876 || iter->step->ts.type != iter->var->ts.type)
6877 gfc_convert_type (iter->step, &iter->var->ts, 1);
6879 if (iter->start->expr_type == EXPR_CONSTANT
6880 && iter->end->expr_type == EXPR_CONSTANT
6881 && iter->step->expr_type == EXPR_CONSTANT)
6883 int sgn, cmp;
6884 if (iter->start->ts.type == BT_INTEGER)
6886 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
6887 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
6889 else
6891 sgn = mpfr_sgn (iter->step->value.real);
6892 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
6894 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
6895 gfc_warning (OPT_Wzerotrip,
6896 "DO loop at %L will be executed zero times",
6897 &iter->step->where);
6900 if (iter->end->expr_type == EXPR_CONSTANT
6901 && iter->end->ts.type == BT_INTEGER
6902 && iter->step->expr_type == EXPR_CONSTANT
6903 && iter->step->ts.type == BT_INTEGER
6904 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
6905 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
6907 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
6908 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
6910 if (is_step_positive
6911 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
6912 gfc_warning (OPT_Wundefined_do_loop,
6913 "DO loop at %L is undefined as it overflows",
6914 &iter->step->where);
6915 else if (!is_step_positive
6916 && mpz_cmp (iter->end->value.integer,
6917 gfc_integer_kinds[k].min_int) == 0)
6918 gfc_warning (OPT_Wundefined_do_loop,
6919 "DO loop at %L is undefined as it underflows",
6920 &iter->step->where);
6923 return true;
6927 /* Traversal function for find_forall_index. f == 2 signals that
6928 that variable itself is not to be checked - only the references. */
6930 static bool
6931 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
6933 if (expr->expr_type != EXPR_VARIABLE)
6934 return false;
6936 /* A scalar assignment */
6937 if (!expr->ref || *f == 1)
6939 if (expr->symtree->n.sym == sym)
6940 return true;
6941 else
6942 return false;
6945 if (*f == 2)
6946 *f = 1;
6947 return false;
6951 /* Check whether the FORALL index appears in the expression or not.
6952 Returns true if SYM is found in EXPR. */
6954 bool
6955 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
6957 if (gfc_traverse_expr (expr, sym, forall_index, f))
6958 return true;
6959 else
6960 return false;
6964 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
6965 to be a scalar INTEGER variable. The subscripts and stride are scalar
6966 INTEGERs, and if stride is a constant it must be nonzero.
6967 Furthermore "A subscript or stride in a forall-triplet-spec shall
6968 not contain a reference to any index-name in the
6969 forall-triplet-spec-list in which it appears." (7.5.4.1) */
6971 static void
6972 resolve_forall_iterators (gfc_forall_iterator *it)
6974 gfc_forall_iterator *iter, *iter2;
6976 for (iter = it; iter; iter = iter->next)
6978 if (gfc_resolve_expr (iter->var)
6979 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
6980 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
6981 &iter->var->where);
6983 if (gfc_resolve_expr (iter->start)
6984 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
6985 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
6986 &iter->start->where);
6987 if (iter->var->ts.kind != iter->start->ts.kind)
6988 gfc_convert_type (iter->start, &iter->var->ts, 1);
6990 if (gfc_resolve_expr (iter->end)
6991 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
6992 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
6993 &iter->end->where);
6994 if (iter->var->ts.kind != iter->end->ts.kind)
6995 gfc_convert_type (iter->end, &iter->var->ts, 1);
6997 if (gfc_resolve_expr (iter->stride))
6999 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
7000 gfc_error ("FORALL stride expression at %L must be a scalar %s",
7001 &iter->stride->where, "INTEGER");
7003 if (iter->stride->expr_type == EXPR_CONSTANT
7004 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7005 gfc_error ("FORALL stride expression at %L cannot be zero",
7006 &iter->stride->where);
7008 if (iter->var->ts.kind != iter->stride->ts.kind)
7009 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7012 for (iter = it; iter; iter = iter->next)
7013 for (iter2 = iter; iter2; iter2 = iter2->next)
7015 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7016 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7017 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7018 gfc_error ("FORALL index %qs may not appear in triplet "
7019 "specification at %L", iter->var->symtree->name,
7020 &iter2->start->where);
7025 /* Given a pointer to a symbol that is a derived type, see if it's
7026 inaccessible, i.e. if it's defined in another module and the components are
7027 PRIVATE. The search is recursive if necessary. Returns zero if no
7028 inaccessible components are found, nonzero otherwise. */
7030 static int
7031 derived_inaccessible (gfc_symbol *sym)
7033 gfc_component *c;
7035 if (sym->attr.use_assoc && sym->attr.private_comp)
7036 return 1;
7038 for (c = sym->components; c; c = c->next)
7040 /* Prevent an infinite loop through this function. */
7041 if (c->ts.type == BT_DERIVED && c->attr.pointer
7042 && sym == c->ts.u.derived)
7043 continue;
7045 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7046 return 1;
7049 return 0;
7053 /* Resolve the argument of a deallocate expression. The expression must be
7054 a pointer or a full array. */
7056 static bool
7057 resolve_deallocate_expr (gfc_expr *e)
7059 symbol_attribute attr;
7060 int allocatable, pointer;
7061 gfc_ref *ref;
7062 gfc_symbol *sym;
7063 gfc_component *c;
7064 bool unlimited;
7066 if (!gfc_resolve_expr (e))
7067 return false;
7069 if (e->expr_type != EXPR_VARIABLE)
7070 goto bad;
7072 sym = e->symtree->n.sym;
7073 unlimited = UNLIMITED_POLY(sym);
7075 if (sym->ts.type == BT_CLASS)
7077 allocatable = CLASS_DATA (sym)->attr.allocatable;
7078 pointer = CLASS_DATA (sym)->attr.class_pointer;
7080 else
7082 allocatable = sym->attr.allocatable;
7083 pointer = sym->attr.pointer;
7085 for (ref = e->ref; ref; ref = ref->next)
7087 switch (ref->type)
7089 case REF_ARRAY:
7090 if (ref->u.ar.type != AR_FULL
7091 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7092 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7093 allocatable = 0;
7094 break;
7096 case REF_COMPONENT:
7097 c = ref->u.c.component;
7098 if (c->ts.type == BT_CLASS)
7100 allocatable = CLASS_DATA (c)->attr.allocatable;
7101 pointer = CLASS_DATA (c)->attr.class_pointer;
7103 else
7105 allocatable = c->attr.allocatable;
7106 pointer = c->attr.pointer;
7108 break;
7110 case REF_SUBSTRING:
7111 allocatable = 0;
7112 break;
7116 attr = gfc_expr_attr (e);
7118 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7120 bad:
7121 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7122 &e->where);
7123 return false;
7126 /* F2008, C644. */
7127 if (gfc_is_coindexed (e))
7129 gfc_error ("Coindexed allocatable object at %L", &e->where);
7130 return false;
7133 if (pointer
7134 && !gfc_check_vardef_context (e, true, true, false,
7135 _("DEALLOCATE object")))
7136 return false;
7137 if (!gfc_check_vardef_context (e, false, true, false,
7138 _("DEALLOCATE object")))
7139 return false;
7141 return true;
7145 /* Returns true if the expression e contains a reference to the symbol sym. */
7146 static bool
7147 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7149 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7150 return true;
7152 return false;
7155 bool
7156 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7158 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7162 /* Given the expression node e for an allocatable/pointer of derived type to be
7163 allocated, get the expression node to be initialized afterwards (needed for
7164 derived types with default initializers, and derived types with allocatable
7165 components that need nullification.) */
7167 gfc_expr *
7168 gfc_expr_to_initialize (gfc_expr *e)
7170 gfc_expr *result;
7171 gfc_ref *ref;
7172 int i;
7174 result = gfc_copy_expr (e);
7176 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7177 for (ref = result->ref; ref; ref = ref->next)
7178 if (ref->type == REF_ARRAY && ref->next == NULL)
7180 ref->u.ar.type = AR_FULL;
7182 for (i = 0; i < ref->u.ar.dimen; i++)
7183 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7185 break;
7188 gfc_free_shape (&result->shape, result->rank);
7190 /* Recalculate rank, shape, etc. */
7191 gfc_resolve_expr (result);
7192 return result;
7196 /* If the last ref of an expression is an array ref, return a copy of the
7197 expression with that one removed. Otherwise, a copy of the original
7198 expression. This is used for allocate-expressions and pointer assignment
7199 LHS, where there may be an array specification that needs to be stripped
7200 off when using gfc_check_vardef_context. */
7202 static gfc_expr*
7203 remove_last_array_ref (gfc_expr* e)
7205 gfc_expr* e2;
7206 gfc_ref** r;
7208 e2 = gfc_copy_expr (e);
7209 for (r = &e2->ref; *r; r = &(*r)->next)
7210 if ((*r)->type == REF_ARRAY && !(*r)->next)
7212 gfc_free_ref_list (*r);
7213 *r = NULL;
7214 break;
7217 return e2;
7221 /* Used in resolve_allocate_expr to check that a allocation-object and
7222 a source-expr are conformable. This does not catch all possible
7223 cases; in particular a runtime checking is needed. */
7225 static bool
7226 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7228 gfc_ref *tail;
7229 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7231 /* First compare rank. */
7232 if ((tail && e1->rank != tail->u.ar.as->rank)
7233 || (!tail && e1->rank != e2->rank))
7235 gfc_error ("Source-expr at %L must be scalar or have the "
7236 "same rank as the allocate-object at %L",
7237 &e1->where, &e2->where);
7238 return false;
7241 if (e1->shape)
7243 int i;
7244 mpz_t s;
7246 mpz_init (s);
7248 for (i = 0; i < e1->rank; i++)
7250 if (tail->u.ar.start[i] == NULL)
7251 break;
7253 if (tail->u.ar.end[i])
7255 mpz_set (s, tail->u.ar.end[i]->value.integer);
7256 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7257 mpz_add_ui (s, s, 1);
7259 else
7261 mpz_set (s, tail->u.ar.start[i]->value.integer);
7264 if (mpz_cmp (e1->shape[i], s) != 0)
7266 gfc_error ("Source-expr at %L and allocate-object at %L must "
7267 "have the same shape", &e1->where, &e2->where);
7268 mpz_clear (s);
7269 return false;
7273 mpz_clear (s);
7276 return true;
7280 /* Resolve the expression in an ALLOCATE statement, doing the additional
7281 checks to see whether the expression is OK or not. The expression must
7282 have a trailing array reference that gives the size of the array. */
7284 static bool
7285 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7287 int i, pointer, allocatable, dimension, is_abstract;
7288 int codimension;
7289 bool coindexed;
7290 bool unlimited;
7291 symbol_attribute attr;
7292 gfc_ref *ref, *ref2;
7293 gfc_expr *e2;
7294 gfc_array_ref *ar;
7295 gfc_symbol *sym = NULL;
7296 gfc_alloc *a;
7297 gfc_component *c;
7298 bool t;
7300 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7301 checking of coarrays. */
7302 for (ref = e->ref; ref; ref = ref->next)
7303 if (ref->next == NULL)
7304 break;
7306 if (ref && ref->type == REF_ARRAY)
7307 ref->u.ar.in_allocate = true;
7309 if (!gfc_resolve_expr (e))
7310 goto failure;
7312 /* Make sure the expression is allocatable or a pointer. If it is
7313 pointer, the next-to-last reference must be a pointer. */
7315 ref2 = NULL;
7316 if (e->symtree)
7317 sym = e->symtree->n.sym;
7319 /* Check whether ultimate component is abstract and CLASS. */
7320 is_abstract = 0;
7322 /* Is the allocate-object unlimited polymorphic? */
7323 unlimited = UNLIMITED_POLY(e);
7325 if (e->expr_type != EXPR_VARIABLE)
7327 allocatable = 0;
7328 attr = gfc_expr_attr (e);
7329 pointer = attr.pointer;
7330 dimension = attr.dimension;
7331 codimension = attr.codimension;
7333 else
7335 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7337 allocatable = CLASS_DATA (sym)->attr.allocatable;
7338 pointer = CLASS_DATA (sym)->attr.class_pointer;
7339 dimension = CLASS_DATA (sym)->attr.dimension;
7340 codimension = CLASS_DATA (sym)->attr.codimension;
7341 is_abstract = CLASS_DATA (sym)->attr.abstract;
7343 else
7345 allocatable = sym->attr.allocatable;
7346 pointer = sym->attr.pointer;
7347 dimension = sym->attr.dimension;
7348 codimension = sym->attr.codimension;
7351 coindexed = false;
7353 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7355 switch (ref->type)
7357 case REF_ARRAY:
7358 if (ref->u.ar.codimen > 0)
7360 int n;
7361 for (n = ref->u.ar.dimen;
7362 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7363 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7365 coindexed = true;
7366 break;
7370 if (ref->next != NULL)
7371 pointer = 0;
7372 break;
7374 case REF_COMPONENT:
7375 /* F2008, C644. */
7376 if (coindexed)
7378 gfc_error ("Coindexed allocatable object at %L",
7379 &e->where);
7380 goto failure;
7383 c = ref->u.c.component;
7384 if (c->ts.type == BT_CLASS)
7386 allocatable = CLASS_DATA (c)->attr.allocatable;
7387 pointer = CLASS_DATA (c)->attr.class_pointer;
7388 dimension = CLASS_DATA (c)->attr.dimension;
7389 codimension = CLASS_DATA (c)->attr.codimension;
7390 is_abstract = CLASS_DATA (c)->attr.abstract;
7392 else
7394 allocatable = c->attr.allocatable;
7395 pointer = c->attr.pointer;
7396 dimension = c->attr.dimension;
7397 codimension = c->attr.codimension;
7398 is_abstract = c->attr.abstract;
7400 break;
7402 case REF_SUBSTRING:
7403 allocatable = 0;
7404 pointer = 0;
7405 break;
7410 /* Check for F08:C628. */
7411 if (allocatable == 0 && pointer == 0 && !unlimited)
7413 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7414 &e->where);
7415 goto failure;
7418 /* Some checks for the SOURCE tag. */
7419 if (code->expr3)
7421 /* Check F03:C631. */
7422 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7424 gfc_error ("Type of entity at %L is type incompatible with "
7425 "source-expr at %L", &e->where, &code->expr3->where);
7426 goto failure;
7429 /* Check F03:C632 and restriction following Note 6.18. */
7430 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7431 goto failure;
7433 /* Check F03:C633. */
7434 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7436 gfc_error ("The allocate-object at %L and the source-expr at %L "
7437 "shall have the same kind type parameter",
7438 &e->where, &code->expr3->where);
7439 goto failure;
7442 /* Check F2008, C642. */
7443 if (code->expr3->ts.type == BT_DERIVED
7444 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7445 || (code->expr3->ts.u.derived->from_intmod
7446 == INTMOD_ISO_FORTRAN_ENV
7447 && code->expr3->ts.u.derived->intmod_sym_id
7448 == ISOFORTRAN_LOCK_TYPE)))
7450 gfc_error ("The source-expr at %L shall neither be of type "
7451 "LOCK_TYPE nor have a LOCK_TYPE component if "
7452 "allocate-object at %L is a coarray",
7453 &code->expr3->where, &e->where);
7454 goto failure;
7457 /* Check TS18508, C702/C703. */
7458 if (code->expr3->ts.type == BT_DERIVED
7459 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7460 || (code->expr3->ts.u.derived->from_intmod
7461 == INTMOD_ISO_FORTRAN_ENV
7462 && code->expr3->ts.u.derived->intmod_sym_id
7463 == ISOFORTRAN_EVENT_TYPE)))
7465 gfc_error ("The source-expr at %L shall neither be of type "
7466 "EVENT_TYPE nor have a EVENT_TYPE component if "
7467 "allocate-object at %L is a coarray",
7468 &code->expr3->where, &e->where);
7469 goto failure;
7473 /* Check F08:C629. */
7474 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7475 && !code->expr3)
7477 gcc_assert (e->ts.type == BT_CLASS);
7478 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7479 "type-spec or source-expr", sym->name, &e->where);
7480 goto failure;
7483 /* Check F08:C632. */
7484 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7485 && !UNLIMITED_POLY (e))
7487 int cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7488 code->ext.alloc.ts.u.cl->length);
7489 if (cmp == 1 || cmp == -1 || cmp == -3)
7491 gfc_error ("Allocating %s at %L with type-spec requires the same "
7492 "character-length parameter as in the declaration",
7493 sym->name, &e->where);
7494 goto failure;
7498 /* In the variable definition context checks, gfc_expr_attr is used
7499 on the expression. This is fooled by the array specification
7500 present in e, thus we have to eliminate that one temporarily. */
7501 e2 = remove_last_array_ref (e);
7502 t = true;
7503 if (t && pointer)
7504 t = gfc_check_vardef_context (e2, true, true, false,
7505 _("ALLOCATE object"));
7506 if (t)
7507 t = gfc_check_vardef_context (e2, false, true, false,
7508 _("ALLOCATE object"));
7509 gfc_free_expr (e2);
7510 if (!t)
7511 goto failure;
7513 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7514 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7516 /* For class arrays, the initialization with SOURCE is done
7517 using _copy and trans_call. It is convenient to exploit that
7518 when the allocated type is different from the declared type but
7519 no SOURCE exists by setting expr3. */
7520 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7522 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7523 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7524 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7526 /* We have to zero initialize the integer variable. */
7527 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7530 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7532 /* Make sure the vtab symbol is present when
7533 the module variables are generated. */
7534 gfc_typespec ts = e->ts;
7535 if (code->expr3)
7536 ts = code->expr3->ts;
7537 else if (code->ext.alloc.ts.type == BT_DERIVED)
7538 ts = code->ext.alloc.ts;
7540 /* Finding the vtab also publishes the type's symbol. Therefore this
7541 statement is necessary. */
7542 gfc_find_derived_vtab (ts.u.derived);
7544 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7546 /* Again, make sure the vtab symbol is present when
7547 the module variables are generated. */
7548 gfc_typespec *ts = NULL;
7549 if (code->expr3)
7550 ts = &code->expr3->ts;
7551 else
7552 ts = &code->ext.alloc.ts;
7554 gcc_assert (ts);
7556 /* Finding the vtab also publishes the type's symbol. Therefore this
7557 statement is necessary. */
7558 gfc_find_vtab (ts);
7561 if (dimension == 0 && codimension == 0)
7562 goto success;
7564 /* Make sure the last reference node is an array specification. */
7566 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7567 || (dimension && ref2->u.ar.dimen == 0))
7569 /* F08:C633. */
7570 if (code->expr3)
7572 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7573 "in ALLOCATE statement at %L", &e->where))
7574 goto failure;
7575 if (code->expr3->rank != 0)
7576 *array_alloc_wo_spec = true;
7577 else
7579 gfc_error ("Array specification or array-valued SOURCE= "
7580 "expression required in ALLOCATE statement at %L",
7581 &e->where);
7582 goto failure;
7585 else
7587 gfc_error ("Array specification required in ALLOCATE statement "
7588 "at %L", &e->where);
7589 goto failure;
7593 /* Make sure that the array section reference makes sense in the
7594 context of an ALLOCATE specification. */
7596 ar = &ref2->u.ar;
7598 if (codimension)
7599 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7600 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7602 gfc_error ("Coarray specification required in ALLOCATE statement "
7603 "at %L", &e->where);
7604 goto failure;
7607 for (i = 0; i < ar->dimen; i++)
7609 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7610 goto check_symbols;
7612 switch (ar->dimen_type[i])
7614 case DIMEN_ELEMENT:
7615 break;
7617 case DIMEN_RANGE:
7618 if (ar->start[i] != NULL
7619 && ar->end[i] != NULL
7620 && ar->stride[i] == NULL)
7621 break;
7623 /* Fall through. */
7625 case DIMEN_UNKNOWN:
7626 case DIMEN_VECTOR:
7627 case DIMEN_STAR:
7628 case DIMEN_THIS_IMAGE:
7629 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7630 &e->where);
7631 goto failure;
7634 check_symbols:
7635 for (a = code->ext.alloc.list; a; a = a->next)
7637 sym = a->expr->symtree->n.sym;
7639 /* TODO - check derived type components. */
7640 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7641 continue;
7643 if ((ar->start[i] != NULL
7644 && gfc_find_sym_in_expr (sym, ar->start[i]))
7645 || (ar->end[i] != NULL
7646 && gfc_find_sym_in_expr (sym, ar->end[i])))
7648 gfc_error ("%qs must not appear in the array specification at "
7649 "%L in the same ALLOCATE statement where it is "
7650 "itself allocated", sym->name, &ar->where);
7651 goto failure;
7656 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7658 if (ar->dimen_type[i] == DIMEN_ELEMENT
7659 || ar->dimen_type[i] == DIMEN_RANGE)
7661 if (i == (ar->dimen + ar->codimen - 1))
7663 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7664 "statement at %L", &e->where);
7665 goto failure;
7667 continue;
7670 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7671 && ar->stride[i] == NULL)
7672 break;
7674 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7675 &e->where);
7676 goto failure;
7679 success:
7680 return true;
7682 failure:
7683 return false;
7687 static void
7688 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7690 gfc_expr *stat, *errmsg, *pe, *qe;
7691 gfc_alloc *a, *p, *q;
7693 stat = code->expr1;
7694 errmsg = code->expr2;
7696 /* Check the stat variable. */
7697 if (stat)
7699 gfc_check_vardef_context (stat, false, false, false,
7700 _("STAT variable"));
7702 if ((stat->ts.type != BT_INTEGER
7703 && !(stat->ref && (stat->ref->type == REF_ARRAY
7704 || stat->ref->type == REF_COMPONENT)))
7705 || stat->rank > 0)
7706 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7707 "variable", &stat->where);
7709 for (p = code->ext.alloc.list; p; p = p->next)
7710 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7712 gfc_ref *ref1, *ref2;
7713 bool found = true;
7715 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7716 ref1 = ref1->next, ref2 = ref2->next)
7718 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7719 continue;
7720 if (ref1->u.c.component->name != ref2->u.c.component->name)
7722 found = false;
7723 break;
7727 if (found)
7729 gfc_error ("Stat-variable at %L shall not be %sd within "
7730 "the same %s statement", &stat->where, fcn, fcn);
7731 break;
7736 /* Check the errmsg variable. */
7737 if (errmsg)
7739 if (!stat)
7740 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7741 &errmsg->where);
7743 gfc_check_vardef_context (errmsg, false, false, false,
7744 _("ERRMSG variable"));
7746 if ((errmsg->ts.type != BT_CHARACTER
7747 && !(errmsg->ref
7748 && (errmsg->ref->type == REF_ARRAY
7749 || errmsg->ref->type == REF_COMPONENT)))
7750 || errmsg->rank > 0 )
7751 gfc_error ("Errmsg-variable at %L must be a scalar CHARACTER "
7752 "variable", &errmsg->where);
7754 for (p = code->ext.alloc.list; p; p = p->next)
7755 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7757 gfc_ref *ref1, *ref2;
7758 bool found = true;
7760 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7761 ref1 = ref1->next, ref2 = ref2->next)
7763 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7764 continue;
7765 if (ref1->u.c.component->name != ref2->u.c.component->name)
7767 found = false;
7768 break;
7772 if (found)
7774 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7775 "the same %s statement", &errmsg->where, fcn, fcn);
7776 break;
7781 /* Check that an allocate-object appears only once in the statement. */
7783 for (p = code->ext.alloc.list; p; p = p->next)
7785 pe = p->expr;
7786 for (q = p->next; q; q = q->next)
7788 qe = q->expr;
7789 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7791 /* This is a potential collision. */
7792 gfc_ref *pr = pe->ref;
7793 gfc_ref *qr = qe->ref;
7795 /* Follow the references until
7796 a) They start to differ, in which case there is no error;
7797 you can deallocate a%b and a%c in a single statement
7798 b) Both of them stop, which is an error
7799 c) One of them stops, which is also an error. */
7800 while (1)
7802 if (pr == NULL && qr == NULL)
7804 gfc_error ("Allocate-object at %L also appears at %L",
7805 &pe->where, &qe->where);
7806 break;
7808 else if (pr != NULL && qr == NULL)
7810 gfc_error ("Allocate-object at %L is subobject of"
7811 " object at %L", &pe->where, &qe->where);
7812 break;
7814 else if (pr == NULL && qr != NULL)
7816 gfc_error ("Allocate-object at %L is subobject of"
7817 " object at %L", &qe->where, &pe->where);
7818 break;
7820 /* Here, pr != NULL && qr != NULL */
7821 gcc_assert(pr->type == qr->type);
7822 if (pr->type == REF_ARRAY)
7824 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7825 which are legal. */
7826 gcc_assert (qr->type == REF_ARRAY);
7828 if (pr->next && qr->next)
7830 int i;
7831 gfc_array_ref *par = &(pr->u.ar);
7832 gfc_array_ref *qar = &(qr->u.ar);
7834 for (i=0; i<par->dimen; i++)
7836 if ((par->start[i] != NULL
7837 || qar->start[i] != NULL)
7838 && gfc_dep_compare_expr (par->start[i],
7839 qar->start[i]) != 0)
7840 goto break_label;
7844 else
7846 if (pr->u.c.component->name != qr->u.c.component->name)
7847 break;
7850 pr = pr->next;
7851 qr = qr->next;
7853 break_label:
7859 if (strcmp (fcn, "ALLOCATE") == 0)
7861 bool arr_alloc_wo_spec = false;
7863 /* Resolving the expr3 in the loop over all objects to allocate would
7864 execute loop invariant code for each loop item. Therefore do it just
7865 once here. */
7866 if (code->expr3 && code->expr3->mold
7867 && code->expr3->ts.type == BT_DERIVED)
7869 /* Default initialization via MOLD (non-polymorphic). */
7870 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
7871 if (rhs != NULL)
7873 gfc_resolve_expr (rhs);
7874 gfc_free_expr (code->expr3);
7875 code->expr3 = rhs;
7878 for (a = code->ext.alloc.list; a; a = a->next)
7879 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
7881 if (arr_alloc_wo_spec && code->expr3)
7883 /* Mark the allocate to have to take the array specification
7884 from the expr3. */
7885 code->ext.alloc.arr_spec_from_expr3 = 1;
7888 else
7890 for (a = code->ext.alloc.list; a; a = a->next)
7891 resolve_deallocate_expr (a->expr);
7896 /************ SELECT CASE resolution subroutines ************/
7898 /* Callback function for our mergesort variant. Determines interval
7899 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
7900 op1 > op2. Assumes we're not dealing with the default case.
7901 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
7902 There are nine situations to check. */
7904 static int
7905 compare_cases (const gfc_case *op1, const gfc_case *op2)
7907 int retval;
7909 if (op1->low == NULL) /* op1 = (:L) */
7911 /* op2 = (:N), so overlap. */
7912 retval = 0;
7913 /* op2 = (M:) or (M:N), L < M */
7914 if (op2->low != NULL
7915 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7916 retval = -1;
7918 else if (op1->high == NULL) /* op1 = (K:) */
7920 /* op2 = (M:), so overlap. */
7921 retval = 0;
7922 /* op2 = (:N) or (M:N), K > N */
7923 if (op2->high != NULL
7924 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7925 retval = 1;
7927 else /* op1 = (K:L) */
7929 if (op2->low == NULL) /* op2 = (:N), K > N */
7930 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7931 ? 1 : 0;
7932 else if (op2->high == NULL) /* op2 = (M:), L < M */
7933 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7934 ? -1 : 0;
7935 else /* op2 = (M:N) */
7937 retval = 0;
7938 /* L < M */
7939 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7940 retval = -1;
7941 /* K > N */
7942 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7943 retval = 1;
7947 return retval;
7951 /* Merge-sort a double linked case list, detecting overlap in the
7952 process. LIST is the head of the double linked case list before it
7953 is sorted. Returns the head of the sorted list if we don't see any
7954 overlap, or NULL otherwise. */
7956 static gfc_case *
7957 check_case_overlap (gfc_case *list)
7959 gfc_case *p, *q, *e, *tail;
7960 int insize, nmerges, psize, qsize, cmp, overlap_seen;
7962 /* If the passed list was empty, return immediately. */
7963 if (!list)
7964 return NULL;
7966 overlap_seen = 0;
7967 insize = 1;
7969 /* Loop unconditionally. The only exit from this loop is a return
7970 statement, when we've finished sorting the case list. */
7971 for (;;)
7973 p = list;
7974 list = NULL;
7975 tail = NULL;
7977 /* Count the number of merges we do in this pass. */
7978 nmerges = 0;
7980 /* Loop while there exists a merge to be done. */
7981 while (p)
7983 int i;
7985 /* Count this merge. */
7986 nmerges++;
7988 /* Cut the list in two pieces by stepping INSIZE places
7989 forward in the list, starting from P. */
7990 psize = 0;
7991 q = p;
7992 for (i = 0; i < insize; i++)
7994 psize++;
7995 q = q->right;
7996 if (!q)
7997 break;
7999 qsize = insize;
8001 /* Now we have two lists. Merge them! */
8002 while (psize > 0 || (qsize > 0 && q != NULL))
8004 /* See from which the next case to merge comes from. */
8005 if (psize == 0)
8007 /* P is empty so the next case must come from Q. */
8008 e = q;
8009 q = q->right;
8010 qsize--;
8012 else if (qsize == 0 || q == NULL)
8014 /* Q is empty. */
8015 e = p;
8016 p = p->right;
8017 psize--;
8019 else
8021 cmp = compare_cases (p, q);
8022 if (cmp < 0)
8024 /* The whole case range for P is less than the
8025 one for Q. */
8026 e = p;
8027 p = p->right;
8028 psize--;
8030 else if (cmp > 0)
8032 /* The whole case range for Q is greater than
8033 the case range for P. */
8034 e = q;
8035 q = q->right;
8036 qsize--;
8038 else
8040 /* The cases overlap, or they are the same
8041 element in the list. Either way, we must
8042 issue an error and get the next case from P. */
8043 /* FIXME: Sort P and Q by line number. */
8044 gfc_error ("CASE label at %L overlaps with CASE "
8045 "label at %L", &p->where, &q->where);
8046 overlap_seen = 1;
8047 e = p;
8048 p = p->right;
8049 psize--;
8053 /* Add the next element to the merged list. */
8054 if (tail)
8055 tail->right = e;
8056 else
8057 list = e;
8058 e->left = tail;
8059 tail = e;
8062 /* P has now stepped INSIZE places along, and so has Q. So
8063 they're the same. */
8064 p = q;
8066 tail->right = NULL;
8068 /* If we have done only one merge or none at all, we've
8069 finished sorting the cases. */
8070 if (nmerges <= 1)
8072 if (!overlap_seen)
8073 return list;
8074 else
8075 return NULL;
8078 /* Otherwise repeat, merging lists twice the size. */
8079 insize *= 2;
8084 /* Check to see if an expression is suitable for use in a CASE statement.
8085 Makes sure that all case expressions are scalar constants of the same
8086 type. Return false if anything is wrong. */
8088 static bool
8089 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8091 if (e == NULL) return true;
8093 if (e->ts.type != case_expr->ts.type)
8095 gfc_error ("Expression in CASE statement at %L must be of type %s",
8096 &e->where, gfc_basic_typename (case_expr->ts.type));
8097 return false;
8100 /* C805 (R808) For a given case-construct, each case-value shall be of
8101 the same type as case-expr. For character type, length differences
8102 are allowed, but the kind type parameters shall be the same. */
8104 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8106 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8107 &e->where, case_expr->ts.kind);
8108 return false;
8111 /* Convert the case value kind to that of case expression kind,
8112 if needed */
8114 if (e->ts.kind != case_expr->ts.kind)
8115 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8117 if (e->rank != 0)
8119 gfc_error ("Expression in CASE statement at %L must be scalar",
8120 &e->where);
8121 return false;
8124 return true;
8128 /* Given a completely parsed select statement, we:
8130 - Validate all expressions and code within the SELECT.
8131 - Make sure that the selection expression is not of the wrong type.
8132 - Make sure that no case ranges overlap.
8133 - Eliminate unreachable cases and unreachable code resulting from
8134 removing case labels.
8136 The standard does allow unreachable cases, e.g. CASE (5:3). But
8137 they are a hassle for code generation, and to prevent that, we just
8138 cut them out here. This is not necessary for overlapping cases
8139 because they are illegal and we never even try to generate code.
8141 We have the additional caveat that a SELECT construct could have
8142 been a computed GOTO in the source code. Fortunately we can fairly
8143 easily work around that here: The case_expr for a "real" SELECT CASE
8144 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8145 we have to do is make sure that the case_expr is a scalar integer
8146 expression. */
8148 static void
8149 resolve_select (gfc_code *code, bool select_type)
8151 gfc_code *body;
8152 gfc_expr *case_expr;
8153 gfc_case *cp, *default_case, *tail, *head;
8154 int seen_unreachable;
8155 int seen_logical;
8156 int ncases;
8157 bt type;
8158 bool t;
8160 if (code->expr1 == NULL)
8162 /* This was actually a computed GOTO statement. */
8163 case_expr = code->expr2;
8164 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8165 gfc_error ("Selection expression in computed GOTO statement "
8166 "at %L must be a scalar integer expression",
8167 &case_expr->where);
8169 /* Further checking is not necessary because this SELECT was built
8170 by the compiler, so it should always be OK. Just move the
8171 case_expr from expr2 to expr so that we can handle computed
8172 GOTOs as normal SELECTs from here on. */
8173 code->expr1 = code->expr2;
8174 code->expr2 = NULL;
8175 return;
8178 case_expr = code->expr1;
8179 type = case_expr->ts.type;
8181 /* F08:C830. */
8182 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8184 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8185 &case_expr->where, gfc_typename (&case_expr->ts));
8187 /* Punt. Going on here just produce more garbage error messages. */
8188 return;
8191 /* F08:R842. */
8192 if (!select_type && case_expr->rank != 0)
8194 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8195 "expression", &case_expr->where);
8197 /* Punt. */
8198 return;
8201 /* Raise a warning if an INTEGER case value exceeds the range of
8202 the case-expr. Later, all expressions will be promoted to the
8203 largest kind of all case-labels. */
8205 if (type == BT_INTEGER)
8206 for (body = code->block; body; body = body->block)
8207 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8209 if (cp->low
8210 && gfc_check_integer_range (cp->low->value.integer,
8211 case_expr->ts.kind) != ARITH_OK)
8212 gfc_warning (0, "Expression in CASE statement at %L is "
8213 "not in the range of %s", &cp->low->where,
8214 gfc_typename (&case_expr->ts));
8216 if (cp->high
8217 && cp->low != cp->high
8218 && gfc_check_integer_range (cp->high->value.integer,
8219 case_expr->ts.kind) != ARITH_OK)
8220 gfc_warning (0, "Expression in CASE statement at %L is "
8221 "not in the range of %s", &cp->high->where,
8222 gfc_typename (&case_expr->ts));
8225 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8226 of the SELECT CASE expression and its CASE values. Walk the lists
8227 of case values, and if we find a mismatch, promote case_expr to
8228 the appropriate kind. */
8230 if (type == BT_LOGICAL || type == BT_INTEGER)
8232 for (body = code->block; body; body = body->block)
8234 /* Walk the case label list. */
8235 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8237 /* Intercept the DEFAULT case. It does not have a kind. */
8238 if (cp->low == NULL && cp->high == NULL)
8239 continue;
8241 /* Unreachable case ranges are discarded, so ignore. */
8242 if (cp->low != NULL && cp->high != NULL
8243 && cp->low != cp->high
8244 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8245 continue;
8247 if (cp->low != NULL
8248 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8249 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8251 if (cp->high != NULL
8252 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8253 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8258 /* Assume there is no DEFAULT case. */
8259 default_case = NULL;
8260 head = tail = NULL;
8261 ncases = 0;
8262 seen_logical = 0;
8264 for (body = code->block; body; body = body->block)
8266 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8267 t = true;
8268 seen_unreachable = 0;
8270 /* Walk the case label list, making sure that all case labels
8271 are legal. */
8272 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8274 /* Count the number of cases in the whole construct. */
8275 ncases++;
8277 /* Intercept the DEFAULT case. */
8278 if (cp->low == NULL && cp->high == NULL)
8280 if (default_case != NULL)
8282 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8283 "by a second DEFAULT CASE at %L",
8284 &default_case->where, &cp->where);
8285 t = false;
8286 break;
8288 else
8290 default_case = cp;
8291 continue;
8295 /* Deal with single value cases and case ranges. Errors are
8296 issued from the validation function. */
8297 if (!validate_case_label_expr (cp->low, case_expr)
8298 || !validate_case_label_expr (cp->high, case_expr))
8300 t = false;
8301 break;
8304 if (type == BT_LOGICAL
8305 && ((cp->low == NULL || cp->high == NULL)
8306 || cp->low != cp->high))
8308 gfc_error ("Logical range in CASE statement at %L is not "
8309 "allowed", &cp->low->where);
8310 t = false;
8311 break;
8314 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8316 int value;
8317 value = cp->low->value.logical == 0 ? 2 : 1;
8318 if (value & seen_logical)
8320 gfc_error ("Constant logical value in CASE statement "
8321 "is repeated at %L",
8322 &cp->low->where);
8323 t = false;
8324 break;
8326 seen_logical |= value;
8329 if (cp->low != NULL && cp->high != NULL
8330 && cp->low != cp->high
8331 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8333 if (warn_surprising)
8334 gfc_warning (OPT_Wsurprising,
8335 "Range specification at %L can never be matched",
8336 &cp->where);
8338 cp->unreachable = 1;
8339 seen_unreachable = 1;
8341 else
8343 /* If the case range can be matched, it can also overlap with
8344 other cases. To make sure it does not, we put it in a
8345 double linked list here. We sort that with a merge sort
8346 later on to detect any overlapping cases. */
8347 if (!head)
8349 head = tail = cp;
8350 head->right = head->left = NULL;
8352 else
8354 tail->right = cp;
8355 tail->right->left = tail;
8356 tail = tail->right;
8357 tail->right = NULL;
8362 /* It there was a failure in the previous case label, give up
8363 for this case label list. Continue with the next block. */
8364 if (!t)
8365 continue;
8367 /* See if any case labels that are unreachable have been seen.
8368 If so, we eliminate them. This is a bit of a kludge because
8369 the case lists for a single case statement (label) is a
8370 single forward linked lists. */
8371 if (seen_unreachable)
8373 /* Advance until the first case in the list is reachable. */
8374 while (body->ext.block.case_list != NULL
8375 && body->ext.block.case_list->unreachable)
8377 gfc_case *n = body->ext.block.case_list;
8378 body->ext.block.case_list = body->ext.block.case_list->next;
8379 n->next = NULL;
8380 gfc_free_case_list (n);
8383 /* Strip all other unreachable cases. */
8384 if (body->ext.block.case_list)
8386 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8388 if (cp->next->unreachable)
8390 gfc_case *n = cp->next;
8391 cp->next = cp->next->next;
8392 n->next = NULL;
8393 gfc_free_case_list (n);
8400 /* See if there were overlapping cases. If the check returns NULL,
8401 there was overlap. In that case we don't do anything. If head
8402 is non-NULL, we prepend the DEFAULT case. The sorted list can
8403 then used during code generation for SELECT CASE constructs with
8404 a case expression of a CHARACTER type. */
8405 if (head)
8407 head = check_case_overlap (head);
8409 /* Prepend the default_case if it is there. */
8410 if (head != NULL && default_case)
8412 default_case->left = NULL;
8413 default_case->right = head;
8414 head->left = default_case;
8418 /* Eliminate dead blocks that may be the result if we've seen
8419 unreachable case labels for a block. */
8420 for (body = code; body && body->block; body = body->block)
8422 if (body->block->ext.block.case_list == NULL)
8424 /* Cut the unreachable block from the code chain. */
8425 gfc_code *c = body->block;
8426 body->block = c->block;
8428 /* Kill the dead block, but not the blocks below it. */
8429 c->block = NULL;
8430 gfc_free_statements (c);
8434 /* More than two cases is legal but insane for logical selects.
8435 Issue a warning for it. */
8436 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8437 gfc_warning (OPT_Wsurprising,
8438 "Logical SELECT CASE block at %L has more that two cases",
8439 &code->loc);
8443 /* Check if a derived type is extensible. */
8445 bool
8446 gfc_type_is_extensible (gfc_symbol *sym)
8448 return !(sym->attr.is_bind_c || sym->attr.sequence
8449 || (sym->attr.is_class
8450 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8454 static void
8455 resolve_types (gfc_namespace *ns);
8457 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8458 correct as well as possibly the array-spec. */
8460 static void
8461 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8463 gfc_expr* target;
8465 gcc_assert (sym->assoc);
8466 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8468 /* If this is for SELECT TYPE, the target may not yet be set. In that
8469 case, return. Resolution will be called later manually again when
8470 this is done. */
8471 target = sym->assoc->target;
8472 if (!target)
8473 return;
8474 gcc_assert (!sym->assoc->dangling);
8476 if (resolve_target && !gfc_resolve_expr (target))
8477 return;
8479 /* For variable targets, we get some attributes from the target. */
8480 if (target->expr_type == EXPR_VARIABLE)
8482 gfc_symbol* tsym;
8484 gcc_assert (target->symtree);
8485 tsym = target->symtree->n.sym;
8487 sym->attr.asynchronous = tsym->attr.asynchronous;
8488 sym->attr.volatile_ = tsym->attr.volatile_;
8490 sym->attr.target = tsym->attr.target
8491 || gfc_expr_attr (target).pointer;
8492 if (is_subref_array (target))
8493 sym->attr.subref_array_pointer = 1;
8496 if (target->expr_type == EXPR_NULL)
8498 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8499 return;
8501 else if (target->ts.type == BT_UNKNOWN)
8503 gfc_error ("Selector at %L has no type", &target->where);
8504 return;
8507 /* Get type if this was not already set. Note that it can be
8508 some other type than the target in case this is a SELECT TYPE
8509 selector! So we must not update when the type is already there. */
8510 if (sym->ts.type == BT_UNKNOWN)
8511 sym->ts = target->ts;
8513 gcc_assert (sym->ts.type != BT_UNKNOWN);
8515 /* See if this is a valid association-to-variable. */
8516 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8517 && !gfc_has_vector_subscript (target));
8519 /* Finally resolve if this is an array or not. */
8520 if (sym->attr.dimension && target->rank == 0)
8522 /* primary.c makes the assumption that a reference to an associate
8523 name followed by a left parenthesis is an array reference. */
8524 if (sym->ts.type != BT_CHARACTER)
8525 gfc_error ("Associate-name %qs at %L is used as array",
8526 sym->name, &sym->declared_at);
8527 sym->attr.dimension = 0;
8528 return;
8532 /* We cannot deal with class selectors that need temporaries. */
8533 if (target->ts.type == BT_CLASS
8534 && gfc_ref_needs_temporary_p (target->ref))
8536 gfc_error ("CLASS selector at %L needs a temporary which is not "
8537 "yet implemented", &target->where);
8538 return;
8541 if (target->ts.type == BT_CLASS)
8542 gfc_fix_class_refs (target);
8544 if (target->rank != 0)
8546 gfc_array_spec *as;
8547 /* The rank may be incorrectly guessed at parsing, therefore make sure
8548 it is corrected now. */
8549 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8551 if (!sym->as)
8552 sym->as = gfc_get_array_spec ();
8553 as = sym->as;
8554 as->rank = target->rank;
8555 as->type = AS_DEFERRED;
8556 as->corank = gfc_get_corank (target);
8557 sym->attr.dimension = 1;
8558 if (as->corank != 0)
8559 sym->attr.codimension = 1;
8562 else
8564 /* target's rank is 0, but the type of the sym is still array valued,
8565 which has to be corrected. */
8566 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
8568 gfc_array_spec *as;
8569 symbol_attribute attr;
8570 /* The associated variable's type is still the array type
8571 correct this now. */
8572 gfc_typespec *ts = &target->ts;
8573 gfc_ref *ref;
8574 gfc_component *c;
8575 for (ref = target->ref; ref != NULL; ref = ref->next)
8577 switch (ref->type)
8579 case REF_COMPONENT:
8580 ts = &ref->u.c.component->ts;
8581 break;
8582 case REF_ARRAY:
8583 if (ts->type == BT_CLASS)
8584 ts = &ts->u.derived->components->ts;
8585 break;
8586 default:
8587 break;
8590 /* Create a scalar instance of the current class type. Because the
8591 rank of a class array goes into its name, the type has to be
8592 rebuild. The alternative of (re-)setting just the attributes
8593 and as in the current type, destroys the type also in other
8594 places. */
8595 as = NULL;
8596 sym->ts = *ts;
8597 sym->ts.type = BT_CLASS;
8598 attr = CLASS_DATA (sym)->attr;
8599 attr.class_ok = 0;
8600 attr.associate_var = 1;
8601 attr.dimension = attr.codimension = 0;
8602 attr.class_pointer = 1;
8603 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8604 gcc_unreachable ();
8605 /* Make sure the _vptr is set. */
8606 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8607 if (c->ts.u.derived == NULL)
8608 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8609 CLASS_DATA (sym)->attr.pointer = 1;
8610 CLASS_DATA (sym)->attr.class_pointer = 1;
8611 gfc_set_sym_referenced (sym->ts.u.derived);
8612 gfc_commit_symbol (sym->ts.u.derived);
8613 /* _vptr now has the _vtab in it, change it to the _vtype. */
8614 if (c->ts.u.derived->attr.vtab)
8615 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8616 c->ts.u.derived->ns->types_resolved = 0;
8617 resolve_types (c->ts.u.derived->ns);
8621 /* Mark this as an associate variable. */
8622 sym->attr.associate_var = 1;
8624 /* Fix up the type-spec for CHARACTER types. */
8625 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8627 if (!sym->ts.u.cl)
8628 sym->ts.u.cl = target->ts.u.cl;
8630 if (!sym->ts.u.cl->length && !sym->ts.deferred
8631 && target->expr_type == EXPR_CONSTANT)
8632 sym->ts.u.cl->length
8633 = gfc_get_int_expr (gfc_charlen_int_kind,
8634 NULL, target->value.character.length);
8637 /* If the target is a good class object, so is the associate variable. */
8638 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8639 sym->attr.class_ok = 1;
8643 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8644 array reference, where necessary. The symbols are artificial and so
8645 the dimension attribute and arrayspec can also be set. In addition,
8646 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8647 This is corrected here as well.*/
8649 static void
8650 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8651 int rank, gfc_ref *ref)
8653 gfc_ref *nref = (*expr1)->ref;
8654 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8655 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8656 (*expr1)->rank = rank;
8657 if (sym1->ts.type == BT_CLASS)
8659 if ((*expr1)->ts.type != BT_CLASS)
8660 (*expr1)->ts = sym1->ts;
8662 CLASS_DATA (sym1)->attr.dimension = 1;
8663 if (CLASS_DATA (sym1)->as == NULL && sym2)
8664 CLASS_DATA (sym1)->as
8665 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8667 else
8669 sym1->attr.dimension = 1;
8670 if (sym1->as == NULL && sym2)
8671 sym1->as = gfc_copy_array_spec (sym2->as);
8674 for (; nref; nref = nref->next)
8675 if (nref->next == NULL)
8676 break;
8678 if (ref && nref && nref->type != REF_ARRAY)
8679 nref->next = gfc_copy_ref (ref);
8680 else if (ref && !nref)
8681 (*expr1)->ref = gfc_copy_ref (ref);
8685 static gfc_expr *
8686 build_loc_call (gfc_expr *sym_expr)
8688 gfc_expr *loc_call;
8689 loc_call = gfc_get_expr ();
8690 loc_call->expr_type = EXPR_FUNCTION;
8691 gfc_get_sym_tree ("loc", gfc_current_ns, &loc_call->symtree, false);
8692 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8693 loc_call->symtree->n.sym->attr.intrinsic = 1;
8694 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8695 gfc_commit_symbol (loc_call->symtree->n.sym);
8696 loc_call->ts.type = BT_INTEGER;
8697 loc_call->ts.kind = gfc_index_integer_kind;
8698 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8699 loc_call->value.function.actual = gfc_get_actual_arglist ();
8700 loc_call->value.function.actual->expr = sym_expr;
8701 loc_call->where = sym_expr->where;
8702 return loc_call;
8705 /* Resolve a SELECT TYPE statement. */
8707 static void
8708 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8710 gfc_symbol *selector_type;
8711 gfc_code *body, *new_st, *if_st, *tail;
8712 gfc_code *class_is = NULL, *default_case = NULL;
8713 gfc_case *c;
8714 gfc_symtree *st;
8715 char name[GFC_MAX_SYMBOL_LEN];
8716 gfc_namespace *ns;
8717 int error = 0;
8718 int rank = 0;
8719 gfc_ref* ref = NULL;
8720 gfc_expr *selector_expr = NULL;
8722 ns = code->ext.block.ns;
8723 gfc_resolve (ns);
8725 /* Check for F03:C813. */
8726 if (code->expr1->ts.type != BT_CLASS
8727 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8729 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8730 "at %L", &code->loc);
8731 return;
8734 if (!code->expr1->symtree->n.sym->attr.class_ok)
8735 return;
8737 if (code->expr2)
8739 if (code->expr1->symtree->n.sym->attr.untyped)
8740 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8741 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8743 if (code->expr2->rank && CLASS_DATA (code->expr1)->as)
8744 CLASS_DATA (code->expr1)->as->rank = code->expr2->rank;
8746 /* F2008: C803 The selector expression must not be coindexed. */
8747 if (gfc_is_coindexed (code->expr2))
8749 gfc_error ("Selector at %L must not be coindexed",
8750 &code->expr2->where);
8751 return;
8755 else
8757 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8759 if (gfc_is_coindexed (code->expr1))
8761 gfc_error ("Selector at %L must not be coindexed",
8762 &code->expr1->where);
8763 return;
8767 /* Loop over TYPE IS / CLASS IS cases. */
8768 for (body = code->block; body; body = body->block)
8770 c = body->ext.block.case_list;
8772 if (!error)
8774 /* Check for repeated cases. */
8775 for (tail = code->block; tail; tail = tail->block)
8777 gfc_case *d = tail->ext.block.case_list;
8778 if (tail == body)
8779 break;
8781 if (c->ts.type == d->ts.type
8782 && ((c->ts.type == BT_DERIVED
8783 && c->ts.u.derived && d->ts.u.derived
8784 && !strcmp (c->ts.u.derived->name,
8785 d->ts.u.derived->name))
8786 || c->ts.type == BT_UNKNOWN
8787 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8788 && c->ts.kind == d->ts.kind)))
8790 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8791 &c->where, &d->where);
8792 return;
8797 /* Check F03:C815. */
8798 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8799 && !selector_type->attr.unlimited_polymorphic
8800 && !gfc_type_is_extensible (c->ts.u.derived))
8802 gfc_error ("Derived type %qs at %L must be extensible",
8803 c->ts.u.derived->name, &c->where);
8804 error++;
8805 continue;
8808 /* Check F03:C816. */
8809 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
8810 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
8811 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
8813 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8814 gfc_error ("Derived type %qs at %L must be an extension of %qs",
8815 c->ts.u.derived->name, &c->where, selector_type->name);
8816 else
8817 gfc_error ("Unexpected intrinsic type %qs at %L",
8818 gfc_basic_typename (c->ts.type), &c->where);
8819 error++;
8820 continue;
8823 /* Check F03:C814. */
8824 if (c->ts.type == BT_CHARACTER
8825 && (c->ts.u.cl->length != NULL || c->ts.deferred))
8827 gfc_error ("The type-spec at %L shall specify that each length "
8828 "type parameter is assumed", &c->where);
8829 error++;
8830 continue;
8833 /* Intercept the DEFAULT case. */
8834 if (c->ts.type == BT_UNKNOWN)
8836 /* Check F03:C818. */
8837 if (default_case)
8839 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8840 "by a second DEFAULT CASE at %L",
8841 &default_case->ext.block.case_list->where, &c->where);
8842 error++;
8843 continue;
8846 default_case = body;
8850 if (error > 0)
8851 return;
8853 /* Transform SELECT TYPE statement to BLOCK and associate selector to
8854 target if present. If there are any EXIT statements referring to the
8855 SELECT TYPE construct, this is no problem because the gfc_code
8856 reference stays the same and EXIT is equally possible from the BLOCK
8857 it is changed to. */
8858 code->op = EXEC_BLOCK;
8859 if (code->expr2)
8861 gfc_association_list* assoc;
8863 assoc = gfc_get_association_list ();
8864 assoc->st = code->expr1->symtree;
8865 assoc->target = gfc_copy_expr (code->expr2);
8866 assoc->target->where = code->expr2->where;
8867 /* assoc->variable will be set by resolve_assoc_var. */
8869 code->ext.block.assoc = assoc;
8870 code->expr1->symtree->n.sym->assoc = assoc;
8872 resolve_assoc_var (code->expr1->symtree->n.sym, false);
8874 else
8875 code->ext.block.assoc = NULL;
8877 /* Ensure that the selector rank and arrayspec are available to
8878 correct expressions in which they might be missing. */
8879 if (code->expr2 && code->expr2->rank)
8881 rank = code->expr2->rank;
8882 for (ref = code->expr2->ref; ref; ref = ref->next)
8883 if (ref->next == NULL)
8884 break;
8885 if (ref && ref->type == REF_ARRAY)
8886 ref = gfc_copy_ref (ref);
8888 /* Fixup expr1 if necessary. */
8889 if (rank)
8890 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
8892 else if (code->expr1->rank)
8894 rank = code->expr1->rank;
8895 for (ref = code->expr1->ref; ref; ref = ref->next)
8896 if (ref->next == NULL)
8897 break;
8898 if (ref && ref->type == REF_ARRAY)
8899 ref = gfc_copy_ref (ref);
8902 /* Add EXEC_SELECT to switch on type. */
8903 new_st = gfc_get_code (code->op);
8904 new_st->expr1 = code->expr1;
8905 new_st->expr2 = code->expr2;
8906 new_st->block = code->block;
8907 code->expr1 = code->expr2 = NULL;
8908 code->block = NULL;
8909 if (!ns->code)
8910 ns->code = new_st;
8911 else
8912 ns->code->next = new_st;
8913 code = new_st;
8914 code->op = EXEC_SELECT_TYPE;
8916 /* Use the intrinsic LOC function to generate an integer expression
8917 for the vtable of the selector. Note that the rank of the selector
8918 expression has to be set to zero. */
8919 gfc_add_vptr_component (code->expr1);
8920 code->expr1->rank = 0;
8921 code->expr1 = build_loc_call (code->expr1);
8922 selector_expr = code->expr1->value.function.actual->expr;
8924 /* Loop over TYPE IS / CLASS IS cases. */
8925 for (body = code->block; body; body = body->block)
8927 gfc_symbol *vtab;
8928 gfc_expr *e;
8929 c = body->ext.block.case_list;
8931 /* Generate an index integer expression for address of the
8932 TYPE/CLASS vtable and store it in c->low. The hash expression
8933 is stored in c->high and is used to resolve intrinsic cases. */
8934 if (c->ts.type != BT_UNKNOWN)
8936 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8938 vtab = gfc_find_derived_vtab (c->ts.u.derived);
8939 gcc_assert (vtab);
8940 c->high = gfc_get_int_expr (gfc_default_integer_kind, NULL,
8941 c->ts.u.derived->hash_value);
8943 else
8945 vtab = gfc_find_vtab (&c->ts);
8946 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
8947 e = CLASS_DATA (vtab)->initializer;
8948 c->high = gfc_copy_expr (e);
8951 e = gfc_lval_expr_from_sym (vtab);
8952 c->low = build_loc_call (e);
8954 else
8955 continue;
8957 /* Associate temporary to selector. This should only be done
8958 when this case is actually true, so build a new ASSOCIATE
8959 that does precisely this here (instead of using the
8960 'global' one). */
8962 if (c->ts.type == BT_CLASS)
8963 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
8964 else if (c->ts.type == BT_DERIVED)
8965 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
8966 else if (c->ts.type == BT_CHARACTER)
8968 HOST_WIDE_INT charlen = 0;
8969 if (c->ts.u.cl && c->ts.u.cl->length
8970 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
8971 charlen = gfc_mpz_get_hwi (c->ts.u.cl->length->value.integer);
8972 snprintf (name, sizeof (name),
8973 "__tmp_%s_" HOST_WIDE_INT_PRINT_DEC "_%d",
8974 gfc_basic_typename (c->ts.type), charlen, c->ts.kind);
8976 else
8977 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
8978 c->ts.kind);
8980 st = gfc_find_symtree (ns->sym_root, name);
8981 gcc_assert (st->n.sym->assoc);
8982 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
8983 st->n.sym->assoc->target->where = selector_expr->where;
8984 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
8986 gfc_add_data_component (st->n.sym->assoc->target);
8987 /* Fixup the target expression if necessary. */
8988 if (rank)
8989 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
8992 new_st = gfc_get_code (EXEC_BLOCK);
8993 new_st->ext.block.ns = gfc_build_block_ns (ns);
8994 new_st->ext.block.ns->code = body->next;
8995 body->next = new_st;
8997 /* Chain in the new list only if it is marked as dangling. Otherwise
8998 there is a CASE label overlap and this is already used. Just ignore,
8999 the error is diagnosed elsewhere. */
9000 if (st->n.sym->assoc->dangling)
9002 new_st->ext.block.assoc = st->n.sym->assoc;
9003 st->n.sym->assoc->dangling = 0;
9006 resolve_assoc_var (st->n.sym, false);
9009 /* Take out CLASS IS cases for separate treatment. */
9010 body = code;
9011 while (body && body->block)
9013 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9015 /* Add to class_is list. */
9016 if (class_is == NULL)
9018 class_is = body->block;
9019 tail = class_is;
9021 else
9023 for (tail = class_is; tail->block; tail = tail->block) ;
9024 tail->block = body->block;
9025 tail = tail->block;
9027 /* Remove from EXEC_SELECT list. */
9028 body->block = body->block->block;
9029 tail->block = NULL;
9031 else
9032 body = body->block;
9035 if (class_is)
9037 gfc_symbol *vtab;
9039 if (!default_case)
9041 /* Add a default case to hold the CLASS IS cases. */
9042 for (tail = code; tail->block; tail = tail->block) ;
9043 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9044 tail = tail->block;
9045 tail->ext.block.case_list = gfc_get_case ();
9046 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9047 tail->next = NULL;
9048 default_case = tail;
9051 /* More than one CLASS IS block? */
9052 if (class_is->block)
9054 gfc_code **c1,*c2;
9055 bool swapped;
9056 /* Sort CLASS IS blocks by extension level. */
9059 swapped = false;
9060 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9062 c2 = (*c1)->block;
9063 /* F03:C817 (check for doubles). */
9064 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9065 == c2->ext.block.case_list->ts.u.derived->hash_value)
9067 gfc_error ("Double CLASS IS block in SELECT TYPE "
9068 "statement at %L",
9069 &c2->ext.block.case_list->where);
9070 return;
9072 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9073 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9075 /* Swap. */
9076 (*c1)->block = c2->block;
9077 c2->block = *c1;
9078 *c1 = c2;
9079 swapped = true;
9083 while (swapped);
9086 /* Generate IF chain. */
9087 if_st = gfc_get_code (EXEC_IF);
9088 new_st = if_st;
9089 for (body = class_is; body; body = body->block)
9091 new_st->block = gfc_get_code (EXEC_IF);
9092 new_st = new_st->block;
9093 /* Set up IF condition: Call _gfortran_is_extension_of. */
9094 new_st->expr1 = gfc_get_expr ();
9095 new_st->expr1->expr_type = EXPR_FUNCTION;
9096 new_st->expr1->ts.type = BT_LOGICAL;
9097 new_st->expr1->ts.kind = 4;
9098 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9099 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9100 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9101 /* Set up arguments. */
9102 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9103 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9104 new_st->expr1->value.function.actual->expr->where = code->loc;
9105 new_st->expr1->where = code->loc;
9106 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9107 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9108 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9109 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9110 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9111 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9112 new_st->next = body->next;
9114 if (default_case->next)
9116 new_st->block = gfc_get_code (EXEC_IF);
9117 new_st = new_st->block;
9118 new_st->next = default_case->next;
9121 /* Replace CLASS DEFAULT code by the IF chain. */
9122 default_case->next = if_st;
9125 /* Resolve the internal code. This can not be done earlier because
9126 it requires that the sym->assoc of selectors is set already. */
9127 gfc_current_ns = ns;
9128 gfc_resolve_blocks (code->block, gfc_current_ns);
9129 gfc_current_ns = old_ns;
9131 if (ref)
9132 free (ref);
9136 /* Resolve a transfer statement. This is making sure that:
9137 -- a derived type being transferred has only non-pointer components
9138 -- a derived type being transferred doesn't have private components, unless
9139 it's being transferred from the module where the type was defined
9140 -- we're not trying to transfer a whole assumed size array. */
9142 static void
9143 resolve_transfer (gfc_code *code)
9145 gfc_typespec *ts;
9146 gfc_symbol *sym, *derived;
9147 gfc_ref *ref;
9148 gfc_expr *exp;
9149 bool write = false;
9150 bool formatted = false;
9151 gfc_dt *dt = code->ext.dt;
9152 gfc_symbol *dtio_sub = NULL;
9154 exp = code->expr1;
9156 while (exp != NULL && exp->expr_type == EXPR_OP
9157 && exp->value.op.op == INTRINSIC_PARENTHESES)
9158 exp = exp->value.op.op1;
9160 if (exp && exp->expr_type == EXPR_NULL
9161 && code->ext.dt)
9163 gfc_error ("Invalid context for NULL () intrinsic at %L",
9164 &exp->where);
9165 return;
9168 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9169 && exp->expr_type != EXPR_FUNCTION
9170 && exp->expr_type != EXPR_STRUCTURE))
9171 return;
9173 /* If we are reading, the variable will be changed. Note that
9174 code->ext.dt may be NULL if the TRANSFER is related to
9175 an INQUIRE statement -- but in this case, we are not reading, either. */
9176 if (dt && dt->dt_io_kind->value.iokind == M_READ
9177 && !gfc_check_vardef_context (exp, false, false, false,
9178 _("item in READ")))
9179 return;
9181 ts = exp->expr_type == EXPR_STRUCTURE ? &exp->ts : &exp->symtree->n.sym->ts;
9183 /* Go to actual component transferred. */
9184 for (ref = exp->ref; ref; ref = ref->next)
9185 if (ref->type == REF_COMPONENT)
9186 ts = &ref->u.c.component->ts;
9188 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9189 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9191 if (ts->type == BT_DERIVED || ts->type == BT_CLASS)
9192 derived = ts->u.derived;
9193 else
9194 derived = ts->u.derived->components->ts.u.derived;
9196 if (dt->format_expr)
9198 char *fmt;
9199 fmt = gfc_widechar_to_char (dt->format_expr->value.character.string,
9200 -1);
9201 if (strtok (fmt, "DT") != NULL)
9202 formatted = true;
9204 else if (dt->format_label == &format_asterisk)
9206 /* List directed io must call the formatted DTIO procedure. */
9207 formatted = true;
9210 write = dt->dt_io_kind->value.iokind == M_WRITE
9211 || dt->dt_io_kind->value.iokind == M_PRINT;
9212 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9214 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9216 dt->udtio = exp;
9217 sym = exp->symtree->n.sym->ns->proc_name;
9218 /* Check to see if this is a nested DTIO call, with the
9219 dummy as the io-list object. */
9220 if (sym && sym == dtio_sub && sym->formal
9221 && sym->formal->sym == exp->symtree->n.sym
9222 && exp->ref == NULL)
9224 if (!sym->attr.recursive)
9226 gfc_error ("DTIO %s procedure at %L must be recursive",
9227 sym->name, &sym->declared_at);
9228 return;
9234 if (ts->type == BT_CLASS && dtio_sub == NULL)
9236 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9237 "it is processed by a defined input/output procedure",
9238 &code->loc);
9239 return;
9242 if (ts->type == BT_DERIVED)
9244 /* Check that transferred derived type doesn't contain POINTER
9245 components unless it is processed by a defined input/output
9246 procedure". */
9247 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9249 gfc_error ("Data transfer element at %L cannot have POINTER "
9250 "components unless it is processed by a defined "
9251 "input/output procedure", &code->loc);
9252 return;
9255 /* F08:C935. */
9256 if (ts->u.derived->attr.proc_pointer_comp)
9258 gfc_error ("Data transfer element at %L cannot have "
9259 "procedure pointer components", &code->loc);
9260 return;
9263 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9265 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9266 "components unless it is processed by a defined "
9267 "input/output procedure", &code->loc);
9268 return;
9271 /* C_PTR and C_FUNPTR have private components which means they can not
9272 be printed. However, if -std=gnu and not -pedantic, allow
9273 the component to be printed to help debugging. */
9274 if (ts->u.derived->ts.f90_type == BT_VOID)
9276 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9277 "cannot have PRIVATE components", &code->loc))
9278 return;
9280 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9282 gfc_error ("Data transfer element at %L cannot have "
9283 "PRIVATE components unless it is processed by "
9284 "a defined input/output procedure", &code->loc);
9285 return;
9289 if (exp->expr_type == EXPR_STRUCTURE)
9290 return;
9292 sym = exp->symtree->n.sym;
9294 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9295 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9297 gfc_error ("Data transfer element at %L cannot be a full reference to "
9298 "an assumed-size array", &code->loc);
9299 return;
9302 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9303 exp->symtree->n.sym->attr.asynchronous = 1;
9307 /*********** Toplevel code resolution subroutines ***********/
9309 /* Find the set of labels that are reachable from this block. We also
9310 record the last statement in each block. */
9312 static void
9313 find_reachable_labels (gfc_code *block)
9315 gfc_code *c;
9317 if (!block)
9318 return;
9320 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9322 /* Collect labels in this block. We don't keep those corresponding
9323 to END {IF|SELECT}, these are checked in resolve_branch by going
9324 up through the code_stack. */
9325 for (c = block; c; c = c->next)
9327 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9328 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9331 /* Merge with labels from parent block. */
9332 if (cs_base->prev)
9334 gcc_assert (cs_base->prev->reachable_labels);
9335 bitmap_ior_into (cs_base->reachable_labels,
9336 cs_base->prev->reachable_labels);
9341 static void
9342 resolve_lock_unlock_event (gfc_code *code)
9344 if (code->expr1->expr_type == EXPR_FUNCTION
9345 && code->expr1->value.function.isym
9346 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9347 remove_caf_get_intrinsic (code->expr1);
9349 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9350 && (code->expr1->ts.type != BT_DERIVED
9351 || code->expr1->expr_type != EXPR_VARIABLE
9352 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9353 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9354 || code->expr1->rank != 0
9355 || (!gfc_is_coarray (code->expr1) &&
9356 !gfc_is_coindexed (code->expr1))))
9357 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9358 &code->expr1->where);
9359 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9360 && (code->expr1->ts.type != BT_DERIVED
9361 || code->expr1->expr_type != EXPR_VARIABLE
9362 || code->expr1->ts.u.derived->from_intmod
9363 != INTMOD_ISO_FORTRAN_ENV
9364 || code->expr1->ts.u.derived->intmod_sym_id
9365 != ISOFORTRAN_EVENT_TYPE
9366 || code->expr1->rank != 0))
9367 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9368 &code->expr1->where);
9369 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9370 && !gfc_is_coindexed (code->expr1))
9371 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9372 &code->expr1->where);
9373 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9374 gfc_error ("Event variable argument at %L must be a coarray but not "
9375 "coindexed", &code->expr1->where);
9377 /* Check STAT. */
9378 if (code->expr2
9379 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9380 || code->expr2->expr_type != EXPR_VARIABLE))
9381 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9382 &code->expr2->where);
9384 if (code->expr2
9385 && !gfc_check_vardef_context (code->expr2, false, false, false,
9386 _("STAT variable")))
9387 return;
9389 /* Check ERRMSG. */
9390 if (code->expr3
9391 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9392 || code->expr3->expr_type != EXPR_VARIABLE))
9393 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9394 &code->expr3->where);
9396 if (code->expr3
9397 && !gfc_check_vardef_context (code->expr3, false, false, false,
9398 _("ERRMSG variable")))
9399 return;
9401 /* Check for LOCK the ACQUIRED_LOCK. */
9402 if (code->op != EXEC_EVENT_WAIT && code->expr4
9403 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9404 || code->expr4->expr_type != EXPR_VARIABLE))
9405 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9406 "variable", &code->expr4->where);
9408 if (code->op != EXEC_EVENT_WAIT && code->expr4
9409 && !gfc_check_vardef_context (code->expr4, false, false, false,
9410 _("ACQUIRED_LOCK variable")))
9411 return;
9413 /* Check for EVENT WAIT the UNTIL_COUNT. */
9414 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9416 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9417 || code->expr4->rank != 0)
9418 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9419 "expression", &code->expr4->where);
9424 static void
9425 resolve_critical (gfc_code *code)
9427 gfc_symtree *symtree;
9428 gfc_symbol *lock_type;
9429 char name[GFC_MAX_SYMBOL_LEN];
9430 static int serial = 0;
9432 if (flag_coarray != GFC_FCOARRAY_LIB)
9433 return;
9435 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9436 GFC_PREFIX ("lock_type"));
9437 if (symtree)
9438 lock_type = symtree->n.sym;
9439 else
9441 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9442 false) != 0)
9443 gcc_unreachable ();
9444 lock_type = symtree->n.sym;
9445 lock_type->attr.flavor = FL_DERIVED;
9446 lock_type->attr.zero_comp = 1;
9447 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9448 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9451 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9452 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9453 gcc_unreachable ();
9455 code->resolved_sym = symtree->n.sym;
9456 symtree->n.sym->attr.flavor = FL_VARIABLE;
9457 symtree->n.sym->attr.referenced = 1;
9458 symtree->n.sym->attr.artificial = 1;
9459 symtree->n.sym->attr.codimension = 1;
9460 symtree->n.sym->ts.type = BT_DERIVED;
9461 symtree->n.sym->ts.u.derived = lock_type;
9462 symtree->n.sym->as = gfc_get_array_spec ();
9463 symtree->n.sym->as->corank = 1;
9464 symtree->n.sym->as->type = AS_EXPLICIT;
9465 symtree->n.sym->as->cotype = AS_EXPLICIT;
9466 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9467 NULL, 1);
9468 gfc_commit_symbols();
9472 static void
9473 resolve_sync (gfc_code *code)
9475 /* Check imageset. The * case matches expr1 == NULL. */
9476 if (code->expr1)
9478 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9479 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9480 "INTEGER expression", &code->expr1->where);
9481 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9482 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9483 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9484 &code->expr1->where);
9485 else if (code->expr1->expr_type == EXPR_ARRAY
9486 && gfc_simplify_expr (code->expr1, 0))
9488 gfc_constructor *cons;
9489 cons = gfc_constructor_first (code->expr1->value.constructor);
9490 for (; cons; cons = gfc_constructor_next (cons))
9491 if (cons->expr->expr_type == EXPR_CONSTANT
9492 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9493 gfc_error ("Imageset argument at %L must between 1 and "
9494 "num_images()", &cons->expr->where);
9498 /* Check STAT. */
9499 if (code->expr2
9500 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9501 || code->expr2->expr_type != EXPR_VARIABLE))
9502 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9503 &code->expr2->where);
9505 /* Check ERRMSG. */
9506 if (code->expr3
9507 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9508 || code->expr3->expr_type != EXPR_VARIABLE))
9509 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9510 &code->expr3->where);
9514 /* Given a branch to a label, see if the branch is conforming.
9515 The code node describes where the branch is located. */
9517 static void
9518 resolve_branch (gfc_st_label *label, gfc_code *code)
9520 code_stack *stack;
9522 if (label == NULL)
9523 return;
9525 /* Step one: is this a valid branching target? */
9527 if (label->defined == ST_LABEL_UNKNOWN)
9529 gfc_error ("Label %d referenced at %L is never defined", label->value,
9530 &code->loc);
9531 return;
9534 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9536 gfc_error ("Statement at %L is not a valid branch target statement "
9537 "for the branch statement at %L", &label->where, &code->loc);
9538 return;
9541 /* Step two: make sure this branch is not a branch to itself ;-) */
9543 if (code->here == label)
9545 gfc_warning (0,
9546 "Branch at %L may result in an infinite loop", &code->loc);
9547 return;
9550 /* Step three: See if the label is in the same block as the
9551 branching statement. The hard work has been done by setting up
9552 the bitmap reachable_labels. */
9554 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9556 /* Check now whether there is a CRITICAL construct; if so, check
9557 whether the label is still visible outside of the CRITICAL block,
9558 which is invalid. */
9559 for (stack = cs_base; stack; stack = stack->prev)
9561 if (stack->current->op == EXEC_CRITICAL
9562 && bitmap_bit_p (stack->reachable_labels, label->value))
9563 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9564 "label at %L", &code->loc, &label->where);
9565 else if (stack->current->op == EXEC_DO_CONCURRENT
9566 && bitmap_bit_p (stack->reachable_labels, label->value))
9567 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9568 "for label at %L", &code->loc, &label->where);
9571 return;
9574 /* Step four: If we haven't found the label in the bitmap, it may
9575 still be the label of the END of the enclosing block, in which
9576 case we find it by going up the code_stack. */
9578 for (stack = cs_base; stack; stack = stack->prev)
9580 if (stack->current->next && stack->current->next->here == label)
9581 break;
9582 if (stack->current->op == EXEC_CRITICAL)
9584 /* Note: A label at END CRITICAL does not leave the CRITICAL
9585 construct as END CRITICAL is still part of it. */
9586 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9587 " at %L", &code->loc, &label->where);
9588 return;
9590 else if (stack->current->op == EXEC_DO_CONCURRENT)
9592 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9593 "label at %L", &code->loc, &label->where);
9594 return;
9598 if (stack)
9600 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9601 return;
9604 /* The label is not in an enclosing block, so illegal. This was
9605 allowed in Fortran 66, so we allow it as extension. No
9606 further checks are necessary in this case. */
9607 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9608 "as the GOTO statement at %L", &label->where,
9609 &code->loc);
9610 return;
9614 /* Check whether EXPR1 has the same shape as EXPR2. */
9616 static bool
9617 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9619 mpz_t shape[GFC_MAX_DIMENSIONS];
9620 mpz_t shape2[GFC_MAX_DIMENSIONS];
9621 bool result = false;
9622 int i;
9624 /* Compare the rank. */
9625 if (expr1->rank != expr2->rank)
9626 return result;
9628 /* Compare the size of each dimension. */
9629 for (i=0; i<expr1->rank; i++)
9631 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9632 goto ignore;
9634 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9635 goto ignore;
9637 if (mpz_cmp (shape[i], shape2[i]))
9638 goto over;
9641 /* When either of the two expression is an assumed size array, we
9642 ignore the comparison of dimension sizes. */
9643 ignore:
9644 result = true;
9646 over:
9647 gfc_clear_shape (shape, i);
9648 gfc_clear_shape (shape2, i);
9649 return result;
9653 /* Check whether a WHERE assignment target or a WHERE mask expression
9654 has the same shape as the outmost WHERE mask expression. */
9656 static void
9657 resolve_where (gfc_code *code, gfc_expr *mask)
9659 gfc_code *cblock;
9660 gfc_code *cnext;
9661 gfc_expr *e = NULL;
9663 cblock = code->block;
9665 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9666 In case of nested WHERE, only the outmost one is stored. */
9667 if (mask == NULL) /* outmost WHERE */
9668 e = cblock->expr1;
9669 else /* inner WHERE */
9670 e = mask;
9672 while (cblock)
9674 if (cblock->expr1)
9676 /* Check if the mask-expr has a consistent shape with the
9677 outmost WHERE mask-expr. */
9678 if (!resolve_where_shape (cblock->expr1, e))
9679 gfc_error ("WHERE mask at %L has inconsistent shape",
9680 &cblock->expr1->where);
9683 /* the assignment statement of a WHERE statement, or the first
9684 statement in where-body-construct of a WHERE construct */
9685 cnext = cblock->next;
9686 while (cnext)
9688 switch (cnext->op)
9690 /* WHERE assignment statement */
9691 case EXEC_ASSIGN:
9693 /* Check shape consistent for WHERE assignment target. */
9694 if (e && !resolve_where_shape (cnext->expr1, e))
9695 gfc_error ("WHERE assignment target at %L has "
9696 "inconsistent shape", &cnext->expr1->where);
9697 break;
9700 case EXEC_ASSIGN_CALL:
9701 resolve_call (cnext);
9702 if (!cnext->resolved_sym->attr.elemental)
9703 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9704 &cnext->ext.actual->expr->where);
9705 break;
9707 /* WHERE or WHERE construct is part of a where-body-construct */
9708 case EXEC_WHERE:
9709 resolve_where (cnext, e);
9710 break;
9712 default:
9713 gfc_error ("Unsupported statement inside WHERE at %L",
9714 &cnext->loc);
9716 /* the next statement within the same where-body-construct */
9717 cnext = cnext->next;
9719 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9720 cblock = cblock->block;
9725 /* Resolve assignment in FORALL construct.
9726 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9727 FORALL index variables. */
9729 static void
9730 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9732 int n;
9734 for (n = 0; n < nvar; n++)
9736 gfc_symbol *forall_index;
9738 forall_index = var_expr[n]->symtree->n.sym;
9740 /* Check whether the assignment target is one of the FORALL index
9741 variable. */
9742 if ((code->expr1->expr_type == EXPR_VARIABLE)
9743 && (code->expr1->symtree->n.sym == forall_index))
9744 gfc_error ("Assignment to a FORALL index variable at %L",
9745 &code->expr1->where);
9746 else
9748 /* If one of the FORALL index variables doesn't appear in the
9749 assignment variable, then there could be a many-to-one
9750 assignment. Emit a warning rather than an error because the
9751 mask could be resolving this problem. */
9752 if (!find_forall_index (code->expr1, forall_index, 0))
9753 gfc_warning (0, "The FORALL with index %qs is not used on the "
9754 "left side of the assignment at %L and so might "
9755 "cause multiple assignment to this object",
9756 var_expr[n]->symtree->name, &code->expr1->where);
9762 /* Resolve WHERE statement in FORALL construct. */
9764 static void
9765 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9766 gfc_expr **var_expr)
9768 gfc_code *cblock;
9769 gfc_code *cnext;
9771 cblock = code->block;
9772 while (cblock)
9774 /* the assignment statement of a WHERE statement, or the first
9775 statement in where-body-construct of a WHERE construct */
9776 cnext = cblock->next;
9777 while (cnext)
9779 switch (cnext->op)
9781 /* WHERE assignment statement */
9782 case EXEC_ASSIGN:
9783 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9784 break;
9786 /* WHERE operator assignment statement */
9787 case EXEC_ASSIGN_CALL:
9788 resolve_call (cnext);
9789 if (!cnext->resolved_sym->attr.elemental)
9790 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9791 &cnext->ext.actual->expr->where);
9792 break;
9794 /* WHERE or WHERE construct is part of a where-body-construct */
9795 case EXEC_WHERE:
9796 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9797 break;
9799 default:
9800 gfc_error ("Unsupported statement inside WHERE at %L",
9801 &cnext->loc);
9803 /* the next statement within the same where-body-construct */
9804 cnext = cnext->next;
9806 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9807 cblock = cblock->block;
9812 /* Traverse the FORALL body to check whether the following errors exist:
9813 1. For assignment, check if a many-to-one assignment happens.
9814 2. For WHERE statement, check the WHERE body to see if there is any
9815 many-to-one assignment. */
9817 static void
9818 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
9820 gfc_code *c;
9822 c = code->block->next;
9823 while (c)
9825 switch (c->op)
9827 case EXEC_ASSIGN:
9828 case EXEC_POINTER_ASSIGN:
9829 gfc_resolve_assign_in_forall (c, nvar, var_expr);
9830 break;
9832 case EXEC_ASSIGN_CALL:
9833 resolve_call (c);
9834 break;
9836 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
9837 there is no need to handle it here. */
9838 case EXEC_FORALL:
9839 break;
9840 case EXEC_WHERE:
9841 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
9842 break;
9843 default:
9844 break;
9846 /* The next statement in the FORALL body. */
9847 c = c->next;
9852 /* Counts the number of iterators needed inside a forall construct, including
9853 nested forall constructs. This is used to allocate the needed memory
9854 in gfc_resolve_forall. */
9856 static int
9857 gfc_count_forall_iterators (gfc_code *code)
9859 int max_iters, sub_iters, current_iters;
9860 gfc_forall_iterator *fa;
9862 gcc_assert(code->op == EXEC_FORALL);
9863 max_iters = 0;
9864 current_iters = 0;
9866 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9867 current_iters ++;
9869 code = code->block->next;
9871 while (code)
9873 if (code->op == EXEC_FORALL)
9875 sub_iters = gfc_count_forall_iterators (code);
9876 if (sub_iters > max_iters)
9877 max_iters = sub_iters;
9879 code = code->next;
9882 return current_iters + max_iters;
9886 /* Given a FORALL construct, first resolve the FORALL iterator, then call
9887 gfc_resolve_forall_body to resolve the FORALL body. */
9889 static void
9890 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
9892 static gfc_expr **var_expr;
9893 static int total_var = 0;
9894 static int nvar = 0;
9895 int i, old_nvar, tmp;
9896 gfc_forall_iterator *fa;
9898 old_nvar = nvar;
9900 /* Start to resolve a FORALL construct */
9901 if (forall_save == 0)
9903 /* Count the total number of FORALL indices in the nested FORALL
9904 construct in order to allocate the VAR_EXPR with proper size. */
9905 total_var = gfc_count_forall_iterators (code);
9907 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
9908 var_expr = XCNEWVEC (gfc_expr *, total_var);
9911 /* The information about FORALL iterator, including FORALL indices start, end
9912 and stride. An outer FORALL indice cannot appear in start, end or stride. */
9913 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9915 /* Fortran 20008: C738 (R753). */
9916 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
9918 gfc_error ("FORALL index-name at %L must be a scalar variable "
9919 "of type integer", &fa->var->where);
9920 continue;
9923 /* Check if any outer FORALL index name is the same as the current
9924 one. */
9925 for (i = 0; i < nvar; i++)
9927 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
9928 gfc_error ("An outer FORALL construct already has an index "
9929 "with this name %L", &fa->var->where);
9932 /* Record the current FORALL index. */
9933 var_expr[nvar] = gfc_copy_expr (fa->var);
9935 nvar++;
9937 /* No memory leak. */
9938 gcc_assert (nvar <= total_var);
9941 /* Resolve the FORALL body. */
9942 gfc_resolve_forall_body (code, nvar, var_expr);
9944 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
9945 gfc_resolve_blocks (code->block, ns);
9947 tmp = nvar;
9948 nvar = old_nvar;
9949 /* Free only the VAR_EXPRs allocated in this frame. */
9950 for (i = nvar; i < tmp; i++)
9951 gfc_free_expr (var_expr[i]);
9953 if (nvar == 0)
9955 /* We are in the outermost FORALL construct. */
9956 gcc_assert (forall_save == 0);
9958 /* VAR_EXPR is not needed any more. */
9959 free (var_expr);
9960 total_var = 0;
9965 /* Resolve a BLOCK construct statement. */
9967 static void
9968 resolve_block_construct (gfc_code* code)
9970 /* Resolve the BLOCK's namespace. */
9971 gfc_resolve (code->ext.block.ns);
9973 /* For an ASSOCIATE block, the associations (and their targets) are already
9974 resolved during resolve_symbol. */
9978 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
9979 DO code nodes. */
9981 void
9982 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
9984 bool t;
9986 for (; b; b = b->block)
9988 t = gfc_resolve_expr (b->expr1);
9989 if (!gfc_resolve_expr (b->expr2))
9990 t = false;
9992 switch (b->op)
9994 case EXEC_IF:
9995 if (t && b->expr1 != NULL
9996 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
9997 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
9998 &b->expr1->where);
9999 break;
10001 case EXEC_WHERE:
10002 if (t
10003 && b->expr1 != NULL
10004 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
10005 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
10006 &b->expr1->where);
10007 break;
10009 case EXEC_GOTO:
10010 resolve_branch (b->label1, b);
10011 break;
10013 case EXEC_BLOCK:
10014 resolve_block_construct (b);
10015 break;
10017 case EXEC_SELECT:
10018 case EXEC_SELECT_TYPE:
10019 case EXEC_FORALL:
10020 case EXEC_DO:
10021 case EXEC_DO_WHILE:
10022 case EXEC_DO_CONCURRENT:
10023 case EXEC_CRITICAL:
10024 case EXEC_READ:
10025 case EXEC_WRITE:
10026 case EXEC_IOLENGTH:
10027 case EXEC_WAIT:
10028 break;
10030 case EXEC_OMP_ATOMIC:
10031 case EXEC_OACC_ATOMIC:
10033 gfc_omp_atomic_op aop
10034 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10036 /* Verify this before calling gfc_resolve_code, which might
10037 change it. */
10038 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10039 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10040 && b->next->next == NULL)
10041 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10042 && b->next->next != NULL
10043 && b->next->next->op == EXEC_ASSIGN
10044 && b->next->next->next == NULL));
10046 break;
10048 case EXEC_OACC_PARALLEL_LOOP:
10049 case EXEC_OACC_PARALLEL:
10050 case EXEC_OACC_KERNELS_LOOP:
10051 case EXEC_OACC_KERNELS:
10052 case EXEC_OACC_DATA:
10053 case EXEC_OACC_HOST_DATA:
10054 case EXEC_OACC_LOOP:
10055 case EXEC_OACC_UPDATE:
10056 case EXEC_OACC_WAIT:
10057 case EXEC_OACC_CACHE:
10058 case EXEC_OACC_ENTER_DATA:
10059 case EXEC_OACC_EXIT_DATA:
10060 case EXEC_OACC_ROUTINE:
10061 case EXEC_OMP_CRITICAL:
10062 case EXEC_OMP_DISTRIBUTE:
10063 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10064 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10065 case EXEC_OMP_DISTRIBUTE_SIMD:
10066 case EXEC_OMP_DO:
10067 case EXEC_OMP_DO_SIMD:
10068 case EXEC_OMP_MASTER:
10069 case EXEC_OMP_ORDERED:
10070 case EXEC_OMP_PARALLEL:
10071 case EXEC_OMP_PARALLEL_DO:
10072 case EXEC_OMP_PARALLEL_DO_SIMD:
10073 case EXEC_OMP_PARALLEL_SECTIONS:
10074 case EXEC_OMP_PARALLEL_WORKSHARE:
10075 case EXEC_OMP_SECTIONS:
10076 case EXEC_OMP_SIMD:
10077 case EXEC_OMP_SINGLE:
10078 case EXEC_OMP_TARGET:
10079 case EXEC_OMP_TARGET_DATA:
10080 case EXEC_OMP_TARGET_ENTER_DATA:
10081 case EXEC_OMP_TARGET_EXIT_DATA:
10082 case EXEC_OMP_TARGET_PARALLEL:
10083 case EXEC_OMP_TARGET_PARALLEL_DO:
10084 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10085 case EXEC_OMP_TARGET_SIMD:
10086 case EXEC_OMP_TARGET_TEAMS:
10087 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10088 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10089 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10090 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10091 case EXEC_OMP_TARGET_UPDATE:
10092 case EXEC_OMP_TASK:
10093 case EXEC_OMP_TASKGROUP:
10094 case EXEC_OMP_TASKLOOP:
10095 case EXEC_OMP_TASKLOOP_SIMD:
10096 case EXEC_OMP_TASKWAIT:
10097 case EXEC_OMP_TASKYIELD:
10098 case EXEC_OMP_TEAMS:
10099 case EXEC_OMP_TEAMS_DISTRIBUTE:
10100 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10101 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10102 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10103 case EXEC_OMP_WORKSHARE:
10104 break;
10106 default:
10107 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10110 gfc_resolve_code (b->next, ns);
10115 /* Does everything to resolve an ordinary assignment. Returns true
10116 if this is an interface assignment. */
10117 static bool
10118 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10120 bool rval = false;
10121 gfc_expr *lhs;
10122 gfc_expr *rhs;
10123 int llen = 0;
10124 int rlen = 0;
10125 int n;
10126 gfc_ref *ref;
10127 symbol_attribute attr;
10129 if (gfc_extend_assign (code, ns))
10131 gfc_expr** rhsptr;
10133 if (code->op == EXEC_ASSIGN_CALL)
10135 lhs = code->ext.actual->expr;
10136 rhsptr = &code->ext.actual->next->expr;
10138 else
10140 gfc_actual_arglist* args;
10141 gfc_typebound_proc* tbp;
10143 gcc_assert (code->op == EXEC_COMPCALL);
10145 args = code->expr1->value.compcall.actual;
10146 lhs = args->expr;
10147 rhsptr = &args->next->expr;
10149 tbp = code->expr1->value.compcall.tbp;
10150 gcc_assert (!tbp->is_generic);
10153 /* Make a temporary rhs when there is a default initializer
10154 and rhs is the same symbol as the lhs. */
10155 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10156 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10157 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10158 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10159 *rhsptr = gfc_get_parentheses (*rhsptr);
10161 return true;
10164 lhs = code->expr1;
10165 rhs = code->expr2;
10167 if (rhs->is_boz
10168 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10169 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10170 &code->loc))
10171 return false;
10173 /* Handle the case of a BOZ literal on the RHS. */
10174 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10176 int rc;
10177 if (warn_surprising)
10178 gfc_warning (OPT_Wsurprising,
10179 "BOZ literal at %L is bitwise transferred "
10180 "non-integer symbol %qs", &code->loc,
10181 lhs->symtree->n.sym->name);
10183 if (!gfc_convert_boz (rhs, &lhs->ts))
10184 return false;
10185 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10187 if (rc == ARITH_UNDERFLOW)
10188 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10189 ". This check can be disabled with the option "
10190 "%<-fno-range-check%>", &rhs->where);
10191 else if (rc == ARITH_OVERFLOW)
10192 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10193 ". This check can be disabled with the option "
10194 "%<-fno-range-check%>", &rhs->where);
10195 else if (rc == ARITH_NAN)
10196 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10197 ". This check can be disabled with the option "
10198 "%<-fno-range-check%>", &rhs->where);
10199 return false;
10203 if (lhs->ts.type == BT_CHARACTER
10204 && warn_character_truncation)
10206 if (lhs->ts.u.cl != NULL
10207 && lhs->ts.u.cl->length != NULL
10208 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10209 llen = mpz_get_si (lhs->ts.u.cl->length->value.integer);
10211 if (rhs->expr_type == EXPR_CONSTANT)
10212 rlen = rhs->value.character.length;
10214 else if (rhs->ts.u.cl != NULL
10215 && rhs->ts.u.cl->length != NULL
10216 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10217 rlen = mpz_get_si (rhs->ts.u.cl->length->value.integer);
10219 if (rlen && llen && rlen > llen)
10220 gfc_warning_now (OPT_Wcharacter_truncation,
10221 "CHARACTER expression will be truncated "
10222 "in assignment (%d/%d) at %L",
10223 llen, rlen, &code->loc);
10226 /* Ensure that a vector index expression for the lvalue is evaluated
10227 to a temporary if the lvalue symbol is referenced in it. */
10228 if (lhs->rank)
10230 for (ref = lhs->ref; ref; ref= ref->next)
10231 if (ref->type == REF_ARRAY)
10233 for (n = 0; n < ref->u.ar.dimen; n++)
10234 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10235 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10236 ref->u.ar.start[n]))
10237 ref->u.ar.start[n]
10238 = gfc_get_parentheses (ref->u.ar.start[n]);
10242 if (gfc_pure (NULL))
10244 if (lhs->ts.type == BT_DERIVED
10245 && lhs->expr_type == EXPR_VARIABLE
10246 && lhs->ts.u.derived->attr.pointer_comp
10247 && rhs->expr_type == EXPR_VARIABLE
10248 && (gfc_impure_variable (rhs->symtree->n.sym)
10249 || gfc_is_coindexed (rhs)))
10251 /* F2008, C1283. */
10252 if (gfc_is_coindexed (rhs))
10253 gfc_error ("Coindexed expression at %L is assigned to "
10254 "a derived type variable with a POINTER "
10255 "component in a PURE procedure",
10256 &rhs->where);
10257 else
10258 gfc_error ("The impure variable at %L is assigned to "
10259 "a derived type variable with a POINTER "
10260 "component in a PURE procedure (12.6)",
10261 &rhs->where);
10262 return rval;
10265 /* Fortran 2008, C1283. */
10266 if (gfc_is_coindexed (lhs))
10268 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10269 "procedure", &rhs->where);
10270 return rval;
10274 if (gfc_implicit_pure (NULL))
10276 if (lhs->expr_type == EXPR_VARIABLE
10277 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10278 && lhs->symtree->n.sym->ns != gfc_current_ns)
10279 gfc_unset_implicit_pure (NULL);
10281 if (lhs->ts.type == BT_DERIVED
10282 && lhs->expr_type == EXPR_VARIABLE
10283 && lhs->ts.u.derived->attr.pointer_comp
10284 && rhs->expr_type == EXPR_VARIABLE
10285 && (gfc_impure_variable (rhs->symtree->n.sym)
10286 || gfc_is_coindexed (rhs)))
10287 gfc_unset_implicit_pure (NULL);
10289 /* Fortran 2008, C1283. */
10290 if (gfc_is_coindexed (lhs))
10291 gfc_unset_implicit_pure (NULL);
10294 /* F2008, 7.2.1.2. */
10295 attr = gfc_expr_attr (lhs);
10296 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10298 if (attr.codimension)
10300 gfc_error ("Assignment to polymorphic coarray at %L is not "
10301 "permitted", &lhs->where);
10302 return false;
10304 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10305 "polymorphic variable at %L", &lhs->where))
10306 return false;
10307 if (!flag_realloc_lhs)
10309 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10310 "requires %<-frealloc-lhs%>", &lhs->where);
10311 return false;
10314 else if (lhs->ts.type == BT_CLASS)
10316 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10317 "assignment at %L - check that there is a matching specific "
10318 "subroutine for '=' operator", &lhs->where);
10319 return false;
10322 bool lhs_coindexed = gfc_is_coindexed (lhs);
10324 /* F2008, Section 7.2.1.2. */
10325 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10327 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10328 "component in assignment at %L", &lhs->where);
10329 return false;
10332 /* Assign the 'data' of a class object to a derived type. */
10333 if (lhs->ts.type == BT_DERIVED
10334 && rhs->ts.type == BT_CLASS
10335 && rhs->expr_type != EXPR_ARRAY)
10336 gfc_add_data_component (rhs);
10338 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10339 && (lhs_coindexed
10340 || (code->expr2->expr_type == EXPR_FUNCTION
10341 && code->expr2->value.function.isym
10342 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10343 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10344 && !gfc_expr_attr (rhs).allocatable
10345 && !gfc_has_vector_subscript (rhs)));
10347 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10349 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10350 Additionally, insert this code when the RHS is a CAF as we then use the
10351 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10352 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10353 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10354 path. */
10355 if (caf_convert_to_send)
10357 if (code->expr2->expr_type == EXPR_FUNCTION
10358 && code->expr2->value.function.isym
10359 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10360 remove_caf_get_intrinsic (code->expr2);
10361 code->op = EXEC_CALL;
10362 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10363 code->resolved_sym = code->symtree->n.sym;
10364 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10365 code->resolved_sym->attr.intrinsic = 1;
10366 code->resolved_sym->attr.subroutine = 1;
10367 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10368 gfc_commit_symbol (code->resolved_sym);
10369 code->ext.actual = gfc_get_actual_arglist ();
10370 code->ext.actual->expr = lhs;
10371 code->ext.actual->next = gfc_get_actual_arglist ();
10372 code->ext.actual->next->expr = rhs;
10373 code->expr1 = NULL;
10374 code->expr2 = NULL;
10377 return false;
10381 /* Add a component reference onto an expression. */
10383 static void
10384 add_comp_ref (gfc_expr *e, gfc_component *c)
10386 gfc_ref **ref;
10387 ref = &(e->ref);
10388 while (*ref)
10389 ref = &((*ref)->next);
10390 *ref = gfc_get_ref ();
10391 (*ref)->type = REF_COMPONENT;
10392 (*ref)->u.c.sym = e->ts.u.derived;
10393 (*ref)->u.c.component = c;
10394 e->ts = c->ts;
10396 /* Add a full array ref, as necessary. */
10397 if (c->as)
10399 gfc_add_full_array_ref (e, c->as);
10400 e->rank = c->as->rank;
10405 /* Build an assignment. Keep the argument 'op' for future use, so that
10406 pointer assignments can be made. */
10408 static gfc_code *
10409 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10410 gfc_component *comp1, gfc_component *comp2, locus loc)
10412 gfc_code *this_code;
10414 this_code = gfc_get_code (op);
10415 this_code->next = NULL;
10416 this_code->expr1 = gfc_copy_expr (expr1);
10417 this_code->expr2 = gfc_copy_expr (expr2);
10418 this_code->loc = loc;
10419 if (comp1 && comp2)
10421 add_comp_ref (this_code->expr1, comp1);
10422 add_comp_ref (this_code->expr2, comp2);
10425 return this_code;
10429 /* Makes a temporary variable expression based on the characteristics of
10430 a given variable expression. */
10432 static gfc_expr*
10433 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10435 static int serial = 0;
10436 char name[GFC_MAX_SYMBOL_LEN];
10437 gfc_symtree *tmp;
10438 gfc_array_spec *as;
10439 gfc_array_ref *aref;
10440 gfc_ref *ref;
10442 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10443 gfc_get_sym_tree (name, ns, &tmp, false);
10444 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10446 as = NULL;
10447 ref = NULL;
10448 aref = NULL;
10450 /* Obtain the arrayspec for the temporary. */
10451 if (e->rank && e->expr_type != EXPR_ARRAY
10452 && e->expr_type != EXPR_FUNCTION
10453 && e->expr_type != EXPR_OP)
10455 aref = gfc_find_array_ref (e);
10456 if (e->expr_type == EXPR_VARIABLE
10457 && e->symtree->n.sym->as == aref->as)
10458 as = aref->as;
10459 else
10461 for (ref = e->ref; ref; ref = ref->next)
10462 if (ref->type == REF_COMPONENT
10463 && ref->u.c.component->as == aref->as)
10465 as = aref->as;
10466 break;
10471 /* Add the attributes and the arrayspec to the temporary. */
10472 tmp->n.sym->attr = gfc_expr_attr (e);
10473 tmp->n.sym->attr.function = 0;
10474 tmp->n.sym->attr.result = 0;
10475 tmp->n.sym->attr.flavor = FL_VARIABLE;
10477 if (as)
10479 tmp->n.sym->as = gfc_copy_array_spec (as);
10480 if (!ref)
10481 ref = e->ref;
10482 if (as->type == AS_DEFERRED)
10483 tmp->n.sym->attr.allocatable = 1;
10485 else if (e->rank && (e->expr_type == EXPR_ARRAY
10486 || e->expr_type == EXPR_FUNCTION
10487 || e->expr_type == EXPR_OP))
10489 tmp->n.sym->as = gfc_get_array_spec ();
10490 tmp->n.sym->as->type = AS_DEFERRED;
10491 tmp->n.sym->as->rank = e->rank;
10492 tmp->n.sym->attr.allocatable = 1;
10493 tmp->n.sym->attr.dimension = 1;
10495 else
10496 tmp->n.sym->attr.dimension = 0;
10498 gfc_set_sym_referenced (tmp->n.sym);
10499 gfc_commit_symbol (tmp->n.sym);
10500 e = gfc_lval_expr_from_sym (tmp->n.sym);
10502 /* Should the lhs be a section, use its array ref for the
10503 temporary expression. */
10504 if (aref && aref->type != AR_FULL)
10506 gfc_free_ref_list (e->ref);
10507 e->ref = gfc_copy_ref (ref);
10509 return e;
10513 /* Add one line of code to the code chain, making sure that 'head' and
10514 'tail' are appropriately updated. */
10516 static void
10517 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10519 gcc_assert (this_code);
10520 if (*head == NULL)
10521 *head = *tail = *this_code;
10522 else
10523 *tail = gfc_append_code (*tail, *this_code);
10524 *this_code = NULL;
10528 /* Counts the potential number of part array references that would
10529 result from resolution of typebound defined assignments. */
10531 static int
10532 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10534 gfc_component *c;
10535 int c_depth = 0, t_depth;
10537 for (c= derived->components; c; c = c->next)
10539 if ((!gfc_bt_struct (c->ts.type)
10540 || c->attr.pointer
10541 || c->attr.allocatable
10542 || c->attr.proc_pointer_comp
10543 || c->attr.class_pointer
10544 || c->attr.proc_pointer)
10545 && !c->attr.defined_assign_comp)
10546 continue;
10548 if (c->as && c_depth == 0)
10549 c_depth = 1;
10551 if (c->ts.u.derived->attr.defined_assign_comp)
10552 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10553 c->as ? 1 : 0);
10554 else
10555 t_depth = 0;
10557 c_depth = t_depth > c_depth ? t_depth : c_depth;
10559 return depth + c_depth;
10563 /* Implement 7.2.1.3 of the F08 standard:
10564 "An intrinsic assignment where the variable is of derived type is
10565 performed as if each component of the variable were assigned from the
10566 corresponding component of expr using pointer assignment (7.2.2) for
10567 each pointer component, defined assignment for each nonpointer
10568 nonallocatable component of a type that has a type-bound defined
10569 assignment consistent with the component, intrinsic assignment for
10570 each other nonpointer nonallocatable component, ..."
10572 The pointer assignments are taken care of by the intrinsic
10573 assignment of the structure itself. This function recursively adds
10574 defined assignments where required. The recursion is accomplished
10575 by calling gfc_resolve_code.
10577 When the lhs in a defined assignment has intent INOUT, we need a
10578 temporary for the lhs. In pseudo-code:
10580 ! Only call function lhs once.
10581 if (lhs is not a constant or an variable)
10582 temp_x = expr2
10583 expr2 => temp_x
10584 ! Do the intrinsic assignment
10585 expr1 = expr2
10586 ! Now do the defined assignments
10587 do over components with typebound defined assignment [%cmp]
10588 #if one component's assignment procedure is INOUT
10589 t1 = expr1
10590 #if expr2 non-variable
10591 temp_x = expr2
10592 expr2 => temp_x
10593 # endif
10594 expr1 = expr2
10595 # for each cmp
10596 t1%cmp {defined=} expr2%cmp
10597 expr1%cmp = t1%cmp
10598 #else
10599 expr1 = expr2
10601 # for each cmp
10602 expr1%cmp {defined=} expr2%cmp
10603 #endif
10606 /* The temporary assignments have to be put on top of the additional
10607 code to avoid the result being changed by the intrinsic assignment.
10609 static int component_assignment_level = 0;
10610 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10612 static void
10613 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10615 gfc_component *comp1, *comp2;
10616 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10617 gfc_expr *t1;
10618 int error_count, depth;
10620 gfc_get_errors (NULL, &error_count);
10622 /* Filter out continuing processing after an error. */
10623 if (error_count
10624 || (*code)->expr1->ts.type != BT_DERIVED
10625 || (*code)->expr2->ts.type != BT_DERIVED)
10626 return;
10628 /* TODO: Handle more than one part array reference in assignments. */
10629 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10630 (*code)->expr1->rank ? 1 : 0);
10631 if (depth > 1)
10633 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10634 "done because multiple part array references would "
10635 "occur in intermediate expressions.", &(*code)->loc);
10636 return;
10639 component_assignment_level++;
10641 /* Create a temporary so that functions get called only once. */
10642 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10643 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10645 gfc_expr *tmp_expr;
10647 /* Assign the rhs to the temporary. */
10648 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10649 this_code = build_assignment (EXEC_ASSIGN,
10650 tmp_expr, (*code)->expr2,
10651 NULL, NULL, (*code)->loc);
10652 /* Add the code and substitute the rhs expression. */
10653 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10654 gfc_free_expr ((*code)->expr2);
10655 (*code)->expr2 = tmp_expr;
10658 /* Do the intrinsic assignment. This is not needed if the lhs is one
10659 of the temporaries generated here, since the intrinsic assignment
10660 to the final result already does this. */
10661 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10663 this_code = build_assignment (EXEC_ASSIGN,
10664 (*code)->expr1, (*code)->expr2,
10665 NULL, NULL, (*code)->loc);
10666 add_code_to_chain (&this_code, &head, &tail);
10669 comp1 = (*code)->expr1->ts.u.derived->components;
10670 comp2 = (*code)->expr2->ts.u.derived->components;
10672 t1 = NULL;
10673 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10675 bool inout = false;
10677 /* The intrinsic assignment does the right thing for pointers
10678 of all kinds and allocatable components. */
10679 if (!gfc_bt_struct (comp1->ts.type)
10680 || comp1->attr.pointer
10681 || comp1->attr.allocatable
10682 || comp1->attr.proc_pointer_comp
10683 || comp1->attr.class_pointer
10684 || comp1->attr.proc_pointer)
10685 continue;
10687 /* Make an assigment for this component. */
10688 this_code = build_assignment (EXEC_ASSIGN,
10689 (*code)->expr1, (*code)->expr2,
10690 comp1, comp2, (*code)->loc);
10692 /* Convert the assignment if there is a defined assignment for
10693 this type. Otherwise, using the call from gfc_resolve_code,
10694 recurse into its components. */
10695 gfc_resolve_code (this_code, ns);
10697 if (this_code->op == EXEC_ASSIGN_CALL)
10699 gfc_formal_arglist *dummy_args;
10700 gfc_symbol *rsym;
10701 /* Check that there is a typebound defined assignment. If not,
10702 then this must be a module defined assignment. We cannot
10703 use the defined_assign_comp attribute here because it must
10704 be this derived type that has the defined assignment and not
10705 a parent type. */
10706 if (!(comp1->ts.u.derived->f2k_derived
10707 && comp1->ts.u.derived->f2k_derived
10708 ->tb_op[INTRINSIC_ASSIGN]))
10710 gfc_free_statements (this_code);
10711 this_code = NULL;
10712 continue;
10715 /* If the first argument of the subroutine has intent INOUT
10716 a temporary must be generated and used instead. */
10717 rsym = this_code->resolved_sym;
10718 dummy_args = gfc_sym_get_dummy_args (rsym);
10719 if (dummy_args
10720 && dummy_args->sym->attr.intent == INTENT_INOUT)
10722 gfc_code *temp_code;
10723 inout = true;
10725 /* Build the temporary required for the assignment and put
10726 it at the head of the generated code. */
10727 if (!t1)
10729 t1 = get_temp_from_expr ((*code)->expr1, ns);
10730 temp_code = build_assignment (EXEC_ASSIGN,
10731 t1, (*code)->expr1,
10732 NULL, NULL, (*code)->loc);
10734 /* For allocatable LHS, check whether it is allocated. Note
10735 that allocatable components with defined assignment are
10736 not yet support. See PR 57696. */
10737 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10739 gfc_code *block;
10740 gfc_expr *e =
10741 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10742 block = gfc_get_code (EXEC_IF);
10743 block->block = gfc_get_code (EXEC_IF);
10744 block->block->expr1
10745 = gfc_build_intrinsic_call (ns,
10746 GFC_ISYM_ALLOCATED, "allocated",
10747 (*code)->loc, 1, e);
10748 block->block->next = temp_code;
10749 temp_code = block;
10751 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10754 /* Replace the first actual arg with the component of the
10755 temporary. */
10756 gfc_free_expr (this_code->ext.actual->expr);
10757 this_code->ext.actual->expr = gfc_copy_expr (t1);
10758 add_comp_ref (this_code->ext.actual->expr, comp1);
10760 /* If the LHS variable is allocatable and wasn't allocated and
10761 the temporary is allocatable, pointer assign the address of
10762 the freshly allocated LHS to the temporary. */
10763 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10764 && gfc_expr_attr ((*code)->expr1).allocatable)
10766 gfc_code *block;
10767 gfc_expr *cond;
10769 cond = gfc_get_expr ();
10770 cond->ts.type = BT_LOGICAL;
10771 cond->ts.kind = gfc_default_logical_kind;
10772 cond->expr_type = EXPR_OP;
10773 cond->where = (*code)->loc;
10774 cond->value.op.op = INTRINSIC_NOT;
10775 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10776 GFC_ISYM_ALLOCATED, "allocated",
10777 (*code)->loc, 1, gfc_copy_expr (t1));
10778 block = gfc_get_code (EXEC_IF);
10779 block->block = gfc_get_code (EXEC_IF);
10780 block->block->expr1 = cond;
10781 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10782 t1, (*code)->expr1,
10783 NULL, NULL, (*code)->loc);
10784 add_code_to_chain (&block, &head, &tail);
10788 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10790 /* Don't add intrinsic assignments since they are already
10791 effected by the intrinsic assignment of the structure. */
10792 gfc_free_statements (this_code);
10793 this_code = NULL;
10794 continue;
10797 add_code_to_chain (&this_code, &head, &tail);
10799 if (t1 && inout)
10801 /* Transfer the value to the final result. */
10802 this_code = build_assignment (EXEC_ASSIGN,
10803 (*code)->expr1, t1,
10804 comp1, comp2, (*code)->loc);
10805 add_code_to_chain (&this_code, &head, &tail);
10809 /* Put the temporary assignments at the top of the generated code. */
10810 if (tmp_head && component_assignment_level == 1)
10812 gfc_append_code (tmp_head, head);
10813 head = tmp_head;
10814 tmp_head = tmp_tail = NULL;
10817 // If we did a pointer assignment - thus, we need to ensure that the LHS is
10818 // not accidentally deallocated. Hence, nullify t1.
10819 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
10820 && gfc_expr_attr ((*code)->expr1).allocatable)
10822 gfc_code *block;
10823 gfc_expr *cond;
10824 gfc_expr *e;
10826 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10827 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
10828 (*code)->loc, 2, gfc_copy_expr (t1), e);
10829 block = gfc_get_code (EXEC_IF);
10830 block->block = gfc_get_code (EXEC_IF);
10831 block->block->expr1 = cond;
10832 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10833 t1, gfc_get_null_expr (&(*code)->loc),
10834 NULL, NULL, (*code)->loc);
10835 gfc_append_code (tail, block);
10836 tail = block;
10839 /* Now attach the remaining code chain to the input code. Step on
10840 to the end of the new code since resolution is complete. */
10841 gcc_assert ((*code)->op == EXEC_ASSIGN);
10842 tail->next = (*code)->next;
10843 /* Overwrite 'code' because this would place the intrinsic assignment
10844 before the temporary for the lhs is created. */
10845 gfc_free_expr ((*code)->expr1);
10846 gfc_free_expr ((*code)->expr2);
10847 **code = *head;
10848 if (head != tail)
10849 free (head);
10850 *code = tail;
10852 component_assignment_level--;
10856 /* F2008: Pointer function assignments are of the form:
10857 ptr_fcn (args) = expr
10858 This function breaks these assignments into two statements:
10859 temporary_pointer => ptr_fcn(args)
10860 temporary_pointer = expr */
10862 static bool
10863 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
10865 gfc_expr *tmp_ptr_expr;
10866 gfc_code *this_code;
10867 gfc_component *comp;
10868 gfc_symbol *s;
10870 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
10871 return false;
10873 /* Even if standard does not support this feature, continue to build
10874 the two statements to avoid upsetting frontend_passes.c. */
10875 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
10876 "%L", &(*code)->loc);
10878 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
10880 if (comp)
10881 s = comp->ts.interface;
10882 else
10883 s = (*code)->expr1->symtree->n.sym;
10885 if (s == NULL || !s->result->attr.pointer)
10887 gfc_error ("The function result on the lhs of the assignment at "
10888 "%L must have the pointer attribute.",
10889 &(*code)->expr1->where);
10890 (*code)->op = EXEC_NOP;
10891 return false;
10894 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
10896 /* get_temp_from_expression is set up for ordinary assignments. To that
10897 end, where array bounds are not known, arrays are made allocatable.
10898 Change the temporary to a pointer here. */
10899 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
10900 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
10901 tmp_ptr_expr->where = (*code)->loc;
10903 this_code = build_assignment (EXEC_ASSIGN,
10904 tmp_ptr_expr, (*code)->expr2,
10905 NULL, NULL, (*code)->loc);
10906 this_code->next = (*code)->next;
10907 (*code)->next = this_code;
10908 (*code)->op = EXEC_POINTER_ASSIGN;
10909 (*code)->expr2 = (*code)->expr1;
10910 (*code)->expr1 = tmp_ptr_expr;
10912 return true;
10916 /* Deferred character length assignments from an operator expression
10917 require a temporary because the character length of the lhs can
10918 change in the course of the assignment. */
10920 static bool
10921 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
10923 gfc_expr *tmp_expr;
10924 gfc_code *this_code;
10926 if (!((*code)->expr1->ts.type == BT_CHARACTER
10927 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
10928 && (*code)->expr2->expr_type == EXPR_OP))
10929 return false;
10931 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
10932 return false;
10934 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10935 tmp_expr->where = (*code)->loc;
10937 /* A new charlen is required to ensure that the variable string
10938 length is different to that of the original lhs. */
10939 tmp_expr->ts.u.cl = gfc_get_charlen();
10940 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
10941 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
10942 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
10944 tmp_expr->symtree->n.sym->ts.deferred = 1;
10946 this_code = build_assignment (EXEC_ASSIGN,
10947 (*code)->expr1,
10948 gfc_copy_expr (tmp_expr),
10949 NULL, NULL, (*code)->loc);
10951 (*code)->expr1 = tmp_expr;
10953 this_code->next = (*code)->next;
10954 (*code)->next = this_code;
10956 return true;
10960 /* Given a block of code, recursively resolve everything pointed to by this
10961 code block. */
10963 void
10964 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
10966 int omp_workshare_save;
10967 int forall_save, do_concurrent_save;
10968 code_stack frame;
10969 bool t;
10971 frame.prev = cs_base;
10972 frame.head = code;
10973 cs_base = &frame;
10975 find_reachable_labels (code);
10977 for (; code; code = code->next)
10979 frame.current = code;
10980 forall_save = forall_flag;
10981 do_concurrent_save = gfc_do_concurrent_flag;
10983 if (code->op == EXEC_FORALL)
10985 forall_flag = 1;
10986 gfc_resolve_forall (code, ns, forall_save);
10987 forall_flag = 2;
10989 else if (code->block)
10991 omp_workshare_save = -1;
10992 switch (code->op)
10994 case EXEC_OACC_PARALLEL_LOOP:
10995 case EXEC_OACC_PARALLEL:
10996 case EXEC_OACC_KERNELS_LOOP:
10997 case EXEC_OACC_KERNELS:
10998 case EXEC_OACC_DATA:
10999 case EXEC_OACC_HOST_DATA:
11000 case EXEC_OACC_LOOP:
11001 gfc_resolve_oacc_blocks (code, ns);
11002 break;
11003 case EXEC_OMP_PARALLEL_WORKSHARE:
11004 omp_workshare_save = omp_workshare_flag;
11005 omp_workshare_flag = 1;
11006 gfc_resolve_omp_parallel_blocks (code, ns);
11007 break;
11008 case EXEC_OMP_PARALLEL:
11009 case EXEC_OMP_PARALLEL_DO:
11010 case EXEC_OMP_PARALLEL_DO_SIMD:
11011 case EXEC_OMP_PARALLEL_SECTIONS:
11012 case EXEC_OMP_TARGET_PARALLEL:
11013 case EXEC_OMP_TARGET_PARALLEL_DO:
11014 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11015 case EXEC_OMP_TARGET_TEAMS:
11016 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11017 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11018 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11019 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11020 case EXEC_OMP_TASK:
11021 case EXEC_OMP_TASKLOOP:
11022 case EXEC_OMP_TASKLOOP_SIMD:
11023 case EXEC_OMP_TEAMS:
11024 case EXEC_OMP_TEAMS_DISTRIBUTE:
11025 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11026 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11027 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11028 omp_workshare_save = omp_workshare_flag;
11029 omp_workshare_flag = 0;
11030 gfc_resolve_omp_parallel_blocks (code, ns);
11031 break;
11032 case EXEC_OMP_DISTRIBUTE:
11033 case EXEC_OMP_DISTRIBUTE_SIMD:
11034 case EXEC_OMP_DO:
11035 case EXEC_OMP_DO_SIMD:
11036 case EXEC_OMP_SIMD:
11037 case EXEC_OMP_TARGET_SIMD:
11038 gfc_resolve_omp_do_blocks (code, ns);
11039 break;
11040 case EXEC_SELECT_TYPE:
11041 /* Blocks are handled in resolve_select_type because we have
11042 to transform the SELECT TYPE into ASSOCIATE first. */
11043 break;
11044 case EXEC_DO_CONCURRENT:
11045 gfc_do_concurrent_flag = 1;
11046 gfc_resolve_blocks (code->block, ns);
11047 gfc_do_concurrent_flag = 2;
11048 break;
11049 case EXEC_OMP_WORKSHARE:
11050 omp_workshare_save = omp_workshare_flag;
11051 omp_workshare_flag = 1;
11052 /* FALL THROUGH */
11053 default:
11054 gfc_resolve_blocks (code->block, ns);
11055 break;
11058 if (omp_workshare_save != -1)
11059 omp_workshare_flag = omp_workshare_save;
11061 start:
11062 t = true;
11063 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11064 t = gfc_resolve_expr (code->expr1);
11065 forall_flag = forall_save;
11066 gfc_do_concurrent_flag = do_concurrent_save;
11068 if (!gfc_resolve_expr (code->expr2))
11069 t = false;
11071 if (code->op == EXEC_ALLOCATE
11072 && !gfc_resolve_expr (code->expr3))
11073 t = false;
11075 switch (code->op)
11077 case EXEC_NOP:
11078 case EXEC_END_BLOCK:
11079 case EXEC_END_NESTED_BLOCK:
11080 case EXEC_CYCLE:
11081 case EXEC_PAUSE:
11082 case EXEC_STOP:
11083 case EXEC_ERROR_STOP:
11084 case EXEC_EXIT:
11085 case EXEC_CONTINUE:
11086 case EXEC_DT_END:
11087 case EXEC_ASSIGN_CALL:
11088 break;
11090 case EXEC_CRITICAL:
11091 resolve_critical (code);
11092 break;
11094 case EXEC_SYNC_ALL:
11095 case EXEC_SYNC_IMAGES:
11096 case EXEC_SYNC_MEMORY:
11097 resolve_sync (code);
11098 break;
11100 case EXEC_LOCK:
11101 case EXEC_UNLOCK:
11102 case EXEC_EVENT_POST:
11103 case EXEC_EVENT_WAIT:
11104 resolve_lock_unlock_event (code);
11105 break;
11107 case EXEC_FAIL_IMAGE:
11108 break;
11110 case EXEC_ENTRY:
11111 /* Keep track of which entry we are up to. */
11112 current_entry_id = code->ext.entry->id;
11113 break;
11115 case EXEC_WHERE:
11116 resolve_where (code, NULL);
11117 break;
11119 case EXEC_GOTO:
11120 if (code->expr1 != NULL)
11122 if (code->expr1->ts.type != BT_INTEGER)
11123 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11124 "INTEGER variable", &code->expr1->where);
11125 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11126 gfc_error ("Variable %qs has not been assigned a target "
11127 "label at %L", code->expr1->symtree->n.sym->name,
11128 &code->expr1->where);
11130 else
11131 resolve_branch (code->label1, code);
11132 break;
11134 case EXEC_RETURN:
11135 if (code->expr1 != NULL
11136 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11137 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11138 "INTEGER return specifier", &code->expr1->where);
11139 break;
11141 case EXEC_INIT_ASSIGN:
11142 case EXEC_END_PROCEDURE:
11143 break;
11145 case EXEC_ASSIGN:
11146 if (!t)
11147 break;
11149 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11150 the LHS. */
11151 if (code->expr1->expr_type == EXPR_FUNCTION
11152 && code->expr1->value.function.isym
11153 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11154 remove_caf_get_intrinsic (code->expr1);
11156 /* If this is a pointer function in an lvalue variable context,
11157 the new code will have to be resolved afresh. This is also the
11158 case with an error, where the code is transformed into NOP to
11159 prevent ICEs downstream. */
11160 if (resolve_ptr_fcn_assign (&code, ns)
11161 || code->op == EXEC_NOP)
11162 goto start;
11164 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11165 _("assignment")))
11166 break;
11168 if (resolve_ordinary_assign (code, ns))
11170 if (code->op == EXEC_COMPCALL)
11171 goto compcall;
11172 else
11173 goto call;
11176 /* Check for dependencies in deferred character length array
11177 assignments and generate a temporary, if necessary. */
11178 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11179 break;
11181 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11182 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11183 && code->expr1->ts.u.derived
11184 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11185 generate_component_assignments (&code, ns);
11187 break;
11189 case EXEC_LABEL_ASSIGN:
11190 if (code->label1->defined == ST_LABEL_UNKNOWN)
11191 gfc_error ("Label %d referenced at %L is never defined",
11192 code->label1->value, &code->label1->where);
11193 if (t
11194 && (code->expr1->expr_type != EXPR_VARIABLE
11195 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11196 || code->expr1->symtree->n.sym->ts.kind
11197 != gfc_default_integer_kind
11198 || code->expr1->symtree->n.sym->as != NULL))
11199 gfc_error ("ASSIGN statement at %L requires a scalar "
11200 "default INTEGER variable", &code->expr1->where);
11201 break;
11203 case EXEC_POINTER_ASSIGN:
11205 gfc_expr* e;
11207 if (!t)
11208 break;
11210 /* This is both a variable definition and pointer assignment
11211 context, so check both of them. For rank remapping, a final
11212 array ref may be present on the LHS and fool gfc_expr_attr
11213 used in gfc_check_vardef_context. Remove it. */
11214 e = remove_last_array_ref (code->expr1);
11215 t = gfc_check_vardef_context (e, true, false, false,
11216 _("pointer assignment"));
11217 if (t)
11218 t = gfc_check_vardef_context (e, false, false, false,
11219 _("pointer assignment"));
11220 gfc_free_expr (e);
11221 if (!t)
11222 break;
11224 gfc_check_pointer_assign (code->expr1, code->expr2);
11226 /* Assigning a class object always is a regular assign. */
11227 if (code->expr2->ts.type == BT_CLASS
11228 && code->expr1->ts.type == BT_CLASS
11229 && !CLASS_DATA (code->expr2)->attr.dimension
11230 && !(gfc_expr_attr (code->expr1).proc_pointer
11231 && code->expr2->expr_type == EXPR_VARIABLE
11232 && code->expr2->symtree->n.sym->attr.flavor
11233 == FL_PROCEDURE))
11234 code->op = EXEC_ASSIGN;
11235 break;
11238 case EXEC_ARITHMETIC_IF:
11240 gfc_expr *e = code->expr1;
11242 gfc_resolve_expr (e);
11243 if (e->expr_type == EXPR_NULL)
11244 gfc_error ("Invalid NULL at %L", &e->where);
11246 if (t && (e->rank > 0
11247 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11248 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11249 "REAL or INTEGER expression", &e->where);
11251 resolve_branch (code->label1, code);
11252 resolve_branch (code->label2, code);
11253 resolve_branch (code->label3, code);
11255 break;
11257 case EXEC_IF:
11258 if (t && code->expr1 != NULL
11259 && (code->expr1->ts.type != BT_LOGICAL
11260 || code->expr1->rank != 0))
11261 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11262 &code->expr1->where);
11263 break;
11265 case EXEC_CALL:
11266 call:
11267 resolve_call (code);
11268 break;
11270 case EXEC_COMPCALL:
11271 compcall:
11272 resolve_typebound_subroutine (code);
11273 break;
11275 case EXEC_CALL_PPC:
11276 resolve_ppc_call (code);
11277 break;
11279 case EXEC_SELECT:
11280 /* Select is complicated. Also, a SELECT construct could be
11281 a transformed computed GOTO. */
11282 resolve_select (code, false);
11283 break;
11285 case EXEC_SELECT_TYPE:
11286 resolve_select_type (code, ns);
11287 break;
11289 case EXEC_BLOCK:
11290 resolve_block_construct (code);
11291 break;
11293 case EXEC_DO:
11294 if (code->ext.iterator != NULL)
11296 gfc_iterator *iter = code->ext.iterator;
11297 if (gfc_resolve_iterator (iter, true, false))
11298 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11299 true);
11301 break;
11303 case EXEC_DO_WHILE:
11304 if (code->expr1 == NULL)
11305 gfc_internal_error ("gfc_resolve_code(): No expression on "
11306 "DO WHILE");
11307 if (t
11308 && (code->expr1->rank != 0
11309 || code->expr1->ts.type != BT_LOGICAL))
11310 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11311 "a scalar LOGICAL expression", &code->expr1->where);
11312 break;
11314 case EXEC_ALLOCATE:
11315 if (t)
11316 resolve_allocate_deallocate (code, "ALLOCATE");
11318 break;
11320 case EXEC_DEALLOCATE:
11321 if (t)
11322 resolve_allocate_deallocate (code, "DEALLOCATE");
11324 break;
11326 case EXEC_OPEN:
11327 if (!gfc_resolve_open (code->ext.open))
11328 break;
11330 resolve_branch (code->ext.open->err, code);
11331 break;
11333 case EXEC_CLOSE:
11334 if (!gfc_resolve_close (code->ext.close))
11335 break;
11337 resolve_branch (code->ext.close->err, code);
11338 break;
11340 case EXEC_BACKSPACE:
11341 case EXEC_ENDFILE:
11342 case EXEC_REWIND:
11343 case EXEC_FLUSH:
11344 if (!gfc_resolve_filepos (code->ext.filepos))
11345 break;
11347 resolve_branch (code->ext.filepos->err, code);
11348 break;
11350 case EXEC_INQUIRE:
11351 if (!gfc_resolve_inquire (code->ext.inquire))
11352 break;
11354 resolve_branch (code->ext.inquire->err, code);
11355 break;
11357 case EXEC_IOLENGTH:
11358 gcc_assert (code->ext.inquire != NULL);
11359 if (!gfc_resolve_inquire (code->ext.inquire))
11360 break;
11362 resolve_branch (code->ext.inquire->err, code);
11363 break;
11365 case EXEC_WAIT:
11366 if (!gfc_resolve_wait (code->ext.wait))
11367 break;
11369 resolve_branch (code->ext.wait->err, code);
11370 resolve_branch (code->ext.wait->end, code);
11371 resolve_branch (code->ext.wait->eor, code);
11372 break;
11374 case EXEC_READ:
11375 case EXEC_WRITE:
11376 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11377 break;
11379 resolve_branch (code->ext.dt->err, code);
11380 resolve_branch (code->ext.dt->end, code);
11381 resolve_branch (code->ext.dt->eor, code);
11382 break;
11384 case EXEC_TRANSFER:
11385 resolve_transfer (code);
11386 break;
11388 case EXEC_DO_CONCURRENT:
11389 case EXEC_FORALL:
11390 resolve_forall_iterators (code->ext.forall_iterator);
11392 if (code->expr1 != NULL
11393 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11394 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11395 "expression", &code->expr1->where);
11396 break;
11398 case EXEC_OACC_PARALLEL_LOOP:
11399 case EXEC_OACC_PARALLEL:
11400 case EXEC_OACC_KERNELS_LOOP:
11401 case EXEC_OACC_KERNELS:
11402 case EXEC_OACC_DATA:
11403 case EXEC_OACC_HOST_DATA:
11404 case EXEC_OACC_LOOP:
11405 case EXEC_OACC_UPDATE:
11406 case EXEC_OACC_WAIT:
11407 case EXEC_OACC_CACHE:
11408 case EXEC_OACC_ENTER_DATA:
11409 case EXEC_OACC_EXIT_DATA:
11410 case EXEC_OACC_ATOMIC:
11411 case EXEC_OACC_DECLARE:
11412 gfc_resolve_oacc_directive (code, ns);
11413 break;
11415 case EXEC_OMP_ATOMIC:
11416 case EXEC_OMP_BARRIER:
11417 case EXEC_OMP_CANCEL:
11418 case EXEC_OMP_CANCELLATION_POINT:
11419 case EXEC_OMP_CRITICAL:
11420 case EXEC_OMP_FLUSH:
11421 case EXEC_OMP_DISTRIBUTE:
11422 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11423 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11424 case EXEC_OMP_DISTRIBUTE_SIMD:
11425 case EXEC_OMP_DO:
11426 case EXEC_OMP_DO_SIMD:
11427 case EXEC_OMP_MASTER:
11428 case EXEC_OMP_ORDERED:
11429 case EXEC_OMP_SECTIONS:
11430 case EXEC_OMP_SIMD:
11431 case EXEC_OMP_SINGLE:
11432 case EXEC_OMP_TARGET:
11433 case EXEC_OMP_TARGET_DATA:
11434 case EXEC_OMP_TARGET_ENTER_DATA:
11435 case EXEC_OMP_TARGET_EXIT_DATA:
11436 case EXEC_OMP_TARGET_PARALLEL:
11437 case EXEC_OMP_TARGET_PARALLEL_DO:
11438 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11439 case EXEC_OMP_TARGET_SIMD:
11440 case EXEC_OMP_TARGET_TEAMS:
11441 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11442 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11443 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11444 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11445 case EXEC_OMP_TARGET_UPDATE:
11446 case EXEC_OMP_TASK:
11447 case EXEC_OMP_TASKGROUP:
11448 case EXEC_OMP_TASKLOOP:
11449 case EXEC_OMP_TASKLOOP_SIMD:
11450 case EXEC_OMP_TASKWAIT:
11451 case EXEC_OMP_TASKYIELD:
11452 case EXEC_OMP_TEAMS:
11453 case EXEC_OMP_TEAMS_DISTRIBUTE:
11454 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11455 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11456 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11457 case EXEC_OMP_WORKSHARE:
11458 gfc_resolve_omp_directive (code, ns);
11459 break;
11461 case EXEC_OMP_PARALLEL:
11462 case EXEC_OMP_PARALLEL_DO:
11463 case EXEC_OMP_PARALLEL_DO_SIMD:
11464 case EXEC_OMP_PARALLEL_SECTIONS:
11465 case EXEC_OMP_PARALLEL_WORKSHARE:
11466 omp_workshare_save = omp_workshare_flag;
11467 omp_workshare_flag = 0;
11468 gfc_resolve_omp_directive (code, ns);
11469 omp_workshare_flag = omp_workshare_save;
11470 break;
11472 default:
11473 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11477 cs_base = frame.prev;
11481 /* Resolve initial values and make sure they are compatible with
11482 the variable. */
11484 static void
11485 resolve_values (gfc_symbol *sym)
11487 bool t;
11489 if (sym->value == NULL)
11490 return;
11492 if (sym->value->expr_type == EXPR_STRUCTURE)
11493 t= resolve_structure_cons (sym->value, 1);
11494 else
11495 t = gfc_resolve_expr (sym->value);
11497 if (!t)
11498 return;
11500 gfc_check_assign_symbol (sym, NULL, sym->value);
11504 /* Verify any BIND(C) derived types in the namespace so we can report errors
11505 for them once, rather than for each variable declared of that type. */
11507 static void
11508 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11510 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11511 && derived_sym->attr.is_bind_c == 1)
11512 verify_bind_c_derived_type (derived_sym);
11514 return;
11518 /* Check the interfaces of DTIO procedures associated with derived
11519 type 'sym'. These procedures can either have typebound bindings or
11520 can appear in DTIO generic interfaces. */
11522 static void
11523 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11525 if (!sym || sym->attr.flavor != FL_DERIVED)
11526 return;
11528 gfc_check_dtio_interfaces (sym);
11530 return;
11533 /* Verify that any binding labels used in a given namespace do not collide
11534 with the names or binding labels of any global symbols. Multiple INTERFACE
11535 for the same procedure are permitted. */
11537 static void
11538 gfc_verify_binding_labels (gfc_symbol *sym)
11540 gfc_gsymbol *gsym;
11541 const char *module;
11543 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11544 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11545 return;
11547 gsym = gfc_find_case_gsymbol (gfc_gsym_root, sym->binding_label);
11549 if (sym->module)
11550 module = sym->module;
11551 else if (sym->ns && sym->ns->proc_name
11552 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11553 module = sym->ns->proc_name->name;
11554 else if (sym->ns && sym->ns->parent
11555 && sym->ns && sym->ns->parent->proc_name
11556 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11557 module = sym->ns->parent->proc_name->name;
11558 else
11559 module = NULL;
11561 if (!gsym
11562 || (!gsym->defined
11563 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11565 if (!gsym)
11566 gsym = gfc_get_gsymbol (sym->binding_label);
11567 gsym->where = sym->declared_at;
11568 gsym->sym_name = sym->name;
11569 gsym->binding_label = sym->binding_label;
11570 gsym->ns = sym->ns;
11571 gsym->mod_name = module;
11572 if (sym->attr.function)
11573 gsym->type = GSYM_FUNCTION;
11574 else if (sym->attr.subroutine)
11575 gsym->type = GSYM_SUBROUTINE;
11576 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11577 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11578 return;
11581 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11583 gfc_error ("Variable %qs with binding label %qs at %L uses the same global "
11584 "identifier as entity at %L", sym->name,
11585 sym->binding_label, &sym->declared_at, &gsym->where);
11586 /* Clear the binding label to prevent checking multiple times. */
11587 sym->binding_label = NULL;
11590 else if (sym->attr.flavor == FL_VARIABLE && module
11591 && (strcmp (module, gsym->mod_name) != 0
11592 || strcmp (sym->name, gsym->sym_name) != 0))
11594 /* This can only happen if the variable is defined in a module - if it
11595 isn't the same module, reject it. */
11596 gfc_error ("Variable %qs from module %qs with binding label %qs at %L "
11597 "uses the same global identifier as entity at %L from module %qs",
11598 sym->name, module, sym->binding_label,
11599 &sym->declared_at, &gsym->where, gsym->mod_name);
11600 sym->binding_label = NULL;
11602 else if ((sym->attr.function || sym->attr.subroutine)
11603 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11604 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11605 && sym != gsym->ns->proc_name
11606 && (module != gsym->mod_name
11607 || strcmp (gsym->sym_name, sym->name) != 0
11608 || (module && strcmp (module, gsym->mod_name) != 0)))
11610 /* Print an error if the procedure is defined multiple times; we have to
11611 exclude references to the same procedure via module association or
11612 multiple checks for the same procedure. */
11613 gfc_error ("Procedure %qs with binding label %qs at %L uses the same "
11614 "global identifier as entity at %L", sym->name,
11615 sym->binding_label, &sym->declared_at, &gsym->where);
11616 sym->binding_label = NULL;
11621 /* Resolve an index expression. */
11623 static bool
11624 resolve_index_expr (gfc_expr *e)
11626 if (!gfc_resolve_expr (e))
11627 return false;
11629 if (!gfc_simplify_expr (e, 0))
11630 return false;
11632 if (!gfc_specification_expr (e))
11633 return false;
11635 return true;
11639 /* Resolve a charlen structure. */
11641 static bool
11642 resolve_charlen (gfc_charlen *cl)
11644 int k;
11645 bool saved_specification_expr;
11647 if (cl->resolved)
11648 return true;
11650 cl->resolved = 1;
11651 saved_specification_expr = specification_expr;
11652 specification_expr = true;
11654 if (cl->length_from_typespec)
11656 if (!gfc_resolve_expr (cl->length))
11658 specification_expr = saved_specification_expr;
11659 return false;
11662 if (!gfc_simplify_expr (cl->length, 0))
11664 specification_expr = saved_specification_expr;
11665 return false;
11668 /* cl->length has been resolved. It should have an integer type. */
11669 if (cl->length->ts.type != BT_INTEGER)
11671 gfc_error ("Scalar INTEGER expression expected at %L",
11672 &cl->length->where);
11673 return false;
11676 else
11678 if (!resolve_index_expr (cl->length))
11680 specification_expr = saved_specification_expr;
11681 return false;
11685 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11686 a negative value, the length of character entities declared is zero. */
11687 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11688 && mpz_sgn (cl->length->value.integer) < 0)
11689 gfc_replace_expr (cl->length,
11690 gfc_get_int_expr (gfc_charlen_int_kind, NULL, 0));
11692 /* Check that the character length is not too large. */
11693 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11694 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11695 && cl->length->ts.type == BT_INTEGER
11696 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11698 gfc_error ("String length at %L is too large", &cl->length->where);
11699 specification_expr = saved_specification_expr;
11700 return false;
11703 specification_expr = saved_specification_expr;
11704 return true;
11708 /* Test for non-constant shape arrays. */
11710 static bool
11711 is_non_constant_shape_array (gfc_symbol *sym)
11713 gfc_expr *e;
11714 int i;
11715 bool not_constant;
11717 not_constant = false;
11718 if (sym->as != NULL)
11720 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11721 has not been simplified; parameter array references. Do the
11722 simplification now. */
11723 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11725 e = sym->as->lower[i];
11726 if (e && (!resolve_index_expr(e)
11727 || !gfc_is_constant_expr (e)))
11728 not_constant = true;
11729 e = sym->as->upper[i];
11730 if (e && (!resolve_index_expr(e)
11731 || !gfc_is_constant_expr (e)))
11732 not_constant = true;
11735 return not_constant;
11738 /* Given a symbol and an initialization expression, add code to initialize
11739 the symbol to the function entry. */
11740 static void
11741 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11743 gfc_expr *lval;
11744 gfc_code *init_st;
11745 gfc_namespace *ns = sym->ns;
11747 /* Search for the function namespace if this is a contained
11748 function without an explicit result. */
11749 if (sym->attr.function && sym == sym->result
11750 && sym->name != sym->ns->proc_name->name)
11752 ns = ns->contained;
11753 for (;ns; ns = ns->sibling)
11754 if (strcmp (ns->proc_name->name, sym->name) == 0)
11755 break;
11758 if (ns == NULL)
11760 gfc_free_expr (init);
11761 return;
11764 /* Build an l-value expression for the result. */
11765 lval = gfc_lval_expr_from_sym (sym);
11767 /* Add the code at scope entry. */
11768 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11769 init_st->next = ns->code;
11770 ns->code = init_st;
11772 /* Assign the default initializer to the l-value. */
11773 init_st->loc = sym->declared_at;
11774 init_st->expr1 = lval;
11775 init_st->expr2 = init;
11779 /* Whether or not we can generate a default initializer for a symbol. */
11781 static bool
11782 can_generate_init (gfc_symbol *sym)
11784 symbol_attribute *a;
11785 if (!sym)
11786 return false;
11787 a = &sym->attr;
11789 /* These symbols should never have a default initialization. */
11790 return !(
11791 a->allocatable
11792 || a->external
11793 || a->pointer
11794 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11795 && (CLASS_DATA (sym)->attr.class_pointer
11796 || CLASS_DATA (sym)->attr.proc_pointer))
11797 || a->in_equivalence
11798 || a->in_common
11799 || a->data
11800 || sym->module
11801 || a->cray_pointee
11802 || a->cray_pointer
11803 || sym->assoc
11804 || (!a->referenced && !a->result)
11805 || (a->dummy && a->intent != INTENT_OUT)
11806 || (a->function && sym != sym->result)
11811 /* Assign the default initializer to a derived type variable or result. */
11813 static void
11814 apply_default_init (gfc_symbol *sym)
11816 gfc_expr *init = NULL;
11818 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11819 return;
11821 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
11822 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
11824 if (init == NULL && sym->ts.type != BT_CLASS)
11825 return;
11827 build_init_assign (sym, init);
11828 sym->attr.referenced = 1;
11832 /* Build an initializer for a local. Returns null if the symbol should not have
11833 a default initialization. */
11835 static gfc_expr *
11836 build_default_init_expr (gfc_symbol *sym)
11838 /* These symbols should never have a default initialization. */
11839 if (sym->attr.allocatable
11840 || sym->attr.external
11841 || sym->attr.dummy
11842 || sym->attr.pointer
11843 || sym->attr.in_equivalence
11844 || sym->attr.in_common
11845 || sym->attr.data
11846 || sym->module
11847 || sym->attr.cray_pointee
11848 || sym->attr.cray_pointer
11849 || sym->assoc)
11850 return NULL;
11852 /* Get the appropriate init expression. */
11853 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
11856 /* Add an initialization expression to a local variable. */
11857 static void
11858 apply_default_init_local (gfc_symbol *sym)
11860 gfc_expr *init = NULL;
11862 /* The symbol should be a variable or a function return value. */
11863 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11864 || (sym->attr.function && sym->result != sym))
11865 return;
11867 /* Try to build the initializer expression. If we can't initialize
11868 this symbol, then init will be NULL. */
11869 init = build_default_init_expr (sym);
11870 if (init == NULL)
11871 return;
11873 /* For saved variables, we don't want to add an initializer at function
11874 entry, so we just add a static initializer. Note that automatic variables
11875 are stack allocated even with -fno-automatic; we have also to exclude
11876 result variable, which are also nonstatic. */
11877 if (!sym->attr.automatic
11878 && (sym->attr.save || sym->ns->save_all
11879 || (flag_max_stack_var_size == 0 && !sym->attr.result
11880 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
11881 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
11883 /* Don't clobber an existing initializer! */
11884 gcc_assert (sym->value == NULL);
11885 sym->value = init;
11886 return;
11889 build_init_assign (sym, init);
11893 /* Resolution of common features of flavors variable and procedure. */
11895 static bool
11896 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
11898 gfc_array_spec *as;
11900 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11901 as = CLASS_DATA (sym)->as;
11902 else
11903 as = sym->as;
11905 /* Constraints on deferred shape variable. */
11906 if (as == NULL || as->type != AS_DEFERRED)
11908 bool pointer, allocatable, dimension;
11910 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11912 pointer = CLASS_DATA (sym)->attr.class_pointer;
11913 allocatable = CLASS_DATA (sym)->attr.allocatable;
11914 dimension = CLASS_DATA (sym)->attr.dimension;
11916 else
11918 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
11919 allocatable = sym->attr.allocatable;
11920 dimension = sym->attr.dimension;
11923 if (allocatable)
11925 if (dimension && as->type != AS_ASSUMED_RANK)
11927 gfc_error ("Allocatable array %qs at %L must have a deferred "
11928 "shape or assumed rank", sym->name, &sym->declared_at);
11929 return false;
11931 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
11932 "%qs at %L may not be ALLOCATABLE",
11933 sym->name, &sym->declared_at))
11934 return false;
11937 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
11939 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
11940 "assumed rank", sym->name, &sym->declared_at);
11941 return false;
11944 else
11946 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
11947 && sym->ts.type != BT_CLASS && !sym->assoc)
11949 gfc_error ("Array %qs at %L cannot have a deferred shape",
11950 sym->name, &sym->declared_at);
11951 return false;
11955 /* Constraints on polymorphic variables. */
11956 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
11958 /* F03:C502. */
11959 if (sym->attr.class_ok
11960 && !sym->attr.select_type_temporary
11961 && !UNLIMITED_POLY (sym)
11962 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
11964 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
11965 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
11966 &sym->declared_at);
11967 return false;
11970 /* F03:C509. */
11971 /* Assume that use associated symbols were checked in the module ns.
11972 Class-variables that are associate-names are also something special
11973 and excepted from the test. */
11974 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
11976 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
11977 "or pointer", sym->name, &sym->declared_at);
11978 return false;
11982 return true;
11986 /* Additional checks for symbols with flavor variable and derived
11987 type. To be called from resolve_fl_variable. */
11989 static bool
11990 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
11992 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
11994 /* Check to see if a derived type is blocked from being host
11995 associated by the presence of another class I symbol in the same
11996 namespace. 14.6.1.3 of the standard and the discussion on
11997 comp.lang.fortran. */
11998 if (sym->ns != sym->ts.u.derived->ns
11999 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
12001 gfc_symbol *s;
12002 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
12003 if (s && s->attr.generic)
12004 s = gfc_find_dt_in_generic (s);
12005 if (s && !gfc_fl_struct (s->attr.flavor))
12007 gfc_error ("The type %qs cannot be host associated at %L "
12008 "because it is blocked by an incompatible object "
12009 "of the same name declared at %L",
12010 sym->ts.u.derived->name, &sym->declared_at,
12011 &s->declared_at);
12012 return false;
12016 /* 4th constraint in section 11.3: "If an object of a type for which
12017 component-initialization is specified (R429) appears in the
12018 specification-part of a module and does not have the ALLOCATABLE
12019 or POINTER attribute, the object shall have the SAVE attribute."
12021 The check for initializers is performed with
12022 gfc_has_default_initializer because gfc_default_initializer generates
12023 a hidden default for allocatable components. */
12024 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12025 && sym->ns->proc_name->attr.flavor == FL_MODULE
12026 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12027 && !sym->attr.pointer && !sym->attr.allocatable
12028 && gfc_has_default_initializer (sym->ts.u.derived)
12029 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12030 "%qs at %L, needed due to the default "
12031 "initialization", sym->name, &sym->declared_at))
12032 return false;
12034 /* Assign default initializer. */
12035 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12036 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12037 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12039 return true;
12043 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12044 except in the declaration of an entity or component that has the POINTER
12045 or ALLOCATABLE attribute. */
12047 static bool
12048 deferred_requirements (gfc_symbol *sym)
12050 if (sym->ts.deferred
12051 && !(sym->attr.pointer
12052 || sym->attr.allocatable
12053 || sym->attr.associate_var
12054 || sym->attr.omp_udr_artificial_var))
12056 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12057 "requires either the POINTER or ALLOCATABLE attribute",
12058 sym->name, &sym->declared_at);
12059 return false;
12061 return true;
12065 /* Resolve symbols with flavor variable. */
12067 static bool
12068 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12070 int no_init_flag, automatic_flag;
12071 gfc_expr *e;
12072 const char *auto_save_msg;
12073 bool saved_specification_expr;
12075 auto_save_msg = "Automatic object %qs at %L cannot have the "
12076 "SAVE attribute";
12078 if (!resolve_fl_var_and_proc (sym, mp_flag))
12079 return false;
12081 /* Set this flag to check that variables are parameters of all entries.
12082 This check is effected by the call to gfc_resolve_expr through
12083 is_non_constant_shape_array. */
12084 saved_specification_expr = specification_expr;
12085 specification_expr = true;
12087 if (sym->ns->proc_name
12088 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12089 || sym->ns->proc_name->attr.is_main_program)
12090 && !sym->attr.use_assoc
12091 && !sym->attr.allocatable
12092 && !sym->attr.pointer
12093 && is_non_constant_shape_array (sym))
12095 /* F08:C541. The shape of an array defined in a main program or module
12096 * needs to be constant. */
12097 gfc_error ("The module or main program array %qs at %L must "
12098 "have constant shape", sym->name, &sym->declared_at);
12099 specification_expr = saved_specification_expr;
12100 return false;
12103 /* Constraints on deferred type parameter. */
12104 if (!deferred_requirements (sym))
12105 return false;
12107 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12109 /* Make sure that character string variables with assumed length are
12110 dummy arguments. */
12111 e = sym->ts.u.cl->length;
12112 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12113 && !sym->ts.deferred && !sym->attr.select_type_temporary
12114 && !sym->attr.omp_udr_artificial_var)
12116 gfc_error ("Entity with assumed character length at %L must be a "
12117 "dummy argument or a PARAMETER", &sym->declared_at);
12118 specification_expr = saved_specification_expr;
12119 return false;
12122 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12124 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12125 specification_expr = saved_specification_expr;
12126 return false;
12129 if (!gfc_is_constant_expr (e)
12130 && !(e->expr_type == EXPR_VARIABLE
12131 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12133 if (!sym->attr.use_assoc && sym->ns->proc_name
12134 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12135 || sym->ns->proc_name->attr.is_main_program))
12137 gfc_error ("%qs at %L must have constant character length "
12138 "in this context", sym->name, &sym->declared_at);
12139 specification_expr = saved_specification_expr;
12140 return false;
12142 if (sym->attr.in_common)
12144 gfc_error ("COMMON variable %qs at %L must have constant "
12145 "character length", sym->name, &sym->declared_at);
12146 specification_expr = saved_specification_expr;
12147 return false;
12152 if (sym->value == NULL && sym->attr.referenced)
12153 apply_default_init_local (sym); /* Try to apply a default initialization. */
12155 /* Determine if the symbol may not have an initializer. */
12156 no_init_flag = automatic_flag = 0;
12157 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12158 || sym->attr.intrinsic || sym->attr.result)
12159 no_init_flag = 1;
12160 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12161 && is_non_constant_shape_array (sym))
12163 no_init_flag = automatic_flag = 1;
12165 /* Also, they must not have the SAVE attribute.
12166 SAVE_IMPLICIT is checked below. */
12167 if (sym->as && sym->attr.codimension)
12169 int corank = sym->as->corank;
12170 sym->as->corank = 0;
12171 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12172 sym->as->corank = corank;
12174 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12176 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12177 specification_expr = saved_specification_expr;
12178 return false;
12182 /* Ensure that any initializer is simplified. */
12183 if (sym->value)
12184 gfc_simplify_expr (sym->value, 1);
12186 /* Reject illegal initializers. */
12187 if (!sym->mark && sym->value)
12189 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12190 && CLASS_DATA (sym)->attr.allocatable))
12191 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12192 sym->name, &sym->declared_at);
12193 else if (sym->attr.external)
12194 gfc_error ("External %qs at %L cannot have an initializer",
12195 sym->name, &sym->declared_at);
12196 else if (sym->attr.dummy
12197 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12198 gfc_error ("Dummy %qs at %L cannot have an initializer",
12199 sym->name, &sym->declared_at);
12200 else if (sym->attr.intrinsic)
12201 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12202 sym->name, &sym->declared_at);
12203 else if (sym->attr.result)
12204 gfc_error ("Function result %qs at %L cannot have an initializer",
12205 sym->name, &sym->declared_at);
12206 else if (automatic_flag)
12207 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12208 sym->name, &sym->declared_at);
12209 else
12210 goto no_init_error;
12211 specification_expr = saved_specification_expr;
12212 return false;
12215 no_init_error:
12216 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12218 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12219 specification_expr = saved_specification_expr;
12220 return res;
12223 specification_expr = saved_specification_expr;
12224 return true;
12228 /* Compare the dummy characteristics of a module procedure interface
12229 declaration with the corresponding declaration in a submodule. */
12230 static gfc_formal_arglist *new_formal;
12231 static char errmsg[200];
12233 static void
12234 compare_fsyms (gfc_symbol *sym)
12236 gfc_symbol *fsym;
12238 if (sym == NULL || new_formal == NULL)
12239 return;
12241 fsym = new_formal->sym;
12243 if (sym == fsym)
12244 return;
12246 if (strcmp (sym->name, fsym->name) == 0)
12248 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12249 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12254 /* Resolve a procedure. */
12256 static bool
12257 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12259 gfc_formal_arglist *arg;
12261 if (sym->attr.function
12262 && !resolve_fl_var_and_proc (sym, mp_flag))
12263 return false;
12265 if (sym->ts.type == BT_CHARACTER)
12267 gfc_charlen *cl = sym->ts.u.cl;
12269 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12270 && !resolve_charlen (cl))
12271 return false;
12273 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12274 && sym->attr.proc == PROC_ST_FUNCTION)
12276 gfc_error ("Character-valued statement function %qs at %L must "
12277 "have constant length", sym->name, &sym->declared_at);
12278 return false;
12282 /* Ensure that derived type for are not of a private type. Internal
12283 module procedures are excluded by 2.2.3.3 - i.e., they are not
12284 externally accessible and can access all the objects accessible in
12285 the host. */
12286 if (!(sym->ns->parent
12287 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12288 && gfc_check_symbol_access (sym))
12290 gfc_interface *iface;
12292 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12294 if (arg->sym
12295 && arg->sym->ts.type == BT_DERIVED
12296 && !arg->sym->ts.u.derived->attr.use_assoc
12297 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12298 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12299 "and cannot be a dummy argument"
12300 " of %qs, which is PUBLIC at %L",
12301 arg->sym->name, sym->name,
12302 &sym->declared_at))
12304 /* Stop this message from recurring. */
12305 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12306 return false;
12310 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12311 PRIVATE to the containing module. */
12312 for (iface = sym->generic; iface; iface = iface->next)
12314 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12316 if (arg->sym
12317 && arg->sym->ts.type == BT_DERIVED
12318 && !arg->sym->ts.u.derived->attr.use_assoc
12319 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12320 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12321 "PUBLIC interface %qs at %L "
12322 "takes dummy arguments of %qs which "
12323 "is PRIVATE", iface->sym->name,
12324 sym->name, &iface->sym->declared_at,
12325 gfc_typename(&arg->sym->ts)))
12327 /* Stop this message from recurring. */
12328 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12329 return false;
12335 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12336 && !sym->attr.proc_pointer)
12338 gfc_error ("Function %qs at %L cannot have an initializer",
12339 sym->name, &sym->declared_at);
12340 return false;
12343 /* An external symbol may not have an initializer because it is taken to be
12344 a procedure. Exception: Procedure Pointers. */
12345 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12347 gfc_error ("External object %qs at %L may not have an initializer",
12348 sym->name, &sym->declared_at);
12349 return false;
12352 /* An elemental function is required to return a scalar 12.7.1 */
12353 if (sym->attr.elemental && sym->attr.function && sym->as)
12355 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12356 "result", sym->name, &sym->declared_at);
12357 /* Reset so that the error only occurs once. */
12358 sym->attr.elemental = 0;
12359 return false;
12362 if (sym->attr.proc == PROC_ST_FUNCTION
12363 && (sym->attr.allocatable || sym->attr.pointer))
12365 gfc_error ("Statement function %qs at %L may not have pointer or "
12366 "allocatable attribute", sym->name, &sym->declared_at);
12367 return false;
12370 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12371 char-len-param shall not be array-valued, pointer-valued, recursive
12372 or pure. ....snip... A character value of * may only be used in the
12373 following ways: (i) Dummy arg of procedure - dummy associates with
12374 actual length; (ii) To declare a named constant; or (iii) External
12375 function - but length must be declared in calling scoping unit. */
12376 if (sym->attr.function
12377 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12378 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12380 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12381 || (sym->attr.recursive) || (sym->attr.pure))
12383 if (sym->as && sym->as->rank)
12384 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12385 "array-valued", sym->name, &sym->declared_at);
12387 if (sym->attr.pointer)
12388 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12389 "pointer-valued", sym->name, &sym->declared_at);
12391 if (sym->attr.pure)
12392 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12393 "pure", sym->name, &sym->declared_at);
12395 if (sym->attr.recursive)
12396 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12397 "recursive", sym->name, &sym->declared_at);
12399 return false;
12402 /* Appendix B.2 of the standard. Contained functions give an
12403 error anyway. Deferred character length is an F2003 feature.
12404 Don't warn on intrinsic conversion functions, which start
12405 with two underscores. */
12406 if (!sym->attr.contained && !sym->ts.deferred
12407 && (sym->name[0] != '_' || sym->name[1] != '_'))
12408 gfc_notify_std (GFC_STD_F95_OBS,
12409 "CHARACTER(*) function %qs at %L",
12410 sym->name, &sym->declared_at);
12413 /* F2008, C1218. */
12414 if (sym->attr.elemental)
12416 if (sym->attr.proc_pointer)
12418 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12419 sym->name, &sym->declared_at);
12420 return false;
12422 if (sym->attr.dummy)
12424 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12425 sym->name, &sym->declared_at);
12426 return false;
12430 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12432 gfc_formal_arglist *curr_arg;
12433 int has_non_interop_arg = 0;
12435 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12436 sym->common_block))
12438 /* Clear these to prevent looking at them again if there was an
12439 error. */
12440 sym->attr.is_bind_c = 0;
12441 sym->attr.is_c_interop = 0;
12442 sym->ts.is_c_interop = 0;
12444 else
12446 /* So far, no errors have been found. */
12447 sym->attr.is_c_interop = 1;
12448 sym->ts.is_c_interop = 1;
12451 curr_arg = gfc_sym_get_dummy_args (sym);
12452 while (curr_arg != NULL)
12454 /* Skip implicitly typed dummy args here. */
12455 if (curr_arg->sym->attr.implicit_type == 0)
12456 if (!gfc_verify_c_interop_param (curr_arg->sym))
12457 /* If something is found to fail, record the fact so we
12458 can mark the symbol for the procedure as not being
12459 BIND(C) to try and prevent multiple errors being
12460 reported. */
12461 has_non_interop_arg = 1;
12463 curr_arg = curr_arg->next;
12466 /* See if any of the arguments were not interoperable and if so, clear
12467 the procedure symbol to prevent duplicate error messages. */
12468 if (has_non_interop_arg != 0)
12470 sym->attr.is_c_interop = 0;
12471 sym->ts.is_c_interop = 0;
12472 sym->attr.is_bind_c = 0;
12476 if (!sym->attr.proc_pointer)
12478 if (sym->attr.save == SAVE_EXPLICIT)
12480 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12481 "in %qs at %L", sym->name, &sym->declared_at);
12482 return false;
12484 if (sym->attr.intent)
12486 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12487 "in %qs at %L", sym->name, &sym->declared_at);
12488 return false;
12490 if (sym->attr.subroutine && sym->attr.result)
12492 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12493 "in %qs at %L", sym->name, &sym->declared_at);
12494 return false;
12496 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12497 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12498 || sym->attr.contained))
12500 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12501 "in %qs at %L", sym->name, &sym->declared_at);
12502 return false;
12504 if (strcmp ("ppr@", sym->name) == 0)
12506 gfc_error ("Procedure pointer result %qs at %L "
12507 "is missing the pointer attribute",
12508 sym->ns->proc_name->name, &sym->declared_at);
12509 return false;
12513 /* Assume that a procedure whose body is not known has references
12514 to external arrays. */
12515 if (sym->attr.if_source != IFSRC_DECL)
12516 sym->attr.array_outer_dependency = 1;
12518 /* Compare the characteristics of a module procedure with the
12519 interface declaration. Ideally this would be done with
12520 gfc_compare_interfaces but, at present, the formal interface
12521 cannot be copied to the ts.interface. */
12522 if (sym->attr.module_procedure
12523 && sym->attr.if_source == IFSRC_DECL)
12525 gfc_symbol *iface;
12526 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12527 char *module_name;
12528 char *submodule_name;
12529 strcpy (name, sym->ns->proc_name->name);
12530 module_name = strtok (name, ".");
12531 submodule_name = strtok (NULL, ".");
12533 iface = sym->tlink;
12534 sym->tlink = NULL;
12536 /* Make sure that the result uses the correct charlen for deferred
12537 length results. */
12538 if (iface && sym->result
12539 && iface->ts.type == BT_CHARACTER
12540 && iface->ts.deferred)
12541 sym->result->ts.u.cl = iface->ts.u.cl;
12543 if (iface == NULL)
12544 goto check_formal;
12546 /* Check the procedure characteristics. */
12547 if (sym->attr.elemental != iface->attr.elemental)
12549 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12550 "PROCEDURE at %L and its interface in %s",
12551 &sym->declared_at, module_name);
12552 return false;
12555 if (sym->attr.pure != iface->attr.pure)
12557 gfc_error ("Mismatch in PURE attribute between MODULE "
12558 "PROCEDURE at %L and its interface in %s",
12559 &sym->declared_at, module_name);
12560 return false;
12563 if (sym->attr.recursive != iface->attr.recursive)
12565 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12566 "PROCEDURE at %L and its interface in %s",
12567 &sym->declared_at, module_name);
12568 return false;
12571 /* Check the result characteristics. */
12572 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12574 gfc_error ("%s between the MODULE PROCEDURE declaration "
12575 "in MODULE %qs and the declaration at %L in "
12576 "(SUB)MODULE %qs",
12577 errmsg, module_name, &sym->declared_at,
12578 submodule_name ? submodule_name : module_name);
12579 return false;
12582 check_formal:
12583 /* Check the characteristics of the formal arguments. */
12584 if (sym->formal && sym->formal_ns)
12586 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12588 new_formal = arg;
12589 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12593 return true;
12597 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12598 been defined and we now know their defined arguments, check that they fulfill
12599 the requirements of the standard for procedures used as finalizers. */
12601 static bool
12602 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12604 gfc_finalizer* list;
12605 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12606 bool result = true;
12607 bool seen_scalar = false;
12608 gfc_symbol *vtab;
12609 gfc_component *c;
12610 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12612 if (parent)
12613 gfc_resolve_finalizers (parent, finalizable);
12615 /* Ensure that derived-type components have a their finalizers resolved. */
12616 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12617 for (c = derived->components; c; c = c->next)
12618 if (c->ts.type == BT_DERIVED
12619 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12621 bool has_final2 = false;
12622 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12623 return false; /* Error. */
12624 has_final = has_final || has_final2;
12626 /* Return early if not finalizable. */
12627 if (!has_final)
12629 if (finalizable)
12630 *finalizable = false;
12631 return true;
12634 /* Walk over the list of finalizer-procedures, check them, and if any one
12635 does not fit in with the standard's definition, print an error and remove
12636 it from the list. */
12637 prev_link = &derived->f2k_derived->finalizers;
12638 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12640 gfc_formal_arglist *dummy_args;
12641 gfc_symbol* arg;
12642 gfc_finalizer* i;
12643 int my_rank;
12645 /* Skip this finalizer if we already resolved it. */
12646 if (list->proc_tree)
12648 if (list->proc_tree->n.sym->formal->sym->as == NULL
12649 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12650 seen_scalar = true;
12651 prev_link = &(list->next);
12652 continue;
12655 /* Check this exists and is a SUBROUTINE. */
12656 if (!list->proc_sym->attr.subroutine)
12658 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12659 list->proc_sym->name, &list->where);
12660 goto error;
12663 /* We should have exactly one argument. */
12664 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12665 if (!dummy_args || dummy_args->next)
12667 gfc_error ("FINAL procedure at %L must have exactly one argument",
12668 &list->where);
12669 goto error;
12671 arg = dummy_args->sym;
12673 /* This argument must be of our type. */
12674 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12676 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12677 &arg->declared_at, derived->name);
12678 goto error;
12681 /* It must neither be a pointer nor allocatable nor optional. */
12682 if (arg->attr.pointer)
12684 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12685 &arg->declared_at);
12686 goto error;
12688 if (arg->attr.allocatable)
12690 gfc_error ("Argument of FINAL procedure at %L must not be"
12691 " ALLOCATABLE", &arg->declared_at);
12692 goto error;
12694 if (arg->attr.optional)
12696 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12697 &arg->declared_at);
12698 goto error;
12701 /* It must not be INTENT(OUT). */
12702 if (arg->attr.intent == INTENT_OUT)
12704 gfc_error ("Argument of FINAL procedure at %L must not be"
12705 " INTENT(OUT)", &arg->declared_at);
12706 goto error;
12709 /* Warn if the procedure is non-scalar and not assumed shape. */
12710 if (warn_surprising && arg->as && arg->as->rank != 0
12711 && arg->as->type != AS_ASSUMED_SHAPE)
12712 gfc_warning (OPT_Wsurprising,
12713 "Non-scalar FINAL procedure at %L should have assumed"
12714 " shape argument", &arg->declared_at);
12716 /* Check that it does not match in kind and rank with a FINAL procedure
12717 defined earlier. To really loop over the *earlier* declarations,
12718 we need to walk the tail of the list as new ones were pushed at the
12719 front. */
12720 /* TODO: Handle kind parameters once they are implemented. */
12721 my_rank = (arg->as ? arg->as->rank : 0);
12722 for (i = list->next; i; i = i->next)
12724 gfc_formal_arglist *dummy_args;
12726 /* Argument list might be empty; that is an error signalled earlier,
12727 but we nevertheless continued resolving. */
12728 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12729 if (dummy_args)
12731 gfc_symbol* i_arg = dummy_args->sym;
12732 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12733 if (i_rank == my_rank)
12735 gfc_error ("FINAL procedure %qs declared at %L has the same"
12736 " rank (%d) as %qs",
12737 list->proc_sym->name, &list->where, my_rank,
12738 i->proc_sym->name);
12739 goto error;
12744 /* Is this the/a scalar finalizer procedure? */
12745 if (my_rank == 0)
12746 seen_scalar = true;
12748 /* Find the symtree for this procedure. */
12749 gcc_assert (!list->proc_tree);
12750 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12752 prev_link = &list->next;
12753 continue;
12755 /* Remove wrong nodes immediately from the list so we don't risk any
12756 troubles in the future when they might fail later expectations. */
12757 error:
12758 i = list;
12759 *prev_link = list->next;
12760 gfc_free_finalizer (i);
12761 result = false;
12764 if (result == false)
12765 return false;
12767 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12768 were nodes in the list, must have been for arrays. It is surely a good
12769 idea to have a scalar version there if there's something to finalize. */
12770 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12771 gfc_warning (OPT_Wsurprising,
12772 "Only array FINAL procedures declared for derived type %qs"
12773 " defined at %L, suggest also scalar one",
12774 derived->name, &derived->declared_at);
12776 vtab = gfc_find_derived_vtab (derived);
12777 c = vtab->ts.u.derived->components->next->next->next->next->next;
12778 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12780 if (finalizable)
12781 *finalizable = true;
12783 return true;
12787 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
12789 static bool
12790 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
12791 const char* generic_name, locus where)
12793 gfc_symbol *sym1, *sym2;
12794 const char *pass1, *pass2;
12795 gfc_formal_arglist *dummy_args;
12797 gcc_assert (t1->specific && t2->specific);
12798 gcc_assert (!t1->specific->is_generic);
12799 gcc_assert (!t2->specific->is_generic);
12800 gcc_assert (t1->is_operator == t2->is_operator);
12802 sym1 = t1->specific->u.specific->n.sym;
12803 sym2 = t2->specific->u.specific->n.sym;
12805 if (sym1 == sym2)
12806 return true;
12808 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
12809 if (sym1->attr.subroutine != sym2->attr.subroutine
12810 || sym1->attr.function != sym2->attr.function)
12812 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
12813 " GENERIC %qs at %L",
12814 sym1->name, sym2->name, generic_name, &where);
12815 return false;
12818 /* Determine PASS arguments. */
12819 if (t1->specific->nopass)
12820 pass1 = NULL;
12821 else if (t1->specific->pass_arg)
12822 pass1 = t1->specific->pass_arg;
12823 else
12825 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
12826 if (dummy_args)
12827 pass1 = dummy_args->sym->name;
12828 else
12829 pass1 = NULL;
12831 if (t2->specific->nopass)
12832 pass2 = NULL;
12833 else if (t2->specific->pass_arg)
12834 pass2 = t2->specific->pass_arg;
12835 else
12837 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
12838 if (dummy_args)
12839 pass2 = dummy_args->sym->name;
12840 else
12841 pass2 = NULL;
12844 /* Compare the interfaces. */
12845 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
12846 NULL, 0, pass1, pass2))
12848 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
12849 sym1->name, sym2->name, generic_name, &where);
12850 return false;
12853 return true;
12857 /* Worker function for resolving a generic procedure binding; this is used to
12858 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
12860 The difference between those cases is finding possible inherited bindings
12861 that are overridden, as one has to look for them in tb_sym_root,
12862 tb_uop_root or tb_op, respectively. Thus the caller must already find
12863 the super-type and set p->overridden correctly. */
12865 static bool
12866 resolve_tb_generic_targets (gfc_symbol* super_type,
12867 gfc_typebound_proc* p, const char* name)
12869 gfc_tbp_generic* target;
12870 gfc_symtree* first_target;
12871 gfc_symtree* inherited;
12873 gcc_assert (p && p->is_generic);
12875 /* Try to find the specific bindings for the symtrees in our target-list. */
12876 gcc_assert (p->u.generic);
12877 for (target = p->u.generic; target; target = target->next)
12878 if (!target->specific)
12880 gfc_typebound_proc* overridden_tbp;
12881 gfc_tbp_generic* g;
12882 const char* target_name;
12884 target_name = target->specific_st->name;
12886 /* Defined for this type directly. */
12887 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
12889 target->specific = target->specific_st->n.tb;
12890 goto specific_found;
12893 /* Look for an inherited specific binding. */
12894 if (super_type)
12896 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
12897 true, NULL);
12899 if (inherited)
12901 gcc_assert (inherited->n.tb);
12902 target->specific = inherited->n.tb;
12903 goto specific_found;
12907 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
12908 " at %L", target_name, name, &p->where);
12909 return false;
12911 /* Once we've found the specific binding, check it is not ambiguous with
12912 other specifics already found or inherited for the same GENERIC. */
12913 specific_found:
12914 gcc_assert (target->specific);
12916 /* This must really be a specific binding! */
12917 if (target->specific->is_generic)
12919 gfc_error ("GENERIC %qs at %L must target a specific binding,"
12920 " %qs is GENERIC, too", name, &p->where, target_name);
12921 return false;
12924 /* Check those already resolved on this type directly. */
12925 for (g = p->u.generic; g; g = g->next)
12926 if (g != target && g->specific
12927 && !check_generic_tbp_ambiguity (target, g, name, p->where))
12928 return false;
12930 /* Check for ambiguity with inherited specific targets. */
12931 for (overridden_tbp = p->overridden; overridden_tbp;
12932 overridden_tbp = overridden_tbp->overridden)
12933 if (overridden_tbp->is_generic)
12935 for (g = overridden_tbp->u.generic; g; g = g->next)
12937 gcc_assert (g->specific);
12938 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
12939 return false;
12944 /* If we attempt to "overwrite" a specific binding, this is an error. */
12945 if (p->overridden && !p->overridden->is_generic)
12947 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
12948 " the same name", name, &p->where);
12949 return false;
12952 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
12953 all must have the same attributes here. */
12954 first_target = p->u.generic->specific->u.specific;
12955 gcc_assert (first_target);
12956 p->subroutine = first_target->n.sym->attr.subroutine;
12957 p->function = first_target->n.sym->attr.function;
12959 return true;
12963 /* Resolve a GENERIC procedure binding for a derived type. */
12965 static bool
12966 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
12968 gfc_symbol* super_type;
12970 /* Find the overridden binding if any. */
12971 st->n.tb->overridden = NULL;
12972 super_type = gfc_get_derived_super_type (derived);
12973 if (super_type)
12975 gfc_symtree* overridden;
12976 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
12977 true, NULL);
12979 if (overridden && overridden->n.tb)
12980 st->n.tb->overridden = overridden->n.tb;
12983 /* Resolve using worker function. */
12984 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
12988 /* Retrieve the target-procedure of an operator binding and do some checks in
12989 common for intrinsic and user-defined type-bound operators. */
12991 static gfc_symbol*
12992 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
12994 gfc_symbol* target_proc;
12996 gcc_assert (target->specific && !target->specific->is_generic);
12997 target_proc = target->specific->u.specific->n.sym;
12998 gcc_assert (target_proc);
13000 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
13001 if (target->specific->nopass)
13003 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
13004 return NULL;
13007 return target_proc;
13011 /* Resolve a type-bound intrinsic operator. */
13013 static bool
13014 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13015 gfc_typebound_proc* p)
13017 gfc_symbol* super_type;
13018 gfc_tbp_generic* target;
13020 /* If there's already an error here, do nothing (but don't fail again). */
13021 if (p->error)
13022 return true;
13024 /* Operators should always be GENERIC bindings. */
13025 gcc_assert (p->is_generic);
13027 /* Look for an overridden binding. */
13028 super_type = gfc_get_derived_super_type (derived);
13029 if (super_type && super_type->f2k_derived)
13030 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13031 op, true, NULL);
13032 else
13033 p->overridden = NULL;
13035 /* Resolve general GENERIC properties using worker function. */
13036 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13037 goto error;
13039 /* Check the targets to be procedures of correct interface. */
13040 for (target = p->u.generic; target; target = target->next)
13042 gfc_symbol* target_proc;
13044 target_proc = get_checked_tb_operator_target (target, p->where);
13045 if (!target_proc)
13046 goto error;
13048 if (!gfc_check_operator_interface (target_proc, op, p->where))
13049 goto error;
13051 /* Add target to non-typebound operator list. */
13052 if (!target->specific->deferred && !derived->attr.use_assoc
13053 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13055 gfc_interface *head, *intr;
13057 /* Preempt 'gfc_check_new_interface' for submodules, where the
13058 mechanism for handling module procedures winds up resolving
13059 operator interfaces twice and would otherwise cause an error. */
13060 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13061 if (intr->sym == target_proc
13062 && target_proc->attr.used_in_submodule)
13063 return true;
13065 if (!gfc_check_new_interface (derived->ns->op[op],
13066 target_proc, p->where))
13067 return false;
13068 head = derived->ns->op[op];
13069 intr = gfc_get_interface ();
13070 intr->sym = target_proc;
13071 intr->where = p->where;
13072 intr->next = head;
13073 derived->ns->op[op] = intr;
13077 return true;
13079 error:
13080 p->error = 1;
13081 return false;
13085 /* Resolve a type-bound user operator (tree-walker callback). */
13087 static gfc_symbol* resolve_bindings_derived;
13088 static bool resolve_bindings_result;
13090 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13092 static void
13093 resolve_typebound_user_op (gfc_symtree* stree)
13095 gfc_symbol* super_type;
13096 gfc_tbp_generic* target;
13098 gcc_assert (stree && stree->n.tb);
13100 if (stree->n.tb->error)
13101 return;
13103 /* Operators should always be GENERIC bindings. */
13104 gcc_assert (stree->n.tb->is_generic);
13106 /* Find overridden procedure, if any. */
13107 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13108 if (super_type && super_type->f2k_derived)
13110 gfc_symtree* overridden;
13111 overridden = gfc_find_typebound_user_op (super_type, NULL,
13112 stree->name, true, NULL);
13114 if (overridden && overridden->n.tb)
13115 stree->n.tb->overridden = overridden->n.tb;
13117 else
13118 stree->n.tb->overridden = NULL;
13120 /* Resolve basically using worker function. */
13121 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13122 goto error;
13124 /* Check the targets to be functions of correct interface. */
13125 for (target = stree->n.tb->u.generic; target; target = target->next)
13127 gfc_symbol* target_proc;
13129 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13130 if (!target_proc)
13131 goto error;
13133 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13134 goto error;
13137 return;
13139 error:
13140 resolve_bindings_result = false;
13141 stree->n.tb->error = 1;
13145 /* Resolve the type-bound procedures for a derived type. */
13147 static void
13148 resolve_typebound_procedure (gfc_symtree* stree)
13150 gfc_symbol* proc;
13151 locus where;
13152 gfc_symbol* me_arg;
13153 gfc_symbol* super_type;
13154 gfc_component* comp;
13156 gcc_assert (stree);
13158 /* Undefined specific symbol from GENERIC target definition. */
13159 if (!stree->n.tb)
13160 return;
13162 if (stree->n.tb->error)
13163 return;
13165 /* If this is a GENERIC binding, use that routine. */
13166 if (stree->n.tb->is_generic)
13168 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13169 goto error;
13170 return;
13173 /* Get the target-procedure to check it. */
13174 gcc_assert (!stree->n.tb->is_generic);
13175 gcc_assert (stree->n.tb->u.specific);
13176 proc = stree->n.tb->u.specific->n.sym;
13177 where = stree->n.tb->where;
13179 /* Default access should already be resolved from the parser. */
13180 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13182 if (stree->n.tb->deferred)
13184 if (!check_proc_interface (proc, &where))
13185 goto error;
13187 else
13189 /* Check for F08:C465. */
13190 if ((!proc->attr.subroutine && !proc->attr.function)
13191 || (proc->attr.proc != PROC_MODULE
13192 && proc->attr.if_source != IFSRC_IFBODY)
13193 || proc->attr.abstract)
13195 gfc_error ("%qs must be a module procedure or an external procedure with"
13196 " an explicit interface at %L", proc->name, &where);
13197 goto error;
13201 stree->n.tb->subroutine = proc->attr.subroutine;
13202 stree->n.tb->function = proc->attr.function;
13204 /* Find the super-type of the current derived type. We could do this once and
13205 store in a global if speed is needed, but as long as not I believe this is
13206 more readable and clearer. */
13207 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13209 /* If PASS, resolve and check arguments if not already resolved / loaded
13210 from a .mod file. */
13211 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13213 gfc_formal_arglist *dummy_args;
13215 dummy_args = gfc_sym_get_dummy_args (proc);
13216 if (stree->n.tb->pass_arg)
13218 gfc_formal_arglist *i;
13220 /* If an explicit passing argument name is given, walk the arg-list
13221 and look for it. */
13223 me_arg = NULL;
13224 stree->n.tb->pass_arg_num = 1;
13225 for (i = dummy_args; i; i = i->next)
13227 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13229 me_arg = i->sym;
13230 break;
13232 ++stree->n.tb->pass_arg_num;
13235 if (!me_arg)
13237 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13238 " argument %qs",
13239 proc->name, stree->n.tb->pass_arg, &where,
13240 stree->n.tb->pass_arg);
13241 goto error;
13244 else
13246 /* Otherwise, take the first one; there should in fact be at least
13247 one. */
13248 stree->n.tb->pass_arg_num = 1;
13249 if (!dummy_args)
13251 gfc_error ("Procedure %qs with PASS at %L must have at"
13252 " least one argument", proc->name, &where);
13253 goto error;
13255 me_arg = dummy_args->sym;
13258 /* Now check that the argument-type matches and the passed-object
13259 dummy argument is generally fine. */
13261 gcc_assert (me_arg);
13263 if (me_arg->ts.type != BT_CLASS)
13265 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13266 " at %L", proc->name, &where);
13267 goto error;
13270 if (CLASS_DATA (me_arg)->ts.u.derived
13271 != resolve_bindings_derived)
13273 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13274 " the derived-type %qs", me_arg->name, proc->name,
13275 me_arg->name, &where, resolve_bindings_derived->name);
13276 goto error;
13279 gcc_assert (me_arg->ts.type == BT_CLASS);
13280 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13282 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13283 " scalar", proc->name, &where);
13284 goto error;
13286 if (CLASS_DATA (me_arg)->attr.allocatable)
13288 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13289 " be ALLOCATABLE", proc->name, &where);
13290 goto error;
13292 if (CLASS_DATA (me_arg)->attr.class_pointer)
13294 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13295 " be POINTER", proc->name, &where);
13296 goto error;
13300 /* If we are extending some type, check that we don't override a procedure
13301 flagged NON_OVERRIDABLE. */
13302 stree->n.tb->overridden = NULL;
13303 if (super_type)
13305 gfc_symtree* overridden;
13306 overridden = gfc_find_typebound_proc (super_type, NULL,
13307 stree->name, true, NULL);
13309 if (overridden)
13311 if (overridden->n.tb)
13312 stree->n.tb->overridden = overridden->n.tb;
13314 if (!gfc_check_typebound_override (stree, overridden))
13315 goto error;
13319 /* See if there's a name collision with a component directly in this type. */
13320 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13321 if (!strcmp (comp->name, stree->name))
13323 gfc_error ("Procedure %qs at %L has the same name as a component of"
13324 " %qs",
13325 stree->name, &where, resolve_bindings_derived->name);
13326 goto error;
13329 /* Try to find a name collision with an inherited component. */
13330 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13331 NULL))
13333 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13334 " component of %qs",
13335 stree->name, &where, resolve_bindings_derived->name);
13336 goto error;
13339 stree->n.tb->error = 0;
13340 return;
13342 error:
13343 resolve_bindings_result = false;
13344 stree->n.tb->error = 1;
13348 static bool
13349 resolve_typebound_procedures (gfc_symbol* derived)
13351 int op;
13352 gfc_symbol* super_type;
13354 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13355 return true;
13357 super_type = gfc_get_derived_super_type (derived);
13358 if (super_type)
13359 resolve_symbol (super_type);
13361 resolve_bindings_derived = derived;
13362 resolve_bindings_result = true;
13364 if (derived->f2k_derived->tb_sym_root)
13365 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13366 &resolve_typebound_procedure);
13368 if (derived->f2k_derived->tb_uop_root)
13369 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13370 &resolve_typebound_user_op);
13372 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13374 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13375 if (p && !resolve_typebound_intrinsic_op (derived,
13376 (gfc_intrinsic_op)op, p))
13377 resolve_bindings_result = false;
13380 return resolve_bindings_result;
13384 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13385 to give all identical derived types the same backend_decl. */
13386 static void
13387 add_dt_to_dt_list (gfc_symbol *derived)
13389 gfc_dt_list *dt_list;
13391 for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
13392 if (derived == dt_list->derived)
13393 return;
13395 dt_list = gfc_get_dt_list ();
13396 dt_list->next = gfc_derived_types;
13397 dt_list->derived = derived;
13398 gfc_derived_types = dt_list;
13402 /* Ensure that a derived-type is really not abstract, meaning that every
13403 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13405 static bool
13406 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13408 if (!st)
13409 return true;
13411 if (!ensure_not_abstract_walker (sub, st->left))
13412 return false;
13413 if (!ensure_not_abstract_walker (sub, st->right))
13414 return false;
13416 if (st->n.tb && st->n.tb->deferred)
13418 gfc_symtree* overriding;
13419 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13420 if (!overriding)
13421 return false;
13422 gcc_assert (overriding->n.tb);
13423 if (overriding->n.tb->deferred)
13425 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13426 " %qs is DEFERRED and not overridden",
13427 sub->name, &sub->declared_at, st->name);
13428 return false;
13432 return true;
13435 static bool
13436 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13438 /* The algorithm used here is to recursively travel up the ancestry of sub
13439 and for each ancestor-type, check all bindings. If any of them is
13440 DEFERRED, look it up starting from sub and see if the found (overriding)
13441 binding is not DEFERRED.
13442 This is not the most efficient way to do this, but it should be ok and is
13443 clearer than something sophisticated. */
13445 gcc_assert (ancestor && !sub->attr.abstract);
13447 if (!ancestor->attr.abstract)
13448 return true;
13450 /* Walk bindings of this ancestor. */
13451 if (ancestor->f2k_derived)
13453 bool t;
13454 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13455 if (!t)
13456 return false;
13459 /* Find next ancestor type and recurse on it. */
13460 ancestor = gfc_get_derived_super_type (ancestor);
13461 if (ancestor)
13462 return ensure_not_abstract (sub, ancestor);
13464 return true;
13468 /* This check for typebound defined assignments is done recursively
13469 since the order in which derived types are resolved is not always in
13470 order of the declarations. */
13472 static void
13473 check_defined_assignments (gfc_symbol *derived)
13475 gfc_component *c;
13477 for (c = derived->components; c; c = c->next)
13479 if (!gfc_bt_struct (c->ts.type)
13480 || c->attr.pointer
13481 || c->attr.allocatable
13482 || c->attr.proc_pointer_comp
13483 || c->attr.class_pointer
13484 || c->attr.proc_pointer)
13485 continue;
13487 if (c->ts.u.derived->attr.defined_assign_comp
13488 || (c->ts.u.derived->f2k_derived
13489 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13491 derived->attr.defined_assign_comp = 1;
13492 return;
13495 check_defined_assignments (c->ts.u.derived);
13496 if (c->ts.u.derived->attr.defined_assign_comp)
13498 derived->attr.defined_assign_comp = 1;
13499 return;
13505 /* Resolve a single component of a derived type or structure. */
13507 static bool
13508 resolve_component (gfc_component *c, gfc_symbol *sym)
13510 gfc_symbol *super_type;
13512 if (c->attr.artificial)
13513 return true;
13515 /* Do not allow vtype components to be resolved in nameless namespaces
13516 such as block data because the procedure pointers will cause ICEs
13517 and vtables are not needed in these contexts. */
13518 if (sym->attr.vtype && sym->attr.use_assoc
13519 && sym->ns->proc_name == NULL)
13520 return true;
13522 /* F2008, C442. */
13523 if ((!sym->attr.is_class || c != sym->components)
13524 && c->attr.codimension
13525 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13527 gfc_error ("Coarray component %qs at %L must be allocatable with "
13528 "deferred shape", c->name, &c->loc);
13529 return false;
13532 /* F2008, C443. */
13533 if (c->attr.codimension && c->ts.type == BT_DERIVED
13534 && c->ts.u.derived->ts.is_iso_c)
13536 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13537 "shall not be a coarray", c->name, &c->loc);
13538 return false;
13541 /* F2008, C444. */
13542 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13543 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13544 || c->attr.allocatable))
13546 gfc_error ("Component %qs at %L with coarray component "
13547 "shall be a nonpointer, nonallocatable scalar",
13548 c->name, &c->loc);
13549 return false;
13552 /* F2008, C448. */
13553 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13555 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13556 "is not an array pointer", c->name, &c->loc);
13557 return false;
13560 if (c->attr.proc_pointer && c->ts.interface)
13562 gfc_symbol *ifc = c->ts.interface;
13564 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13566 c->tb->error = 1;
13567 return false;
13570 if (ifc->attr.if_source || ifc->attr.intrinsic)
13572 /* Resolve interface and copy attributes. */
13573 if (ifc->formal && !ifc->formal_ns)
13574 resolve_symbol (ifc);
13575 if (ifc->attr.intrinsic)
13576 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13578 if (ifc->result)
13580 c->ts = ifc->result->ts;
13581 c->attr.allocatable = ifc->result->attr.allocatable;
13582 c->attr.pointer = ifc->result->attr.pointer;
13583 c->attr.dimension = ifc->result->attr.dimension;
13584 c->as = gfc_copy_array_spec (ifc->result->as);
13585 c->attr.class_ok = ifc->result->attr.class_ok;
13587 else
13589 c->ts = ifc->ts;
13590 c->attr.allocatable = ifc->attr.allocatable;
13591 c->attr.pointer = ifc->attr.pointer;
13592 c->attr.dimension = ifc->attr.dimension;
13593 c->as = gfc_copy_array_spec (ifc->as);
13594 c->attr.class_ok = ifc->attr.class_ok;
13596 c->ts.interface = ifc;
13597 c->attr.function = ifc->attr.function;
13598 c->attr.subroutine = ifc->attr.subroutine;
13600 c->attr.pure = ifc->attr.pure;
13601 c->attr.elemental = ifc->attr.elemental;
13602 c->attr.recursive = ifc->attr.recursive;
13603 c->attr.always_explicit = ifc->attr.always_explicit;
13604 c->attr.ext_attr |= ifc->attr.ext_attr;
13605 /* Copy char length. */
13606 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13608 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13609 if (cl->length && !cl->resolved
13610 && !gfc_resolve_expr (cl->length))
13612 c->tb->error = 1;
13613 return false;
13615 c->ts.u.cl = cl;
13619 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13621 /* Since PPCs are not implicitly typed, a PPC without an explicit
13622 interface must be a subroutine. */
13623 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13626 /* Procedure pointer components: Check PASS arg. */
13627 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13628 && !sym->attr.vtype)
13630 gfc_symbol* me_arg;
13632 if (c->tb->pass_arg)
13634 gfc_formal_arglist* i;
13636 /* If an explicit passing argument name is given, walk the arg-list
13637 and look for it. */
13639 me_arg = NULL;
13640 c->tb->pass_arg_num = 1;
13641 for (i = c->ts.interface->formal; i; i = i->next)
13643 if (!strcmp (i->sym->name, c->tb->pass_arg))
13645 me_arg = i->sym;
13646 break;
13648 c->tb->pass_arg_num++;
13651 if (!me_arg)
13653 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13654 "at %L has no argument %qs", c->name,
13655 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13656 c->tb->error = 1;
13657 return false;
13660 else
13662 /* Otherwise, take the first one; there should in fact be at least
13663 one. */
13664 c->tb->pass_arg_num = 1;
13665 if (!c->ts.interface->formal)
13667 gfc_error ("Procedure pointer component %qs with PASS at %L "
13668 "must have at least one argument",
13669 c->name, &c->loc);
13670 c->tb->error = 1;
13671 return false;
13673 me_arg = c->ts.interface->formal->sym;
13676 /* Now check that the argument-type matches. */
13677 gcc_assert (me_arg);
13678 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13679 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13680 || (me_arg->ts.type == BT_CLASS
13681 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13683 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13684 " the derived type %qs", me_arg->name, c->name,
13685 me_arg->name, &c->loc, sym->name);
13686 c->tb->error = 1;
13687 return false;
13690 /* Check for C453. */
13691 if (me_arg->attr.dimension)
13693 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13694 "must be scalar", me_arg->name, c->name, me_arg->name,
13695 &c->loc);
13696 c->tb->error = 1;
13697 return false;
13700 if (me_arg->attr.pointer)
13702 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13703 "may not have the POINTER attribute", me_arg->name,
13704 c->name, me_arg->name, &c->loc);
13705 c->tb->error = 1;
13706 return false;
13709 if (me_arg->attr.allocatable)
13711 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13712 "may not be ALLOCATABLE", me_arg->name, c->name,
13713 me_arg->name, &c->loc);
13714 c->tb->error = 1;
13715 return false;
13718 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13720 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13721 " at %L", c->name, &c->loc);
13722 return false;
13727 /* Check type-spec if this is not the parent-type component. */
13728 if (((sym->attr.is_class
13729 && (!sym->components->ts.u.derived->attr.extension
13730 || c != sym->components->ts.u.derived->components))
13731 || (!sym->attr.is_class
13732 && (!sym->attr.extension || c != sym->components)))
13733 && !sym->attr.vtype
13734 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13735 return false;
13737 super_type = gfc_get_derived_super_type (sym);
13739 /* If this type is an extension, set the accessibility of the parent
13740 component. */
13741 if (super_type
13742 && ((sym->attr.is_class
13743 && c == sym->components->ts.u.derived->components)
13744 || (!sym->attr.is_class && c == sym->components))
13745 && strcmp (super_type->name, c->name) == 0)
13746 c->attr.access = super_type->attr.access;
13748 /* If this type is an extension, see if this component has the same name
13749 as an inherited type-bound procedure. */
13750 if (super_type && !sym->attr.is_class
13751 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13753 gfc_error ("Component %qs of %qs at %L has the same name as an"
13754 " inherited type-bound procedure",
13755 c->name, sym->name, &c->loc);
13756 return false;
13759 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13760 && !c->ts.deferred)
13762 if (c->ts.u.cl->length == NULL
13763 || (!resolve_charlen(c->ts.u.cl))
13764 || !gfc_is_constant_expr (c->ts.u.cl->length))
13766 gfc_error ("Character length of component %qs needs to "
13767 "be a constant specification expression at %L",
13768 c->name,
13769 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
13770 return false;
13774 if (c->ts.type == BT_CHARACTER && c->ts.deferred
13775 && !c->attr.pointer && !c->attr.allocatable)
13777 gfc_error ("Character component %qs of %qs at %L with deferred "
13778 "length must be a POINTER or ALLOCATABLE",
13779 c->name, sym->name, &c->loc);
13780 return false;
13783 /* Add the hidden deferred length field. */
13784 if (c->ts.type == BT_CHARACTER
13785 && (c->ts.deferred || c->attr.pdt_string)
13786 && !c->attr.function
13787 && !sym->attr.is_class)
13789 char name[GFC_MAX_SYMBOL_LEN+9];
13790 gfc_component *strlen;
13791 sprintf (name, "_%s_length", c->name);
13792 strlen = gfc_find_component (sym, name, true, true, NULL);
13793 if (strlen == NULL)
13795 if (!gfc_add_component (sym, name, &strlen))
13796 return false;
13797 strlen->ts.type = BT_INTEGER;
13798 strlen->ts.kind = gfc_charlen_int_kind;
13799 strlen->attr.access = ACCESS_PRIVATE;
13800 strlen->attr.artificial = 1;
13804 if (c->ts.type == BT_DERIVED
13805 && sym->component_access != ACCESS_PRIVATE
13806 && gfc_check_symbol_access (sym)
13807 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
13808 && !c->ts.u.derived->attr.use_assoc
13809 && !gfc_check_symbol_access (c->ts.u.derived)
13810 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
13811 "PRIVATE type and cannot be a component of "
13812 "%qs, which is PUBLIC at %L", c->name,
13813 sym->name, &sym->declared_at))
13814 return false;
13816 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
13818 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
13819 "type %s", c->name, &c->loc, sym->name);
13820 return false;
13823 if (sym->attr.sequence)
13825 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
13827 gfc_error ("Component %s of SEQUENCE type declared at %L does "
13828 "not have the SEQUENCE attribute",
13829 c->ts.u.derived->name, &sym->declared_at);
13830 return false;
13834 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
13835 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
13836 else if (c->ts.type == BT_CLASS && c->attr.class_ok
13837 && CLASS_DATA (c)->ts.u.derived->attr.generic)
13838 CLASS_DATA (c)->ts.u.derived
13839 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
13841 if (!sym->attr.is_class && c->ts.type == BT_DERIVED && !sym->attr.vtype
13842 && c->attr.pointer && c->ts.u.derived->components == NULL
13843 && !c->ts.u.derived->attr.zero_comp)
13845 gfc_error ("The pointer component %qs of %qs at %L is a type "
13846 "that has not been declared", c->name, sym->name,
13847 &c->loc);
13848 return false;
13851 if (c->ts.type == BT_CLASS && c->attr.class_ok
13852 && CLASS_DATA (c)->attr.class_pointer
13853 && CLASS_DATA (c)->ts.u.derived->components == NULL
13854 && !CLASS_DATA (c)->ts.u.derived->attr.zero_comp
13855 && !UNLIMITED_POLY (c))
13857 gfc_error ("The pointer component %qs of %qs at %L is a type "
13858 "that has not been declared", c->name, sym->name,
13859 &c->loc);
13860 return false;
13863 /* If an allocatable component derived type is of the same type as
13864 the enclosing derived type, we need a vtable generating so that
13865 the __deallocate procedure is created. */
13866 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
13867 && c->ts.u.derived == sym && c->attr.allocatable == 1)
13868 gfc_find_vtab (&c->ts);
13870 /* Ensure that all the derived type components are put on the
13871 derived type list; even in formal namespaces, where derived type
13872 pointer components might not have been declared. */
13873 if (c->ts.type == BT_DERIVED
13874 && c->ts.u.derived
13875 && c->ts.u.derived->components
13876 && c->attr.pointer
13877 && sym != c->ts.u.derived)
13878 add_dt_to_dt_list (c->ts.u.derived);
13880 if (!gfc_resolve_array_spec (c->as,
13881 !(c->attr.pointer || c->attr.proc_pointer
13882 || c->attr.allocatable)))
13883 return false;
13885 if (c->initializer && !sym->attr.vtype
13886 && !c->attr.pdt_kind && !c->attr.pdt_len
13887 && !gfc_check_assign_symbol (sym, c, c->initializer))
13888 return false;
13890 return true;
13894 /* Be nice about the locus for a structure expression - show the locus of the
13895 first non-null sub-expression if we can. */
13897 static locus *
13898 cons_where (gfc_expr *struct_expr)
13900 gfc_constructor *cons;
13902 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
13904 cons = gfc_constructor_first (struct_expr->value.constructor);
13905 for (; cons; cons = gfc_constructor_next (cons))
13907 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
13908 return &cons->expr->where;
13911 return &struct_expr->where;
13914 /* Resolve the components of a structure type. Much less work than derived
13915 types. */
13917 static bool
13918 resolve_fl_struct (gfc_symbol *sym)
13920 gfc_component *c;
13921 gfc_expr *init = NULL;
13922 bool success;
13924 /* Make sure UNIONs do not have overlapping initializers. */
13925 if (sym->attr.flavor == FL_UNION)
13927 for (c = sym->components; c; c = c->next)
13929 if (init && c->initializer)
13931 gfc_error ("Conflicting initializers in union at %L and %L",
13932 cons_where (init), cons_where (c->initializer));
13933 gfc_free_expr (c->initializer);
13934 c->initializer = NULL;
13936 if (init == NULL)
13937 init = c->initializer;
13941 success = true;
13942 for (c = sym->components; c; c = c->next)
13943 if (!resolve_component (c, sym))
13944 success = false;
13946 if (!success)
13947 return false;
13949 if (sym->components)
13950 add_dt_to_dt_list (sym);
13952 return true;
13956 /* Resolve the components of a derived type. This does not have to wait until
13957 resolution stage, but can be done as soon as the dt declaration has been
13958 parsed. */
13960 static bool
13961 resolve_fl_derived0 (gfc_symbol *sym)
13963 gfc_symbol* super_type;
13964 gfc_component *c;
13965 gfc_formal_arglist *f;
13966 bool success;
13968 if (sym->attr.unlimited_polymorphic)
13969 return true;
13971 super_type = gfc_get_derived_super_type (sym);
13973 /* F2008, C432. */
13974 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
13976 gfc_error ("As extending type %qs at %L has a coarray component, "
13977 "parent type %qs shall also have one", sym->name,
13978 &sym->declared_at, super_type->name);
13979 return false;
13982 /* Ensure the extended type gets resolved before we do. */
13983 if (super_type && !resolve_fl_derived0 (super_type))
13984 return false;
13986 /* An ABSTRACT type must be extensible. */
13987 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
13989 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
13990 sym->name, &sym->declared_at);
13991 return false;
13994 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
13995 : sym->components;
13997 success = true;
13998 for ( ; c != NULL; c = c->next)
13999 if (!resolve_component (c, sym))
14000 success = false;
14002 if (!success)
14003 return false;
14005 /* Now add the caf token field, where needed. */
14006 if (flag_coarray != GFC_FCOARRAY_NONE
14007 && !sym->attr.is_class && !sym->attr.vtype)
14009 for (c = sym->components; c; c = c->next)
14010 if (!c->attr.dimension && !c->attr.codimension
14011 && (c->attr.allocatable || c->attr.pointer))
14013 char name[GFC_MAX_SYMBOL_LEN+9];
14014 gfc_component *token;
14015 sprintf (name, "_caf_%s", c->name);
14016 token = gfc_find_component (sym, name, true, true, NULL);
14017 if (token == NULL)
14019 if (!gfc_add_component (sym, name, &token))
14020 return false;
14021 token->ts.type = BT_VOID;
14022 token->ts.kind = gfc_default_integer_kind;
14023 token->attr.access = ACCESS_PRIVATE;
14024 token->attr.artificial = 1;
14025 token->attr.caf_token = 1;
14030 check_defined_assignments (sym);
14032 if (!sym->attr.defined_assign_comp && super_type)
14033 sym->attr.defined_assign_comp
14034 = super_type->attr.defined_assign_comp;
14036 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
14037 all DEFERRED bindings are overridden. */
14038 if (super_type && super_type->attr.abstract && !sym->attr.abstract
14039 && !sym->attr.is_class
14040 && !ensure_not_abstract (sym, super_type))
14041 return false;
14043 /* Check that there is a component for every PDT parameter. */
14044 if (sym->attr.pdt_template)
14046 for (f = sym->formal; f; f = f->next)
14048 if (!f->sym)
14049 continue;
14050 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14051 if (c == NULL)
14053 gfc_error ("Parameterized type %qs does not have a component "
14054 "corresponding to parameter %qs at %L", sym->name,
14055 f->sym->name, &sym->declared_at);
14056 break;
14061 /* Add derived type to the derived type list. */
14062 add_dt_to_dt_list (sym);
14064 return true;
14068 /* The following procedure does the full resolution of a derived type,
14069 including resolution of all type-bound procedures (if present). In contrast
14070 to 'resolve_fl_derived0' this can only be done after the module has been
14071 parsed completely. */
14073 static bool
14074 resolve_fl_derived (gfc_symbol *sym)
14076 gfc_symbol *gen_dt = NULL;
14078 if (sym->attr.unlimited_polymorphic)
14079 return true;
14081 if (!sym->attr.is_class)
14082 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14083 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14084 && (!gen_dt->generic->sym->attr.use_assoc
14085 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14086 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14087 "%qs at %L being the same name as derived "
14088 "type at %L", sym->name,
14089 gen_dt->generic->sym == sym
14090 ? gen_dt->generic->next->sym->name
14091 : gen_dt->generic->sym->name,
14092 gen_dt->generic->sym == sym
14093 ? &gen_dt->generic->next->sym->declared_at
14094 : &gen_dt->generic->sym->declared_at,
14095 &sym->declared_at))
14096 return false;
14098 /* Resolve the finalizer procedures. */
14099 if (!gfc_resolve_finalizers (sym, NULL))
14100 return false;
14102 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14104 /* Fix up incomplete CLASS symbols. */
14105 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14106 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14108 /* Nothing more to do for unlimited polymorphic entities. */
14109 if (data->ts.u.derived->attr.unlimited_polymorphic)
14110 return true;
14111 else if (vptr->ts.u.derived == NULL)
14113 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14114 gcc_assert (vtab);
14115 vptr->ts.u.derived = vtab->ts.u.derived;
14116 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14117 return false;
14121 if (!resolve_fl_derived0 (sym))
14122 return false;
14124 /* Resolve the type-bound procedures. */
14125 if (!resolve_typebound_procedures (sym))
14126 return false;
14128 /* Generate module vtables subject to their accessibility and their not
14129 being vtables or pdt templates. If this is not done class declarations
14130 in external procedures wind up with their own version and so SELECT TYPE
14131 fails because the vptrs do not have the same address. */
14132 if (gfc_option.allow_std & GFC_STD_F2003
14133 && sym->ns->proc_name
14134 && sym->ns->proc_name->attr.flavor == FL_MODULE
14135 && sym->attr.access != ACCESS_PRIVATE
14136 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14138 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14139 gfc_set_sym_referenced (vtab);
14142 return true;
14146 static bool
14147 resolve_fl_namelist (gfc_symbol *sym)
14149 gfc_namelist *nl;
14150 gfc_symbol *nlsym;
14152 for (nl = sym->namelist; nl; nl = nl->next)
14154 /* Check again, the check in match only works if NAMELIST comes
14155 after the decl. */
14156 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14158 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14159 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14160 return false;
14163 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14164 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14165 "with assumed shape in namelist %qs at %L",
14166 nl->sym->name, sym->name, &sym->declared_at))
14167 return false;
14169 if (is_non_constant_shape_array (nl->sym)
14170 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14171 "with nonconstant shape in namelist %qs at %L",
14172 nl->sym->name, sym->name, &sym->declared_at))
14173 return false;
14175 if (nl->sym->ts.type == BT_CHARACTER
14176 && (nl->sym->ts.u.cl->length == NULL
14177 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14178 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14179 "nonconstant character length in "
14180 "namelist %qs at %L", nl->sym->name,
14181 sym->name, &sym->declared_at))
14182 return false;
14186 /* Reject PRIVATE objects in a PUBLIC namelist. */
14187 if (gfc_check_symbol_access (sym))
14189 for (nl = sym->namelist; nl; nl = nl->next)
14191 if (!nl->sym->attr.use_assoc
14192 && !is_sym_host_assoc (nl->sym, sym->ns)
14193 && !gfc_check_symbol_access (nl->sym))
14195 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14196 "cannot be member of PUBLIC namelist %qs at %L",
14197 nl->sym->name, sym->name, &sym->declared_at);
14198 return false;
14201 if (nl->sym->ts.type == BT_DERIVED
14202 && (nl->sym->ts.u.derived->attr.alloc_comp
14203 || nl->sym->ts.u.derived->attr.pointer_comp))
14205 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14206 "namelist %qs at %L with ALLOCATABLE "
14207 "or POINTER components", nl->sym->name,
14208 sym->name, &sym->declared_at))
14209 return false;
14210 return true;
14213 /* Types with private components that came here by USE-association. */
14214 if (nl->sym->ts.type == BT_DERIVED
14215 && derived_inaccessible (nl->sym->ts.u.derived))
14217 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14218 "components and cannot be member of namelist %qs at %L",
14219 nl->sym->name, sym->name, &sym->declared_at);
14220 return false;
14223 /* Types with private components that are defined in the same module. */
14224 if (nl->sym->ts.type == BT_DERIVED
14225 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14226 && nl->sym->ts.u.derived->attr.private_comp)
14228 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14229 "cannot be a member of PUBLIC namelist %qs at %L",
14230 nl->sym->name, sym->name, &sym->declared_at);
14231 return false;
14237 /* 14.1.2 A module or internal procedure represent local entities
14238 of the same type as a namelist member and so are not allowed. */
14239 for (nl = sym->namelist; nl; nl = nl->next)
14241 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14242 continue;
14244 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14245 if ((nl->sym == sym->ns->proc_name)
14247 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14248 continue;
14250 nlsym = NULL;
14251 if (nl->sym->name)
14252 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14253 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14255 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14256 "attribute in %qs at %L", nlsym->name,
14257 &sym->declared_at);
14258 return false;
14262 if (async_io_dt)
14264 for (nl = sym->namelist; nl; nl = nl->next)
14265 nl->sym->attr.asynchronous = 1;
14267 return true;
14271 static bool
14272 resolve_fl_parameter (gfc_symbol *sym)
14274 /* A parameter array's shape needs to be constant. */
14275 if (sym->as != NULL
14276 && (sym->as->type == AS_DEFERRED
14277 || is_non_constant_shape_array (sym)))
14279 gfc_error ("Parameter array %qs at %L cannot be automatic "
14280 "or of deferred shape", sym->name, &sym->declared_at);
14281 return false;
14284 /* Constraints on deferred type parameter. */
14285 if (!deferred_requirements (sym))
14286 return false;
14288 /* Make sure a parameter that has been implicitly typed still
14289 matches the implicit type, since PARAMETER statements can precede
14290 IMPLICIT statements. */
14291 if (sym->attr.implicit_type
14292 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14293 sym->ns)))
14295 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14296 "later IMPLICIT type", sym->name, &sym->declared_at);
14297 return false;
14300 /* Make sure the types of derived parameters are consistent. This
14301 type checking is deferred until resolution because the type may
14302 refer to a derived type from the host. */
14303 if (sym->ts.type == BT_DERIVED
14304 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14306 gfc_error ("Incompatible derived type in PARAMETER at %L",
14307 &sym->value->where);
14308 return false;
14311 /* F03:C509,C514. */
14312 if (sym->ts.type == BT_CLASS)
14314 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14315 sym->name, &sym->declared_at);
14316 return false;
14319 return true;
14323 /* Called by resolve_symbol to check PDTs. */
14325 static void
14326 resolve_pdt (gfc_symbol* sym)
14328 gfc_symbol *derived = NULL;
14329 gfc_actual_arglist *param;
14330 gfc_component *c;
14331 bool const_len_exprs = true;
14332 bool assumed_len_exprs = false;
14333 symbol_attribute *attr;
14335 if (sym->ts.type == BT_DERIVED)
14337 derived = sym->ts.u.derived;
14338 attr = &(sym->attr);
14340 else if (sym->ts.type == BT_CLASS)
14342 derived = CLASS_DATA (sym)->ts.u.derived;
14343 attr = &(CLASS_DATA (sym)->attr);
14345 else
14346 gcc_unreachable ();
14348 gcc_assert (derived->attr.pdt_type);
14350 for (param = sym->param_list; param; param = param->next)
14352 c = gfc_find_component (derived, param->name, false, true, NULL);
14353 gcc_assert (c);
14354 if (c->attr.pdt_kind)
14355 continue;
14357 if (param->expr && !gfc_is_constant_expr (param->expr)
14358 && c->attr.pdt_len)
14359 const_len_exprs = false;
14360 else if (param->spec_type == SPEC_ASSUMED)
14361 assumed_len_exprs = true;
14363 if (param->spec_type == SPEC_DEFERRED
14364 && !attr->allocatable && !attr->pointer)
14365 gfc_error ("The object %qs at %L has a deferred LEN "
14366 "parameter %qs and is neither allocatable "
14367 "nor a pointer", sym->name, &sym->declared_at,
14368 param->name);
14372 if (!const_len_exprs
14373 && (sym->ns->proc_name->attr.is_main_program
14374 || sym->ns->proc_name->attr.flavor == FL_MODULE
14375 || sym->attr.save != SAVE_NONE))
14376 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14377 "SAVE attribute or be a variable declared in the "
14378 "main program, a module or a submodule(F08/C513)",
14379 sym->name, &sym->declared_at);
14381 if (assumed_len_exprs && !(sym->attr.dummy
14382 || sym->attr.select_type_temporary || sym->attr.associate_var))
14383 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14384 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14385 sym->name, &sym->declared_at);
14389 /* Do anything necessary to resolve a symbol. Right now, we just
14390 assume that an otherwise unknown symbol is a variable. This sort
14391 of thing commonly happens for symbols in module. */
14393 static void
14394 resolve_symbol (gfc_symbol *sym)
14396 int check_constant, mp_flag;
14397 gfc_symtree *symtree;
14398 gfc_symtree *this_symtree;
14399 gfc_namespace *ns;
14400 gfc_component *c;
14401 symbol_attribute class_attr;
14402 gfc_array_spec *as;
14403 bool saved_specification_expr;
14405 if (sym->resolved)
14406 return;
14407 sym->resolved = 1;
14409 /* No symbol will ever have union type; only components can be unions.
14410 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14411 (just like derived type declaration symbols have flavor FL_DERIVED). */
14412 gcc_assert (sym->ts.type != BT_UNION);
14414 /* Coarrayed polymorphic objects with allocatable or pointer components are
14415 yet unsupported for -fcoarray=lib. */
14416 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14417 && sym->ts.u.derived && CLASS_DATA (sym)
14418 && CLASS_DATA (sym)->attr.codimension
14419 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14420 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14422 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14423 "type coarrays at %L are unsupported", &sym->declared_at);
14424 return;
14427 if (sym->attr.artificial)
14428 return;
14430 if (sym->attr.unlimited_polymorphic)
14431 return;
14433 if (sym->attr.flavor == FL_UNKNOWN
14434 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14435 && !sym->attr.generic && !sym->attr.external
14436 && sym->attr.if_source == IFSRC_UNKNOWN
14437 && sym->ts.type == BT_UNKNOWN))
14440 /* If we find that a flavorless symbol is an interface in one of the
14441 parent namespaces, find its symtree in this namespace, free the
14442 symbol and set the symtree to point to the interface symbol. */
14443 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14445 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14446 if (symtree && (symtree->n.sym->generic ||
14447 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14448 && sym->ns->construct_entities)))
14450 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14451 sym->name);
14452 if (this_symtree->n.sym == sym)
14454 symtree->n.sym->refs++;
14455 gfc_release_symbol (sym);
14456 this_symtree->n.sym = symtree->n.sym;
14457 return;
14462 /* Otherwise give it a flavor according to such attributes as
14463 it has. */
14464 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14465 && sym->attr.intrinsic == 0)
14466 sym->attr.flavor = FL_VARIABLE;
14467 else if (sym->attr.flavor == FL_UNKNOWN)
14469 sym->attr.flavor = FL_PROCEDURE;
14470 if (sym->attr.dimension)
14471 sym->attr.function = 1;
14475 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14476 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14478 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14479 && !resolve_procedure_interface (sym))
14480 return;
14482 if (sym->attr.is_protected && !sym->attr.proc_pointer
14483 && (sym->attr.procedure || sym->attr.external))
14485 if (sym->attr.external)
14486 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14487 "at %L", &sym->declared_at);
14488 else
14489 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14490 "at %L", &sym->declared_at);
14492 return;
14495 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14496 return;
14498 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14499 && !resolve_fl_struct (sym))
14500 return;
14502 /* Symbols that are module procedures with results (functions) have
14503 the types and array specification copied for type checking in
14504 procedures that call them, as well as for saving to a module
14505 file. These symbols can't stand the scrutiny that their results
14506 can. */
14507 mp_flag = (sym->result != NULL && sym->result != sym);
14509 /* Make sure that the intrinsic is consistent with its internal
14510 representation. This needs to be done before assigning a default
14511 type to avoid spurious warnings. */
14512 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14513 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14514 return;
14516 /* Resolve associate names. */
14517 if (sym->assoc)
14518 resolve_assoc_var (sym, true);
14520 /* Assign default type to symbols that need one and don't have one. */
14521 if (sym->ts.type == BT_UNKNOWN)
14523 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14525 gfc_set_default_type (sym, 1, NULL);
14528 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14529 && !sym->attr.function && !sym->attr.subroutine
14530 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14531 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14533 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14535 /* The specific case of an external procedure should emit an error
14536 in the case that there is no implicit type. */
14537 if (!mp_flag)
14539 if (!sym->attr.mixed_entry_master)
14540 gfc_set_default_type (sym, sym->attr.external, NULL);
14542 else
14544 /* Result may be in another namespace. */
14545 resolve_symbol (sym->result);
14547 if (!sym->result->attr.proc_pointer)
14549 sym->ts = sym->result->ts;
14550 sym->as = gfc_copy_array_spec (sym->result->as);
14551 sym->attr.dimension = sym->result->attr.dimension;
14552 sym->attr.pointer = sym->result->attr.pointer;
14553 sym->attr.allocatable = sym->result->attr.allocatable;
14554 sym->attr.contiguous = sym->result->attr.contiguous;
14559 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14561 bool saved_specification_expr = specification_expr;
14562 specification_expr = true;
14563 gfc_resolve_array_spec (sym->result->as, false);
14564 specification_expr = saved_specification_expr;
14567 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14569 as = CLASS_DATA (sym)->as;
14570 class_attr = CLASS_DATA (sym)->attr;
14571 class_attr.pointer = class_attr.class_pointer;
14573 else
14575 class_attr = sym->attr;
14576 as = sym->as;
14579 /* F2008, C530. */
14580 if (sym->attr.contiguous
14581 && (!class_attr.dimension
14582 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14583 && !class_attr.pointer)))
14585 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14586 "array pointer or an assumed-shape or assumed-rank array",
14587 sym->name, &sym->declared_at);
14588 return;
14591 /* Assumed size arrays and assumed shape arrays must be dummy
14592 arguments. Array-spec's of implied-shape should have been resolved to
14593 AS_EXPLICIT already. */
14595 if (as)
14597 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14598 specification expression. */
14599 if (as->type == AS_IMPLIED_SHAPE)
14601 int i;
14602 for (i=0; i<as->rank; i++)
14604 if (as->lower[i] != NULL && as->upper[i] == NULL)
14606 gfc_error ("Bad specification for assumed size array at %L",
14607 &as->lower[i]->where);
14608 return;
14611 gcc_unreachable();
14614 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14615 || as->type == AS_ASSUMED_SHAPE)
14616 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14618 if (as->type == AS_ASSUMED_SIZE)
14619 gfc_error ("Assumed size array at %L must be a dummy argument",
14620 &sym->declared_at);
14621 else
14622 gfc_error ("Assumed shape array at %L must be a dummy argument",
14623 &sym->declared_at);
14624 return;
14626 /* TS 29113, C535a. */
14627 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14628 && !sym->attr.select_type_temporary)
14630 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14631 &sym->declared_at);
14632 return;
14634 if (as->type == AS_ASSUMED_RANK
14635 && (sym->attr.codimension || sym->attr.value))
14637 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14638 "CODIMENSION attribute", &sym->declared_at);
14639 return;
14643 /* Make sure symbols with known intent or optional are really dummy
14644 variable. Because of ENTRY statement, this has to be deferred
14645 until resolution time. */
14647 if (!sym->attr.dummy
14648 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14650 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14651 return;
14654 if (sym->attr.value && !sym->attr.dummy)
14656 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14657 "it is not a dummy argument", sym->name, &sym->declared_at);
14658 return;
14661 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14663 gfc_charlen *cl = sym->ts.u.cl;
14664 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14666 gfc_error ("Character dummy variable %qs at %L with VALUE "
14667 "attribute must have constant length",
14668 sym->name, &sym->declared_at);
14669 return;
14672 if (sym->ts.is_c_interop
14673 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14675 gfc_error ("C interoperable character dummy variable %qs at %L "
14676 "with VALUE attribute must have length one",
14677 sym->name, &sym->declared_at);
14678 return;
14682 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14683 && sym->ts.u.derived->attr.generic)
14685 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14686 if (!sym->ts.u.derived)
14688 gfc_error ("The derived type %qs at %L is of type %qs, "
14689 "which has not been defined", sym->name,
14690 &sym->declared_at, sym->ts.u.derived->name);
14691 sym->ts.type = BT_UNKNOWN;
14692 return;
14696 /* Use the same constraints as TYPE(*), except for the type check
14697 and that only scalars and assumed-size arrays are permitted. */
14698 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14700 if (!sym->attr.dummy)
14702 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14703 "a dummy argument", sym->name, &sym->declared_at);
14704 return;
14707 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14708 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14709 && sym->ts.type != BT_COMPLEX)
14711 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14712 "of type TYPE(*) or of an numeric intrinsic type",
14713 sym->name, &sym->declared_at);
14714 return;
14717 if (sym->attr.allocatable || sym->attr.codimension
14718 || sym->attr.pointer || sym->attr.value)
14720 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14721 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14722 "attribute", sym->name, &sym->declared_at);
14723 return;
14726 if (sym->attr.intent == INTENT_OUT)
14728 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14729 "have the INTENT(OUT) attribute",
14730 sym->name, &sym->declared_at);
14731 return;
14733 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14735 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14736 "either be a scalar or an assumed-size array",
14737 sym->name, &sym->declared_at);
14738 return;
14741 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14742 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14743 packing. */
14744 sym->ts.type = BT_ASSUMED;
14745 sym->as = gfc_get_array_spec ();
14746 sym->as->type = AS_ASSUMED_SIZE;
14747 sym->as->rank = 1;
14748 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14750 else if (sym->ts.type == BT_ASSUMED)
14752 /* TS 29113, C407a. */
14753 if (!sym->attr.dummy)
14755 gfc_error ("Assumed type of variable %s at %L is only permitted "
14756 "for dummy variables", sym->name, &sym->declared_at);
14757 return;
14759 if (sym->attr.allocatable || sym->attr.codimension
14760 || sym->attr.pointer || sym->attr.value)
14762 gfc_error ("Assumed-type variable %s at %L may not have the "
14763 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14764 sym->name, &sym->declared_at);
14765 return;
14767 if (sym->attr.intent == INTENT_OUT)
14769 gfc_error ("Assumed-type variable %s at %L may not have the "
14770 "INTENT(OUT) attribute",
14771 sym->name, &sym->declared_at);
14772 return;
14774 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14776 gfc_error ("Assumed-type variable %s at %L shall not be an "
14777 "explicit-shape array", sym->name, &sym->declared_at);
14778 return;
14782 /* If the symbol is marked as bind(c), that it is declared at module level
14783 scope and verify its type and kind. Do not do the latter for symbols
14784 that are implicitly typed because that is handled in
14785 gfc_set_default_type. Handle dummy arguments and procedure definitions
14786 separately. Also, anything that is use associated is not handled here
14787 but instead is handled in the module it is declared in. Finally, derived
14788 type definitions are allowed to be BIND(C) since that only implies that
14789 they're interoperable, and they are checked fully for interoperability
14790 when a variable is declared of that type. */
14791 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
14792 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
14793 && sym->attr.flavor != FL_DERIVED)
14795 bool t = true;
14797 /* First, make sure the variable is declared at the
14798 module-level scope (J3/04-007, Section 15.3). */
14799 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
14800 sym->attr.in_common == 0)
14802 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
14803 "is neither a COMMON block nor declared at the "
14804 "module level scope", sym->name, &(sym->declared_at));
14805 t = false;
14807 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
14809 t = verify_com_block_vars_c_interop (sym->common_head);
14811 else if (sym->attr.implicit_type == 0)
14813 /* If type() declaration, we need to verify that the components
14814 of the given type are all C interoperable, etc. */
14815 if (sym->ts.type == BT_DERIVED &&
14816 sym->ts.u.derived->attr.is_c_interop != 1)
14818 /* Make sure the user marked the derived type as BIND(C). If
14819 not, call the verify routine. This could print an error
14820 for the derived type more than once if multiple variables
14821 of that type are declared. */
14822 if (sym->ts.u.derived->attr.is_bind_c != 1)
14823 verify_bind_c_derived_type (sym->ts.u.derived);
14824 t = false;
14827 /* Verify the variable itself as C interoperable if it
14828 is BIND(C). It is not possible for this to succeed if
14829 the verify_bind_c_derived_type failed, so don't have to handle
14830 any error returned by verify_bind_c_derived_type. */
14831 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
14832 sym->common_block);
14835 if (!t)
14837 /* clear the is_bind_c flag to prevent reporting errors more than
14838 once if something failed. */
14839 sym->attr.is_bind_c = 0;
14840 return;
14844 /* If a derived type symbol has reached this point, without its
14845 type being declared, we have an error. Notice that most
14846 conditions that produce undefined derived types have already
14847 been dealt with. However, the likes of:
14848 implicit type(t) (t) ..... call foo (t) will get us here if
14849 the type is not declared in the scope of the implicit
14850 statement. Change the type to BT_UNKNOWN, both because it is so
14851 and to prevent an ICE. */
14852 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14853 && sym->ts.u.derived->components == NULL
14854 && !sym->ts.u.derived->attr.zero_comp)
14856 gfc_error ("The derived type %qs at %L is of type %qs, "
14857 "which has not been defined", sym->name,
14858 &sym->declared_at, sym->ts.u.derived->name);
14859 sym->ts.type = BT_UNKNOWN;
14860 return;
14863 /* Make sure that the derived type has been resolved and that the
14864 derived type is visible in the symbol's namespace, if it is a
14865 module function and is not PRIVATE. */
14866 if (sym->ts.type == BT_DERIVED
14867 && sym->ts.u.derived->attr.use_assoc
14868 && sym->ns->proc_name
14869 && sym->ns->proc_name->attr.flavor == FL_MODULE
14870 && !resolve_fl_derived (sym->ts.u.derived))
14871 return;
14873 /* Unless the derived-type declaration is use associated, Fortran 95
14874 does not allow public entries of private derived types.
14875 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
14876 161 in 95-006r3. */
14877 if (sym->ts.type == BT_DERIVED
14878 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
14879 && !sym->ts.u.derived->attr.use_assoc
14880 && gfc_check_symbol_access (sym)
14881 && !gfc_check_symbol_access (sym->ts.u.derived)
14882 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
14883 "derived type %qs",
14884 (sym->attr.flavor == FL_PARAMETER)
14885 ? "parameter" : "variable",
14886 sym->name, &sym->declared_at,
14887 sym->ts.u.derived->name))
14888 return;
14890 /* F2008, C1302. */
14891 if (sym->ts.type == BT_DERIVED
14892 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14893 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
14894 || sym->ts.u.derived->attr.lock_comp)
14895 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14897 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
14898 "type LOCK_TYPE must be a coarray", sym->name,
14899 &sym->declared_at);
14900 return;
14903 /* TS18508, C702/C703. */
14904 if (sym->ts.type == BT_DERIVED
14905 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14906 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
14907 || sym->ts.u.derived->attr.event_comp)
14908 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14910 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
14911 "type EVENT_TYPE must be a coarray", sym->name,
14912 &sym->declared_at);
14913 return;
14916 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
14917 default initialization is defined (5.1.2.4.4). */
14918 if (sym->ts.type == BT_DERIVED
14919 && sym->attr.dummy
14920 && sym->attr.intent == INTENT_OUT
14921 && sym->as
14922 && sym->as->type == AS_ASSUMED_SIZE)
14924 for (c = sym->ts.u.derived->components; c; c = c->next)
14926 if (c->initializer)
14928 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
14929 "ASSUMED SIZE and so cannot have a default initializer",
14930 sym->name, &sym->declared_at);
14931 return;
14936 /* F2008, C542. */
14937 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14938 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
14940 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
14941 "INTENT(OUT)", sym->name, &sym->declared_at);
14942 return;
14945 /* TS18508. */
14946 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14947 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
14949 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
14950 "INTENT(OUT)", sym->name, &sym->declared_at);
14951 return;
14954 /* F2008, C525. */
14955 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14956 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14957 && CLASS_DATA (sym)->attr.coarray_comp))
14958 || class_attr.codimension)
14959 && (sym->attr.result || sym->result == sym))
14961 gfc_error ("Function result %qs at %L shall not be a coarray or have "
14962 "a coarray component", sym->name, &sym->declared_at);
14963 return;
14966 /* F2008, C524. */
14967 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
14968 && sym->ts.u.derived->ts.is_iso_c)
14970 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
14971 "shall not be a coarray", sym->name, &sym->declared_at);
14972 return;
14975 /* F2008, C525. */
14976 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14977 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14978 && CLASS_DATA (sym)->attr.coarray_comp))
14979 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
14980 || class_attr.allocatable))
14982 gfc_error ("Variable %qs at %L with coarray component shall be a "
14983 "nonpointer, nonallocatable scalar, which is not a coarray",
14984 sym->name, &sym->declared_at);
14985 return;
14988 /* F2008, C526. The function-result case was handled above. */
14989 if (class_attr.codimension
14990 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
14991 || sym->attr.select_type_temporary
14992 || sym->attr.associate_var
14993 || (sym->ns->save_all && !sym->attr.automatic)
14994 || sym->ns->proc_name->attr.flavor == FL_MODULE
14995 || sym->ns->proc_name->attr.is_main_program
14996 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
14998 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
14999 "nor a dummy argument", sym->name, &sym->declared_at);
15000 return;
15002 /* F2008, C528. */
15003 else if (class_attr.codimension && !sym->attr.select_type_temporary
15004 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
15006 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
15007 "deferred shape", sym->name, &sym->declared_at);
15008 return;
15010 else if (class_attr.codimension && class_attr.allocatable && as
15011 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
15013 gfc_error ("Allocatable coarray variable %qs at %L must have "
15014 "deferred shape", sym->name, &sym->declared_at);
15015 return;
15018 /* F2008, C541. */
15019 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
15020 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
15021 && CLASS_DATA (sym)->attr.coarray_comp))
15022 || (class_attr.codimension && class_attr.allocatable))
15023 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
15025 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
15026 "allocatable coarray or have coarray components",
15027 sym->name, &sym->declared_at);
15028 return;
15031 if (class_attr.codimension && sym->attr.dummy
15032 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
15034 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
15035 "procedure %qs", sym->name, &sym->declared_at,
15036 sym->ns->proc_name->name);
15037 return;
15040 if (sym->ts.type == BT_LOGICAL
15041 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
15042 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
15043 && sym->ns->proc_name->attr.is_bind_c)))
15045 int i;
15046 for (i = 0; gfc_logical_kinds[i].kind; i++)
15047 if (gfc_logical_kinds[i].kind == sym->ts.kind)
15048 break;
15049 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
15050 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
15051 "%L with non-C_Bool kind in BIND(C) procedure "
15052 "%qs", sym->name, &sym->declared_at,
15053 sym->ns->proc_name->name))
15054 return;
15055 else if (!gfc_logical_kinds[i].c_bool
15056 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
15057 "%qs at %L with non-C_Bool kind in "
15058 "BIND(C) procedure %qs", sym->name,
15059 &sym->declared_at,
15060 sym->attr.function ? sym->name
15061 : sym->ns->proc_name->name))
15062 return;
15065 switch (sym->attr.flavor)
15067 case FL_VARIABLE:
15068 if (!resolve_fl_variable (sym, mp_flag))
15069 return;
15070 break;
15072 case FL_PROCEDURE:
15073 if (sym->formal && !sym->formal_ns)
15075 /* Check that none of the arguments are a namelist. */
15076 gfc_formal_arglist *formal = sym->formal;
15078 for (; formal; formal = formal->next)
15079 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15081 gfc_error ("Namelist %qs can not be an argument to "
15082 "subroutine or function at %L",
15083 formal->sym->name, &sym->declared_at);
15084 return;
15088 if (!resolve_fl_procedure (sym, mp_flag))
15089 return;
15090 break;
15092 case FL_NAMELIST:
15093 if (!resolve_fl_namelist (sym))
15094 return;
15095 break;
15097 case FL_PARAMETER:
15098 if (!resolve_fl_parameter (sym))
15099 return;
15100 break;
15102 default:
15103 break;
15106 /* Resolve array specifier. Check as well some constraints
15107 on COMMON blocks. */
15109 check_constant = sym->attr.in_common && !sym->attr.pointer;
15111 /* Set the formal_arg_flag so that check_conflict will not throw
15112 an error for host associated variables in the specification
15113 expression for an array_valued function. */
15114 if (sym->attr.function && sym->as)
15115 formal_arg_flag = true;
15117 saved_specification_expr = specification_expr;
15118 specification_expr = true;
15119 gfc_resolve_array_spec (sym->as, check_constant);
15120 specification_expr = saved_specification_expr;
15122 formal_arg_flag = false;
15124 /* Resolve formal namespaces. */
15125 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15126 && !sym->attr.contained && !sym->attr.intrinsic)
15127 gfc_resolve (sym->formal_ns);
15129 /* Make sure the formal namespace is present. */
15130 if (sym->formal && !sym->formal_ns)
15132 gfc_formal_arglist *formal = sym->formal;
15133 while (formal && !formal->sym)
15134 formal = formal->next;
15136 if (formal)
15138 sym->formal_ns = formal->sym->ns;
15139 if (sym->ns != formal->sym->ns)
15140 sym->formal_ns->refs++;
15144 /* Check threadprivate restrictions. */
15145 if (sym->attr.threadprivate && !sym->attr.save
15146 && !(sym->ns->save_all && !sym->attr.automatic)
15147 && (!sym->attr.in_common
15148 && sym->module == NULL
15149 && (sym->ns->proc_name == NULL
15150 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15151 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15153 /* Check omp declare target restrictions. */
15154 if (sym->attr.omp_declare_target
15155 && sym->attr.flavor == FL_VARIABLE
15156 && !sym->attr.save
15157 && !(sym->ns->save_all && !sym->attr.automatic)
15158 && (!sym->attr.in_common
15159 && sym->module == NULL
15160 && (sym->ns->proc_name == NULL
15161 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15162 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15163 sym->name, &sym->declared_at);
15165 /* If we have come this far we can apply default-initializers, as
15166 described in 14.7.5, to those variables that have not already
15167 been assigned one. */
15168 if (sym->ts.type == BT_DERIVED
15169 && !sym->value
15170 && !sym->attr.allocatable
15171 && !sym->attr.alloc_comp)
15173 symbol_attribute *a = &sym->attr;
15175 if ((!a->save && !a->dummy && !a->pointer
15176 && !a->in_common && !a->use_assoc
15177 && a->referenced
15178 && !((a->function || a->result)
15179 && (!a->dimension
15180 || sym->ts.u.derived->attr.alloc_comp
15181 || sym->ts.u.derived->attr.pointer_comp))
15182 && !(a->function && sym != sym->result))
15183 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15184 apply_default_init (sym);
15185 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15186 && (sym->ts.u.derived->attr.alloc_comp
15187 || sym->ts.u.derived->attr.pointer_comp))
15188 /* Mark the result symbol to be referenced, when it has allocatable
15189 components. */
15190 sym->result->attr.referenced = 1;
15193 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15194 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15195 && !CLASS_DATA (sym)->attr.class_pointer
15196 && !CLASS_DATA (sym)->attr.allocatable)
15197 apply_default_init (sym);
15199 /* If this symbol has a type-spec, check it. */
15200 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15201 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15202 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15203 return;
15205 if (sym->param_list)
15206 resolve_pdt (sym);
15210 /************* Resolve DATA statements *************/
15212 static struct
15214 gfc_data_value *vnode;
15215 mpz_t left;
15217 values;
15220 /* Advance the values structure to point to the next value in the data list. */
15222 static bool
15223 next_data_value (void)
15225 while (mpz_cmp_ui (values.left, 0) == 0)
15228 if (values.vnode->next == NULL)
15229 return false;
15231 values.vnode = values.vnode->next;
15232 mpz_set (values.left, values.vnode->repeat);
15235 return true;
15239 static bool
15240 check_data_variable (gfc_data_variable *var, locus *where)
15242 gfc_expr *e;
15243 mpz_t size;
15244 mpz_t offset;
15245 bool t;
15246 ar_type mark = AR_UNKNOWN;
15247 int i;
15248 mpz_t section_index[GFC_MAX_DIMENSIONS];
15249 gfc_ref *ref;
15250 gfc_array_ref *ar;
15251 gfc_symbol *sym;
15252 int has_pointer;
15254 if (!gfc_resolve_expr (var->expr))
15255 return false;
15257 ar = NULL;
15258 mpz_init_set_si (offset, 0);
15259 e = var->expr;
15261 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15262 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15263 e = e->value.function.actual->expr;
15265 if (e->expr_type != EXPR_VARIABLE)
15266 gfc_internal_error ("check_data_variable(): Bad expression");
15268 sym = e->symtree->n.sym;
15270 if (sym->ns->is_block_data && !sym->attr.in_common)
15272 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15273 sym->name, &sym->declared_at);
15276 if (e->ref == NULL && sym->as)
15278 gfc_error ("DATA array %qs at %L must be specified in a previous"
15279 " declaration", sym->name, where);
15280 return false;
15283 has_pointer = sym->attr.pointer;
15285 if (gfc_is_coindexed (e))
15287 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15288 where);
15289 return false;
15292 for (ref = e->ref; ref; ref = ref->next)
15294 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15295 has_pointer = 1;
15297 if (has_pointer
15298 && ref->type == REF_ARRAY
15299 && ref->u.ar.type != AR_FULL)
15301 gfc_error ("DATA element %qs at %L is a pointer and so must "
15302 "be a full array", sym->name, where);
15303 return false;
15307 if (e->rank == 0 || has_pointer)
15309 mpz_init_set_ui (size, 1);
15310 ref = NULL;
15312 else
15314 ref = e->ref;
15316 /* Find the array section reference. */
15317 for (ref = e->ref; ref; ref = ref->next)
15319 if (ref->type != REF_ARRAY)
15320 continue;
15321 if (ref->u.ar.type == AR_ELEMENT)
15322 continue;
15323 break;
15325 gcc_assert (ref);
15327 /* Set marks according to the reference pattern. */
15328 switch (ref->u.ar.type)
15330 case AR_FULL:
15331 mark = AR_FULL;
15332 break;
15334 case AR_SECTION:
15335 ar = &ref->u.ar;
15336 /* Get the start position of array section. */
15337 gfc_get_section_index (ar, section_index, &offset);
15338 mark = AR_SECTION;
15339 break;
15341 default:
15342 gcc_unreachable ();
15345 if (!gfc_array_size (e, &size))
15347 gfc_error ("Nonconstant array section at %L in DATA statement",
15348 where);
15349 mpz_clear (offset);
15350 return false;
15354 t = true;
15356 while (mpz_cmp_ui (size, 0) > 0)
15358 if (!next_data_value ())
15360 gfc_error ("DATA statement at %L has more variables than values",
15361 where);
15362 t = false;
15363 break;
15366 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15367 if (!t)
15368 break;
15370 /* If we have more than one element left in the repeat count,
15371 and we have more than one element left in the target variable,
15372 then create a range assignment. */
15373 /* FIXME: Only done for full arrays for now, since array sections
15374 seem tricky. */
15375 if (mark == AR_FULL && ref && ref->next == NULL
15376 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15378 mpz_t range;
15380 if (mpz_cmp (size, values.left) >= 0)
15382 mpz_init_set (range, values.left);
15383 mpz_sub (size, size, values.left);
15384 mpz_set_ui (values.left, 0);
15386 else
15388 mpz_init_set (range, size);
15389 mpz_sub (values.left, values.left, size);
15390 mpz_set_ui (size, 0);
15393 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15394 offset, &range);
15396 mpz_add (offset, offset, range);
15397 mpz_clear (range);
15399 if (!t)
15400 break;
15403 /* Assign initial value to symbol. */
15404 else
15406 mpz_sub_ui (values.left, values.left, 1);
15407 mpz_sub_ui (size, size, 1);
15409 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15410 offset, NULL);
15411 if (!t)
15412 break;
15414 if (mark == AR_FULL)
15415 mpz_add_ui (offset, offset, 1);
15417 /* Modify the array section indexes and recalculate the offset
15418 for next element. */
15419 else if (mark == AR_SECTION)
15420 gfc_advance_section (section_index, ar, &offset);
15424 if (mark == AR_SECTION)
15426 for (i = 0; i < ar->dimen; i++)
15427 mpz_clear (section_index[i]);
15430 mpz_clear (size);
15431 mpz_clear (offset);
15433 return t;
15437 static bool traverse_data_var (gfc_data_variable *, locus *);
15439 /* Iterate over a list of elements in a DATA statement. */
15441 static bool
15442 traverse_data_list (gfc_data_variable *var, locus *where)
15444 mpz_t trip;
15445 iterator_stack frame;
15446 gfc_expr *e, *start, *end, *step;
15447 bool retval = true;
15449 mpz_init (frame.value);
15450 mpz_init (trip);
15452 start = gfc_copy_expr (var->iter.start);
15453 end = gfc_copy_expr (var->iter.end);
15454 step = gfc_copy_expr (var->iter.step);
15456 if (!gfc_simplify_expr (start, 1)
15457 || start->expr_type != EXPR_CONSTANT)
15459 gfc_error ("start of implied-do loop at %L could not be "
15460 "simplified to a constant value", &start->where);
15461 retval = false;
15462 goto cleanup;
15464 if (!gfc_simplify_expr (end, 1)
15465 || end->expr_type != EXPR_CONSTANT)
15467 gfc_error ("end of implied-do loop at %L could not be "
15468 "simplified to a constant value", &start->where);
15469 retval = false;
15470 goto cleanup;
15472 if (!gfc_simplify_expr (step, 1)
15473 || step->expr_type != EXPR_CONSTANT)
15475 gfc_error ("step of implied-do loop at %L could not be "
15476 "simplified to a constant value", &start->where);
15477 retval = false;
15478 goto cleanup;
15481 mpz_set (trip, end->value.integer);
15482 mpz_sub (trip, trip, start->value.integer);
15483 mpz_add (trip, trip, step->value.integer);
15485 mpz_div (trip, trip, step->value.integer);
15487 mpz_set (frame.value, start->value.integer);
15489 frame.prev = iter_stack;
15490 frame.variable = var->iter.var->symtree;
15491 iter_stack = &frame;
15493 while (mpz_cmp_ui (trip, 0) > 0)
15495 if (!traverse_data_var (var->list, where))
15497 retval = false;
15498 goto cleanup;
15501 e = gfc_copy_expr (var->expr);
15502 if (!gfc_simplify_expr (e, 1))
15504 gfc_free_expr (e);
15505 retval = false;
15506 goto cleanup;
15509 mpz_add (frame.value, frame.value, step->value.integer);
15511 mpz_sub_ui (trip, trip, 1);
15514 cleanup:
15515 mpz_clear (frame.value);
15516 mpz_clear (trip);
15518 gfc_free_expr (start);
15519 gfc_free_expr (end);
15520 gfc_free_expr (step);
15522 iter_stack = frame.prev;
15523 return retval;
15527 /* Type resolve variables in the variable list of a DATA statement. */
15529 static bool
15530 traverse_data_var (gfc_data_variable *var, locus *where)
15532 bool t;
15534 for (; var; var = var->next)
15536 if (var->expr == NULL)
15537 t = traverse_data_list (var, where);
15538 else
15539 t = check_data_variable (var, where);
15541 if (!t)
15542 return false;
15545 return true;
15549 /* Resolve the expressions and iterators associated with a data statement.
15550 This is separate from the assignment checking because data lists should
15551 only be resolved once. */
15553 static bool
15554 resolve_data_variables (gfc_data_variable *d)
15556 for (; d; d = d->next)
15558 if (d->list == NULL)
15560 if (!gfc_resolve_expr (d->expr))
15561 return false;
15563 else
15565 if (!gfc_resolve_iterator (&d->iter, false, true))
15566 return false;
15568 if (!resolve_data_variables (d->list))
15569 return false;
15573 return true;
15577 /* Resolve a single DATA statement. We implement this by storing a pointer to
15578 the value list into static variables, and then recursively traversing the
15579 variables list, expanding iterators and such. */
15581 static void
15582 resolve_data (gfc_data *d)
15585 if (!resolve_data_variables (d->var))
15586 return;
15588 values.vnode = d->value;
15589 if (d->value == NULL)
15590 mpz_set_ui (values.left, 0);
15591 else
15592 mpz_set (values.left, d->value->repeat);
15594 if (!traverse_data_var (d->var, &d->where))
15595 return;
15597 /* At this point, we better not have any values left. */
15599 if (next_data_value ())
15600 gfc_error ("DATA statement at %L has more values than variables",
15601 &d->where);
15605 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15606 accessed by host or use association, is a dummy argument to a pure function,
15607 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15608 is storage associated with any such variable, shall not be used in the
15609 following contexts: (clients of this function). */
15611 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15612 procedure. Returns zero if assignment is OK, nonzero if there is a
15613 problem. */
15615 gfc_impure_variable (gfc_symbol *sym)
15617 gfc_symbol *proc;
15618 gfc_namespace *ns;
15620 if (sym->attr.use_assoc || sym->attr.in_common)
15621 return 1;
15623 /* Check if the symbol's ns is inside the pure procedure. */
15624 for (ns = gfc_current_ns; ns; ns = ns->parent)
15626 if (ns == sym->ns)
15627 break;
15628 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15629 return 1;
15632 proc = sym->ns->proc_name;
15633 if (sym->attr.dummy
15634 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15635 || proc->attr.function))
15636 return 1;
15638 /* TODO: Sort out what can be storage associated, if anything, and include
15639 it here. In principle equivalences should be scanned but it does not
15640 seem to be possible to storage associate an impure variable this way. */
15641 return 0;
15645 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15646 current namespace is inside a pure procedure. */
15649 gfc_pure (gfc_symbol *sym)
15651 symbol_attribute attr;
15652 gfc_namespace *ns;
15654 if (sym == NULL)
15656 /* Check if the current namespace or one of its parents
15657 belongs to a pure procedure. */
15658 for (ns = gfc_current_ns; ns; ns = ns->parent)
15660 sym = ns->proc_name;
15661 if (sym == NULL)
15662 return 0;
15663 attr = sym->attr;
15664 if (attr.flavor == FL_PROCEDURE && attr.pure)
15665 return 1;
15667 return 0;
15670 attr = sym->attr;
15672 return attr.flavor == FL_PROCEDURE && attr.pure;
15676 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15677 checks if the current namespace is implicitly pure. Note that this
15678 function returns false for a PURE procedure. */
15681 gfc_implicit_pure (gfc_symbol *sym)
15683 gfc_namespace *ns;
15685 if (sym == NULL)
15687 /* Check if the current procedure is implicit_pure. Walk up
15688 the procedure list until we find a procedure. */
15689 for (ns = gfc_current_ns; ns; ns = ns->parent)
15691 sym = ns->proc_name;
15692 if (sym == NULL)
15693 return 0;
15695 if (sym->attr.flavor == FL_PROCEDURE)
15696 break;
15700 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15701 && !sym->attr.pure;
15705 void
15706 gfc_unset_implicit_pure (gfc_symbol *sym)
15708 gfc_namespace *ns;
15710 if (sym == NULL)
15712 /* Check if the current procedure is implicit_pure. Walk up
15713 the procedure list until we find a procedure. */
15714 for (ns = gfc_current_ns; ns; ns = ns->parent)
15716 sym = ns->proc_name;
15717 if (sym == NULL)
15718 return;
15720 if (sym->attr.flavor == FL_PROCEDURE)
15721 break;
15725 if (sym->attr.flavor == FL_PROCEDURE)
15726 sym->attr.implicit_pure = 0;
15727 else
15728 sym->attr.pure = 0;
15732 /* Test whether the current procedure is elemental or not. */
15735 gfc_elemental (gfc_symbol *sym)
15737 symbol_attribute attr;
15739 if (sym == NULL)
15740 sym = gfc_current_ns->proc_name;
15741 if (sym == NULL)
15742 return 0;
15743 attr = sym->attr;
15745 return attr.flavor == FL_PROCEDURE && attr.elemental;
15749 /* Warn about unused labels. */
15751 static void
15752 warn_unused_fortran_label (gfc_st_label *label)
15754 if (label == NULL)
15755 return;
15757 warn_unused_fortran_label (label->left);
15759 if (label->defined == ST_LABEL_UNKNOWN)
15760 return;
15762 switch (label->referenced)
15764 case ST_LABEL_UNKNOWN:
15765 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15766 label->value, &label->where);
15767 break;
15769 case ST_LABEL_BAD_TARGET:
15770 gfc_warning (OPT_Wunused_label,
15771 "Label %d at %L defined but cannot be used",
15772 label->value, &label->where);
15773 break;
15775 default:
15776 break;
15779 warn_unused_fortran_label (label->right);
15783 /* Returns the sequence type of a symbol or sequence. */
15785 static seq_type
15786 sequence_type (gfc_typespec ts)
15788 seq_type result;
15789 gfc_component *c;
15791 switch (ts.type)
15793 case BT_DERIVED:
15795 if (ts.u.derived->components == NULL)
15796 return SEQ_NONDEFAULT;
15798 result = sequence_type (ts.u.derived->components->ts);
15799 for (c = ts.u.derived->components->next; c; c = c->next)
15800 if (sequence_type (c->ts) != result)
15801 return SEQ_MIXED;
15803 return result;
15805 case BT_CHARACTER:
15806 if (ts.kind != gfc_default_character_kind)
15807 return SEQ_NONDEFAULT;
15809 return SEQ_CHARACTER;
15811 case BT_INTEGER:
15812 if (ts.kind != gfc_default_integer_kind)
15813 return SEQ_NONDEFAULT;
15815 return SEQ_NUMERIC;
15817 case BT_REAL:
15818 if (!(ts.kind == gfc_default_real_kind
15819 || ts.kind == gfc_default_double_kind))
15820 return SEQ_NONDEFAULT;
15822 return SEQ_NUMERIC;
15824 case BT_COMPLEX:
15825 if (ts.kind != gfc_default_complex_kind)
15826 return SEQ_NONDEFAULT;
15828 return SEQ_NUMERIC;
15830 case BT_LOGICAL:
15831 if (ts.kind != gfc_default_logical_kind)
15832 return SEQ_NONDEFAULT;
15834 return SEQ_NUMERIC;
15836 default:
15837 return SEQ_NONDEFAULT;
15842 /* Resolve derived type EQUIVALENCE object. */
15844 static bool
15845 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
15847 gfc_component *c = derived->components;
15849 if (!derived)
15850 return true;
15852 /* Shall not be an object of nonsequence derived type. */
15853 if (!derived->attr.sequence)
15855 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
15856 "attribute to be an EQUIVALENCE object", sym->name,
15857 &e->where);
15858 return false;
15861 /* Shall not have allocatable components. */
15862 if (derived->attr.alloc_comp)
15864 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
15865 "components to be an EQUIVALENCE object",sym->name,
15866 &e->where);
15867 return false;
15870 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
15872 gfc_error ("Derived type variable %qs at %L with default "
15873 "initialization cannot be in EQUIVALENCE with a variable "
15874 "in COMMON", sym->name, &e->where);
15875 return false;
15878 for (; c ; c = c->next)
15880 if (gfc_bt_struct (c->ts.type)
15881 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
15882 return false;
15884 /* Shall not be an object of sequence derived type containing a pointer
15885 in the structure. */
15886 if (c->attr.pointer)
15888 gfc_error ("Derived type variable %qs at %L with pointer "
15889 "component(s) cannot be an EQUIVALENCE object",
15890 sym->name, &e->where);
15891 return false;
15894 return true;
15898 /* Resolve equivalence object.
15899 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
15900 an allocatable array, an object of nonsequence derived type, an object of
15901 sequence derived type containing a pointer at any level of component
15902 selection, an automatic object, a function name, an entry name, a result
15903 name, a named constant, a structure component, or a subobject of any of
15904 the preceding objects. A substring shall not have length zero. A
15905 derived type shall not have components with default initialization nor
15906 shall two objects of an equivalence group be initialized.
15907 Either all or none of the objects shall have an protected attribute.
15908 The simple constraints are done in symbol.c(check_conflict) and the rest
15909 are implemented here. */
15911 static void
15912 resolve_equivalence (gfc_equiv *eq)
15914 gfc_symbol *sym;
15915 gfc_symbol *first_sym;
15916 gfc_expr *e;
15917 gfc_ref *r;
15918 locus *last_where = NULL;
15919 seq_type eq_type, last_eq_type;
15920 gfc_typespec *last_ts;
15921 int object, cnt_protected;
15922 const char *msg;
15924 last_ts = &eq->expr->symtree->n.sym->ts;
15926 first_sym = eq->expr->symtree->n.sym;
15928 cnt_protected = 0;
15930 for (object = 1; eq; eq = eq->eq, object++)
15932 e = eq->expr;
15934 e->ts = e->symtree->n.sym->ts;
15935 /* match_varspec might not know yet if it is seeing
15936 array reference or substring reference, as it doesn't
15937 know the types. */
15938 if (e->ref && e->ref->type == REF_ARRAY)
15940 gfc_ref *ref = e->ref;
15941 sym = e->symtree->n.sym;
15943 if (sym->attr.dimension)
15945 ref->u.ar.as = sym->as;
15946 ref = ref->next;
15949 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
15950 if (e->ts.type == BT_CHARACTER
15951 && ref
15952 && ref->type == REF_ARRAY
15953 && ref->u.ar.dimen == 1
15954 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
15955 && ref->u.ar.stride[0] == NULL)
15957 gfc_expr *start = ref->u.ar.start[0];
15958 gfc_expr *end = ref->u.ar.end[0];
15959 void *mem = NULL;
15961 /* Optimize away the (:) reference. */
15962 if (start == NULL && end == NULL)
15964 if (e->ref == ref)
15965 e->ref = ref->next;
15966 else
15967 e->ref->next = ref->next;
15968 mem = ref;
15970 else
15972 ref->type = REF_SUBSTRING;
15973 if (start == NULL)
15974 start = gfc_get_int_expr (gfc_charlen_int_kind,
15975 NULL, 1);
15976 ref->u.ss.start = start;
15977 if (end == NULL && e->ts.u.cl)
15978 end = gfc_copy_expr (e->ts.u.cl->length);
15979 ref->u.ss.end = end;
15980 ref->u.ss.length = e->ts.u.cl;
15981 e->ts.u.cl = NULL;
15983 ref = ref->next;
15984 free (mem);
15987 /* Any further ref is an error. */
15988 if (ref)
15990 gcc_assert (ref->type == REF_ARRAY);
15991 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
15992 &ref->u.ar.where);
15993 continue;
15997 if (!gfc_resolve_expr (e))
15998 continue;
16000 sym = e->symtree->n.sym;
16002 if (sym->attr.is_protected)
16003 cnt_protected++;
16004 if (cnt_protected > 0 && cnt_protected != object)
16006 gfc_error ("Either all or none of the objects in the "
16007 "EQUIVALENCE set at %L shall have the "
16008 "PROTECTED attribute",
16009 &e->where);
16010 break;
16013 /* Shall not equivalence common block variables in a PURE procedure. */
16014 if (sym->ns->proc_name
16015 && sym->ns->proc_name->attr.pure
16016 && sym->attr.in_common)
16018 /* Need to check for symbols that may have entered the pure
16019 procedure via a USE statement. */
16020 bool saw_sym = false;
16021 if (sym->ns->use_stmts)
16023 gfc_use_rename *r;
16024 for (r = sym->ns->use_stmts->rename; r; r = r->next)
16025 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
16027 else
16028 saw_sym = true;
16030 if (saw_sym)
16031 gfc_error ("COMMON block member %qs at %L cannot be an "
16032 "EQUIVALENCE object in the pure procedure %qs",
16033 sym->name, &e->where, sym->ns->proc_name->name);
16034 break;
16037 /* Shall not be a named constant. */
16038 if (e->expr_type == EXPR_CONSTANT)
16040 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
16041 "object", sym->name, &e->where);
16042 continue;
16045 if (e->ts.type == BT_DERIVED
16046 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
16047 continue;
16049 /* Check that the types correspond correctly:
16050 Note 5.28:
16051 A numeric sequence structure may be equivalenced to another sequence
16052 structure, an object of default integer type, default real type, double
16053 precision real type, default logical type such that components of the
16054 structure ultimately only become associated to objects of the same
16055 kind. A character sequence structure may be equivalenced to an object
16056 of default character kind or another character sequence structure.
16057 Other objects may be equivalenced only to objects of the same type and
16058 kind parameters. */
16060 /* Identical types are unconditionally OK. */
16061 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16062 goto identical_types;
16064 last_eq_type = sequence_type (*last_ts);
16065 eq_type = sequence_type (sym->ts);
16067 /* Since the pair of objects is not of the same type, mixed or
16068 non-default sequences can be rejected. */
16070 msg = "Sequence %s with mixed components in EQUIVALENCE "
16071 "statement at %L with different type objects";
16072 if ((object ==2
16073 && last_eq_type == SEQ_MIXED
16074 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16075 || (eq_type == SEQ_MIXED
16076 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16077 continue;
16079 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16080 "statement at %L with objects of different type";
16081 if ((object ==2
16082 && last_eq_type == SEQ_NONDEFAULT
16083 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16084 || (eq_type == SEQ_NONDEFAULT
16085 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16086 continue;
16088 msg ="Non-CHARACTER object %qs in default CHARACTER "
16089 "EQUIVALENCE statement at %L";
16090 if (last_eq_type == SEQ_CHARACTER
16091 && eq_type != SEQ_CHARACTER
16092 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16093 continue;
16095 msg ="Non-NUMERIC object %qs in default NUMERIC "
16096 "EQUIVALENCE statement at %L";
16097 if (last_eq_type == SEQ_NUMERIC
16098 && eq_type != SEQ_NUMERIC
16099 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16100 continue;
16102 identical_types:
16103 last_ts =&sym->ts;
16104 last_where = &e->where;
16106 if (!e->ref)
16107 continue;
16109 /* Shall not be an automatic array. */
16110 if (e->ref->type == REF_ARRAY
16111 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16113 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16114 "an EQUIVALENCE object", sym->name, &e->where);
16115 continue;
16118 r = e->ref;
16119 while (r)
16121 /* Shall not be a structure component. */
16122 if (r->type == REF_COMPONENT)
16124 gfc_error ("Structure component %qs at %L cannot be an "
16125 "EQUIVALENCE object",
16126 r->u.c.component->name, &e->where);
16127 break;
16130 /* A substring shall not have length zero. */
16131 if (r->type == REF_SUBSTRING)
16133 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16135 gfc_error ("Substring at %L has length zero",
16136 &r->u.ss.start->where);
16137 break;
16140 r = r->next;
16146 /* Function called by resolve_fntype to flag other symbol used in the
16147 length type parameter specification of function resuls. */
16149 static bool
16150 flag_fn_result_spec (gfc_expr *expr,
16151 gfc_symbol *sym ATTRIBUTE_UNUSED,
16152 int *f ATTRIBUTE_UNUSED)
16154 gfc_namespace *ns;
16155 gfc_symbol *s;
16157 if (expr->expr_type == EXPR_VARIABLE)
16159 s = expr->symtree->n.sym;
16160 for (ns = s->ns; ns; ns = ns->parent)
16161 if (!ns->parent)
16162 break;
16164 if (!s->fn_result_spec
16165 && s->attr.flavor == FL_PARAMETER)
16167 /* Function contained in a module.... */
16168 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16170 gfc_symtree *st;
16171 s->fn_result_spec = 1;
16172 /* Make sure that this symbol is translated as a module
16173 variable. */
16174 st = gfc_get_unique_symtree (ns);
16175 st->n.sym = s;
16176 s->refs++;
16178 /* ... which is use associated and called. */
16179 else if (s->attr.use_assoc || s->attr.used_in_submodule
16181 /* External function matched with an interface. */
16182 (s->ns->proc_name
16183 && ((s->ns == ns
16184 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16185 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16186 && s->ns->proc_name->attr.function))
16187 s->fn_result_spec = 1;
16190 return false;
16194 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16196 static void
16197 resolve_fntype (gfc_namespace *ns)
16199 gfc_entry_list *el;
16200 gfc_symbol *sym;
16202 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16203 return;
16205 /* If there are any entries, ns->proc_name is the entry master
16206 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16207 if (ns->entries)
16208 sym = ns->entries->sym;
16209 else
16210 sym = ns->proc_name;
16211 if (sym->result == sym
16212 && sym->ts.type == BT_UNKNOWN
16213 && !gfc_set_default_type (sym, 0, NULL)
16214 && !sym->attr.untyped)
16216 gfc_error ("Function %qs at %L has no IMPLICIT type",
16217 sym->name, &sym->declared_at);
16218 sym->attr.untyped = 1;
16221 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16222 && !sym->attr.contained
16223 && !gfc_check_symbol_access (sym->ts.u.derived)
16224 && gfc_check_symbol_access (sym))
16226 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16227 "%L of PRIVATE type %qs", sym->name,
16228 &sym->declared_at, sym->ts.u.derived->name);
16231 if (ns->entries)
16232 for (el = ns->entries->next; el; el = el->next)
16234 if (el->sym->result == el->sym
16235 && el->sym->ts.type == BT_UNKNOWN
16236 && !gfc_set_default_type (el->sym, 0, NULL)
16237 && !el->sym->attr.untyped)
16239 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16240 el->sym->name, &el->sym->declared_at);
16241 el->sym->attr.untyped = 1;
16245 if (sym->ts.type == BT_CHARACTER)
16246 gfc_traverse_expr (sym->ts.u.cl->length, NULL, flag_fn_result_spec, 0);
16250 /* 12.3.2.1.1 Defined operators. */
16252 static bool
16253 check_uop_procedure (gfc_symbol *sym, locus where)
16255 gfc_formal_arglist *formal;
16257 if (!sym->attr.function)
16259 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16260 sym->name, &where);
16261 return false;
16264 if (sym->ts.type == BT_CHARACTER
16265 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16266 && !(sym->result && ((sym->result->ts.u.cl
16267 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16269 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16270 "character length", sym->name, &where);
16271 return false;
16274 formal = gfc_sym_get_dummy_args (sym);
16275 if (!formal || !formal->sym)
16277 gfc_error ("User operator procedure %qs at %L must have at least "
16278 "one argument", sym->name, &where);
16279 return false;
16282 if (formal->sym->attr.intent != INTENT_IN)
16284 gfc_error ("First argument of operator interface at %L must be "
16285 "INTENT(IN)", &where);
16286 return false;
16289 if (formal->sym->attr.optional)
16291 gfc_error ("First argument of operator interface at %L cannot be "
16292 "optional", &where);
16293 return false;
16296 formal = formal->next;
16297 if (!formal || !formal->sym)
16298 return true;
16300 if (formal->sym->attr.intent != INTENT_IN)
16302 gfc_error ("Second argument of operator interface at %L must be "
16303 "INTENT(IN)", &where);
16304 return false;
16307 if (formal->sym->attr.optional)
16309 gfc_error ("Second argument of operator interface at %L cannot be "
16310 "optional", &where);
16311 return false;
16314 if (formal->next)
16316 gfc_error ("Operator interface at %L must have, at most, two "
16317 "arguments", &where);
16318 return false;
16321 return true;
16324 static void
16325 gfc_resolve_uops (gfc_symtree *symtree)
16327 gfc_interface *itr;
16329 if (symtree == NULL)
16330 return;
16332 gfc_resolve_uops (symtree->left);
16333 gfc_resolve_uops (symtree->right);
16335 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16336 check_uop_procedure (itr->sym, itr->sym->declared_at);
16340 /* Examine all of the expressions associated with a program unit,
16341 assign types to all intermediate expressions, make sure that all
16342 assignments are to compatible types and figure out which names
16343 refer to which functions or subroutines. It doesn't check code
16344 block, which is handled by gfc_resolve_code. */
16346 static void
16347 resolve_types (gfc_namespace *ns)
16349 gfc_namespace *n;
16350 gfc_charlen *cl;
16351 gfc_data *d;
16352 gfc_equiv *eq;
16353 gfc_namespace* old_ns = gfc_current_ns;
16355 if (ns->types_resolved)
16356 return;
16358 /* Check that all IMPLICIT types are ok. */
16359 if (!ns->seen_implicit_none)
16361 unsigned letter;
16362 for (letter = 0; letter != GFC_LETTERS; ++letter)
16363 if (ns->set_flag[letter]
16364 && !resolve_typespec_used (&ns->default_type[letter],
16365 &ns->implicit_loc[letter], NULL))
16366 return;
16369 gfc_current_ns = ns;
16371 resolve_entries (ns);
16373 resolve_common_vars (&ns->blank_common, false);
16374 resolve_common_blocks (ns->common_root);
16376 resolve_contained_functions (ns);
16378 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16379 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16380 resolve_formal_arglist (ns->proc_name);
16382 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16384 for (cl = ns->cl_list; cl; cl = cl->next)
16385 resolve_charlen (cl);
16387 gfc_traverse_ns (ns, resolve_symbol);
16389 resolve_fntype (ns);
16391 for (n = ns->contained; n; n = n->sibling)
16393 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16394 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16395 "also be PURE", n->proc_name->name,
16396 &n->proc_name->declared_at);
16398 resolve_types (n);
16401 forall_flag = 0;
16402 gfc_do_concurrent_flag = 0;
16403 gfc_check_interfaces (ns);
16405 gfc_traverse_ns (ns, resolve_values);
16407 if (ns->save_all)
16408 gfc_save_all (ns);
16410 iter_stack = NULL;
16411 for (d = ns->data; d; d = d->next)
16412 resolve_data (d);
16414 iter_stack = NULL;
16415 gfc_traverse_ns (ns, gfc_formalize_init_value);
16417 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16419 for (eq = ns->equiv; eq; eq = eq->next)
16420 resolve_equivalence (eq);
16422 /* Warn about unused labels. */
16423 if (warn_unused_label)
16424 warn_unused_fortran_label (ns->st_labels);
16426 gfc_resolve_uops (ns->uop_root);
16428 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16430 gfc_resolve_omp_declare_simd (ns);
16432 gfc_resolve_omp_udrs (ns->omp_udr_root);
16434 ns->types_resolved = 1;
16436 gfc_current_ns = old_ns;
16440 /* Call gfc_resolve_code recursively. */
16442 static void
16443 resolve_codes (gfc_namespace *ns)
16445 gfc_namespace *n;
16446 bitmap_obstack old_obstack;
16448 if (ns->resolved == 1)
16449 return;
16451 for (n = ns->contained; n; n = n->sibling)
16452 resolve_codes (n);
16454 gfc_current_ns = ns;
16456 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16457 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16458 cs_base = NULL;
16460 /* Set to an out of range value. */
16461 current_entry_id = -1;
16463 old_obstack = labels_obstack;
16464 bitmap_obstack_initialize (&labels_obstack);
16466 gfc_resolve_oacc_declare (ns);
16467 gfc_resolve_omp_local_vars (ns);
16468 gfc_resolve_code (ns->code, ns);
16470 bitmap_obstack_release (&labels_obstack);
16471 labels_obstack = old_obstack;
16475 /* This function is called after a complete program unit has been compiled.
16476 Its purpose is to examine all of the expressions associated with a program
16477 unit, assign types to all intermediate expressions, make sure that all
16478 assignments are to compatible types and figure out which names refer to
16479 which functions or subroutines. */
16481 void
16482 gfc_resolve (gfc_namespace *ns)
16484 gfc_namespace *old_ns;
16485 code_stack *old_cs_base;
16486 struct gfc_omp_saved_state old_omp_state;
16488 if (ns->resolved)
16489 return;
16491 ns->resolved = -1;
16492 old_ns = gfc_current_ns;
16493 old_cs_base = cs_base;
16495 /* As gfc_resolve can be called during resolution of an OpenMP construct
16496 body, we should clear any state associated to it, so that say NS's
16497 DO loops are not interpreted as OpenMP loops. */
16498 if (!ns->construct_entities)
16499 gfc_omp_save_and_clear_state (&old_omp_state);
16501 resolve_types (ns);
16502 component_assignment_level = 0;
16503 resolve_codes (ns);
16505 gfc_current_ns = old_ns;
16506 cs_base = old_cs_base;
16507 ns->resolved = 1;
16509 gfc_run_passes (ns);
16511 if (!ns->construct_entities)
16512 gfc_omp_restore_state (&old_omp_state);