re checking -fdump-passes
[official-gcc.git] / gcc / reginfo.c
blob1da4cb8f40aa2b9ec1fc5f157b520868a15ce6d0
1 /* Compute different info about registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This file contains regscan pass of the compiler and passes for
24 dealing with info about modes of pseudo-registers inside
25 subregisters. It also defines some tables of information about the
26 hardware registers, function init_reg_sets to initialize the
27 tables, and other auxiliary functions to deal with info about
28 registers and their classes. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "hard-reg-set.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "basic-block.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "function.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "diagnostic-core.h"
47 #include "output.h"
48 #include "timevar.h"
49 #include "hashtab.h"
50 #include "target.h"
51 #include "tree-pass.h"
52 #include "df.h"
53 #include "ira.h"
55 /* Maximum register number used in this function, plus one. */
57 int max_regno;
60 struct target_hard_regs default_target_hard_regs;
61 struct target_regs default_target_regs;
62 #if SWITCHABLE_TARGET
63 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
64 struct target_regs *this_target_regs = &default_target_regs;
65 #endif
67 /* Data for initializing fixed_regs. */
68 static const char initial_fixed_regs[] = FIXED_REGISTERS;
70 /* Data for initializing call_used_regs. */
71 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
73 #ifdef CALL_REALLY_USED_REGISTERS
74 /* Data for initializing call_really_used_regs. */
75 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
76 #endif
78 #ifdef CALL_REALLY_USED_REGISTERS
79 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
80 #else
81 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
82 #endif
84 /* Indexed by hard register number, contains 1 for registers
85 that are being used for global register decls.
86 These must be exempt from ordinary flow analysis
87 and are also considered fixed. */
88 char global_regs[FIRST_PSEUDO_REGISTER];
90 /* Declaration for the global register. */
91 static tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
93 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
94 in dataflow more conveniently. */
95 regset regs_invalidated_by_call_regset;
97 /* The bitmap_obstack is used to hold some static variables that
98 should not be reset after each function is compiled. */
99 static bitmap_obstack persistent_obstack;
101 /* Used to initialize reg_alloc_order. */
102 #ifdef REG_ALLOC_ORDER
103 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
104 #endif
106 /* The same information, but as an array of unsigned ints. We copy from
107 these unsigned ints to the table above. We do this so the tm.h files
108 do not have to be aware of the wordsize for machines with <= 64 regs.
109 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
110 #define N_REG_INTS \
111 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
113 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
114 = REG_CLASS_CONTENTS;
116 /* Array containing all of the register names. */
117 static const char *const initial_reg_names[] = REGISTER_NAMES;
119 /* Array containing all of the register class names. */
120 const char * reg_class_names[] = REG_CLASS_NAMES;
122 #define last_mode_for_init_move_cost \
123 (this_target_regs->x_last_mode_for_init_move_cost)
125 /* No more global register variables may be declared; true once
126 reginfo has been initialized. */
127 static int no_global_reg_vars = 0;
129 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
130 correspond to the hard registers, if any, set in that map. This
131 could be done far more efficiently by having all sorts of special-cases
132 with moving single words, but probably isn't worth the trouble. */
133 void
134 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
136 unsigned i;
137 bitmap_iterator bi;
139 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
141 if (i >= FIRST_PSEUDO_REGISTER)
142 return;
143 SET_HARD_REG_BIT (*to, i);
147 /* Function called only once per target_globals to initialize the
148 target_hard_regs structure. Once this is done, various switches
149 may override. */
150 void
151 init_reg_sets (void)
153 int i, j;
155 /* First copy the register information from the initial int form into
156 the regsets. */
158 for (i = 0; i < N_REG_CLASSES; i++)
160 CLEAR_HARD_REG_SET (reg_class_contents[i]);
162 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
163 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
164 if (int_reg_class_contents[i][j / 32]
165 & ((unsigned) 1 << (j % 32)))
166 SET_HARD_REG_BIT (reg_class_contents[i], j);
169 /* Sanity check: make sure the target macros FIXED_REGISTERS and
170 CALL_USED_REGISTERS had the right number of initializers. */
171 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
172 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
173 #ifdef CALL_REALLY_USED_REGISTERS
174 gcc_assert (sizeof call_really_used_regs
175 == sizeof initial_call_really_used_regs);
176 #endif
177 #ifdef REG_ALLOC_ORDER
178 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
179 #endif
180 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
182 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
183 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
184 #ifdef CALL_REALLY_USED_REGISTERS
185 memcpy (call_really_used_regs, initial_call_really_used_regs,
186 sizeof call_really_used_regs);
187 #endif
188 #ifdef REG_ALLOC_ORDER
189 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
190 #endif
191 memcpy (reg_names, initial_reg_names, sizeof reg_names);
194 /* Initialize may_move_cost and friends for mode M. */
195 void
196 init_move_cost (enum machine_mode m)
198 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
199 bool all_match = true;
200 unsigned int i, j;
202 gcc_assert (have_regs_of_mode[m]);
203 for (i = 0; i < N_REG_CLASSES; i++)
204 if (contains_reg_of_mode[i][m])
205 for (j = 0; j < N_REG_CLASSES; j++)
207 int cost;
208 if (!contains_reg_of_mode[j][m])
209 cost = 65535;
210 else
212 cost = register_move_cost (m, (enum reg_class) i,
213 (enum reg_class) j);
214 gcc_assert (cost < 65535);
216 all_match &= (last_move_cost[i][j] == cost);
217 last_move_cost[i][j] = cost;
219 if (all_match && last_mode_for_init_move_cost != -1)
221 move_cost[m] = move_cost[last_mode_for_init_move_cost];
222 may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
223 may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
224 return;
226 last_mode_for_init_move_cost = m;
227 move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
228 * N_REG_CLASSES);
229 may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
230 * N_REG_CLASSES);
231 may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
232 * N_REG_CLASSES);
233 for (i = 0; i < N_REG_CLASSES; i++)
234 if (contains_reg_of_mode[i][m])
235 for (j = 0; j < N_REG_CLASSES; j++)
237 int cost;
238 enum reg_class *p1, *p2;
240 if (last_move_cost[i][j] == 65535)
242 move_cost[m][i][j] = 65535;
243 may_move_in_cost[m][i][j] = 65535;
244 may_move_out_cost[m][i][j] = 65535;
246 else
248 cost = last_move_cost[i][j];
250 for (p2 = &reg_class_subclasses[j][0];
251 *p2 != LIM_REG_CLASSES; p2++)
252 if (*p2 != i && contains_reg_of_mode[*p2][m])
253 cost = MAX (cost, move_cost[m][i][*p2]);
255 for (p1 = &reg_class_subclasses[i][0];
256 *p1 != LIM_REG_CLASSES; p1++)
257 if (*p1 != j && contains_reg_of_mode[*p1][m])
258 cost = MAX (cost, move_cost[m][*p1][j]);
260 gcc_assert (cost <= 65535);
261 move_cost[m][i][j] = cost;
263 if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
264 may_move_in_cost[m][i][j] = 0;
265 else
266 may_move_in_cost[m][i][j] = cost;
268 if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
269 may_move_out_cost[m][i][j] = 0;
270 else
271 may_move_out_cost[m][i][j] = cost;
274 else
275 for (j = 0; j < N_REG_CLASSES; j++)
277 move_cost[m][i][j] = 65535;
278 may_move_in_cost[m][i][j] = 65535;
279 may_move_out_cost[m][i][j] = 65535;
283 /* We need to save copies of some of the register information which
284 can be munged by command-line switches so we can restore it during
285 subsequent back-end reinitialization. */
286 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
287 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
288 #ifdef CALL_REALLY_USED_REGISTERS
289 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
290 #endif
291 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
293 /* Save the register information. */
294 void
295 save_register_info (void)
297 /* Sanity check: make sure the target macros FIXED_REGISTERS and
298 CALL_USED_REGISTERS had the right number of initializers. */
299 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
300 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
301 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
302 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
304 /* Likewise for call_really_used_regs. */
305 #ifdef CALL_REALLY_USED_REGISTERS
306 gcc_assert (sizeof call_really_used_regs
307 == sizeof saved_call_really_used_regs);
308 memcpy (saved_call_really_used_regs, call_really_used_regs,
309 sizeof call_really_used_regs);
310 #endif
312 /* And similarly for reg_names. */
313 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
314 memcpy (saved_reg_names, reg_names, sizeof reg_names);
317 /* Restore the register information. */
318 static void
319 restore_register_info (void)
321 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
322 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
324 #ifdef CALL_REALLY_USED_REGISTERS
325 memcpy (call_really_used_regs, saved_call_really_used_regs,
326 sizeof call_really_used_regs);
327 #endif
329 memcpy (reg_names, saved_reg_names, sizeof reg_names);
332 /* After switches have been processed, which perhaps alter
333 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
334 static void
335 init_reg_sets_1 (void)
337 unsigned int i, j;
338 unsigned int /* enum machine_mode */ m;
340 restore_register_info ();
342 #ifdef REG_ALLOC_ORDER
343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344 inv_reg_alloc_order[reg_alloc_order[i]] = i;
345 #endif
347 /* Let the target tweak things if necessary. */
349 targetm.conditional_register_usage ();
351 /* Compute number of hard regs in each class. */
353 memset (reg_class_size, 0, sizeof reg_class_size);
354 for (i = 0; i < N_REG_CLASSES; i++)
356 bool any_nonfixed = false;
357 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
358 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
360 reg_class_size[i]++;
361 if (!fixed_regs[j])
362 any_nonfixed = true;
364 class_only_fixed_regs[i] = !any_nonfixed;
367 /* Initialize the table of subunions.
368 reg_class_subunion[I][J] gets the largest-numbered reg-class
369 that is contained in the union of classes I and J. */
371 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
372 for (i = 0; i < N_REG_CLASSES; i++)
374 for (j = 0; j < N_REG_CLASSES; j++)
376 HARD_REG_SET c;
377 int k;
379 COPY_HARD_REG_SET (c, reg_class_contents[i]);
380 IOR_HARD_REG_SET (c, reg_class_contents[j]);
381 for (k = 0; k < N_REG_CLASSES; k++)
382 if (hard_reg_set_subset_p (reg_class_contents[k], c)
383 && !hard_reg_set_subset_p (reg_class_contents[k],
384 reg_class_contents
385 [(int) reg_class_subunion[i][j]]))
386 reg_class_subunion[i][j] = (enum reg_class) k;
390 /* Initialize the table of superunions.
391 reg_class_superunion[I][J] gets the smallest-numbered reg-class
392 containing the union of classes I and J. */
394 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
395 for (i = 0; i < N_REG_CLASSES; i++)
397 for (j = 0; j < N_REG_CLASSES; j++)
399 HARD_REG_SET c;
400 int k;
402 COPY_HARD_REG_SET (c, reg_class_contents[i]);
403 IOR_HARD_REG_SET (c, reg_class_contents[j]);
404 for (k = 0; k < N_REG_CLASSES; k++)
405 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
406 break;
408 reg_class_superunion[i][j] = (enum reg_class) k;
412 /* Initialize the tables of subclasses and superclasses of each reg class.
413 First clear the whole table, then add the elements as they are found. */
415 for (i = 0; i < N_REG_CLASSES; i++)
417 for (j = 0; j < N_REG_CLASSES; j++)
418 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
421 for (i = 0; i < N_REG_CLASSES; i++)
423 if (i == (int) NO_REGS)
424 continue;
426 for (j = i + 1; j < N_REG_CLASSES; j++)
427 if (hard_reg_set_subset_p (reg_class_contents[i],
428 reg_class_contents[j]))
430 /* Reg class I is a subclass of J.
431 Add J to the table of superclasses of I. */
432 enum reg_class *p;
434 /* Add I to the table of superclasses of J. */
435 p = &reg_class_subclasses[j][0];
436 while (*p != LIM_REG_CLASSES) p++;
437 *p = (enum reg_class) i;
441 /* Initialize "constant" tables. */
443 CLEAR_HARD_REG_SET (fixed_reg_set);
444 CLEAR_HARD_REG_SET (call_used_reg_set);
445 CLEAR_HARD_REG_SET (call_fixed_reg_set);
446 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
447 if (!regs_invalidated_by_call_regset)
449 bitmap_obstack_initialize (&persistent_obstack);
450 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
452 else
453 CLEAR_REG_SET (regs_invalidated_by_call_regset);
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 /* call_used_regs must include fixed_regs. */
458 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
459 #ifdef CALL_REALLY_USED_REGISTERS
460 /* call_used_regs must include call_really_used_regs. */
461 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
462 #endif
464 if (fixed_regs[i])
465 SET_HARD_REG_BIT (fixed_reg_set, i);
467 if (call_used_regs[i])
468 SET_HARD_REG_BIT (call_used_reg_set, i);
470 /* There are a couple of fixed registers that we know are safe to
471 exclude from being clobbered by calls:
473 The frame pointer is always preserved across calls. The arg
474 pointer is if it is fixed. The stack pointer usually is,
475 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
476 CLOBBER will be present. If we are generating PIC code, the
477 PIC offset table register is preserved across calls, though the
478 target can override that. */
480 if (i == STACK_POINTER_REGNUM)
482 else if (global_regs[i])
484 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
485 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
487 else if (i == FRAME_POINTER_REGNUM)
489 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
490 else if (i == HARD_FRAME_POINTER_REGNUM)
492 #endif
493 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
494 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
496 #endif
497 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
498 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
500 else if (CALL_REALLY_USED_REGNO_P (i))
502 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
503 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
507 COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
509 /* Preserve global registers if called more than once. */
510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
512 if (global_regs[i])
514 fixed_regs[i] = call_used_regs[i] = 1;
515 SET_HARD_REG_BIT (fixed_reg_set, i);
516 SET_HARD_REG_BIT (call_used_reg_set, i);
517 SET_HARD_REG_BIT (call_fixed_reg_set, i);
521 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
522 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
523 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
525 HARD_REG_SET ok_regs;
526 CLEAR_HARD_REG_SET (ok_regs);
527 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
528 if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
529 SET_HARD_REG_BIT (ok_regs, j);
531 for (i = 0; i < N_REG_CLASSES; i++)
532 if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
533 (enum machine_mode) m)
534 <= reg_class_size[i])
535 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
537 contains_reg_of_mode [i][m] = 1;
538 have_regs_of_mode [m] = 1;
542 /* Reset move_cost and friends, making sure we only free shared
543 table entries once. */
544 for (i = 0; i < MAX_MACHINE_MODE; i++)
545 if (move_cost[i])
547 for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
549 if (i == j)
551 free (move_cost[i]);
552 free (may_move_in_cost[i]);
553 free (may_move_out_cost[i]);
556 memset (move_cost, 0, sizeof move_cost);
557 memset (may_move_in_cost, 0, sizeof may_move_in_cost);
558 memset (may_move_out_cost, 0, sizeof may_move_out_cost);
559 last_mode_for_init_move_cost = -1;
562 /* Compute the table of register modes.
563 These values are used to record death information for individual registers
564 (as opposed to a multi-register mode).
565 This function might be invoked more than once, if the target has support
566 for changing register usage conventions on a per-function basis.
568 void
569 init_reg_modes_target (void)
571 int i, j;
573 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
574 for (j = 0; j < MAX_MACHINE_MODE; j++)
575 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
577 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
579 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
581 /* If we couldn't find a valid mode, just use the previous mode.
582 ??? One situation in which we need to do this is on the mips where
583 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
584 to use DF mode for the even registers and VOIDmode for the odd
585 (for the cpu models where the odd ones are inaccessible). */
586 if (reg_raw_mode[i] == VOIDmode)
587 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
591 /* Finish initializing the register sets and initialize the register modes.
592 This function might be invoked more than once, if the target has support
593 for changing register usage conventions on a per-function basis.
595 void
596 init_regs (void)
598 /* This finishes what was started by init_reg_sets, but couldn't be done
599 until after register usage was specified. */
600 init_reg_sets_1 ();
603 /* The same as previous function plus initializing IRA. */
604 void
605 reinit_regs (void)
607 init_regs ();
608 /* caller_save needs to be re-initialized. */
609 caller_save_initialized_p = false;
610 ira_init ();
613 /* Initialize some fake stack-frame MEM references for use in
614 memory_move_secondary_cost. */
615 void
616 init_fake_stack_mems (void)
618 int i;
620 for (i = 0; i < MAX_MACHINE_MODE; i++)
621 top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
625 /* Compute cost of moving data from a register of class FROM to one of
626 TO, using MODE. */
629 register_move_cost (enum machine_mode mode, reg_class_t from, reg_class_t to)
631 return targetm.register_move_cost (mode, from, to);
634 /* Compute cost of moving registers to/from memory. */
637 memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in)
639 return targetm.memory_move_cost (mode, rclass, in);
642 /* Compute extra cost of moving registers to/from memory due to reloads.
643 Only needed if secondary reloads are required for memory moves. */
645 memory_move_secondary_cost (enum machine_mode mode, reg_class_t rclass,
646 bool in)
648 reg_class_t altclass;
649 int partial_cost = 0;
650 /* We need a memory reference to feed to SECONDARY... macros. */
651 /* mem may be unused even if the SECONDARY_ macros are defined. */
652 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
654 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
656 if (altclass == NO_REGS)
657 return 0;
659 if (in)
660 partial_cost = register_move_cost (mode, altclass, rclass);
661 else
662 partial_cost = register_move_cost (mode, rclass, altclass);
664 if (rclass == altclass)
665 /* This isn't simply a copy-to-temporary situation. Can't guess
666 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
667 calling here in that case.
669 I'm tempted to put in an assert here, but returning this will
670 probably only give poor estimates, which is what we would've
671 had before this code anyways. */
672 return partial_cost;
674 /* Check if the secondary reload register will also need a
675 secondary reload. */
676 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
679 /* Return a machine mode that is legitimate for hard reg REGNO and large
680 enough to save nregs. If we can't find one, return VOIDmode.
681 If CALL_SAVED is true, only consider modes that are call saved. */
682 enum machine_mode
683 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
684 unsigned int nregs, bool call_saved)
686 unsigned int /* enum machine_mode */ m;
687 enum machine_mode found_mode = VOIDmode, mode;
689 /* We first look for the largest integer mode that can be validly
690 held in REGNO. If none, we look for the largest floating-point mode.
691 If we still didn't find a valid mode, try CCmode. */
693 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
694 mode != VOIDmode;
695 mode = GET_MODE_WIDER_MODE (mode))
696 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
697 && HARD_REGNO_MODE_OK (regno, mode)
698 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
699 found_mode = mode;
701 if (found_mode != VOIDmode)
702 return found_mode;
704 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
705 mode != VOIDmode;
706 mode = GET_MODE_WIDER_MODE (mode))
707 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
708 && HARD_REGNO_MODE_OK (regno, mode)
709 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
710 found_mode = mode;
712 if (found_mode != VOIDmode)
713 return found_mode;
715 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
716 mode != VOIDmode;
717 mode = GET_MODE_WIDER_MODE (mode))
718 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
719 && HARD_REGNO_MODE_OK (regno, mode)
720 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
721 found_mode = mode;
723 if (found_mode != VOIDmode)
724 return found_mode;
726 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
727 mode != VOIDmode;
728 mode = GET_MODE_WIDER_MODE (mode))
729 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
730 && HARD_REGNO_MODE_OK (regno, mode)
731 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
732 found_mode = mode;
734 if (found_mode != VOIDmode)
735 return found_mode;
737 /* Iterate over all of the CCmodes. */
738 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
740 mode = (enum machine_mode) m;
741 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
742 && HARD_REGNO_MODE_OK (regno, mode)
743 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
744 return mode;
747 /* We can't find a mode valid for this register. */
748 return VOIDmode;
751 /* Specify the usage characteristics of the register named NAME.
752 It should be a fixed register if FIXED and a
753 call-used register if CALL_USED. */
754 void
755 fix_register (const char *name, int fixed, int call_used)
757 int i;
758 int reg, nregs;
760 /* Decode the name and update the primary form of
761 the register info. */
763 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
765 gcc_assert (nregs >= 1);
766 for (i = reg; i < reg + nregs; i++)
768 if ((i == STACK_POINTER_REGNUM
769 #ifdef HARD_FRAME_POINTER_REGNUM
770 || i == HARD_FRAME_POINTER_REGNUM
771 #else
772 || i == FRAME_POINTER_REGNUM
773 #endif
775 && (fixed == 0 || call_used == 0))
777 switch (fixed)
779 case 0:
780 switch (call_used)
782 case 0:
783 error ("can%'t use %qs as a call-saved register", name);
784 break;
786 case 1:
787 error ("can%'t use %qs as a call-used register", name);
788 break;
790 default:
791 gcc_unreachable ();
793 break;
795 case 1:
796 switch (call_used)
798 case 1:
799 error ("can%'t use %qs as a fixed register", name);
800 break;
802 case 0:
803 default:
804 gcc_unreachable ();
806 break;
808 default:
809 gcc_unreachable ();
812 else
814 fixed_regs[i] = fixed;
815 call_used_regs[i] = call_used;
816 #ifdef CALL_REALLY_USED_REGISTERS
817 if (fixed == 0)
818 call_really_used_regs[i] = call_used;
819 #endif
823 else
825 warning (0, "unknown register name: %s", name);
829 /* Mark register number I as global. */
830 void
831 globalize_reg (tree decl, int i)
833 location_t loc = DECL_SOURCE_LOCATION (decl);
835 #ifdef STACK_REGS
836 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
838 error ("stack register used for global register variable");
839 return;
841 #endif
843 if (fixed_regs[i] == 0 && no_global_reg_vars)
844 error_at (loc, "global register variable follows a function definition");
846 if (global_regs[i])
848 warning_at (loc, 0,
849 "register of %qD used for multiple global register variables",
850 decl);
851 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
852 "conflicts with %qD", global_regs_decl[i]);
853 return;
856 if (call_used_regs[i] && ! fixed_regs[i])
857 warning_at (loc, 0, "call-clobbered register used for global register variable");
859 global_regs[i] = 1;
860 global_regs_decl[i] = decl;
862 /* If we're globalizing the frame pointer, we need to set the
863 appropriate regs_invalidated_by_call bit, even if it's already
864 set in fixed_regs. */
865 if (i != STACK_POINTER_REGNUM)
867 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
868 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
871 /* If already fixed, nothing else to do. */
872 if (fixed_regs[i])
873 return;
875 fixed_regs[i] = call_used_regs[i] = 1;
876 #ifdef CALL_REALLY_USED_REGISTERS
877 call_really_used_regs[i] = 1;
878 #endif
880 SET_HARD_REG_BIT (fixed_reg_set, i);
881 SET_HARD_REG_BIT (call_used_reg_set, i);
882 SET_HARD_REG_BIT (call_fixed_reg_set, i);
884 reinit_regs ();
888 /* Structure used to record preferences of given pseudo. */
889 struct reg_pref
891 /* (enum reg_class) prefclass is the preferred class. May be
892 NO_REGS if no class is better than memory. */
893 char prefclass;
895 /* altclass is a register class that we should use for allocating
896 pseudo if no register in the preferred class is available.
897 If no register in this class is available, memory is preferred.
899 It might appear to be more general to have a bitmask of classes here,
900 but since it is recommended that there be a class corresponding to the
901 union of most major pair of classes, that generality is not required. */
902 char altclass;
904 /* allocnoclass is a register class that IRA uses for allocating
905 the pseudo. */
906 char allocnoclass;
909 /* Record preferences of each pseudo. This is available after RA is
910 run. */
911 static struct reg_pref *reg_pref;
913 /* Current size of reg_info. */
914 static int reg_info_size;
916 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
917 This function is sometimes called before the info has been computed.
918 When that happens, just return GENERAL_REGS, which is innocuous. */
919 enum reg_class
920 reg_preferred_class (int regno)
922 if (reg_pref == 0)
923 return GENERAL_REGS;
925 return (enum reg_class) reg_pref[regno].prefclass;
928 enum reg_class
929 reg_alternate_class (int regno)
931 if (reg_pref == 0)
932 return ALL_REGS;
934 return (enum reg_class) reg_pref[regno].altclass;
937 /* Return the reg_class which is used by IRA for its allocation. */
938 enum reg_class
939 reg_allocno_class (int regno)
941 if (reg_pref == 0)
942 return NO_REGS;
944 return (enum reg_class) reg_pref[regno].allocnoclass;
949 /* Allocate space for reg info. */
950 static void
951 allocate_reg_info (void)
953 reg_info_size = max_reg_num ();
954 gcc_assert (! reg_pref && ! reg_renumber);
955 reg_renumber = XNEWVEC (short, reg_info_size);
956 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
957 memset (reg_renumber, -1, reg_info_size * sizeof (short));
961 /* Resize reg info. The new elements will be uninitialized. Return
962 TRUE if new elements (for new pseudos) were added. */
963 bool
964 resize_reg_info (void)
966 int old;
968 if (reg_pref == NULL)
970 allocate_reg_info ();
971 return true;
973 if (reg_info_size == max_reg_num ())
974 return false;
975 old = reg_info_size;
976 reg_info_size = max_reg_num ();
977 gcc_assert (reg_pref && reg_renumber);
978 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
979 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
980 memset (reg_pref + old, -1,
981 (reg_info_size - old) * sizeof (struct reg_pref));
982 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
983 return true;
987 /* Free up the space allocated by allocate_reg_info. */
988 void
989 free_reg_info (void)
991 if (reg_pref)
993 free (reg_pref);
994 reg_pref = NULL;
997 if (reg_renumber)
999 free (reg_renumber);
1000 reg_renumber = NULL;
1004 /* Initialize some global data for this pass. */
1005 static unsigned int
1006 reginfo_init (void)
1008 if (df)
1009 df_compute_regs_ever_live (true);
1011 /* This prevents dump_flow_info from losing if called
1012 before reginfo is run. */
1013 reg_pref = NULL;
1014 /* No more global register variables may be declared. */
1015 no_global_reg_vars = 1;
1016 return 1;
1019 struct rtl_opt_pass pass_reginfo_init =
1022 RTL_PASS,
1023 "reginfo", /* name */
1024 NULL, /* gate */
1025 reginfo_init, /* execute */
1026 NULL, /* sub */
1027 NULL, /* next */
1028 0, /* static_pass_number */
1029 TV_NONE, /* tv_id */
1030 0, /* properties_required */
1031 0, /* properties_provided */
1032 0, /* properties_destroyed */
1033 0, /* todo_flags_start */
1034 0 /* todo_flags_finish */
1040 /* Set up preferred, alternate, and cover classes for REGNO as
1041 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
1042 void
1043 setup_reg_classes (int regno,
1044 enum reg_class prefclass, enum reg_class altclass,
1045 enum reg_class allocnoclass)
1047 if (reg_pref == NULL)
1048 return;
1049 gcc_assert (reg_info_size == max_reg_num ());
1050 reg_pref[regno].prefclass = prefclass;
1051 reg_pref[regno].altclass = altclass;
1052 reg_pref[regno].allocnoclass = allocnoclass;
1056 /* This is the `regscan' pass of the compiler, run just before cse and
1057 again just before loop. It finds the first and last use of each
1058 pseudo-register. */
1060 static void reg_scan_mark_refs (rtx, rtx);
1062 void
1063 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
1065 rtx insn;
1067 timevar_push (TV_REG_SCAN);
1069 for (insn = f; insn; insn = NEXT_INSN (insn))
1070 if (INSN_P (insn))
1072 reg_scan_mark_refs (PATTERN (insn), insn);
1073 if (REG_NOTES (insn))
1074 reg_scan_mark_refs (REG_NOTES (insn), insn);
1077 timevar_pop (TV_REG_SCAN);
1081 /* X is the expression to scan. INSN is the insn it appears in.
1082 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1083 We should only record information for REGs with numbers
1084 greater than or equal to MIN_REGNO. */
1085 static void
1086 reg_scan_mark_refs (rtx x, rtx insn)
1088 enum rtx_code code;
1089 rtx dest;
1090 rtx note;
1092 if (!x)
1093 return;
1094 code = GET_CODE (x);
1095 switch (code)
1097 case CONST:
1098 case CONST_INT:
1099 case CONST_DOUBLE:
1100 case CONST_FIXED:
1101 case CONST_VECTOR:
1102 case CC0:
1103 case PC:
1104 case SYMBOL_REF:
1105 case LABEL_REF:
1106 case ADDR_VEC:
1107 case ADDR_DIFF_VEC:
1108 case REG:
1109 return;
1111 case EXPR_LIST:
1112 if (XEXP (x, 0))
1113 reg_scan_mark_refs (XEXP (x, 0), insn);
1114 if (XEXP (x, 1))
1115 reg_scan_mark_refs (XEXP (x, 1), insn);
1116 break;
1118 case INSN_LIST:
1119 if (XEXP (x, 1))
1120 reg_scan_mark_refs (XEXP (x, 1), insn);
1121 break;
1123 case CLOBBER:
1124 if (MEM_P (XEXP (x, 0)))
1125 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1126 break;
1128 case SET:
1129 /* Count a set of the destination if it is a register. */
1130 for (dest = SET_DEST (x);
1131 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1132 || GET_CODE (dest) == ZERO_EXTEND;
1133 dest = XEXP (dest, 0))
1136 /* If this is setting a pseudo from another pseudo or the sum of a
1137 pseudo and a constant integer and the other pseudo is known to be
1138 a pointer, set the destination to be a pointer as well.
1140 Likewise if it is setting the destination from an address or from a
1141 value equivalent to an address or to the sum of an address and
1142 something else.
1144 But don't do any of this if the pseudo corresponds to a user
1145 variable since it should have already been set as a pointer based
1146 on the type. */
1148 if (REG_P (SET_DEST (x))
1149 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1150 /* If the destination pseudo is set more than once, then other
1151 sets might not be to a pointer value (consider access to a
1152 union in two threads of control in the presence of global
1153 optimizations). So only set REG_POINTER on the destination
1154 pseudo if this is the only set of that pseudo. */
1155 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1156 && ! REG_USERVAR_P (SET_DEST (x))
1157 && ! REG_POINTER (SET_DEST (x))
1158 && ((REG_P (SET_SRC (x))
1159 && REG_POINTER (SET_SRC (x)))
1160 || ((GET_CODE (SET_SRC (x)) == PLUS
1161 || GET_CODE (SET_SRC (x)) == LO_SUM)
1162 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1163 && REG_P (XEXP (SET_SRC (x), 0))
1164 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1165 || GET_CODE (SET_SRC (x)) == CONST
1166 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1167 || GET_CODE (SET_SRC (x)) == LABEL_REF
1168 || (GET_CODE (SET_SRC (x)) == HIGH
1169 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1170 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1171 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1172 || ((GET_CODE (SET_SRC (x)) == PLUS
1173 || GET_CODE (SET_SRC (x)) == LO_SUM)
1174 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1175 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1176 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1177 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1178 && (GET_CODE (XEXP (note, 0)) == CONST
1179 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1180 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1181 REG_POINTER (SET_DEST (x)) = 1;
1183 /* If this is setting a register from a register or from a simple
1184 conversion of a register, propagate REG_EXPR. */
1185 if (REG_P (dest) && !REG_ATTRS (dest))
1187 rtx src = SET_SRC (x);
1189 while (GET_CODE (src) == SIGN_EXTEND
1190 || GET_CODE (src) == ZERO_EXTEND
1191 || GET_CODE (src) == TRUNCATE
1192 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
1193 src = XEXP (src, 0);
1195 set_reg_attrs_from_value (dest, src);
1198 /* ... fall through ... */
1200 default:
1202 const char *fmt = GET_RTX_FORMAT (code);
1203 int i;
1204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1206 if (fmt[i] == 'e')
1207 reg_scan_mark_refs (XEXP (x, i), insn);
1208 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1210 int j;
1211 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1212 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1220 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1221 is also in C2. */
1223 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1225 return (c1 == c2
1226 || c2 == ALL_REGS
1227 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1228 reg_class_contents[(int) c2]));
1231 /* Return nonzero if there is a register that is in both C1 and C2. */
1233 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1235 return (c1 == c2
1236 || c1 == ALL_REGS
1237 || c2 == ALL_REGS
1238 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1239 reg_class_contents[(int) c2]));
1244 /* Passes for keeping and updating info about modes of registers
1245 inside subregisters. */
1247 #ifdef CANNOT_CHANGE_MODE_CLASS
1249 static bitmap invalid_mode_changes;
1251 static void
1252 record_subregs_of_mode (rtx subreg, bitmap subregs_of_mode)
1254 enum machine_mode mode;
1255 unsigned int regno;
1257 if (!REG_P (SUBREG_REG (subreg)))
1258 return;
1260 regno = REGNO (SUBREG_REG (subreg));
1261 mode = GET_MODE (subreg);
1263 if (regno < FIRST_PSEUDO_REGISTER)
1264 return;
1266 if (bitmap_set_bit (subregs_of_mode,
1267 regno * NUM_MACHINE_MODES + (unsigned int) mode))
1269 unsigned int rclass;
1270 for (rclass = 0; rclass < N_REG_CLASSES; rclass++)
1271 if (!bitmap_bit_p (invalid_mode_changes,
1272 regno * N_REG_CLASSES + rclass)
1273 && CANNOT_CHANGE_MODE_CLASS (PSEUDO_REGNO_MODE (regno),
1274 mode, (enum reg_class) rclass))
1275 bitmap_set_bit (invalid_mode_changes,
1276 regno * N_REG_CLASSES + rclass);
1280 /* Call record_subregs_of_mode for all the subregs in X. */
1281 static void
1282 find_subregs_of_mode (rtx x, bitmap subregs_of_mode)
1284 enum rtx_code code = GET_CODE (x);
1285 const char * const fmt = GET_RTX_FORMAT (code);
1286 int i;
1288 if (code == SUBREG)
1289 record_subregs_of_mode (x, subregs_of_mode);
1291 /* Time for some deep diving. */
1292 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1294 if (fmt[i] == 'e')
1295 find_subregs_of_mode (XEXP (x, i), subregs_of_mode);
1296 else if (fmt[i] == 'E')
1298 int j;
1299 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1300 find_subregs_of_mode (XVECEXP (x, i, j), subregs_of_mode);
1305 void
1306 init_subregs_of_mode (void)
1308 basic_block bb;
1309 rtx insn;
1310 bitmap_obstack srom_obstack;
1311 bitmap subregs_of_mode;
1313 gcc_assert (invalid_mode_changes == NULL);
1314 invalid_mode_changes = BITMAP_ALLOC (NULL);
1315 bitmap_obstack_initialize (&srom_obstack);
1316 subregs_of_mode = BITMAP_ALLOC (&srom_obstack);
1318 FOR_EACH_BB (bb)
1319 FOR_BB_INSNS (bb, insn)
1320 if (NONDEBUG_INSN_P (insn))
1321 find_subregs_of_mode (PATTERN (insn), subregs_of_mode);
1323 BITMAP_FREE (subregs_of_mode);
1324 bitmap_obstack_release (&srom_obstack);
1327 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
1328 mode. */
1329 bool
1330 invalid_mode_change_p (unsigned int regno,
1331 enum reg_class rclass)
1333 return bitmap_bit_p (invalid_mode_changes,
1334 regno * N_REG_CLASSES + (unsigned) rclass);
1337 void
1338 finish_subregs_of_mode (void)
1340 BITMAP_FREE (invalid_mode_changes);
1342 #else
1343 void
1344 init_subregs_of_mode (void)
1347 void
1348 finish_subregs_of_mode (void)
1352 #endif /* CANNOT_CHANGE_MODE_CLASS */