fixing pr42337
[official-gcc.git] / gcc / function.c
blobac5ba94f9d1af3e2b74e0c19297669f34fb7300c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* Nonzero if function being compiled doesn't contain any calls
96 (ignoring the prologue and epilogue). This is set prior to
97 local register allocation and is valid for the remaining
98 compiler passes. */
99 int current_function_is_leaf;
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102 (ignoring the prologue and epilogue). This is only valid after
103 pass_stack_ptr_mod has run. */
104 int current_function_sp_is_unchanging;
106 /* Nonzero if the function being compiled is a leaf function which only
107 uses leaf registers. This is valid after reload (specifically after
108 sched2) and is useful only if the port defines LEAF_REGISTERS. */
109 int current_function_uses_only_leaf_regs;
111 /* Nonzero once virtual register instantiation has been done.
112 assign_stack_local uses frame_pointer_rtx when this is nonzero.
113 calls.c:emit_library_call_value_1 uses it to set up
114 post-instantiation libcalls. */
115 int virtuals_instantiated;
117 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
118 static GTY(()) int funcdef_no;
120 /* These variables hold pointers to functions to create and destroy
121 target specific, per-function data structures. */
122 struct machine_function * (*init_machine_status) (void);
124 /* The currently compiled function. */
125 struct function *cfun = 0;
127 /* These hashes record the prologue and epilogue insns. */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t epilogue_insn_hash;
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
137 /* Forward declarations. */
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147 can always export `prologue_epilogue_contains'. */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 typedef struct function *function_p;
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
167 /* Save the current context for compilation of a nested function.
168 This is called from language-specific code. */
170 void
171 push_function_context (void)
173 if (cfun == 0)
174 allocate_struct_function (NULL, false);
176 VEC_safe_push (function_p, heap, function_context_stack, cfun);
177 set_cfun (NULL);
180 /* Restore the last saved context, at the end of a nested function.
181 This function is called from language-specific code. */
183 void
184 pop_function_context (void)
186 struct function *p = VEC_pop (function_p, function_context_stack);
187 set_cfun (p);
188 current_function_decl = p->decl;
190 /* Reset variables that have known state during rtx generation. */
191 virtuals_instantiated = 0;
192 generating_concat_p = 1;
195 /* Clear out all parts of the state in F that can safely be discarded
196 after the function has been parsed, but not compiled, to let
197 garbage collection reclaim the memory. */
199 void
200 free_after_parsing (struct function *f)
202 f->language = 0;
205 /* Clear out all parts of the state in F that can safely be discarded
206 after the function has been compiled, to let garbage collection
207 reclaim the memory. */
209 void
210 free_after_compilation (struct function *f)
212 prologue_insn_hash = NULL;
213 epilogue_insn_hash = NULL;
215 if (crtl->emit.regno_pointer_align)
216 free (crtl->emit.regno_pointer_align);
218 memset (crtl, 0, sizeof (struct rtl_data));
219 f->eh = NULL;
220 f->machine = NULL;
221 f->cfg = NULL;
223 regno_reg_rtx = NULL;
224 insn_locators_free ();
227 /* Return size needed for stack frame based on slots so far allocated.
228 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
229 the caller may have to do that. */
231 HOST_WIDE_INT
232 get_frame_size (void)
234 if (FRAME_GROWS_DOWNWARD)
235 return -frame_offset;
236 else
237 return frame_offset;
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241 the signed target pointer arithmetics for function FUNC. Otherwise
242 return FALSE. */
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
247 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
249 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 /* Leave room for the fixed part of the frame. */
251 - 64 * UNITS_PER_WORD)
253 error_at (DECL_SOURCE_LOCATION (func),
254 "total size of local objects too large");
255 return TRUE;
258 return FALSE;
261 /* Return stack slot alignment in bits for TYPE and MODE. */
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
266 unsigned int alignment;
268 if (mode == BLKmode)
269 alignment = BIGGEST_ALIGNMENT;
270 else
271 alignment = GET_MODE_ALIGNMENT (mode);
273 /* Allow the frond-end to (possibly) increase the alignment of this
274 stack slot. */
275 if (! type)
276 type = lang_hooks.types.type_for_mode (mode, 0);
278 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282 with machine mode MODE.
284 ALIGN controls the amount of alignment for the address of the slot:
285 0 means according to MODE,
286 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287 -2 means use BITS_PER_UNIT,
288 positive specifies alignment boundary in bits.
290 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
292 We do not round to stack_boundary here. */
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 int align,
297 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
299 rtx x, addr;
300 int bigend_correction = 0;
301 unsigned int alignment, alignment_in_bits;
302 int frame_off, frame_alignment, frame_phase;
304 if (align == 0)
306 alignment = get_stack_local_alignment (NULL, mode);
307 alignment /= BITS_PER_UNIT;
309 else if (align == -1)
311 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312 size = CEIL_ROUND (size, alignment);
314 else if (align == -2)
315 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316 else
317 alignment = align / BITS_PER_UNIT;
319 alignment_in_bits = alignment * BITS_PER_UNIT;
321 if (FRAME_GROWS_DOWNWARD)
322 frame_offset -= size;
324 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
325 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
327 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328 alignment = alignment_in_bits / BITS_PER_UNIT;
331 if (SUPPORTS_STACK_ALIGNMENT)
333 if (crtl->stack_alignment_estimated < alignment_in_bits)
335 if (!crtl->stack_realign_processed)
336 crtl->stack_alignment_estimated = alignment_in_bits;
337 else
339 /* If stack is realigned and stack alignment value
340 hasn't been finalized, it is OK not to increase
341 stack_alignment_estimated. The bigger alignment
342 requirement is recorded in stack_alignment_needed
343 below. */
344 gcc_assert (!crtl->stack_realign_finalized);
345 if (!crtl->stack_realign_needed)
347 /* It is OK to reduce the alignment as long as the
348 requested size is 0 or the estimated stack
349 alignment >= mode alignment. */
350 gcc_assert (reduce_alignment_ok
351 || size == 0
352 || (crtl->stack_alignment_estimated
353 >= GET_MODE_ALIGNMENT (mode)));
354 alignment_in_bits = crtl->stack_alignment_estimated;
355 alignment = alignment_in_bits / BITS_PER_UNIT;
361 if (crtl->stack_alignment_needed < alignment_in_bits)
362 crtl->stack_alignment_needed = alignment_in_bits;
363 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364 crtl->max_used_stack_slot_alignment = alignment_in_bits;
366 /* Calculate how many bytes the start of local variables is off from
367 stack alignment. */
368 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370 frame_phase = frame_off ? frame_alignment - frame_off : 0;
372 /* Round the frame offset to the specified alignment. The default is
373 to always honor requests to align the stack but a port may choose to
374 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
375 if (STACK_ALIGNMENT_NEEDED
376 || mode != BLKmode
377 || size != 0)
379 /* We must be careful here, since FRAME_OFFSET might be negative and
380 division with a negative dividend isn't as well defined as we might
381 like. So we instead assume that ALIGNMENT is a power of two and
382 use logical operations which are unambiguous. */
383 if (FRAME_GROWS_DOWNWARD)
384 frame_offset
385 = (FLOOR_ROUND (frame_offset - frame_phase,
386 (unsigned HOST_WIDE_INT) alignment)
387 + frame_phase);
388 else
389 frame_offset
390 = (CEIL_ROUND (frame_offset - frame_phase,
391 (unsigned HOST_WIDE_INT) alignment)
392 + frame_phase);
395 /* On a big-endian machine, if we are allocating more space than we will use,
396 use the least significant bytes of those that are allocated. */
397 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398 bigend_correction = size - GET_MODE_SIZE (mode);
400 /* If we have already instantiated virtual registers, return the actual
401 address relative to the frame pointer. */
402 if (virtuals_instantiated)
403 addr = plus_constant (frame_pointer_rtx,
404 trunc_int_for_mode
405 (frame_offset + bigend_correction
406 + STARTING_FRAME_OFFSET, Pmode));
407 else
408 addr = plus_constant (virtual_stack_vars_rtx,
409 trunc_int_for_mode
410 (frame_offset + bigend_correction,
411 Pmode));
413 if (!FRAME_GROWS_DOWNWARD)
414 frame_offset += size;
416 x = gen_rtx_MEM (mode, addr);
417 set_mem_align (x, alignment_in_bits);
418 MEM_NOTRAP_P (x) = 1;
420 stack_slot_list
421 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
423 if (frame_offset_overflow (frame_offset, current_function_decl))
424 frame_offset = 0;
426 return x;
429 /* Wrap up assign_stack_local_1 with last parameter as false. */
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
434 return assign_stack_local_1 (mode, size, align, false);
438 /* In order to evaluate some expressions, such as function calls returning
439 structures in memory, we need to temporarily allocate stack locations.
440 We record each allocated temporary in the following structure.
442 Associated with each temporary slot is a nesting level. When we pop up
443 one level, all temporaries associated with the previous level are freed.
444 Normally, all temporaries are freed after the execution of the statement
445 in which they were created. However, if we are inside a ({...}) grouping,
446 the result may be in a temporary and hence must be preserved. If the
447 result could be in a temporary, we preserve it if we can determine which
448 one it is in. If we cannot determine which temporary may contain the
449 result, all temporaries are preserved. A temporary is preserved by
450 pretending it was allocated at the previous nesting level.
452 Automatic variables are also assigned temporary slots, at the nesting
453 level where they are defined. They are marked a "kept" so that
454 free_temp_slots will not free them. */
456 struct GTY(()) temp_slot {
457 /* Points to next temporary slot. */
458 struct temp_slot *next;
459 /* Points to previous temporary slot. */
460 struct temp_slot *prev;
461 /* The rtx to used to reference the slot. */
462 rtx slot;
463 /* The size, in units, of the slot. */
464 HOST_WIDE_INT size;
465 /* The type of the object in the slot, or zero if it doesn't correspond
466 to a type. We use this to determine whether a slot can be reused.
467 It can be reused if objects of the type of the new slot will always
468 conflict with objects of the type of the old slot. */
469 tree type;
470 /* The alignment (in bits) of the slot. */
471 unsigned int align;
472 /* Nonzero if this temporary is currently in use. */
473 char in_use;
474 /* Nonzero if this temporary has its address taken. */
475 char addr_taken;
476 /* Nesting level at which this slot is being used. */
477 int level;
478 /* Nonzero if this should survive a call to free_temp_slots. */
479 int keep;
480 /* The offset of the slot from the frame_pointer, including extra space
481 for alignment. This info is for combine_temp_slots. */
482 HOST_WIDE_INT base_offset;
483 /* The size of the slot, including extra space for alignment. This
484 info is for combine_temp_slots. */
485 HOST_WIDE_INT full_size;
488 /* A table of addresses that represent a stack slot. The table is a mapping
489 from address RTXen to a temp slot. */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
492 /* Entry for the above hash table. */
493 struct GTY(()) temp_slot_address_entry {
494 hashval_t hash;
495 rtx address;
496 struct temp_slot *temp_slot;
499 /* Removes temporary slot TEMP from LIST. */
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
504 if (temp->next)
505 temp->next->prev = temp->prev;
506 if (temp->prev)
507 temp->prev->next = temp->next;
508 else
509 *list = temp->next;
511 temp->prev = temp->next = NULL;
514 /* Inserts temporary slot TEMP to LIST. */
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
519 temp->next = *list;
520 if (*list)
521 (*list)->prev = temp;
522 temp->prev = NULL;
523 *list = temp;
526 /* Returns the list of used temp slots at LEVEL. */
528 static struct temp_slot **
529 temp_slots_at_level (int level)
531 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
534 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VEC_length (temp_slot_p, used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Compute the hash value for an address -> temp slot mapping.
570 The value is cached on the mapping entry. */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
574 int do_not_record = 0;
575 return hash_rtx (t->address, GET_MODE (t->address),
576 &do_not_record, NULL, false);
579 /* Return the hash value for an address -> temp slot mapping. */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
583 const struct temp_slot_address_entry *t;
584 t = (const struct temp_slot_address_entry *) p;
585 return t->hash;
588 /* Compare two address -> temp slot mapping entries. */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
592 const struct temp_slot_address_entry *t1, *t2;
593 t1 = (const struct temp_slot_address_entry *) p1;
594 t2 = (const struct temp_slot_address_entry *) p2;
595 return exp_equiv_p (t1->address, t2->address, 0, true);
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
602 void **slot;
603 struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604 t->address = address;
605 t->temp_slot = temp_slot;
606 t->hash = temp_slot_address_compute_hash (t);
607 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608 *slot = t;
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
616 const struct temp_slot_address_entry *t;
617 t = (const struct temp_slot_address_entry *) *slot;
618 if (! t->temp_slot->in_use)
619 *slot = NULL;
620 return 1;
623 /* Remove all mappings of addresses to unused temp slots. */
624 static void
625 remove_unused_temp_slot_addresses (void)
627 htab_traverse (temp_slot_address_table,
628 remove_unused_temp_slot_addresses_1,
629 NULL);
632 /* Find the temp slot corresponding to the object at address X. */
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
637 struct temp_slot *p;
638 struct temp_slot_address_entry tmp, *t;
640 /* First try the easy way:
641 See if X exists in the address -> temp slot mapping. */
642 tmp.address = x;
643 tmp.temp_slot = NULL;
644 tmp.hash = temp_slot_address_compute_hash (&tmp);
645 t = (struct temp_slot_address_entry *)
646 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647 if (t)
648 return t->temp_slot;
650 /* If we have a sum involving a register, see if it points to a temp
651 slot. */
652 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654 return p;
655 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657 return p;
659 /* Last resort: Address is a virtual stack var address. */
660 if (GET_CODE (x) == PLUS
661 && XEXP (x, 0) == virtual_stack_vars_rtx
662 && CONST_INT_P (XEXP (x, 1)))
664 int i;
665 for (i = max_slot_level (); i >= 0; i--)
666 for (p = *temp_slots_at_level (i); p; p = p->next)
668 if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 return p;
674 return NULL;
677 /* Allocate a temporary stack slot and record it for possible later
678 reuse.
680 MODE is the machine mode to be given to the returned rtx.
682 SIZE is the size in units of the space required. We do no rounding here
683 since assign_stack_local will do any required rounding.
685 KEEP is 1 if this slot is to be retained after a call to
686 free_temp_slots. Automatic variables for a block are allocated
687 with this flag. KEEP values of 2 or 3 were needed respectively
688 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689 or for SAVE_EXPRs, but they are now unused.
691 TYPE is the type that will be used for the stack slot. */
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 int keep, tree type)
697 unsigned int align;
698 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699 rtx slot;
701 /* If SIZE is -1 it means that somebody tried to allocate a temporary
702 of a variable size. */
703 gcc_assert (size != -1);
705 /* These are now unused. */
706 gcc_assert (keep <= 1);
708 align = get_stack_local_alignment (type, mode);
710 /* Try to find an available, already-allocated temporary of the proper
711 mode which meets the size and alignment requirements. Choose the
712 smallest one with the closest alignment.
714 If assign_stack_temp is called outside of the tree->rtl expansion,
715 we cannot reuse the stack slots (that may still refer to
716 VIRTUAL_STACK_VARS_REGNUM). */
717 if (!virtuals_instantiated)
719 for (p = avail_temp_slots; p; p = p->next)
721 if (p->align >= align && p->size >= size
722 && GET_MODE (p->slot) == mode
723 && objects_must_conflict_p (p->type, type)
724 && (best_p == 0 || best_p->size > p->size
725 || (best_p->size == p->size && best_p->align > p->align)))
727 if (p->align == align && p->size == size)
729 selected = p;
730 cut_slot_from_list (selected, &avail_temp_slots);
731 best_p = 0;
732 break;
734 best_p = p;
739 /* Make our best, if any, the one to use. */
740 if (best_p)
742 selected = best_p;
743 cut_slot_from_list (selected, &avail_temp_slots);
745 /* If there are enough aligned bytes left over, make them into a new
746 temp_slot so that the extra bytes don't get wasted. Do this only
747 for BLKmode slots, so that we can be sure of the alignment. */
748 if (GET_MODE (best_p->slot) == BLKmode)
750 int alignment = best_p->align / BITS_PER_UNIT;
751 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
753 if (best_p->size - rounded_size >= alignment)
755 p = GGC_NEW (struct temp_slot);
756 p->in_use = p->addr_taken = 0;
757 p->size = best_p->size - rounded_size;
758 p->base_offset = best_p->base_offset + rounded_size;
759 p->full_size = best_p->full_size - rounded_size;
760 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 p->align = best_p->align;
762 p->type = best_p->type;
763 insert_slot_to_list (p, &avail_temp_slots);
765 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 stack_slot_list);
768 best_p->size = rounded_size;
769 best_p->full_size = rounded_size;
774 /* If we still didn't find one, make a new temporary. */
775 if (selected == 0)
777 HOST_WIDE_INT frame_offset_old = frame_offset;
779 p = GGC_NEW (struct temp_slot);
781 /* We are passing an explicit alignment request to assign_stack_local.
782 One side effect of that is assign_stack_local will not round SIZE
783 to ensure the frame offset remains suitably aligned.
785 So for requests which depended on the rounding of SIZE, we go ahead
786 and round it now. We also make sure ALIGNMENT is at least
787 BIGGEST_ALIGNMENT. */
788 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789 p->slot = assign_stack_local (mode,
790 (mode == BLKmode
791 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 : size),
793 align);
795 p->align = align;
797 /* The following slot size computation is necessary because we don't
798 know the actual size of the temporary slot until assign_stack_local
799 has performed all the frame alignment and size rounding for the
800 requested temporary. Note that extra space added for alignment
801 can be either above or below this stack slot depending on which
802 way the frame grows. We include the extra space if and only if it
803 is above this slot. */
804 if (FRAME_GROWS_DOWNWARD)
805 p->size = frame_offset_old - frame_offset;
806 else
807 p->size = size;
809 /* Now define the fields used by combine_temp_slots. */
810 if (FRAME_GROWS_DOWNWARD)
812 p->base_offset = frame_offset;
813 p->full_size = frame_offset_old - frame_offset;
815 else
817 p->base_offset = frame_offset_old;
818 p->full_size = frame_offset - frame_offset_old;
821 selected = p;
824 p = selected;
825 p->in_use = 1;
826 p->addr_taken = 0;
827 p->type = type;
828 p->level = temp_slot_level;
829 p->keep = keep;
831 pp = temp_slots_at_level (p->level);
832 insert_slot_to_list (p, pp);
833 insert_temp_slot_address (XEXP (p->slot, 0), p);
835 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
836 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
839 /* If we know the alias set for the memory that will be used, use
840 it. If there's no TYPE, then we don't know anything about the
841 alias set for the memory. */
842 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843 set_mem_align (slot, align);
845 /* If a type is specified, set the relevant flags. */
846 if (type != 0)
848 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 || TREE_CODE (type) == COMPLEX_TYPE));
852 MEM_NOTRAP_P (slot) = 1;
854 return slot;
857 /* Allocate a temporary stack slot and record it for possible later
858 reuse. First three arguments are same as in preceding function. */
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
863 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
866 /* Assign a temporary.
867 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868 and so that should be used in error messages. In either case, we
869 allocate of the given type.
870 KEEP is as for assign_stack_temp.
871 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872 it is 0 if a register is OK.
873 DONT_PROMOTE is 1 if we should not promote values in register
874 to wider modes. */
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 int dont_promote ATTRIBUTE_UNUSED)
880 tree type, decl;
881 enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883 int unsignedp;
884 #endif
886 if (DECL_P (type_or_decl))
887 decl = type_or_decl, type = TREE_TYPE (decl);
888 else
889 decl = NULL, type = type_or_decl;
891 mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893 unsignedp = TYPE_UNSIGNED (type);
894 #endif
896 if (mode == BLKmode || memory_required)
898 HOST_WIDE_INT size = int_size_in_bytes (type);
899 rtx tmp;
901 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
902 problems with allocating the stack space. */
903 if (size == 0)
904 size = 1;
906 /* Unfortunately, we don't yet know how to allocate variable-sized
907 temporaries. However, sometimes we can find a fixed upper limit on
908 the size, so try that instead. */
909 else if (size == -1)
910 size = max_int_size_in_bytes (type);
912 /* The size of the temporary may be too large to fit into an integer. */
913 /* ??? Not sure this should happen except for user silliness, so limit
914 this to things that aren't compiler-generated temporaries. The
915 rest of the time we'll die in assign_stack_temp_for_type. */
916 if (decl && size == -1
917 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
919 error ("size of variable %q+D is too large", decl);
920 size = 1;
923 tmp = assign_stack_temp_for_type (mode, size, keep, type);
924 return tmp;
927 #ifdef PROMOTE_MODE
928 if (! dont_promote)
929 mode = promote_mode (type, mode, &unsignedp);
930 #endif
932 return gen_reg_rtx (mode);
935 /* Combine temporary stack slots which are adjacent on the stack.
937 This allows for better use of already allocated stack space. This is only
938 done for BLKmode slots because we can be sure that we won't have alignment
939 problems in this case. */
941 static void
942 combine_temp_slots (void)
944 struct temp_slot *p, *q, *next, *next_q;
945 int num_slots;
947 /* We can't combine slots, because the information about which slot
948 is in which alias set will be lost. */
949 if (flag_strict_aliasing)
950 return;
952 /* If there are a lot of temp slots, don't do anything unless
953 high levels of optimization. */
954 if (! flag_expensive_optimizations)
955 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 return;
959 for (p = avail_temp_slots; p; p = next)
961 int delete_p = 0;
963 next = p->next;
965 if (GET_MODE (p->slot) != BLKmode)
966 continue;
968 for (q = p->next; q; q = next_q)
970 int delete_q = 0;
972 next_q = q->next;
974 if (GET_MODE (q->slot) != BLKmode)
975 continue;
977 if (p->base_offset + p->full_size == q->base_offset)
979 /* Q comes after P; combine Q into P. */
980 p->size += q->size;
981 p->full_size += q->full_size;
982 delete_q = 1;
984 else if (q->base_offset + q->full_size == p->base_offset)
986 /* P comes after Q; combine P into Q. */
987 q->size += p->size;
988 q->full_size += p->full_size;
989 delete_p = 1;
990 break;
992 if (delete_q)
993 cut_slot_from_list (q, &avail_temp_slots);
996 /* Either delete P or advance past it. */
997 if (delete_p)
998 cut_slot_from_list (p, &avail_temp_slots);
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003 slot that previously was known by OLD_RTX. */
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1008 struct temp_slot *p;
1010 if (rtx_equal_p (old_rtx, new_rtx))
1011 return;
1013 p = find_temp_slot_from_address (old_rtx);
1015 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1016 NEW_RTX is a register, see if one operand of the PLUS is a
1017 temporary location. If so, NEW_RTX points into it. Otherwise,
1018 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019 in common between them. If so, try a recursive call on those
1020 values. */
1021 if (p == 0)
1023 if (GET_CODE (old_rtx) != PLUS)
1024 return;
1026 if (REG_P (new_rtx))
1028 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 return;
1032 else if (GET_CODE (new_rtx) != PLUS)
1033 return;
1035 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1044 return;
1047 /* Otherwise add an alias for the temp's address. */
1048 insert_temp_slot_address (new_rtx, p);
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052 address was taken. */
1054 void
1055 mark_temp_addr_taken (rtx x)
1057 struct temp_slot *p;
1059 if (x == 0)
1060 return;
1062 /* If X is not in memory or is at a constant address, it cannot be in
1063 a temporary slot. */
1064 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065 return;
1067 p = find_temp_slot_from_address (XEXP (x, 0));
1068 if (p != 0)
1069 p->addr_taken = 1;
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073 belonging to the to one level higher than the current level. If X
1074 matched one of our slots, just mark that one. Otherwise, we can't
1075 easily predict which it is, so upgrade all of them. Kept slots
1076 need not be touched.
1078 This is called when an ({...}) construct occurs and a statement
1079 returns a value in memory. */
1081 void
1082 preserve_temp_slots (rtx x)
1084 struct temp_slot *p = 0, *next;
1086 /* If there is no result, we still might have some objects whose address
1087 were taken, so we need to make sure they stay around. */
1088 if (x == 0)
1090 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1092 next = p->next;
1094 if (p->addr_taken)
1095 move_slot_to_level (p, temp_slot_level - 1);
1098 return;
1101 /* If X is a register that is being used as a pointer, see if we have
1102 a temporary slot we know it points to. To be consistent with
1103 the code below, we really should preserve all non-kept slots
1104 if we can't find a match, but that seems to be much too costly. */
1105 if (REG_P (x) && REG_POINTER (x))
1106 p = find_temp_slot_from_address (x);
1108 /* If X is not in memory or is at a constant address, it cannot be in
1109 a temporary slot, but it can contain something whose address was
1110 taken. */
1111 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1113 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1115 next = p->next;
1117 if (p->addr_taken)
1118 move_slot_to_level (p, temp_slot_level - 1);
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1138 next = q->next;
1140 if (p != q && q->addr_taken)
1141 move_slot_to_level (q, temp_slot_level - 1);
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 p->addr_taken = 0;
1147 return;
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 next = p->next;
1155 if (!p->keep)
1156 move_slot_to_level (p, temp_slot_level - 1);
1160 /* Free all temporaries used so far. This is normally called at the
1161 end of generating code for a statement. */
1163 void
1164 free_temp_slots (void)
1166 struct temp_slot *p, *next;
1167 bool some_available = false;
1169 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1171 next = p->next;
1173 if (!p->keep)
1175 make_slot_available (p);
1176 some_available = true;
1180 if (some_available)
1182 remove_unused_temp_slot_addresses ();
1183 combine_temp_slots ();
1187 /* Push deeper into the nesting level for stack temporaries. */
1189 void
1190 push_temp_slots (void)
1192 temp_slot_level++;
1195 /* Pop a temporary nesting level. All slots in use in the current level
1196 are freed. */
1198 void
1199 pop_temp_slots (void)
1201 struct temp_slot *p, *next;
1202 bool some_available = false;
1204 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1206 next = p->next;
1207 make_slot_available (p);
1208 some_available = true;
1211 if (some_available)
1213 remove_unused_temp_slot_addresses ();
1214 combine_temp_slots ();
1217 temp_slot_level--;
1220 /* Initialize temporary slots. */
1222 void
1223 init_temp_slots (void)
1225 /* We have not allocated any temporaries yet. */
1226 avail_temp_slots = 0;
1227 used_temp_slots = 0;
1228 temp_slot_level = 0;
1230 /* Set up the table to map addresses to temp slots. */
1231 if (! temp_slot_address_table)
1232 temp_slot_address_table = htab_create_ggc (32,
1233 temp_slot_address_hash,
1234 temp_slot_address_eq,
1235 NULL);
1236 else
1237 htab_empty (temp_slot_address_table);
1240 /* These routines are responsible for converting virtual register references
1241 to the actual hard register references once RTL generation is complete.
1243 The following four variables are used for communication between the
1244 routines. They contain the offsets of the virtual registers from their
1245 respective hard registers. */
1247 static int in_arg_offset;
1248 static int var_offset;
1249 static int dynamic_offset;
1250 static int out_arg_offset;
1251 static int cfa_offset;
1253 /* In most machines, the stack pointer register is equivalent to the bottom
1254 of the stack. */
1256 #ifndef STACK_POINTER_OFFSET
1257 #define STACK_POINTER_OFFSET 0
1258 #endif
1260 /* If not defined, pick an appropriate default for the offset of dynamically
1261 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1262 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1264 #ifndef STACK_DYNAMIC_OFFSET
1266 /* The bottom of the stack points to the actual arguments. If
1267 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1268 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1269 stack space for register parameters is not pushed by the caller, but
1270 rather part of the fixed stack areas and hence not included in
1271 `crtl->outgoing_args_size'. Nevertheless, we must allow
1272 for it when allocating stack dynamic objects. */
1274 #if defined(REG_PARM_STACK_SPACE)
1275 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1276 ((ACCUMULATE_OUTGOING_ARGS \
1277 ? (crtl->outgoing_args_size \
1278 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1279 : REG_PARM_STACK_SPACE (FNDECL))) \
1280 : 0) + (STACK_POINTER_OFFSET))
1281 #else
1282 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1283 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1284 + (STACK_POINTER_OFFSET))
1285 #endif
1286 #endif
1289 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1290 is a virtual register, return the equivalent hard register and set the
1291 offset indirectly through the pointer. Otherwise, return 0. */
1293 static rtx
1294 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1296 rtx new_rtx;
1297 HOST_WIDE_INT offset;
1299 if (x == virtual_incoming_args_rtx)
1301 if (stack_realign_drap)
1303 /* Replace virtual_incoming_args_rtx with internal arg
1304 pointer if DRAP is used to realign stack. */
1305 new_rtx = crtl->args.internal_arg_pointer;
1306 offset = 0;
1308 else
1309 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1311 else if (x == virtual_stack_vars_rtx)
1312 new_rtx = frame_pointer_rtx, offset = var_offset;
1313 else if (x == virtual_stack_dynamic_rtx)
1314 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1315 else if (x == virtual_outgoing_args_rtx)
1316 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1317 else if (x == virtual_cfa_rtx)
1319 #ifdef FRAME_POINTER_CFA_OFFSET
1320 new_rtx = frame_pointer_rtx;
1321 #else
1322 new_rtx = arg_pointer_rtx;
1323 #endif
1324 offset = cfa_offset;
1326 else
1327 return NULL_RTX;
1329 *poffset = offset;
1330 return new_rtx;
1333 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1334 Instantiate any virtual registers present inside of *LOC. The expression
1335 is simplified, as much as possible, but is not to be considered "valid"
1336 in any sense implied by the target. If any change is made, set CHANGED
1337 to true. */
1339 static int
1340 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1342 HOST_WIDE_INT offset;
1343 bool *changed = (bool *) data;
1344 rtx x, new_rtx;
1346 x = *loc;
1347 if (x == 0)
1348 return 0;
1350 switch (GET_CODE (x))
1352 case REG:
1353 new_rtx = instantiate_new_reg (x, &offset);
1354 if (new_rtx)
1356 *loc = plus_constant (new_rtx, offset);
1357 if (changed)
1358 *changed = true;
1360 return -1;
1362 case PLUS:
1363 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1364 if (new_rtx)
1366 new_rtx = plus_constant (new_rtx, offset);
1367 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1368 if (changed)
1369 *changed = true;
1370 return -1;
1373 /* FIXME -- from old code */
1374 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1375 we can commute the PLUS and SUBREG because pointers into the
1376 frame are well-behaved. */
1377 break;
1379 default:
1380 break;
1383 return 0;
1386 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1387 matches the predicate for insn CODE operand OPERAND. */
1389 static int
1390 safe_insn_predicate (int code, int operand, rtx x)
1392 const struct insn_operand_data *op_data;
1394 if (code < 0)
1395 return true;
1397 op_data = &insn_data[code].operand[operand];
1398 if (op_data->predicate == NULL)
1399 return true;
1401 return op_data->predicate (x, op_data->mode);
1404 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1405 registers present inside of insn. The result will be a valid insn. */
1407 static void
1408 instantiate_virtual_regs_in_insn (rtx insn)
1410 HOST_WIDE_INT offset;
1411 int insn_code, i;
1412 bool any_change = false;
1413 rtx set, new_rtx, x, seq;
1415 /* There are some special cases to be handled first. */
1416 set = single_set (insn);
1417 if (set)
1419 /* We're allowed to assign to a virtual register. This is interpreted
1420 to mean that the underlying register gets assigned the inverse
1421 transformation. This is used, for example, in the handling of
1422 non-local gotos. */
1423 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1424 if (new_rtx)
1426 start_sequence ();
1428 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1429 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1430 GEN_INT (-offset));
1431 x = force_operand (x, new_rtx);
1432 if (x != new_rtx)
1433 emit_move_insn (new_rtx, x);
1435 seq = get_insns ();
1436 end_sequence ();
1438 emit_insn_before (seq, insn);
1439 delete_insn (insn);
1440 return;
1443 /* Handle a straight copy from a virtual register by generating a
1444 new add insn. The difference between this and falling through
1445 to the generic case is avoiding a new pseudo and eliminating a
1446 move insn in the initial rtl stream. */
1447 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1448 if (new_rtx && offset != 0
1449 && REG_P (SET_DEST (set))
1450 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1452 start_sequence ();
1454 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1455 new_rtx, GEN_INT (offset), SET_DEST (set),
1456 1, OPTAB_LIB_WIDEN);
1457 if (x != SET_DEST (set))
1458 emit_move_insn (SET_DEST (set), x);
1460 seq = get_insns ();
1461 end_sequence ();
1463 emit_insn_before (seq, insn);
1464 delete_insn (insn);
1465 return;
1468 extract_insn (insn);
1469 insn_code = INSN_CODE (insn);
1471 /* Handle a plus involving a virtual register by determining if the
1472 operands remain valid if they're modified in place. */
1473 if (GET_CODE (SET_SRC (set)) == PLUS
1474 && recog_data.n_operands >= 3
1475 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1476 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1477 && CONST_INT_P (recog_data.operand[2])
1478 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1480 offset += INTVAL (recog_data.operand[2]);
1482 /* If the sum is zero, then replace with a plain move. */
1483 if (offset == 0
1484 && REG_P (SET_DEST (set))
1485 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1487 start_sequence ();
1488 emit_move_insn (SET_DEST (set), new_rtx);
1489 seq = get_insns ();
1490 end_sequence ();
1492 emit_insn_before (seq, insn);
1493 delete_insn (insn);
1494 return;
1497 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1499 /* Using validate_change and apply_change_group here leaves
1500 recog_data in an invalid state. Since we know exactly what
1501 we want to check, do those two by hand. */
1502 if (safe_insn_predicate (insn_code, 1, new_rtx)
1503 && safe_insn_predicate (insn_code, 2, x))
1505 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1506 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1507 any_change = true;
1509 /* Fall through into the regular operand fixup loop in
1510 order to take care of operands other than 1 and 2. */
1514 else
1516 extract_insn (insn);
1517 insn_code = INSN_CODE (insn);
1520 /* In the general case, we expect virtual registers to appear only in
1521 operands, and then only as either bare registers or inside memories. */
1522 for (i = 0; i < recog_data.n_operands; ++i)
1524 x = recog_data.operand[i];
1525 switch (GET_CODE (x))
1527 case MEM:
1529 rtx addr = XEXP (x, 0);
1530 bool changed = false;
1532 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1533 if (!changed)
1534 continue;
1536 start_sequence ();
1537 x = replace_equiv_address (x, addr);
1538 /* It may happen that the address with the virtual reg
1539 was valid (e.g. based on the virtual stack reg, which might
1540 be acceptable to the predicates with all offsets), whereas
1541 the address now isn't anymore, for instance when the address
1542 is still offsetted, but the base reg isn't virtual-stack-reg
1543 anymore. Below we would do a force_reg on the whole operand,
1544 but this insn might actually only accept memory. Hence,
1545 before doing that last resort, try to reload the address into
1546 a register, so this operand stays a MEM. */
1547 if (!safe_insn_predicate (insn_code, i, x))
1549 addr = force_reg (GET_MODE (addr), addr);
1550 x = replace_equiv_address (x, addr);
1552 seq = get_insns ();
1553 end_sequence ();
1554 if (seq)
1555 emit_insn_before (seq, insn);
1557 break;
1559 case REG:
1560 new_rtx = instantiate_new_reg (x, &offset);
1561 if (new_rtx == NULL)
1562 continue;
1563 if (offset == 0)
1564 x = new_rtx;
1565 else
1567 start_sequence ();
1569 /* Careful, special mode predicates may have stuff in
1570 insn_data[insn_code].operand[i].mode that isn't useful
1571 to us for computing a new value. */
1572 /* ??? Recognize address_operand and/or "p" constraints
1573 to see if (plus new offset) is a valid before we put
1574 this through expand_simple_binop. */
1575 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1576 GEN_INT (offset), NULL_RTX,
1577 1, OPTAB_LIB_WIDEN);
1578 seq = get_insns ();
1579 end_sequence ();
1580 emit_insn_before (seq, insn);
1582 break;
1584 case SUBREG:
1585 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1586 if (new_rtx == NULL)
1587 continue;
1588 if (offset != 0)
1590 start_sequence ();
1591 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1592 GEN_INT (offset), NULL_RTX,
1593 1, OPTAB_LIB_WIDEN);
1594 seq = get_insns ();
1595 end_sequence ();
1596 emit_insn_before (seq, insn);
1598 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1599 GET_MODE (new_rtx), SUBREG_BYTE (x));
1600 gcc_assert (x);
1601 break;
1603 default:
1604 continue;
1607 /* At this point, X contains the new value for the operand.
1608 Validate the new value vs the insn predicate. Note that
1609 asm insns will have insn_code -1 here. */
1610 if (!safe_insn_predicate (insn_code, i, x))
1612 start_sequence ();
1613 if (REG_P (x))
1615 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1616 x = copy_to_reg (x);
1618 else
1619 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1620 seq = get_insns ();
1621 end_sequence ();
1622 if (seq)
1623 emit_insn_before (seq, insn);
1626 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1627 any_change = true;
1630 if (any_change)
1632 /* Propagate operand changes into the duplicates. */
1633 for (i = 0; i < recog_data.n_dups; ++i)
1634 *recog_data.dup_loc[i]
1635 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1637 /* Force re-recognition of the instruction for validation. */
1638 INSN_CODE (insn) = -1;
1641 if (asm_noperands (PATTERN (insn)) >= 0)
1643 if (!check_asm_operands (PATTERN (insn)))
1645 error_for_asm (insn, "impossible constraint in %<asm%>");
1646 delete_insn (insn);
1649 else
1651 if (recog_memoized (insn) < 0)
1652 fatal_insn_not_found (insn);
1656 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1657 do any instantiation required. */
1659 void
1660 instantiate_decl_rtl (rtx x)
1662 rtx addr;
1664 if (x == 0)
1665 return;
1667 /* If this is a CONCAT, recurse for the pieces. */
1668 if (GET_CODE (x) == CONCAT)
1670 instantiate_decl_rtl (XEXP (x, 0));
1671 instantiate_decl_rtl (XEXP (x, 1));
1672 return;
1675 /* If this is not a MEM, no need to do anything. Similarly if the
1676 address is a constant or a register that is not a virtual register. */
1677 if (!MEM_P (x))
1678 return;
1680 addr = XEXP (x, 0);
1681 if (CONSTANT_P (addr)
1682 || (REG_P (addr)
1683 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1684 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1685 return;
1687 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1690 /* Helper for instantiate_decls called via walk_tree: Process all decls
1691 in the given DECL_VALUE_EXPR. */
1693 static tree
1694 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1696 tree t = *tp;
1697 if (! EXPR_P (t))
1699 *walk_subtrees = 0;
1700 if (DECL_P (t) && DECL_RTL_SET_P (t))
1701 instantiate_decl_rtl (DECL_RTL (t));
1703 return NULL;
1706 /* Subroutine of instantiate_decls: Process all decls in the given
1707 BLOCK node and all its subblocks. */
1709 static void
1710 instantiate_decls_1 (tree let)
1712 tree t;
1714 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1716 if (DECL_RTL_SET_P (t))
1717 instantiate_decl_rtl (DECL_RTL (t));
1718 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1720 tree v = DECL_VALUE_EXPR (t);
1721 walk_tree (&v, instantiate_expr, NULL, NULL);
1725 /* Process all subblocks. */
1726 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1727 instantiate_decls_1 (t);
1730 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1731 all virtual registers in their DECL_RTL's. */
1733 static void
1734 instantiate_decls (tree fndecl)
1736 tree decl, t, next;
1738 /* Process all parameters of the function. */
1739 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1741 instantiate_decl_rtl (DECL_RTL (decl));
1742 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1743 if (DECL_HAS_VALUE_EXPR_P (decl))
1745 tree v = DECL_VALUE_EXPR (decl);
1746 walk_tree (&v, instantiate_expr, NULL, NULL);
1750 /* Now process all variables defined in the function or its subblocks. */
1751 instantiate_decls_1 (DECL_INITIAL (fndecl));
1753 t = cfun->local_decls;
1754 cfun->local_decls = NULL_TREE;
1755 for (; t; t = next)
1757 next = TREE_CHAIN (t);
1758 decl = TREE_VALUE (t);
1759 if (DECL_RTL_SET_P (decl))
1760 instantiate_decl_rtl (DECL_RTL (decl));
1761 ggc_free (t);
1765 /* Pass through the INSNS of function FNDECL and convert virtual register
1766 references to hard register references. */
1768 static unsigned int
1769 instantiate_virtual_regs (void)
1771 rtx insn;
1773 /* Compute the offsets to use for this function. */
1774 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1775 var_offset = STARTING_FRAME_OFFSET;
1776 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1777 out_arg_offset = STACK_POINTER_OFFSET;
1778 #ifdef FRAME_POINTER_CFA_OFFSET
1779 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1780 #else
1781 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1782 #endif
1784 /* Initialize recognition, indicating that volatile is OK. */
1785 init_recog ();
1787 /* Scan through all the insns, instantiating every virtual register still
1788 present. */
1789 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1790 if (INSN_P (insn))
1792 /* These patterns in the instruction stream can never be recognized.
1793 Fortunately, they shouldn't contain virtual registers either. */
1794 if (GET_CODE (PATTERN (insn)) == USE
1795 || GET_CODE (PATTERN (insn)) == CLOBBER
1796 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1797 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1798 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1799 continue;
1800 else if (DEBUG_INSN_P (insn))
1801 for_each_rtx (&INSN_VAR_LOCATION (insn),
1802 instantiate_virtual_regs_in_rtx, NULL);
1803 else
1804 instantiate_virtual_regs_in_insn (insn);
1806 if (INSN_DELETED_P (insn))
1807 continue;
1809 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1811 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1812 if (CALL_P (insn))
1813 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1814 instantiate_virtual_regs_in_rtx, NULL);
1817 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1818 instantiate_decls (current_function_decl);
1820 targetm.instantiate_decls ();
1822 /* Indicate that, from now on, assign_stack_local should use
1823 frame_pointer_rtx. */
1824 virtuals_instantiated = 1;
1825 return 0;
1828 struct rtl_opt_pass pass_instantiate_virtual_regs =
1831 RTL_PASS,
1832 "vregs", /* name */
1833 NULL, /* gate */
1834 instantiate_virtual_regs, /* execute */
1835 NULL, /* sub */
1836 NULL, /* next */
1837 0, /* static_pass_number */
1838 TV_NONE, /* tv_id */
1839 0, /* properties_required */
1840 0, /* properties_provided */
1841 0, /* properties_destroyed */
1842 0, /* todo_flags_start */
1843 TODO_dump_func /* todo_flags_finish */
1848 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1849 This means a type for which function calls must pass an address to the
1850 function or get an address back from the function.
1851 EXP may be a type node or an expression (whose type is tested). */
1854 aggregate_value_p (const_tree exp, const_tree fntype)
1856 int i, regno, nregs;
1857 rtx reg;
1859 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1861 /* DECL node associated with FNTYPE when relevant, which we might need to
1862 check for by-invisible-reference returns, typically for CALL_EXPR input
1863 EXPressions. */
1864 const_tree fndecl = NULL_TREE;
1866 if (fntype)
1867 switch (TREE_CODE (fntype))
1869 case CALL_EXPR:
1870 fndecl = get_callee_fndecl (fntype);
1871 fntype = (fndecl
1872 ? TREE_TYPE (fndecl)
1873 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1874 break;
1875 case FUNCTION_DECL:
1876 fndecl = fntype;
1877 fntype = TREE_TYPE (fndecl);
1878 break;
1879 case FUNCTION_TYPE:
1880 case METHOD_TYPE:
1881 break;
1882 case IDENTIFIER_NODE:
1883 fntype = 0;
1884 break;
1885 default:
1886 /* We don't expect other rtl types here. */
1887 gcc_unreachable ();
1890 if (TREE_CODE (type) == VOID_TYPE)
1891 return 0;
1893 /* If the front end has decided that this needs to be passed by
1894 reference, do so. */
1895 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1896 && DECL_BY_REFERENCE (exp))
1897 return 1;
1899 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1900 called function RESULT_DECL, meaning the function returns in memory by
1901 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1902 on the function type, which used to be the way to request such a return
1903 mechanism but might now be causing troubles at gimplification time if
1904 temporaries with the function type need to be created. */
1905 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1906 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1907 return 1;
1909 if (targetm.calls.return_in_memory (type, fntype))
1910 return 1;
1911 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1912 and thus can't be returned in registers. */
1913 if (TREE_ADDRESSABLE (type))
1914 return 1;
1915 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1916 return 1;
1917 /* Make sure we have suitable call-clobbered regs to return
1918 the value in; if not, we must return it in memory. */
1919 reg = hard_function_value (type, 0, fntype, 0);
1921 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1922 it is OK. */
1923 if (!REG_P (reg))
1924 return 0;
1926 regno = REGNO (reg);
1927 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1928 for (i = 0; i < nregs; i++)
1929 if (! call_used_regs[regno + i])
1930 return 1;
1931 return 0;
1934 /* Return true if we should assign DECL a pseudo register; false if it
1935 should live on the local stack. */
1937 bool
1938 use_register_for_decl (const_tree decl)
1940 if (!targetm.calls.allocate_stack_slots_for_args())
1941 return true;
1943 /* Honor volatile. */
1944 if (TREE_SIDE_EFFECTS (decl))
1945 return false;
1947 /* Honor addressability. */
1948 if (TREE_ADDRESSABLE (decl))
1949 return false;
1951 /* Only register-like things go in registers. */
1952 if (DECL_MODE (decl) == BLKmode)
1953 return false;
1955 /* If -ffloat-store specified, don't put explicit float variables
1956 into registers. */
1957 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1958 propagates values across these stores, and it probably shouldn't. */
1959 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1960 return false;
1962 /* If we're not interested in tracking debugging information for
1963 this decl, then we can certainly put it in a register. */
1964 if (DECL_IGNORED_P (decl))
1965 return true;
1967 if (optimize)
1968 return true;
1970 if (!DECL_REGISTER (decl))
1971 return false;
1973 switch (TREE_CODE (TREE_TYPE (decl)))
1975 case RECORD_TYPE:
1976 case UNION_TYPE:
1977 case QUAL_UNION_TYPE:
1978 /* When not optimizing, disregard register keyword for variables with
1979 types containing methods, otherwise the methods won't be callable
1980 from the debugger. */
1981 if (TYPE_METHODS (TREE_TYPE (decl)))
1982 return false;
1983 break;
1984 default:
1985 break;
1988 return true;
1991 /* Return true if TYPE should be passed by invisible reference. */
1993 bool
1994 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1995 tree type, bool named_arg)
1997 if (type)
1999 /* If this type contains non-trivial constructors, then it is
2000 forbidden for the middle-end to create any new copies. */
2001 if (TREE_ADDRESSABLE (type))
2002 return true;
2004 /* GCC post 3.4 passes *all* variable sized types by reference. */
2005 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2006 return true;
2009 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2012 /* Return true if TYPE, which is passed by reference, should be callee
2013 copied instead of caller copied. */
2015 bool
2016 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2017 tree type, bool named_arg)
2019 if (type && TREE_ADDRESSABLE (type))
2020 return false;
2021 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2024 /* Structures to communicate between the subroutines of assign_parms.
2025 The first holds data persistent across all parameters, the second
2026 is cleared out for each parameter. */
2028 struct assign_parm_data_all
2030 CUMULATIVE_ARGS args_so_far;
2031 struct args_size stack_args_size;
2032 tree function_result_decl;
2033 tree orig_fnargs;
2034 rtx first_conversion_insn;
2035 rtx last_conversion_insn;
2036 HOST_WIDE_INT pretend_args_size;
2037 HOST_WIDE_INT extra_pretend_bytes;
2038 int reg_parm_stack_space;
2041 struct assign_parm_data_one
2043 tree nominal_type;
2044 tree passed_type;
2045 rtx entry_parm;
2046 rtx stack_parm;
2047 enum machine_mode nominal_mode;
2048 enum machine_mode passed_mode;
2049 enum machine_mode promoted_mode;
2050 struct locate_and_pad_arg_data locate;
2051 int partial;
2052 BOOL_BITFIELD named_arg : 1;
2053 BOOL_BITFIELD passed_pointer : 1;
2054 BOOL_BITFIELD on_stack : 1;
2055 BOOL_BITFIELD loaded_in_reg : 1;
2058 /* A subroutine of assign_parms. Initialize ALL. */
2060 static void
2061 assign_parms_initialize_all (struct assign_parm_data_all *all)
2063 tree fntype;
2065 memset (all, 0, sizeof (*all));
2067 fntype = TREE_TYPE (current_function_decl);
2069 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2070 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2071 #else
2072 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2073 current_function_decl, -1);
2074 #endif
2076 #ifdef REG_PARM_STACK_SPACE
2077 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2078 #endif
2081 /* If ARGS contains entries with complex types, split the entry into two
2082 entries of the component type. Return a new list of substitutions are
2083 needed, else the old list. */
2085 static tree
2086 split_complex_args (tree args)
2088 tree p;
2090 /* Before allocating memory, check for the common case of no complex. */
2091 for (p = args; p; p = TREE_CHAIN (p))
2093 tree type = TREE_TYPE (p);
2094 if (TREE_CODE (type) == COMPLEX_TYPE
2095 && targetm.calls.split_complex_arg (type))
2096 goto found;
2098 return args;
2100 found:
2101 args = copy_list (args);
2103 for (p = args; p; p = TREE_CHAIN (p))
2105 tree type = TREE_TYPE (p);
2106 if (TREE_CODE (type) == COMPLEX_TYPE
2107 && targetm.calls.split_complex_arg (type))
2109 tree decl;
2110 tree subtype = TREE_TYPE (type);
2111 bool addressable = TREE_ADDRESSABLE (p);
2113 /* Rewrite the PARM_DECL's type with its component. */
2114 TREE_TYPE (p) = subtype;
2115 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2116 DECL_MODE (p) = VOIDmode;
2117 DECL_SIZE (p) = NULL;
2118 DECL_SIZE_UNIT (p) = NULL;
2119 /* If this arg must go in memory, put it in a pseudo here.
2120 We can't allow it to go in memory as per normal parms,
2121 because the usual place might not have the imag part
2122 adjacent to the real part. */
2123 DECL_ARTIFICIAL (p) = addressable;
2124 DECL_IGNORED_P (p) = addressable;
2125 TREE_ADDRESSABLE (p) = 0;
2126 layout_decl (p, 0);
2128 /* Build a second synthetic decl. */
2129 decl = build_decl (EXPR_LOCATION (p),
2130 PARM_DECL, NULL_TREE, subtype);
2131 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2132 DECL_ARTIFICIAL (decl) = addressable;
2133 DECL_IGNORED_P (decl) = addressable;
2134 layout_decl (decl, 0);
2136 /* Splice it in; skip the new decl. */
2137 TREE_CHAIN (decl) = TREE_CHAIN (p);
2138 TREE_CHAIN (p) = decl;
2139 p = decl;
2143 return args;
2146 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2147 the hidden struct return argument, and (abi willing) complex args.
2148 Return the new parameter list. */
2150 static tree
2151 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2153 tree fndecl = current_function_decl;
2154 tree fntype = TREE_TYPE (fndecl);
2155 tree fnargs = DECL_ARGUMENTS (fndecl);
2157 /* If struct value address is treated as the first argument, make it so. */
2158 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2159 && ! cfun->returns_pcc_struct
2160 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2162 tree type = build_pointer_type (TREE_TYPE (fntype));
2163 tree decl;
2165 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2166 PARM_DECL, NULL_TREE, type);
2167 DECL_ARG_TYPE (decl) = type;
2168 DECL_ARTIFICIAL (decl) = 1;
2169 DECL_IGNORED_P (decl) = 1;
2171 TREE_CHAIN (decl) = fnargs;
2172 fnargs = decl;
2173 all->function_result_decl = decl;
2176 all->orig_fnargs = fnargs;
2178 /* If the target wants to split complex arguments into scalars, do so. */
2179 if (targetm.calls.split_complex_arg)
2180 fnargs = split_complex_args (fnargs);
2182 return fnargs;
2185 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2186 data for the parameter. Incorporate ABI specifics such as pass-by-
2187 reference and type promotion. */
2189 static void
2190 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2191 struct assign_parm_data_one *data)
2193 tree nominal_type, passed_type;
2194 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2195 int unsignedp;
2197 memset (data, 0, sizeof (*data));
2199 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2200 if (!cfun->stdarg)
2201 data->named_arg = 1; /* No variadic parms. */
2202 else if (TREE_CHAIN (parm))
2203 data->named_arg = 1; /* Not the last non-variadic parm. */
2204 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2205 data->named_arg = 1; /* Only variadic ones are unnamed. */
2206 else
2207 data->named_arg = 0; /* Treat as variadic. */
2209 nominal_type = TREE_TYPE (parm);
2210 passed_type = DECL_ARG_TYPE (parm);
2212 /* Look out for errors propagating this far. Also, if the parameter's
2213 type is void then its value doesn't matter. */
2214 if (TREE_TYPE (parm) == error_mark_node
2215 /* This can happen after weird syntax errors
2216 or if an enum type is defined among the parms. */
2217 || TREE_CODE (parm) != PARM_DECL
2218 || passed_type == NULL
2219 || VOID_TYPE_P (nominal_type))
2221 nominal_type = passed_type = void_type_node;
2222 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2223 goto egress;
2226 /* Find mode of arg as it is passed, and mode of arg as it should be
2227 during execution of this function. */
2228 passed_mode = TYPE_MODE (passed_type);
2229 nominal_mode = TYPE_MODE (nominal_type);
2231 /* If the parm is to be passed as a transparent union, use the type of
2232 the first field for the tests below. We have already verified that
2233 the modes are the same. */
2234 if (TREE_CODE (passed_type) == UNION_TYPE
2235 && TYPE_TRANSPARENT_UNION (passed_type))
2236 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2238 /* See if this arg was passed by invisible reference. */
2239 if (pass_by_reference (&all->args_so_far, passed_mode,
2240 passed_type, data->named_arg))
2242 passed_type = nominal_type = build_pointer_type (passed_type);
2243 data->passed_pointer = true;
2244 passed_mode = nominal_mode = Pmode;
2247 /* Find mode as it is passed by the ABI. */
2248 unsignedp = TYPE_UNSIGNED (passed_type);
2249 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2250 TREE_TYPE (current_function_decl), 0);
2252 egress:
2253 data->nominal_type = nominal_type;
2254 data->passed_type = passed_type;
2255 data->nominal_mode = nominal_mode;
2256 data->passed_mode = passed_mode;
2257 data->promoted_mode = promoted_mode;
2260 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2262 static void
2263 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2264 struct assign_parm_data_one *data, bool no_rtl)
2266 int varargs_pretend_bytes = 0;
2268 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2269 data->promoted_mode,
2270 data->passed_type,
2271 &varargs_pretend_bytes, no_rtl);
2273 /* If the back-end has requested extra stack space, record how much is
2274 needed. Do not change pretend_args_size otherwise since it may be
2275 nonzero from an earlier partial argument. */
2276 if (varargs_pretend_bytes > 0)
2277 all->pretend_args_size = varargs_pretend_bytes;
2280 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2281 the incoming location of the current parameter. */
2283 static void
2284 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2285 struct assign_parm_data_one *data)
2287 HOST_WIDE_INT pretend_bytes = 0;
2288 rtx entry_parm;
2289 bool in_regs;
2291 if (data->promoted_mode == VOIDmode)
2293 data->entry_parm = data->stack_parm = const0_rtx;
2294 return;
2297 #ifdef FUNCTION_INCOMING_ARG
2298 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2299 data->passed_type, data->named_arg);
2300 #else
2301 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2302 data->passed_type, data->named_arg);
2303 #endif
2305 if (entry_parm == 0)
2306 data->promoted_mode = data->passed_mode;
2308 /* Determine parm's home in the stack, in case it arrives in the stack
2309 or we should pretend it did. Compute the stack position and rtx where
2310 the argument arrives and its size.
2312 There is one complexity here: If this was a parameter that would
2313 have been passed in registers, but wasn't only because it is
2314 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2315 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2316 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2317 as it was the previous time. */
2318 in_regs = entry_parm != 0;
2319 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2320 in_regs = true;
2321 #endif
2322 if (!in_regs && !data->named_arg)
2324 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2326 rtx tem;
2327 #ifdef FUNCTION_INCOMING_ARG
2328 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2329 data->passed_type, true);
2330 #else
2331 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2332 data->passed_type, true);
2333 #endif
2334 in_regs = tem != NULL;
2338 /* If this parameter was passed both in registers and in the stack, use
2339 the copy on the stack. */
2340 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2341 data->passed_type))
2342 entry_parm = 0;
2344 if (entry_parm)
2346 int partial;
2348 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2349 data->promoted_mode,
2350 data->passed_type,
2351 data->named_arg);
2352 data->partial = partial;
2354 /* The caller might already have allocated stack space for the
2355 register parameters. */
2356 if (partial != 0 && all->reg_parm_stack_space == 0)
2358 /* Part of this argument is passed in registers and part
2359 is passed on the stack. Ask the prologue code to extend
2360 the stack part so that we can recreate the full value.
2362 PRETEND_BYTES is the size of the registers we need to store.
2363 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2364 stack space that the prologue should allocate.
2366 Internally, gcc assumes that the argument pointer is aligned
2367 to STACK_BOUNDARY bits. This is used both for alignment
2368 optimizations (see init_emit) and to locate arguments that are
2369 aligned to more than PARM_BOUNDARY bits. We must preserve this
2370 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2371 a stack boundary. */
2373 /* We assume at most one partial arg, and it must be the first
2374 argument on the stack. */
2375 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2377 pretend_bytes = partial;
2378 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2380 /* We want to align relative to the actual stack pointer, so
2381 don't include this in the stack size until later. */
2382 all->extra_pretend_bytes = all->pretend_args_size;
2386 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2387 entry_parm ? data->partial : 0, current_function_decl,
2388 &all->stack_args_size, &data->locate);
2390 /* Update parm_stack_boundary if this parameter is passed in the
2391 stack. */
2392 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2393 crtl->parm_stack_boundary = data->locate.boundary;
2395 /* Adjust offsets to include the pretend args. */
2396 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2397 data->locate.slot_offset.constant += pretend_bytes;
2398 data->locate.offset.constant += pretend_bytes;
2400 data->entry_parm = entry_parm;
2403 /* A subroutine of assign_parms. If there is actually space on the stack
2404 for this parm, count it in stack_args_size and return true. */
2406 static bool
2407 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2408 struct assign_parm_data_one *data)
2410 /* Trivially true if we've no incoming register. */
2411 if (data->entry_parm == NULL)
2413 /* Also true if we're partially in registers and partially not,
2414 since we've arranged to drop the entire argument on the stack. */
2415 else if (data->partial != 0)
2417 /* Also true if the target says that it's passed in both registers
2418 and on the stack. */
2419 else if (GET_CODE (data->entry_parm) == PARALLEL
2420 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2422 /* Also true if the target says that there's stack allocated for
2423 all register parameters. */
2424 else if (all->reg_parm_stack_space > 0)
2426 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2427 else
2428 return false;
2430 all->stack_args_size.constant += data->locate.size.constant;
2431 if (data->locate.size.var)
2432 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2434 return true;
2437 /* A subroutine of assign_parms. Given that this parameter is allocated
2438 stack space by the ABI, find it. */
2440 static void
2441 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2443 rtx offset_rtx, stack_parm;
2444 unsigned int align, boundary;
2446 /* If we're passing this arg using a reg, make its stack home the
2447 aligned stack slot. */
2448 if (data->entry_parm)
2449 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2450 else
2451 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2453 stack_parm = crtl->args.internal_arg_pointer;
2454 if (offset_rtx != const0_rtx)
2455 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2456 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2458 if (!data->passed_pointer)
2460 set_mem_attributes (stack_parm, parm, 1);
2461 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2462 while promoted mode's size is needed. */
2463 if (data->promoted_mode != BLKmode
2464 && data->promoted_mode != DECL_MODE (parm))
2466 set_mem_size (stack_parm,
2467 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2468 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2470 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2471 data->promoted_mode);
2472 if (offset)
2473 set_mem_offset (stack_parm,
2474 plus_constant (MEM_OFFSET (stack_parm),
2475 -offset));
2480 boundary = data->locate.boundary;
2481 align = BITS_PER_UNIT;
2483 /* If we're padding upward, we know that the alignment of the slot
2484 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2485 intentionally forcing upward padding. Otherwise we have to come
2486 up with a guess at the alignment based on OFFSET_RTX. */
2487 if (data->locate.where_pad != downward || data->entry_parm)
2488 align = boundary;
2489 else if (CONST_INT_P (offset_rtx))
2491 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2492 align = align & -align;
2494 set_mem_align (stack_parm, align);
2496 if (data->entry_parm)
2497 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2499 data->stack_parm = stack_parm;
2502 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2503 always valid and contiguous. */
2505 static void
2506 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2508 rtx entry_parm = data->entry_parm;
2509 rtx stack_parm = data->stack_parm;
2511 /* If this parm was passed part in regs and part in memory, pretend it
2512 arrived entirely in memory by pushing the register-part onto the stack.
2513 In the special case of a DImode or DFmode that is split, we could put
2514 it together in a pseudoreg directly, but for now that's not worth
2515 bothering with. */
2516 if (data->partial != 0)
2518 /* Handle calls that pass values in multiple non-contiguous
2519 locations. The Irix 6 ABI has examples of this. */
2520 if (GET_CODE (entry_parm) == PARALLEL)
2521 emit_group_store (validize_mem (stack_parm), entry_parm,
2522 data->passed_type,
2523 int_size_in_bytes (data->passed_type));
2524 else
2526 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2527 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2528 data->partial / UNITS_PER_WORD);
2531 entry_parm = stack_parm;
2534 /* If we didn't decide this parm came in a register, by default it came
2535 on the stack. */
2536 else if (entry_parm == NULL)
2537 entry_parm = stack_parm;
2539 /* When an argument is passed in multiple locations, we can't make use
2540 of this information, but we can save some copying if the whole argument
2541 is passed in a single register. */
2542 else if (GET_CODE (entry_parm) == PARALLEL
2543 && data->nominal_mode != BLKmode
2544 && data->passed_mode != BLKmode)
2546 size_t i, len = XVECLEN (entry_parm, 0);
2548 for (i = 0; i < len; i++)
2549 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2550 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2551 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2552 == data->passed_mode)
2553 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2555 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2556 break;
2560 data->entry_parm = entry_parm;
2563 /* A subroutine of assign_parms. Reconstitute any values which were
2564 passed in multiple registers and would fit in a single register. */
2566 static void
2567 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2569 rtx entry_parm = data->entry_parm;
2571 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2572 This can be done with register operations rather than on the
2573 stack, even if we will store the reconstituted parameter on the
2574 stack later. */
2575 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2577 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2578 emit_group_store (parmreg, entry_parm, data->passed_type,
2579 GET_MODE_SIZE (GET_MODE (entry_parm)));
2580 entry_parm = parmreg;
2583 data->entry_parm = entry_parm;
2586 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2587 always valid and properly aligned. */
2589 static void
2590 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2592 rtx stack_parm = data->stack_parm;
2594 /* If we can't trust the parm stack slot to be aligned enough for its
2595 ultimate type, don't use that slot after entry. We'll make another
2596 stack slot, if we need one. */
2597 if (stack_parm
2598 && ((STRICT_ALIGNMENT
2599 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2600 || (data->nominal_type
2601 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2602 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2603 stack_parm = NULL;
2605 /* If parm was passed in memory, and we need to convert it on entry,
2606 don't store it back in that same slot. */
2607 else if (data->entry_parm == stack_parm
2608 && data->nominal_mode != BLKmode
2609 && data->nominal_mode != data->passed_mode)
2610 stack_parm = NULL;
2612 /* If stack protection is in effect for this function, don't leave any
2613 pointers in their passed stack slots. */
2614 else if (crtl->stack_protect_guard
2615 && (flag_stack_protect == 2
2616 || data->passed_pointer
2617 || POINTER_TYPE_P (data->nominal_type)))
2618 stack_parm = NULL;
2620 data->stack_parm = stack_parm;
2623 /* A subroutine of assign_parms. Return true if the current parameter
2624 should be stored as a BLKmode in the current frame. */
2626 static bool
2627 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2629 if (data->nominal_mode == BLKmode)
2630 return true;
2631 if (GET_MODE (data->entry_parm) == BLKmode)
2632 return true;
2634 #ifdef BLOCK_REG_PADDING
2635 /* Only assign_parm_setup_block knows how to deal with register arguments
2636 that are padded at the least significant end. */
2637 if (REG_P (data->entry_parm)
2638 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2639 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2640 == (BYTES_BIG_ENDIAN ? upward : downward)))
2641 return true;
2642 #endif
2644 return false;
2647 /* A subroutine of assign_parms. Arrange for the parameter to be
2648 present and valid in DATA->STACK_RTL. */
2650 static void
2651 assign_parm_setup_block (struct assign_parm_data_all *all,
2652 tree parm, struct assign_parm_data_one *data)
2654 rtx entry_parm = data->entry_parm;
2655 rtx stack_parm = data->stack_parm;
2656 HOST_WIDE_INT size;
2657 HOST_WIDE_INT size_stored;
2659 if (GET_CODE (entry_parm) == PARALLEL)
2660 entry_parm = emit_group_move_into_temps (entry_parm);
2662 size = int_size_in_bytes (data->passed_type);
2663 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2664 if (stack_parm == 0)
2666 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2667 stack_parm = assign_stack_local (BLKmode, size_stored,
2668 DECL_ALIGN (parm));
2669 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2670 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2671 set_mem_attributes (stack_parm, parm, 1);
2674 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2675 calls that pass values in multiple non-contiguous locations. */
2676 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2678 rtx mem;
2680 /* Note that we will be storing an integral number of words.
2681 So we have to be careful to ensure that we allocate an
2682 integral number of words. We do this above when we call
2683 assign_stack_local if space was not allocated in the argument
2684 list. If it was, this will not work if PARM_BOUNDARY is not
2685 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2686 if it becomes a problem. Exception is when BLKmode arrives
2687 with arguments not conforming to word_mode. */
2689 if (data->stack_parm == 0)
2691 else if (GET_CODE (entry_parm) == PARALLEL)
2693 else
2694 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2696 mem = validize_mem (stack_parm);
2698 /* Handle values in multiple non-contiguous locations. */
2699 if (GET_CODE (entry_parm) == PARALLEL)
2701 push_to_sequence2 (all->first_conversion_insn,
2702 all->last_conversion_insn);
2703 emit_group_store (mem, entry_parm, data->passed_type, size);
2704 all->first_conversion_insn = get_insns ();
2705 all->last_conversion_insn = get_last_insn ();
2706 end_sequence ();
2709 else if (size == 0)
2712 /* If SIZE is that of a mode no bigger than a word, just use
2713 that mode's store operation. */
2714 else if (size <= UNITS_PER_WORD)
2716 enum machine_mode mode
2717 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2719 if (mode != BLKmode
2720 #ifdef BLOCK_REG_PADDING
2721 && (size == UNITS_PER_WORD
2722 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2723 != (BYTES_BIG_ENDIAN ? upward : downward)))
2724 #endif
2727 rtx reg;
2729 /* We are really truncating a word_mode value containing
2730 SIZE bytes into a value of mode MODE. If such an
2731 operation requires no actual instructions, we can refer
2732 to the value directly in mode MODE, otherwise we must
2733 start with the register in word_mode and explicitly
2734 convert it. */
2735 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2736 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2737 else
2739 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2740 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2742 emit_move_insn (change_address (mem, mode, 0), reg);
2745 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2746 machine must be aligned to the left before storing
2747 to memory. Note that the previous test doesn't
2748 handle all cases (e.g. SIZE == 3). */
2749 else if (size != UNITS_PER_WORD
2750 #ifdef BLOCK_REG_PADDING
2751 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2752 == downward)
2753 #else
2754 && BYTES_BIG_ENDIAN
2755 #endif
2758 rtx tem, x;
2759 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2760 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2762 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2763 build_int_cst (NULL_TREE, by),
2764 NULL_RTX, 1);
2765 tem = change_address (mem, word_mode, 0);
2766 emit_move_insn (tem, x);
2768 else
2769 move_block_from_reg (REGNO (entry_parm), mem,
2770 size_stored / UNITS_PER_WORD);
2772 else
2773 move_block_from_reg (REGNO (entry_parm), mem,
2774 size_stored / UNITS_PER_WORD);
2776 else if (data->stack_parm == 0)
2778 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2779 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2780 BLOCK_OP_NORMAL);
2781 all->first_conversion_insn = get_insns ();
2782 all->last_conversion_insn = get_last_insn ();
2783 end_sequence ();
2786 data->stack_parm = stack_parm;
2787 SET_DECL_RTL (parm, stack_parm);
2790 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2791 parameter. Get it there. Perform all ABI specified conversions. */
2793 static void
2794 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2795 struct assign_parm_data_one *data)
2797 rtx parmreg;
2798 enum machine_mode promoted_nominal_mode;
2799 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2800 bool did_conversion = false;
2802 /* Store the parm in a pseudoregister during the function, but we may
2803 need to do it in a wider mode. Using 2 here makes the result
2804 consistent with promote_decl_mode and thus expand_expr_real_1. */
2805 promoted_nominal_mode
2806 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2807 TREE_TYPE (current_function_decl), 2);
2809 parmreg = gen_reg_rtx (promoted_nominal_mode);
2811 if (!DECL_ARTIFICIAL (parm))
2812 mark_user_reg (parmreg);
2814 /* If this was an item that we received a pointer to,
2815 set DECL_RTL appropriately. */
2816 if (data->passed_pointer)
2818 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2819 set_mem_attributes (x, parm, 1);
2820 SET_DECL_RTL (parm, x);
2822 else
2823 SET_DECL_RTL (parm, parmreg);
2825 assign_parm_remove_parallels (data);
2827 /* Copy the value into the register, thus bridging between
2828 assign_parm_find_data_types and expand_expr_real_1. */
2829 if (data->nominal_mode != data->passed_mode
2830 || promoted_nominal_mode != data->promoted_mode)
2832 int save_tree_used;
2834 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2835 mode, by the caller. We now have to convert it to
2836 NOMINAL_MODE, if different. However, PARMREG may be in
2837 a different mode than NOMINAL_MODE if it is being stored
2838 promoted.
2840 If ENTRY_PARM is a hard register, it might be in a register
2841 not valid for operating in its mode (e.g., an odd-numbered
2842 register for a DFmode). In that case, moves are the only
2843 thing valid, so we can't do a convert from there. This
2844 occurs when the calling sequence allow such misaligned
2845 usages.
2847 In addition, the conversion may involve a call, which could
2848 clobber parameters which haven't been copied to pseudo
2849 registers yet. Therefore, we must first copy the parm to
2850 a pseudo reg here, and save the conversion until after all
2851 parameters have been moved. */
2853 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2855 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2857 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2858 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2860 if (GET_CODE (tempreg) == SUBREG
2861 && GET_MODE (tempreg) == data->nominal_mode
2862 && REG_P (SUBREG_REG (tempreg))
2863 && data->nominal_mode == data->passed_mode
2864 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2865 && GET_MODE_SIZE (GET_MODE (tempreg))
2866 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2868 /* The argument is already sign/zero extended, so note it
2869 into the subreg. */
2870 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2871 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2874 /* TREE_USED gets set erroneously during expand_assignment. */
2875 save_tree_used = TREE_USED (parm);
2876 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2877 TREE_USED (parm) = save_tree_used;
2878 all->first_conversion_insn = get_insns ();
2879 all->last_conversion_insn = get_last_insn ();
2880 end_sequence ();
2882 did_conversion = true;
2884 else
2885 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2887 /* If we were passed a pointer but the actual value can safely live
2888 in a register, put it in one. */
2889 if (data->passed_pointer
2890 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2891 /* If by-reference argument was promoted, demote it. */
2892 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2893 || use_register_for_decl (parm)))
2895 /* We can't use nominal_mode, because it will have been set to
2896 Pmode above. We must use the actual mode of the parm. */
2897 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2898 mark_user_reg (parmreg);
2900 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2902 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2903 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2905 push_to_sequence2 (all->first_conversion_insn,
2906 all->last_conversion_insn);
2907 emit_move_insn (tempreg, DECL_RTL (parm));
2908 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2909 emit_move_insn (parmreg, tempreg);
2910 all->first_conversion_insn = get_insns ();
2911 all->last_conversion_insn = get_last_insn ();
2912 end_sequence ();
2914 did_conversion = true;
2916 else
2917 emit_move_insn (parmreg, DECL_RTL (parm));
2919 SET_DECL_RTL (parm, parmreg);
2921 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2922 now the parm. */
2923 data->stack_parm = NULL;
2926 /* Mark the register as eliminable if we did no conversion and it was
2927 copied from memory at a fixed offset, and the arg pointer was not
2928 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2929 offset formed an invalid address, such memory-equivalences as we
2930 make here would screw up life analysis for it. */
2931 if (data->nominal_mode == data->passed_mode
2932 && !did_conversion
2933 && data->stack_parm != 0
2934 && MEM_P (data->stack_parm)
2935 && data->locate.offset.var == 0
2936 && reg_mentioned_p (virtual_incoming_args_rtx,
2937 XEXP (data->stack_parm, 0)))
2939 rtx linsn = get_last_insn ();
2940 rtx sinsn, set;
2942 /* Mark complex types separately. */
2943 if (GET_CODE (parmreg) == CONCAT)
2945 enum machine_mode submode
2946 = GET_MODE_INNER (GET_MODE (parmreg));
2947 int regnor = REGNO (XEXP (parmreg, 0));
2948 int regnoi = REGNO (XEXP (parmreg, 1));
2949 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2950 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2951 GET_MODE_SIZE (submode));
2953 /* Scan backwards for the set of the real and
2954 imaginary parts. */
2955 for (sinsn = linsn; sinsn != 0;
2956 sinsn = prev_nonnote_insn (sinsn))
2958 set = single_set (sinsn);
2959 if (set == 0)
2960 continue;
2962 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2963 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2964 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2965 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2968 else if ((set = single_set (linsn)) != 0
2969 && SET_DEST (set) == parmreg)
2970 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2973 /* For pointer data type, suggest pointer register. */
2974 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2975 mark_reg_pointer (parmreg,
2976 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2979 /* A subroutine of assign_parms. Allocate stack space to hold the current
2980 parameter. Get it there. Perform all ABI specified conversions. */
2982 static void
2983 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2984 struct assign_parm_data_one *data)
2986 /* Value must be stored in the stack slot STACK_PARM during function
2987 execution. */
2988 bool to_conversion = false;
2990 assign_parm_remove_parallels (data);
2992 if (data->promoted_mode != data->nominal_mode)
2994 /* Conversion is required. */
2995 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2997 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2999 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3000 to_conversion = true;
3002 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3003 TYPE_UNSIGNED (TREE_TYPE (parm)));
3005 if (data->stack_parm)
3007 int offset = subreg_lowpart_offset (data->nominal_mode,
3008 GET_MODE (data->stack_parm));
3009 /* ??? This may need a big-endian conversion on sparc64. */
3010 data->stack_parm
3011 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3012 if (offset && MEM_OFFSET (data->stack_parm))
3013 set_mem_offset (data->stack_parm,
3014 plus_constant (MEM_OFFSET (data->stack_parm),
3015 offset));
3019 if (data->entry_parm != data->stack_parm)
3021 rtx src, dest;
3023 if (data->stack_parm == 0)
3025 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3026 GET_MODE (data->entry_parm),
3027 TYPE_ALIGN (data->passed_type));
3028 data->stack_parm
3029 = assign_stack_local (GET_MODE (data->entry_parm),
3030 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3031 align);
3032 set_mem_attributes (data->stack_parm, parm, 1);
3035 dest = validize_mem (data->stack_parm);
3036 src = validize_mem (data->entry_parm);
3038 if (MEM_P (src))
3040 /* Use a block move to handle potentially misaligned entry_parm. */
3041 if (!to_conversion)
3042 push_to_sequence2 (all->first_conversion_insn,
3043 all->last_conversion_insn);
3044 to_conversion = true;
3046 emit_block_move (dest, src,
3047 GEN_INT (int_size_in_bytes (data->passed_type)),
3048 BLOCK_OP_NORMAL);
3050 else
3051 emit_move_insn (dest, src);
3054 if (to_conversion)
3056 all->first_conversion_insn = get_insns ();
3057 all->last_conversion_insn = get_last_insn ();
3058 end_sequence ();
3061 SET_DECL_RTL (parm, data->stack_parm);
3064 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3065 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3067 static void
3068 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
3070 tree parm;
3071 tree orig_fnargs = all->orig_fnargs;
3073 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3075 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3076 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3078 rtx tmp, real, imag;
3079 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3081 real = DECL_RTL (fnargs);
3082 imag = DECL_RTL (TREE_CHAIN (fnargs));
3083 if (inner != GET_MODE (real))
3085 real = gen_lowpart_SUBREG (inner, real);
3086 imag = gen_lowpart_SUBREG (inner, imag);
3089 if (TREE_ADDRESSABLE (parm))
3091 rtx rmem, imem;
3092 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3093 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3094 DECL_MODE (parm),
3095 TYPE_ALIGN (TREE_TYPE (parm)));
3097 /* split_complex_arg put the real and imag parts in
3098 pseudos. Move them to memory. */
3099 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3100 set_mem_attributes (tmp, parm, 1);
3101 rmem = adjust_address_nv (tmp, inner, 0);
3102 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3103 push_to_sequence2 (all->first_conversion_insn,
3104 all->last_conversion_insn);
3105 emit_move_insn (rmem, real);
3106 emit_move_insn (imem, imag);
3107 all->first_conversion_insn = get_insns ();
3108 all->last_conversion_insn = get_last_insn ();
3109 end_sequence ();
3111 else
3112 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3113 SET_DECL_RTL (parm, tmp);
3115 real = DECL_INCOMING_RTL (fnargs);
3116 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3117 if (inner != GET_MODE (real))
3119 real = gen_lowpart_SUBREG (inner, real);
3120 imag = gen_lowpart_SUBREG (inner, imag);
3122 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3123 set_decl_incoming_rtl (parm, tmp, false);
3124 fnargs = TREE_CHAIN (fnargs);
3126 else
3128 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3129 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3131 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3132 instead of the copy of decl, i.e. FNARGS. */
3133 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3134 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3137 fnargs = TREE_CHAIN (fnargs);
3141 /* Assign RTL expressions to the function's parameters. This may involve
3142 copying them into registers and using those registers as the DECL_RTL. */
3144 static void
3145 assign_parms (tree fndecl)
3147 struct assign_parm_data_all all;
3148 tree fnargs, parm;
3150 crtl->args.internal_arg_pointer
3151 = targetm.calls.internal_arg_pointer ();
3153 assign_parms_initialize_all (&all);
3154 fnargs = assign_parms_augmented_arg_list (&all);
3156 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3158 struct assign_parm_data_one data;
3160 /* Extract the type of PARM; adjust it according to ABI. */
3161 assign_parm_find_data_types (&all, parm, &data);
3163 /* Early out for errors and void parameters. */
3164 if (data.passed_mode == VOIDmode)
3166 SET_DECL_RTL (parm, const0_rtx);
3167 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3168 continue;
3171 /* Estimate stack alignment from parameter alignment. */
3172 if (SUPPORTS_STACK_ALIGNMENT)
3174 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3175 data.passed_type);
3176 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3177 align);
3178 if (TYPE_ALIGN (data.nominal_type) > align)
3179 align = MINIMUM_ALIGNMENT (data.nominal_type,
3180 TYPE_MODE (data.nominal_type),
3181 TYPE_ALIGN (data.nominal_type));
3182 if (crtl->stack_alignment_estimated < align)
3184 gcc_assert (!crtl->stack_realign_processed);
3185 crtl->stack_alignment_estimated = align;
3189 if (cfun->stdarg && !TREE_CHAIN (parm))
3190 assign_parms_setup_varargs (&all, &data, false);
3192 /* Find out where the parameter arrives in this function. */
3193 assign_parm_find_entry_rtl (&all, &data);
3195 /* Find out where stack space for this parameter might be. */
3196 if (assign_parm_is_stack_parm (&all, &data))
3198 assign_parm_find_stack_rtl (parm, &data);
3199 assign_parm_adjust_entry_rtl (&data);
3202 /* Record permanently how this parm was passed. */
3203 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3205 /* Update info on where next arg arrives in registers. */
3206 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3207 data.passed_type, data.named_arg);
3209 assign_parm_adjust_stack_rtl (&data);
3211 if (assign_parm_setup_block_p (&data))
3212 assign_parm_setup_block (&all, parm, &data);
3213 else if (data.passed_pointer || use_register_for_decl (parm))
3214 assign_parm_setup_reg (&all, parm, &data);
3215 else
3216 assign_parm_setup_stack (&all, parm, &data);
3219 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3220 assign_parms_unsplit_complex (&all, fnargs);
3222 /* Output all parameter conversion instructions (possibly including calls)
3223 now that all parameters have been copied out of hard registers. */
3224 emit_insn (all.first_conversion_insn);
3226 /* Estimate reload stack alignment from scalar return mode. */
3227 if (SUPPORTS_STACK_ALIGNMENT)
3229 if (DECL_RESULT (fndecl))
3231 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3232 enum machine_mode mode = TYPE_MODE (type);
3234 if (mode != BLKmode
3235 && mode != VOIDmode
3236 && !AGGREGATE_TYPE_P (type))
3238 unsigned int align = GET_MODE_ALIGNMENT (mode);
3239 if (crtl->stack_alignment_estimated < align)
3241 gcc_assert (!crtl->stack_realign_processed);
3242 crtl->stack_alignment_estimated = align;
3248 /* If we are receiving a struct value address as the first argument, set up
3249 the RTL for the function result. As this might require code to convert
3250 the transmitted address to Pmode, we do this here to ensure that possible
3251 preliminary conversions of the address have been emitted already. */
3252 if (all.function_result_decl)
3254 tree result = DECL_RESULT (current_function_decl);
3255 rtx addr = DECL_RTL (all.function_result_decl);
3256 rtx x;
3258 if (DECL_BY_REFERENCE (result))
3259 x = addr;
3260 else
3262 addr = convert_memory_address (Pmode, addr);
3263 x = gen_rtx_MEM (DECL_MODE (result), addr);
3264 set_mem_attributes (x, result, 1);
3266 SET_DECL_RTL (result, x);
3269 /* We have aligned all the args, so add space for the pretend args. */
3270 crtl->args.pretend_args_size = all.pretend_args_size;
3271 all.stack_args_size.constant += all.extra_pretend_bytes;
3272 crtl->args.size = all.stack_args_size.constant;
3274 /* Adjust function incoming argument size for alignment and
3275 minimum length. */
3277 #ifdef REG_PARM_STACK_SPACE
3278 crtl->args.size = MAX (crtl->args.size,
3279 REG_PARM_STACK_SPACE (fndecl));
3280 #endif
3282 crtl->args.size = CEIL_ROUND (crtl->args.size,
3283 PARM_BOUNDARY / BITS_PER_UNIT);
3285 #ifdef ARGS_GROW_DOWNWARD
3286 crtl->args.arg_offset_rtx
3287 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3288 : expand_expr (size_diffop (all.stack_args_size.var,
3289 size_int (-all.stack_args_size.constant)),
3290 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3291 #else
3292 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3293 #endif
3295 /* See how many bytes, if any, of its args a function should try to pop
3296 on return. */
3298 crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3299 crtl->args.size);
3301 /* For stdarg.h function, save info about
3302 regs and stack space used by the named args. */
3304 crtl->args.info = all.args_so_far;
3306 /* Set the rtx used for the function return value. Put this in its
3307 own variable so any optimizers that need this information don't have
3308 to include tree.h. Do this here so it gets done when an inlined
3309 function gets output. */
3311 crtl->return_rtx
3312 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3313 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3315 /* If scalar return value was computed in a pseudo-reg, or was a named
3316 return value that got dumped to the stack, copy that to the hard
3317 return register. */
3318 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3320 tree decl_result = DECL_RESULT (fndecl);
3321 rtx decl_rtl = DECL_RTL (decl_result);
3323 if (REG_P (decl_rtl)
3324 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3325 : DECL_REGISTER (decl_result))
3327 rtx real_decl_rtl;
3329 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3330 fndecl, true);
3331 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3332 /* The delay slot scheduler assumes that crtl->return_rtx
3333 holds the hard register containing the return value, not a
3334 temporary pseudo. */
3335 crtl->return_rtx = real_decl_rtl;
3340 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3341 For all seen types, gimplify their sizes. */
3343 static tree
3344 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3346 tree t = *tp;
3348 *walk_subtrees = 0;
3349 if (TYPE_P (t))
3351 if (POINTER_TYPE_P (t))
3352 *walk_subtrees = 1;
3353 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3354 && !TYPE_SIZES_GIMPLIFIED (t))
3356 gimplify_type_sizes (t, (gimple_seq *) data);
3357 *walk_subtrees = 1;
3361 return NULL;
3364 /* Gimplify the parameter list for current_function_decl. This involves
3365 evaluating SAVE_EXPRs of variable sized parameters and generating code
3366 to implement callee-copies reference parameters. Returns a sequence of
3367 statements to add to the beginning of the function. */
3369 gimple_seq
3370 gimplify_parameters (void)
3372 struct assign_parm_data_all all;
3373 tree fnargs, parm;
3374 gimple_seq stmts = NULL;
3376 assign_parms_initialize_all (&all);
3377 fnargs = assign_parms_augmented_arg_list (&all);
3379 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3381 struct assign_parm_data_one data;
3383 /* Extract the type of PARM; adjust it according to ABI. */
3384 assign_parm_find_data_types (&all, parm, &data);
3386 /* Early out for errors and void parameters. */
3387 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3388 continue;
3390 /* Update info on where next arg arrives in registers. */
3391 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3392 data.passed_type, data.named_arg);
3394 /* ??? Once upon a time variable_size stuffed parameter list
3395 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3396 turned out to be less than manageable in the gimple world.
3397 Now we have to hunt them down ourselves. */
3398 walk_tree_without_duplicates (&data.passed_type,
3399 gimplify_parm_type, &stmts);
3401 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3403 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3404 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3407 if (data.passed_pointer)
3409 tree type = TREE_TYPE (data.passed_type);
3410 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3411 type, data.named_arg))
3413 tree local, t;
3415 /* For constant-sized objects, this is trivial; for
3416 variable-sized objects, we have to play games. */
3417 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3418 && !(flag_stack_check == GENERIC_STACK_CHECK
3419 && compare_tree_int (DECL_SIZE_UNIT (parm),
3420 STACK_CHECK_MAX_VAR_SIZE) > 0))
3422 local = create_tmp_var (type, get_name (parm));
3423 DECL_IGNORED_P (local) = 0;
3424 /* If PARM was addressable, move that flag over
3425 to the local copy, as its address will be taken,
3426 not the PARMs. */
3427 if (TREE_ADDRESSABLE (parm))
3429 TREE_ADDRESSABLE (parm) = 0;
3430 TREE_ADDRESSABLE (local) = 1;
3433 else
3435 tree ptr_type, addr;
3437 ptr_type = build_pointer_type (type);
3438 addr = create_tmp_var (ptr_type, get_name (parm));
3439 DECL_IGNORED_P (addr) = 0;
3440 local = build_fold_indirect_ref (addr);
3442 t = built_in_decls[BUILT_IN_ALLOCA];
3443 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3444 t = fold_convert (ptr_type, t);
3445 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3446 gimplify_and_add (t, &stmts);
3449 gimplify_assign (local, parm, &stmts);
3451 SET_DECL_VALUE_EXPR (parm, local);
3452 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3457 return stmts;
3460 /* Compute the size and offset from the start of the stacked arguments for a
3461 parm passed in mode PASSED_MODE and with type TYPE.
3463 INITIAL_OFFSET_PTR points to the current offset into the stacked
3464 arguments.
3466 The starting offset and size for this parm are returned in
3467 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3468 nonzero, the offset is that of stack slot, which is returned in
3469 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3470 padding required from the initial offset ptr to the stack slot.
3472 IN_REGS is nonzero if the argument will be passed in registers. It will
3473 never be set if REG_PARM_STACK_SPACE is not defined.
3475 FNDECL is the function in which the argument was defined.
3477 There are two types of rounding that are done. The first, controlled by
3478 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3479 list to be aligned to the specific boundary (in bits). This rounding
3480 affects the initial and starting offsets, but not the argument size.
3482 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3483 optionally rounds the size of the parm to PARM_BOUNDARY. The
3484 initial offset is not affected by this rounding, while the size always
3485 is and the starting offset may be. */
3487 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3488 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3489 callers pass in the total size of args so far as
3490 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3492 void
3493 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3494 int partial, tree fndecl ATTRIBUTE_UNUSED,
3495 struct args_size *initial_offset_ptr,
3496 struct locate_and_pad_arg_data *locate)
3498 tree sizetree;
3499 enum direction where_pad;
3500 unsigned int boundary;
3501 int reg_parm_stack_space = 0;
3502 int part_size_in_regs;
3504 #ifdef REG_PARM_STACK_SPACE
3505 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3507 /* If we have found a stack parm before we reach the end of the
3508 area reserved for registers, skip that area. */
3509 if (! in_regs)
3511 if (reg_parm_stack_space > 0)
3513 if (initial_offset_ptr->var)
3515 initial_offset_ptr->var
3516 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3517 ssize_int (reg_parm_stack_space));
3518 initial_offset_ptr->constant = 0;
3520 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3521 initial_offset_ptr->constant = reg_parm_stack_space;
3524 #endif /* REG_PARM_STACK_SPACE */
3526 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3528 sizetree
3529 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3530 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3531 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3532 locate->where_pad = where_pad;
3534 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3535 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3536 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3538 locate->boundary = boundary;
3540 if (SUPPORTS_STACK_ALIGNMENT)
3542 /* stack_alignment_estimated can't change after stack has been
3543 realigned. */
3544 if (crtl->stack_alignment_estimated < boundary)
3546 if (!crtl->stack_realign_processed)
3547 crtl->stack_alignment_estimated = boundary;
3548 else
3550 /* If stack is realigned and stack alignment value
3551 hasn't been finalized, it is OK not to increase
3552 stack_alignment_estimated. The bigger alignment
3553 requirement is recorded in stack_alignment_needed
3554 below. */
3555 gcc_assert (!crtl->stack_realign_finalized
3556 && crtl->stack_realign_needed);
3561 /* Remember if the outgoing parameter requires extra alignment on the
3562 calling function side. */
3563 if (crtl->stack_alignment_needed < boundary)
3564 crtl->stack_alignment_needed = boundary;
3565 if (crtl->preferred_stack_boundary < boundary)
3566 crtl->preferred_stack_boundary = boundary;
3568 #ifdef ARGS_GROW_DOWNWARD
3569 locate->slot_offset.constant = -initial_offset_ptr->constant;
3570 if (initial_offset_ptr->var)
3571 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3572 initial_offset_ptr->var);
3575 tree s2 = sizetree;
3576 if (where_pad != none
3577 && (!host_integerp (sizetree, 1)
3578 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3579 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3580 SUB_PARM_SIZE (locate->slot_offset, s2);
3583 locate->slot_offset.constant += part_size_in_regs;
3585 if (!in_regs
3586 #ifdef REG_PARM_STACK_SPACE
3587 || REG_PARM_STACK_SPACE (fndecl) > 0
3588 #endif
3590 pad_to_arg_alignment (&locate->slot_offset, boundary,
3591 &locate->alignment_pad);
3593 locate->size.constant = (-initial_offset_ptr->constant
3594 - locate->slot_offset.constant);
3595 if (initial_offset_ptr->var)
3596 locate->size.var = size_binop (MINUS_EXPR,
3597 size_binop (MINUS_EXPR,
3598 ssize_int (0),
3599 initial_offset_ptr->var),
3600 locate->slot_offset.var);
3602 /* Pad_below needs the pre-rounded size to know how much to pad
3603 below. */
3604 locate->offset = locate->slot_offset;
3605 if (where_pad == downward)
3606 pad_below (&locate->offset, passed_mode, sizetree);
3608 #else /* !ARGS_GROW_DOWNWARD */
3609 if (!in_regs
3610 #ifdef REG_PARM_STACK_SPACE
3611 || REG_PARM_STACK_SPACE (fndecl) > 0
3612 #endif
3614 pad_to_arg_alignment (initial_offset_ptr, boundary,
3615 &locate->alignment_pad);
3616 locate->slot_offset = *initial_offset_ptr;
3618 #ifdef PUSH_ROUNDING
3619 if (passed_mode != BLKmode)
3620 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3621 #endif
3623 /* Pad_below needs the pre-rounded size to know how much to pad below
3624 so this must be done before rounding up. */
3625 locate->offset = locate->slot_offset;
3626 if (where_pad == downward)
3627 pad_below (&locate->offset, passed_mode, sizetree);
3629 if (where_pad != none
3630 && (!host_integerp (sizetree, 1)
3631 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3632 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3634 ADD_PARM_SIZE (locate->size, sizetree);
3636 locate->size.constant -= part_size_in_regs;
3637 #endif /* ARGS_GROW_DOWNWARD */
3639 #ifdef FUNCTION_ARG_OFFSET
3640 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3641 #endif
3644 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3645 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3647 static void
3648 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3649 struct args_size *alignment_pad)
3651 tree save_var = NULL_TREE;
3652 HOST_WIDE_INT save_constant = 0;
3653 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3654 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3656 #ifdef SPARC_STACK_BOUNDARY_HACK
3657 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3658 the real alignment of %sp. However, when it does this, the
3659 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3660 if (SPARC_STACK_BOUNDARY_HACK)
3661 sp_offset = 0;
3662 #endif
3664 if (boundary > PARM_BOUNDARY)
3666 save_var = offset_ptr->var;
3667 save_constant = offset_ptr->constant;
3670 alignment_pad->var = NULL_TREE;
3671 alignment_pad->constant = 0;
3673 if (boundary > BITS_PER_UNIT)
3675 if (offset_ptr->var)
3677 tree sp_offset_tree = ssize_int (sp_offset);
3678 tree offset = size_binop (PLUS_EXPR,
3679 ARGS_SIZE_TREE (*offset_ptr),
3680 sp_offset_tree);
3681 #ifdef ARGS_GROW_DOWNWARD
3682 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3683 #else
3684 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3685 #endif
3687 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3688 /* ARGS_SIZE_TREE includes constant term. */
3689 offset_ptr->constant = 0;
3690 if (boundary > PARM_BOUNDARY)
3691 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3692 save_var);
3694 else
3696 offset_ptr->constant = -sp_offset +
3697 #ifdef ARGS_GROW_DOWNWARD
3698 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3699 #else
3700 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3701 #endif
3702 if (boundary > PARM_BOUNDARY)
3703 alignment_pad->constant = offset_ptr->constant - save_constant;
3708 static void
3709 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3711 if (passed_mode != BLKmode)
3713 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3714 offset_ptr->constant
3715 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3716 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3717 - GET_MODE_SIZE (passed_mode));
3719 else
3721 if (TREE_CODE (sizetree) != INTEGER_CST
3722 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3724 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3725 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3726 /* Add it in. */
3727 ADD_PARM_SIZE (*offset_ptr, s2);
3728 SUB_PARM_SIZE (*offset_ptr, sizetree);
3734 /* True if register REGNO was alive at a place where `setjmp' was
3735 called and was set more than once or is an argument. Such regs may
3736 be clobbered by `longjmp'. */
3738 static bool
3739 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3741 /* There appear to be cases where some local vars never reach the
3742 backend but have bogus regnos. */
3743 if (regno >= max_reg_num ())
3744 return false;
3746 return ((REG_N_SETS (regno) > 1
3747 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3748 && REGNO_REG_SET_P (setjmp_crosses, regno));
3751 /* Walk the tree of blocks describing the binding levels within a
3752 function and warn about variables the might be killed by setjmp or
3753 vfork. This is done after calling flow_analysis before register
3754 allocation since that will clobber the pseudo-regs to hard
3755 regs. */
3757 static void
3758 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3760 tree decl, sub;
3762 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3764 if (TREE_CODE (decl) == VAR_DECL
3765 && DECL_RTL_SET_P (decl)
3766 && REG_P (DECL_RTL (decl))
3767 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3768 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3769 " %<longjmp%> or %<vfork%>", decl);
3772 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3773 setjmp_vars_warning (setjmp_crosses, sub);
3776 /* Do the appropriate part of setjmp_vars_warning
3777 but for arguments instead of local variables. */
3779 static void
3780 setjmp_args_warning (bitmap setjmp_crosses)
3782 tree decl;
3783 for (decl = DECL_ARGUMENTS (current_function_decl);
3784 decl; decl = TREE_CHAIN (decl))
3785 if (DECL_RTL (decl) != 0
3786 && REG_P (DECL_RTL (decl))
3787 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3788 warning (OPT_Wclobbered,
3789 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3790 decl);
3793 /* Generate warning messages for variables live across setjmp. */
3795 void
3796 generate_setjmp_warnings (void)
3798 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3800 if (n_basic_blocks == NUM_FIXED_BLOCKS
3801 || bitmap_empty_p (setjmp_crosses))
3802 return;
3804 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3805 setjmp_args_warning (setjmp_crosses);
3809 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3810 and create duplicate blocks. */
3811 /* ??? Need an option to either create block fragments or to create
3812 abstract origin duplicates of a source block. It really depends
3813 on what optimization has been performed. */
3815 void
3816 reorder_blocks (void)
3818 tree block = DECL_INITIAL (current_function_decl);
3819 VEC(tree,heap) *block_stack;
3821 if (block == NULL_TREE)
3822 return;
3824 block_stack = VEC_alloc (tree, heap, 10);
3826 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3827 clear_block_marks (block);
3829 /* Prune the old trees away, so that they don't get in the way. */
3830 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3831 BLOCK_CHAIN (block) = NULL_TREE;
3833 /* Recreate the block tree from the note nesting. */
3834 reorder_blocks_1 (get_insns (), block, &block_stack);
3835 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3837 VEC_free (tree, heap, block_stack);
3840 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3842 void
3843 clear_block_marks (tree block)
3845 while (block)
3847 TREE_ASM_WRITTEN (block) = 0;
3848 clear_block_marks (BLOCK_SUBBLOCKS (block));
3849 block = BLOCK_CHAIN (block);
3853 static void
3854 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3856 rtx insn;
3858 for (insn = insns; insn; insn = NEXT_INSN (insn))
3860 if (NOTE_P (insn))
3862 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3864 tree block = NOTE_BLOCK (insn);
3865 tree origin;
3867 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3868 ? BLOCK_FRAGMENT_ORIGIN (block)
3869 : block);
3871 /* If we have seen this block before, that means it now
3872 spans multiple address regions. Create a new fragment. */
3873 if (TREE_ASM_WRITTEN (block))
3875 tree new_block = copy_node (block);
3877 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3878 BLOCK_FRAGMENT_CHAIN (new_block)
3879 = BLOCK_FRAGMENT_CHAIN (origin);
3880 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3882 NOTE_BLOCK (insn) = new_block;
3883 block = new_block;
3886 BLOCK_SUBBLOCKS (block) = 0;
3887 TREE_ASM_WRITTEN (block) = 1;
3888 /* When there's only one block for the entire function,
3889 current_block == block and we mustn't do this, it
3890 will cause infinite recursion. */
3891 if (block != current_block)
3893 if (block != origin)
3894 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3896 BLOCK_SUPERCONTEXT (block) = current_block;
3897 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3898 BLOCK_SUBBLOCKS (current_block) = block;
3899 current_block = origin;
3901 VEC_safe_push (tree, heap, *p_block_stack, block);
3903 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3905 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3906 BLOCK_SUBBLOCKS (current_block)
3907 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3908 current_block = BLOCK_SUPERCONTEXT (current_block);
3914 /* Reverse the order of elements in the chain T of blocks,
3915 and return the new head of the chain (old last element). */
3917 tree
3918 blocks_nreverse (tree t)
3920 tree prev = 0, decl, next;
3921 for (decl = t; decl; decl = next)
3923 next = BLOCK_CHAIN (decl);
3924 BLOCK_CHAIN (decl) = prev;
3925 prev = decl;
3927 return prev;
3930 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3931 non-NULL, list them all into VECTOR, in a depth-first preorder
3932 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3933 blocks. */
3935 static int
3936 all_blocks (tree block, tree *vector)
3938 int n_blocks = 0;
3940 while (block)
3942 TREE_ASM_WRITTEN (block) = 0;
3944 /* Record this block. */
3945 if (vector)
3946 vector[n_blocks] = block;
3948 ++n_blocks;
3950 /* Record the subblocks, and their subblocks... */
3951 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3952 vector ? vector + n_blocks : 0);
3953 block = BLOCK_CHAIN (block);
3956 return n_blocks;
3959 /* Return a vector containing all the blocks rooted at BLOCK. The
3960 number of elements in the vector is stored in N_BLOCKS_P. The
3961 vector is dynamically allocated; it is the caller's responsibility
3962 to call `free' on the pointer returned. */
3964 static tree *
3965 get_block_vector (tree block, int *n_blocks_p)
3967 tree *block_vector;
3969 *n_blocks_p = all_blocks (block, NULL);
3970 block_vector = XNEWVEC (tree, *n_blocks_p);
3971 all_blocks (block, block_vector);
3973 return block_vector;
3976 static GTY(()) int next_block_index = 2;
3978 /* Set BLOCK_NUMBER for all the blocks in FN. */
3980 void
3981 number_blocks (tree fn)
3983 int i;
3984 int n_blocks;
3985 tree *block_vector;
3987 /* For SDB and XCOFF debugging output, we start numbering the blocks
3988 from 1 within each function, rather than keeping a running
3989 count. */
3990 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3991 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3992 next_block_index = 1;
3993 #endif
3995 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3997 /* The top-level BLOCK isn't numbered at all. */
3998 for (i = 1; i < n_blocks; ++i)
3999 /* We number the blocks from two. */
4000 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4002 free (block_vector);
4004 return;
4007 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4009 tree
4010 debug_find_var_in_block_tree (tree var, tree block)
4012 tree t;
4014 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4015 if (t == var)
4016 return block;
4018 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4020 tree ret = debug_find_var_in_block_tree (var, t);
4021 if (ret)
4022 return ret;
4025 return NULL_TREE;
4028 /* Keep track of whether we're in a dummy function context. If we are,
4029 we don't want to invoke the set_current_function hook, because we'll
4030 get into trouble if the hook calls target_reinit () recursively or
4031 when the initial initialization is not yet complete. */
4033 static bool in_dummy_function;
4035 /* Invoke the target hook when setting cfun. Update the optimization options
4036 if the function uses different options than the default. */
4038 static void
4039 invoke_set_current_function_hook (tree fndecl)
4041 if (!in_dummy_function)
4043 tree opts = ((fndecl)
4044 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4045 : optimization_default_node);
4047 if (!opts)
4048 opts = optimization_default_node;
4050 /* Change optimization options if needed. */
4051 if (optimization_current_node != opts)
4053 optimization_current_node = opts;
4054 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4057 targetm.set_current_function (fndecl);
4061 /* cfun should never be set directly; use this function. */
4063 void
4064 set_cfun (struct function *new_cfun)
4066 if (cfun != new_cfun)
4068 cfun = new_cfun;
4069 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4073 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4075 static VEC(function_p,heap) *cfun_stack;
4077 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4079 void
4080 push_cfun (struct function *new_cfun)
4082 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4083 set_cfun (new_cfun);
4086 /* Pop cfun from the stack. */
4088 void
4089 pop_cfun (void)
4091 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4092 set_cfun (new_cfun);
4095 /* Return value of funcdef and increase it. */
4097 get_next_funcdef_no (void)
4099 return funcdef_no++;
4102 /* Allocate a function structure for FNDECL and set its contents
4103 to the defaults. Set cfun to the newly-allocated object.
4104 Some of the helper functions invoked during initialization assume
4105 that cfun has already been set. Therefore, assign the new object
4106 directly into cfun and invoke the back end hook explicitly at the
4107 very end, rather than initializing a temporary and calling set_cfun
4108 on it.
4110 ABSTRACT_P is true if this is a function that will never be seen by
4111 the middle-end. Such functions are front-end concepts (like C++
4112 function templates) that do not correspond directly to functions
4113 placed in object files. */
4115 void
4116 allocate_struct_function (tree fndecl, bool abstract_p)
4118 tree result;
4119 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4121 cfun = GGC_CNEW (struct function);
4123 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4125 init_eh_for_function ();
4127 if (init_machine_status)
4128 cfun->machine = (*init_machine_status) ();
4130 #ifdef OVERRIDE_ABI_FORMAT
4131 OVERRIDE_ABI_FORMAT (fndecl);
4132 #endif
4134 invoke_set_current_function_hook (fndecl);
4136 if (fndecl != NULL_TREE)
4138 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4139 cfun->decl = fndecl;
4140 current_function_funcdef_no = get_next_funcdef_no ();
4142 result = DECL_RESULT (fndecl);
4143 if (!abstract_p && aggregate_value_p (result, fndecl))
4145 #ifdef PCC_STATIC_STRUCT_RETURN
4146 cfun->returns_pcc_struct = 1;
4147 #endif
4148 cfun->returns_struct = 1;
4151 cfun->stdarg
4152 = (fntype
4153 && TYPE_ARG_TYPES (fntype) != 0
4154 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4155 != void_type_node));
4157 /* Assume all registers in stdarg functions need to be saved. */
4158 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4159 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4163 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4164 instead of just setting it. */
4166 void
4167 push_struct_function (tree fndecl)
4169 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4170 allocate_struct_function (fndecl, false);
4173 /* Reset cfun, and other non-struct-function variables to defaults as
4174 appropriate for emitting rtl at the start of a function. */
4176 static void
4177 prepare_function_start (void)
4179 gcc_assert (!crtl->emit.x_last_insn);
4180 init_temp_slots ();
4181 init_emit ();
4182 init_varasm_status ();
4183 init_expr ();
4184 default_rtl_profile ();
4186 cse_not_expected = ! optimize;
4188 /* Caller save not needed yet. */
4189 caller_save_needed = 0;
4191 /* We haven't done register allocation yet. */
4192 reg_renumber = 0;
4194 /* Indicate that we have not instantiated virtual registers yet. */
4195 virtuals_instantiated = 0;
4197 /* Indicate that we want CONCATs now. */
4198 generating_concat_p = 1;
4200 /* Indicate we have no need of a frame pointer yet. */
4201 frame_pointer_needed = 0;
4204 /* Initialize the rtl expansion mechanism so that we can do simple things
4205 like generate sequences. This is used to provide a context during global
4206 initialization of some passes. You must call expand_dummy_function_end
4207 to exit this context. */
4209 void
4210 init_dummy_function_start (void)
4212 gcc_assert (!in_dummy_function);
4213 in_dummy_function = true;
4214 push_struct_function (NULL_TREE);
4215 prepare_function_start ();
4218 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4219 and initialize static variables for generating RTL for the statements
4220 of the function. */
4222 void
4223 init_function_start (tree subr)
4225 if (subr && DECL_STRUCT_FUNCTION (subr))
4226 set_cfun (DECL_STRUCT_FUNCTION (subr));
4227 else
4228 allocate_struct_function (subr, false);
4229 prepare_function_start ();
4231 /* Warn if this value is an aggregate type,
4232 regardless of which calling convention we are using for it. */
4233 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4234 warning (OPT_Waggregate_return, "function returns an aggregate");
4237 /* Make sure all values used by the optimization passes have sane defaults. */
4238 unsigned int
4239 init_function_for_compilation (void)
4241 reg_renumber = 0;
4242 return 0;
4245 struct rtl_opt_pass pass_init_function =
4248 RTL_PASS,
4249 "*init_function", /* name */
4250 NULL, /* gate */
4251 init_function_for_compilation, /* execute */
4252 NULL, /* sub */
4253 NULL, /* next */
4254 0, /* static_pass_number */
4255 TV_NONE, /* tv_id */
4256 0, /* properties_required */
4257 0, /* properties_provided */
4258 0, /* properties_destroyed */
4259 0, /* todo_flags_start */
4260 0 /* todo_flags_finish */
4265 void
4266 expand_main_function (void)
4268 #if (defined(INVOKE__main) \
4269 || (!defined(HAS_INIT_SECTION) \
4270 && !defined(INIT_SECTION_ASM_OP) \
4271 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4272 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4273 #endif
4276 /* Expand code to initialize the stack_protect_guard. This is invoked at
4277 the beginning of a function to be protected. */
4279 #ifndef HAVE_stack_protect_set
4280 # define HAVE_stack_protect_set 0
4281 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4282 #endif
4284 void
4285 stack_protect_prologue (void)
4287 tree guard_decl = targetm.stack_protect_guard ();
4288 rtx x, y;
4290 x = expand_normal (crtl->stack_protect_guard);
4291 y = expand_normal (guard_decl);
4293 /* Allow the target to copy from Y to X without leaking Y into a
4294 register. */
4295 if (HAVE_stack_protect_set)
4297 rtx insn = gen_stack_protect_set (x, y);
4298 if (insn)
4300 emit_insn (insn);
4301 return;
4305 /* Otherwise do a straight move. */
4306 emit_move_insn (x, y);
4309 /* Expand code to verify the stack_protect_guard. This is invoked at
4310 the end of a function to be protected. */
4312 #ifndef HAVE_stack_protect_test
4313 # define HAVE_stack_protect_test 0
4314 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4315 #endif
4317 void
4318 stack_protect_epilogue (void)
4320 tree guard_decl = targetm.stack_protect_guard ();
4321 rtx label = gen_label_rtx ();
4322 rtx x, y, tmp;
4324 x = expand_normal (crtl->stack_protect_guard);
4325 y = expand_normal (guard_decl);
4327 /* Allow the target to compare Y with X without leaking either into
4328 a register. */
4329 switch (HAVE_stack_protect_test != 0)
4331 case 1:
4332 tmp = gen_stack_protect_test (x, y, label);
4333 if (tmp)
4335 emit_insn (tmp);
4336 break;
4338 /* FALLTHRU */
4340 default:
4341 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4342 break;
4345 /* The noreturn predictor has been moved to the tree level. The rtl-level
4346 predictors estimate this branch about 20%, which isn't enough to get
4347 things moved out of line. Since this is the only extant case of adding
4348 a noreturn function at the rtl level, it doesn't seem worth doing ought
4349 except adding the prediction by hand. */
4350 tmp = get_last_insn ();
4351 if (JUMP_P (tmp))
4352 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4354 expand_expr_stmt (targetm.stack_protect_fail ());
4355 emit_label (label);
4358 /* Start the RTL for a new function, and set variables used for
4359 emitting RTL.
4360 SUBR is the FUNCTION_DECL node.
4361 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4362 the function's parameters, which must be run at any return statement. */
4364 void
4365 expand_function_start (tree subr)
4367 /* Make sure volatile mem refs aren't considered
4368 valid operands of arithmetic insns. */
4369 init_recog_no_volatile ();
4371 crtl->profile
4372 = (profile_flag
4373 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4375 crtl->limit_stack
4376 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4378 /* Make the label for return statements to jump to. Do not special
4379 case machines with special return instructions -- they will be
4380 handled later during jump, ifcvt, or epilogue creation. */
4381 return_label = gen_label_rtx ();
4383 /* Initialize rtx used to return the value. */
4384 /* Do this before assign_parms so that we copy the struct value address
4385 before any library calls that assign parms might generate. */
4387 /* Decide whether to return the value in memory or in a register. */
4388 if (aggregate_value_p (DECL_RESULT (subr), subr))
4390 /* Returning something that won't go in a register. */
4391 rtx value_address = 0;
4393 #ifdef PCC_STATIC_STRUCT_RETURN
4394 if (cfun->returns_pcc_struct)
4396 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4397 value_address = assemble_static_space (size);
4399 else
4400 #endif
4402 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4403 /* Expect to be passed the address of a place to store the value.
4404 If it is passed as an argument, assign_parms will take care of
4405 it. */
4406 if (sv)
4408 value_address = gen_reg_rtx (Pmode);
4409 emit_move_insn (value_address, sv);
4412 if (value_address)
4414 rtx x = value_address;
4415 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4417 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4418 set_mem_attributes (x, DECL_RESULT (subr), 1);
4420 SET_DECL_RTL (DECL_RESULT (subr), x);
4423 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4424 /* If return mode is void, this decl rtl should not be used. */
4425 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4426 else
4428 /* Compute the return values into a pseudo reg, which we will copy
4429 into the true return register after the cleanups are done. */
4430 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4431 if (TYPE_MODE (return_type) != BLKmode
4432 && targetm.calls.return_in_msb (return_type))
4433 /* expand_function_end will insert the appropriate padding in
4434 this case. Use the return value's natural (unpadded) mode
4435 within the function proper. */
4436 SET_DECL_RTL (DECL_RESULT (subr),
4437 gen_reg_rtx (TYPE_MODE (return_type)));
4438 else
4440 /* In order to figure out what mode to use for the pseudo, we
4441 figure out what the mode of the eventual return register will
4442 actually be, and use that. */
4443 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4445 /* Structures that are returned in registers are not
4446 aggregate_value_p, so we may see a PARALLEL or a REG. */
4447 if (REG_P (hard_reg))
4448 SET_DECL_RTL (DECL_RESULT (subr),
4449 gen_reg_rtx (GET_MODE (hard_reg)));
4450 else
4452 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4453 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4457 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4458 result to the real return register(s). */
4459 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4462 /* Initialize rtx for parameters and local variables.
4463 In some cases this requires emitting insns. */
4464 assign_parms (subr);
4466 /* If function gets a static chain arg, store it. */
4467 if (cfun->static_chain_decl)
4469 tree parm = cfun->static_chain_decl;
4470 rtx local, chain, insn;
4472 local = gen_reg_rtx (Pmode);
4473 chain = targetm.calls.static_chain (current_function_decl, true);
4475 set_decl_incoming_rtl (parm, chain, false);
4476 SET_DECL_RTL (parm, local);
4477 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4479 insn = emit_move_insn (local, chain);
4481 /* Mark the register as eliminable, similar to parameters. */
4482 if (MEM_P (chain)
4483 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4484 set_unique_reg_note (insn, REG_EQUIV, chain);
4487 /* If the function receives a non-local goto, then store the
4488 bits we need to restore the frame pointer. */
4489 if (cfun->nonlocal_goto_save_area)
4491 tree t_save;
4492 rtx r_save;
4494 /* ??? We need to do this save early. Unfortunately here is
4495 before the frame variable gets declared. Help out... */
4496 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4497 if (!DECL_RTL_SET_P (var))
4498 expand_decl (var);
4500 t_save = build4 (ARRAY_REF, ptr_type_node,
4501 cfun->nonlocal_goto_save_area,
4502 integer_zero_node, NULL_TREE, NULL_TREE);
4503 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4504 r_save = convert_memory_address (Pmode, r_save);
4506 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4507 update_nonlocal_goto_save_area ();
4510 /* The following was moved from init_function_start.
4511 The move is supposed to make sdb output more accurate. */
4512 /* Indicate the beginning of the function body,
4513 as opposed to parm setup. */
4514 emit_note (NOTE_INSN_FUNCTION_BEG);
4516 gcc_assert (NOTE_P (get_last_insn ()));
4518 parm_birth_insn = get_last_insn ();
4520 if (crtl->profile)
4522 #ifdef PROFILE_HOOK
4523 PROFILE_HOOK (current_function_funcdef_no);
4524 #endif
4527 /* After the display initializations is where the stack checking
4528 probe should go. */
4529 if(flag_stack_check)
4530 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4532 /* Make sure there is a line number after the function entry setup code. */
4533 force_next_line_note ();
4536 /* Undo the effects of init_dummy_function_start. */
4537 void
4538 expand_dummy_function_end (void)
4540 gcc_assert (in_dummy_function);
4542 /* End any sequences that failed to be closed due to syntax errors. */
4543 while (in_sequence_p ())
4544 end_sequence ();
4546 /* Outside function body, can't compute type's actual size
4547 until next function's body starts. */
4549 free_after_parsing (cfun);
4550 free_after_compilation (cfun);
4551 pop_cfun ();
4552 in_dummy_function = false;
4555 /* Call DOIT for each hard register used as a return value from
4556 the current function. */
4558 void
4559 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4561 rtx outgoing = crtl->return_rtx;
4563 if (! outgoing)
4564 return;
4566 if (REG_P (outgoing))
4567 (*doit) (outgoing, arg);
4568 else if (GET_CODE (outgoing) == PARALLEL)
4570 int i;
4572 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4574 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4576 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4577 (*doit) (x, arg);
4582 static void
4583 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4585 emit_clobber (reg);
4588 void
4589 clobber_return_register (void)
4591 diddle_return_value (do_clobber_return_reg, NULL);
4593 /* In case we do use pseudo to return value, clobber it too. */
4594 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4596 tree decl_result = DECL_RESULT (current_function_decl);
4597 rtx decl_rtl = DECL_RTL (decl_result);
4598 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4600 do_clobber_return_reg (decl_rtl, NULL);
4605 static void
4606 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4608 emit_use (reg);
4611 static void
4612 use_return_register (void)
4614 diddle_return_value (do_use_return_reg, NULL);
4617 /* Possibly warn about unused parameters. */
4618 void
4619 do_warn_unused_parameter (tree fn)
4621 tree decl;
4623 for (decl = DECL_ARGUMENTS (fn);
4624 decl; decl = TREE_CHAIN (decl))
4625 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4626 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4627 && !TREE_NO_WARNING (decl))
4628 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4631 static GTY(()) rtx initial_trampoline;
4633 /* Generate RTL for the end of the current function. */
4635 void
4636 expand_function_end (void)
4638 rtx clobber_after;
4640 /* If arg_pointer_save_area was referenced only from a nested
4641 function, we will not have initialized it yet. Do that now. */
4642 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4643 get_arg_pointer_save_area ();
4645 /* If we are doing generic stack checking and this function makes calls,
4646 do a stack probe at the start of the function to ensure we have enough
4647 space for another stack frame. */
4648 if (flag_stack_check == GENERIC_STACK_CHECK)
4650 rtx insn, seq;
4652 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4653 if (CALL_P (insn))
4655 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4656 start_sequence ();
4657 if (STACK_CHECK_MOVING_SP)
4658 anti_adjust_stack_and_probe (max_frame_size, true);
4659 else
4660 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4661 seq = get_insns ();
4662 end_sequence ();
4663 emit_insn_before (seq, stack_check_probe_note);
4664 break;
4668 /* End any sequences that failed to be closed due to syntax errors. */
4669 while (in_sequence_p ())
4670 end_sequence ();
4672 clear_pending_stack_adjust ();
4673 do_pending_stack_adjust ();
4675 /* Output a linenumber for the end of the function.
4676 SDB depends on this. */
4677 force_next_line_note ();
4678 set_curr_insn_source_location (input_location);
4680 /* Before the return label (if any), clobber the return
4681 registers so that they are not propagated live to the rest of
4682 the function. This can only happen with functions that drop
4683 through; if there had been a return statement, there would
4684 have either been a return rtx, or a jump to the return label.
4686 We delay actual code generation after the current_function_value_rtx
4687 is computed. */
4688 clobber_after = get_last_insn ();
4690 /* Output the label for the actual return from the function. */
4691 emit_label (return_label);
4693 if (USING_SJLJ_EXCEPTIONS)
4695 /* Let except.c know where it should emit the call to unregister
4696 the function context for sjlj exceptions. */
4697 if (flag_exceptions)
4698 sjlj_emit_function_exit_after (get_last_insn ());
4700 else
4702 /* We want to ensure that instructions that may trap are not
4703 moved into the epilogue by scheduling, because we don't
4704 always emit unwind information for the epilogue. */
4705 if (flag_non_call_exceptions)
4706 emit_insn (gen_blockage ());
4709 /* If this is an implementation of throw, do what's necessary to
4710 communicate between __builtin_eh_return and the epilogue. */
4711 expand_eh_return ();
4713 /* If scalar return value was computed in a pseudo-reg, or was a named
4714 return value that got dumped to the stack, copy that to the hard
4715 return register. */
4716 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4718 tree decl_result = DECL_RESULT (current_function_decl);
4719 rtx decl_rtl = DECL_RTL (decl_result);
4721 if (REG_P (decl_rtl)
4722 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4723 : DECL_REGISTER (decl_result))
4725 rtx real_decl_rtl = crtl->return_rtx;
4727 /* This should be set in assign_parms. */
4728 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4730 /* If this is a BLKmode structure being returned in registers,
4731 then use the mode computed in expand_return. Note that if
4732 decl_rtl is memory, then its mode may have been changed,
4733 but that crtl->return_rtx has not. */
4734 if (GET_MODE (real_decl_rtl) == BLKmode)
4735 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4737 /* If a non-BLKmode return value should be padded at the least
4738 significant end of the register, shift it left by the appropriate
4739 amount. BLKmode results are handled using the group load/store
4740 machinery. */
4741 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4742 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4744 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4745 REGNO (real_decl_rtl)),
4746 decl_rtl);
4747 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4749 /* If a named return value dumped decl_return to memory, then
4750 we may need to re-do the PROMOTE_MODE signed/unsigned
4751 extension. */
4752 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4754 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4755 promote_function_mode (TREE_TYPE (decl_result),
4756 GET_MODE (decl_rtl), &unsignedp,
4757 TREE_TYPE (current_function_decl), 1);
4759 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4761 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4763 /* If expand_function_start has created a PARALLEL for decl_rtl,
4764 move the result to the real return registers. Otherwise, do
4765 a group load from decl_rtl for a named return. */
4766 if (GET_CODE (decl_rtl) == PARALLEL)
4767 emit_group_move (real_decl_rtl, decl_rtl);
4768 else
4769 emit_group_load (real_decl_rtl, decl_rtl,
4770 TREE_TYPE (decl_result),
4771 int_size_in_bytes (TREE_TYPE (decl_result)));
4773 /* In the case of complex integer modes smaller than a word, we'll
4774 need to generate some non-trivial bitfield insertions. Do that
4775 on a pseudo and not the hard register. */
4776 else if (GET_CODE (decl_rtl) == CONCAT
4777 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4778 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4780 int old_generating_concat_p;
4781 rtx tmp;
4783 old_generating_concat_p = generating_concat_p;
4784 generating_concat_p = 0;
4785 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4786 generating_concat_p = old_generating_concat_p;
4788 emit_move_insn (tmp, decl_rtl);
4789 emit_move_insn (real_decl_rtl, tmp);
4791 else
4792 emit_move_insn (real_decl_rtl, decl_rtl);
4796 /* If returning a structure, arrange to return the address of the value
4797 in a place where debuggers expect to find it.
4799 If returning a structure PCC style,
4800 the caller also depends on this value.
4801 And cfun->returns_pcc_struct is not necessarily set. */
4802 if (cfun->returns_struct
4803 || cfun->returns_pcc_struct)
4805 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4806 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4807 rtx outgoing;
4809 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4810 type = TREE_TYPE (type);
4811 else
4812 value_address = XEXP (value_address, 0);
4814 outgoing = targetm.calls.function_value (build_pointer_type (type),
4815 current_function_decl, true);
4817 /* Mark this as a function return value so integrate will delete the
4818 assignment and USE below when inlining this function. */
4819 REG_FUNCTION_VALUE_P (outgoing) = 1;
4821 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4822 value_address = convert_memory_address (GET_MODE (outgoing),
4823 value_address);
4825 emit_move_insn (outgoing, value_address);
4827 /* Show return register used to hold result (in this case the address
4828 of the result. */
4829 crtl->return_rtx = outgoing;
4832 /* Emit the actual code to clobber return register. */
4834 rtx seq;
4836 start_sequence ();
4837 clobber_return_register ();
4838 seq = get_insns ();
4839 end_sequence ();
4841 emit_insn_after (seq, clobber_after);
4844 /* Output the label for the naked return from the function. */
4845 if (naked_return_label)
4846 emit_label (naked_return_label);
4848 /* @@@ This is a kludge. We want to ensure that instructions that
4849 may trap are not moved into the epilogue by scheduling, because
4850 we don't always emit unwind information for the epilogue. */
4851 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4852 emit_insn (gen_blockage ());
4854 /* If stack protection is enabled for this function, check the guard. */
4855 if (crtl->stack_protect_guard)
4856 stack_protect_epilogue ();
4858 /* If we had calls to alloca, and this machine needs
4859 an accurate stack pointer to exit the function,
4860 insert some code to save and restore the stack pointer. */
4861 if (! EXIT_IGNORE_STACK
4862 && cfun->calls_alloca)
4864 rtx tem = 0;
4866 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4867 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4870 /* ??? This should no longer be necessary since stupid is no longer with
4871 us, but there are some parts of the compiler (eg reload_combine, and
4872 sh mach_dep_reorg) that still try and compute their own lifetime info
4873 instead of using the general framework. */
4874 use_return_register ();
4878 get_arg_pointer_save_area (void)
4880 rtx ret = arg_pointer_save_area;
4882 if (! ret)
4884 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4885 arg_pointer_save_area = ret;
4888 if (! crtl->arg_pointer_save_area_init)
4890 rtx seq;
4892 /* Save the arg pointer at the beginning of the function. The
4893 generated stack slot may not be a valid memory address, so we
4894 have to check it and fix it if necessary. */
4895 start_sequence ();
4896 emit_move_insn (validize_mem (ret),
4897 crtl->args.internal_arg_pointer);
4898 seq = get_insns ();
4899 end_sequence ();
4901 push_topmost_sequence ();
4902 emit_insn_after (seq, entry_of_function ());
4903 pop_topmost_sequence ();
4906 return ret;
4909 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4910 for the first time. */
4912 static void
4913 record_insns (rtx insns, rtx end, htab_t *hashp)
4915 rtx tmp;
4916 htab_t hash = *hashp;
4918 if (hash == NULL)
4919 *hashp = hash
4920 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4922 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4924 void **slot = htab_find_slot (hash, tmp, INSERT);
4925 gcc_assert (*slot == NULL);
4926 *slot = tmp;
4930 /* INSN has been duplicated as COPY, as part of duping a basic block.
4931 If INSN is an epilogue insn, then record COPY as epilogue as well. */
4933 void
4934 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4936 void **slot;
4938 if (epilogue_insn_hash == NULL
4939 || htab_find (epilogue_insn_hash, insn) == NULL)
4940 return;
4942 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4943 gcc_assert (*slot == NULL);
4944 *slot = copy;
4947 /* Set the locator of the insn chain starting at INSN to LOC. */
4948 static void
4949 set_insn_locators (rtx insn, int loc)
4951 while (insn != NULL_RTX)
4953 if (INSN_P (insn))
4954 INSN_LOCATOR (insn) = loc;
4955 insn = NEXT_INSN (insn);
4959 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
4960 we can be running after reorg, SEQUENCE rtl is possible. */
4962 static bool
4963 contains (const_rtx insn, htab_t hash)
4965 if (hash == NULL)
4966 return false;
4968 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4970 int i;
4971 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4972 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4973 return true;
4974 return false;
4977 return htab_find (hash, insn) != NULL;
4981 prologue_epilogue_contains (const_rtx insn)
4983 if (contains (insn, prologue_insn_hash))
4984 return 1;
4985 if (contains (insn, epilogue_insn_hash))
4986 return 1;
4987 return 0;
4990 #ifdef HAVE_return
4991 /* Insert gen_return at the end of block BB. This also means updating
4992 block_for_insn appropriately. */
4994 static void
4995 emit_return_into_block (basic_block bb)
4997 emit_jump_insn_after (gen_return (), BB_END (bb));
4999 #endif /* HAVE_return */
5001 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5002 this into place with notes indicating where the prologue ends and where
5003 the epilogue begins. Update the basic block information when possible. */
5005 static void
5006 thread_prologue_and_epilogue_insns (void)
5008 int inserted = 0;
5009 edge e;
5010 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5011 rtx seq;
5012 #endif
5013 #if defined (HAVE_epilogue) || defined(HAVE_return)
5014 rtx epilogue_end = NULL_RTX;
5015 #endif
5016 edge_iterator ei;
5018 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5019 #ifdef HAVE_prologue
5020 if (HAVE_prologue)
5022 start_sequence ();
5023 seq = gen_prologue ();
5024 emit_insn (seq);
5026 /* Insert an explicit USE for the frame pointer
5027 if the profiling is on and the frame pointer is required. */
5028 if (crtl->profile && frame_pointer_needed)
5029 emit_use (hard_frame_pointer_rtx);
5031 /* Retain a map of the prologue insns. */
5032 record_insns (seq, NULL, &prologue_insn_hash);
5033 emit_note (NOTE_INSN_PROLOGUE_END);
5035 #ifndef PROFILE_BEFORE_PROLOGUE
5036 /* Ensure that instructions are not moved into the prologue when
5037 profiling is on. The call to the profiling routine can be
5038 emitted within the live range of a call-clobbered register. */
5039 if (crtl->profile)
5040 emit_insn (gen_blockage ());
5041 #endif
5043 seq = get_insns ();
5044 end_sequence ();
5045 set_insn_locators (seq, prologue_locator);
5047 /* Can't deal with multiple successors of the entry block
5048 at the moment. Function should always have at least one
5049 entry point. */
5050 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5052 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5053 inserted = 1;
5055 #endif
5057 /* If the exit block has no non-fake predecessors, we don't need
5058 an epilogue. */
5059 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5060 if ((e->flags & EDGE_FAKE) == 0)
5061 break;
5062 if (e == NULL)
5063 goto epilogue_done;
5065 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5066 #ifdef HAVE_return
5067 if (optimize && HAVE_return)
5069 /* If we're allowed to generate a simple return instruction,
5070 then by definition we don't need a full epilogue. Examine
5071 the block that falls through to EXIT. If it does not
5072 contain any code, examine its predecessors and try to
5073 emit (conditional) return instructions. */
5075 basic_block last;
5076 rtx label;
5078 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5079 if (e->flags & EDGE_FALLTHRU)
5080 break;
5081 if (e == NULL)
5082 goto epilogue_done;
5083 last = e->src;
5085 /* Verify that there are no active instructions in the last block. */
5086 label = BB_END (last);
5087 while (label && !LABEL_P (label))
5089 if (active_insn_p (label))
5090 break;
5091 label = PREV_INSN (label);
5094 if (BB_HEAD (last) == label && LABEL_P (label))
5096 edge_iterator ei2;
5098 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5100 basic_block bb = e->src;
5101 rtx jump;
5103 if (bb == ENTRY_BLOCK_PTR)
5105 ei_next (&ei2);
5106 continue;
5109 jump = BB_END (bb);
5110 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5112 ei_next (&ei2);
5113 continue;
5116 /* If we have an unconditional jump, we can replace that
5117 with a simple return instruction. */
5118 if (simplejump_p (jump))
5120 emit_return_into_block (bb);
5121 delete_insn (jump);
5124 /* If we have a conditional jump, we can try to replace
5125 that with a conditional return instruction. */
5126 else if (condjump_p (jump))
5128 if (! redirect_jump (jump, 0, 0))
5130 ei_next (&ei2);
5131 continue;
5134 /* If this block has only one successor, it both jumps
5135 and falls through to the fallthru block, so we can't
5136 delete the edge. */
5137 if (single_succ_p (bb))
5139 ei_next (&ei2);
5140 continue;
5143 else
5145 ei_next (&ei2);
5146 continue;
5149 /* Fix up the CFG for the successful change we just made. */
5150 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5153 /* Emit a return insn for the exit fallthru block. Whether
5154 this is still reachable will be determined later. */
5156 emit_barrier_after (BB_END (last));
5157 emit_return_into_block (last);
5158 epilogue_end = BB_END (last);
5159 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5160 goto epilogue_done;
5163 #endif
5165 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5166 this marker for the splits of EH_RETURN patterns, and nothing else
5167 uses the flag in the meantime. */
5168 epilogue_completed = 1;
5170 #ifdef HAVE_eh_return
5171 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5172 some targets, these get split to a special version of the epilogue
5173 code. In order to be able to properly annotate these with unwind
5174 info, try to split them now. If we get a valid split, drop an
5175 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5176 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5178 rtx prev, last, trial;
5180 if (e->flags & EDGE_FALLTHRU)
5181 continue;
5182 last = BB_END (e->src);
5183 if (!eh_returnjump_p (last))
5184 continue;
5186 prev = PREV_INSN (last);
5187 trial = try_split (PATTERN (last), last, 1);
5188 if (trial == last)
5189 continue;
5191 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5192 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5194 #endif
5196 /* Find the edge that falls through to EXIT. Other edges may exist
5197 due to RETURN instructions, but those don't need epilogues.
5198 There really shouldn't be a mixture -- either all should have
5199 been converted or none, however... */
5201 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5202 if (e->flags & EDGE_FALLTHRU)
5203 break;
5204 if (e == NULL)
5205 goto epilogue_done;
5207 #ifdef HAVE_epilogue
5208 if (HAVE_epilogue)
5210 start_sequence ();
5211 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5212 seq = gen_epilogue ();
5213 emit_jump_insn (seq);
5215 /* Retain a map of the epilogue insns. */
5216 record_insns (seq, NULL, &epilogue_insn_hash);
5217 set_insn_locators (seq, epilogue_locator);
5219 seq = get_insns ();
5220 end_sequence ();
5222 insert_insn_on_edge (seq, e);
5223 inserted = 1;
5225 else
5226 #endif
5228 basic_block cur_bb;
5230 if (! next_active_insn (BB_END (e->src)))
5231 goto epilogue_done;
5232 /* We have a fall-through edge to the exit block, the source is not
5233 at the end of the function, and there will be an assembler epilogue
5234 at the end of the function.
5235 We can't use force_nonfallthru here, because that would try to
5236 use return. Inserting a jump 'by hand' is extremely messy, so
5237 we take advantage of cfg_layout_finalize using
5238 fixup_fallthru_exit_predecessor. */
5239 cfg_layout_initialize (0);
5240 FOR_EACH_BB (cur_bb)
5241 if (cur_bb->index >= NUM_FIXED_BLOCKS
5242 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5243 cur_bb->aux = cur_bb->next_bb;
5244 cfg_layout_finalize ();
5246 epilogue_done:
5247 default_rtl_profile ();
5249 if (inserted)
5251 commit_edge_insertions ();
5253 /* The epilogue insns we inserted may cause the exit edge to no longer
5254 be fallthru. */
5255 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5257 if (((e->flags & EDGE_FALLTHRU) != 0)
5258 && returnjump_p (BB_END (e->src)))
5259 e->flags &= ~EDGE_FALLTHRU;
5263 #ifdef HAVE_sibcall_epilogue
5264 /* Emit sibling epilogues before any sibling call sites. */
5265 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5267 basic_block bb = e->src;
5268 rtx insn = BB_END (bb);
5270 if (!CALL_P (insn)
5271 || ! SIBLING_CALL_P (insn))
5273 ei_next (&ei);
5274 continue;
5277 start_sequence ();
5278 emit_note (NOTE_INSN_EPILOGUE_BEG);
5279 emit_insn (gen_sibcall_epilogue ());
5280 seq = get_insns ();
5281 end_sequence ();
5283 /* Retain a map of the epilogue insns. Used in life analysis to
5284 avoid getting rid of sibcall epilogue insns. Do this before we
5285 actually emit the sequence. */
5286 record_insns (seq, NULL, &epilogue_insn_hash);
5287 set_insn_locators (seq, epilogue_locator);
5289 emit_insn_before (seq, insn);
5290 ei_next (&ei);
5292 #endif
5294 #ifdef HAVE_epilogue
5295 if (epilogue_end)
5297 rtx insn, next;
5299 /* Similarly, move any line notes that appear after the epilogue.
5300 There is no need, however, to be quite so anal about the existence
5301 of such a note. Also possibly move
5302 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5303 info generation. */
5304 for (insn = epilogue_end; insn; insn = next)
5306 next = NEXT_INSN (insn);
5307 if (NOTE_P (insn)
5308 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5309 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5312 #endif
5314 /* Threading the prologue and epilogue changes the artificial refs
5315 in the entry and exit blocks. */
5316 epilogue_completed = 1;
5317 df_update_entry_exit_and_calls ();
5320 /* Reposition the prologue-end and epilogue-begin notes after
5321 instruction scheduling. */
5323 void
5324 reposition_prologue_and_epilogue_notes (void)
5326 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5327 || defined (HAVE_sibcall_epilogue)
5328 /* Since the hash table is created on demand, the fact that it is
5329 non-null is a signal that it is non-empty. */
5330 if (prologue_insn_hash != NULL)
5332 size_t len = htab_elements (prologue_insn_hash);
5333 rtx insn, last = NULL, note = NULL;
5335 /* Scan from the beginning until we reach the last prologue insn. */
5336 /* ??? While we do have the CFG intact, there are two problems:
5337 (1) The prologue can contain loops (typically probing the stack),
5338 which means that the end of the prologue isn't in the first bb.
5339 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5340 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5342 if (NOTE_P (insn))
5344 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5345 note = insn;
5347 else if (contains (insn, prologue_insn_hash))
5349 last = insn;
5350 if (--len == 0)
5351 break;
5355 if (last)
5357 if (note == NULL)
5359 /* Scan forward looking for the PROLOGUE_END note. It should
5360 be right at the beginning of the block, possibly with other
5361 insn notes that got moved there. */
5362 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5364 if (NOTE_P (note)
5365 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5366 break;
5370 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5371 if (LABEL_P (last))
5372 last = NEXT_INSN (last);
5373 reorder_insns (note, note, last);
5377 if (epilogue_insn_hash != NULL)
5379 edge_iterator ei;
5380 edge e;
5382 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5384 rtx insn, first = NULL, note = NULL;
5385 basic_block bb = e->src;
5387 /* Scan from the beginning until we reach the first epilogue insn. */
5388 FOR_BB_INSNS (bb, insn)
5390 if (NOTE_P (insn))
5392 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5394 note = insn;
5395 if (first != NULL)
5396 break;
5399 else if (first == NULL && contains (insn, epilogue_insn_hash))
5401 first = insn;
5402 if (note != NULL)
5403 break;
5407 if (note)
5409 /* If the function has a single basic block, and no real
5410 epilogue insns (e.g. sibcall with no cleanup), the
5411 epilogue note can get scheduled before the prologue
5412 note. If we have frame related prologue insns, having
5413 them scanned during the epilogue will result in a crash.
5414 In this case re-order the epilogue note to just before
5415 the last insn in the block. */
5416 if (first == NULL)
5417 first = BB_END (bb);
5419 if (PREV_INSN (first) != note)
5420 reorder_insns (note, note, PREV_INSN (first));
5424 #endif /* HAVE_prologue or HAVE_epilogue */
5427 /* Returns the name of the current function. */
5428 const char *
5429 current_function_name (void)
5431 if (cfun == NULL)
5432 return "<none>";
5433 return lang_hooks.decl_printable_name (cfun->decl, 2);
5437 static unsigned int
5438 rest_of_handle_check_leaf_regs (void)
5440 #ifdef LEAF_REGISTERS
5441 current_function_uses_only_leaf_regs
5442 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5443 #endif
5444 return 0;
5447 /* Insert a TYPE into the used types hash table of CFUN. */
5449 static void
5450 used_types_insert_helper (tree type, struct function *func)
5452 if (type != NULL && func != NULL)
5454 void **slot;
5456 if (func->used_types_hash == NULL)
5457 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5458 htab_eq_pointer, NULL);
5459 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5460 if (*slot == NULL)
5461 *slot = type;
5465 /* Given a type, insert it into the used hash table in cfun. */
5466 void
5467 used_types_insert (tree t)
5469 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5470 t = TREE_TYPE (t);
5471 t = TYPE_MAIN_VARIANT (t);
5472 if (debug_info_level > DINFO_LEVEL_NONE)
5474 if (cfun)
5475 used_types_insert_helper (t, cfun);
5476 else
5477 /* So this might be a type referenced by a global variable.
5478 Record that type so that we can later decide to emit its debug
5479 information. */
5480 types_used_by_cur_var_decl =
5481 tree_cons (t, NULL, types_used_by_cur_var_decl);
5486 /* Helper to Hash a struct types_used_by_vars_entry. */
5488 static hashval_t
5489 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5491 gcc_assert (entry && entry->var_decl && entry->type);
5493 return iterative_hash_object (entry->type,
5494 iterative_hash_object (entry->var_decl, 0));
5497 /* Hash function of the types_used_by_vars_entry hash table. */
5499 hashval_t
5500 types_used_by_vars_do_hash (const void *x)
5502 const struct types_used_by_vars_entry *entry =
5503 (const struct types_used_by_vars_entry *) x;
5505 return hash_types_used_by_vars_entry (entry);
5508 /*Equality function of the types_used_by_vars_entry hash table. */
5511 types_used_by_vars_eq (const void *x1, const void *x2)
5513 const struct types_used_by_vars_entry *e1 =
5514 (const struct types_used_by_vars_entry *) x1;
5515 const struct types_used_by_vars_entry *e2 =
5516 (const struct types_used_by_vars_entry *)x2;
5518 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5521 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5523 void
5524 types_used_by_var_decl_insert (tree type, tree var_decl)
5526 if (type != NULL && var_decl != NULL)
5528 void **slot;
5529 struct types_used_by_vars_entry e;
5530 e.var_decl = var_decl;
5531 e.type = type;
5532 if (types_used_by_vars_hash == NULL)
5533 types_used_by_vars_hash =
5534 htab_create_ggc (37, types_used_by_vars_do_hash,
5535 types_used_by_vars_eq, NULL);
5536 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5537 hash_types_used_by_vars_entry (&e), INSERT);
5538 if (*slot == NULL)
5540 struct types_used_by_vars_entry *entry;
5541 entry = (struct types_used_by_vars_entry*) ggc_alloc
5542 (sizeof (struct types_used_by_vars_entry));
5543 entry->type = type;
5544 entry->var_decl = var_decl;
5545 *slot = entry;
5550 struct rtl_opt_pass pass_leaf_regs =
5553 RTL_PASS,
5554 "*leaf_regs", /* name */
5555 NULL, /* gate */
5556 rest_of_handle_check_leaf_regs, /* execute */
5557 NULL, /* sub */
5558 NULL, /* next */
5559 0, /* static_pass_number */
5560 TV_NONE, /* tv_id */
5561 0, /* properties_required */
5562 0, /* properties_provided */
5563 0, /* properties_destroyed */
5564 0, /* todo_flags_start */
5565 0 /* todo_flags_finish */
5569 static unsigned int
5570 rest_of_handle_thread_prologue_and_epilogue (void)
5572 if (optimize)
5573 cleanup_cfg (CLEANUP_EXPENSIVE);
5574 /* On some machines, the prologue and epilogue code, or parts thereof,
5575 can be represented as RTL. Doing so lets us schedule insns between
5576 it and the rest of the code and also allows delayed branch
5577 scheduling to operate in the epilogue. */
5579 thread_prologue_and_epilogue_insns ();
5580 return 0;
5583 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5586 RTL_PASS,
5587 "pro_and_epilogue", /* name */
5588 NULL, /* gate */
5589 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5590 NULL, /* sub */
5591 NULL, /* next */
5592 0, /* static_pass_number */
5593 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5594 0, /* properties_required */
5595 0, /* properties_provided */
5596 0, /* properties_destroyed */
5597 TODO_verify_flow, /* todo_flags_start */
5598 TODO_dump_func |
5599 TODO_df_verify |
5600 TODO_df_finish | TODO_verify_rtl_sharing |
5601 TODO_ggc_collect /* todo_flags_finish */
5606 /* This mini-pass fixes fall-out from SSA in asm statements that have
5607 in-out constraints. Say you start with
5609 orig = inout;
5610 asm ("": "+mr" (inout));
5611 use (orig);
5613 which is transformed very early to use explicit output and match operands:
5615 orig = inout;
5616 asm ("": "=mr" (inout) : "0" (inout));
5617 use (orig);
5619 Or, after SSA and copyprop,
5621 asm ("": "=mr" (inout_2) : "0" (inout_1));
5622 use (inout_1);
5624 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5625 they represent two separate values, so they will get different pseudo
5626 registers during expansion. Then, since the two operands need to match
5627 per the constraints, but use different pseudo registers, reload can
5628 only register a reload for these operands. But reloads can only be
5629 satisfied by hardregs, not by memory, so we need a register for this
5630 reload, just because we are presented with non-matching operands.
5631 So, even though we allow memory for this operand, no memory can be
5632 used for it, just because the two operands don't match. This can
5633 cause reload failures on register-starved targets.
5635 So it's a symptom of reload not being able to use memory for reloads
5636 or, alternatively it's also a symptom of both operands not coming into
5637 reload as matching (in which case the pseudo could go to memory just
5638 fine, as the alternative allows it, and no reload would be necessary).
5639 We fix the latter problem here, by transforming
5641 asm ("": "=mr" (inout_2) : "0" (inout_1));
5643 back to
5645 inout_2 = inout_1;
5646 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5648 static void
5649 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5651 int i;
5652 bool changed = false;
5653 rtx op = SET_SRC (p_sets[0]);
5654 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5655 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5656 bool *output_matched = XALLOCAVEC (bool, noutputs);
5658 memset (output_matched, 0, noutputs * sizeof (bool));
5659 for (i = 0; i < ninputs; i++)
5661 rtx input, output, insns;
5662 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5663 char *end;
5664 int match, j;
5666 if (*constraint == '%')
5667 constraint++;
5669 match = strtoul (constraint, &end, 10);
5670 if (end == constraint)
5671 continue;
5673 gcc_assert (match < noutputs);
5674 output = SET_DEST (p_sets[match]);
5675 input = RTVEC_ELT (inputs, i);
5676 /* Only do the transformation for pseudos. */
5677 if (! REG_P (output)
5678 || rtx_equal_p (output, input)
5679 || (GET_MODE (input) != VOIDmode
5680 && GET_MODE (input) != GET_MODE (output)))
5681 continue;
5683 /* We can't do anything if the output is also used as input,
5684 as we're going to overwrite it. */
5685 for (j = 0; j < ninputs; j++)
5686 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5687 break;
5688 if (j != ninputs)
5689 continue;
5691 /* Avoid changing the same input several times. For
5692 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5693 only change in once (to out1), rather than changing it
5694 first to out1 and afterwards to out2. */
5695 if (i > 0)
5697 for (j = 0; j < noutputs; j++)
5698 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5699 break;
5700 if (j != noutputs)
5701 continue;
5703 output_matched[match] = true;
5705 start_sequence ();
5706 emit_move_insn (output, input);
5707 insns = get_insns ();
5708 end_sequence ();
5709 emit_insn_before (insns, insn);
5711 /* Now replace all mentions of the input with output. We can't
5712 just replace the occurrence in inputs[i], as the register might
5713 also be used in some other input (or even in an address of an
5714 output), which would mean possibly increasing the number of
5715 inputs by one (namely 'output' in addition), which might pose
5716 a too complicated problem for reload to solve. E.g. this situation:
5718 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5720 Here 'input' is used in two occurrences as input (once for the
5721 input operand, once for the address in the second output operand).
5722 If we would replace only the occurrence of the input operand (to
5723 make the matching) we would be left with this:
5725 output = input
5726 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5728 Now we suddenly have two different input values (containing the same
5729 value, but different pseudos) where we formerly had only one.
5730 With more complicated asms this might lead to reload failures
5731 which wouldn't have happen without this pass. So, iterate over
5732 all operands and replace all occurrences of the register used. */
5733 for (j = 0; j < noutputs; j++)
5734 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5735 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5736 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5737 input, output);
5738 for (j = 0; j < ninputs; j++)
5739 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5740 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5741 input, output);
5743 changed = true;
5746 if (changed)
5747 df_insn_rescan (insn);
5750 static unsigned
5751 rest_of_match_asm_constraints (void)
5753 basic_block bb;
5754 rtx insn, pat, *p_sets;
5755 int noutputs;
5757 if (!crtl->has_asm_statement)
5758 return 0;
5760 df_set_flags (DF_DEFER_INSN_RESCAN);
5761 FOR_EACH_BB (bb)
5763 FOR_BB_INSNS (bb, insn)
5765 if (!INSN_P (insn))
5766 continue;
5768 pat = PATTERN (insn);
5769 if (GET_CODE (pat) == PARALLEL)
5770 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5771 else if (GET_CODE (pat) == SET)
5772 p_sets = &PATTERN (insn), noutputs = 1;
5773 else
5774 continue;
5776 if (GET_CODE (*p_sets) == SET
5777 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5778 match_asm_constraints_1 (insn, p_sets, noutputs);
5782 return TODO_df_finish;
5785 struct rtl_opt_pass pass_match_asm_constraints =
5788 RTL_PASS,
5789 "asmcons", /* name */
5790 NULL, /* gate */
5791 rest_of_match_asm_constraints, /* execute */
5792 NULL, /* sub */
5793 NULL, /* next */
5794 0, /* static_pass_number */
5795 TV_NONE, /* tv_id */
5796 0, /* properties_required */
5797 0, /* properties_provided */
5798 0, /* properties_destroyed */
5799 0, /* todo_flags_start */
5800 TODO_dump_func /* todo_flags_finish */
5805 #include "gt-function.h"