re checking -fdump-passes
[official-gcc.git] / gcc / reload1.c
blobe65503b9fa5ce6ec701432a5cc767766035da6d1
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
253 /* List of all insns needing reloads. */
254 static struct insn_chain *insns_need_reload;
256 /* This structure is used to record information about register eliminations.
257 Each array entry describes one possible way of eliminating a register
258 in favor of another. If there is more than one way of eliminating a
259 particular register, the most preferred should be specified first. */
261 struct elim_table
263 int from; /* Register number to be eliminated. */
264 int to; /* Register number used as replacement. */
265 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
266 int can_eliminate; /* Nonzero if this elimination can be done. */
267 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
268 target hook in previous scan over insns
269 made by reload. */
270 HOST_WIDE_INT offset; /* Current offset between the two regs. */
271 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
272 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
273 rtx from_rtx; /* REG rtx for the register to be eliminated.
274 We cannot simply compare the number since
275 we might then spuriously replace a hard
276 register corresponding to a pseudo
277 assigned to the reg to be eliminated. */
278 rtx to_rtx; /* REG rtx for the replacement. */
281 static struct elim_table *reg_eliminate = 0;
283 /* This is an intermediate structure to initialize the table. It has
284 exactly the members provided by ELIMINABLE_REGS. */
285 static const struct elim_table_1
287 const int from;
288 const int to;
289 } reg_eliminate_1[] =
291 /* If a set of eliminable registers was specified, define the table from it.
292 Otherwise, default to the normal case of the frame pointer being
293 replaced by the stack pointer. */
295 #ifdef ELIMINABLE_REGS
296 ELIMINABLE_REGS;
297 #else
298 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
299 #endif
301 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
303 /* Record the number of pending eliminations that have an offset not equal
304 to their initial offset. If nonzero, we use a new copy of each
305 replacement result in any insns encountered. */
306 int num_not_at_initial_offset;
308 /* Count the number of registers that we may be able to eliminate. */
309 static int num_eliminable;
310 /* And the number of registers that are equivalent to a constant that
311 can be eliminated to frame_pointer / arg_pointer + constant. */
312 static int num_eliminable_invariants;
314 /* For each label, we record the offset of each elimination. If we reach
315 a label by more than one path and an offset differs, we cannot do the
316 elimination. This information is indexed by the difference of the
317 number of the label and the first label number. We can't offset the
318 pointer itself as this can cause problems on machines with segmented
319 memory. The first table is an array of flags that records whether we
320 have yet encountered a label and the second table is an array of arrays,
321 one entry in the latter array for each elimination. */
323 static int first_label_num;
324 static char *offsets_known_at;
325 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
327 VEC(reg_equivs_t,gc) *reg_equivs;
329 /* Stack of addresses where an rtx has been changed. We can undo the
330 changes by popping items off the stack and restoring the original
331 value at each location.
333 We use this simplistic undo capability rather than copy_rtx as copy_rtx
334 will not make a deep copy of a normally sharable rtx, such as
335 (const (plus (symbol_ref) (const_int))). If such an expression appears
336 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
337 rtx expression would be changed. See PR 42431. */
339 typedef rtx *rtx_p;
340 DEF_VEC_P(rtx_p);
341 DEF_VEC_ALLOC_P(rtx_p,heap);
342 static VEC(rtx_p,heap) *substitute_stack;
344 /* Number of labels in the current function. */
346 static int num_labels;
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static void elimination_costs_in_insn (rtx);
377 static void spill_hard_reg (unsigned int, int);
378 static int finish_spills (int);
379 static void scan_paradoxical_subregs (rtx);
380 static void count_pseudo (int);
381 static void order_regs_for_reload (struct insn_chain *);
382 static void reload_as_needed (int);
383 static void forget_old_reloads_1 (rtx, const_rtx, void *);
384 static void forget_marked_reloads (regset);
385 static int reload_reg_class_lower (const void *, const void *);
386 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
387 enum machine_mode);
388 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static int reload_reg_free_p (unsigned int, int, enum reload_type);
391 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
392 rtx, rtx, int, int);
393 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
396 static int allocate_reload_reg (struct insn_chain *, int, int);
397 static int conflicts_with_override (rtx);
398 static void failed_reload (rtx, int);
399 static int set_reload_reg (int, int);
400 static void choose_reload_regs_init (struct insn_chain *, rtx *);
401 static void choose_reload_regs (struct insn_chain *);
402 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
403 rtx, int);
404 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
405 int);
406 static void do_input_reload (struct insn_chain *, struct reload *, int);
407 static void do_output_reload (struct insn_chain *, struct reload *, int);
408 static void emit_reload_insns (struct insn_chain *);
409 static void delete_output_reload (rtx, int, int, rtx);
410 static void delete_address_reloads (rtx, rtx);
411 static void delete_address_reloads_1 (rtx, rtx, rtx);
412 static void inc_for_reload (rtx, rtx, rtx, int);
413 #ifdef AUTO_INC_DEC
414 static void add_auto_inc_notes (rtx, rtx);
415 #endif
416 static void substitute (rtx *, const_rtx, rtx);
417 static bool gen_reload_chain_without_interm_reg_p (int, int);
418 static int reloads_conflict (int, int);
419 static rtx gen_reload (rtx, rtx, int, enum reload_type);
420 static rtx emit_insn_if_valid_for_reload (rtx);
422 /* Initialize the reload pass. This is called at the beginning of compilation
423 and may be called again if the target is reinitialized. */
425 void
426 init_reload (void)
428 int i;
430 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
431 Set spill_indirect_levels to the number of levels such addressing is
432 permitted, zero if it is not permitted at all. */
434 rtx tem
435 = gen_rtx_MEM (Pmode,
436 gen_rtx_PLUS (Pmode,
437 gen_rtx_REG (Pmode,
438 LAST_VIRTUAL_REGISTER + 1),
439 GEN_INT (4)));
440 spill_indirect_levels = 0;
442 while (memory_address_p (QImode, tem))
444 spill_indirect_levels++;
445 tem = gen_rtx_MEM (Pmode, tem);
448 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
450 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
451 indirect_symref_ok = memory_address_p (QImode, tem);
453 /* See if reg+reg is a valid (and offsettable) address. */
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 tem = gen_rtx_PLUS (Pmode,
458 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
459 gen_rtx_REG (Pmode, i));
461 /* This way, we make sure that reg+reg is an offsettable address. */
462 tem = plus_constant (tem, 4);
464 if (memory_address_p (QImode, tem))
466 double_reg_address_ok = 1;
467 break;
471 /* Initialize obstack for our rtl allocation. */
472 gcc_obstack_init (&reload_obstack);
473 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
475 INIT_REG_SET (&spilled_pseudos);
476 INIT_REG_SET (&changed_allocation_pseudos);
477 INIT_REG_SET (&pseudos_counted);
480 /* List of insn chains that are currently unused. */
481 static struct insn_chain *unused_insn_chains = 0;
483 /* Allocate an empty insn_chain structure. */
484 struct insn_chain *
485 new_insn_chain (void)
487 struct insn_chain *c;
489 if (unused_insn_chains == 0)
491 c = XOBNEW (&reload_obstack, struct insn_chain);
492 INIT_REG_SET (&c->live_throughout);
493 INIT_REG_SET (&c->dead_or_set);
495 else
497 c = unused_insn_chains;
498 unused_insn_chains = c->next;
500 c->is_caller_save_insn = 0;
501 c->need_operand_change = 0;
502 c->need_reload = 0;
503 c->need_elim = 0;
504 return c;
507 /* Small utility function to set all regs in hard reg set TO which are
508 allocated to pseudos in regset FROM. */
510 void
511 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
513 unsigned int regno;
514 reg_set_iterator rsi;
516 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
518 int r = reg_renumber[regno];
520 if (r < 0)
522 /* reload_combine uses the information from DF_LIVE_IN,
523 which might still contain registers that have not
524 actually been allocated since they have an
525 equivalence. */
526 gcc_assert (ira_conflicts_p || reload_completed);
528 else
529 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
533 /* Replace all pseudos found in LOC with their corresponding
534 equivalences. */
536 static void
537 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
539 rtx x = *loc;
540 enum rtx_code code;
541 const char *fmt;
542 int i, j;
544 if (! x)
545 return;
547 code = GET_CODE (x);
548 if (code == REG)
550 unsigned int regno = REGNO (x);
552 if (regno < FIRST_PSEUDO_REGISTER)
553 return;
555 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
556 if (x != *loc)
558 *loc = x;
559 replace_pseudos_in (loc, mem_mode, usage);
560 return;
563 if (reg_equiv_constant (regno))
564 *loc = reg_equiv_constant (regno);
565 else if (reg_equiv_invariant (regno))
566 *loc = reg_equiv_invariant (regno);
567 else if (reg_equiv_mem (regno))
568 *loc = reg_equiv_mem (regno);
569 else if (reg_equiv_address (regno))
570 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
571 else
573 gcc_assert (!REG_P (regno_reg_rtx[regno])
574 || REGNO (regno_reg_rtx[regno]) != regno);
575 *loc = regno_reg_rtx[regno];
578 return;
580 else if (code == MEM)
582 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
583 return;
586 /* Process each of our operands recursively. */
587 fmt = GET_RTX_FORMAT (code);
588 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
589 if (*fmt == 'e')
590 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
591 else if (*fmt == 'E')
592 for (j = 0; j < XVECLEN (x, i); j++)
593 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
596 /* Determine if the current function has an exception receiver block
597 that reaches the exit block via non-exceptional edges */
599 static bool
600 has_nonexceptional_receiver (void)
602 edge e;
603 edge_iterator ei;
604 basic_block *tos, *worklist, bb;
606 /* If we're not optimizing, then just err on the safe side. */
607 if (!optimize)
608 return true;
610 /* First determine which blocks can reach exit via normal paths. */
611 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
613 FOR_EACH_BB (bb)
614 bb->flags &= ~BB_REACHABLE;
616 /* Place the exit block on our worklist. */
617 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
618 *tos++ = EXIT_BLOCK_PTR;
620 /* Iterate: find everything reachable from what we've already seen. */
621 while (tos != worklist)
623 bb = *--tos;
625 FOR_EACH_EDGE (e, ei, bb->preds)
626 if (!(e->flags & EDGE_ABNORMAL))
628 basic_block src = e->src;
630 if (!(src->flags & BB_REACHABLE))
632 src->flags |= BB_REACHABLE;
633 *tos++ = src;
637 free (worklist);
639 /* Now see if there's a reachable block with an exceptional incoming
640 edge. */
641 FOR_EACH_BB (bb)
642 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
643 return true;
645 /* No exceptional block reached exit unexceptionally. */
646 return false;
649 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
650 zero elements) to MAX_REG_NUM elements.
652 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
653 void
654 grow_reg_equivs (void)
656 int old_size = VEC_length (reg_equivs_t, reg_equivs);
657 int max_regno = max_reg_num ();
658 int i;
660 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
661 for (i = old_size; i < max_regno; i++)
663 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
664 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
670 /* Global variables used by reload and its subroutines. */
672 /* The current basic block while in calculate_elim_costs_all_insns. */
673 static basic_block elim_bb;
675 /* Set during calculate_needs if an insn needs register elimination. */
676 static int something_needs_elimination;
677 /* Set during calculate_needs if an insn needs an operand changed. */
678 static int something_needs_operands_changed;
679 /* Set by alter_regs if we spilled a register to the stack. */
680 static bool something_was_spilled;
682 /* Nonzero means we couldn't get enough spill regs. */
683 static int failure;
685 /* Temporary array of pseudo-register number. */
686 static int *temp_pseudo_reg_arr;
688 /* Main entry point for the reload pass.
690 FIRST is the first insn of the function being compiled.
692 GLOBAL nonzero means we were called from global_alloc
693 and should attempt to reallocate any pseudoregs that we
694 displace from hard regs we will use for reloads.
695 If GLOBAL is zero, we do not have enough information to do that,
696 so any pseudo reg that is spilled must go to the stack.
698 Return value is nonzero if reload failed
699 and we must not do any more for this function. */
702 reload (rtx first, int global)
704 int i, n;
705 rtx insn;
706 struct elim_table *ep;
707 basic_block bb;
708 bool inserted;
710 /* Make sure even insns with volatile mem refs are recognizable. */
711 init_recog ();
713 failure = 0;
715 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
717 /* Make sure that the last insn in the chain
718 is not something that needs reloading. */
719 emit_note (NOTE_INSN_DELETED);
721 /* Enable find_equiv_reg to distinguish insns made by reload. */
722 reload_first_uid = get_max_uid ();
724 #ifdef SECONDARY_MEMORY_NEEDED
725 /* Initialize the secondary memory table. */
726 clear_secondary_mem ();
727 #endif
729 /* We don't have a stack slot for any spill reg yet. */
730 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
731 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
733 /* Initialize the save area information for caller-save, in case some
734 are needed. */
735 init_save_areas ();
737 /* Compute which hard registers are now in use
738 as homes for pseudo registers.
739 This is done here rather than (eg) in global_alloc
740 because this point is reached even if not optimizing. */
741 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
742 mark_home_live (i);
744 /* A function that has a nonlocal label that can reach the exit
745 block via non-exceptional paths must save all call-saved
746 registers. */
747 if (cfun->has_nonlocal_label
748 && has_nonexceptional_receiver ())
749 crtl->saves_all_registers = 1;
751 if (crtl->saves_all_registers)
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
753 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
754 df_set_regs_ever_live (i, true);
756 /* Find all the pseudo registers that didn't get hard regs
757 but do have known equivalent constants or memory slots.
758 These include parameters (known equivalent to parameter slots)
759 and cse'd or loop-moved constant memory addresses.
761 Record constant equivalents in reg_equiv_constant
762 so they will be substituted by find_reloads.
763 Record memory equivalents in reg_mem_equiv so they can
764 be substituted eventually by altering the REG-rtx's. */
766 grow_reg_equivs ();
767 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
768 reg_old_renumber = XCNEWVEC (short, max_regno);
769 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
770 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
771 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
773 CLEAR_HARD_REG_SET (bad_spill_regs_global);
775 init_eliminable_invariants (first, true);
776 init_elim_table ();
778 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
779 stack slots to the pseudos that lack hard regs or equivalents.
780 Do not touch virtual registers. */
782 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
783 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
784 temp_pseudo_reg_arr[n++] = i;
786 if (ira_conflicts_p)
787 /* Ask IRA to order pseudo-registers for better stack slot
788 sharing. */
789 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
791 for (i = 0; i < n; i++)
792 alter_reg (temp_pseudo_reg_arr[i], -1, false);
794 /* If we have some registers we think can be eliminated, scan all insns to
795 see if there is an insn that sets one of these registers to something
796 other than itself plus a constant. If so, the register cannot be
797 eliminated. Doing this scan here eliminates an extra pass through the
798 main reload loop in the most common case where register elimination
799 cannot be done. */
800 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
801 if (INSN_P (insn))
802 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
804 maybe_fix_stack_asms ();
806 insns_need_reload = 0;
807 something_needs_elimination = 0;
809 /* Initialize to -1, which means take the first spill register. */
810 last_spill_reg = -1;
812 /* Spill any hard regs that we know we can't eliminate. */
813 CLEAR_HARD_REG_SET (used_spill_regs);
814 /* There can be multiple ways to eliminate a register;
815 they should be listed adjacently.
816 Elimination for any register fails only if all possible ways fail. */
817 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
819 int from = ep->from;
820 int can_eliminate = 0;
823 can_eliminate |= ep->can_eliminate;
824 ep++;
826 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
827 if (! can_eliminate)
828 spill_hard_reg (from, 1);
831 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
832 if (frame_pointer_needed)
833 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
834 #endif
835 finish_spills (global);
837 /* From now on, we may need to generate moves differently. We may also
838 allow modifications of insns which cause them to not be recognized.
839 Any such modifications will be cleaned up during reload itself. */
840 reload_in_progress = 1;
842 /* This loop scans the entire function each go-round
843 and repeats until one repetition spills no additional hard regs. */
844 for (;;)
846 int something_changed;
847 int did_spill;
848 HOST_WIDE_INT starting_frame_size;
850 starting_frame_size = get_frame_size ();
851 something_was_spilled = false;
853 set_initial_elim_offsets ();
854 set_initial_label_offsets ();
856 /* For each pseudo register that has an equivalent location defined,
857 try to eliminate any eliminable registers (such as the frame pointer)
858 assuming initial offsets for the replacement register, which
859 is the normal case.
861 If the resulting location is directly addressable, substitute
862 the MEM we just got directly for the old REG.
864 If it is not addressable but is a constant or the sum of a hard reg
865 and constant, it is probably not addressable because the constant is
866 out of range, in that case record the address; we will generate
867 hairy code to compute the address in a register each time it is
868 needed. Similarly if it is a hard register, but one that is not
869 valid as an address register.
871 If the location is not addressable, but does not have one of the
872 above forms, assign a stack slot. We have to do this to avoid the
873 potential of producing lots of reloads if, e.g., a location involves
874 a pseudo that didn't get a hard register and has an equivalent memory
875 location that also involves a pseudo that didn't get a hard register.
877 Perhaps at some point we will improve reload_when_needed handling
878 so this problem goes away. But that's very hairy. */
880 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
881 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
883 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
884 NULL_RTX);
886 if (strict_memory_address_addr_space_p
887 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
888 MEM_ADDR_SPACE (x)))
889 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
890 else if (CONSTANT_P (XEXP (x, 0))
891 || (REG_P (XEXP (x, 0))
892 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
893 || (GET_CODE (XEXP (x, 0)) == PLUS
894 && REG_P (XEXP (XEXP (x, 0), 0))
895 && (REGNO (XEXP (XEXP (x, 0), 0))
896 < FIRST_PSEUDO_REGISTER)
897 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
898 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
899 else
901 /* Make a new stack slot. Then indicate that something
902 changed so we go back and recompute offsets for
903 eliminable registers because the allocation of memory
904 below might change some offset. reg_equiv_{mem,address}
905 will be set up for this pseudo on the next pass around
906 the loop. */
907 reg_equiv_memory_loc (i) = 0;
908 reg_equiv_init (i) = 0;
909 alter_reg (i, -1, true);
913 if (caller_save_needed)
914 setup_save_areas ();
916 /* If we allocated another stack slot, redo elimination bookkeeping. */
917 if (something_was_spilled || starting_frame_size != get_frame_size ())
918 continue;
919 if (starting_frame_size && crtl->stack_alignment_needed)
921 /* If we have a stack frame, we must align it now. The
922 stack size may be a part of the offset computation for
923 register elimination. So if this changes the stack size,
924 then repeat the elimination bookkeeping. We don't
925 realign when there is no stack, as that will cause a
926 stack frame when none is needed should
927 STARTING_FRAME_OFFSET not be already aligned to
928 STACK_BOUNDARY. */
929 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
930 if (starting_frame_size != get_frame_size ())
931 continue;
934 if (caller_save_needed)
936 save_call_clobbered_regs ();
937 /* That might have allocated new insn_chain structures. */
938 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
941 calculate_needs_all_insns (global);
943 if (! ira_conflicts_p)
944 /* Don't do it for IRA. We need this info because we don't
945 change live_throughout and dead_or_set for chains when IRA
946 is used. */
947 CLEAR_REG_SET (&spilled_pseudos);
949 did_spill = 0;
951 something_changed = 0;
953 /* If we allocated any new memory locations, make another pass
954 since it might have changed elimination offsets. */
955 if (something_was_spilled || starting_frame_size != get_frame_size ())
956 something_changed = 1;
958 /* Even if the frame size remained the same, we might still have
959 changed elimination offsets, e.g. if find_reloads called
960 force_const_mem requiring the back end to allocate a constant
961 pool base register that needs to be saved on the stack. */
962 else if (!verify_initial_elim_offsets ())
963 something_changed = 1;
966 HARD_REG_SET to_spill;
967 CLEAR_HARD_REG_SET (to_spill);
968 update_eliminables (&to_spill);
969 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
971 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
972 if (TEST_HARD_REG_BIT (to_spill, i))
974 spill_hard_reg (i, 1);
975 did_spill = 1;
977 /* Regardless of the state of spills, if we previously had
978 a register that we thought we could eliminate, but now can
979 not eliminate, we must run another pass.
981 Consider pseudos which have an entry in reg_equiv_* which
982 reference an eliminable register. We must make another pass
983 to update reg_equiv_* so that we do not substitute in the
984 old value from when we thought the elimination could be
985 performed. */
986 something_changed = 1;
990 select_reload_regs ();
991 if (failure)
992 goto failed;
994 if (insns_need_reload != 0 || did_spill)
995 something_changed |= finish_spills (global);
997 if (! something_changed)
998 break;
1000 if (caller_save_needed)
1001 delete_caller_save_insns ();
1003 obstack_free (&reload_obstack, reload_firstobj);
1006 /* If global-alloc was run, notify it of any register eliminations we have
1007 done. */
1008 if (global)
1009 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1010 if (ep->can_eliminate)
1011 mark_elimination (ep->from, ep->to);
1013 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1014 If that insn didn't set the register (i.e., it copied the register to
1015 memory), just delete that insn instead of the equivalencing insn plus
1016 anything now dead. If we call delete_dead_insn on that insn, we may
1017 delete the insn that actually sets the register if the register dies
1018 there and that is incorrect. */
1020 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1022 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1024 rtx list;
1025 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1027 rtx equiv_insn = XEXP (list, 0);
1029 /* If we already deleted the insn or if it may trap, we can't
1030 delete it. The latter case shouldn't happen, but can
1031 if an insn has a variable address, gets a REG_EH_REGION
1032 note added to it, and then gets converted into a load
1033 from a constant address. */
1034 if (NOTE_P (equiv_insn)
1035 || can_throw_internal (equiv_insn))
1037 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1038 delete_dead_insn (equiv_insn);
1039 else
1040 SET_INSN_DELETED (equiv_insn);
1045 /* Use the reload registers where necessary
1046 by generating move instructions to move the must-be-register
1047 values into or out of the reload registers. */
1049 if (insns_need_reload != 0 || something_needs_elimination
1050 || something_needs_operands_changed)
1052 HOST_WIDE_INT old_frame_size = get_frame_size ();
1054 reload_as_needed (global);
1056 gcc_assert (old_frame_size == get_frame_size ());
1058 gcc_assert (verify_initial_elim_offsets ());
1061 /* If we were able to eliminate the frame pointer, show that it is no
1062 longer live at the start of any basic block. If it ls live by
1063 virtue of being in a pseudo, that pseudo will be marked live
1064 and hence the frame pointer will be known to be live via that
1065 pseudo. */
1067 if (! frame_pointer_needed)
1068 FOR_EACH_BB (bb)
1069 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1071 /* Come here (with failure set nonzero) if we can't get enough spill
1072 regs. */
1073 failed:
1075 CLEAR_REG_SET (&changed_allocation_pseudos);
1076 CLEAR_REG_SET (&spilled_pseudos);
1077 reload_in_progress = 0;
1079 /* Now eliminate all pseudo regs by modifying them into
1080 their equivalent memory references.
1081 The REG-rtx's for the pseudos are modified in place,
1082 so all insns that used to refer to them now refer to memory.
1084 For a reg that has a reg_equiv_address, all those insns
1085 were changed by reloading so that no insns refer to it any longer;
1086 but the DECL_RTL of a variable decl may refer to it,
1087 and if so this causes the debugging info to mention the variable. */
1089 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1091 rtx addr = 0;
1093 if (reg_equiv_mem (i))
1094 addr = XEXP (reg_equiv_mem (i), 0);
1096 if (reg_equiv_address (i))
1097 addr = reg_equiv_address (i);
1099 if (addr)
1101 if (reg_renumber[i] < 0)
1103 rtx reg = regno_reg_rtx[i];
1105 REG_USERVAR_P (reg) = 0;
1106 PUT_CODE (reg, MEM);
1107 XEXP (reg, 0) = addr;
1108 if (reg_equiv_memory_loc (i))
1109 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1110 else
1112 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1113 MEM_ATTRS (reg) = 0;
1115 MEM_NOTRAP_P (reg) = 1;
1117 else if (reg_equiv_mem (i))
1118 XEXP (reg_equiv_mem (i), 0) = addr;
1121 /* We don't want complex addressing modes in debug insns
1122 if simpler ones will do, so delegitimize equivalences
1123 in debug insns. */
1124 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1126 rtx reg = regno_reg_rtx[i];
1127 rtx equiv = 0;
1128 df_ref use, next;
1130 if (reg_equiv_constant (i))
1131 equiv = reg_equiv_constant (i);
1132 else if (reg_equiv_invariant (i))
1133 equiv = reg_equiv_invariant (i);
1134 else if (reg && MEM_P (reg))
1135 equiv = targetm.delegitimize_address (reg);
1136 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1137 equiv = reg;
1139 if (equiv == reg)
1140 continue;
1142 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1144 insn = DF_REF_INSN (use);
1146 /* Make sure the next ref is for a different instruction,
1147 so that we're not affected by the rescan. */
1148 next = DF_REF_NEXT_REG (use);
1149 while (next && DF_REF_INSN (next) == insn)
1150 next = DF_REF_NEXT_REG (next);
1152 if (DEBUG_INSN_P (insn))
1154 if (!equiv)
1156 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1157 df_insn_rescan_debug_internal (insn);
1159 else
1160 INSN_VAR_LOCATION_LOC (insn)
1161 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1162 reg, equiv);
1168 /* We must set reload_completed now since the cleanup_subreg_operands call
1169 below will re-recognize each insn and reload may have generated insns
1170 which are only valid during and after reload. */
1171 reload_completed = 1;
1173 /* Make a pass over all the insns and delete all USEs which we inserted
1174 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1175 notes. Delete all CLOBBER insns, except those that refer to the return
1176 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1177 from misarranging variable-array code, and simplify (subreg (reg))
1178 operands. Strip and regenerate REG_INC notes that may have been moved
1179 around. */
1181 for (insn = first; insn; insn = NEXT_INSN (insn))
1182 if (INSN_P (insn))
1184 rtx *pnote;
1186 if (CALL_P (insn))
1187 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1188 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1190 if ((GET_CODE (PATTERN (insn)) == USE
1191 /* We mark with QImode USEs introduced by reload itself. */
1192 && (GET_MODE (insn) == QImode
1193 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1194 || (GET_CODE (PATTERN (insn)) == CLOBBER
1195 && (!MEM_P (XEXP (PATTERN (insn), 0))
1196 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1197 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1198 && XEXP (XEXP (PATTERN (insn), 0), 0)
1199 != stack_pointer_rtx))
1200 && (!REG_P (XEXP (PATTERN (insn), 0))
1201 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1203 delete_insn (insn);
1204 continue;
1207 /* Some CLOBBERs may survive until here and still reference unassigned
1208 pseudos with const equivalent, which may in turn cause ICE in later
1209 passes if the reference remains in place. */
1210 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1211 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1212 VOIDmode, PATTERN (insn));
1214 /* Discard obvious no-ops, even without -O. This optimization
1215 is fast and doesn't interfere with debugging. */
1216 if (NONJUMP_INSN_P (insn)
1217 && GET_CODE (PATTERN (insn)) == SET
1218 && REG_P (SET_SRC (PATTERN (insn)))
1219 && REG_P (SET_DEST (PATTERN (insn)))
1220 && (REGNO (SET_SRC (PATTERN (insn)))
1221 == REGNO (SET_DEST (PATTERN (insn)))))
1223 delete_insn (insn);
1224 continue;
1227 pnote = &REG_NOTES (insn);
1228 while (*pnote != 0)
1230 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1231 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1232 || REG_NOTE_KIND (*pnote) == REG_INC)
1233 *pnote = XEXP (*pnote, 1);
1234 else
1235 pnote = &XEXP (*pnote, 1);
1238 #ifdef AUTO_INC_DEC
1239 add_auto_inc_notes (insn, PATTERN (insn));
1240 #endif
1242 /* Simplify (subreg (reg)) if it appears as an operand. */
1243 cleanup_subreg_operands (insn);
1245 /* Clean up invalid ASMs so that they don't confuse later passes.
1246 See PR 21299. */
1247 if (asm_noperands (PATTERN (insn)) >= 0)
1249 extract_insn (insn);
1250 if (!constrain_operands (1))
1252 error_for_asm (insn,
1253 "%<asm%> operand has impossible constraints");
1254 delete_insn (insn);
1255 continue;
1260 /* If we are doing generic stack checking, give a warning if this
1261 function's frame size is larger than we expect. */
1262 if (flag_stack_check == GENERIC_STACK_CHECK)
1264 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1265 static int verbose_warned = 0;
1267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1268 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1269 size += UNITS_PER_WORD;
1271 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1273 warning (0, "frame size too large for reliable stack checking");
1274 if (! verbose_warned)
1276 warning (0, "try reducing the number of local variables");
1277 verbose_warned = 1;
1282 free (temp_pseudo_reg_arr);
1284 /* Indicate that we no longer have known memory locations or constants. */
1285 free_reg_equiv ();
1287 free (reg_max_ref_width);
1288 free (reg_old_renumber);
1289 free (pseudo_previous_regs);
1290 free (pseudo_forbidden_regs);
1292 CLEAR_HARD_REG_SET (used_spill_regs);
1293 for (i = 0; i < n_spills; i++)
1294 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1296 /* Free all the insn_chain structures at once. */
1297 obstack_free (&reload_obstack, reload_startobj);
1298 unused_insn_chains = 0;
1300 inserted = fixup_abnormal_edges ();
1302 /* We've possibly turned single trapping insn into multiple ones. */
1303 if (cfun->can_throw_non_call_exceptions)
1305 sbitmap blocks;
1306 blocks = sbitmap_alloc (last_basic_block);
1307 sbitmap_ones (blocks);
1308 find_many_sub_basic_blocks (blocks);
1309 sbitmap_free (blocks);
1312 if (inserted)
1313 commit_edge_insertions ();
1315 /* Replacing pseudos with their memory equivalents might have
1316 created shared rtx. Subsequent passes would get confused
1317 by this, so unshare everything here. */
1318 unshare_all_rtl_again (first);
1320 #ifdef STACK_BOUNDARY
1321 /* init_emit has set the alignment of the hard frame pointer
1322 to STACK_BOUNDARY. It is very likely no longer valid if
1323 the hard frame pointer was used for register allocation. */
1324 if (!frame_pointer_needed)
1325 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1326 #endif
1328 VEC_free (rtx_p, heap, substitute_stack);
1330 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1332 return failure;
1335 /* Yet another special case. Unfortunately, reg-stack forces people to
1336 write incorrect clobbers in asm statements. These clobbers must not
1337 cause the register to appear in bad_spill_regs, otherwise we'll call
1338 fatal_insn later. We clear the corresponding regnos in the live
1339 register sets to avoid this.
1340 The whole thing is rather sick, I'm afraid. */
1342 static void
1343 maybe_fix_stack_asms (void)
1345 #ifdef STACK_REGS
1346 const char *constraints[MAX_RECOG_OPERANDS];
1347 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1348 struct insn_chain *chain;
1350 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1352 int i, noperands;
1353 HARD_REG_SET clobbered, allowed;
1354 rtx pat;
1356 if (! INSN_P (chain->insn)
1357 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1358 continue;
1359 pat = PATTERN (chain->insn);
1360 if (GET_CODE (pat) != PARALLEL)
1361 continue;
1363 CLEAR_HARD_REG_SET (clobbered);
1364 CLEAR_HARD_REG_SET (allowed);
1366 /* First, make a mask of all stack regs that are clobbered. */
1367 for (i = 0; i < XVECLEN (pat, 0); i++)
1369 rtx t = XVECEXP (pat, 0, i);
1370 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1371 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1374 /* Get the operand values and constraints out of the insn. */
1375 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1376 constraints, operand_mode, NULL);
1378 /* For every operand, see what registers are allowed. */
1379 for (i = 0; i < noperands; i++)
1381 const char *p = constraints[i];
1382 /* For every alternative, we compute the class of registers allowed
1383 for reloading in CLS, and merge its contents into the reg set
1384 ALLOWED. */
1385 int cls = (int) NO_REGS;
1387 for (;;)
1389 char c = *p;
1391 if (c == '\0' || c == ',' || c == '#')
1393 /* End of one alternative - mark the regs in the current
1394 class, and reset the class. */
1395 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1396 cls = NO_REGS;
1397 p++;
1398 if (c == '#')
1399 do {
1400 c = *p++;
1401 } while (c != '\0' && c != ',');
1402 if (c == '\0')
1403 break;
1404 continue;
1407 switch (c)
1409 case '=': case '+': case '*': case '%': case '?': case '!':
1410 case '0': case '1': case '2': case '3': case '4': case '<':
1411 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1412 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1413 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1414 case TARGET_MEM_CONSTRAINT:
1415 break;
1417 case 'p':
1418 cls = (int) reg_class_subunion[cls]
1419 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1420 break;
1422 case 'g':
1423 case 'r':
1424 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 break;
1427 default:
1428 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1429 cls = (int) reg_class_subunion[cls]
1430 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1431 else
1432 cls = (int) reg_class_subunion[cls]
1433 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1435 p += CONSTRAINT_LEN (c, p);
1438 /* Those of the registers which are clobbered, but allowed by the
1439 constraints, must be usable as reload registers. So clear them
1440 out of the life information. */
1441 AND_HARD_REG_SET (allowed, clobbered);
1442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1443 if (TEST_HARD_REG_BIT (allowed, i))
1445 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1446 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1450 #endif
1453 /* Copy the global variables n_reloads and rld into the corresponding elts
1454 of CHAIN. */
1455 static void
1456 copy_reloads (struct insn_chain *chain)
1458 chain->n_reloads = n_reloads;
1459 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1460 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1461 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1464 /* Walk the chain of insns, and determine for each whether it needs reloads
1465 and/or eliminations. Build the corresponding insns_need_reload list, and
1466 set something_needs_elimination as appropriate. */
1467 static void
1468 calculate_needs_all_insns (int global)
1470 struct insn_chain **pprev_reload = &insns_need_reload;
1471 struct insn_chain *chain, *next = 0;
1473 something_needs_elimination = 0;
1475 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1476 for (chain = reload_insn_chain; chain != 0; chain = next)
1478 rtx insn = chain->insn;
1480 next = chain->next;
1482 /* Clear out the shortcuts. */
1483 chain->n_reloads = 0;
1484 chain->need_elim = 0;
1485 chain->need_reload = 0;
1486 chain->need_operand_change = 0;
1488 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1489 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1490 what effects this has on the known offsets at labels. */
1492 if (LABEL_P (insn) || JUMP_P (insn)
1493 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1494 set_label_offsets (insn, insn, 0);
1496 if (INSN_P (insn))
1498 rtx old_body = PATTERN (insn);
1499 int old_code = INSN_CODE (insn);
1500 rtx old_notes = REG_NOTES (insn);
1501 int did_elimination = 0;
1502 int operands_changed = 0;
1503 rtx set = single_set (insn);
1505 /* Skip insns that only set an equivalence. */
1506 if (set && REG_P (SET_DEST (set))
1507 && reg_renumber[REGNO (SET_DEST (set))] < 0
1508 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1509 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1510 && reg_equiv_init (REGNO (SET_DEST (set))))
1511 continue;
1513 /* If needed, eliminate any eliminable registers. */
1514 if (num_eliminable || num_eliminable_invariants)
1515 did_elimination = eliminate_regs_in_insn (insn, 0);
1517 /* Analyze the instruction. */
1518 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1519 global, spill_reg_order);
1521 /* If a no-op set needs more than one reload, this is likely
1522 to be something that needs input address reloads. We
1523 can't get rid of this cleanly later, and it is of no use
1524 anyway, so discard it now.
1525 We only do this when expensive_optimizations is enabled,
1526 since this complements reload inheritance / output
1527 reload deletion, and it can make debugging harder. */
1528 if (flag_expensive_optimizations && n_reloads > 1)
1530 rtx set = single_set (insn);
1531 if (set
1533 ((SET_SRC (set) == SET_DEST (set)
1534 && REG_P (SET_SRC (set))
1535 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1536 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1537 && reg_renumber[REGNO (SET_SRC (set))] < 0
1538 && reg_renumber[REGNO (SET_DEST (set))] < 0
1539 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1540 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1541 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1542 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 if (ira_conflicts_p)
1545 /* Inform IRA about the insn deletion. */
1546 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1547 REGNO (SET_SRC (set)));
1548 delete_insn (insn);
1549 /* Delete it from the reload chain. */
1550 if (chain->prev)
1551 chain->prev->next = next;
1552 else
1553 reload_insn_chain = next;
1554 if (next)
1555 next->prev = chain->prev;
1556 chain->next = unused_insn_chains;
1557 unused_insn_chains = chain;
1558 continue;
1561 if (num_eliminable)
1562 update_eliminable_offsets ();
1564 /* Remember for later shortcuts which insns had any reloads or
1565 register eliminations. */
1566 chain->need_elim = did_elimination;
1567 chain->need_reload = n_reloads > 0;
1568 chain->need_operand_change = operands_changed;
1570 /* Discard any register replacements done. */
1571 if (did_elimination)
1573 obstack_free (&reload_obstack, reload_insn_firstobj);
1574 PATTERN (insn) = old_body;
1575 INSN_CODE (insn) = old_code;
1576 REG_NOTES (insn) = old_notes;
1577 something_needs_elimination = 1;
1580 something_needs_operands_changed |= operands_changed;
1582 if (n_reloads != 0)
1584 copy_reloads (chain);
1585 *pprev_reload = chain;
1586 pprev_reload = &chain->next_need_reload;
1590 *pprev_reload = 0;
1593 /* This function is called from the register allocator to set up estimates
1594 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1595 an invariant. The structure is similar to calculate_needs_all_insns. */
1597 void
1598 calculate_elim_costs_all_insns (void)
1600 int *reg_equiv_init_cost;
1601 basic_block bb;
1602 int i;
1604 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1605 init_elim_table ();
1606 init_eliminable_invariants (get_insns (), false);
1608 set_initial_elim_offsets ();
1609 set_initial_label_offsets ();
1611 FOR_EACH_BB (bb)
1613 rtx insn;
1614 elim_bb = bb;
1616 FOR_BB_INSNS (bb, insn)
1618 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1619 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1620 what effects this has on the known offsets at labels. */
1622 if (LABEL_P (insn) || JUMP_P (insn)
1623 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1624 set_label_offsets (insn, insn, 0);
1626 if (INSN_P (insn))
1628 rtx set = single_set (insn);
1630 /* Skip insns that only set an equivalence. */
1631 if (set && REG_P (SET_DEST (set))
1632 && reg_renumber[REGNO (SET_DEST (set))] < 0
1633 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1634 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 unsigned regno = REGNO (SET_DEST (set));
1637 rtx init = reg_equiv_init (regno);
1638 if (init)
1640 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1641 false, true);
1642 int cost = rtx_cost (t, SET,
1643 optimize_bb_for_speed_p (bb));
1644 int freq = REG_FREQ_FROM_BB (bb);
1646 reg_equiv_init_cost[regno] = cost * freq;
1647 continue;
1650 /* If needed, eliminate any eliminable registers. */
1651 if (num_eliminable || num_eliminable_invariants)
1652 elimination_costs_in_insn (insn);
1654 if (num_eliminable)
1655 update_eliminable_offsets ();
1659 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1661 if (reg_equiv_invariant (i))
1663 if (reg_equiv_init (i))
1665 int cost = reg_equiv_init_cost[i];
1666 if (dump_file)
1667 fprintf (dump_file,
1668 "Reg %d has equivalence, initial gains %d\n", i, cost);
1669 if (cost != 0)
1670 ira_adjust_equiv_reg_cost (i, cost);
1672 else
1674 if (dump_file)
1675 fprintf (dump_file,
1676 "Reg %d had equivalence, but can't be eliminated\n",
1678 ira_adjust_equiv_reg_cost (i, 0);
1683 free (reg_equiv_init_cost);
1686 /* Comparison function for qsort to decide which of two reloads
1687 should be handled first. *P1 and *P2 are the reload numbers. */
1689 static int
1690 reload_reg_class_lower (const void *r1p, const void *r2p)
1692 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1693 int t;
1695 /* Consider required reloads before optional ones. */
1696 t = rld[r1].optional - rld[r2].optional;
1697 if (t != 0)
1698 return t;
1700 /* Count all solitary classes before non-solitary ones. */
1701 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1702 - (reg_class_size[(int) rld[r1].rclass] == 1));
1703 if (t != 0)
1704 return t;
1706 /* Aside from solitaires, consider all multi-reg groups first. */
1707 t = rld[r2].nregs - rld[r1].nregs;
1708 if (t != 0)
1709 return t;
1711 /* Consider reloads in order of increasing reg-class number. */
1712 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1713 if (t != 0)
1714 return t;
1716 /* If reloads are equally urgent, sort by reload number,
1717 so that the results of qsort leave nothing to chance. */
1718 return r1 - r2;
1721 /* The cost of spilling each hard reg. */
1722 static int spill_cost[FIRST_PSEUDO_REGISTER];
1724 /* When spilling multiple hard registers, we use SPILL_COST for the first
1725 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1726 only the first hard reg for a multi-reg pseudo. */
1727 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1729 /* Map of hard regno to pseudo regno currently occupying the hard
1730 reg. */
1731 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1733 /* Update the spill cost arrays, considering that pseudo REG is live. */
1735 static void
1736 count_pseudo (int reg)
1738 int freq = REG_FREQ (reg);
1739 int r = reg_renumber[reg];
1740 int nregs;
1742 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1743 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1744 /* Ignore spilled pseudo-registers which can be here only if IRA
1745 is used. */
1746 || (ira_conflicts_p && r < 0))
1747 return;
1749 SET_REGNO_REG_SET (&pseudos_counted, reg);
1751 gcc_assert (r >= 0);
1753 spill_add_cost[r] += freq;
1754 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1755 while (nregs-- > 0)
1757 hard_regno_to_pseudo_regno[r + nregs] = reg;
1758 spill_cost[r + nregs] += freq;
1762 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1763 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1765 static void
1766 order_regs_for_reload (struct insn_chain *chain)
1768 unsigned i;
1769 HARD_REG_SET used_by_pseudos;
1770 HARD_REG_SET used_by_pseudos2;
1771 reg_set_iterator rsi;
1773 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1775 memset (spill_cost, 0, sizeof spill_cost);
1776 memset (spill_add_cost, 0, sizeof spill_add_cost);
1777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1778 hard_regno_to_pseudo_regno[i] = -1;
1780 /* Count number of uses of each hard reg by pseudo regs allocated to it
1781 and then order them by decreasing use. First exclude hard registers
1782 that are live in or across this insn. */
1784 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1785 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1786 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1787 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1789 /* Now find out which pseudos are allocated to it, and update
1790 hard_reg_n_uses. */
1791 CLEAR_REG_SET (&pseudos_counted);
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1796 count_pseudo (i);
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1801 count_pseudo (i);
1803 CLEAR_REG_SET (&pseudos_counted);
1806 /* Vector of reload-numbers showing the order in which the reloads should
1807 be processed. */
1808 static short reload_order[MAX_RELOADS];
1810 /* This is used to keep track of the spill regs used in one insn. */
1811 static HARD_REG_SET used_spill_regs_local;
1813 /* We decided to spill hard register SPILLED, which has a size of
1814 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1815 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1816 update SPILL_COST/SPILL_ADD_COST. */
1818 static void
1819 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1821 int freq = REG_FREQ (reg);
1822 int r = reg_renumber[reg];
1823 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1825 /* Ignore spilled pseudo-registers which can be here only if IRA is
1826 used. */
1827 if ((ira_conflicts_p && r < 0)
1828 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1829 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1830 return;
1832 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1834 spill_add_cost[r] -= freq;
1835 while (nregs-- > 0)
1837 hard_regno_to_pseudo_regno[r + nregs] = -1;
1838 spill_cost[r + nregs] -= freq;
1842 /* Find reload register to use for reload number ORDER. */
1844 static int
1845 find_reg (struct insn_chain *chain, int order)
1847 int rnum = reload_order[order];
1848 struct reload *rl = rld + rnum;
1849 int best_cost = INT_MAX;
1850 int best_reg = -1;
1851 unsigned int i, j, n;
1852 int k;
1853 HARD_REG_SET not_usable;
1854 HARD_REG_SET used_by_other_reload;
1855 reg_set_iterator rsi;
1856 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1857 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1859 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1860 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1861 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1863 CLEAR_HARD_REG_SET (used_by_other_reload);
1864 for (k = 0; k < order; k++)
1866 int other = reload_order[k];
1868 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1869 for (j = 0; j < rld[other].nregs; j++)
1870 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1873 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1875 #ifdef REG_ALLOC_ORDER
1876 unsigned int regno = reg_alloc_order[i];
1877 #else
1878 unsigned int regno = i;
1879 #endif
1881 if (! TEST_HARD_REG_BIT (not_usable, regno)
1882 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1883 && HARD_REGNO_MODE_OK (regno, rl->mode))
1885 int this_cost = spill_cost[regno];
1886 int ok = 1;
1887 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1889 for (j = 1; j < this_nregs; j++)
1891 this_cost += spill_add_cost[regno + j];
1892 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1893 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1894 ok = 0;
1896 if (! ok)
1897 continue;
1899 if (ira_conflicts_p)
1901 /* Ask IRA to find a better pseudo-register for
1902 spilling. */
1903 for (n = j = 0; j < this_nregs; j++)
1905 int r = hard_regno_to_pseudo_regno[regno + j];
1907 if (r < 0)
1908 continue;
1909 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1910 regno_pseudo_regs[n++] = r;
1912 regno_pseudo_regs[n++] = -1;
1913 if (best_reg < 0
1914 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1915 best_regno_pseudo_regs,
1916 rl->in, rl->out,
1917 chain->insn))
1919 best_reg = regno;
1920 for (j = 0;; j++)
1922 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1923 if (regno_pseudo_regs[j] < 0)
1924 break;
1927 continue;
1930 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1931 this_cost--;
1932 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1933 this_cost--;
1934 if (this_cost < best_cost
1935 /* Among registers with equal cost, prefer caller-saved ones, or
1936 use REG_ALLOC_ORDER if it is defined. */
1937 || (this_cost == best_cost
1938 #ifdef REG_ALLOC_ORDER
1939 && (inv_reg_alloc_order[regno]
1940 < inv_reg_alloc_order[best_reg])
1941 #else
1942 && call_used_regs[regno]
1943 && ! call_used_regs[best_reg]
1944 #endif
1947 best_reg = regno;
1948 best_cost = this_cost;
1952 if (best_reg == -1)
1953 return 0;
1955 if (dump_file)
1956 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1958 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1959 rl->regno = best_reg;
1961 EXECUTE_IF_SET_IN_REG_SET
1962 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1964 count_spilled_pseudo (best_reg, rl->nregs, j);
1967 EXECUTE_IF_SET_IN_REG_SET
1968 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1970 count_spilled_pseudo (best_reg, rl->nregs, j);
1973 for (i = 0; i < rl->nregs; i++)
1975 gcc_assert (spill_cost[best_reg + i] == 0);
1976 gcc_assert (spill_add_cost[best_reg + i] == 0);
1977 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1978 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1980 return 1;
1983 /* Find more reload regs to satisfy the remaining need of an insn, which
1984 is given by CHAIN.
1985 Do it by ascending class number, since otherwise a reg
1986 might be spilled for a big class and might fail to count
1987 for a smaller class even though it belongs to that class. */
1989 static void
1990 find_reload_regs (struct insn_chain *chain)
1992 int i;
1994 /* In order to be certain of getting the registers we need,
1995 we must sort the reloads into order of increasing register class.
1996 Then our grabbing of reload registers will parallel the process
1997 that provided the reload registers. */
1998 for (i = 0; i < chain->n_reloads; i++)
2000 /* Show whether this reload already has a hard reg. */
2001 if (chain->rld[i].reg_rtx)
2003 int regno = REGNO (chain->rld[i].reg_rtx);
2004 chain->rld[i].regno = regno;
2005 chain->rld[i].nregs
2006 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2008 else
2009 chain->rld[i].regno = -1;
2010 reload_order[i] = i;
2013 n_reloads = chain->n_reloads;
2014 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2016 CLEAR_HARD_REG_SET (used_spill_regs_local);
2018 if (dump_file)
2019 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2021 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2023 /* Compute the order of preference for hard registers to spill. */
2025 order_regs_for_reload (chain);
2027 for (i = 0; i < n_reloads; i++)
2029 int r = reload_order[i];
2031 /* Ignore reloads that got marked inoperative. */
2032 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2033 && ! rld[r].optional
2034 && rld[r].regno == -1)
2035 if (! find_reg (chain, i))
2037 if (dump_file)
2038 fprintf (dump_file, "reload failure for reload %d\n", r);
2039 spill_failure (chain->insn, rld[r].rclass);
2040 failure = 1;
2041 return;
2045 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2046 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2048 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2051 static void
2052 select_reload_regs (void)
2054 struct insn_chain *chain;
2056 /* Try to satisfy the needs for each insn. */
2057 for (chain = insns_need_reload; chain != 0;
2058 chain = chain->next_need_reload)
2059 find_reload_regs (chain);
2062 /* Delete all insns that were inserted by emit_caller_save_insns during
2063 this iteration. */
2064 static void
2065 delete_caller_save_insns (void)
2067 struct insn_chain *c = reload_insn_chain;
2069 while (c != 0)
2071 while (c != 0 && c->is_caller_save_insn)
2073 struct insn_chain *next = c->next;
2074 rtx insn = c->insn;
2076 if (c == reload_insn_chain)
2077 reload_insn_chain = next;
2078 delete_insn (insn);
2080 if (next)
2081 next->prev = c->prev;
2082 if (c->prev)
2083 c->prev->next = next;
2084 c->next = unused_insn_chains;
2085 unused_insn_chains = c;
2086 c = next;
2088 if (c != 0)
2089 c = c->next;
2093 /* Handle the failure to find a register to spill.
2094 INSN should be one of the insns which needed this particular spill reg. */
2096 static void
2097 spill_failure (rtx insn, enum reg_class rclass)
2099 if (asm_noperands (PATTERN (insn)) >= 0)
2100 error_for_asm (insn, "can%'t find a register in class %qs while "
2101 "reloading %<asm%>",
2102 reg_class_names[rclass]);
2103 else
2105 error ("unable to find a register to spill in class %qs",
2106 reg_class_names[rclass]);
2108 if (dump_file)
2110 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2111 debug_reload_to_stream (dump_file);
2113 fatal_insn ("this is the insn:", insn);
2117 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2118 data that is dead in INSN. */
2120 static void
2121 delete_dead_insn (rtx insn)
2123 rtx prev = prev_active_insn (insn);
2124 rtx prev_dest;
2126 /* If the previous insn sets a register that dies in our insn, delete it
2127 too. */
2128 if (prev && GET_CODE (PATTERN (prev)) == SET
2129 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2130 && reg_mentioned_p (prev_dest, PATTERN (insn))
2131 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2132 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2133 delete_dead_insn (prev);
2135 SET_INSN_DELETED (insn);
2138 /* Modify the home of pseudo-reg I.
2139 The new home is present in reg_renumber[I].
2141 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2142 or it may be -1, meaning there is none or it is not relevant.
2143 This is used so that all pseudos spilled from a given hard reg
2144 can share one stack slot. */
2146 static void
2147 alter_reg (int i, int from_reg, bool dont_share_p)
2149 /* When outputting an inline function, this can happen
2150 for a reg that isn't actually used. */
2151 if (regno_reg_rtx[i] == 0)
2152 return;
2154 /* If the reg got changed to a MEM at rtl-generation time,
2155 ignore it. */
2156 if (!REG_P (regno_reg_rtx[i]))
2157 return;
2159 /* Modify the reg-rtx to contain the new hard reg
2160 number or else to contain its pseudo reg number. */
2161 SET_REGNO (regno_reg_rtx[i],
2162 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2164 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2165 allocate a stack slot for it. */
2167 if (reg_renumber[i] < 0
2168 && REG_N_REFS (i) > 0
2169 && reg_equiv_constant (i) == 0
2170 && (reg_equiv_invariant (i) == 0
2171 || reg_equiv_init (i) == 0)
2172 && reg_equiv_memory_loc (i) == 0)
2174 rtx x = NULL_RTX;
2175 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2176 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2177 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2178 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2179 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2180 int adjust = 0;
2182 something_was_spilled = true;
2184 if (ira_conflicts_p)
2186 /* Mark the spill for IRA. */
2187 SET_REGNO_REG_SET (&spilled_pseudos, i);
2188 if (!dont_share_p)
2189 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2192 if (x)
2195 /* Each pseudo reg has an inherent size which comes from its own mode,
2196 and a total size which provides room for paradoxical subregs
2197 which refer to the pseudo reg in wider modes.
2199 We can use a slot already allocated if it provides both
2200 enough inherent space and enough total space.
2201 Otherwise, we allocate a new slot, making sure that it has no less
2202 inherent space, and no less total space, then the previous slot. */
2203 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2205 rtx stack_slot;
2207 /* No known place to spill from => no slot to reuse. */
2208 x = assign_stack_local (mode, total_size,
2209 min_align > inherent_align
2210 || total_size > inherent_size ? -1 : 0);
2212 stack_slot = x;
2214 /* Cancel the big-endian correction done in assign_stack_local.
2215 Get the address of the beginning of the slot. This is so we
2216 can do a big-endian correction unconditionally below. */
2217 if (BYTES_BIG_ENDIAN)
2219 adjust = inherent_size - total_size;
2220 if (adjust)
2221 stack_slot
2222 = adjust_address_nv (x, mode_for_size (total_size
2223 * BITS_PER_UNIT,
2224 MODE_INT, 1),
2225 adjust);
2228 if (! dont_share_p && ira_conflicts_p)
2229 /* Inform IRA about allocation a new stack slot. */
2230 ira_mark_new_stack_slot (stack_slot, i, total_size);
2233 /* Reuse a stack slot if possible. */
2234 else if (spill_stack_slot[from_reg] != 0
2235 && spill_stack_slot_width[from_reg] >= total_size
2236 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2237 >= inherent_size)
2238 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2239 x = spill_stack_slot[from_reg];
2241 /* Allocate a bigger slot. */
2242 else
2244 /* Compute maximum size needed, both for inherent size
2245 and for total size. */
2246 rtx stack_slot;
2248 if (spill_stack_slot[from_reg])
2250 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2251 > inherent_size)
2252 mode = GET_MODE (spill_stack_slot[from_reg]);
2253 if (spill_stack_slot_width[from_reg] > total_size)
2254 total_size = spill_stack_slot_width[from_reg];
2255 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2256 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2259 /* Make a slot with that size. */
2260 x = assign_stack_local (mode, total_size,
2261 min_align > inherent_align
2262 || total_size > inherent_size ? -1 : 0);
2263 stack_slot = x;
2265 /* Cancel the big-endian correction done in assign_stack_local.
2266 Get the address of the beginning of the slot. This is so we
2267 can do a big-endian correction unconditionally below. */
2268 if (BYTES_BIG_ENDIAN)
2270 adjust = GET_MODE_SIZE (mode) - total_size;
2271 if (adjust)
2272 stack_slot
2273 = adjust_address_nv (x, mode_for_size (total_size
2274 * BITS_PER_UNIT,
2275 MODE_INT, 1),
2276 adjust);
2279 spill_stack_slot[from_reg] = stack_slot;
2280 spill_stack_slot_width[from_reg] = total_size;
2283 /* On a big endian machine, the "address" of the slot
2284 is the address of the low part that fits its inherent mode. */
2285 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2286 adjust += (total_size - inherent_size);
2288 /* If we have any adjustment to make, or if the stack slot is the
2289 wrong mode, make a new stack slot. */
2290 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2292 /* Set all of the memory attributes as appropriate for a spill. */
2293 set_mem_attrs_for_spill (x);
2295 /* Save the stack slot for later. */
2296 reg_equiv_memory_loc (i) = x;
2300 /* Mark the slots in regs_ever_live for the hard regs used by
2301 pseudo-reg number REGNO, accessed in MODE. */
2303 static void
2304 mark_home_live_1 (int regno, enum machine_mode mode)
2306 int i, lim;
2308 i = reg_renumber[regno];
2309 if (i < 0)
2310 return;
2311 lim = end_hard_regno (mode, i);
2312 while (i < lim)
2313 df_set_regs_ever_live(i++, true);
2316 /* Mark the slots in regs_ever_live for the hard regs
2317 used by pseudo-reg number REGNO. */
2319 void
2320 mark_home_live (int regno)
2322 if (reg_renumber[regno] >= 0)
2323 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2326 /* This function handles the tracking of elimination offsets around branches.
2328 X is a piece of RTL being scanned.
2330 INSN is the insn that it came from, if any.
2332 INITIAL_P is nonzero if we are to set the offset to be the initial
2333 offset and zero if we are setting the offset of the label to be the
2334 current offset. */
2336 static void
2337 set_label_offsets (rtx x, rtx insn, int initial_p)
2339 enum rtx_code code = GET_CODE (x);
2340 rtx tem;
2341 unsigned int i;
2342 struct elim_table *p;
2344 switch (code)
2346 case LABEL_REF:
2347 if (LABEL_REF_NONLOCAL_P (x))
2348 return;
2350 x = XEXP (x, 0);
2352 /* ... fall through ... */
2354 case CODE_LABEL:
2355 /* If we know nothing about this label, set the desired offsets. Note
2356 that this sets the offset at a label to be the offset before a label
2357 if we don't know anything about the label. This is not correct for
2358 the label after a BARRIER, but is the best guess we can make. If
2359 we guessed wrong, we will suppress an elimination that might have
2360 been possible had we been able to guess correctly. */
2362 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2364 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2365 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2366 = (initial_p ? reg_eliminate[i].initial_offset
2367 : reg_eliminate[i].offset);
2368 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2371 /* Otherwise, if this is the definition of a label and it is
2372 preceded by a BARRIER, set our offsets to the known offset of
2373 that label. */
2375 else if (x == insn
2376 && (tem = prev_nonnote_insn (insn)) != 0
2377 && BARRIER_P (tem))
2378 set_offsets_for_label (insn);
2379 else
2380 /* If neither of the above cases is true, compare each offset
2381 with those previously recorded and suppress any eliminations
2382 where the offsets disagree. */
2384 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2385 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2386 != (initial_p ? reg_eliminate[i].initial_offset
2387 : reg_eliminate[i].offset))
2388 reg_eliminate[i].can_eliminate = 0;
2390 return;
2392 case JUMP_INSN:
2393 set_label_offsets (PATTERN (insn), insn, initial_p);
2395 /* ... fall through ... */
2397 case INSN:
2398 case CALL_INSN:
2399 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2400 to indirectly and hence must have all eliminations at their
2401 initial offsets. */
2402 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2403 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2404 set_label_offsets (XEXP (tem, 0), insn, 1);
2405 return;
2407 case PARALLEL:
2408 case ADDR_VEC:
2409 case ADDR_DIFF_VEC:
2410 /* Each of the labels in the parallel or address vector must be
2411 at their initial offsets. We want the first field for PARALLEL
2412 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2414 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2415 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2416 insn, initial_p);
2417 return;
2419 case SET:
2420 /* We only care about setting PC. If the source is not RETURN,
2421 IF_THEN_ELSE, or a label, disable any eliminations not at
2422 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2423 isn't one of those possibilities. For branches to a label,
2424 call ourselves recursively.
2426 Note that this can disable elimination unnecessarily when we have
2427 a non-local goto since it will look like a non-constant jump to
2428 someplace in the current function. This isn't a significant
2429 problem since such jumps will normally be when all elimination
2430 pairs are back to their initial offsets. */
2432 if (SET_DEST (x) != pc_rtx)
2433 return;
2435 switch (GET_CODE (SET_SRC (x)))
2437 case PC:
2438 case RETURN:
2439 return;
2441 case LABEL_REF:
2442 set_label_offsets (SET_SRC (x), insn, initial_p);
2443 return;
2445 case IF_THEN_ELSE:
2446 tem = XEXP (SET_SRC (x), 1);
2447 if (GET_CODE (tem) == LABEL_REF)
2448 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2449 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2450 break;
2452 tem = XEXP (SET_SRC (x), 2);
2453 if (GET_CODE (tem) == LABEL_REF)
2454 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2455 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2456 break;
2457 return;
2459 default:
2460 break;
2463 /* If we reach here, all eliminations must be at their initial
2464 offset because we are doing a jump to a variable address. */
2465 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2466 if (p->offset != p->initial_offset)
2467 p->can_eliminate = 0;
2468 break;
2470 default:
2471 break;
2475 /* Called through for_each_rtx, this function examines every reg that occurs
2476 in PX and adjusts the costs for its elimination which are gathered by IRA.
2477 DATA is the insn in which PX occurs. We do not recurse into MEM
2478 expressions. */
2480 static int
2481 note_reg_elim_costly (rtx *px, void *data)
2483 rtx insn = (rtx)data;
2484 rtx x = *px;
2486 if (MEM_P (x))
2487 return -1;
2489 if (REG_P (x)
2490 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2491 && reg_equiv_init (REGNO (x))
2492 && reg_equiv_invariant (REGNO (x)))
2494 rtx t = reg_equiv_invariant (REGNO (x));
2495 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2496 int cost = rtx_cost (new_rtx, SET, optimize_bb_for_speed_p (elim_bb));
2497 int freq = REG_FREQ_FROM_BB (elim_bb);
2499 if (cost != 0)
2500 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2502 return 0;
2505 /* Scan X and replace any eliminable registers (such as fp) with a
2506 replacement (such as sp), plus an offset.
2508 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2509 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2510 MEM, we are allowed to replace a sum of a register and the constant zero
2511 with the register, which we cannot do outside a MEM. In addition, we need
2512 to record the fact that a register is referenced outside a MEM.
2514 If INSN is an insn, it is the insn containing X. If we replace a REG
2515 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2516 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2517 the REG is being modified.
2519 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2520 That's used when we eliminate in expressions stored in notes.
2521 This means, do not set ref_outside_mem even if the reference
2522 is outside of MEMs.
2524 If FOR_COSTS is true, we are being called before reload in order to
2525 estimate the costs of keeping registers with an equivalence unallocated.
2527 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2528 replacements done assuming all offsets are at their initial values. If
2529 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2530 encounter, return the actual location so that find_reloads will do
2531 the proper thing. */
2533 static rtx
2534 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2535 bool may_use_invariant, bool for_costs)
2537 enum rtx_code code = GET_CODE (x);
2538 struct elim_table *ep;
2539 int regno;
2540 rtx new_rtx;
2541 int i, j;
2542 const char *fmt;
2543 int copied = 0;
2545 if (! current_function_decl)
2546 return x;
2548 switch (code)
2550 case CONST_INT:
2551 case CONST_DOUBLE:
2552 case CONST_FIXED:
2553 case CONST_VECTOR:
2554 case CONST:
2555 case SYMBOL_REF:
2556 case CODE_LABEL:
2557 case PC:
2558 case CC0:
2559 case ASM_INPUT:
2560 case ADDR_VEC:
2561 case ADDR_DIFF_VEC:
2562 case RETURN:
2563 return x;
2565 case REG:
2566 regno = REGNO (x);
2568 /* First handle the case where we encounter a bare register that
2569 is eliminable. Replace it with a PLUS. */
2570 if (regno < FIRST_PSEUDO_REGISTER)
2572 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2573 ep++)
2574 if (ep->from_rtx == x && ep->can_eliminate)
2575 return plus_constant (ep->to_rtx, ep->previous_offset);
2578 else if (reg_renumber && reg_renumber[regno] < 0
2579 && reg_equivs
2580 && reg_equiv_invariant (regno))
2582 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2583 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2584 mem_mode, insn, true, for_costs);
2585 /* There exists at least one use of REGNO that cannot be
2586 eliminated. Prevent the defining insn from being deleted. */
2587 reg_equiv_init (regno) = NULL_RTX;
2588 if (!for_costs)
2589 alter_reg (regno, -1, true);
2591 return x;
2593 /* You might think handling MINUS in a manner similar to PLUS is a
2594 good idea. It is not. It has been tried multiple times and every
2595 time the change has had to have been reverted.
2597 Other parts of reload know a PLUS is special (gen_reload for example)
2598 and require special code to handle code a reloaded PLUS operand.
2600 Also consider backends where the flags register is clobbered by a
2601 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2602 lea instruction comes to mind). If we try to reload a MINUS, we
2603 may kill the flags register that was holding a useful value.
2605 So, please before trying to handle MINUS, consider reload as a
2606 whole instead of this little section as well as the backend issues. */
2607 case PLUS:
2608 /* If this is the sum of an eliminable register and a constant, rework
2609 the sum. */
2610 if (REG_P (XEXP (x, 0))
2611 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2612 && CONSTANT_P (XEXP (x, 1)))
2614 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2615 ep++)
2616 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2618 /* The only time we want to replace a PLUS with a REG (this
2619 occurs when the constant operand of the PLUS is the negative
2620 of the offset) is when we are inside a MEM. We won't want
2621 to do so at other times because that would change the
2622 structure of the insn in a way that reload can't handle.
2623 We special-case the commonest situation in
2624 eliminate_regs_in_insn, so just replace a PLUS with a
2625 PLUS here, unless inside a MEM. */
2626 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2627 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2628 return ep->to_rtx;
2629 else
2630 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2631 plus_constant (XEXP (x, 1),
2632 ep->previous_offset));
2635 /* If the register is not eliminable, we are done since the other
2636 operand is a constant. */
2637 return x;
2640 /* If this is part of an address, we want to bring any constant to the
2641 outermost PLUS. We will do this by doing register replacement in
2642 our operands and seeing if a constant shows up in one of them.
2644 Note that there is no risk of modifying the structure of the insn,
2645 since we only get called for its operands, thus we are either
2646 modifying the address inside a MEM, or something like an address
2647 operand of a load-address insn. */
2650 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2651 for_costs);
2652 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2653 for_costs);
2655 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2657 /* If one side is a PLUS and the other side is a pseudo that
2658 didn't get a hard register but has a reg_equiv_constant,
2659 we must replace the constant here since it may no longer
2660 be in the position of any operand. */
2661 if (GET_CODE (new0) == PLUS && REG_P (new1)
2662 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2663 && reg_renumber[REGNO (new1)] < 0
2664 && reg_equivs
2665 && reg_equiv_constant (REGNO (new1)) != 0)
2666 new1 = reg_equiv_constant (REGNO (new1));
2667 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2668 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2669 && reg_renumber[REGNO (new0)] < 0
2670 && reg_equiv_constant (REGNO (new0)) != 0)
2671 new0 = reg_equiv_constant (REGNO (new0));
2673 new_rtx = form_sum (GET_MODE (x), new0, new1);
2675 /* As above, if we are not inside a MEM we do not want to
2676 turn a PLUS into something else. We might try to do so here
2677 for an addition of 0 if we aren't optimizing. */
2678 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2679 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2680 else
2681 return new_rtx;
2684 return x;
2686 case MULT:
2687 /* If this is the product of an eliminable register and a
2688 constant, apply the distribute law and move the constant out
2689 so that we have (plus (mult ..) ..). This is needed in order
2690 to keep load-address insns valid. This case is pathological.
2691 We ignore the possibility of overflow here. */
2692 if (REG_P (XEXP (x, 0))
2693 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2694 && CONST_INT_P (XEXP (x, 1)))
2695 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2696 ep++)
2697 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2699 if (! mem_mode
2700 /* Refs inside notes or in DEBUG_INSNs don't count for
2701 this purpose. */
2702 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2703 || GET_CODE (insn) == INSN_LIST
2704 || DEBUG_INSN_P (insn))))
2705 ep->ref_outside_mem = 1;
2707 return
2708 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2709 ep->previous_offset * INTVAL (XEXP (x, 1)));
2712 /* ... fall through ... */
2714 case CALL:
2715 case COMPARE:
2716 /* See comments before PLUS about handling MINUS. */
2717 case MINUS:
2718 case DIV: case UDIV:
2719 case MOD: case UMOD:
2720 case AND: case IOR: case XOR:
2721 case ROTATERT: case ROTATE:
2722 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2723 case NE: case EQ:
2724 case GE: case GT: case GEU: case GTU:
2725 case LE: case LT: case LEU: case LTU:
2727 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2728 for_costs);
2729 rtx new1 = XEXP (x, 1)
2730 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2731 for_costs) : 0;
2733 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2734 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2736 return x;
2738 case EXPR_LIST:
2739 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2740 if (XEXP (x, 0))
2742 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2743 for_costs);
2744 if (new_rtx != XEXP (x, 0))
2746 /* If this is a REG_DEAD note, it is not valid anymore.
2747 Using the eliminated version could result in creating a
2748 REG_DEAD note for the stack or frame pointer. */
2749 if (REG_NOTE_KIND (x) == REG_DEAD)
2750 return (XEXP (x, 1)
2751 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2752 for_costs)
2753 : NULL_RTX);
2755 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2759 /* ... fall through ... */
2761 case INSN_LIST:
2762 /* Now do eliminations in the rest of the chain. If this was
2763 an EXPR_LIST, this might result in allocating more memory than is
2764 strictly needed, but it simplifies the code. */
2765 if (XEXP (x, 1))
2767 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2768 for_costs);
2769 if (new_rtx != XEXP (x, 1))
2770 return
2771 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2773 return x;
2775 case PRE_INC:
2776 case POST_INC:
2777 case PRE_DEC:
2778 case POST_DEC:
2779 /* We do not support elimination of a register that is modified.
2780 elimination_effects has already make sure that this does not
2781 happen. */
2782 return x;
2784 case PRE_MODIFY:
2785 case POST_MODIFY:
2786 /* We do not support elimination of a register that is modified.
2787 elimination_effects has already make sure that this does not
2788 happen. The only remaining case we need to consider here is
2789 that the increment value may be an eliminable register. */
2790 if (GET_CODE (XEXP (x, 1)) == PLUS
2791 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2793 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2794 insn, true, for_costs);
2796 if (new_rtx != XEXP (XEXP (x, 1), 1))
2797 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2798 gen_rtx_PLUS (GET_MODE (x),
2799 XEXP (x, 0), new_rtx));
2801 return x;
2803 case STRICT_LOW_PART:
2804 case NEG: case NOT:
2805 case SIGN_EXTEND: case ZERO_EXTEND:
2806 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2807 case FLOAT: case FIX:
2808 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2809 case ABS:
2810 case SQRT:
2811 case FFS:
2812 case CLZ:
2813 case CTZ:
2814 case POPCOUNT:
2815 case PARITY:
2816 case BSWAP:
2817 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2818 for_costs);
2819 if (new_rtx != XEXP (x, 0))
2820 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2821 return x;
2823 case SUBREG:
2824 /* Similar to above processing, but preserve SUBREG_BYTE.
2825 Convert (subreg (mem)) to (mem) if not paradoxical.
2826 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2827 pseudo didn't get a hard reg, we must replace this with the
2828 eliminated version of the memory location because push_reload
2829 may do the replacement in certain circumstances. */
2830 if (REG_P (SUBREG_REG (x))
2831 && (GET_MODE_SIZE (GET_MODE (x))
2832 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2833 && reg_equivs
2834 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2836 new_rtx = SUBREG_REG (x);
2838 else
2839 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2841 if (new_rtx != SUBREG_REG (x))
2843 int x_size = GET_MODE_SIZE (GET_MODE (x));
2844 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2846 if (MEM_P (new_rtx)
2847 && ((x_size < new_size
2848 #ifdef WORD_REGISTER_OPERATIONS
2849 /* On these machines, combine can create rtl of the form
2850 (set (subreg:m1 (reg:m2 R) 0) ...)
2851 where m1 < m2, and expects something interesting to
2852 happen to the entire word. Moreover, it will use the
2853 (reg:m2 R) later, expecting all bits to be preserved.
2854 So if the number of words is the same, preserve the
2855 subreg so that push_reload can see it. */
2856 && ! ((x_size - 1) / UNITS_PER_WORD
2857 == (new_size -1 ) / UNITS_PER_WORD)
2858 #endif
2860 || x_size == new_size)
2862 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2863 else
2864 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2867 return x;
2869 case MEM:
2870 /* Our only special processing is to pass the mode of the MEM to our
2871 recursive call and copy the flags. While we are here, handle this
2872 case more efficiently. */
2874 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2875 for_costs);
2876 if (for_costs
2877 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2878 && !memory_address_p (GET_MODE (x), new_rtx))
2879 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2881 return replace_equiv_address_nv (x, new_rtx);
2883 case USE:
2884 /* Handle insn_list USE that a call to a pure function may generate. */
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2886 for_costs);
2887 if (new_rtx != XEXP (x, 0))
2888 return gen_rtx_USE (GET_MODE (x), new_rtx);
2889 return x;
2891 case CLOBBER:
2892 case ASM_OPERANDS:
2893 gcc_assert (insn && DEBUG_INSN_P (insn));
2894 break;
2896 case SET:
2897 gcc_unreachable ();
2899 default:
2900 break;
2903 /* Process each of our operands recursively. If any have changed, make a
2904 copy of the rtx. */
2905 fmt = GET_RTX_FORMAT (code);
2906 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2908 if (*fmt == 'e')
2910 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2911 for_costs);
2912 if (new_rtx != XEXP (x, i) && ! copied)
2914 x = shallow_copy_rtx (x);
2915 copied = 1;
2917 XEXP (x, i) = new_rtx;
2919 else if (*fmt == 'E')
2921 int copied_vec = 0;
2922 for (j = 0; j < XVECLEN (x, i); j++)
2924 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2925 for_costs);
2926 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2928 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2929 XVEC (x, i)->elem);
2930 if (! copied)
2932 x = shallow_copy_rtx (x);
2933 copied = 1;
2935 XVEC (x, i) = new_v;
2936 copied_vec = 1;
2938 XVECEXP (x, i, j) = new_rtx;
2943 return x;
2947 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2949 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2952 /* Scan rtx X for modifications of elimination target registers. Update
2953 the table of eliminables to reflect the changed state. MEM_MODE is
2954 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2956 static void
2957 elimination_effects (rtx x, enum machine_mode mem_mode)
2959 enum rtx_code code = GET_CODE (x);
2960 struct elim_table *ep;
2961 int regno;
2962 int i, j;
2963 const char *fmt;
2965 switch (code)
2967 case CONST_INT:
2968 case CONST_DOUBLE:
2969 case CONST_FIXED:
2970 case CONST_VECTOR:
2971 case CONST:
2972 case SYMBOL_REF:
2973 case CODE_LABEL:
2974 case PC:
2975 case CC0:
2976 case ASM_INPUT:
2977 case ADDR_VEC:
2978 case ADDR_DIFF_VEC:
2979 case RETURN:
2980 return;
2982 case REG:
2983 regno = REGNO (x);
2985 /* First handle the case where we encounter a bare register that
2986 is eliminable. Replace it with a PLUS. */
2987 if (regno < FIRST_PSEUDO_REGISTER)
2989 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2990 ep++)
2991 if (ep->from_rtx == x && ep->can_eliminate)
2993 if (! mem_mode)
2994 ep->ref_outside_mem = 1;
2995 return;
2999 else if (reg_renumber[regno] < 0
3000 && reg_equivs != 0
3001 && reg_equiv_constant (regno)
3002 && ! function_invariant_p (reg_equiv_constant (regno)))
3003 elimination_effects (reg_equiv_constant (regno), mem_mode);
3004 return;
3006 case PRE_INC:
3007 case POST_INC:
3008 case PRE_DEC:
3009 case POST_DEC:
3010 case POST_MODIFY:
3011 case PRE_MODIFY:
3012 /* If we modify the source of an elimination rule, disable it. */
3013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3014 if (ep->from_rtx == XEXP (x, 0))
3015 ep->can_eliminate = 0;
3017 /* If we modify the target of an elimination rule by adding a constant,
3018 update its offset. If we modify the target in any other way, we'll
3019 have to disable the rule as well. */
3020 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3021 if (ep->to_rtx == XEXP (x, 0))
3023 int size = GET_MODE_SIZE (mem_mode);
3025 /* If more bytes than MEM_MODE are pushed, account for them. */
3026 #ifdef PUSH_ROUNDING
3027 if (ep->to_rtx == stack_pointer_rtx)
3028 size = PUSH_ROUNDING (size);
3029 #endif
3030 if (code == PRE_DEC || code == POST_DEC)
3031 ep->offset += size;
3032 else if (code == PRE_INC || code == POST_INC)
3033 ep->offset -= size;
3034 else if (code == PRE_MODIFY || code == POST_MODIFY)
3036 if (GET_CODE (XEXP (x, 1)) == PLUS
3037 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3038 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3039 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3040 else
3041 ep->can_eliminate = 0;
3045 /* These two aren't unary operators. */
3046 if (code == POST_MODIFY || code == PRE_MODIFY)
3047 break;
3049 /* Fall through to generic unary operation case. */
3050 case STRICT_LOW_PART:
3051 case NEG: case NOT:
3052 case SIGN_EXTEND: case ZERO_EXTEND:
3053 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3054 case FLOAT: case FIX:
3055 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3056 case ABS:
3057 case SQRT:
3058 case FFS:
3059 case CLZ:
3060 case CTZ:
3061 case POPCOUNT:
3062 case PARITY:
3063 case BSWAP:
3064 elimination_effects (XEXP (x, 0), mem_mode);
3065 return;
3067 case SUBREG:
3068 if (REG_P (SUBREG_REG (x))
3069 && (GET_MODE_SIZE (GET_MODE (x))
3070 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3071 && reg_equivs != 0
3072 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3073 return;
3075 elimination_effects (SUBREG_REG (x), mem_mode);
3076 return;
3078 case USE:
3079 /* If using a register that is the source of an eliminate we still
3080 think can be performed, note it cannot be performed since we don't
3081 know how this register is used. */
3082 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3083 if (ep->from_rtx == XEXP (x, 0))
3084 ep->can_eliminate = 0;
3086 elimination_effects (XEXP (x, 0), mem_mode);
3087 return;
3089 case CLOBBER:
3090 /* If clobbering a register that is the replacement register for an
3091 elimination we still think can be performed, note that it cannot
3092 be performed. Otherwise, we need not be concerned about it. */
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3094 if (ep->to_rtx == XEXP (x, 0))
3095 ep->can_eliminate = 0;
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3100 case SET:
3101 /* Check for setting a register that we know about. */
3102 if (REG_P (SET_DEST (x)))
3104 /* See if this is setting the replacement register for an
3105 elimination.
3107 If DEST is the hard frame pointer, we do nothing because we
3108 assume that all assignments to the frame pointer are for
3109 non-local gotos and are being done at a time when they are valid
3110 and do not disturb anything else. Some machines want to
3111 eliminate a fake argument pointer (or even a fake frame pointer)
3112 with either the real frame or the stack pointer. Assignments to
3113 the hard frame pointer must not prevent this elimination. */
3115 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3116 ep++)
3117 if (ep->to_rtx == SET_DEST (x)
3118 && SET_DEST (x) != hard_frame_pointer_rtx)
3120 /* If it is being incremented, adjust the offset. Otherwise,
3121 this elimination can't be done. */
3122 rtx src = SET_SRC (x);
3124 if (GET_CODE (src) == PLUS
3125 && XEXP (src, 0) == SET_DEST (x)
3126 && CONST_INT_P (XEXP (src, 1)))
3127 ep->offset -= INTVAL (XEXP (src, 1));
3128 else
3129 ep->can_eliminate = 0;
3133 elimination_effects (SET_DEST (x), VOIDmode);
3134 elimination_effects (SET_SRC (x), VOIDmode);
3135 return;
3137 case MEM:
3138 /* Our only special processing is to pass the mode of the MEM to our
3139 recursive call. */
3140 elimination_effects (XEXP (x, 0), GET_MODE (x));
3141 return;
3143 default:
3144 break;
3147 fmt = GET_RTX_FORMAT (code);
3148 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3150 if (*fmt == 'e')
3151 elimination_effects (XEXP (x, i), mem_mode);
3152 else if (*fmt == 'E')
3153 for (j = 0; j < XVECLEN (x, i); j++)
3154 elimination_effects (XVECEXP (x, i, j), mem_mode);
3158 /* Descend through rtx X and verify that no references to eliminable registers
3159 remain. If any do remain, mark the involved register as not
3160 eliminable. */
3162 static void
3163 check_eliminable_occurrences (rtx x)
3165 const char *fmt;
3166 int i;
3167 enum rtx_code code;
3169 if (x == 0)
3170 return;
3172 code = GET_CODE (x);
3174 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3176 struct elim_table *ep;
3178 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3179 if (ep->from_rtx == x)
3180 ep->can_eliminate = 0;
3181 return;
3184 fmt = GET_RTX_FORMAT (code);
3185 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3187 if (*fmt == 'e')
3188 check_eliminable_occurrences (XEXP (x, i));
3189 else if (*fmt == 'E')
3191 int j;
3192 for (j = 0; j < XVECLEN (x, i); j++)
3193 check_eliminable_occurrences (XVECEXP (x, i, j));
3198 /* Scan INSN and eliminate all eliminable registers in it.
3200 If REPLACE is nonzero, do the replacement destructively. Also
3201 delete the insn as dead it if it is setting an eliminable register.
3203 If REPLACE is zero, do all our allocations in reload_obstack.
3205 If no eliminations were done and this insn doesn't require any elimination
3206 processing (these are not identical conditions: it might be updating sp,
3207 but not referencing fp; this needs to be seen during reload_as_needed so
3208 that the offset between fp and sp can be taken into consideration), zero
3209 is returned. Otherwise, 1 is returned. */
3211 static int
3212 eliminate_regs_in_insn (rtx insn, int replace)
3214 int icode = recog_memoized (insn);
3215 rtx old_body = PATTERN (insn);
3216 int insn_is_asm = asm_noperands (old_body) >= 0;
3217 rtx old_set = single_set (insn);
3218 rtx new_body;
3219 int val = 0;
3220 int i;
3221 rtx substed_operand[MAX_RECOG_OPERANDS];
3222 rtx orig_operand[MAX_RECOG_OPERANDS];
3223 struct elim_table *ep;
3224 rtx plus_src, plus_cst_src;
3226 if (! insn_is_asm && icode < 0)
3228 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3229 || GET_CODE (PATTERN (insn)) == CLOBBER
3230 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3231 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3232 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3233 || DEBUG_INSN_P (insn));
3234 if (DEBUG_INSN_P (insn))
3235 INSN_VAR_LOCATION_LOC (insn)
3236 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3237 return 0;
3240 if (old_set != 0 && REG_P (SET_DEST (old_set))
3241 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3243 /* Check for setting an eliminable register. */
3244 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3245 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3247 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3248 /* If this is setting the frame pointer register to the
3249 hardware frame pointer register and this is an elimination
3250 that will be done (tested above), this insn is really
3251 adjusting the frame pointer downward to compensate for
3252 the adjustment done before a nonlocal goto. */
3253 if (ep->from == FRAME_POINTER_REGNUM
3254 && ep->to == HARD_FRAME_POINTER_REGNUM)
3256 rtx base = SET_SRC (old_set);
3257 rtx base_insn = insn;
3258 HOST_WIDE_INT offset = 0;
3260 while (base != ep->to_rtx)
3262 rtx prev_insn, prev_set;
3264 if (GET_CODE (base) == PLUS
3265 && CONST_INT_P (XEXP (base, 1)))
3267 offset += INTVAL (XEXP (base, 1));
3268 base = XEXP (base, 0);
3270 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3271 && (prev_set = single_set (prev_insn)) != 0
3272 && rtx_equal_p (SET_DEST (prev_set), base))
3274 base = SET_SRC (prev_set);
3275 base_insn = prev_insn;
3277 else
3278 break;
3281 if (base == ep->to_rtx)
3283 rtx src
3284 = plus_constant (ep->to_rtx, offset - ep->offset);
3286 new_body = old_body;
3287 if (! replace)
3289 new_body = copy_insn (old_body);
3290 if (REG_NOTES (insn))
3291 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3293 PATTERN (insn) = new_body;
3294 old_set = single_set (insn);
3296 /* First see if this insn remains valid when we
3297 make the change. If not, keep the INSN_CODE
3298 the same and let reload fit it up. */
3299 validate_change (insn, &SET_SRC (old_set), src, 1);
3300 validate_change (insn, &SET_DEST (old_set),
3301 ep->to_rtx, 1);
3302 if (! apply_change_group ())
3304 SET_SRC (old_set) = src;
3305 SET_DEST (old_set) = ep->to_rtx;
3308 val = 1;
3309 goto done;
3312 #endif
3314 /* In this case this insn isn't serving a useful purpose. We
3315 will delete it in reload_as_needed once we know that this
3316 elimination is, in fact, being done.
3318 If REPLACE isn't set, we can't delete this insn, but needn't
3319 process it since it won't be used unless something changes. */
3320 if (replace)
3322 delete_dead_insn (insn);
3323 return 1;
3325 val = 1;
3326 goto done;
3330 /* We allow one special case which happens to work on all machines we
3331 currently support: a single set with the source or a REG_EQUAL
3332 note being a PLUS of an eliminable register and a constant. */
3333 plus_src = plus_cst_src = 0;
3334 if (old_set && REG_P (SET_DEST (old_set)))
3336 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3337 plus_src = SET_SRC (old_set);
3338 /* First see if the source is of the form (plus (...) CST). */
3339 if (plus_src
3340 && CONST_INT_P (XEXP (plus_src, 1)))
3341 plus_cst_src = plus_src;
3342 else if (REG_P (SET_SRC (old_set))
3343 || plus_src)
3345 /* Otherwise, see if we have a REG_EQUAL note of the form
3346 (plus (...) CST). */
3347 rtx links;
3348 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3350 if ((REG_NOTE_KIND (links) == REG_EQUAL
3351 || REG_NOTE_KIND (links) == REG_EQUIV)
3352 && GET_CODE (XEXP (links, 0)) == PLUS
3353 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3355 plus_cst_src = XEXP (links, 0);
3356 break;
3361 /* Check that the first operand of the PLUS is a hard reg or
3362 the lowpart subreg of one. */
3363 if (plus_cst_src)
3365 rtx reg = XEXP (plus_cst_src, 0);
3366 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3367 reg = SUBREG_REG (reg);
3369 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3370 plus_cst_src = 0;
3373 if (plus_cst_src)
3375 rtx reg = XEXP (plus_cst_src, 0);
3376 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3378 if (GET_CODE (reg) == SUBREG)
3379 reg = SUBREG_REG (reg);
3381 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3382 if (ep->from_rtx == reg && ep->can_eliminate)
3384 rtx to_rtx = ep->to_rtx;
3385 offset += ep->offset;
3386 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3388 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3389 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3390 to_rtx);
3391 /* If we have a nonzero offset, and the source is already
3392 a simple REG, the following transformation would
3393 increase the cost of the insn by replacing a simple REG
3394 with (plus (reg sp) CST). So try only when we already
3395 had a PLUS before. */
3396 if (offset == 0 || plus_src)
3398 rtx new_src = plus_constant (to_rtx, offset);
3400 new_body = old_body;
3401 if (! replace)
3403 new_body = copy_insn (old_body);
3404 if (REG_NOTES (insn))
3405 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3407 PATTERN (insn) = new_body;
3408 old_set = single_set (insn);
3410 /* First see if this insn remains valid when we make the
3411 change. If not, try to replace the whole pattern with
3412 a simple set (this may help if the original insn was a
3413 PARALLEL that was only recognized as single_set due to
3414 REG_UNUSED notes). If this isn't valid either, keep
3415 the INSN_CODE the same and let reload fix it up. */
3416 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3418 rtx new_pat = gen_rtx_SET (VOIDmode,
3419 SET_DEST (old_set), new_src);
3421 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3422 SET_SRC (old_set) = new_src;
3425 else
3426 break;
3428 val = 1;
3429 /* This can't have an effect on elimination offsets, so skip right
3430 to the end. */
3431 goto done;
3435 /* Determine the effects of this insn on elimination offsets. */
3436 elimination_effects (old_body, VOIDmode);
3438 /* Eliminate all eliminable registers occurring in operands that
3439 can be handled by reload. */
3440 extract_insn (insn);
3441 for (i = 0; i < recog_data.n_operands; i++)
3443 orig_operand[i] = recog_data.operand[i];
3444 substed_operand[i] = recog_data.operand[i];
3446 /* For an asm statement, every operand is eliminable. */
3447 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3449 bool is_set_src, in_plus;
3451 /* Check for setting a register that we know about. */
3452 if (recog_data.operand_type[i] != OP_IN
3453 && REG_P (orig_operand[i]))
3455 /* If we are assigning to a register that can be eliminated, it
3456 must be as part of a PARALLEL, since the code above handles
3457 single SETs. We must indicate that we can no longer
3458 eliminate this reg. */
3459 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3460 ep++)
3461 if (ep->from_rtx == orig_operand[i])
3462 ep->can_eliminate = 0;
3465 /* Companion to the above plus substitution, we can allow
3466 invariants as the source of a plain move. */
3467 is_set_src = false;
3468 if (old_set
3469 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3470 is_set_src = true;
3471 in_plus = false;
3472 if (plus_src
3473 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3474 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3475 in_plus = true;
3477 substed_operand[i]
3478 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3479 replace ? insn : NULL_RTX,
3480 is_set_src || in_plus, false);
3481 if (substed_operand[i] != orig_operand[i])
3482 val = 1;
3483 /* Terminate the search in check_eliminable_occurrences at
3484 this point. */
3485 *recog_data.operand_loc[i] = 0;
3487 /* If an output operand changed from a REG to a MEM and INSN is an
3488 insn, write a CLOBBER insn. */
3489 if (recog_data.operand_type[i] != OP_IN
3490 && REG_P (orig_operand[i])
3491 && MEM_P (substed_operand[i])
3492 && replace)
3493 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3497 for (i = 0; i < recog_data.n_dups; i++)
3498 *recog_data.dup_loc[i]
3499 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3501 /* If any eliminable remain, they aren't eliminable anymore. */
3502 check_eliminable_occurrences (old_body);
3504 /* Substitute the operands; the new values are in the substed_operand
3505 array. */
3506 for (i = 0; i < recog_data.n_operands; i++)
3507 *recog_data.operand_loc[i] = substed_operand[i];
3508 for (i = 0; i < recog_data.n_dups; i++)
3509 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3511 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3512 re-recognize the insn. We do this in case we had a simple addition
3513 but now can do this as a load-address. This saves an insn in this
3514 common case.
3515 If re-recognition fails, the old insn code number will still be used,
3516 and some register operands may have changed into PLUS expressions.
3517 These will be handled by find_reloads by loading them into a register
3518 again. */
3520 if (val)
3522 /* If we aren't replacing things permanently and we changed something,
3523 make another copy to ensure that all the RTL is new. Otherwise
3524 things can go wrong if find_reload swaps commutative operands
3525 and one is inside RTL that has been copied while the other is not. */
3526 new_body = old_body;
3527 if (! replace)
3529 new_body = copy_insn (old_body);
3530 if (REG_NOTES (insn))
3531 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3533 PATTERN (insn) = new_body;
3535 /* If we had a move insn but now we don't, rerecognize it. This will
3536 cause spurious re-recognition if the old move had a PARALLEL since
3537 the new one still will, but we can't call single_set without
3538 having put NEW_BODY into the insn and the re-recognition won't
3539 hurt in this rare case. */
3540 /* ??? Why this huge if statement - why don't we just rerecognize the
3541 thing always? */
3542 if (! insn_is_asm
3543 && old_set != 0
3544 && ((REG_P (SET_SRC (old_set))
3545 && (GET_CODE (new_body) != SET
3546 || !REG_P (SET_SRC (new_body))))
3547 /* If this was a load from or store to memory, compare
3548 the MEM in recog_data.operand to the one in the insn.
3549 If they are not equal, then rerecognize the insn. */
3550 || (old_set != 0
3551 && ((MEM_P (SET_SRC (old_set))
3552 && SET_SRC (old_set) != recog_data.operand[1])
3553 || (MEM_P (SET_DEST (old_set))
3554 && SET_DEST (old_set) != recog_data.operand[0])))
3555 /* If this was an add insn before, rerecognize. */
3556 || GET_CODE (SET_SRC (old_set)) == PLUS))
3558 int new_icode = recog (PATTERN (insn), insn, 0);
3559 if (new_icode >= 0)
3560 INSN_CODE (insn) = new_icode;
3564 /* Restore the old body. If there were any changes to it, we made a copy
3565 of it while the changes were still in place, so we'll correctly return
3566 a modified insn below. */
3567 if (! replace)
3569 /* Restore the old body. */
3570 for (i = 0; i < recog_data.n_operands; i++)
3571 /* Restoring a top-level match_parallel would clobber the new_body
3572 we installed in the insn. */
3573 if (recog_data.operand_loc[i] != &PATTERN (insn))
3574 *recog_data.operand_loc[i] = orig_operand[i];
3575 for (i = 0; i < recog_data.n_dups; i++)
3576 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3579 /* Update all elimination pairs to reflect the status after the current
3580 insn. The changes we make were determined by the earlier call to
3581 elimination_effects.
3583 We also detect cases where register elimination cannot be done,
3584 namely, if a register would be both changed and referenced outside a MEM
3585 in the resulting insn since such an insn is often undefined and, even if
3586 not, we cannot know what meaning will be given to it. Note that it is
3587 valid to have a register used in an address in an insn that changes it
3588 (presumably with a pre- or post-increment or decrement).
3590 If anything changes, return nonzero. */
3592 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3594 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3595 ep->can_eliminate = 0;
3597 ep->ref_outside_mem = 0;
3599 if (ep->previous_offset != ep->offset)
3600 val = 1;
3603 done:
3604 /* If we changed something, perform elimination in REG_NOTES. This is
3605 needed even when REPLACE is zero because a REG_DEAD note might refer
3606 to a register that we eliminate and could cause a different number
3607 of spill registers to be needed in the final reload pass than in
3608 the pre-passes. */
3609 if (val && REG_NOTES (insn) != 0)
3610 REG_NOTES (insn)
3611 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3612 false);
3614 return val;
3617 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3618 register allocator. INSN is the instruction we need to examine, we perform
3619 eliminations in its operands and record cases where eliminating a reg with
3620 an invariant equivalence would add extra cost. */
3622 static void
3623 elimination_costs_in_insn (rtx insn)
3625 int icode = recog_memoized (insn);
3626 rtx old_body = PATTERN (insn);
3627 int insn_is_asm = asm_noperands (old_body) >= 0;
3628 rtx old_set = single_set (insn);
3629 int i;
3630 rtx orig_operand[MAX_RECOG_OPERANDS];
3631 rtx orig_dup[MAX_RECOG_OPERANDS];
3632 struct elim_table *ep;
3633 rtx plus_src, plus_cst_src;
3634 bool sets_reg_p;
3636 if (! insn_is_asm && icode < 0)
3638 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3639 || GET_CODE (PATTERN (insn)) == CLOBBER
3640 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3641 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3642 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3643 || DEBUG_INSN_P (insn));
3644 return;
3647 if (old_set != 0 && REG_P (SET_DEST (old_set))
3648 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3650 /* Check for setting an eliminable register. */
3651 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3652 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3653 return;
3656 /* We allow one special case which happens to work on all machines we
3657 currently support: a single set with the source or a REG_EQUAL
3658 note being a PLUS of an eliminable register and a constant. */
3659 plus_src = plus_cst_src = 0;
3660 sets_reg_p = false;
3661 if (old_set && REG_P (SET_DEST (old_set)))
3663 sets_reg_p = true;
3664 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3665 plus_src = SET_SRC (old_set);
3666 /* First see if the source is of the form (plus (...) CST). */
3667 if (plus_src
3668 && CONST_INT_P (XEXP (plus_src, 1)))
3669 plus_cst_src = plus_src;
3670 else if (REG_P (SET_SRC (old_set))
3671 || plus_src)
3673 /* Otherwise, see if we have a REG_EQUAL note of the form
3674 (plus (...) CST). */
3675 rtx links;
3676 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3678 if ((REG_NOTE_KIND (links) == REG_EQUAL
3679 || REG_NOTE_KIND (links) == REG_EQUIV)
3680 && GET_CODE (XEXP (links, 0)) == PLUS
3681 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3683 plus_cst_src = XEXP (links, 0);
3684 break;
3690 /* Determine the effects of this insn on elimination offsets. */
3691 elimination_effects (old_body, VOIDmode);
3693 /* Eliminate all eliminable registers occurring in operands that
3694 can be handled by reload. */
3695 extract_insn (insn);
3696 for (i = 0; i < recog_data.n_dups; i++)
3697 orig_dup[i] = *recog_data.dup_loc[i];
3699 for (i = 0; i < recog_data.n_operands; i++)
3701 orig_operand[i] = recog_data.operand[i];
3703 /* For an asm statement, every operand is eliminable. */
3704 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3706 bool is_set_src, in_plus;
3708 /* Check for setting a register that we know about. */
3709 if (recog_data.operand_type[i] != OP_IN
3710 && REG_P (orig_operand[i]))
3712 /* If we are assigning to a register that can be eliminated, it
3713 must be as part of a PARALLEL, since the code above handles
3714 single SETs. We must indicate that we can no longer
3715 eliminate this reg. */
3716 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3717 ep++)
3718 if (ep->from_rtx == orig_operand[i])
3719 ep->can_eliminate = 0;
3722 /* Companion to the above plus substitution, we can allow
3723 invariants as the source of a plain move. */
3724 is_set_src = false;
3725 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3726 is_set_src = true;
3727 if (is_set_src && !sets_reg_p)
3728 note_reg_elim_costly (&SET_SRC (old_set), insn);
3729 in_plus = false;
3730 if (plus_src && sets_reg_p
3731 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3732 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3733 in_plus = true;
3735 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3736 NULL_RTX,
3737 is_set_src || in_plus, true);
3738 /* Terminate the search in check_eliminable_occurrences at
3739 this point. */
3740 *recog_data.operand_loc[i] = 0;
3744 for (i = 0; i < recog_data.n_dups; i++)
3745 *recog_data.dup_loc[i]
3746 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3748 /* If any eliminable remain, they aren't eliminable anymore. */
3749 check_eliminable_occurrences (old_body);
3751 /* Restore the old body. */
3752 for (i = 0; i < recog_data.n_operands; i++)
3753 *recog_data.operand_loc[i] = orig_operand[i];
3754 for (i = 0; i < recog_data.n_dups; i++)
3755 *recog_data.dup_loc[i] = orig_dup[i];
3757 /* Update all elimination pairs to reflect the status after the current
3758 insn. The changes we make were determined by the earlier call to
3759 elimination_effects. */
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3764 ep->can_eliminate = 0;
3766 ep->ref_outside_mem = 0;
3769 return;
3772 /* Loop through all elimination pairs.
3773 Recalculate the number not at initial offset.
3775 Compute the maximum offset (minimum offset if the stack does not
3776 grow downward) for each elimination pair. */
3778 static void
3779 update_eliminable_offsets (void)
3781 struct elim_table *ep;
3783 num_not_at_initial_offset = 0;
3784 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3786 ep->previous_offset = ep->offset;
3787 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3788 num_not_at_initial_offset++;
3792 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3793 replacement we currently believe is valid, mark it as not eliminable if X
3794 modifies DEST in any way other than by adding a constant integer to it.
3796 If DEST is the frame pointer, we do nothing because we assume that
3797 all assignments to the hard frame pointer are nonlocal gotos and are being
3798 done at a time when they are valid and do not disturb anything else.
3799 Some machines want to eliminate a fake argument pointer with either the
3800 frame or stack pointer. Assignments to the hard frame pointer must not
3801 prevent this elimination.
3803 Called via note_stores from reload before starting its passes to scan
3804 the insns of the function. */
3806 static void
3807 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3809 unsigned int i;
3811 /* A SUBREG of a hard register here is just changing its mode. We should
3812 not see a SUBREG of an eliminable hard register, but check just in
3813 case. */
3814 if (GET_CODE (dest) == SUBREG)
3815 dest = SUBREG_REG (dest);
3817 if (dest == hard_frame_pointer_rtx)
3818 return;
3820 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3821 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3822 && (GET_CODE (x) != SET
3823 || GET_CODE (SET_SRC (x)) != PLUS
3824 || XEXP (SET_SRC (x), 0) != dest
3825 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3827 reg_eliminate[i].can_eliminate_previous
3828 = reg_eliminate[i].can_eliminate = 0;
3829 num_eliminable--;
3833 /* Verify that the initial elimination offsets did not change since the
3834 last call to set_initial_elim_offsets. This is used to catch cases
3835 where something illegal happened during reload_as_needed that could
3836 cause incorrect code to be generated if we did not check for it. */
3838 static bool
3839 verify_initial_elim_offsets (void)
3841 HOST_WIDE_INT t;
3843 if (!num_eliminable)
3844 return true;
3846 #ifdef ELIMINABLE_REGS
3848 struct elim_table *ep;
3850 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3852 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3853 if (t != ep->initial_offset)
3854 return false;
3857 #else
3858 INITIAL_FRAME_POINTER_OFFSET (t);
3859 if (t != reg_eliminate[0].initial_offset)
3860 return false;
3861 #endif
3863 return true;
3866 /* Reset all offsets on eliminable registers to their initial values. */
3868 static void
3869 set_initial_elim_offsets (void)
3871 struct elim_table *ep = reg_eliminate;
3873 #ifdef ELIMINABLE_REGS
3874 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3876 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3877 ep->previous_offset = ep->offset = ep->initial_offset;
3879 #else
3880 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3881 ep->previous_offset = ep->offset = ep->initial_offset;
3882 #endif
3884 num_not_at_initial_offset = 0;
3887 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3889 static void
3890 set_initial_eh_label_offset (rtx label)
3892 set_label_offsets (label, NULL_RTX, 1);
3895 /* Initialize the known label offsets.
3896 Set a known offset for each forced label to be at the initial offset
3897 of each elimination. We do this because we assume that all
3898 computed jumps occur from a location where each elimination is
3899 at its initial offset.
3900 For all other labels, show that we don't know the offsets. */
3902 static void
3903 set_initial_label_offsets (void)
3905 rtx x;
3906 memset (offsets_known_at, 0, num_labels);
3908 for (x = forced_labels; x; x = XEXP (x, 1))
3909 if (XEXP (x, 0))
3910 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3912 for_each_eh_label (set_initial_eh_label_offset);
3915 /* Set all elimination offsets to the known values for the code label given
3916 by INSN. */
3918 static void
3919 set_offsets_for_label (rtx insn)
3921 unsigned int i;
3922 int label_nr = CODE_LABEL_NUMBER (insn);
3923 struct elim_table *ep;
3925 num_not_at_initial_offset = 0;
3926 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3928 ep->offset = ep->previous_offset
3929 = offsets_at[label_nr - first_label_num][i];
3930 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3931 num_not_at_initial_offset++;
3935 /* See if anything that happened changes which eliminations are valid.
3936 For example, on the SPARC, whether or not the frame pointer can
3937 be eliminated can depend on what registers have been used. We need
3938 not check some conditions again (such as flag_omit_frame_pointer)
3939 since they can't have changed. */
3941 static void
3942 update_eliminables (HARD_REG_SET *pset)
3944 int previous_frame_pointer_needed = frame_pointer_needed;
3945 struct elim_table *ep;
3947 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3948 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3949 && targetm.frame_pointer_required ())
3950 #ifdef ELIMINABLE_REGS
3951 || ! targetm.can_eliminate (ep->from, ep->to)
3952 #endif
3954 ep->can_eliminate = 0;
3956 /* Look for the case where we have discovered that we can't replace
3957 register A with register B and that means that we will now be
3958 trying to replace register A with register C. This means we can
3959 no longer replace register C with register B and we need to disable
3960 such an elimination, if it exists. This occurs often with A == ap,
3961 B == sp, and C == fp. */
3963 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3965 struct elim_table *op;
3966 int new_to = -1;
3968 if (! ep->can_eliminate && ep->can_eliminate_previous)
3970 /* Find the current elimination for ep->from, if there is a
3971 new one. */
3972 for (op = reg_eliminate;
3973 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3974 if (op->from == ep->from && op->can_eliminate)
3976 new_to = op->to;
3977 break;
3980 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3981 disable it. */
3982 for (op = reg_eliminate;
3983 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3984 if (op->from == new_to && op->to == ep->to)
3985 op->can_eliminate = 0;
3989 /* See if any registers that we thought we could eliminate the previous
3990 time are no longer eliminable. If so, something has changed and we
3991 must spill the register. Also, recompute the number of eliminable
3992 registers and see if the frame pointer is needed; it is if there is
3993 no elimination of the frame pointer that we can perform. */
3995 frame_pointer_needed = 1;
3996 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3998 if (ep->can_eliminate
3999 && ep->from == FRAME_POINTER_REGNUM
4000 && ep->to != HARD_FRAME_POINTER_REGNUM
4001 && (! SUPPORTS_STACK_ALIGNMENT
4002 || ! crtl->stack_realign_needed))
4003 frame_pointer_needed = 0;
4005 if (! ep->can_eliminate && ep->can_eliminate_previous)
4007 ep->can_eliminate_previous = 0;
4008 SET_HARD_REG_BIT (*pset, ep->from);
4009 num_eliminable--;
4013 /* If we didn't need a frame pointer last time, but we do now, spill
4014 the hard frame pointer. */
4015 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4016 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4019 /* Return true if X is used as the target register of an elimination. */
4021 bool
4022 elimination_target_reg_p (rtx x)
4024 struct elim_table *ep;
4026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4027 if (ep->to_rtx == x && ep->can_eliminate)
4028 return true;
4030 return false;
4033 /* Initialize the table of registers to eliminate.
4034 Pre-condition: global flag frame_pointer_needed has been set before
4035 calling this function. */
4037 static void
4038 init_elim_table (void)
4040 struct elim_table *ep;
4041 #ifdef ELIMINABLE_REGS
4042 const struct elim_table_1 *ep1;
4043 #endif
4045 if (!reg_eliminate)
4046 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4048 num_eliminable = 0;
4050 #ifdef ELIMINABLE_REGS
4051 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4052 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4054 ep->from = ep1->from;
4055 ep->to = ep1->to;
4056 ep->can_eliminate = ep->can_eliminate_previous
4057 = (targetm.can_eliminate (ep->from, ep->to)
4058 && ! (ep->to == STACK_POINTER_REGNUM
4059 && frame_pointer_needed
4060 && (! SUPPORTS_STACK_ALIGNMENT
4061 || ! stack_realign_fp)));
4063 #else
4064 reg_eliminate[0].from = reg_eliminate_1[0].from;
4065 reg_eliminate[0].to = reg_eliminate_1[0].to;
4066 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4067 = ! frame_pointer_needed;
4068 #endif
4070 /* Count the number of eliminable registers and build the FROM and TO
4071 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4072 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4073 We depend on this. */
4074 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4076 num_eliminable += ep->can_eliminate;
4077 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4078 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4082 /* Find all the pseudo registers that didn't get hard regs
4083 but do have known equivalent constants or memory slots.
4084 These include parameters (known equivalent to parameter slots)
4085 and cse'd or loop-moved constant memory addresses.
4087 Record constant equivalents in reg_equiv_constant
4088 so they will be substituted by find_reloads.
4089 Record memory equivalents in reg_mem_equiv so they can
4090 be substituted eventually by altering the REG-rtx's. */
4092 static void
4093 init_eliminable_invariants (rtx first, bool do_subregs)
4095 int i;
4096 rtx insn;
4098 grow_reg_equivs ();
4099 if (do_subregs)
4100 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4101 else
4102 reg_max_ref_width = NULL;
4104 num_eliminable_invariants = 0;
4106 first_label_num = get_first_label_num ();
4107 num_labels = max_label_num () - first_label_num;
4109 /* Allocate the tables used to store offset information at labels. */
4110 offsets_known_at = XNEWVEC (char, num_labels);
4111 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4113 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4114 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4115 find largest such for each pseudo. FIRST is the head of the insn
4116 list. */
4118 for (insn = first; insn; insn = NEXT_INSN (insn))
4120 rtx set = single_set (insn);
4122 /* We may introduce USEs that we want to remove at the end, so
4123 we'll mark them with QImode. Make sure there are no
4124 previously-marked insns left by say regmove. */
4125 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4126 && GET_MODE (insn) != VOIDmode)
4127 PUT_MODE (insn, VOIDmode);
4129 if (do_subregs && NONDEBUG_INSN_P (insn))
4130 scan_paradoxical_subregs (PATTERN (insn));
4132 if (set != 0 && REG_P (SET_DEST (set)))
4134 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4135 rtx x;
4137 if (! note)
4138 continue;
4140 i = REGNO (SET_DEST (set));
4141 x = XEXP (note, 0);
4143 if (i <= LAST_VIRTUAL_REGISTER)
4144 continue;
4146 /* If flag_pic and we have constant, verify it's legitimate. */
4147 if (!CONSTANT_P (x)
4148 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4150 /* It can happen that a REG_EQUIV note contains a MEM
4151 that is not a legitimate memory operand. As later
4152 stages of reload assume that all addresses found
4153 in the reg_equiv_* arrays were originally legitimate,
4154 we ignore such REG_EQUIV notes. */
4155 if (memory_operand (x, VOIDmode))
4157 /* Always unshare the equivalence, so we can
4158 substitute into this insn without touching the
4159 equivalence. */
4160 reg_equiv_memory_loc (i) = copy_rtx (x);
4162 else if (function_invariant_p (x))
4164 enum machine_mode mode;
4166 mode = GET_MODE (SET_DEST (set));
4167 if (GET_CODE (x) == PLUS)
4169 /* This is PLUS of frame pointer and a constant,
4170 and might be shared. Unshare it. */
4171 reg_equiv_invariant (i) = copy_rtx (x);
4172 num_eliminable_invariants++;
4174 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4176 reg_equiv_invariant (i) = x;
4177 num_eliminable_invariants++;
4179 else if (targetm.legitimate_constant_p (mode, x))
4180 reg_equiv_constant (i) = x;
4181 else
4183 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4184 if (! reg_equiv_memory_loc (i))
4185 reg_equiv_init (i) = NULL_RTX;
4188 else
4190 reg_equiv_init (i) = NULL_RTX;
4191 continue;
4194 else
4195 reg_equiv_init (i) = NULL_RTX;
4199 if (dump_file)
4200 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4201 if (reg_equiv_init (i))
4203 fprintf (dump_file, "init_insns for %u: ", i);
4204 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4205 fprintf (dump_file, "\n");
4209 /* Indicate that we no longer have known memory locations or constants.
4210 Free all data involved in tracking these. */
4212 static void
4213 free_reg_equiv (void)
4215 int i;
4218 free (offsets_known_at);
4219 free (offsets_at);
4220 offsets_at = 0;
4221 offsets_known_at = 0;
4223 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4224 if (reg_equiv_alt_mem_list (i))
4225 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4226 VEC_free (reg_equivs_t, gc, reg_equivs);
4227 reg_equivs = NULL;
4231 /* Kick all pseudos out of hard register REGNO.
4233 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4234 because we found we can't eliminate some register. In the case, no pseudos
4235 are allowed to be in the register, even if they are only in a block that
4236 doesn't require spill registers, unlike the case when we are spilling this
4237 hard reg to produce another spill register.
4239 Return nonzero if any pseudos needed to be kicked out. */
4241 static void
4242 spill_hard_reg (unsigned int regno, int cant_eliminate)
4244 int i;
4246 if (cant_eliminate)
4248 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4249 df_set_regs_ever_live (regno, true);
4252 /* Spill every pseudo reg that was allocated to this reg
4253 or to something that overlaps this reg. */
4255 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4256 if (reg_renumber[i] >= 0
4257 && (unsigned int) reg_renumber[i] <= regno
4258 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4259 SET_REGNO_REG_SET (&spilled_pseudos, i);
4262 /* After find_reload_regs has been run for all insn that need reloads,
4263 and/or spill_hard_regs was called, this function is used to actually
4264 spill pseudo registers and try to reallocate them. It also sets up the
4265 spill_regs array for use by choose_reload_regs. */
4267 static int
4268 finish_spills (int global)
4270 struct insn_chain *chain;
4271 int something_changed = 0;
4272 unsigned i;
4273 reg_set_iterator rsi;
4275 /* Build the spill_regs array for the function. */
4276 /* If there are some registers still to eliminate and one of the spill regs
4277 wasn't ever used before, additional stack space may have to be
4278 allocated to store this register. Thus, we may have changed the offset
4279 between the stack and frame pointers, so mark that something has changed.
4281 One might think that we need only set VAL to 1 if this is a call-used
4282 register. However, the set of registers that must be saved by the
4283 prologue is not identical to the call-used set. For example, the
4284 register used by the call insn for the return PC is a call-used register,
4285 but must be saved by the prologue. */
4287 n_spills = 0;
4288 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4289 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4291 spill_reg_order[i] = n_spills;
4292 spill_regs[n_spills++] = i;
4293 if (num_eliminable && ! df_regs_ever_live_p (i))
4294 something_changed = 1;
4295 df_set_regs_ever_live (i, true);
4297 else
4298 spill_reg_order[i] = -1;
4300 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4301 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4303 /* Record the current hard register the pseudo is allocated to
4304 in pseudo_previous_regs so we avoid reallocating it to the
4305 same hard reg in a later pass. */
4306 gcc_assert (reg_renumber[i] >= 0);
4308 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4309 /* Mark it as no longer having a hard register home. */
4310 reg_renumber[i] = -1;
4311 if (ira_conflicts_p)
4312 /* Inform IRA about the change. */
4313 ira_mark_allocation_change (i);
4314 /* We will need to scan everything again. */
4315 something_changed = 1;
4318 /* Retry global register allocation if possible. */
4319 if (global && ira_conflicts_p)
4321 unsigned int n;
4323 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4324 /* For every insn that needs reloads, set the registers used as spill
4325 regs in pseudo_forbidden_regs for every pseudo live across the
4326 insn. */
4327 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4329 EXECUTE_IF_SET_IN_REG_SET
4330 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4332 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4333 chain->used_spill_regs);
4335 EXECUTE_IF_SET_IN_REG_SET
4336 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4338 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4339 chain->used_spill_regs);
4343 /* Retry allocating the pseudos spilled in IRA and the
4344 reload. For each reg, merge the various reg sets that
4345 indicate which hard regs can't be used, and call
4346 ira_reassign_pseudos. */
4347 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4348 if (reg_old_renumber[i] != reg_renumber[i])
4350 if (reg_renumber[i] < 0)
4351 temp_pseudo_reg_arr[n++] = i;
4352 else
4353 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4355 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4356 bad_spill_regs_global,
4357 pseudo_forbidden_regs, pseudo_previous_regs,
4358 &spilled_pseudos))
4359 something_changed = 1;
4361 /* Fix up the register information in the insn chain.
4362 This involves deleting those of the spilled pseudos which did not get
4363 a new hard register home from the live_{before,after} sets. */
4364 for (chain = reload_insn_chain; chain; chain = chain->next)
4366 HARD_REG_SET used_by_pseudos;
4367 HARD_REG_SET used_by_pseudos2;
4369 if (! ira_conflicts_p)
4371 /* Don't do it for IRA because IRA and the reload still can
4372 assign hard registers to the spilled pseudos on next
4373 reload iterations. */
4374 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4375 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4377 /* Mark any unallocated hard regs as available for spills. That
4378 makes inheritance work somewhat better. */
4379 if (chain->need_reload)
4381 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4382 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4383 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4385 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4386 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4387 /* Value of chain->used_spill_regs from previous iteration
4388 may be not included in the value calculated here because
4389 of possible removing caller-saves insns (see function
4390 delete_caller_save_insns. */
4391 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4392 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4396 CLEAR_REG_SET (&changed_allocation_pseudos);
4397 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4398 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4400 int regno = reg_renumber[i];
4401 if (reg_old_renumber[i] == regno)
4402 continue;
4404 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4406 alter_reg (i, reg_old_renumber[i], false);
4407 reg_old_renumber[i] = regno;
4408 if (dump_file)
4410 if (regno == -1)
4411 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4412 else
4413 fprintf (dump_file, " Register %d now in %d.\n\n",
4414 i, reg_renumber[i]);
4418 return something_changed;
4421 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4423 static void
4424 scan_paradoxical_subregs (rtx x)
4426 int i;
4427 const char *fmt;
4428 enum rtx_code code = GET_CODE (x);
4430 switch (code)
4432 case REG:
4433 case CONST_INT:
4434 case CONST:
4435 case SYMBOL_REF:
4436 case LABEL_REF:
4437 case CONST_DOUBLE:
4438 case CONST_FIXED:
4439 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4440 case CC0:
4441 case PC:
4442 case USE:
4443 case CLOBBER:
4444 return;
4446 case SUBREG:
4447 if (REG_P (SUBREG_REG (x))
4448 && (GET_MODE_SIZE (GET_MODE (x))
4449 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4451 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4452 = GET_MODE_SIZE (GET_MODE (x));
4453 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4455 return;
4457 default:
4458 break;
4461 fmt = GET_RTX_FORMAT (code);
4462 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4464 if (fmt[i] == 'e')
4465 scan_paradoxical_subregs (XEXP (x, i));
4466 else if (fmt[i] == 'E')
4468 int j;
4469 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4470 scan_paradoxical_subregs (XVECEXP (x, i, j));
4475 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4476 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4477 and apply the corresponding narrowing subreg to *OTHER_PTR.
4478 Return true if the operands were changed, false otherwise. */
4480 static bool
4481 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4483 rtx op, inner, other, tem;
4485 op = *op_ptr;
4486 if (GET_CODE (op) != SUBREG)
4487 return false;
4489 inner = SUBREG_REG (op);
4490 if (GET_MODE_SIZE (GET_MODE (op)) <= GET_MODE_SIZE (GET_MODE (inner)))
4491 return false;
4493 other = *other_ptr;
4494 tem = gen_lowpart_common (GET_MODE (inner), other);
4495 if (!tem)
4496 return false;
4498 /* If the lowpart operation turned a hard register into a subreg,
4499 rather than simplifying it to another hard register, then the
4500 mode change cannot be properly represented. For example, OTHER
4501 might be valid in its current mode, but not in the new one. */
4502 if (GET_CODE (tem) == SUBREG
4503 && REG_P (other)
4504 && HARD_REGISTER_P (other))
4505 return false;
4507 *op_ptr = inner;
4508 *other_ptr = tem;
4509 return true;
4512 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4513 examine all of the reload insns between PREV and NEXT exclusive, and
4514 annotate all that may trap. */
4516 static void
4517 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4519 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4520 if (note == NULL)
4521 return;
4522 if (!insn_could_throw_p (insn))
4523 remove_note (insn, note);
4524 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4527 /* Reload pseudo-registers into hard regs around each insn as needed.
4528 Additional register load insns are output before the insn that needs it
4529 and perhaps store insns after insns that modify the reloaded pseudo reg.
4531 reg_last_reload_reg and reg_reloaded_contents keep track of
4532 which registers are already available in reload registers.
4533 We update these for the reloads that we perform,
4534 as the insns are scanned. */
4536 static void
4537 reload_as_needed (int live_known)
4539 struct insn_chain *chain;
4540 #if defined (AUTO_INC_DEC)
4541 int i;
4542 #endif
4543 rtx x;
4545 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4546 memset (spill_reg_store, 0, sizeof spill_reg_store);
4547 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4548 INIT_REG_SET (&reg_has_output_reload);
4549 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4550 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4552 set_initial_elim_offsets ();
4554 for (chain = reload_insn_chain; chain; chain = chain->next)
4556 rtx prev = 0;
4557 rtx insn = chain->insn;
4558 rtx old_next = NEXT_INSN (insn);
4559 #ifdef AUTO_INC_DEC
4560 rtx old_prev = PREV_INSN (insn);
4561 #endif
4563 /* If we pass a label, copy the offsets from the label information
4564 into the current offsets of each elimination. */
4565 if (LABEL_P (insn))
4566 set_offsets_for_label (insn);
4568 else if (INSN_P (insn))
4570 regset_head regs_to_forget;
4571 INIT_REG_SET (&regs_to_forget);
4572 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4574 /* If this is a USE and CLOBBER of a MEM, ensure that any
4575 references to eliminable registers have been removed. */
4577 if ((GET_CODE (PATTERN (insn)) == USE
4578 || GET_CODE (PATTERN (insn)) == CLOBBER)
4579 && MEM_P (XEXP (PATTERN (insn), 0)))
4580 XEXP (XEXP (PATTERN (insn), 0), 0)
4581 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4582 GET_MODE (XEXP (PATTERN (insn), 0)),
4583 NULL_RTX);
4585 /* If we need to do register elimination processing, do so.
4586 This might delete the insn, in which case we are done. */
4587 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4589 eliminate_regs_in_insn (insn, 1);
4590 if (NOTE_P (insn))
4592 update_eliminable_offsets ();
4593 CLEAR_REG_SET (&regs_to_forget);
4594 continue;
4598 /* If need_elim is nonzero but need_reload is zero, one might think
4599 that we could simply set n_reloads to 0. However, find_reloads
4600 could have done some manipulation of the insn (such as swapping
4601 commutative operands), and these manipulations are lost during
4602 the first pass for every insn that needs register elimination.
4603 So the actions of find_reloads must be redone here. */
4605 if (! chain->need_elim && ! chain->need_reload
4606 && ! chain->need_operand_change)
4607 n_reloads = 0;
4608 /* First find the pseudo regs that must be reloaded for this insn.
4609 This info is returned in the tables reload_... (see reload.h).
4610 Also modify the body of INSN by substituting RELOAD
4611 rtx's for those pseudo regs. */
4612 else
4614 CLEAR_REG_SET (&reg_has_output_reload);
4615 CLEAR_HARD_REG_SET (reg_is_output_reload);
4617 find_reloads (insn, 1, spill_indirect_levels, live_known,
4618 spill_reg_order);
4621 if (n_reloads > 0)
4623 rtx next = NEXT_INSN (insn);
4624 rtx p;
4626 prev = PREV_INSN (insn);
4628 /* Now compute which reload regs to reload them into. Perhaps
4629 reusing reload regs from previous insns, or else output
4630 load insns to reload them. Maybe output store insns too.
4631 Record the choices of reload reg in reload_reg_rtx. */
4632 choose_reload_regs (chain);
4634 /* Generate the insns to reload operands into or out of
4635 their reload regs. */
4636 emit_reload_insns (chain);
4638 /* Substitute the chosen reload regs from reload_reg_rtx
4639 into the insn's body (or perhaps into the bodies of other
4640 load and store insn that we just made for reloading
4641 and that we moved the structure into). */
4642 subst_reloads (insn);
4644 /* Adjust the exception region notes for loads and stores. */
4645 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4646 fixup_eh_region_note (insn, prev, next);
4648 /* If this was an ASM, make sure that all the reload insns
4649 we have generated are valid. If not, give an error
4650 and delete them. */
4651 if (asm_noperands (PATTERN (insn)) >= 0)
4652 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4653 if (p != insn && INSN_P (p)
4654 && GET_CODE (PATTERN (p)) != USE
4655 && (recog_memoized (p) < 0
4656 || (extract_insn (p), ! constrain_operands (1))))
4658 error_for_asm (insn,
4659 "%<asm%> operand requires "
4660 "impossible reload");
4661 delete_insn (p);
4665 if (num_eliminable && chain->need_elim)
4666 update_eliminable_offsets ();
4668 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4669 is no longer validly lying around to save a future reload.
4670 Note that this does not detect pseudos that were reloaded
4671 for this insn in order to be stored in
4672 (obeying register constraints). That is correct; such reload
4673 registers ARE still valid. */
4674 forget_marked_reloads (&regs_to_forget);
4675 CLEAR_REG_SET (&regs_to_forget);
4677 /* There may have been CLOBBER insns placed after INSN. So scan
4678 between INSN and NEXT and use them to forget old reloads. */
4679 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4680 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4681 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4683 #ifdef AUTO_INC_DEC
4684 /* Likewise for regs altered by auto-increment in this insn.
4685 REG_INC notes have been changed by reloading:
4686 find_reloads_address_1 records substitutions for them,
4687 which have been performed by subst_reloads above. */
4688 for (i = n_reloads - 1; i >= 0; i--)
4690 rtx in_reg = rld[i].in_reg;
4691 if (in_reg)
4693 enum rtx_code code = GET_CODE (in_reg);
4694 /* PRE_INC / PRE_DEC will have the reload register ending up
4695 with the same value as the stack slot, but that doesn't
4696 hold true for POST_INC / POST_DEC. Either we have to
4697 convert the memory access to a true POST_INC / POST_DEC,
4698 or we can't use the reload register for inheritance. */
4699 if ((code == POST_INC || code == POST_DEC)
4700 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4701 REGNO (rld[i].reg_rtx))
4702 /* Make sure it is the inc/dec pseudo, and not
4703 some other (e.g. output operand) pseudo. */
4704 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4705 == REGNO (XEXP (in_reg, 0))))
4708 rtx reload_reg = rld[i].reg_rtx;
4709 enum machine_mode mode = GET_MODE (reload_reg);
4710 int n = 0;
4711 rtx p;
4713 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4715 /* We really want to ignore REG_INC notes here, so
4716 use PATTERN (p) as argument to reg_set_p . */
4717 if (reg_set_p (reload_reg, PATTERN (p)))
4718 break;
4719 n = count_occurrences (PATTERN (p), reload_reg, 0);
4720 if (! n)
4721 continue;
4722 if (n == 1)
4724 rtx replace_reg
4725 = gen_rtx_fmt_e (code, mode, reload_reg);
4727 validate_replace_rtx_group (reload_reg,
4728 replace_reg, p);
4729 n = verify_changes (0);
4731 /* We must also verify that the constraints
4732 are met after the replacement. Make sure
4733 extract_insn is only called for an insn
4734 where the replacements were found to be
4735 valid so far. */
4736 if (n)
4738 extract_insn (p);
4739 n = constrain_operands (1);
4742 /* If the constraints were not met, then
4743 undo the replacement, else confirm it. */
4744 if (!n)
4745 cancel_changes (0);
4746 else
4747 confirm_change_group ();
4749 break;
4751 if (n == 1)
4753 add_reg_note (p, REG_INC, reload_reg);
4754 /* Mark this as having an output reload so that the
4755 REG_INC processing code below won't invalidate
4756 the reload for inheritance. */
4757 SET_HARD_REG_BIT (reg_is_output_reload,
4758 REGNO (reload_reg));
4759 SET_REGNO_REG_SET (&reg_has_output_reload,
4760 REGNO (XEXP (in_reg, 0)));
4762 else
4763 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4764 NULL);
4766 else if ((code == PRE_INC || code == PRE_DEC)
4767 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4768 REGNO (rld[i].reg_rtx))
4769 /* Make sure it is the inc/dec pseudo, and not
4770 some other (e.g. output operand) pseudo. */
4771 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4772 == REGNO (XEXP (in_reg, 0))))
4774 SET_HARD_REG_BIT (reg_is_output_reload,
4775 REGNO (rld[i].reg_rtx));
4776 SET_REGNO_REG_SET (&reg_has_output_reload,
4777 REGNO (XEXP (in_reg, 0)));
4779 else if (code == PRE_INC || code == PRE_DEC
4780 || code == POST_INC || code == POST_DEC)
4782 int in_regno = REGNO (XEXP (in_reg, 0));
4784 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4786 int in_hard_regno;
4787 bool forget_p = true;
4789 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4790 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4791 in_hard_regno))
4793 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4794 x != old_next;
4795 x = NEXT_INSN (x))
4796 if (x == reg_reloaded_insn[in_hard_regno])
4798 forget_p = false;
4799 break;
4802 /* If for some reasons, we didn't set up
4803 reg_last_reload_reg in this insn,
4804 invalidate inheritance from previous
4805 insns for the incremented/decremented
4806 register. Such registers will be not in
4807 reg_has_output_reload. Invalidate it
4808 also if the corresponding element in
4809 reg_reloaded_insn is also
4810 invalidated. */
4811 if (forget_p)
4812 forget_old_reloads_1 (XEXP (in_reg, 0),
4813 NULL_RTX, NULL);
4818 /* If a pseudo that got a hard register is auto-incremented,
4819 we must purge records of copying it into pseudos without
4820 hard registers. */
4821 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4822 if (REG_NOTE_KIND (x) == REG_INC)
4824 /* See if this pseudo reg was reloaded in this insn.
4825 If so, its last-reload info is still valid
4826 because it is based on this insn's reload. */
4827 for (i = 0; i < n_reloads; i++)
4828 if (rld[i].out == XEXP (x, 0))
4829 break;
4831 if (i == n_reloads)
4832 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4834 #endif
4836 /* A reload reg's contents are unknown after a label. */
4837 if (LABEL_P (insn))
4838 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4840 /* Don't assume a reload reg is still good after a call insn
4841 if it is a call-used reg, or if it contains a value that will
4842 be partially clobbered by the call. */
4843 else if (CALL_P (insn))
4845 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4846 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4850 /* Clean up. */
4851 free (reg_last_reload_reg);
4852 CLEAR_REG_SET (&reg_has_output_reload);
4855 /* Discard all record of any value reloaded from X,
4856 or reloaded in X from someplace else;
4857 unless X is an output reload reg of the current insn.
4859 X may be a hard reg (the reload reg)
4860 or it may be a pseudo reg that was reloaded from.
4862 When DATA is non-NULL just mark the registers in regset
4863 to be forgotten later. */
4865 static void
4866 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4867 void *data)
4869 unsigned int regno;
4870 unsigned int nr;
4871 regset regs = (regset) data;
4873 /* note_stores does give us subregs of hard regs,
4874 subreg_regno_offset requires a hard reg. */
4875 while (GET_CODE (x) == SUBREG)
4877 /* We ignore the subreg offset when calculating the regno,
4878 because we are using the entire underlying hard register
4879 below. */
4880 x = SUBREG_REG (x);
4883 if (!REG_P (x))
4884 return;
4886 regno = REGNO (x);
4888 if (regno >= FIRST_PSEUDO_REGISTER)
4889 nr = 1;
4890 else
4892 unsigned int i;
4894 nr = hard_regno_nregs[regno][GET_MODE (x)];
4895 /* Storing into a spilled-reg invalidates its contents.
4896 This can happen if a block-local pseudo is allocated to that reg
4897 and it wasn't spilled because this block's total need is 0.
4898 Then some insn might have an optional reload and use this reg. */
4899 if (!regs)
4900 for (i = 0; i < nr; i++)
4901 /* But don't do this if the reg actually serves as an output
4902 reload reg in the current instruction. */
4903 if (n_reloads == 0
4904 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4906 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4907 spill_reg_store[regno + i] = 0;
4911 if (regs)
4912 while (nr-- > 0)
4913 SET_REGNO_REG_SET (regs, regno + nr);
4914 else
4916 /* Since value of X has changed,
4917 forget any value previously copied from it. */
4919 while (nr-- > 0)
4920 /* But don't forget a copy if this is the output reload
4921 that establishes the copy's validity. */
4922 if (n_reloads == 0
4923 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4924 reg_last_reload_reg[regno + nr] = 0;
4928 /* Forget the reloads marked in regset by previous function. */
4929 static void
4930 forget_marked_reloads (regset regs)
4932 unsigned int reg;
4933 reg_set_iterator rsi;
4934 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4936 if (reg < FIRST_PSEUDO_REGISTER
4937 /* But don't do this if the reg actually serves as an output
4938 reload reg in the current instruction. */
4939 && (n_reloads == 0
4940 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4942 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4943 spill_reg_store[reg] = 0;
4945 if (n_reloads == 0
4946 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4947 reg_last_reload_reg[reg] = 0;
4951 /* The following HARD_REG_SETs indicate when each hard register is
4952 used for a reload of various parts of the current insn. */
4954 /* If reg is unavailable for all reloads. */
4955 static HARD_REG_SET reload_reg_unavailable;
4956 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4957 static HARD_REG_SET reload_reg_used;
4958 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4959 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4960 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4961 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4962 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4963 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4964 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4965 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4966 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4967 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4968 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4969 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4970 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4971 static HARD_REG_SET reload_reg_used_in_op_addr;
4972 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4973 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4974 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4975 static HARD_REG_SET reload_reg_used_in_insn;
4976 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4977 static HARD_REG_SET reload_reg_used_in_other_addr;
4979 /* If reg is in use as a reload reg for any sort of reload. */
4980 static HARD_REG_SET reload_reg_used_at_all;
4982 /* If reg is use as an inherited reload. We just mark the first register
4983 in the group. */
4984 static HARD_REG_SET reload_reg_used_for_inherit;
4986 /* Records which hard regs are used in any way, either as explicit use or
4987 by being allocated to a pseudo during any point of the current insn. */
4988 static HARD_REG_SET reg_used_in_insn;
4990 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4991 TYPE. MODE is used to indicate how many consecutive regs are
4992 actually used. */
4994 static void
4995 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4996 enum machine_mode mode)
4998 switch (type)
5000 case RELOAD_OTHER:
5001 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5002 break;
5004 case RELOAD_FOR_INPUT_ADDRESS:
5005 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5006 break;
5008 case RELOAD_FOR_INPADDR_ADDRESS:
5009 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5010 break;
5012 case RELOAD_FOR_OUTPUT_ADDRESS:
5013 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5014 break;
5016 case RELOAD_FOR_OUTADDR_ADDRESS:
5017 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5018 break;
5020 case RELOAD_FOR_OPERAND_ADDRESS:
5021 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5022 break;
5024 case RELOAD_FOR_OPADDR_ADDR:
5025 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5026 break;
5028 case RELOAD_FOR_OTHER_ADDRESS:
5029 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5030 break;
5032 case RELOAD_FOR_INPUT:
5033 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5034 break;
5036 case RELOAD_FOR_OUTPUT:
5037 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5038 break;
5040 case RELOAD_FOR_INSN:
5041 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5042 break;
5045 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5048 /* Similarly, but show REGNO is no longer in use for a reload. */
5050 static void
5051 clear_reload_reg_in_use (unsigned int regno, int opnum,
5052 enum reload_type type, enum machine_mode mode)
5054 unsigned int nregs = hard_regno_nregs[regno][mode];
5055 unsigned int start_regno, end_regno, r;
5056 int i;
5057 /* A complication is that for some reload types, inheritance might
5058 allow multiple reloads of the same types to share a reload register.
5059 We set check_opnum if we have to check only reloads with the same
5060 operand number, and check_any if we have to check all reloads. */
5061 int check_opnum = 0;
5062 int check_any = 0;
5063 HARD_REG_SET *used_in_set;
5065 switch (type)
5067 case RELOAD_OTHER:
5068 used_in_set = &reload_reg_used;
5069 break;
5071 case RELOAD_FOR_INPUT_ADDRESS:
5072 used_in_set = &reload_reg_used_in_input_addr[opnum];
5073 break;
5075 case RELOAD_FOR_INPADDR_ADDRESS:
5076 check_opnum = 1;
5077 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5078 break;
5080 case RELOAD_FOR_OUTPUT_ADDRESS:
5081 used_in_set = &reload_reg_used_in_output_addr[opnum];
5082 break;
5084 case RELOAD_FOR_OUTADDR_ADDRESS:
5085 check_opnum = 1;
5086 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5087 break;
5089 case RELOAD_FOR_OPERAND_ADDRESS:
5090 used_in_set = &reload_reg_used_in_op_addr;
5091 break;
5093 case RELOAD_FOR_OPADDR_ADDR:
5094 check_any = 1;
5095 used_in_set = &reload_reg_used_in_op_addr_reload;
5096 break;
5098 case RELOAD_FOR_OTHER_ADDRESS:
5099 used_in_set = &reload_reg_used_in_other_addr;
5100 check_any = 1;
5101 break;
5103 case RELOAD_FOR_INPUT:
5104 used_in_set = &reload_reg_used_in_input[opnum];
5105 break;
5107 case RELOAD_FOR_OUTPUT:
5108 used_in_set = &reload_reg_used_in_output[opnum];
5109 break;
5111 case RELOAD_FOR_INSN:
5112 used_in_set = &reload_reg_used_in_insn;
5113 break;
5114 default:
5115 gcc_unreachable ();
5117 /* We resolve conflicts with remaining reloads of the same type by
5118 excluding the intervals of reload registers by them from the
5119 interval of freed reload registers. Since we only keep track of
5120 one set of interval bounds, we might have to exclude somewhat
5121 more than what would be necessary if we used a HARD_REG_SET here.
5122 But this should only happen very infrequently, so there should
5123 be no reason to worry about it. */
5125 start_regno = regno;
5126 end_regno = regno + nregs;
5127 if (check_opnum || check_any)
5129 for (i = n_reloads - 1; i >= 0; i--)
5131 if (rld[i].when_needed == type
5132 && (check_any || rld[i].opnum == opnum)
5133 && rld[i].reg_rtx)
5135 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5136 unsigned int conflict_end
5137 = end_hard_regno (rld[i].mode, conflict_start);
5139 /* If there is an overlap with the first to-be-freed register,
5140 adjust the interval start. */
5141 if (conflict_start <= start_regno && conflict_end > start_regno)
5142 start_regno = conflict_end;
5143 /* Otherwise, if there is a conflict with one of the other
5144 to-be-freed registers, adjust the interval end. */
5145 if (conflict_start > start_regno && conflict_start < end_regno)
5146 end_regno = conflict_start;
5151 for (r = start_regno; r < end_regno; r++)
5152 CLEAR_HARD_REG_BIT (*used_in_set, r);
5155 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5156 specified by OPNUM and TYPE. */
5158 static int
5159 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5161 int i;
5163 /* In use for a RELOAD_OTHER means it's not available for anything. */
5164 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5165 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5166 return 0;
5168 switch (type)
5170 case RELOAD_OTHER:
5171 /* In use for anything means we can't use it for RELOAD_OTHER. */
5172 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5173 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5174 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5175 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5176 return 0;
5178 for (i = 0; i < reload_n_operands; i++)
5179 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5180 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5181 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5182 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5183 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5184 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5185 return 0;
5187 return 1;
5189 case RELOAD_FOR_INPUT:
5190 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5192 return 0;
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5195 return 0;
5197 /* If it is used for some other input, can't use it. */
5198 for (i = 0; i < reload_n_operands; i++)
5199 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5200 return 0;
5202 /* If it is used in a later operand's address, can't use it. */
5203 for (i = opnum + 1; i < reload_n_operands; i++)
5204 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5206 return 0;
5208 return 1;
5210 case RELOAD_FOR_INPUT_ADDRESS:
5211 /* Can't use a register if it is used for an input address for this
5212 operand or used as an input in an earlier one. */
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5214 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5215 return 0;
5217 for (i = 0; i < opnum; i++)
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5219 return 0;
5221 return 1;
5223 case RELOAD_FOR_INPADDR_ADDRESS:
5224 /* Can't use a register if it is used for an input address
5225 for this operand or used as an input in an earlier
5226 one. */
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5228 return 0;
5230 for (i = 0; i < opnum; i++)
5231 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5232 return 0;
5234 return 1;
5236 case RELOAD_FOR_OUTPUT_ADDRESS:
5237 /* Can't use a register if it is used for an output address for this
5238 operand or used as an output in this or a later operand. Note
5239 that multiple output operands are emitted in reverse order, so
5240 the conflicting ones are those with lower indices. */
5241 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5242 return 0;
5244 for (i = 0; i <= opnum; i++)
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5246 return 0;
5248 return 1;
5250 case RELOAD_FOR_OUTADDR_ADDRESS:
5251 /* Can't use a register if it is used for an output address
5252 for this operand or used as an output in this or a
5253 later operand. Note that multiple output operands are
5254 emitted in reverse order, so the conflicting ones are
5255 those with lower indices. */
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5257 return 0;
5259 for (i = 0; i <= opnum; i++)
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5261 return 0;
5263 return 1;
5265 case RELOAD_FOR_OPERAND_ADDRESS:
5266 for (i = 0; i < reload_n_operands; i++)
5267 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5268 return 0;
5270 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5271 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5273 case RELOAD_FOR_OPADDR_ADDR:
5274 for (i = 0; i < reload_n_operands; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5276 return 0;
5278 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5280 case RELOAD_FOR_OUTPUT:
5281 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5282 outputs, or an operand address for this or an earlier output.
5283 Note that multiple output operands are emitted in reverse order,
5284 so the conflicting ones are those with higher indices. */
5285 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5286 return 0;
5288 for (i = 0; i < reload_n_operands; i++)
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5290 return 0;
5292 for (i = opnum; i < reload_n_operands; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5294 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5295 return 0;
5297 return 1;
5299 case RELOAD_FOR_INSN:
5300 for (i = 0; i < reload_n_operands; i++)
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5302 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5303 return 0;
5305 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5306 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5308 case RELOAD_FOR_OTHER_ADDRESS:
5309 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5311 default:
5312 gcc_unreachable ();
5316 /* Return 1 if the value in reload reg REGNO, as used by a reload
5317 needed for the part of the insn specified by OPNUM and TYPE,
5318 is still available in REGNO at the end of the insn.
5320 We can assume that the reload reg was already tested for availability
5321 at the time it is needed, and we should not check this again,
5322 in case the reg has already been marked in use. */
5324 static int
5325 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
5327 int i;
5329 switch (type)
5331 case RELOAD_OTHER:
5332 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5333 its value must reach the end. */
5334 return 1;
5336 /* If this use is for part of the insn,
5337 its value reaches if no subsequent part uses the same register.
5338 Just like the above function, don't try to do this with lots
5339 of fallthroughs. */
5341 case RELOAD_FOR_OTHER_ADDRESS:
5342 /* Here we check for everything else, since these don't conflict
5343 with anything else and everything comes later. */
5345 for (i = 0; i < reload_n_operands; i++)
5346 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5347 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5348 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5349 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5350 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5351 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5352 return 0;
5354 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5355 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5356 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5357 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5359 case RELOAD_FOR_INPUT_ADDRESS:
5360 case RELOAD_FOR_INPADDR_ADDRESS:
5361 /* Similar, except that we check only for this and subsequent inputs
5362 and the address of only subsequent inputs and we do not need
5363 to check for RELOAD_OTHER objects since they are known not to
5364 conflict. */
5366 for (i = opnum; i < reload_n_operands; i++)
5367 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5368 return 0;
5370 for (i = opnum + 1; i < reload_n_operands; i++)
5371 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5372 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5373 return 0;
5375 for (i = 0; i < reload_n_operands; i++)
5376 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5378 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5379 return 0;
5381 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5382 return 0;
5384 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5385 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5386 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5388 case RELOAD_FOR_INPUT:
5389 /* Similar to input address, except we start at the next operand for
5390 both input and input address and we do not check for
5391 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5392 would conflict. */
5394 for (i = opnum + 1; i < reload_n_operands; i++)
5395 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5398 return 0;
5400 /* ... fall through ... */
5402 case RELOAD_FOR_OPERAND_ADDRESS:
5403 /* Check outputs and their addresses. */
5405 for (i = 0; i < reload_n_operands; i++)
5406 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5407 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5408 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5409 return 0;
5411 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5413 case RELOAD_FOR_OPADDR_ADDR:
5414 for (i = 0; i < reload_n_operands; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5418 return 0;
5420 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5421 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5422 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5424 case RELOAD_FOR_INSN:
5425 /* These conflict with other outputs with RELOAD_OTHER. So
5426 we need only check for output addresses. */
5428 opnum = reload_n_operands;
5430 /* ... fall through ... */
5432 case RELOAD_FOR_OUTPUT:
5433 case RELOAD_FOR_OUTPUT_ADDRESS:
5434 case RELOAD_FOR_OUTADDR_ADDRESS:
5435 /* We already know these can't conflict with a later output. So the
5436 only thing to check are later output addresses.
5437 Note that multiple output operands are emitted in reverse order,
5438 so the conflicting ones are those with lower indices. */
5439 for (i = 0; i < opnum; i++)
5440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5442 return 0;
5444 return 1;
5446 default:
5447 gcc_unreachable ();
5451 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5452 every register in the range [REGNO, REGNO + NREGS). */
5454 static bool
5455 reload_regs_reach_end_p (unsigned int regno, int nregs,
5456 int opnum, enum reload_type type)
5458 int i;
5460 for (i = 0; i < nregs; i++)
5461 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5462 return false;
5463 return true;
5467 /* Returns whether R1 and R2 are uniquely chained: the value of one
5468 is used by the other, and that value is not used by any other
5469 reload for this insn. This is used to partially undo the decision
5470 made in find_reloads when in the case of multiple
5471 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5472 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5473 reloads. This code tries to avoid the conflict created by that
5474 change. It might be cleaner to explicitly keep track of which
5475 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5476 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5477 this after the fact. */
5478 static bool
5479 reloads_unique_chain_p (int r1, int r2)
5481 int i;
5483 /* We only check input reloads. */
5484 if (! rld[r1].in || ! rld[r2].in)
5485 return false;
5487 /* Avoid anything with output reloads. */
5488 if (rld[r1].out || rld[r2].out)
5489 return false;
5491 /* "chained" means one reload is a component of the other reload,
5492 not the same as the other reload. */
5493 if (rld[r1].opnum != rld[r2].opnum
5494 || rtx_equal_p (rld[r1].in, rld[r2].in)
5495 || rld[r1].optional || rld[r2].optional
5496 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5497 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5498 return false;
5500 for (i = 0; i < n_reloads; i ++)
5501 /* Look for input reloads that aren't our two */
5502 if (i != r1 && i != r2 && rld[i].in)
5504 /* If our reload is mentioned at all, it isn't a simple chain. */
5505 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5506 return false;
5508 return true;
5511 /* The recursive function change all occurrences of WHAT in *WHERE
5512 to REPL. */
5513 static void
5514 substitute (rtx *where, const_rtx what, rtx repl)
5516 const char *fmt;
5517 int i;
5518 enum rtx_code code;
5520 if (*where == 0)
5521 return;
5523 if (*where == what || rtx_equal_p (*where, what))
5525 /* Record the location of the changed rtx. */
5526 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5527 *where = repl;
5528 return;
5531 code = GET_CODE (*where);
5532 fmt = GET_RTX_FORMAT (code);
5533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5535 if (fmt[i] == 'E')
5537 int j;
5539 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5540 substitute (&XVECEXP (*where, i, j), what, repl);
5542 else if (fmt[i] == 'e')
5543 substitute (&XEXP (*where, i), what, repl);
5547 /* The function returns TRUE if chain of reload R1 and R2 (in any
5548 order) can be evaluated without usage of intermediate register for
5549 the reload containing another reload. It is important to see
5550 gen_reload to understand what the function is trying to do. As an
5551 example, let us have reload chain
5553 r2: const
5554 r1: <something> + const
5556 and reload R2 got reload reg HR. The function returns true if
5557 there is a correct insn HR = HR + <something>. Otherwise,
5558 gen_reload will use intermediate register (and this is the reload
5559 reg for R1) to reload <something>.
5561 We need this function to find a conflict for chain reloads. In our
5562 example, if HR = HR + <something> is incorrect insn, then we cannot
5563 use HR as a reload register for R2. If we do use it then we get a
5564 wrong code:
5566 HR = const
5567 HR = <something>
5568 HR = HR + HR
5571 static bool
5572 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5574 /* Assume other cases in gen_reload are not possible for
5575 chain reloads or do need an intermediate hard registers. */
5576 bool result = true;
5577 int regno, n, code;
5578 rtx out, in, insn;
5579 rtx last = get_last_insn ();
5581 /* Make r2 a component of r1. */
5582 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5584 n = r1;
5585 r1 = r2;
5586 r2 = n;
5588 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5589 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5590 gcc_assert (regno >= 0);
5591 out = gen_rtx_REG (rld[r1].mode, regno);
5592 in = rld[r1].in;
5593 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5595 /* If IN is a paradoxical SUBREG, remove it and try to put the
5596 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5597 strip_paradoxical_subreg (&in, &out);
5599 if (GET_CODE (in) == PLUS
5600 && (REG_P (XEXP (in, 0))
5601 || GET_CODE (XEXP (in, 0)) == SUBREG
5602 || MEM_P (XEXP (in, 0)))
5603 && (REG_P (XEXP (in, 1))
5604 || GET_CODE (XEXP (in, 1)) == SUBREG
5605 || CONSTANT_P (XEXP (in, 1))
5606 || MEM_P (XEXP (in, 1))))
5608 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5609 code = recog_memoized (insn);
5610 result = false;
5612 if (code >= 0)
5614 extract_insn (insn);
5615 /* We want constrain operands to treat this insn strictly in
5616 its validity determination, i.e., the way it would after
5617 reload has completed. */
5618 result = constrain_operands (1);
5621 delete_insns_since (last);
5624 /* Restore the original value at each changed address within R1. */
5625 while (!VEC_empty (rtx_p, substitute_stack))
5627 rtx *where = VEC_pop (rtx_p, substitute_stack);
5628 *where = rld[r2].in;
5631 return result;
5634 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5635 Return 0 otherwise.
5637 This function uses the same algorithm as reload_reg_free_p above. */
5639 static int
5640 reloads_conflict (int r1, int r2)
5642 enum reload_type r1_type = rld[r1].when_needed;
5643 enum reload_type r2_type = rld[r2].when_needed;
5644 int r1_opnum = rld[r1].opnum;
5645 int r2_opnum = rld[r2].opnum;
5647 /* RELOAD_OTHER conflicts with everything. */
5648 if (r2_type == RELOAD_OTHER)
5649 return 1;
5651 /* Otherwise, check conflicts differently for each type. */
5653 switch (r1_type)
5655 case RELOAD_FOR_INPUT:
5656 return (r2_type == RELOAD_FOR_INSN
5657 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5658 || r2_type == RELOAD_FOR_OPADDR_ADDR
5659 || r2_type == RELOAD_FOR_INPUT
5660 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5661 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5662 && r2_opnum > r1_opnum));
5664 case RELOAD_FOR_INPUT_ADDRESS:
5665 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5666 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5668 case RELOAD_FOR_INPADDR_ADDRESS:
5669 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5670 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5672 case RELOAD_FOR_OUTPUT_ADDRESS:
5673 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5674 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5676 case RELOAD_FOR_OUTADDR_ADDRESS:
5677 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5678 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5680 case RELOAD_FOR_OPERAND_ADDRESS:
5681 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5682 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5683 && (!reloads_unique_chain_p (r1, r2)
5684 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5686 case RELOAD_FOR_OPADDR_ADDR:
5687 return (r2_type == RELOAD_FOR_INPUT
5688 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5690 case RELOAD_FOR_OUTPUT:
5691 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5692 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5693 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5694 && r2_opnum >= r1_opnum));
5696 case RELOAD_FOR_INSN:
5697 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5698 || r2_type == RELOAD_FOR_INSN
5699 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5701 case RELOAD_FOR_OTHER_ADDRESS:
5702 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5704 case RELOAD_OTHER:
5705 return 1;
5707 default:
5708 gcc_unreachable ();
5712 /* Indexed by reload number, 1 if incoming value
5713 inherited from previous insns. */
5714 static char reload_inherited[MAX_RELOADS];
5716 /* For an inherited reload, this is the insn the reload was inherited from,
5717 if we know it. Otherwise, this is 0. */
5718 static rtx reload_inheritance_insn[MAX_RELOADS];
5720 /* If nonzero, this is a place to get the value of the reload,
5721 rather than using reload_in. */
5722 static rtx reload_override_in[MAX_RELOADS];
5724 /* For each reload, the hard register number of the register used,
5725 or -1 if we did not need a register for this reload. */
5726 static int reload_spill_index[MAX_RELOADS];
5728 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5729 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5731 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5732 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5734 /* Subroutine of free_for_value_p, used to check a single register.
5735 START_REGNO is the starting regno of the full reload register
5736 (possibly comprising multiple hard registers) that we are considering. */
5738 static int
5739 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5740 enum reload_type type, rtx value, rtx out,
5741 int reloadnum, int ignore_address_reloads)
5743 int time1;
5744 /* Set if we see an input reload that must not share its reload register
5745 with any new earlyclobber, but might otherwise share the reload
5746 register with an output or input-output reload. */
5747 int check_earlyclobber = 0;
5748 int i;
5749 int copy = 0;
5751 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5752 return 0;
5754 if (out == const0_rtx)
5756 copy = 1;
5757 out = NULL_RTX;
5760 /* We use some pseudo 'time' value to check if the lifetimes of the
5761 new register use would overlap with the one of a previous reload
5762 that is not read-only or uses a different value.
5763 The 'time' used doesn't have to be linear in any shape or form, just
5764 monotonic.
5765 Some reload types use different 'buckets' for each operand.
5766 So there are MAX_RECOG_OPERANDS different time values for each
5767 such reload type.
5768 We compute TIME1 as the time when the register for the prospective
5769 new reload ceases to be live, and TIME2 for each existing
5770 reload as the time when that the reload register of that reload
5771 becomes live.
5772 Where there is little to be gained by exact lifetime calculations,
5773 we just make conservative assumptions, i.e. a longer lifetime;
5774 this is done in the 'default:' cases. */
5775 switch (type)
5777 case RELOAD_FOR_OTHER_ADDRESS:
5778 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5779 time1 = copy ? 0 : 1;
5780 break;
5781 case RELOAD_OTHER:
5782 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5783 break;
5784 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5785 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5786 respectively, to the time values for these, we get distinct time
5787 values. To get distinct time values for each operand, we have to
5788 multiply opnum by at least three. We round that up to four because
5789 multiply by four is often cheaper. */
5790 case RELOAD_FOR_INPADDR_ADDRESS:
5791 time1 = opnum * 4 + 2;
5792 break;
5793 case RELOAD_FOR_INPUT_ADDRESS:
5794 time1 = opnum * 4 + 3;
5795 break;
5796 case RELOAD_FOR_INPUT:
5797 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5798 executes (inclusive). */
5799 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5800 break;
5801 case RELOAD_FOR_OPADDR_ADDR:
5802 /* opnum * 4 + 4
5803 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5804 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5805 break;
5806 case RELOAD_FOR_OPERAND_ADDRESS:
5807 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5808 is executed. */
5809 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5810 break;
5811 case RELOAD_FOR_OUTADDR_ADDRESS:
5812 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5813 break;
5814 case RELOAD_FOR_OUTPUT_ADDRESS:
5815 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5816 break;
5817 default:
5818 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5821 for (i = 0; i < n_reloads; i++)
5823 rtx reg = rld[i].reg_rtx;
5824 if (reg && REG_P (reg)
5825 && ((unsigned) regno - true_regnum (reg)
5826 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5827 && i != reloadnum)
5829 rtx other_input = rld[i].in;
5831 /* If the other reload loads the same input value, that
5832 will not cause a conflict only if it's loading it into
5833 the same register. */
5834 if (true_regnum (reg) != start_regno)
5835 other_input = NULL_RTX;
5836 if (! other_input || ! rtx_equal_p (other_input, value)
5837 || rld[i].out || out)
5839 int time2;
5840 switch (rld[i].when_needed)
5842 case RELOAD_FOR_OTHER_ADDRESS:
5843 time2 = 0;
5844 break;
5845 case RELOAD_FOR_INPADDR_ADDRESS:
5846 /* find_reloads makes sure that a
5847 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5848 by at most one - the first -
5849 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5850 address reload is inherited, the address address reload
5851 goes away, so we can ignore this conflict. */
5852 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5853 && ignore_address_reloads
5854 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5855 Then the address address is still needed to store
5856 back the new address. */
5857 && ! rld[reloadnum].out)
5858 continue;
5859 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5860 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5861 reloads go away. */
5862 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5863 && ignore_address_reloads
5864 /* Unless we are reloading an auto_inc expression. */
5865 && ! rld[reloadnum].out)
5866 continue;
5867 time2 = rld[i].opnum * 4 + 2;
5868 break;
5869 case RELOAD_FOR_INPUT_ADDRESS:
5870 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5871 && ignore_address_reloads
5872 && ! rld[reloadnum].out)
5873 continue;
5874 time2 = rld[i].opnum * 4 + 3;
5875 break;
5876 case RELOAD_FOR_INPUT:
5877 time2 = rld[i].opnum * 4 + 4;
5878 check_earlyclobber = 1;
5879 break;
5880 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5881 == MAX_RECOG_OPERAND * 4 */
5882 case RELOAD_FOR_OPADDR_ADDR:
5883 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5884 && ignore_address_reloads
5885 && ! rld[reloadnum].out)
5886 continue;
5887 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5888 break;
5889 case RELOAD_FOR_OPERAND_ADDRESS:
5890 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5891 check_earlyclobber = 1;
5892 break;
5893 case RELOAD_FOR_INSN:
5894 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5895 break;
5896 case RELOAD_FOR_OUTPUT:
5897 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5898 instruction is executed. */
5899 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5900 break;
5901 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5902 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5903 value. */
5904 case RELOAD_FOR_OUTADDR_ADDRESS:
5905 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5906 && ignore_address_reloads
5907 && ! rld[reloadnum].out)
5908 continue;
5909 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5910 break;
5911 case RELOAD_FOR_OUTPUT_ADDRESS:
5912 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5913 break;
5914 case RELOAD_OTHER:
5915 /* If there is no conflict in the input part, handle this
5916 like an output reload. */
5917 if (! rld[i].in || rtx_equal_p (other_input, value))
5919 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5920 /* Earlyclobbered outputs must conflict with inputs. */
5921 if (earlyclobber_operand_p (rld[i].out))
5922 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5924 break;
5926 time2 = 1;
5927 /* RELOAD_OTHER might be live beyond instruction execution,
5928 but this is not obvious when we set time2 = 1. So check
5929 here if there might be a problem with the new reload
5930 clobbering the register used by the RELOAD_OTHER. */
5931 if (out)
5932 return 0;
5933 break;
5934 default:
5935 return 0;
5937 if ((time1 >= time2
5938 && (! rld[i].in || rld[i].out
5939 || ! rtx_equal_p (other_input, value)))
5940 || (out && rld[reloadnum].out_reg
5941 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5942 return 0;
5947 /* Earlyclobbered outputs must conflict with inputs. */
5948 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5949 return 0;
5951 return 1;
5954 /* Return 1 if the value in reload reg REGNO, as used by a reload
5955 needed for the part of the insn specified by OPNUM and TYPE,
5956 may be used to load VALUE into it.
5958 MODE is the mode in which the register is used, this is needed to
5959 determine how many hard regs to test.
5961 Other read-only reloads with the same value do not conflict
5962 unless OUT is nonzero and these other reloads have to live while
5963 output reloads live.
5964 If OUT is CONST0_RTX, this is a special case: it means that the
5965 test should not be for using register REGNO as reload register, but
5966 for copying from register REGNO into the reload register.
5968 RELOADNUM is the number of the reload we want to load this value for;
5969 a reload does not conflict with itself.
5971 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5972 reloads that load an address for the very reload we are considering.
5974 The caller has to make sure that there is no conflict with the return
5975 register. */
5977 static int
5978 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5979 enum reload_type type, rtx value, rtx out, int reloadnum,
5980 int ignore_address_reloads)
5982 int nregs = hard_regno_nregs[regno][mode];
5983 while (nregs-- > 0)
5984 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5985 value, out, reloadnum,
5986 ignore_address_reloads))
5987 return 0;
5988 return 1;
5991 /* Return nonzero if the rtx X is invariant over the current function. */
5992 /* ??? Actually, the places where we use this expect exactly what is
5993 tested here, and not everything that is function invariant. In
5994 particular, the frame pointer and arg pointer are special cased;
5995 pic_offset_table_rtx is not, and we must not spill these things to
5996 memory. */
5999 function_invariant_p (const_rtx x)
6001 if (CONSTANT_P (x))
6002 return 1;
6003 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6004 return 1;
6005 if (GET_CODE (x) == PLUS
6006 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6007 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6008 return 1;
6009 return 0;
6012 /* Determine whether the reload reg X overlaps any rtx'es used for
6013 overriding inheritance. Return nonzero if so. */
6015 static int
6016 conflicts_with_override (rtx x)
6018 int i;
6019 for (i = 0; i < n_reloads; i++)
6020 if (reload_override_in[i]
6021 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6022 return 1;
6023 return 0;
6026 /* Give an error message saying we failed to find a reload for INSN,
6027 and clear out reload R. */
6028 static void
6029 failed_reload (rtx insn, int r)
6031 if (asm_noperands (PATTERN (insn)) < 0)
6032 /* It's the compiler's fault. */
6033 fatal_insn ("could not find a spill register", insn);
6035 /* It's the user's fault; the operand's mode and constraint
6036 don't match. Disable this reload so we don't crash in final. */
6037 error_for_asm (insn,
6038 "%<asm%> operand constraint incompatible with operand size");
6039 rld[r].in = 0;
6040 rld[r].out = 0;
6041 rld[r].reg_rtx = 0;
6042 rld[r].optional = 1;
6043 rld[r].secondary_p = 1;
6046 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6047 for reload R. If it's valid, get an rtx for it. Return nonzero if
6048 successful. */
6049 static int
6050 set_reload_reg (int i, int r)
6052 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6053 parameter. */
6054 int regno ATTRIBUTE_UNUSED;
6055 rtx reg = spill_reg_rtx[i];
6057 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6058 spill_reg_rtx[i] = reg
6059 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6061 regno = true_regnum (reg);
6063 /* Detect when the reload reg can't hold the reload mode.
6064 This used to be one `if', but Sequent compiler can't handle that. */
6065 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6067 enum machine_mode test_mode = VOIDmode;
6068 if (rld[r].in)
6069 test_mode = GET_MODE (rld[r].in);
6070 /* If rld[r].in has VOIDmode, it means we will load it
6071 in whatever mode the reload reg has: to wit, rld[r].mode.
6072 We have already tested that for validity. */
6073 /* Aside from that, we need to test that the expressions
6074 to reload from or into have modes which are valid for this
6075 reload register. Otherwise the reload insns would be invalid. */
6076 if (! (rld[r].in != 0 && test_mode != VOIDmode
6077 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6078 if (! (rld[r].out != 0
6079 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6081 /* The reg is OK. */
6082 last_spill_reg = i;
6084 /* Mark as in use for this insn the reload regs we use
6085 for this. */
6086 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6087 rld[r].when_needed, rld[r].mode);
6089 rld[r].reg_rtx = reg;
6090 reload_spill_index[r] = spill_regs[i];
6091 return 1;
6094 return 0;
6097 /* Find a spill register to use as a reload register for reload R.
6098 LAST_RELOAD is nonzero if this is the last reload for the insn being
6099 processed.
6101 Set rld[R].reg_rtx to the register allocated.
6103 We return 1 if successful, or 0 if we couldn't find a spill reg and
6104 we didn't change anything. */
6106 static int
6107 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6108 int last_reload)
6110 int i, pass, count;
6112 /* If we put this reload ahead, thinking it is a group,
6113 then insist on finding a group. Otherwise we can grab a
6114 reg that some other reload needs.
6115 (That can happen when we have a 68000 DATA_OR_FP_REG
6116 which is a group of data regs or one fp reg.)
6117 We need not be so restrictive if there are no more reloads
6118 for this insn.
6120 ??? Really it would be nicer to have smarter handling
6121 for that kind of reg class, where a problem like this is normal.
6122 Perhaps those classes should be avoided for reloading
6123 by use of more alternatives. */
6125 int force_group = rld[r].nregs > 1 && ! last_reload;
6127 /* If we want a single register and haven't yet found one,
6128 take any reg in the right class and not in use.
6129 If we want a consecutive group, here is where we look for it.
6131 We use three passes so we can first look for reload regs to
6132 reuse, which are already in use for other reloads in this insn,
6133 and only then use additional registers which are not "bad", then
6134 finally any register.
6136 I think that maximizing reuse is needed to make sure we don't
6137 run out of reload regs. Suppose we have three reloads, and
6138 reloads A and B can share regs. These need two regs.
6139 Suppose A and B are given different regs.
6140 That leaves none for C. */
6141 for (pass = 0; pass < 3; pass++)
6143 /* I is the index in spill_regs.
6144 We advance it round-robin between insns to use all spill regs
6145 equally, so that inherited reloads have a chance
6146 of leapfrogging each other. */
6148 i = last_spill_reg;
6150 for (count = 0; count < n_spills; count++)
6152 int rclass = (int) rld[r].rclass;
6153 int regnum;
6155 i++;
6156 if (i >= n_spills)
6157 i -= n_spills;
6158 regnum = spill_regs[i];
6160 if ((reload_reg_free_p (regnum, rld[r].opnum,
6161 rld[r].when_needed)
6162 || (rld[r].in
6163 /* We check reload_reg_used to make sure we
6164 don't clobber the return register. */
6165 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6166 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6167 rld[r].when_needed, rld[r].in,
6168 rld[r].out, r, 1)))
6169 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6170 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6171 /* Look first for regs to share, then for unshared. But
6172 don't share regs used for inherited reloads; they are
6173 the ones we want to preserve. */
6174 && (pass
6175 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6176 regnum)
6177 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6178 regnum))))
6180 int nr = hard_regno_nregs[regnum][rld[r].mode];
6182 /* During the second pass we want to avoid reload registers
6183 which are "bad" for this reload. */
6184 if (pass == 1
6185 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6186 continue;
6188 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6189 (on 68000) got us two FP regs. If NR is 1,
6190 we would reject both of them. */
6191 if (force_group)
6192 nr = rld[r].nregs;
6193 /* If we need only one reg, we have already won. */
6194 if (nr == 1)
6196 /* But reject a single reg if we demand a group. */
6197 if (force_group)
6198 continue;
6199 break;
6201 /* Otherwise check that as many consecutive regs as we need
6202 are available here. */
6203 while (nr > 1)
6205 int regno = regnum + nr - 1;
6206 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6207 && spill_reg_order[regno] >= 0
6208 && reload_reg_free_p (regno, rld[r].opnum,
6209 rld[r].when_needed)))
6210 break;
6211 nr--;
6213 if (nr == 1)
6214 break;
6218 /* If we found something on the current pass, omit later passes. */
6219 if (count < n_spills)
6220 break;
6223 /* We should have found a spill register by now. */
6224 if (count >= n_spills)
6225 return 0;
6227 /* I is the index in SPILL_REG_RTX of the reload register we are to
6228 allocate. Get an rtx for it and find its register number. */
6230 return set_reload_reg (i, r);
6233 /* Initialize all the tables needed to allocate reload registers.
6234 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6235 is the array we use to restore the reg_rtx field for every reload. */
6237 static void
6238 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6240 int i;
6242 for (i = 0; i < n_reloads; i++)
6243 rld[i].reg_rtx = save_reload_reg_rtx[i];
6245 memset (reload_inherited, 0, MAX_RELOADS);
6246 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6247 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6249 CLEAR_HARD_REG_SET (reload_reg_used);
6250 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6251 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6252 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6253 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6254 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6256 CLEAR_HARD_REG_SET (reg_used_in_insn);
6258 HARD_REG_SET tmp;
6259 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6260 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6261 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6262 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6263 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6264 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6267 for (i = 0; i < reload_n_operands; i++)
6269 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6270 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6271 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6272 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6273 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6274 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6277 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6279 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6281 for (i = 0; i < n_reloads; i++)
6282 /* If we have already decided to use a certain register,
6283 don't use it in another way. */
6284 if (rld[i].reg_rtx)
6285 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6286 rld[i].when_needed, rld[i].mode);
6289 /* Assign hard reg targets for the pseudo-registers we must reload
6290 into hard regs for this insn.
6291 Also output the instructions to copy them in and out of the hard regs.
6293 For machines with register classes, we are responsible for
6294 finding a reload reg in the proper class. */
6296 static void
6297 choose_reload_regs (struct insn_chain *chain)
6299 rtx insn = chain->insn;
6300 int i, j;
6301 unsigned int max_group_size = 1;
6302 enum reg_class group_class = NO_REGS;
6303 int pass, win, inheritance;
6305 rtx save_reload_reg_rtx[MAX_RELOADS];
6307 /* In order to be certain of getting the registers we need,
6308 we must sort the reloads into order of increasing register class.
6309 Then our grabbing of reload registers will parallel the process
6310 that provided the reload registers.
6312 Also note whether any of the reloads wants a consecutive group of regs.
6313 If so, record the maximum size of the group desired and what
6314 register class contains all the groups needed by this insn. */
6316 for (j = 0; j < n_reloads; j++)
6318 reload_order[j] = j;
6319 if (rld[j].reg_rtx != NULL_RTX)
6321 gcc_assert (REG_P (rld[j].reg_rtx)
6322 && HARD_REGISTER_P (rld[j].reg_rtx));
6323 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6325 else
6326 reload_spill_index[j] = -1;
6328 if (rld[j].nregs > 1)
6330 max_group_size = MAX (rld[j].nregs, max_group_size);
6331 group_class
6332 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6335 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6338 if (n_reloads > 1)
6339 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6341 /* If -O, try first with inheritance, then turning it off.
6342 If not -O, don't do inheritance.
6343 Using inheritance when not optimizing leads to paradoxes
6344 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6345 because one side of the comparison might be inherited. */
6346 win = 0;
6347 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6349 choose_reload_regs_init (chain, save_reload_reg_rtx);
6351 /* Process the reloads in order of preference just found.
6352 Beyond this point, subregs can be found in reload_reg_rtx.
6354 This used to look for an existing reloaded home for all of the
6355 reloads, and only then perform any new reloads. But that could lose
6356 if the reloads were done out of reg-class order because a later
6357 reload with a looser constraint might have an old home in a register
6358 needed by an earlier reload with a tighter constraint.
6360 To solve this, we make two passes over the reloads, in the order
6361 described above. In the first pass we try to inherit a reload
6362 from a previous insn. If there is a later reload that needs a
6363 class that is a proper subset of the class being processed, we must
6364 also allocate a spill register during the first pass.
6366 Then make a second pass over the reloads to allocate any reloads
6367 that haven't been given registers yet. */
6369 for (j = 0; j < n_reloads; j++)
6371 int r = reload_order[j];
6372 rtx search_equiv = NULL_RTX;
6374 /* Ignore reloads that got marked inoperative. */
6375 if (rld[r].out == 0 && rld[r].in == 0
6376 && ! rld[r].secondary_p)
6377 continue;
6379 /* If find_reloads chose to use reload_in or reload_out as a reload
6380 register, we don't need to chose one. Otherwise, try even if it
6381 found one since we might save an insn if we find the value lying
6382 around.
6383 Try also when reload_in is a pseudo without a hard reg. */
6384 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6385 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6386 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6387 && !MEM_P (rld[r].in)
6388 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6389 continue;
6391 #if 0 /* No longer needed for correct operation.
6392 It might give better code, or might not; worth an experiment? */
6393 /* If this is an optional reload, we can't inherit from earlier insns
6394 until we are sure that any non-optional reloads have been allocated.
6395 The following code takes advantage of the fact that optional reloads
6396 are at the end of reload_order. */
6397 if (rld[r].optional != 0)
6398 for (i = 0; i < j; i++)
6399 if ((rld[reload_order[i]].out != 0
6400 || rld[reload_order[i]].in != 0
6401 || rld[reload_order[i]].secondary_p)
6402 && ! rld[reload_order[i]].optional
6403 && rld[reload_order[i]].reg_rtx == 0)
6404 allocate_reload_reg (chain, reload_order[i], 0);
6405 #endif
6407 /* First see if this pseudo is already available as reloaded
6408 for a previous insn. We cannot try to inherit for reloads
6409 that are smaller than the maximum number of registers needed
6410 for groups unless the register we would allocate cannot be used
6411 for the groups.
6413 We could check here to see if this is a secondary reload for
6414 an object that is already in a register of the desired class.
6415 This would avoid the need for the secondary reload register.
6416 But this is complex because we can't easily determine what
6417 objects might want to be loaded via this reload. So let a
6418 register be allocated here. In `emit_reload_insns' we suppress
6419 one of the loads in the case described above. */
6421 if (inheritance)
6423 int byte = 0;
6424 int regno = -1;
6425 enum machine_mode mode = VOIDmode;
6427 if (rld[r].in == 0)
6429 else if (REG_P (rld[r].in))
6431 regno = REGNO (rld[r].in);
6432 mode = GET_MODE (rld[r].in);
6434 else if (REG_P (rld[r].in_reg))
6436 regno = REGNO (rld[r].in_reg);
6437 mode = GET_MODE (rld[r].in_reg);
6439 else if (GET_CODE (rld[r].in_reg) == SUBREG
6440 && REG_P (SUBREG_REG (rld[r].in_reg)))
6442 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6443 if (regno < FIRST_PSEUDO_REGISTER)
6444 regno = subreg_regno (rld[r].in_reg);
6445 else
6446 byte = SUBREG_BYTE (rld[r].in_reg);
6447 mode = GET_MODE (rld[r].in_reg);
6449 #ifdef AUTO_INC_DEC
6450 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6451 && REG_P (XEXP (rld[r].in_reg, 0)))
6453 regno = REGNO (XEXP (rld[r].in_reg, 0));
6454 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6455 rld[r].out = rld[r].in;
6457 #endif
6458 #if 0
6459 /* This won't work, since REGNO can be a pseudo reg number.
6460 Also, it takes much more hair to keep track of all the things
6461 that can invalidate an inherited reload of part of a pseudoreg. */
6462 else if (GET_CODE (rld[r].in) == SUBREG
6463 && REG_P (SUBREG_REG (rld[r].in)))
6464 regno = subreg_regno (rld[r].in);
6465 #endif
6467 if (regno >= 0
6468 && reg_last_reload_reg[regno] != 0
6469 #ifdef CANNOT_CHANGE_MODE_CLASS
6470 /* Verify that the register it's in can be used in
6471 mode MODE. */
6472 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6473 GET_MODE (reg_last_reload_reg[regno]),
6474 mode)
6475 #endif
6478 enum reg_class rclass = rld[r].rclass, last_class;
6479 rtx last_reg = reg_last_reload_reg[regno];
6480 enum machine_mode need_mode;
6482 i = REGNO (last_reg);
6483 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6484 last_class = REGNO_REG_CLASS (i);
6486 if (byte == 0)
6487 need_mode = mode;
6488 else
6489 need_mode
6490 = smallest_mode_for_size
6491 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6492 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6493 ? MODE_INT : GET_MODE_CLASS (mode));
6495 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6496 >= GET_MODE_SIZE (need_mode))
6497 && reg_reloaded_contents[i] == regno
6498 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6499 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6500 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6501 /* Even if we can't use this register as a reload
6502 register, we might use it for reload_override_in,
6503 if copying it to the desired class is cheap
6504 enough. */
6505 || ((register_move_cost (mode, last_class, rclass)
6506 < memory_move_cost (mode, rclass, true))
6507 && (secondary_reload_class (1, rclass, mode,
6508 last_reg)
6509 == NO_REGS)
6510 #ifdef SECONDARY_MEMORY_NEEDED
6511 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6512 mode)
6513 #endif
6516 && (rld[r].nregs == max_group_size
6517 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6519 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6520 rld[r].when_needed, rld[r].in,
6521 const0_rtx, r, 1))
6523 /* If a group is needed, verify that all the subsequent
6524 registers still have their values intact. */
6525 int nr = hard_regno_nregs[i][rld[r].mode];
6526 int k;
6528 for (k = 1; k < nr; k++)
6529 if (reg_reloaded_contents[i + k] != regno
6530 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6531 break;
6533 if (k == nr)
6535 int i1;
6536 int bad_for_class;
6538 last_reg = (GET_MODE (last_reg) == mode
6539 ? last_reg : gen_rtx_REG (mode, i));
6541 bad_for_class = 0;
6542 for (k = 0; k < nr; k++)
6543 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6544 i+k);
6546 /* We found a register that contains the
6547 value we need. If this register is the
6548 same as an `earlyclobber' operand of the
6549 current insn, just mark it as a place to
6550 reload from since we can't use it as the
6551 reload register itself. */
6553 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6554 if (reg_overlap_mentioned_for_reload_p
6555 (reg_last_reload_reg[regno],
6556 reload_earlyclobbers[i1]))
6557 break;
6559 if (i1 != n_earlyclobbers
6560 || ! (free_for_value_p (i, rld[r].mode,
6561 rld[r].opnum,
6562 rld[r].when_needed, rld[r].in,
6563 rld[r].out, r, 1))
6564 /* Don't use it if we'd clobber a pseudo reg. */
6565 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6566 && rld[r].out
6567 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6568 /* Don't clobber the frame pointer. */
6569 || (i == HARD_FRAME_POINTER_REGNUM
6570 && frame_pointer_needed
6571 && rld[r].out)
6572 /* Don't really use the inherited spill reg
6573 if we need it wider than we've got it. */
6574 || (GET_MODE_SIZE (rld[r].mode)
6575 > GET_MODE_SIZE (mode))
6576 || bad_for_class
6578 /* If find_reloads chose reload_out as reload
6579 register, stay with it - that leaves the
6580 inherited register for subsequent reloads. */
6581 || (rld[r].out && rld[r].reg_rtx
6582 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6584 if (! rld[r].optional)
6586 reload_override_in[r] = last_reg;
6587 reload_inheritance_insn[r]
6588 = reg_reloaded_insn[i];
6591 else
6593 int k;
6594 /* We can use this as a reload reg. */
6595 /* Mark the register as in use for this part of
6596 the insn. */
6597 mark_reload_reg_in_use (i,
6598 rld[r].opnum,
6599 rld[r].when_needed,
6600 rld[r].mode);
6601 rld[r].reg_rtx = last_reg;
6602 reload_inherited[r] = 1;
6603 reload_inheritance_insn[r]
6604 = reg_reloaded_insn[i];
6605 reload_spill_index[r] = i;
6606 for (k = 0; k < nr; k++)
6607 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6608 i + k);
6615 /* Here's another way to see if the value is already lying around. */
6616 if (inheritance
6617 && rld[r].in != 0
6618 && ! reload_inherited[r]
6619 && rld[r].out == 0
6620 && (CONSTANT_P (rld[r].in)
6621 || GET_CODE (rld[r].in) == PLUS
6622 || REG_P (rld[r].in)
6623 || MEM_P (rld[r].in))
6624 && (rld[r].nregs == max_group_size
6625 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6626 search_equiv = rld[r].in;
6628 if (search_equiv)
6630 rtx equiv
6631 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6632 -1, NULL, 0, rld[r].mode);
6633 int regno = 0;
6635 if (equiv != 0)
6637 if (REG_P (equiv))
6638 regno = REGNO (equiv);
6639 else
6641 /* This must be a SUBREG of a hard register.
6642 Make a new REG since this might be used in an
6643 address and not all machines support SUBREGs
6644 there. */
6645 gcc_assert (GET_CODE (equiv) == SUBREG);
6646 regno = subreg_regno (equiv);
6647 equiv = gen_rtx_REG (rld[r].mode, regno);
6648 /* If we choose EQUIV as the reload register, but the
6649 loop below decides to cancel the inheritance, we'll
6650 end up reloading EQUIV in rld[r].mode, not the mode
6651 it had originally. That isn't safe when EQUIV isn't
6652 available as a spill register since its value might
6653 still be live at this point. */
6654 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6655 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6656 equiv = 0;
6660 /* If we found a spill reg, reject it unless it is free
6661 and of the desired class. */
6662 if (equiv != 0)
6664 int regs_used = 0;
6665 int bad_for_class = 0;
6666 int max_regno = regno + rld[r].nregs;
6668 for (i = regno; i < max_regno; i++)
6670 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6672 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6676 if ((regs_used
6677 && ! free_for_value_p (regno, rld[r].mode,
6678 rld[r].opnum, rld[r].when_needed,
6679 rld[r].in, rld[r].out, r, 1))
6680 || bad_for_class)
6681 equiv = 0;
6684 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6685 equiv = 0;
6687 /* We found a register that contains the value we need.
6688 If this register is the same as an `earlyclobber' operand
6689 of the current insn, just mark it as a place to reload from
6690 since we can't use it as the reload register itself. */
6692 if (equiv != 0)
6693 for (i = 0; i < n_earlyclobbers; i++)
6694 if (reg_overlap_mentioned_for_reload_p (equiv,
6695 reload_earlyclobbers[i]))
6697 if (! rld[r].optional)
6698 reload_override_in[r] = equiv;
6699 equiv = 0;
6700 break;
6703 /* If the equiv register we have found is explicitly clobbered
6704 in the current insn, it depends on the reload type if we
6705 can use it, use it for reload_override_in, or not at all.
6706 In particular, we then can't use EQUIV for a
6707 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6709 if (equiv != 0)
6711 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6712 switch (rld[r].when_needed)
6714 case RELOAD_FOR_OTHER_ADDRESS:
6715 case RELOAD_FOR_INPADDR_ADDRESS:
6716 case RELOAD_FOR_INPUT_ADDRESS:
6717 case RELOAD_FOR_OPADDR_ADDR:
6718 break;
6719 case RELOAD_OTHER:
6720 case RELOAD_FOR_INPUT:
6721 case RELOAD_FOR_OPERAND_ADDRESS:
6722 if (! rld[r].optional)
6723 reload_override_in[r] = equiv;
6724 /* Fall through. */
6725 default:
6726 equiv = 0;
6727 break;
6729 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6730 switch (rld[r].when_needed)
6732 case RELOAD_FOR_OTHER_ADDRESS:
6733 case RELOAD_FOR_INPADDR_ADDRESS:
6734 case RELOAD_FOR_INPUT_ADDRESS:
6735 case RELOAD_FOR_OPADDR_ADDR:
6736 case RELOAD_FOR_OPERAND_ADDRESS:
6737 case RELOAD_FOR_INPUT:
6738 break;
6739 case RELOAD_OTHER:
6740 if (! rld[r].optional)
6741 reload_override_in[r] = equiv;
6742 /* Fall through. */
6743 default:
6744 equiv = 0;
6745 break;
6749 /* If we found an equivalent reg, say no code need be generated
6750 to load it, and use it as our reload reg. */
6751 if (equiv != 0
6752 && (regno != HARD_FRAME_POINTER_REGNUM
6753 || !frame_pointer_needed))
6755 int nr = hard_regno_nregs[regno][rld[r].mode];
6756 int k;
6757 rld[r].reg_rtx = equiv;
6758 reload_spill_index[r] = regno;
6759 reload_inherited[r] = 1;
6761 /* If reg_reloaded_valid is not set for this register,
6762 there might be a stale spill_reg_store lying around.
6763 We must clear it, since otherwise emit_reload_insns
6764 might delete the store. */
6765 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6766 spill_reg_store[regno] = NULL_RTX;
6767 /* If any of the hard registers in EQUIV are spill
6768 registers, mark them as in use for this insn. */
6769 for (k = 0; k < nr; k++)
6771 i = spill_reg_order[regno + k];
6772 if (i >= 0)
6774 mark_reload_reg_in_use (regno, rld[r].opnum,
6775 rld[r].when_needed,
6776 rld[r].mode);
6777 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6778 regno + k);
6784 /* If we found a register to use already, or if this is an optional
6785 reload, we are done. */
6786 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6787 continue;
6789 #if 0
6790 /* No longer needed for correct operation. Might or might
6791 not give better code on the average. Want to experiment? */
6793 /* See if there is a later reload that has a class different from our
6794 class that intersects our class or that requires less register
6795 than our reload. If so, we must allocate a register to this
6796 reload now, since that reload might inherit a previous reload
6797 and take the only available register in our class. Don't do this
6798 for optional reloads since they will force all previous reloads
6799 to be allocated. Also don't do this for reloads that have been
6800 turned off. */
6802 for (i = j + 1; i < n_reloads; i++)
6804 int s = reload_order[i];
6806 if ((rld[s].in == 0 && rld[s].out == 0
6807 && ! rld[s].secondary_p)
6808 || rld[s].optional)
6809 continue;
6811 if ((rld[s].rclass != rld[r].rclass
6812 && reg_classes_intersect_p (rld[r].rclass,
6813 rld[s].rclass))
6814 || rld[s].nregs < rld[r].nregs)
6815 break;
6818 if (i == n_reloads)
6819 continue;
6821 allocate_reload_reg (chain, r, j == n_reloads - 1);
6822 #endif
6825 /* Now allocate reload registers for anything non-optional that
6826 didn't get one yet. */
6827 for (j = 0; j < n_reloads; j++)
6829 int r = reload_order[j];
6831 /* Ignore reloads that got marked inoperative. */
6832 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6833 continue;
6835 /* Skip reloads that already have a register allocated or are
6836 optional. */
6837 if (rld[r].reg_rtx != 0 || rld[r].optional)
6838 continue;
6840 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6841 break;
6844 /* If that loop got all the way, we have won. */
6845 if (j == n_reloads)
6847 win = 1;
6848 break;
6851 /* Loop around and try without any inheritance. */
6854 if (! win)
6856 /* First undo everything done by the failed attempt
6857 to allocate with inheritance. */
6858 choose_reload_regs_init (chain, save_reload_reg_rtx);
6860 /* Some sanity tests to verify that the reloads found in the first
6861 pass are identical to the ones we have now. */
6862 gcc_assert (chain->n_reloads == n_reloads);
6864 for (i = 0; i < n_reloads; i++)
6866 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6867 continue;
6868 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6869 for (j = 0; j < n_spills; j++)
6870 if (spill_regs[j] == chain->rld[i].regno)
6871 if (! set_reload_reg (j, i))
6872 failed_reload (chain->insn, i);
6876 /* If we thought we could inherit a reload, because it seemed that
6877 nothing else wanted the same reload register earlier in the insn,
6878 verify that assumption, now that all reloads have been assigned.
6879 Likewise for reloads where reload_override_in has been set. */
6881 /* If doing expensive optimizations, do one preliminary pass that doesn't
6882 cancel any inheritance, but removes reloads that have been needed only
6883 for reloads that we know can be inherited. */
6884 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6886 for (j = 0; j < n_reloads; j++)
6888 int r = reload_order[j];
6889 rtx check_reg;
6890 if (reload_inherited[r] && rld[r].reg_rtx)
6891 check_reg = rld[r].reg_rtx;
6892 else if (reload_override_in[r]
6893 && (REG_P (reload_override_in[r])
6894 || GET_CODE (reload_override_in[r]) == SUBREG))
6895 check_reg = reload_override_in[r];
6896 else
6897 continue;
6898 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6899 rld[r].opnum, rld[r].when_needed, rld[r].in,
6900 (reload_inherited[r]
6901 ? rld[r].out : const0_rtx),
6902 r, 1))
6904 if (pass)
6905 continue;
6906 reload_inherited[r] = 0;
6907 reload_override_in[r] = 0;
6909 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6910 reload_override_in, then we do not need its related
6911 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6912 likewise for other reload types.
6913 We handle this by removing a reload when its only replacement
6914 is mentioned in reload_in of the reload we are going to inherit.
6915 A special case are auto_inc expressions; even if the input is
6916 inherited, we still need the address for the output. We can
6917 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6918 If we succeeded removing some reload and we are doing a preliminary
6919 pass just to remove such reloads, make another pass, since the
6920 removal of one reload might allow us to inherit another one. */
6921 else if (rld[r].in
6922 && rld[r].out != rld[r].in
6923 && remove_address_replacements (rld[r].in) && pass)
6924 pass = 2;
6928 /* Now that reload_override_in is known valid,
6929 actually override reload_in. */
6930 for (j = 0; j < n_reloads; j++)
6931 if (reload_override_in[j])
6932 rld[j].in = reload_override_in[j];
6934 /* If this reload won't be done because it has been canceled or is
6935 optional and not inherited, clear reload_reg_rtx so other
6936 routines (such as subst_reloads) don't get confused. */
6937 for (j = 0; j < n_reloads; j++)
6938 if (rld[j].reg_rtx != 0
6939 && ((rld[j].optional && ! reload_inherited[j])
6940 || (rld[j].in == 0 && rld[j].out == 0
6941 && ! rld[j].secondary_p)))
6943 int regno = true_regnum (rld[j].reg_rtx);
6945 if (spill_reg_order[regno] >= 0)
6946 clear_reload_reg_in_use (regno, rld[j].opnum,
6947 rld[j].when_needed, rld[j].mode);
6948 rld[j].reg_rtx = 0;
6949 reload_spill_index[j] = -1;
6952 /* Record which pseudos and which spill regs have output reloads. */
6953 for (j = 0; j < n_reloads; j++)
6955 int r = reload_order[j];
6957 i = reload_spill_index[r];
6959 /* I is nonneg if this reload uses a register.
6960 If rld[r].reg_rtx is 0, this is an optional reload
6961 that we opted to ignore. */
6962 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6963 && rld[r].reg_rtx != 0)
6965 int nregno = REGNO (rld[r].out_reg);
6966 int nr = 1;
6968 if (nregno < FIRST_PSEUDO_REGISTER)
6969 nr = hard_regno_nregs[nregno][rld[r].mode];
6971 while (--nr >= 0)
6972 SET_REGNO_REG_SET (&reg_has_output_reload,
6973 nregno + nr);
6975 if (i >= 0)
6976 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6978 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6979 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6980 || rld[r].when_needed == RELOAD_FOR_INSN);
6985 /* Deallocate the reload register for reload R. This is called from
6986 remove_address_replacements. */
6988 void
6989 deallocate_reload_reg (int r)
6991 int regno;
6993 if (! rld[r].reg_rtx)
6994 return;
6995 regno = true_regnum (rld[r].reg_rtx);
6996 rld[r].reg_rtx = 0;
6997 if (spill_reg_order[regno] >= 0)
6998 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6999 rld[r].mode);
7000 reload_spill_index[r] = -1;
7003 /* These arrays are filled by emit_reload_insns and its subroutines. */
7004 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7005 static rtx other_input_address_reload_insns = 0;
7006 static rtx other_input_reload_insns = 0;
7007 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7008 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7009 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7010 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7011 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7012 static rtx operand_reload_insns = 0;
7013 static rtx other_operand_reload_insns = 0;
7014 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7016 /* Values to be put in spill_reg_store are put here first. */
7017 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7018 static HARD_REG_SET reg_reloaded_died;
7020 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7021 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7022 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7023 adjusted register, and return true. Otherwise, return false. */
7024 static bool
7025 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7026 enum reg_class new_class,
7027 enum machine_mode new_mode)
7030 rtx reg;
7032 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7034 unsigned regno = REGNO (reg);
7036 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7037 continue;
7038 if (GET_MODE (reg) != new_mode)
7040 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7041 continue;
7042 if (hard_regno_nregs[regno][new_mode]
7043 > hard_regno_nregs[regno][GET_MODE (reg)])
7044 continue;
7045 reg = reload_adjust_reg_for_mode (reg, new_mode);
7047 *reload_reg = reg;
7048 return true;
7050 return false;
7053 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7054 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7055 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7056 adjusted register, and return true. Otherwise, return false. */
7057 static bool
7058 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7059 enum insn_code icode)
7062 enum reg_class new_class = scratch_reload_class (icode);
7063 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7065 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7066 new_class, new_mode);
7069 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7070 has the number J. OLD contains the value to be used as input. */
7072 static void
7073 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7074 rtx old, int j)
7076 rtx insn = chain->insn;
7077 rtx reloadreg;
7078 rtx oldequiv_reg = 0;
7079 rtx oldequiv = 0;
7080 int special = 0;
7081 enum machine_mode mode;
7082 rtx *where;
7084 /* delete_output_reload is only invoked properly if old contains
7085 the original pseudo register. Since this is replaced with a
7086 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7087 find the pseudo in RELOAD_IN_REG. */
7088 if (reload_override_in[j]
7089 && REG_P (rl->in_reg))
7091 oldequiv = old;
7092 old = rl->in_reg;
7094 if (oldequiv == 0)
7095 oldequiv = old;
7096 else if (REG_P (oldequiv))
7097 oldequiv_reg = oldequiv;
7098 else if (GET_CODE (oldequiv) == SUBREG)
7099 oldequiv_reg = SUBREG_REG (oldequiv);
7101 reloadreg = reload_reg_rtx_for_input[j];
7102 mode = GET_MODE (reloadreg);
7104 /* If we are reloading from a register that was recently stored in
7105 with an output-reload, see if we can prove there was
7106 actually no need to store the old value in it. */
7108 if (optimize && REG_P (oldequiv)
7109 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7110 && spill_reg_store[REGNO (oldequiv)]
7111 && REG_P (old)
7112 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7113 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7114 rl->out_reg)))
7115 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7117 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7118 OLDEQUIV. */
7120 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7121 oldequiv = SUBREG_REG (oldequiv);
7122 if (GET_MODE (oldequiv) != VOIDmode
7123 && mode != GET_MODE (oldequiv))
7124 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7126 /* Switch to the right place to emit the reload insns. */
7127 switch (rl->when_needed)
7129 case RELOAD_OTHER:
7130 where = &other_input_reload_insns;
7131 break;
7132 case RELOAD_FOR_INPUT:
7133 where = &input_reload_insns[rl->opnum];
7134 break;
7135 case RELOAD_FOR_INPUT_ADDRESS:
7136 where = &input_address_reload_insns[rl->opnum];
7137 break;
7138 case RELOAD_FOR_INPADDR_ADDRESS:
7139 where = &inpaddr_address_reload_insns[rl->opnum];
7140 break;
7141 case RELOAD_FOR_OUTPUT_ADDRESS:
7142 where = &output_address_reload_insns[rl->opnum];
7143 break;
7144 case RELOAD_FOR_OUTADDR_ADDRESS:
7145 where = &outaddr_address_reload_insns[rl->opnum];
7146 break;
7147 case RELOAD_FOR_OPERAND_ADDRESS:
7148 where = &operand_reload_insns;
7149 break;
7150 case RELOAD_FOR_OPADDR_ADDR:
7151 where = &other_operand_reload_insns;
7152 break;
7153 case RELOAD_FOR_OTHER_ADDRESS:
7154 where = &other_input_address_reload_insns;
7155 break;
7156 default:
7157 gcc_unreachable ();
7160 push_to_sequence (*where);
7162 /* Auto-increment addresses must be reloaded in a special way. */
7163 if (rl->out && ! rl->out_reg)
7165 /* We are not going to bother supporting the case where a
7166 incremented register can't be copied directly from
7167 OLDEQUIV since this seems highly unlikely. */
7168 gcc_assert (rl->secondary_in_reload < 0);
7170 if (reload_inherited[j])
7171 oldequiv = reloadreg;
7173 old = XEXP (rl->in_reg, 0);
7175 /* Prevent normal processing of this reload. */
7176 special = 1;
7177 /* Output a special code sequence for this case, and forget about
7178 spill reg information. */
7179 new_spill_reg_store[REGNO (reloadreg)] = NULL;
7180 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7183 /* If we are reloading a pseudo-register that was set by the previous
7184 insn, see if we can get rid of that pseudo-register entirely
7185 by redirecting the previous insn into our reload register. */
7187 else if (optimize && REG_P (old)
7188 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7189 && dead_or_set_p (insn, old)
7190 /* This is unsafe if some other reload
7191 uses the same reg first. */
7192 && ! conflicts_with_override (reloadreg)
7193 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7194 rl->when_needed, old, rl->out, j, 0))
7196 rtx temp = PREV_INSN (insn);
7197 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7198 temp = PREV_INSN (temp);
7199 if (temp
7200 && NONJUMP_INSN_P (temp)
7201 && GET_CODE (PATTERN (temp)) == SET
7202 && SET_DEST (PATTERN (temp)) == old
7203 /* Make sure we can access insn_operand_constraint. */
7204 && asm_noperands (PATTERN (temp)) < 0
7205 /* This is unsafe if operand occurs more than once in current
7206 insn. Perhaps some occurrences aren't reloaded. */
7207 && count_occurrences (PATTERN (insn), old, 0) == 1)
7209 rtx old = SET_DEST (PATTERN (temp));
7210 /* Store into the reload register instead of the pseudo. */
7211 SET_DEST (PATTERN (temp)) = reloadreg;
7213 /* Verify that resulting insn is valid. */
7214 extract_insn (temp);
7215 if (constrain_operands (1))
7217 /* If the previous insn is an output reload, the source is
7218 a reload register, and its spill_reg_store entry will
7219 contain the previous destination. This is now
7220 invalid. */
7221 if (REG_P (SET_SRC (PATTERN (temp)))
7222 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7224 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7225 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7228 /* If these are the only uses of the pseudo reg,
7229 pretend for GDB it lives in the reload reg we used. */
7230 if (REG_N_DEATHS (REGNO (old)) == 1
7231 && REG_N_SETS (REGNO (old)) == 1)
7233 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7234 if (ira_conflicts_p)
7235 /* Inform IRA about the change. */
7236 ira_mark_allocation_change (REGNO (old));
7237 alter_reg (REGNO (old), -1, false);
7239 special = 1;
7241 /* Adjust any debug insns between temp and insn. */
7242 while ((temp = NEXT_INSN (temp)) != insn)
7243 if (DEBUG_INSN_P (temp))
7244 replace_rtx (PATTERN (temp), old, reloadreg);
7245 else
7246 gcc_assert (NOTE_P (temp));
7248 else
7250 SET_DEST (PATTERN (temp)) = old;
7255 /* We can't do that, so output an insn to load RELOADREG. */
7257 /* If we have a secondary reload, pick up the secondary register
7258 and icode, if any. If OLDEQUIV and OLD are different or
7259 if this is an in-out reload, recompute whether or not we
7260 still need a secondary register and what the icode should
7261 be. If we still need a secondary register and the class or
7262 icode is different, go back to reloading from OLD if using
7263 OLDEQUIV means that we got the wrong type of register. We
7264 cannot have different class or icode due to an in-out reload
7265 because we don't make such reloads when both the input and
7266 output need secondary reload registers. */
7268 if (! special && rl->secondary_in_reload >= 0)
7270 rtx second_reload_reg = 0;
7271 rtx third_reload_reg = 0;
7272 int secondary_reload = rl->secondary_in_reload;
7273 rtx real_oldequiv = oldequiv;
7274 rtx real_old = old;
7275 rtx tmp;
7276 enum insn_code icode;
7277 enum insn_code tertiary_icode = CODE_FOR_nothing;
7279 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7280 and similarly for OLD.
7281 See comments in get_secondary_reload in reload.c. */
7282 /* If it is a pseudo that cannot be replaced with its
7283 equivalent MEM, we must fall back to reload_in, which
7284 will have all the necessary substitutions registered.
7285 Likewise for a pseudo that can't be replaced with its
7286 equivalent constant.
7288 Take extra care for subregs of such pseudos. Note that
7289 we cannot use reg_equiv_mem in this case because it is
7290 not in the right mode. */
7292 tmp = oldequiv;
7293 if (GET_CODE (tmp) == SUBREG)
7294 tmp = SUBREG_REG (tmp);
7295 if (REG_P (tmp)
7296 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7297 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7298 || reg_equiv_constant (REGNO (tmp)) != 0))
7300 if (! reg_equiv_mem (REGNO (tmp))
7301 || num_not_at_initial_offset
7302 || GET_CODE (oldequiv) == SUBREG)
7303 real_oldequiv = rl->in;
7304 else
7305 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7308 tmp = old;
7309 if (GET_CODE (tmp) == SUBREG)
7310 tmp = SUBREG_REG (tmp);
7311 if (REG_P (tmp)
7312 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7313 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7314 || reg_equiv_constant (REGNO (tmp)) != 0))
7316 if (! reg_equiv_mem (REGNO (tmp))
7317 || num_not_at_initial_offset
7318 || GET_CODE (old) == SUBREG)
7319 real_old = rl->in;
7320 else
7321 real_old = reg_equiv_mem (REGNO (tmp));
7324 second_reload_reg = rld[secondary_reload].reg_rtx;
7325 if (rld[secondary_reload].secondary_in_reload >= 0)
7327 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7329 third_reload_reg = rld[tertiary_reload].reg_rtx;
7330 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7331 /* We'd have to add more code for quartary reloads. */
7332 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7334 icode = rl->secondary_in_icode;
7336 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7337 || (rl->in != 0 && rl->out != 0))
7339 secondary_reload_info sri, sri2;
7340 enum reg_class new_class, new_t_class;
7342 sri.icode = CODE_FOR_nothing;
7343 sri.prev_sri = NULL;
7344 new_class
7345 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7346 rl->rclass, mode,
7347 &sri);
7349 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7350 second_reload_reg = 0;
7351 else if (new_class == NO_REGS)
7353 if (reload_adjust_reg_for_icode (&second_reload_reg,
7354 third_reload_reg,
7355 (enum insn_code) sri.icode))
7357 icode = (enum insn_code) sri.icode;
7358 third_reload_reg = 0;
7360 else
7362 oldequiv = old;
7363 real_oldequiv = real_old;
7366 else if (sri.icode != CODE_FOR_nothing)
7367 /* We currently lack a way to express this in reloads. */
7368 gcc_unreachable ();
7369 else
7371 sri2.icode = CODE_FOR_nothing;
7372 sri2.prev_sri = &sri;
7373 new_t_class
7374 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7375 new_class, mode,
7376 &sri);
7377 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7379 if (reload_adjust_reg_for_temp (&second_reload_reg,
7380 third_reload_reg,
7381 new_class, mode))
7383 third_reload_reg = 0;
7384 tertiary_icode = (enum insn_code) sri2.icode;
7386 else
7388 oldequiv = old;
7389 real_oldequiv = real_old;
7392 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7394 rtx intermediate = second_reload_reg;
7396 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7397 new_class, mode)
7398 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7399 ((enum insn_code)
7400 sri2.icode)))
7402 second_reload_reg = intermediate;
7403 tertiary_icode = (enum insn_code) sri2.icode;
7405 else
7407 oldequiv = old;
7408 real_oldequiv = real_old;
7411 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7413 rtx intermediate = second_reload_reg;
7415 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7416 new_class, mode)
7417 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7418 new_t_class, mode))
7420 second_reload_reg = intermediate;
7421 tertiary_icode = (enum insn_code) sri2.icode;
7423 else
7425 oldequiv = old;
7426 real_oldequiv = real_old;
7429 else
7431 /* This could be handled more intelligently too. */
7432 oldequiv = old;
7433 real_oldequiv = real_old;
7438 /* If we still need a secondary reload register, check
7439 to see if it is being used as a scratch or intermediate
7440 register and generate code appropriately. If we need
7441 a scratch register, use REAL_OLDEQUIV since the form of
7442 the insn may depend on the actual address if it is
7443 a MEM. */
7445 if (second_reload_reg)
7447 if (icode != CODE_FOR_nothing)
7449 /* We'd have to add extra code to handle this case. */
7450 gcc_assert (!third_reload_reg);
7452 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7453 second_reload_reg));
7454 special = 1;
7456 else
7458 /* See if we need a scratch register to load the
7459 intermediate register (a tertiary reload). */
7460 if (tertiary_icode != CODE_FOR_nothing)
7462 emit_insn ((GEN_FCN (tertiary_icode)
7463 (second_reload_reg, real_oldequiv,
7464 third_reload_reg)));
7466 else if (third_reload_reg)
7468 gen_reload (third_reload_reg, real_oldequiv,
7469 rl->opnum,
7470 rl->when_needed);
7471 gen_reload (second_reload_reg, third_reload_reg,
7472 rl->opnum,
7473 rl->when_needed);
7475 else
7476 gen_reload (second_reload_reg, real_oldequiv,
7477 rl->opnum,
7478 rl->when_needed);
7480 oldequiv = second_reload_reg;
7485 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7487 rtx real_oldequiv = oldequiv;
7489 if ((REG_P (oldequiv)
7490 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7491 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7492 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7493 || (GET_CODE (oldequiv) == SUBREG
7494 && REG_P (SUBREG_REG (oldequiv))
7495 && (REGNO (SUBREG_REG (oldequiv))
7496 >= FIRST_PSEUDO_REGISTER)
7497 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7498 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7499 || (CONSTANT_P (oldequiv)
7500 && (targetm.preferred_reload_class (oldequiv,
7501 REGNO_REG_CLASS (REGNO (reloadreg)))
7502 == NO_REGS)))
7503 real_oldequiv = rl->in;
7504 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7505 rl->when_needed);
7508 if (cfun->can_throw_non_call_exceptions)
7509 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7511 /* End this sequence. */
7512 *where = get_insns ();
7513 end_sequence ();
7515 /* Update reload_override_in so that delete_address_reloads_1
7516 can see the actual register usage. */
7517 if (oldequiv_reg)
7518 reload_override_in[j] = oldequiv;
7521 /* Generate insns to for the output reload RL, which is for the insn described
7522 by CHAIN and has the number J. */
7523 static void
7524 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7525 int j)
7527 rtx reloadreg;
7528 rtx insn = chain->insn;
7529 int special = 0;
7530 rtx old = rl->out;
7531 enum machine_mode mode;
7532 rtx p;
7533 rtx rl_reg_rtx;
7535 if (rl->when_needed == RELOAD_OTHER)
7536 start_sequence ();
7537 else
7538 push_to_sequence (output_reload_insns[rl->opnum]);
7540 rl_reg_rtx = reload_reg_rtx_for_output[j];
7541 mode = GET_MODE (rl_reg_rtx);
7543 reloadreg = rl_reg_rtx;
7545 /* If we need two reload regs, set RELOADREG to the intermediate
7546 one, since it will be stored into OLD. We might need a secondary
7547 register only for an input reload, so check again here. */
7549 if (rl->secondary_out_reload >= 0)
7551 rtx real_old = old;
7552 int secondary_reload = rl->secondary_out_reload;
7553 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7555 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7556 && reg_equiv_mem (REGNO (old)) != 0)
7557 real_old = reg_equiv_mem (REGNO (old));
7559 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7561 rtx second_reloadreg = reloadreg;
7562 reloadreg = rld[secondary_reload].reg_rtx;
7564 /* See if RELOADREG is to be used as a scratch register
7565 or as an intermediate register. */
7566 if (rl->secondary_out_icode != CODE_FOR_nothing)
7568 /* We'd have to add extra code to handle this case. */
7569 gcc_assert (tertiary_reload < 0);
7571 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7572 (real_old, second_reloadreg, reloadreg)));
7573 special = 1;
7575 else
7577 /* See if we need both a scratch and intermediate reload
7578 register. */
7580 enum insn_code tertiary_icode
7581 = rld[secondary_reload].secondary_out_icode;
7583 /* We'd have to add more code for quartary reloads. */
7584 gcc_assert (tertiary_reload < 0
7585 || rld[tertiary_reload].secondary_out_reload < 0);
7587 if (GET_MODE (reloadreg) != mode)
7588 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7590 if (tertiary_icode != CODE_FOR_nothing)
7592 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7594 /* Copy primary reload reg to secondary reload reg.
7595 (Note that these have been swapped above, then
7596 secondary reload reg to OLD using our insn.) */
7598 /* If REAL_OLD is a paradoxical SUBREG, remove it
7599 and try to put the opposite SUBREG on
7600 RELOADREG. */
7601 strip_paradoxical_subreg (&real_old, &reloadreg);
7603 gen_reload (reloadreg, second_reloadreg,
7604 rl->opnum, rl->when_needed);
7605 emit_insn ((GEN_FCN (tertiary_icode)
7606 (real_old, reloadreg, third_reloadreg)));
7607 special = 1;
7610 else
7612 /* Copy between the reload regs here and then to
7613 OUT later. */
7615 gen_reload (reloadreg, second_reloadreg,
7616 rl->opnum, rl->when_needed);
7617 if (tertiary_reload >= 0)
7619 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7621 gen_reload (third_reloadreg, reloadreg,
7622 rl->opnum, rl->when_needed);
7623 reloadreg = third_reloadreg;
7630 /* Output the last reload insn. */
7631 if (! special)
7633 rtx set;
7635 /* Don't output the last reload if OLD is not the dest of
7636 INSN and is in the src and is clobbered by INSN. */
7637 if (! flag_expensive_optimizations
7638 || !REG_P (old)
7639 || !(set = single_set (insn))
7640 || rtx_equal_p (old, SET_DEST (set))
7641 || !reg_mentioned_p (old, SET_SRC (set))
7642 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7643 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7644 gen_reload (old, reloadreg, rl->opnum,
7645 rl->when_needed);
7648 /* Look at all insns we emitted, just to be safe. */
7649 for (p = get_insns (); p; p = NEXT_INSN (p))
7650 if (INSN_P (p))
7652 rtx pat = PATTERN (p);
7654 /* If this output reload doesn't come from a spill reg,
7655 clear any memory of reloaded copies of the pseudo reg.
7656 If this output reload comes from a spill reg,
7657 reg_has_output_reload will make this do nothing. */
7658 note_stores (pat, forget_old_reloads_1, NULL);
7660 if (reg_mentioned_p (rl_reg_rtx, pat))
7662 rtx set = single_set (insn);
7663 if (reload_spill_index[j] < 0
7664 && set
7665 && SET_SRC (set) == rl_reg_rtx)
7667 int src = REGNO (SET_SRC (set));
7669 reload_spill_index[j] = src;
7670 SET_HARD_REG_BIT (reg_is_output_reload, src);
7671 if (find_regno_note (insn, REG_DEAD, src))
7672 SET_HARD_REG_BIT (reg_reloaded_died, src);
7674 if (HARD_REGISTER_P (rl_reg_rtx))
7676 int s = rl->secondary_out_reload;
7677 set = single_set (p);
7678 /* If this reload copies only to the secondary reload
7679 register, the secondary reload does the actual
7680 store. */
7681 if (s >= 0 && set == NULL_RTX)
7682 /* We can't tell what function the secondary reload
7683 has and where the actual store to the pseudo is
7684 made; leave new_spill_reg_store alone. */
7686 else if (s >= 0
7687 && SET_SRC (set) == rl_reg_rtx
7688 && SET_DEST (set) == rld[s].reg_rtx)
7690 /* Usually the next instruction will be the
7691 secondary reload insn; if we can confirm
7692 that it is, setting new_spill_reg_store to
7693 that insn will allow an extra optimization. */
7694 rtx s_reg = rld[s].reg_rtx;
7695 rtx next = NEXT_INSN (p);
7696 rld[s].out = rl->out;
7697 rld[s].out_reg = rl->out_reg;
7698 set = single_set (next);
7699 if (set && SET_SRC (set) == s_reg
7700 && ! new_spill_reg_store[REGNO (s_reg)])
7702 SET_HARD_REG_BIT (reg_is_output_reload,
7703 REGNO (s_reg));
7704 new_spill_reg_store[REGNO (s_reg)] = next;
7707 else
7708 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7713 if (rl->when_needed == RELOAD_OTHER)
7715 emit_insn (other_output_reload_insns[rl->opnum]);
7716 other_output_reload_insns[rl->opnum] = get_insns ();
7718 else
7719 output_reload_insns[rl->opnum] = get_insns ();
7721 if (cfun->can_throw_non_call_exceptions)
7722 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7724 end_sequence ();
7727 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7728 and has the number J. */
7729 static void
7730 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7732 rtx insn = chain->insn;
7733 rtx old = (rl->in && MEM_P (rl->in)
7734 ? rl->in_reg : rl->in);
7735 rtx reg_rtx = rl->reg_rtx;
7737 if (old && reg_rtx)
7739 enum machine_mode mode;
7741 /* Determine the mode to reload in.
7742 This is very tricky because we have three to choose from.
7743 There is the mode the insn operand wants (rl->inmode).
7744 There is the mode of the reload register RELOADREG.
7745 There is the intrinsic mode of the operand, which we could find
7746 by stripping some SUBREGs.
7747 It turns out that RELOADREG's mode is irrelevant:
7748 we can change that arbitrarily.
7750 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7751 then the reload reg may not support QImode moves, so use SImode.
7752 If foo is in memory due to spilling a pseudo reg, this is safe,
7753 because the QImode value is in the least significant part of a
7754 slot big enough for a SImode. If foo is some other sort of
7755 memory reference, then it is impossible to reload this case,
7756 so previous passes had better make sure this never happens.
7758 Then consider a one-word union which has SImode and one of its
7759 members is a float, being fetched as (SUBREG:SF union:SI).
7760 We must fetch that as SFmode because we could be loading into
7761 a float-only register. In this case OLD's mode is correct.
7763 Consider an immediate integer: it has VOIDmode. Here we need
7764 to get a mode from something else.
7766 In some cases, there is a fourth mode, the operand's
7767 containing mode. If the insn specifies a containing mode for
7768 this operand, it overrides all others.
7770 I am not sure whether the algorithm here is always right,
7771 but it does the right things in those cases. */
7773 mode = GET_MODE (old);
7774 if (mode == VOIDmode)
7775 mode = rl->inmode;
7777 /* We cannot use gen_lowpart_common since it can do the wrong thing
7778 when REG_RTX has a multi-word mode. Note that REG_RTX must
7779 always be a REG here. */
7780 if (GET_MODE (reg_rtx) != mode)
7781 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7783 reload_reg_rtx_for_input[j] = reg_rtx;
7785 if (old != 0
7786 /* AUTO_INC reloads need to be handled even if inherited. We got an
7787 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7788 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7789 && ! rtx_equal_p (reg_rtx, old)
7790 && reg_rtx != 0)
7791 emit_input_reload_insns (chain, rld + j, old, j);
7793 /* When inheriting a wider reload, we have a MEM in rl->in,
7794 e.g. inheriting a SImode output reload for
7795 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7796 if (optimize && reload_inherited[j] && rl->in
7797 && MEM_P (rl->in)
7798 && MEM_P (rl->in_reg)
7799 && reload_spill_index[j] >= 0
7800 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7801 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7803 /* If we are reloading a register that was recently stored in with an
7804 output-reload, see if we can prove there was
7805 actually no need to store the old value in it. */
7807 if (optimize
7808 && (reload_inherited[j] || reload_override_in[j])
7809 && reg_rtx
7810 && REG_P (reg_rtx)
7811 && spill_reg_store[REGNO (reg_rtx)] != 0
7812 #if 0
7813 /* There doesn't seem to be any reason to restrict this to pseudos
7814 and doing so loses in the case where we are copying from a
7815 register of the wrong class. */
7816 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7817 #endif
7818 /* The insn might have already some references to stackslots
7819 replaced by MEMs, while reload_out_reg still names the
7820 original pseudo. */
7821 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7822 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7823 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7826 /* Do output reloading for reload RL, which is for the insn described by
7827 CHAIN and has the number J.
7828 ??? At some point we need to support handling output reloads of
7829 JUMP_INSNs or insns that set cc0. */
7830 static void
7831 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7833 rtx note, old;
7834 rtx insn = chain->insn;
7835 /* If this is an output reload that stores something that is
7836 not loaded in this same reload, see if we can eliminate a previous
7837 store. */
7838 rtx pseudo = rl->out_reg;
7839 rtx reg_rtx = rl->reg_rtx;
7841 if (rl->out && reg_rtx)
7843 enum machine_mode mode;
7845 /* Determine the mode to reload in.
7846 See comments above (for input reloading). */
7847 mode = GET_MODE (rl->out);
7848 if (mode == VOIDmode)
7850 /* VOIDmode should never happen for an output. */
7851 if (asm_noperands (PATTERN (insn)) < 0)
7852 /* It's the compiler's fault. */
7853 fatal_insn ("VOIDmode on an output", insn);
7854 error_for_asm (insn, "output operand is constant in %<asm%>");
7855 /* Prevent crash--use something we know is valid. */
7856 mode = word_mode;
7857 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7859 if (GET_MODE (reg_rtx) != mode)
7860 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7862 reload_reg_rtx_for_output[j] = reg_rtx;
7864 if (pseudo
7865 && optimize
7866 && REG_P (pseudo)
7867 && ! rtx_equal_p (rl->in_reg, pseudo)
7868 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7869 && reg_last_reload_reg[REGNO (pseudo)])
7871 int pseudo_no = REGNO (pseudo);
7872 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7874 /* We don't need to test full validity of last_regno for
7875 inherit here; we only want to know if the store actually
7876 matches the pseudo. */
7877 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7878 && reg_reloaded_contents[last_regno] == pseudo_no
7879 && spill_reg_store[last_regno]
7880 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7881 delete_output_reload (insn, j, last_regno, reg_rtx);
7884 old = rl->out_reg;
7885 if (old == 0
7886 || reg_rtx == 0
7887 || rtx_equal_p (old, reg_rtx))
7888 return;
7890 /* An output operand that dies right away does need a reload,
7891 but need not be copied from it. Show the new location in the
7892 REG_UNUSED note. */
7893 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7894 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7896 XEXP (note, 0) = reg_rtx;
7897 return;
7899 /* Likewise for a SUBREG of an operand that dies. */
7900 else if (GET_CODE (old) == SUBREG
7901 && REG_P (SUBREG_REG (old))
7902 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7903 SUBREG_REG (old))))
7905 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7906 return;
7908 else if (GET_CODE (old) == SCRATCH)
7909 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7910 but we don't want to make an output reload. */
7911 return;
7913 /* If is a JUMP_INSN, we can't support output reloads yet. */
7914 gcc_assert (NONJUMP_INSN_P (insn));
7916 emit_output_reload_insns (chain, rld + j, j);
7919 /* A reload copies values of MODE from register SRC to register DEST.
7920 Return true if it can be treated for inheritance purposes like a
7921 group of reloads, each one reloading a single hard register. The
7922 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7923 occupy the same number of hard registers. */
7925 static bool
7926 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7927 int src ATTRIBUTE_UNUSED,
7928 enum machine_mode mode ATTRIBUTE_UNUSED)
7930 #ifdef CANNOT_CHANGE_MODE_CLASS
7931 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7932 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7933 #else
7934 return true;
7935 #endif
7938 /* Output insns to reload values in and out of the chosen reload regs. */
7940 static void
7941 emit_reload_insns (struct insn_chain *chain)
7943 rtx insn = chain->insn;
7945 int j;
7947 CLEAR_HARD_REG_SET (reg_reloaded_died);
7949 for (j = 0; j < reload_n_operands; j++)
7950 input_reload_insns[j] = input_address_reload_insns[j]
7951 = inpaddr_address_reload_insns[j]
7952 = output_reload_insns[j] = output_address_reload_insns[j]
7953 = outaddr_address_reload_insns[j]
7954 = other_output_reload_insns[j] = 0;
7955 other_input_address_reload_insns = 0;
7956 other_input_reload_insns = 0;
7957 operand_reload_insns = 0;
7958 other_operand_reload_insns = 0;
7960 /* Dump reloads into the dump file. */
7961 if (dump_file)
7963 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7964 debug_reload_to_stream (dump_file);
7967 /* Now output the instructions to copy the data into and out of the
7968 reload registers. Do these in the order that the reloads were reported,
7969 since reloads of base and index registers precede reloads of operands
7970 and the operands may need the base and index registers reloaded. */
7972 for (j = 0; j < n_reloads; j++)
7974 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7976 unsigned int i;
7978 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7979 new_spill_reg_store[i] = 0;
7982 do_input_reload (chain, rld + j, j);
7983 do_output_reload (chain, rld + j, j);
7986 /* Now write all the insns we made for reloads in the order expected by
7987 the allocation functions. Prior to the insn being reloaded, we write
7988 the following reloads:
7990 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7992 RELOAD_OTHER reloads.
7994 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7995 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7996 RELOAD_FOR_INPUT reload for the operand.
7998 RELOAD_FOR_OPADDR_ADDRS reloads.
8000 RELOAD_FOR_OPERAND_ADDRESS reloads.
8002 After the insn being reloaded, we write the following:
8004 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8005 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8006 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8007 reloads for the operand. The RELOAD_OTHER output reloads are
8008 output in descending order by reload number. */
8010 emit_insn_before (other_input_address_reload_insns, insn);
8011 emit_insn_before (other_input_reload_insns, insn);
8013 for (j = 0; j < reload_n_operands; j++)
8015 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8016 emit_insn_before (input_address_reload_insns[j], insn);
8017 emit_insn_before (input_reload_insns[j], insn);
8020 emit_insn_before (other_operand_reload_insns, insn);
8021 emit_insn_before (operand_reload_insns, insn);
8023 for (j = 0; j < reload_n_operands; j++)
8025 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8026 x = emit_insn_after (output_address_reload_insns[j], x);
8027 x = emit_insn_after (output_reload_insns[j], x);
8028 emit_insn_after (other_output_reload_insns[j], x);
8031 /* For all the spill regs newly reloaded in this instruction,
8032 record what they were reloaded from, so subsequent instructions
8033 can inherit the reloads.
8035 Update spill_reg_store for the reloads of this insn.
8036 Copy the elements that were updated in the loop above. */
8038 for (j = 0; j < n_reloads; j++)
8040 int r = reload_order[j];
8041 int i = reload_spill_index[r];
8043 /* If this is a non-inherited input reload from a pseudo, we must
8044 clear any memory of a previous store to the same pseudo. Only do
8045 something if there will not be an output reload for the pseudo
8046 being reloaded. */
8047 if (rld[r].in_reg != 0
8048 && ! (reload_inherited[r] || reload_override_in[r]))
8050 rtx reg = rld[r].in_reg;
8052 if (GET_CODE (reg) == SUBREG)
8053 reg = SUBREG_REG (reg);
8055 if (REG_P (reg)
8056 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8057 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8059 int nregno = REGNO (reg);
8061 if (reg_last_reload_reg[nregno])
8063 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8065 if (reg_reloaded_contents[last_regno] == nregno)
8066 spill_reg_store[last_regno] = 0;
8071 /* I is nonneg if this reload used a register.
8072 If rld[r].reg_rtx is 0, this is an optional reload
8073 that we opted to ignore. */
8075 if (i >= 0 && rld[r].reg_rtx != 0)
8077 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8078 int k;
8080 /* For a multi register reload, we need to check if all or part
8081 of the value lives to the end. */
8082 for (k = 0; k < nr; k++)
8083 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
8084 rld[r].when_needed))
8085 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8087 /* Maybe the spill reg contains a copy of reload_out. */
8088 if (rld[r].out != 0
8089 && (REG_P (rld[r].out)
8090 || (rld[r].out_reg
8091 ? REG_P (rld[r].out_reg)
8092 /* The reload value is an auto-modification of
8093 some kind. For PRE_INC, POST_INC, PRE_DEC
8094 and POST_DEC, we record an equivalence
8095 between the reload register and the operand
8096 on the optimistic assumption that we can make
8097 the equivalence hold. reload_as_needed must
8098 then either make it hold or invalidate the
8099 equivalence.
8101 PRE_MODIFY and POST_MODIFY addresses are reloaded
8102 somewhat differently, and allowing them here leads
8103 to problems. */
8104 : (GET_CODE (rld[r].out) != POST_MODIFY
8105 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8107 rtx reg;
8108 enum machine_mode mode;
8109 int regno, nregs;
8111 reg = reload_reg_rtx_for_output[r];
8112 mode = GET_MODE (reg);
8113 regno = REGNO (reg);
8114 nregs = hard_regno_nregs[regno][mode];
8115 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8116 rld[r].when_needed))
8118 rtx out = (REG_P (rld[r].out)
8119 ? rld[r].out
8120 : rld[r].out_reg
8121 ? rld[r].out_reg
8122 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8123 int out_regno = REGNO (out);
8124 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8125 : hard_regno_nregs[out_regno][mode]);
8126 bool piecemeal;
8128 spill_reg_store[regno] = new_spill_reg_store[regno];
8129 spill_reg_stored_to[regno] = out;
8130 reg_last_reload_reg[out_regno] = reg;
8132 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8133 && nregs == out_nregs
8134 && inherit_piecemeal_p (out_regno, regno, mode));
8136 /* If OUT_REGNO is a hard register, it may occupy more than
8137 one register. If it does, say what is in the
8138 rest of the registers assuming that both registers
8139 agree on how many words the object takes. If not,
8140 invalidate the subsequent registers. */
8142 if (HARD_REGISTER_NUM_P (out_regno))
8143 for (k = 1; k < out_nregs; k++)
8144 reg_last_reload_reg[out_regno + k]
8145 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8147 /* Now do the inverse operation. */
8148 for (k = 0; k < nregs; k++)
8150 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8151 reg_reloaded_contents[regno + k]
8152 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8153 ? out_regno
8154 : out_regno + k);
8155 reg_reloaded_insn[regno + k] = insn;
8156 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8157 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8158 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8159 regno + k);
8160 else
8161 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8162 regno + k);
8166 /* Maybe the spill reg contains a copy of reload_in. Only do
8167 something if there will not be an output reload for
8168 the register being reloaded. */
8169 else if (rld[r].out_reg == 0
8170 && rld[r].in != 0
8171 && ((REG_P (rld[r].in)
8172 && !HARD_REGISTER_P (rld[r].in)
8173 && !REGNO_REG_SET_P (&reg_has_output_reload,
8174 REGNO (rld[r].in)))
8175 || (REG_P (rld[r].in_reg)
8176 && !REGNO_REG_SET_P (&reg_has_output_reload,
8177 REGNO (rld[r].in_reg))))
8178 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8180 rtx reg;
8181 enum machine_mode mode;
8182 int regno, nregs;
8184 reg = reload_reg_rtx_for_input[r];
8185 mode = GET_MODE (reg);
8186 regno = REGNO (reg);
8187 nregs = hard_regno_nregs[regno][mode];
8188 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8189 rld[r].when_needed))
8191 int in_regno;
8192 int in_nregs;
8193 rtx in;
8194 bool piecemeal;
8196 if (REG_P (rld[r].in)
8197 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8198 in = rld[r].in;
8199 else if (REG_P (rld[r].in_reg))
8200 in = rld[r].in_reg;
8201 else
8202 in = XEXP (rld[r].in_reg, 0);
8203 in_regno = REGNO (in);
8205 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8206 : hard_regno_nregs[in_regno][mode]);
8208 reg_last_reload_reg[in_regno] = reg;
8210 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8211 && nregs == in_nregs
8212 && inherit_piecemeal_p (regno, in_regno, mode));
8214 if (HARD_REGISTER_NUM_P (in_regno))
8215 for (k = 1; k < in_nregs; k++)
8216 reg_last_reload_reg[in_regno + k]
8217 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8219 /* Unless we inherited this reload, show we haven't
8220 recently done a store.
8221 Previous stores of inherited auto_inc expressions
8222 also have to be discarded. */
8223 if (! reload_inherited[r]
8224 || (rld[r].out && ! rld[r].out_reg))
8225 spill_reg_store[regno] = 0;
8227 for (k = 0; k < nregs; k++)
8229 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8230 reg_reloaded_contents[regno + k]
8231 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8232 ? in_regno
8233 : in_regno + k);
8234 reg_reloaded_insn[regno + k] = insn;
8235 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8236 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8237 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8238 regno + k);
8239 else
8240 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8241 regno + k);
8247 /* The following if-statement was #if 0'd in 1.34 (or before...).
8248 It's reenabled in 1.35 because supposedly nothing else
8249 deals with this problem. */
8251 /* If a register gets output-reloaded from a non-spill register,
8252 that invalidates any previous reloaded copy of it.
8253 But forget_old_reloads_1 won't get to see it, because
8254 it thinks only about the original insn. So invalidate it here.
8255 Also do the same thing for RELOAD_OTHER constraints where the
8256 output is discarded. */
8257 if (i < 0
8258 && ((rld[r].out != 0
8259 && (REG_P (rld[r].out)
8260 || (MEM_P (rld[r].out)
8261 && REG_P (rld[r].out_reg))))
8262 || (rld[r].out == 0 && rld[r].out_reg
8263 && REG_P (rld[r].out_reg))))
8265 rtx out = ((rld[r].out && REG_P (rld[r].out))
8266 ? rld[r].out : rld[r].out_reg);
8267 int out_regno = REGNO (out);
8268 enum machine_mode mode = GET_MODE (out);
8270 /* REG_RTX is now set or clobbered by the main instruction.
8271 As the comment above explains, forget_old_reloads_1 only
8272 sees the original instruction, and there is no guarantee
8273 that the original instruction also clobbered REG_RTX.
8274 For example, if find_reloads sees that the input side of
8275 a matched operand pair dies in this instruction, it may
8276 use the input register as the reload register.
8278 Calling forget_old_reloads_1 is a waste of effort if
8279 REG_RTX is also the output register.
8281 If we know that REG_RTX holds the value of a pseudo
8282 register, the code after the call will record that fact. */
8283 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8284 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8286 if (!HARD_REGISTER_NUM_P (out_regno))
8288 rtx src_reg, store_insn = NULL_RTX;
8290 reg_last_reload_reg[out_regno] = 0;
8292 /* If we can find a hard register that is stored, record
8293 the storing insn so that we may delete this insn with
8294 delete_output_reload. */
8295 src_reg = reload_reg_rtx_for_output[r];
8297 /* If this is an optional reload, try to find the source reg
8298 from an input reload. */
8299 if (! src_reg)
8301 rtx set = single_set (insn);
8302 if (set && SET_DEST (set) == rld[r].out)
8304 int k;
8306 src_reg = SET_SRC (set);
8307 store_insn = insn;
8308 for (k = 0; k < n_reloads; k++)
8310 if (rld[k].in == src_reg)
8312 src_reg = reload_reg_rtx_for_input[k];
8313 break;
8318 else
8319 store_insn = new_spill_reg_store[REGNO (src_reg)];
8320 if (src_reg && REG_P (src_reg)
8321 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8323 int src_regno, src_nregs, k;
8324 rtx note;
8326 gcc_assert (GET_MODE (src_reg) == mode);
8327 src_regno = REGNO (src_reg);
8328 src_nregs = hard_regno_nregs[src_regno][mode];
8329 /* The place where to find a death note varies with
8330 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8331 necessarily checked exactly in the code that moves
8332 notes, so just check both locations. */
8333 note = find_regno_note (insn, REG_DEAD, src_regno);
8334 if (! note && store_insn)
8335 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8336 for (k = 0; k < src_nregs; k++)
8338 spill_reg_store[src_regno + k] = store_insn;
8339 spill_reg_stored_to[src_regno + k] = out;
8340 reg_reloaded_contents[src_regno + k] = out_regno;
8341 reg_reloaded_insn[src_regno + k] = store_insn;
8342 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8343 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8344 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8345 mode))
8346 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8347 src_regno + k);
8348 else
8349 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8350 src_regno + k);
8351 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8352 if (note)
8353 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8354 else
8355 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8357 reg_last_reload_reg[out_regno] = src_reg;
8358 /* We have to set reg_has_output_reload here, or else
8359 forget_old_reloads_1 will clear reg_last_reload_reg
8360 right away. */
8361 SET_REGNO_REG_SET (&reg_has_output_reload,
8362 out_regno);
8365 else
8367 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8369 for (k = 0; k < out_nregs; k++)
8370 reg_last_reload_reg[out_regno + k] = 0;
8374 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8377 /* Go through the motions to emit INSN and test if it is strictly valid.
8378 Return the emitted insn if valid, else return NULL. */
8380 static rtx
8381 emit_insn_if_valid_for_reload (rtx insn)
8383 rtx last = get_last_insn ();
8384 int code;
8386 insn = emit_insn (insn);
8387 code = recog_memoized (insn);
8389 if (code >= 0)
8391 extract_insn (insn);
8392 /* We want constrain operands to treat this insn strictly in its
8393 validity determination, i.e., the way it would after reload has
8394 completed. */
8395 if (constrain_operands (1))
8396 return insn;
8399 delete_insns_since (last);
8400 return NULL;
8403 /* Emit code to perform a reload from IN (which may be a reload register) to
8404 OUT (which may also be a reload register). IN or OUT is from operand
8405 OPNUM with reload type TYPE.
8407 Returns first insn emitted. */
8409 static rtx
8410 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8412 rtx last = get_last_insn ();
8413 rtx tem;
8415 /* If IN is a paradoxical SUBREG, remove it and try to put the
8416 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8417 if (!strip_paradoxical_subreg (&in, &out))
8418 strip_paradoxical_subreg (&out, &in);
8420 /* How to do this reload can get quite tricky. Normally, we are being
8421 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8422 register that didn't get a hard register. In that case we can just
8423 call emit_move_insn.
8425 We can also be asked to reload a PLUS that adds a register or a MEM to
8426 another register, constant or MEM. This can occur during frame pointer
8427 elimination and while reloading addresses. This case is handled by
8428 trying to emit a single insn to perform the add. If it is not valid,
8429 we use a two insn sequence.
8431 Or we can be asked to reload an unary operand that was a fragment of
8432 an addressing mode, into a register. If it isn't recognized as-is,
8433 we try making the unop operand and the reload-register the same:
8434 (set reg:X (unop:X expr:Y))
8435 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8437 Finally, we could be called to handle an 'o' constraint by putting
8438 an address into a register. In that case, we first try to do this
8439 with a named pattern of "reload_load_address". If no such pattern
8440 exists, we just emit a SET insn and hope for the best (it will normally
8441 be valid on machines that use 'o').
8443 This entire process is made complex because reload will never
8444 process the insns we generate here and so we must ensure that
8445 they will fit their constraints and also by the fact that parts of
8446 IN might be being reloaded separately and replaced with spill registers.
8447 Because of this, we are, in some sense, just guessing the right approach
8448 here. The one listed above seems to work.
8450 ??? At some point, this whole thing needs to be rethought. */
8452 if (GET_CODE (in) == PLUS
8453 && (REG_P (XEXP (in, 0))
8454 || GET_CODE (XEXP (in, 0)) == SUBREG
8455 || MEM_P (XEXP (in, 0)))
8456 && (REG_P (XEXP (in, 1))
8457 || GET_CODE (XEXP (in, 1)) == SUBREG
8458 || CONSTANT_P (XEXP (in, 1))
8459 || MEM_P (XEXP (in, 1))))
8461 /* We need to compute the sum of a register or a MEM and another
8462 register, constant, or MEM, and put it into the reload
8463 register. The best possible way of doing this is if the machine
8464 has a three-operand ADD insn that accepts the required operands.
8466 The simplest approach is to try to generate such an insn and see if it
8467 is recognized and matches its constraints. If so, it can be used.
8469 It might be better not to actually emit the insn unless it is valid,
8470 but we need to pass the insn as an operand to `recog' and
8471 `extract_insn' and it is simpler to emit and then delete the insn if
8472 not valid than to dummy things up. */
8474 rtx op0, op1, tem, insn;
8475 enum insn_code code;
8477 op0 = find_replacement (&XEXP (in, 0));
8478 op1 = find_replacement (&XEXP (in, 1));
8480 /* Since constraint checking is strict, commutativity won't be
8481 checked, so we need to do that here to avoid spurious failure
8482 if the add instruction is two-address and the second operand
8483 of the add is the same as the reload reg, which is frequently
8484 the case. If the insn would be A = B + A, rearrange it so
8485 it will be A = A + B as constrain_operands expects. */
8487 if (REG_P (XEXP (in, 1))
8488 && REGNO (out) == REGNO (XEXP (in, 1)))
8489 tem = op0, op0 = op1, op1 = tem;
8491 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8492 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8494 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8495 if (insn)
8496 return insn;
8498 /* If that failed, we must use a conservative two-insn sequence.
8500 Use a move to copy one operand into the reload register. Prefer
8501 to reload a constant, MEM or pseudo since the move patterns can
8502 handle an arbitrary operand. If OP1 is not a constant, MEM or
8503 pseudo and OP1 is not a valid operand for an add instruction, then
8504 reload OP1.
8506 After reloading one of the operands into the reload register, add
8507 the reload register to the output register.
8509 If there is another way to do this for a specific machine, a
8510 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8511 we emit below. */
8513 code = optab_handler (add_optab, GET_MODE (out));
8515 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8516 || (REG_P (op1)
8517 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8518 || (code != CODE_FOR_nothing
8519 && !insn_operand_matches (code, 2, op1)))
8520 tem = op0, op0 = op1, op1 = tem;
8522 gen_reload (out, op0, opnum, type);
8524 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8525 This fixes a problem on the 32K where the stack pointer cannot
8526 be used as an operand of an add insn. */
8528 if (rtx_equal_p (op0, op1))
8529 op1 = out;
8531 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8532 if (insn)
8534 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8535 set_unique_reg_note (insn, REG_EQUIV, in);
8536 return insn;
8539 /* If that failed, copy the address register to the reload register.
8540 Then add the constant to the reload register. */
8542 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8543 gen_reload (out, op1, opnum, type);
8544 insn = emit_insn (gen_add2_insn (out, op0));
8545 set_unique_reg_note (insn, REG_EQUIV, in);
8548 #ifdef SECONDARY_MEMORY_NEEDED
8549 /* If we need a memory location to do the move, do it that way. */
8550 else if ((REG_P (in)
8551 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8552 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8553 && (REG_P (out)
8554 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8555 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8556 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8557 REGNO_REG_CLASS (reg_or_subregno (out)),
8558 GET_MODE (out)))
8560 /* Get the memory to use and rewrite both registers to its mode. */
8561 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8563 if (GET_MODE (loc) != GET_MODE (out))
8564 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8566 if (GET_MODE (loc) != GET_MODE (in))
8567 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8569 gen_reload (loc, in, opnum, type);
8570 gen_reload (out, loc, opnum, type);
8572 #endif
8573 else if (REG_P (out) && UNARY_P (in))
8575 rtx insn;
8576 rtx op1;
8577 rtx out_moded;
8578 rtx set;
8580 op1 = find_replacement (&XEXP (in, 0));
8581 if (op1 != XEXP (in, 0))
8582 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8584 /* First, try a plain SET. */
8585 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8586 if (set)
8587 return set;
8589 /* If that failed, move the inner operand to the reload
8590 register, and try the same unop with the inner expression
8591 replaced with the reload register. */
8593 if (GET_MODE (op1) != GET_MODE (out))
8594 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8595 else
8596 out_moded = out;
8598 gen_reload (out_moded, op1, opnum, type);
8600 insn
8601 = gen_rtx_SET (VOIDmode, out,
8602 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8603 out_moded));
8604 insn = emit_insn_if_valid_for_reload (insn);
8605 if (insn)
8607 set_unique_reg_note (insn, REG_EQUIV, in);
8608 return insn;
8611 fatal_insn ("failure trying to reload:", set);
8613 /* If IN is a simple operand, use gen_move_insn. */
8614 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8616 tem = emit_insn (gen_move_insn (out, in));
8617 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8618 mark_jump_label (in, tem, 0);
8621 #ifdef HAVE_reload_load_address
8622 else if (HAVE_reload_load_address)
8623 emit_insn (gen_reload_load_address (out, in));
8624 #endif
8626 /* Otherwise, just write (set OUT IN) and hope for the best. */
8627 else
8628 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8630 /* Return the first insn emitted.
8631 We can not just return get_last_insn, because there may have
8632 been multiple instructions emitted. Also note that gen_move_insn may
8633 emit more than one insn itself, so we can not assume that there is one
8634 insn emitted per emit_insn_before call. */
8636 return last ? NEXT_INSN (last) : get_insns ();
8639 /* Delete a previously made output-reload whose result we now believe
8640 is not needed. First we double-check.
8642 INSN is the insn now being processed.
8643 LAST_RELOAD_REG is the hard register number for which we want to delete
8644 the last output reload.
8645 J is the reload-number that originally used REG. The caller has made
8646 certain that reload J doesn't use REG any longer for input.
8647 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8649 static void
8650 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8652 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8653 rtx reg = spill_reg_stored_to[last_reload_reg];
8654 int k;
8655 int n_occurrences;
8656 int n_inherited = 0;
8657 rtx i1;
8658 rtx substed;
8659 unsigned regno;
8660 int nregs;
8662 /* It is possible that this reload has been only used to set another reload
8663 we eliminated earlier and thus deleted this instruction too. */
8664 if (INSN_DELETED_P (output_reload_insn))
8665 return;
8667 /* Get the raw pseudo-register referred to. */
8669 while (GET_CODE (reg) == SUBREG)
8670 reg = SUBREG_REG (reg);
8671 substed = reg_equiv_memory_loc (REGNO (reg));
8673 /* This is unsafe if the operand occurs more often in the current
8674 insn than it is inherited. */
8675 for (k = n_reloads - 1; k >= 0; k--)
8677 rtx reg2 = rld[k].in;
8678 if (! reg2)
8679 continue;
8680 if (MEM_P (reg2) || reload_override_in[k])
8681 reg2 = rld[k].in_reg;
8682 #ifdef AUTO_INC_DEC
8683 if (rld[k].out && ! rld[k].out_reg)
8684 reg2 = XEXP (rld[k].in_reg, 0);
8685 #endif
8686 while (GET_CODE (reg2) == SUBREG)
8687 reg2 = SUBREG_REG (reg2);
8688 if (rtx_equal_p (reg2, reg))
8690 if (reload_inherited[k] || reload_override_in[k] || k == j)
8691 n_inherited++;
8692 else
8693 return;
8696 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8697 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8698 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8699 reg, 0);
8700 if (substed)
8701 n_occurrences += count_occurrences (PATTERN (insn),
8702 eliminate_regs (substed, VOIDmode,
8703 NULL_RTX), 0);
8704 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8706 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8707 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8709 if (n_occurrences > n_inherited)
8710 return;
8712 regno = REGNO (reg);
8713 if (regno >= FIRST_PSEUDO_REGISTER)
8714 nregs = 1;
8715 else
8716 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8718 /* If the pseudo-reg we are reloading is no longer referenced
8719 anywhere between the store into it and here,
8720 and we're within the same basic block, then the value can only
8721 pass through the reload reg and end up here.
8722 Otherwise, give up--return. */
8723 for (i1 = NEXT_INSN (output_reload_insn);
8724 i1 != insn; i1 = NEXT_INSN (i1))
8726 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8727 return;
8728 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8729 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8731 /* If this is USE in front of INSN, we only have to check that
8732 there are no more references than accounted for by inheritance. */
8733 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8735 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8736 i1 = NEXT_INSN (i1);
8738 if (n_occurrences <= n_inherited && i1 == insn)
8739 break;
8740 return;
8744 /* We will be deleting the insn. Remove the spill reg information. */
8745 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8747 spill_reg_store[last_reload_reg + k] = 0;
8748 spill_reg_stored_to[last_reload_reg + k] = 0;
8751 /* The caller has already checked that REG dies or is set in INSN.
8752 It has also checked that we are optimizing, and thus some
8753 inaccuracies in the debugging information are acceptable.
8754 So we could just delete output_reload_insn. But in some cases
8755 we can improve the debugging information without sacrificing
8756 optimization - maybe even improving the code: See if the pseudo
8757 reg has been completely replaced with reload regs. If so, delete
8758 the store insn and forget we had a stack slot for the pseudo. */
8759 if (rld[j].out != rld[j].in
8760 && REG_N_DEATHS (REGNO (reg)) == 1
8761 && REG_N_SETS (REGNO (reg)) == 1
8762 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8763 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8765 rtx i2;
8767 /* We know that it was used only between here and the beginning of
8768 the current basic block. (We also know that the last use before
8769 INSN was the output reload we are thinking of deleting, but never
8770 mind that.) Search that range; see if any ref remains. */
8771 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8773 rtx set = single_set (i2);
8775 /* Uses which just store in the pseudo don't count,
8776 since if they are the only uses, they are dead. */
8777 if (set != 0 && SET_DEST (set) == reg)
8778 continue;
8779 if (LABEL_P (i2)
8780 || JUMP_P (i2))
8781 break;
8782 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8783 && reg_mentioned_p (reg, PATTERN (i2)))
8785 /* Some other ref remains; just delete the output reload we
8786 know to be dead. */
8787 delete_address_reloads (output_reload_insn, insn);
8788 delete_insn (output_reload_insn);
8789 return;
8793 /* Delete the now-dead stores into this pseudo. Note that this
8794 loop also takes care of deleting output_reload_insn. */
8795 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8797 rtx set = single_set (i2);
8799 if (set != 0 && SET_DEST (set) == reg)
8801 delete_address_reloads (i2, insn);
8802 delete_insn (i2);
8804 if (LABEL_P (i2)
8805 || JUMP_P (i2))
8806 break;
8809 /* For the debugging info, say the pseudo lives in this reload reg. */
8810 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8811 if (ira_conflicts_p)
8812 /* Inform IRA about the change. */
8813 ira_mark_allocation_change (REGNO (reg));
8814 alter_reg (REGNO (reg), -1, false);
8816 else
8818 delete_address_reloads (output_reload_insn, insn);
8819 delete_insn (output_reload_insn);
8823 /* We are going to delete DEAD_INSN. Recursively delete loads of
8824 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8825 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8826 static void
8827 delete_address_reloads (rtx dead_insn, rtx current_insn)
8829 rtx set = single_set (dead_insn);
8830 rtx set2, dst, prev, next;
8831 if (set)
8833 rtx dst = SET_DEST (set);
8834 if (MEM_P (dst))
8835 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8837 /* If we deleted the store from a reloaded post_{in,de}c expression,
8838 we can delete the matching adds. */
8839 prev = PREV_INSN (dead_insn);
8840 next = NEXT_INSN (dead_insn);
8841 if (! prev || ! next)
8842 return;
8843 set = single_set (next);
8844 set2 = single_set (prev);
8845 if (! set || ! set2
8846 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8847 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8848 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8849 return;
8850 dst = SET_DEST (set);
8851 if (! rtx_equal_p (dst, SET_DEST (set2))
8852 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8853 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8854 || (INTVAL (XEXP (SET_SRC (set), 1))
8855 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8856 return;
8857 delete_related_insns (prev);
8858 delete_related_insns (next);
8861 /* Subfunction of delete_address_reloads: process registers found in X. */
8862 static void
8863 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8865 rtx prev, set, dst, i2;
8866 int i, j;
8867 enum rtx_code code = GET_CODE (x);
8869 if (code != REG)
8871 const char *fmt = GET_RTX_FORMAT (code);
8872 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8874 if (fmt[i] == 'e')
8875 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8876 else if (fmt[i] == 'E')
8878 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8879 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8880 current_insn);
8883 return;
8886 if (spill_reg_order[REGNO (x)] < 0)
8887 return;
8889 /* Scan backwards for the insn that sets x. This might be a way back due
8890 to inheritance. */
8891 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8893 code = GET_CODE (prev);
8894 if (code == CODE_LABEL || code == JUMP_INSN)
8895 return;
8896 if (!INSN_P (prev))
8897 continue;
8898 if (reg_set_p (x, PATTERN (prev)))
8899 break;
8900 if (reg_referenced_p (x, PATTERN (prev)))
8901 return;
8903 if (! prev || INSN_UID (prev) < reload_first_uid)
8904 return;
8905 /* Check that PREV only sets the reload register. */
8906 set = single_set (prev);
8907 if (! set)
8908 return;
8909 dst = SET_DEST (set);
8910 if (!REG_P (dst)
8911 || ! rtx_equal_p (dst, x))
8912 return;
8913 if (! reg_set_p (dst, PATTERN (dead_insn)))
8915 /* Check if DST was used in a later insn -
8916 it might have been inherited. */
8917 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8919 if (LABEL_P (i2))
8920 break;
8921 if (! INSN_P (i2))
8922 continue;
8923 if (reg_referenced_p (dst, PATTERN (i2)))
8925 /* If there is a reference to the register in the current insn,
8926 it might be loaded in a non-inherited reload. If no other
8927 reload uses it, that means the register is set before
8928 referenced. */
8929 if (i2 == current_insn)
8931 for (j = n_reloads - 1; j >= 0; j--)
8932 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8933 || reload_override_in[j] == dst)
8934 return;
8935 for (j = n_reloads - 1; j >= 0; j--)
8936 if (rld[j].in && rld[j].reg_rtx == dst)
8937 break;
8938 if (j >= 0)
8939 break;
8941 return;
8943 if (JUMP_P (i2))
8944 break;
8945 /* If DST is still live at CURRENT_INSN, check if it is used for
8946 any reload. Note that even if CURRENT_INSN sets DST, we still
8947 have to check the reloads. */
8948 if (i2 == current_insn)
8950 for (j = n_reloads - 1; j >= 0; j--)
8951 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8952 || reload_override_in[j] == dst)
8953 return;
8954 /* ??? We can't finish the loop here, because dst might be
8955 allocated to a pseudo in this block if no reload in this
8956 block needs any of the classes containing DST - see
8957 spill_hard_reg. There is no easy way to tell this, so we
8958 have to scan till the end of the basic block. */
8960 if (reg_set_p (dst, PATTERN (i2)))
8961 break;
8964 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8965 reg_reloaded_contents[REGNO (dst)] = -1;
8966 delete_insn (prev);
8969 /* Output reload-insns to reload VALUE into RELOADREG.
8970 VALUE is an autoincrement or autodecrement RTX whose operand
8971 is a register or memory location;
8972 so reloading involves incrementing that location.
8973 IN is either identical to VALUE, or some cheaper place to reload from.
8975 INC_AMOUNT is the number to increment or decrement by (always positive).
8976 This cannot be deduced from VALUE. */
8978 static void
8979 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8981 /* REG or MEM to be copied and incremented. */
8982 rtx incloc = find_replacement (&XEXP (value, 0));
8983 /* Nonzero if increment after copying. */
8984 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8985 || GET_CODE (value) == POST_MODIFY);
8986 rtx last;
8987 rtx inc;
8988 rtx add_insn;
8989 int code;
8990 rtx real_in = in == value ? incloc : in;
8992 /* No hard register is equivalent to this register after
8993 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8994 we could inc/dec that register as well (maybe even using it for
8995 the source), but I'm not sure it's worth worrying about. */
8996 if (REG_P (incloc))
8997 reg_last_reload_reg[REGNO (incloc)] = 0;
8999 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9001 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9002 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9004 else
9006 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9007 inc_amount = -inc_amount;
9009 inc = GEN_INT (inc_amount);
9012 /* If this is post-increment, first copy the location to the reload reg. */
9013 if (post && real_in != reloadreg)
9014 emit_insn (gen_move_insn (reloadreg, real_in));
9016 if (in == value)
9018 /* See if we can directly increment INCLOC. Use a method similar to
9019 that in gen_reload. */
9021 last = get_last_insn ();
9022 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9023 gen_rtx_PLUS (GET_MODE (incloc),
9024 incloc, inc)));
9026 code = recog_memoized (add_insn);
9027 if (code >= 0)
9029 extract_insn (add_insn);
9030 if (constrain_operands (1))
9032 /* If this is a pre-increment and we have incremented the value
9033 where it lives, copy the incremented value to RELOADREG to
9034 be used as an address. */
9036 if (! post)
9037 emit_insn (gen_move_insn (reloadreg, incloc));
9038 return;
9041 delete_insns_since (last);
9044 /* If couldn't do the increment directly, must increment in RELOADREG.
9045 The way we do this depends on whether this is pre- or post-increment.
9046 For pre-increment, copy INCLOC to the reload register, increment it
9047 there, then save back. */
9049 if (! post)
9051 if (in != reloadreg)
9052 emit_insn (gen_move_insn (reloadreg, real_in));
9053 emit_insn (gen_add2_insn (reloadreg, inc));
9054 emit_insn (gen_move_insn (incloc, reloadreg));
9056 else
9058 /* Postincrement.
9059 Because this might be a jump insn or a compare, and because RELOADREG
9060 may not be available after the insn in an input reload, we must do
9061 the incrementation before the insn being reloaded for.
9063 We have already copied IN to RELOADREG. Increment the copy in
9064 RELOADREG, save that back, then decrement RELOADREG so it has
9065 the original value. */
9067 emit_insn (gen_add2_insn (reloadreg, inc));
9068 emit_insn (gen_move_insn (incloc, reloadreg));
9069 if (CONST_INT_P (inc))
9070 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9071 else
9072 emit_insn (gen_sub2_insn (reloadreg, inc));
9076 #ifdef AUTO_INC_DEC
9077 static void
9078 add_auto_inc_notes (rtx insn, rtx x)
9080 enum rtx_code code = GET_CODE (x);
9081 const char *fmt;
9082 int i, j;
9084 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9086 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9087 return;
9090 /* Scan all the operand sub-expressions. */
9091 fmt = GET_RTX_FORMAT (code);
9092 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9094 if (fmt[i] == 'e')
9095 add_auto_inc_notes (insn, XEXP (x, i));
9096 else if (fmt[i] == 'E')
9097 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9098 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9101 #endif