re checking -fdump-passes
[official-gcc.git] / gcc / ipa-inline.c
blob6733e9ae356ed37d0b9f59a0f99df0443e025097
1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
30 on).
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
35 inlining.
37 inlining heuristics
39 The inliner itself is split into two passes:
41 pass_early_inlining
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
56 flattening.
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
61 optimizers.
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
69 pass_ipa_inline
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "tree.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
100 #include "flags.h"
101 #include "cgraph.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
104 #include "timevar.h"
105 #include "params.h"
106 #include "fibheap.h"
107 #include "intl.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
110 #include "ggc.h"
111 #include "rtl.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
114 #include "except.h"
115 #include "target.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size;
121 static gcov_type max_count;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 cgraph_node_name (e->caller), e->caller->uid,
224 cgraph_node_name (e->callee), e->callee->uid,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
236 static bool
237 can_inline_edge_p (struct cgraph_edge *e, bool report)
239 bool inlinable = true;
240 enum availability avail;
241 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, &avail);
242 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->decl);
243 tree callee_tree = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
245 gcc_assert (e->inline_failed);
247 if (!callee || !callee->analyzed)
249 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
250 inlinable = false;
252 else if (!inline_summary (callee)->inlinable)
254 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
255 inlinable = false;
257 else if (avail <= AVAIL_OVERWRITABLE)
259 e->inline_failed = CIF_OVERWRITABLE;
260 return false;
262 else if (e->call_stmt_cannot_inline_p)
264 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
265 inlinable = false;
267 /* Don't inline if the functions have different EH personalities. */
268 else if (DECL_FUNCTION_PERSONALITY (e->caller->decl)
269 && DECL_FUNCTION_PERSONALITY (callee->decl)
270 && (DECL_FUNCTION_PERSONALITY (e->caller->decl)
271 != DECL_FUNCTION_PERSONALITY (callee->decl)))
273 e->inline_failed = CIF_EH_PERSONALITY;
274 inlinable = false;
276 /* Don't inline if the callee can throw non-call exceptions but the
277 caller cannot.
278 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
279 Move the flag into cgraph node or mirror it in the inline summary. */
280 else if (DECL_STRUCT_FUNCTION (callee->decl)
281 && DECL_STRUCT_FUNCTION
282 (callee->decl)->can_throw_non_call_exceptions
283 && !(DECL_STRUCT_FUNCTION (e->caller->decl)
284 && DECL_STRUCT_FUNCTION
285 (e->caller->decl)->can_throw_non_call_exceptions))
287 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
288 inlinable = false;
290 /* Check compatibility of target optimization options. */
291 else if (!targetm.target_option.can_inline_p (e->caller->decl,
292 callee->decl))
294 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
295 inlinable = false;
297 /* Check if caller growth allows the inlining. */
298 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
299 && !lookup_attribute ("flatten",
300 DECL_ATTRIBUTES
301 (e->caller->global.inlined_to
302 ? e->caller->global.inlined_to->decl
303 : e->caller->decl))
304 && !caller_growth_limits (e))
305 inlinable = false;
306 /* Don't inline a function with a higher optimization level than the
307 caller. FIXME: this is really just tip of iceberg of handling
308 optimization attribute. */
309 else if (caller_tree != callee_tree)
311 struct cl_optimization *caller_opt
312 = TREE_OPTIMIZATION ((caller_tree)
313 ? caller_tree
314 : optimization_default_node);
316 struct cl_optimization *callee_opt
317 = TREE_OPTIMIZATION ((callee_tree)
318 ? callee_tree
319 : optimization_default_node);
321 if ((caller_opt->x_optimize > callee_opt->x_optimize)
322 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
324 e->inline_failed = CIF_TARGET_OPTIMIZATION_MISMATCH;
325 inlinable = false;
329 /* Be sure that the cannot_inline_p flag is up to date. */
330 gcc_checking_assert (!e->call_stmt
331 || (gimple_call_cannot_inline_p (e->call_stmt)
332 == e->call_stmt_cannot_inline_p)
333 /* In -flto-partition=none mode we really keep things out of
334 sync because call_stmt_cannot_inline_p is set at cgraph
335 merging when function bodies are not there yet. */
336 || (in_lto_p && !gimple_call_cannot_inline_p (e->call_stmt)));
337 if (!inlinable && report)
338 report_inline_failed_reason (e);
339 return inlinable;
343 /* Return true if the edge E is inlinable during early inlining. */
345 static bool
346 can_early_inline_edge_p (struct cgraph_edge *e)
348 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
349 NULL);
350 /* Early inliner might get called at WPA stage when IPA pass adds new
351 function. In this case we can not really do any of early inlining
352 because function bodies are missing. */
353 if (!gimple_has_body_p (callee->decl))
355 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
356 return false;
358 /* In early inliner some of callees may not be in SSA form yet
359 (i.e. the callgraph is cyclic and we did not process
360 the callee by early inliner, yet). We don't have CIF code for this
361 case; later we will re-do the decision in the real inliner. */
362 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
363 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
365 if (dump_file)
366 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
367 return false;
369 if (!can_inline_edge_p (e, true))
370 return false;
371 return true;
375 /* Return true when N is leaf function. Accept cheap builtins
376 in leaf functions. */
378 static bool
379 leaf_node_p (struct cgraph_node *n)
381 struct cgraph_edge *e;
382 for (e = n->callees; e; e = e->next_callee)
383 if (!is_inexpensive_builtin (e->callee->decl))
384 return false;
385 return true;
389 /* Return true if we are interested in inlining small function. */
391 static bool
392 want_early_inline_function_p (struct cgraph_edge *e)
394 bool want_inline = true;
395 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
397 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
399 else if (!DECL_DECLARED_INLINE_P (callee->decl)
400 && !flag_inline_small_functions)
402 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
403 report_inline_failed_reason (e);
404 want_inline = false;
406 else
408 int growth = estimate_edge_growth (e);
409 if (growth <= 0)
411 else if (!cgraph_maybe_hot_edge_p (e)
412 && growth > 0)
414 if (dump_file)
415 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
416 "call is cold and code would grow by %i\n",
417 cgraph_node_name (e->caller), e->caller->uid,
418 cgraph_node_name (callee), callee->uid,
419 growth);
420 want_inline = false;
422 else if (!leaf_node_p (callee)
423 && growth > 0)
425 if (dump_file)
426 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
427 "callee is not leaf and code would grow by %i\n",
428 cgraph_node_name (e->caller), e->caller->uid,
429 cgraph_node_name (callee), callee->uid,
430 growth);
431 want_inline = false;
433 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
435 if (dump_file)
436 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
437 "growth %i exceeds --param early-inlining-insns\n",
438 cgraph_node_name (e->caller), e->caller->uid,
439 cgraph_node_name (callee), callee->uid,
440 growth);
441 want_inline = false;
444 return want_inline;
447 /* Return true if we are interested in inlining small function.
448 When REPORT is true, report reason to dump file. */
450 static bool
451 want_inline_small_function_p (struct cgraph_edge *e, bool report)
453 bool want_inline = true;
454 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
456 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
458 else if (!DECL_DECLARED_INLINE_P (callee->decl)
459 && !flag_inline_small_functions)
461 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
462 want_inline = false;
464 else
466 int growth = estimate_edge_growth (e);
468 if (growth <= 0)
470 else if (DECL_DECLARED_INLINE_P (callee->decl)
471 && growth >= MAX_INLINE_INSNS_SINGLE)
473 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
474 want_inline = false;
476 else if (!DECL_DECLARED_INLINE_P (callee->decl)
477 && !flag_inline_functions)
479 e->inline_failed = CIF_NOT_DECLARED_INLINED;
480 want_inline = false;
482 else if (!DECL_DECLARED_INLINE_P (callee->decl)
483 && growth >= MAX_INLINE_INSNS_AUTO)
485 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
486 want_inline = false;
488 /* If call is cold, do not inline when function body would grow.
489 Still inline when the overall unit size will shrink because the offline
490 copy of function being eliminated.
492 This is slightly wrong on aggressive side: it is entirely possible
493 that function is called many times with a context where inlining
494 reduces code size and few times with a context where inlining increase
495 code size. Resoluting growth estimate will be negative even if it
496 would make more sense to keep offline copy and do not inline into the
497 call sites that makes the code size grow.
499 When badness orders the calls in a way that code reducing calls come
500 first, this situation is not a problem at all: after inlining all
501 "good" calls, we will realize that keeping the function around is
502 better. */
503 else if (!cgraph_maybe_hot_edge_p (e)
504 && (DECL_EXTERNAL (callee->decl)
506 /* Unlike for functions called once, we play unsafe with
507 COMDATs. We can allow that since we know functions
508 in consideration are small (and thus risk is small) and
509 moreover grow estimates already accounts that COMDAT
510 functions may or may not disappear when eliminated from
511 current unit. With good probability making aggressive
512 choice in all units is going to make overall program
513 smaller.
515 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
516 instead of
517 cgraph_will_be_removed_from_program_if_no_direct_calls */
519 || !cgraph_can_remove_if_no_direct_calls_p (callee)
520 || estimate_growth (callee) > 0))
522 e->inline_failed = CIF_UNLIKELY_CALL;
523 want_inline = false;
526 if (!want_inline && report)
527 report_inline_failed_reason (e);
528 return want_inline;
531 /* EDGE is self recursive edge.
532 We hand two cases - when function A is inlining into itself
533 or when function A is being inlined into another inliner copy of function
534 A within function B.
536 In first case OUTER_NODE points to the toplevel copy of A, while
537 in the second case OUTER_NODE points to the outermost copy of A in B.
539 In both cases we want to be extra selective since
540 inlining the call will just introduce new recursive calls to appear. */
542 static bool
543 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
544 struct cgraph_node *outer_node,
545 bool peeling,
546 int depth)
548 char const *reason = NULL;
549 bool want_inline = true;
550 int caller_freq = CGRAPH_FREQ_BASE;
551 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
553 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
554 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
556 if (!cgraph_maybe_hot_edge_p (edge))
558 reason = "recursive call is cold";
559 want_inline = false;
561 else if (max_count && !outer_node->count)
563 reason = "not executed in profile";
564 want_inline = false;
566 else if (depth > max_depth)
568 reason = "--param max-inline-recursive-depth exceeded.";
569 want_inline = false;
572 if (outer_node->global.inlined_to)
573 caller_freq = outer_node->callers->frequency;
575 if (!want_inline)
577 /* Inlining of self recursive function into copy of itself within other function
578 is transformation similar to loop peeling.
580 Peeling is profitable if we can inline enough copies to make probability
581 of actual call to the self recursive function very small. Be sure that
582 the probability of recursion is small.
584 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
585 This way the expected number of recision is at most max_depth. */
586 else if (peeling)
588 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
589 / max_depth);
590 int i;
591 for (i = 1; i < depth; i++)
592 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
593 if (max_count
594 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
595 >= max_prob))
597 reason = "profile of recursive call is too large";
598 want_inline = false;
600 if (!max_count
601 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
602 >= max_prob))
604 reason = "frequency of recursive call is too large";
605 want_inline = false;
608 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
609 depth is large. We reduce function call overhead and increase chances that
610 things fit in hardware return predictor.
612 Recursive inlining might however increase cost of stack frame setup
613 actually slowing down functions whose recursion tree is wide rather than
614 deep.
616 Deciding reliably on when to do recursive inlining without profile feedback
617 is tricky. For now we disable recursive inlining when probability of self
618 recursion is low.
620 Recursive inlining of self recursive call within loop also results in large loop
621 depths that generally optimize badly. We may want to throttle down inlining
622 in those cases. In particular this seems to happen in one of libstdc++ rb tree
623 methods. */
624 else
626 if (max_count
627 && (edge->count * 100 / outer_node->count
628 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
630 reason = "profile of recursive call is too small";
631 want_inline = false;
633 else if (!max_count
634 && (edge->frequency * 100 / caller_freq
635 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
637 reason = "frequency of recursive call is too small";
638 want_inline = false;
641 if (!want_inline && dump_file)
642 fprintf (dump_file, " not inlining recursively: %s\n", reason);
643 return want_inline;
647 /* Decide if NODE is called once inlining it would eliminate need
648 for the offline copy of function. */
650 static bool
651 want_inline_function_called_once_p (struct cgraph_node *node)
653 if (node->alias)
654 return false;
655 /* Already inlined? */
656 if (node->global.inlined_to)
657 return false;
658 /* Zero or more then one callers? */
659 if (!node->callers
660 || node->callers->next_caller)
661 return false;
662 /* Recursive call makes no sense to inline. */
663 if (node->callers->caller == node)
664 return false;
665 /* External functions are not really in the unit, so inlining
666 them when called once would just increase the program size. */
667 if (DECL_EXTERNAL (node->decl))
668 return false;
669 /* Offline body must be optimized out. */
670 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (node))
671 return false;
672 if (!can_inline_edge_p (node->callers, true))
673 return false;
674 return true;
678 /* Return relative time improvement for inlining EDGE in range
679 1...2^9. */
681 static inline int
682 relative_time_benefit (struct inline_summary *callee_info,
683 struct cgraph_edge *edge,
684 int time_growth)
686 int relbenefit;
687 gcov_type uninlined_call_time;
689 uninlined_call_time =
690 ((gcov_type)
691 (callee_info->time
692 + inline_edge_summary (edge)->call_stmt_time
693 + CGRAPH_FREQ_BASE / 2) * edge->frequency
694 / CGRAPH_FREQ_BASE);
695 /* Compute relative time benefit, i.e. how much the call becomes faster.
696 ??? perhaps computing how much the caller+calle together become faster
697 would lead to more realistic results. */
698 if (!uninlined_call_time)
699 uninlined_call_time = 1;
700 relbenefit =
701 (uninlined_call_time - time_growth) * 256 / (uninlined_call_time);
702 relbenefit = MIN (relbenefit, 512);
703 relbenefit = MAX (relbenefit, 1);
704 return relbenefit;
708 /* A cost model driving the inlining heuristics in a way so the edges with
709 smallest badness are inlined first. After each inlining is performed
710 the costs of all caller edges of nodes affected are recomputed so the
711 metrics may accurately depend on values such as number of inlinable callers
712 of the function or function body size. */
714 static int
715 edge_badness (struct cgraph_edge *edge, bool dump)
717 gcov_type badness;
718 int growth, time_growth;
719 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
720 NULL);
721 struct inline_summary *callee_info = inline_summary (callee);
723 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
724 return INT_MIN;
726 growth = estimate_edge_growth (edge);
727 time_growth = estimate_edge_time (edge);
729 if (dump)
731 fprintf (dump_file, " Badness calculation for %s -> %s\n",
732 cgraph_node_name (edge->caller),
733 cgraph_node_name (callee));
734 fprintf (dump_file, " size growth %i, time growth %i\n",
735 growth,
736 time_growth);
739 /* Always prefer inlining saving code size. */
740 if (growth <= 0)
742 badness = INT_MIN / 2 + growth;
743 if (dump)
744 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
745 growth);
748 /* When profiling is available, compute badness as:
750 relative_edge_count * relative_time_benefit
751 goodness = -------------------------------------------
752 edge_growth
753 badness = -goodness
755 The fraction is upside down, becuase on edge counts and time beneits
756 the bounds are known. Edge growth is essentially unlimited. */
758 else if (max_count)
760 int relbenefit = relative_time_benefit (callee_info, edge, time_growth);
761 badness =
762 ((int)
763 ((double) edge->count * INT_MIN / 2 / max_count / 512) *
764 relative_time_benefit (callee_info, edge, time_growth)) / growth;
766 /* Be sure that insanity of the profile won't lead to increasing counts
767 in the scalling and thus to overflow in the computation above. */
768 gcc_assert (max_count >= edge->count);
769 if (dump)
771 fprintf (dump_file,
772 " %i (relative %f): profile info. Relative count %f"
773 " * Relative benefit %f\n",
774 (int) badness, (double) badness / INT_MIN,
775 (double) edge->count / max_count,
776 relbenefit * 100 / 256.0);
780 /* When function local profile is available. Compute badness as:
783 growth_of_callee
784 badness = -------------------------------------- + growth_for-all
785 relative_time_benefit * edge_frequency
788 else if (flag_guess_branch_prob)
790 int div = edge->frequency * (1<<10) / CGRAPH_FREQ_MAX;
791 int growth_for_all;
793 div = MAX (div, 1);
794 gcc_checking_assert (edge->frequency <= CGRAPH_FREQ_MAX);
795 div *= relative_time_benefit (callee_info, edge, time_growth);
797 /* frequency is normalized in range 1...2^10.
798 relbenefit in range 1...2^9
799 DIV should be in range 1....2^19. */
800 gcc_checking_assert (div >= 1 && div <= (1<<19));
802 /* Result must be integer in range 0...INT_MAX.
803 Set the base of fixed point calculation so we don't lose much of
804 precision for small bandesses (those are interesting) yet we don't
805 overflow for growths that are still in interesting range. */
806 badness = ((gcov_type)growth) * (1<<18);
807 badness = (badness + div / 2) / div;
809 /* Overall growth of inlining all calls of function matters: we want to
810 inline so offline copy of function is no longer needed.
812 Additionally functions that can be fully inlined without much of
813 effort are better inline candidates than functions that can be fully
814 inlined only after noticeable overall unit growths. The latter
815 are better in a sense compressing of code size by factoring out common
816 code into separate function shared by multiple code paths.
818 We might mix the valud into the fraction by taking into account
819 relative growth of the unit, but for now just add the number
820 into resulting fraction. */
821 growth_for_all = estimate_growth (callee);
822 badness += growth_for_all;
823 if (badness > INT_MAX - 1)
824 badness = INT_MAX - 1;
825 if (dump)
827 fprintf (dump_file,
828 " %i: guessed profile. frequency %f, overall growth %i,"
829 " benefit %f%%, divisor %i\n",
830 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE, growth_for_all,
831 relative_time_benefit (callee_info, edge, time_growth) * 100 / 256.0, div);
834 /* When function local profile is not available or it does not give
835 useful information (ie frequency is zero), base the cost on
836 loop nest and overall size growth, so we optimize for overall number
837 of functions fully inlined in program. */
838 else
840 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
841 badness = estimate_growth (callee) * 256;
843 /* Decrease badness if call is nested. */
844 if (badness > 0)
845 badness >>= nest;
846 else
848 badness <<= nest;
850 if (dump)
851 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
852 nest);
855 /* Ensure that we did not overflow in all the fixed point math above. */
856 gcc_assert (badness >= INT_MIN);
857 gcc_assert (badness <= INT_MAX - 1);
858 /* Make recursive inlining happen always after other inlining is done. */
859 if (cgraph_edge_recursive_p (edge))
860 return badness + 1;
861 else
862 return badness;
865 /* Recompute badness of EDGE and update its key in HEAP if needed. */
866 static inline void
867 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
869 int badness = edge_badness (edge, false);
870 if (edge->aux)
872 fibnode_t n = (fibnode_t) edge->aux;
873 gcc_checking_assert (n->data == edge);
875 /* fibheap_replace_key only decrease the keys.
876 When we increase the key we do not update heap
877 and instead re-insert the element once it becomes
878 a minimum of heap. */
879 if (badness < n->key)
881 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (dump_file,
884 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
885 cgraph_node_name (edge->caller), edge->caller->uid,
886 cgraph_node_name (edge->callee), edge->callee->uid,
887 (int)n->key,
888 badness);
890 fibheap_replace_key (heap, n, badness);
891 gcc_checking_assert (n->key == badness);
894 else
896 if (dump_file && (dump_flags & TDF_DETAILS))
898 fprintf (dump_file,
899 " enqueuing call %s/%i -> %s/%i, badness %i\n",
900 cgraph_node_name (edge->caller), edge->caller->uid,
901 cgraph_node_name (edge->callee), edge->callee->uid,
902 badness);
904 edge->aux = fibheap_insert (heap, badness, edge);
909 /* NODE was inlined.
910 All caller edges needs to be resetted because
911 size estimates change. Similarly callees needs reset
912 because better context may be known. */
914 static void
915 reset_edge_caches (struct cgraph_node *node)
917 struct cgraph_edge *edge;
918 struct cgraph_edge *e = node->callees;
919 struct cgraph_node *where = node;
921 if (where->global.inlined_to)
922 where = where->global.inlined_to;
924 /* WHERE body size has changed, the cached growth is invalid. */
925 reset_node_growth_cache (where);
927 for (edge = where->callers; edge; edge = edge->next_caller)
928 if (edge->inline_failed)
929 reset_edge_growth_cache (edge);
931 if (!e)
932 return;
934 while (true)
935 if (!e->inline_failed && e->callee->callees)
936 e = e->callee->callees;
937 else
939 if (e->inline_failed)
940 reset_edge_growth_cache (e);
941 if (e->next_callee)
942 e = e->next_callee;
943 else
947 if (e->caller == node)
948 return;
949 e = e->caller->callers;
951 while (!e->next_callee);
952 e = e->next_callee;
957 /* Recompute HEAP nodes for each of caller of NODE.
958 UPDATED_NODES track nodes we already visited, to avoid redundant work.
959 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
960 it is inlinable. Otherwise check all edges. */
962 static void
963 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
964 bitmap updated_nodes,
965 struct cgraph_edge *check_inlinablity_for)
967 struct cgraph_edge *edge;
969 if (!inline_summary (node)->inlinable
970 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
971 || node->global.inlined_to)
972 return;
973 if (!bitmap_set_bit (updated_nodes, node->uid))
974 return;
976 for (edge = node->callers; edge; edge = edge->next_caller)
977 if (edge->inline_failed)
979 if (!check_inlinablity_for
980 || check_inlinablity_for == edge)
982 if (can_inline_edge_p (edge, false)
983 && want_inline_small_function_p (edge, false))
984 update_edge_key (heap, edge);
985 else if (edge->aux)
987 report_inline_failed_reason (edge);
988 fibheap_delete_node (heap, (fibnode_t) edge->aux);
989 edge->aux = NULL;
992 else if (edge->aux)
993 update_edge_key (heap, edge);
997 /* Recompute HEAP nodes for each uninlined call in NODE.
998 This is used when we know that edge badnesses are going only to increase
999 (we introduced new call site) and thus all we need is to insert newly
1000 created edges into heap. */
1002 static void
1003 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1004 bitmap updated_nodes)
1006 struct cgraph_edge *e = node->callees;
1008 if (!e)
1009 return;
1010 while (true)
1011 if (!e->inline_failed && e->callee->callees)
1012 e = e->callee->callees;
1013 else
1015 enum availability avail;
1016 struct cgraph_node *callee;
1017 /* We do not reset callee growth cache here. Since we added a new call,
1018 growth chould have just increased and consequentely badness metric
1019 don't need updating. */
1020 if (e->inline_failed
1021 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1022 && inline_summary (callee)->inlinable
1023 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1024 && !bitmap_bit_p (updated_nodes, callee->uid))
1026 if (can_inline_edge_p (e, false)
1027 && want_inline_small_function_p (e, false))
1028 update_edge_key (heap, e);
1029 else if (e->aux)
1031 report_inline_failed_reason (e);
1032 fibheap_delete_node (heap, (fibnode_t) e->aux);
1033 e->aux = NULL;
1036 if (e->next_callee)
1037 e = e->next_callee;
1038 else
1042 if (e->caller == node)
1043 return;
1044 e = e->caller->callers;
1046 while (!e->next_callee);
1047 e = e->next_callee;
1052 /* Recompute heap nodes for each of caller edges of each of callees.
1053 Walk recursively into all inline clones. */
1055 static void
1056 update_all_callee_keys (fibheap_t heap, struct cgraph_node *node,
1057 bitmap updated_nodes)
1059 struct cgraph_edge *e = node->callees;
1060 if (!e)
1061 return;
1062 while (true)
1063 if (!e->inline_failed && e->callee->callees)
1064 e = e->callee->callees;
1065 else
1067 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
1068 NULL);
1070 /* We inlined and thus callees might have different number of calls.
1071 Reset their caches */
1072 reset_node_growth_cache (callee);
1073 if (e->inline_failed)
1074 update_caller_keys (heap, callee, updated_nodes, e);
1075 if (e->next_callee)
1076 e = e->next_callee;
1077 else
1081 if (e->caller == node)
1082 return;
1083 e = e->caller->callers;
1085 while (!e->next_callee);
1086 e = e->next_callee;
1091 /* Enqueue all recursive calls from NODE into priority queue depending on
1092 how likely we want to recursively inline the call. */
1094 static void
1095 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1096 fibheap_t heap)
1098 struct cgraph_edge *e;
1099 enum availability avail;
1101 for (e = where->callees; e; e = e->next_callee)
1102 if (e->callee == node
1103 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1104 && avail > AVAIL_OVERWRITABLE))
1106 /* When profile feedback is available, prioritize by expected number
1107 of calls. */
1108 fibheap_insert (heap,
1109 !max_count ? -e->frequency
1110 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1113 for (e = where->callees; e; e = e->next_callee)
1114 if (!e->inline_failed)
1115 lookup_recursive_calls (node, e->callee, heap);
1118 /* Decide on recursive inlining: in the case function has recursive calls,
1119 inline until body size reaches given argument. If any new indirect edges
1120 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1121 is NULL. */
1123 static bool
1124 recursive_inlining (struct cgraph_edge *edge,
1125 VEC (cgraph_edge_p, heap) **new_edges)
1127 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1128 fibheap_t heap;
1129 struct cgraph_node *node;
1130 struct cgraph_edge *e;
1131 struct cgraph_node *master_clone = NULL, *next;
1132 int depth = 0;
1133 int n = 0;
1135 node = edge->caller;
1136 if (node->global.inlined_to)
1137 node = node->global.inlined_to;
1139 if (DECL_DECLARED_INLINE_P (node->decl))
1140 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1142 /* Make sure that function is small enough to be considered for inlining. */
1143 if (estimate_size_after_inlining (node, edge) >= limit)
1144 return false;
1145 heap = fibheap_new ();
1146 lookup_recursive_calls (node, node, heap);
1147 if (fibheap_empty (heap))
1149 fibheap_delete (heap);
1150 return false;
1153 if (dump_file)
1154 fprintf (dump_file,
1155 " Performing recursive inlining on %s\n",
1156 cgraph_node_name (node));
1158 /* Do the inlining and update list of recursive call during process. */
1159 while (!fibheap_empty (heap))
1161 struct cgraph_edge *curr
1162 = (struct cgraph_edge *) fibheap_extract_min (heap);
1163 struct cgraph_node *cnode;
1165 if (estimate_size_after_inlining (node, curr) > limit)
1166 break;
1168 if (!can_inline_edge_p (curr, true))
1169 continue;
1171 depth = 1;
1172 for (cnode = curr->caller;
1173 cnode->global.inlined_to; cnode = cnode->callers->caller)
1174 if (node->decl == curr->callee->decl)
1175 depth++;
1177 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1178 continue;
1180 if (dump_file)
1182 fprintf (dump_file,
1183 " Inlining call of depth %i", depth);
1184 if (node->count)
1186 fprintf (dump_file, " called approx. %.2f times per call",
1187 (double)curr->count / node->count);
1189 fprintf (dump_file, "\n");
1191 if (!master_clone)
1193 /* We need original clone to copy around. */
1194 master_clone = cgraph_clone_node (node, node->decl,
1195 node->count, CGRAPH_FREQ_BASE,
1196 false, NULL, true);
1197 for (e = master_clone->callees; e; e = e->next_callee)
1198 if (!e->inline_failed)
1199 clone_inlined_nodes (e, true, false, NULL);
1202 cgraph_redirect_edge_callee (curr, master_clone);
1203 inline_call (curr, false, new_edges, &overall_size);
1204 lookup_recursive_calls (node, curr->callee, heap);
1205 n++;
1208 if (!fibheap_empty (heap) && dump_file)
1209 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1210 fibheap_delete (heap);
1212 if (!master_clone)
1213 return false;
1215 if (dump_file)
1216 fprintf (dump_file,
1217 "\n Inlined %i times, "
1218 "body grown from size %i to %i, time %i to %i\n", n,
1219 inline_summary (master_clone)->size, inline_summary (node)->size,
1220 inline_summary (master_clone)->time, inline_summary (node)->time);
1222 /* Remove master clone we used for inlining. We rely that clones inlined
1223 into master clone gets queued just before master clone so we don't
1224 need recursion. */
1225 for (node = cgraph_nodes; node != master_clone;
1226 node = next)
1228 next = node->next;
1229 if (node->global.inlined_to == master_clone)
1230 cgraph_remove_node (node);
1232 cgraph_remove_node (master_clone);
1233 return true;
1237 /* Given whole compilation unit estimate of INSNS, compute how large we can
1238 allow the unit to grow. */
1240 static int
1241 compute_max_insns (int insns)
1243 int max_insns = insns;
1244 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1245 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1247 return ((HOST_WIDEST_INT) max_insns
1248 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1252 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1254 static void
1255 add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
1257 while (VEC_length (cgraph_edge_p, new_edges) > 0)
1259 struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
1261 gcc_assert (!edge->aux);
1262 if (edge->inline_failed
1263 && can_inline_edge_p (edge, true)
1264 && want_inline_small_function_p (edge, true))
1265 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1270 /* We use greedy algorithm for inlining of small functions:
1271 All inline candidates are put into prioritized heap ordered in
1272 increasing badness.
1274 The inlining of small functions is bounded by unit growth parameters. */
1276 static void
1277 inline_small_functions (void)
1279 struct cgraph_node *node;
1280 struct cgraph_edge *edge;
1281 fibheap_t heap = fibheap_new ();
1282 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1283 int min_size, max_size;
1284 VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
1285 int initial_size = 0;
1287 if (flag_indirect_inlining)
1288 new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
1290 if (dump_file)
1291 fprintf (dump_file,
1292 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1293 initial_size);
1295 /* Compute overall unit size and other global parameters used by badness
1296 metrics. */
1298 max_count = 0;
1299 initialize_growth_caches ();
1301 FOR_EACH_DEFINED_FUNCTION (node)
1302 if (!node->global.inlined_to)
1304 if (cgraph_function_with_gimple_body_p (node)
1305 || node->thunk.thunk_p)
1307 struct inline_summary *info = inline_summary (node);
1309 if (!DECL_EXTERNAL (node->decl))
1310 initial_size += info->size;
1313 for (edge = node->callers; edge; edge = edge->next_caller)
1314 if (max_count < edge->count)
1315 max_count = edge->count;
1318 overall_size = initial_size;
1319 max_size = compute_max_insns (overall_size);
1320 min_size = overall_size;
1322 /* Populate the heeap with all edges we might inline. */
1324 FOR_EACH_DEFINED_FUNCTION (node)
1325 if (!node->global.inlined_to)
1327 if (dump_file)
1328 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1329 cgraph_node_name (node), node->uid);
1331 for (edge = node->callers; edge; edge = edge->next_caller)
1332 if (edge->inline_failed
1333 && can_inline_edge_p (edge, true)
1334 && want_inline_small_function_p (edge, true)
1335 && edge->inline_failed)
1337 gcc_assert (!edge->aux);
1338 update_edge_key (heap, edge);
1342 gcc_assert (in_lto_p
1343 || !max_count
1344 || (profile_info && flag_branch_probabilities));
1346 while (!fibheap_empty (heap))
1348 int old_size = overall_size;
1349 struct cgraph_node *where, *callee;
1350 int badness = fibheap_min_key (heap);
1351 int current_badness;
1352 int growth;
1354 edge = (struct cgraph_edge *) fibheap_extract_min (heap);
1355 gcc_assert (edge->aux);
1356 edge->aux = NULL;
1357 if (!edge->inline_failed)
1358 continue;
1360 /* Be sure that caches are maintained consistent. */
1361 #ifdef ENABLE_CHECKING
1362 reset_edge_growth_cache (edge);
1363 reset_node_growth_cache (edge->callee);
1364 #endif
1366 /* When updating the edge costs, we only decrease badness in the keys.
1367 Increases of badness are handled lazilly; when we see key with out
1368 of date value on it, we re-insert it now. */
1369 current_badness = edge_badness (edge, false);
1370 gcc_assert (current_badness >= badness);
1371 if (current_badness != badness)
1373 edge->aux = fibheap_insert (heap, current_badness, edge);
1374 continue;
1377 if (!can_inline_edge_p (edge, true))
1378 continue;
1380 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1381 growth = estimate_edge_growth (edge);
1382 if (dump_file)
1384 fprintf (dump_file,
1385 "\nConsidering %s with %i size\n",
1386 cgraph_node_name (callee),
1387 inline_summary (callee)->size);
1388 fprintf (dump_file,
1389 " to be inlined into %s in %s:%i\n"
1390 " Estimated growth after inlined into all is %+i insns.\n"
1391 " Estimated badness is %i, frequency %.2f.\n",
1392 cgraph_node_name (edge->caller),
1393 flag_wpa ? "unknown"
1394 : gimple_filename ((const_gimple) edge->call_stmt),
1395 flag_wpa ? -1
1396 : gimple_lineno ((const_gimple) edge->call_stmt),
1397 estimate_growth (callee),
1398 badness,
1399 edge->frequency / (double)CGRAPH_FREQ_BASE);
1400 if (edge->count)
1401 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1402 edge->count);
1403 if (dump_flags & TDF_DETAILS)
1404 edge_badness (edge, true);
1407 if (overall_size + growth > max_size
1408 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1410 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1411 report_inline_failed_reason (edge);
1412 continue;
1415 if (!want_inline_small_function_p (edge, true))
1416 continue;
1418 /* Heuristics for inlining small functions works poorly for
1419 recursive calls where we do efect similar to loop unrolling.
1420 When inliing such edge seems profitable, leave decision on
1421 specific inliner. */
1422 if (cgraph_edge_recursive_p (edge))
1424 where = edge->caller;
1425 if (where->global.inlined_to)
1426 where = where->global.inlined_to;
1427 if (!recursive_inlining (edge,
1428 flag_indirect_inlining
1429 ? &new_indirect_edges : NULL))
1431 edge->inline_failed = CIF_RECURSIVE_INLINING;
1432 continue;
1434 reset_edge_caches (where);
1435 /* Recursive inliner inlines all recursive calls of the function
1436 at once. Consequently we need to update all callee keys. */
1437 if (flag_indirect_inlining)
1438 add_new_edges_to_heap (heap, new_indirect_edges);
1439 update_all_callee_keys (heap, where, updated_nodes);
1441 else
1443 struct cgraph_node *outer_node = NULL;
1444 int depth = 0;
1446 /* Consider the case where self recursive function A is inlined into B.
1447 This is desired optimization in some cases, since it leads to effect
1448 similar of loop peeling and we might completely optimize out the
1449 recursive call. However we must be extra selective. */
1451 where = edge->caller;
1452 while (where->global.inlined_to)
1454 if (where->decl == edge->callee->decl)
1455 outer_node = where, depth++;
1456 where = where->callers->caller;
1458 if (outer_node
1459 && !want_inline_self_recursive_call_p (edge, outer_node,
1460 true, depth))
1462 edge->inline_failed
1463 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
1464 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1465 continue;
1467 else if (depth && dump_file)
1468 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1470 gcc_checking_assert (!callee->global.inlined_to);
1471 inline_call (edge, true, &new_indirect_edges, &overall_size);
1472 if (flag_indirect_inlining)
1473 add_new_edges_to_heap (heap, new_indirect_edges);
1475 reset_edge_caches (edge->callee);
1476 reset_node_growth_cache (callee);
1478 /* We inlined last offline copy to the body. This might lead
1479 to callees of function having fewer call sites and thus they
1480 may need updating. */
1481 if (callee->global.inlined_to)
1482 update_all_callee_keys (heap, callee, updated_nodes);
1483 else
1484 update_callee_keys (heap, edge->callee, updated_nodes);
1486 where = edge->caller;
1487 if (where->global.inlined_to)
1488 where = where->global.inlined_to;
1490 /* Our profitability metric can depend on local properties
1491 such as number of inlinable calls and size of the function body.
1492 After inlining these properties might change for the function we
1493 inlined into (since it's body size changed) and for the functions
1494 called by function we inlined (since number of it inlinable callers
1495 might change). */
1496 update_caller_keys (heap, where, updated_nodes, NULL);
1498 /* We removed one call of the function we just inlined. If offline
1499 copy is still needed, be sure to update the keys. */
1500 if (callee != where && !callee->global.inlined_to)
1501 update_caller_keys (heap, callee, updated_nodes, NULL);
1502 bitmap_clear (updated_nodes);
1504 if (dump_file)
1506 fprintf (dump_file,
1507 " Inlined into %s which now has time %i and size %i,"
1508 "net change of %+i.\n",
1509 cgraph_node_name (edge->caller),
1510 inline_summary (edge->caller)->time,
1511 inline_summary (edge->caller)->size,
1512 overall_size - old_size);
1514 if (min_size > overall_size)
1516 min_size = overall_size;
1517 max_size = compute_max_insns (min_size);
1519 if (dump_file)
1520 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1524 free_growth_caches ();
1525 if (new_indirect_edges)
1526 VEC_free (cgraph_edge_p, heap, new_indirect_edges);
1527 fibheap_delete (heap);
1528 if (dump_file)
1529 fprintf (dump_file,
1530 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1531 initial_size, overall_size,
1532 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1533 BITMAP_FREE (updated_nodes);
1536 /* Flatten NODE. Performed both during early inlining and
1537 at IPA inlining time. */
1539 static void
1540 flatten_function (struct cgraph_node *node, bool early)
1542 struct cgraph_edge *e;
1544 /* We shouldn't be called recursively when we are being processed. */
1545 gcc_assert (node->aux == NULL);
1547 node->aux = (void *) node;
1549 for (e = node->callees; e; e = e->next_callee)
1551 struct cgraph_node *orig_callee;
1552 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1554 /* We've hit cycle? It is time to give up. */
1555 if (callee->aux)
1557 if (dump_file)
1558 fprintf (dump_file,
1559 "Not inlining %s into %s to avoid cycle.\n",
1560 cgraph_node_name (callee),
1561 cgraph_node_name (e->caller));
1562 e->inline_failed = CIF_RECURSIVE_INLINING;
1563 continue;
1566 /* When the edge is already inlined, we just need to recurse into
1567 it in order to fully flatten the leaves. */
1568 if (!e->inline_failed)
1570 flatten_function (callee, early);
1571 continue;
1574 /* Flatten attribute needs to be processed during late inlining. For
1575 extra code quality we however do flattening during early optimization,
1576 too. */
1577 if (!early
1578 ? !can_inline_edge_p (e, true)
1579 : !can_early_inline_edge_p (e))
1580 continue;
1582 if (cgraph_edge_recursive_p (e))
1584 if (dump_file)
1585 fprintf (dump_file, "Not inlining: recursive call.\n");
1586 continue;
1589 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
1590 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
1592 if (dump_file)
1593 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1594 continue;
1597 /* Inline the edge and flatten the inline clone. Avoid
1598 recursing through the original node if the node was cloned. */
1599 if (dump_file)
1600 fprintf (dump_file, " Inlining %s into %s.\n",
1601 cgraph_node_name (callee),
1602 cgraph_node_name (e->caller));
1603 orig_callee = callee;
1604 inline_call (e, true, NULL, NULL);
1605 if (e->callee != orig_callee)
1606 orig_callee->aux = (void *) node;
1607 flatten_function (e->callee, early);
1608 if (e->callee != orig_callee)
1609 orig_callee->aux = NULL;
1612 node->aux = NULL;
1615 /* Decide on the inlining. We do so in the topological order to avoid
1616 expenses on updating data structures. */
1618 static unsigned int
1619 ipa_inline (void)
1621 struct cgraph_node *node;
1622 int nnodes;
1623 struct cgraph_node **order =
1624 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1625 int i;
1627 if (in_lto_p && flag_indirect_inlining)
1628 ipa_update_after_lto_read ();
1629 if (flag_indirect_inlining)
1630 ipa_create_all_structures_for_iinln ();
1632 if (dump_file)
1633 dump_inline_summaries (dump_file);
1635 nnodes = ipa_reverse_postorder (order);
1637 for (node = cgraph_nodes; node; node = node->next)
1638 node->aux = 0;
1640 if (dump_file)
1641 fprintf (dump_file, "\nFlattening functions:\n");
1643 /* In the first pass handle functions to be flattened. Do this with
1644 a priority so none of our later choices will make this impossible. */
1645 for (i = nnodes - 1; i >= 0; i--)
1647 node = order[i];
1649 /* Handle nodes to be flattened.
1650 Ideally when processing callees we stop inlining at the
1651 entry of cycles, possibly cloning that entry point and
1652 try to flatten itself turning it into a self-recursive
1653 function. */
1654 if (lookup_attribute ("flatten",
1655 DECL_ATTRIBUTES (node->decl)) != NULL)
1657 if (dump_file)
1658 fprintf (dump_file,
1659 "Flattening %s\n", cgraph_node_name (node));
1660 flatten_function (node, false);
1664 inline_small_functions ();
1665 cgraph_remove_unreachable_nodes (true, dump_file);
1666 free (order);
1668 /* We already perform some inlining of functions called once during
1669 inlining small functions above. After unreachable nodes are removed,
1670 we still might do a quick check that nothing new is found. */
1671 if (flag_inline_functions_called_once)
1673 int cold;
1674 if (dump_file)
1675 fprintf (dump_file, "\nDeciding on functions called once:\n");
1677 /* Inlining one function called once has good chance of preventing
1678 inlining other function into the same callee. Ideally we should
1679 work in priority order, but probably inlining hot functions first
1680 is good cut without the extra pain of maintaining the queue.
1682 ??? this is not really fitting the bill perfectly: inlining function
1683 into callee often leads to better optimization of callee due to
1684 increased context for optimization.
1685 For example if main() function calls a function that outputs help
1686 and then function that does the main optmization, we should inline
1687 the second with priority even if both calls are cold by themselves.
1689 We probably want to implement new predicate replacing our use of
1690 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1691 to be hot. */
1692 for (cold = 0; cold <= 1; cold ++)
1694 for (node = cgraph_nodes; node; node = node->next)
1696 if (want_inline_function_called_once_p (node)
1697 && (cold
1698 || cgraph_maybe_hot_edge_p (node->callers)))
1700 struct cgraph_node *caller = node->callers->caller;
1702 if (dump_file)
1704 fprintf (dump_file,
1705 "\nInlining %s size %i.\n",
1706 cgraph_node_name (node), inline_summary (node)->size);
1707 fprintf (dump_file,
1708 " Called once from %s %i insns.\n",
1709 cgraph_node_name (node->callers->caller),
1710 inline_summary (node->callers->caller)->size);
1713 inline_call (node->callers, true, NULL, NULL);
1714 if (dump_file)
1715 fprintf (dump_file,
1716 " Inlined into %s which now has %i size\n",
1717 cgraph_node_name (caller),
1718 inline_summary (caller)->size);
1724 /* Free ipa-prop structures if they are no longer needed. */
1725 if (flag_indirect_inlining)
1726 ipa_free_all_structures_after_iinln ();
1728 if (dump_file)
1729 fprintf (dump_file,
1730 "\nInlined %i calls, eliminated %i functions\n\n",
1731 ncalls_inlined, nfunctions_inlined);
1733 if (dump_file)
1734 dump_inline_summaries (dump_file);
1735 /* In WPA we use inline summaries for partitioning process. */
1736 if (!flag_wpa)
1737 inline_free_summary ();
1738 return 0;
1741 /* Inline always-inline function calls in NODE. */
1743 static bool
1744 inline_always_inline_functions (struct cgraph_node *node)
1746 struct cgraph_edge *e;
1747 bool inlined = false;
1749 for (e = node->callees; e; e = e->next_callee)
1751 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1752 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1753 continue;
1755 if (cgraph_edge_recursive_p (e))
1757 if (dump_file)
1758 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1759 cgraph_node_name (e->callee));
1760 e->inline_failed = CIF_RECURSIVE_INLINING;
1761 continue;
1764 if (!can_early_inline_edge_p (e))
1765 continue;
1767 if (dump_file)
1768 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1769 cgraph_node_name (e->callee),
1770 cgraph_node_name (e->caller));
1771 inline_call (e, true, NULL, NULL);
1772 inlined = true;
1775 return inlined;
1778 /* Decide on the inlining. We do so in the topological order to avoid
1779 expenses on updating data structures. */
1781 static bool
1782 early_inline_small_functions (struct cgraph_node *node)
1784 struct cgraph_edge *e;
1785 bool inlined = false;
1787 for (e = node->callees; e; e = e->next_callee)
1789 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1790 if (!inline_summary (callee)->inlinable
1791 || !e->inline_failed)
1792 continue;
1794 /* Do not consider functions not declared inline. */
1795 if (!DECL_DECLARED_INLINE_P (callee->decl)
1796 && !flag_inline_small_functions
1797 && !flag_inline_functions)
1798 continue;
1800 if (dump_file)
1801 fprintf (dump_file, "Considering inline candidate %s.\n",
1802 cgraph_node_name (callee));
1804 if (!can_early_inline_edge_p (e))
1805 continue;
1807 if (cgraph_edge_recursive_p (e))
1809 if (dump_file)
1810 fprintf (dump_file, " Not inlining: recursive call.\n");
1811 continue;
1814 if (!want_early_inline_function_p (e))
1815 continue;
1817 if (dump_file)
1818 fprintf (dump_file, " Inlining %s into %s.\n",
1819 cgraph_node_name (callee),
1820 cgraph_node_name (e->caller));
1821 inline_call (e, true, NULL, NULL);
1822 inlined = true;
1825 return inlined;
1828 /* Do inlining of small functions. Doing so early helps profiling and other
1829 passes to be somewhat more effective and avoids some code duplication in
1830 later real inlining pass for testcases with very many function calls. */
1831 static unsigned int
1832 early_inliner (void)
1834 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1835 struct cgraph_edge *edge;
1836 unsigned int todo = 0;
1837 int iterations = 0;
1838 bool inlined = false;
1840 if (seen_error ())
1841 return 0;
1843 /* Do nothing if datastructures for ipa-inliner are already computed. This
1844 happens when some pass decides to construct new function and
1845 cgraph_add_new_function calls lowering passes and early optimization on
1846 it. This may confuse ourself when early inliner decide to inline call to
1847 function clone, because function clones don't have parameter list in
1848 ipa-prop matching their signature. */
1849 if (ipa_node_params_vector)
1850 return 0;
1852 #ifdef ENABLE_CHECKING
1853 verify_cgraph_node (node);
1854 #endif
1856 /* Even when not optimizing or not inlining inline always-inline
1857 functions. */
1858 inlined = inline_always_inline_functions (node);
1860 if (!optimize
1861 || flag_no_inline
1862 || !flag_early_inlining
1863 /* Never inline regular functions into always-inline functions
1864 during incremental inlining. This sucks as functions calling
1865 always inline functions will get less optimized, but at the
1866 same time inlining of functions calling always inline
1867 function into an always inline function might introduce
1868 cycles of edges to be always inlined in the callgraph.
1870 We might want to be smarter and just avoid this type of inlining. */
1871 || DECL_DISREGARD_INLINE_LIMITS (node->decl))
1873 else if (lookup_attribute ("flatten",
1874 DECL_ATTRIBUTES (node->decl)) != NULL)
1876 /* When the function is marked to be flattened, recursively inline
1877 all calls in it. */
1878 if (dump_file)
1879 fprintf (dump_file,
1880 "Flattening %s\n", cgraph_node_name (node));
1881 flatten_function (node, true);
1882 inlined = true;
1884 else
1886 /* We iterate incremental inlining to get trivial cases of indirect
1887 inlining. */
1888 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
1889 && early_inline_small_functions (node))
1891 timevar_push (TV_INTEGRATION);
1892 todo |= optimize_inline_calls (current_function_decl);
1894 /* Technically we ought to recompute inline parameters so the new
1895 iteration of early inliner works as expected. We however have
1896 values approximately right and thus we only need to update edge
1897 info that might be cleared out for newly discovered edges. */
1898 for (edge = node->callees; edge; edge = edge->next_callee)
1900 struct inline_edge_summary *es = inline_edge_summary (edge);
1901 es->call_stmt_size
1902 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
1903 es->call_stmt_time
1904 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
1906 timevar_pop (TV_INTEGRATION);
1907 iterations++;
1908 inlined = false;
1910 if (dump_file)
1911 fprintf (dump_file, "Iterations: %i\n", iterations);
1914 if (inlined)
1916 timevar_push (TV_INTEGRATION);
1917 todo |= optimize_inline_calls (current_function_decl);
1918 timevar_pop (TV_INTEGRATION);
1921 cfun->always_inline_functions_inlined = true;
1923 return todo;
1926 struct gimple_opt_pass pass_early_inline =
1929 GIMPLE_PASS,
1930 "einline", /* name */
1931 NULL, /* gate */
1932 early_inliner, /* execute */
1933 NULL, /* sub */
1934 NULL, /* next */
1935 0, /* static_pass_number */
1936 TV_INLINE_HEURISTICS, /* tv_id */
1937 PROP_ssa, /* properties_required */
1938 0, /* properties_provided */
1939 0, /* properties_destroyed */
1940 0, /* todo_flags_start */
1941 TODO_dump_func /* todo_flags_finish */
1946 /* When to run IPA inlining. Inlining of always-inline functions
1947 happens during early inlining. */
1949 static bool
1950 gate_ipa_inline (void)
1952 /* ??? We'd like to skip this if not optimizing or not inlining as
1953 all always-inline functions have been processed by early
1954 inlining already. But this at least breaks EH with C++ as
1955 we need to unconditionally run fixup_cfg even at -O0.
1956 So leave it on unconditionally for now. */
1957 return 1;
1960 struct ipa_opt_pass_d pass_ipa_inline =
1963 IPA_PASS,
1964 "inline", /* name */
1965 gate_ipa_inline, /* gate */
1966 ipa_inline, /* execute */
1967 NULL, /* sub */
1968 NULL, /* next */
1969 0, /* static_pass_number */
1970 TV_INLINE_HEURISTICS, /* tv_id */
1971 0, /* properties_required */
1972 0, /* properties_provided */
1973 0, /* properties_destroyed */
1974 TODO_remove_functions, /* todo_flags_finish */
1975 TODO_dump_cgraph | TODO_dump_func
1976 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */
1978 inline_generate_summary, /* generate_summary */
1979 inline_write_summary, /* write_summary */
1980 inline_read_summary, /* read_summary */
1981 NULL, /* write_optimization_summary */
1982 NULL, /* read_optimization_summary */
1983 NULL, /* stmt_fixup */
1984 0, /* TODOs */
1985 inline_transform, /* function_transform */
1986 NULL, /* variable_transform */