2015-05-22 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vect-data-refs.c
blobeb35d6270f8f81c9983565076bc9fe56bf46e5a7
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tm_p.h"
40 #include "target.h"
41 #include "predict.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "dominance.h"
45 #include "cfg.h"
46 #include "basic-block.h"
47 #include "gimple-pretty-print.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "tree-eh.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimplify.h"
55 #include "gimple-iterator.h"
56 #include "gimplify-me.h"
57 #include "gimple-ssa.h"
58 #include "tree-phinodes.h"
59 #include "ssa-iterators.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "tree-ssa-loop-ivopts.h"
63 #include "tree-ssa-loop-manip.h"
64 #include "tree-ssa-loop.h"
65 #include "cfgloop.h"
66 #include "tree-chrec.h"
67 #include "tree-scalar-evolution.h"
68 #include "tree-vectorizer.h"
69 #include "diagnostic-core.h"
70 #include "hash-map.h"
71 #include "plugin-api.h"
72 #include "ipa-ref.h"
73 #include "cgraph.h"
74 /* Need to include rtl.h, expr.h, etc. for optabs. */
75 #include "hashtab.h"
76 #include "rtl.h"
77 #include "flags.h"
78 #include "statistics.h"
79 #include "real.h"
80 #include "fixed-value.h"
81 #include "insn-config.h"
82 #include "expmed.h"
83 #include "dojump.h"
84 #include "explow.h"
85 #include "calls.h"
86 #include "emit-rtl.h"
87 #include "varasm.h"
88 #include "stmt.h"
89 #include "expr.h"
90 #include "insn-codes.h"
91 #include "optabs.h"
92 #include "builtins.h"
94 /* Return true if load- or store-lanes optab OPTAB is implemented for
95 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
97 static bool
98 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
99 tree vectype, unsigned HOST_WIDE_INT count)
101 machine_mode mode, array_mode;
102 bool limit_p;
104 mode = TYPE_MODE (vectype);
105 limit_p = !targetm.array_mode_supported_p (mode, count);
106 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
107 MODE_INT, limit_p);
109 if (array_mode == BLKmode)
111 if (dump_enabled_p ())
112 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
113 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
114 GET_MODE_NAME (mode), count);
115 return false;
118 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
120 if (dump_enabled_p ())
121 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
122 "cannot use %s<%s><%s>\n", name,
123 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
124 return false;
127 if (dump_enabled_p ())
128 dump_printf_loc (MSG_NOTE, vect_location,
129 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
130 GET_MODE_NAME (mode));
132 return true;
136 /* Return the smallest scalar part of STMT.
137 This is used to determine the vectype of the stmt. We generally set the
138 vectype according to the type of the result (lhs). For stmts whose
139 result-type is different than the type of the arguments (e.g., demotion,
140 promotion), vectype will be reset appropriately (later). Note that we have
141 to visit the smallest datatype in this function, because that determines the
142 VF. If the smallest datatype in the loop is present only as the rhs of a
143 promotion operation - we'd miss it.
144 Such a case, where a variable of this datatype does not appear in the lhs
145 anywhere in the loop, can only occur if it's an invariant: e.g.:
146 'int_x = (int) short_inv', which we'd expect to have been optimized away by
147 invariant motion. However, we cannot rely on invariant motion to always
148 take invariants out of the loop, and so in the case of promotion we also
149 have to check the rhs.
150 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
151 types. */
153 tree
154 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
155 HOST_WIDE_INT *rhs_size_unit)
157 tree scalar_type = gimple_expr_type (stmt);
158 HOST_WIDE_INT lhs, rhs;
160 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
162 if (is_gimple_assign (stmt)
163 && (gimple_assign_cast_p (stmt)
164 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
165 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
166 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
168 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
170 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
171 if (rhs < lhs)
172 scalar_type = rhs_type;
175 *lhs_size_unit = lhs;
176 *rhs_size_unit = rhs;
177 return scalar_type;
181 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
182 tested at run-time. Return TRUE if DDR was successfully inserted.
183 Return false if versioning is not supported. */
185 static bool
186 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
188 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
190 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
191 return false;
193 if (dump_enabled_p ())
195 dump_printf_loc (MSG_NOTE, vect_location,
196 "mark for run-time aliasing test between ");
197 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
198 dump_printf (MSG_NOTE, " and ");
199 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
200 dump_printf (MSG_NOTE, "\n");
203 if (optimize_loop_nest_for_size_p (loop))
205 if (dump_enabled_p ())
206 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
207 "versioning not supported when optimizing"
208 " for size.\n");
209 return false;
212 /* FORNOW: We don't support versioning with outer-loop vectorization. */
213 if (loop->inner)
215 if (dump_enabled_p ())
216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
217 "versioning not yet supported for outer-loops.\n");
218 return false;
221 /* FORNOW: We don't support creating runtime alias tests for non-constant
222 step. */
223 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
224 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
226 if (dump_enabled_p ())
227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
228 "versioning not yet supported for non-constant "
229 "step\n");
230 return false;
233 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
234 return true;
238 /* Function vect_analyze_data_ref_dependence.
240 Return TRUE if there (might) exist a dependence between a memory-reference
241 DRA and a memory-reference DRB. When versioning for alias may check a
242 dependence at run-time, return FALSE. Adjust *MAX_VF according to
243 the data dependence. */
245 static bool
246 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
247 loop_vec_info loop_vinfo, int *max_vf)
249 unsigned int i;
250 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
251 struct data_reference *dra = DDR_A (ddr);
252 struct data_reference *drb = DDR_B (ddr);
253 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
254 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
255 lambda_vector dist_v;
256 unsigned int loop_depth;
258 /* In loop analysis all data references should be vectorizable. */
259 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
260 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
261 gcc_unreachable ();
263 /* Independent data accesses. */
264 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
265 return false;
267 if (dra == drb
268 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
269 return false;
271 /* Even if we have an anti-dependence then, as the vectorized loop covers at
272 least two scalar iterations, there is always also a true dependence.
273 As the vectorizer does not re-order loads and stores we can ignore
274 the anti-dependence if TBAA can disambiguate both DRs similar to the
275 case with known negative distance anti-dependences (positive
276 distance anti-dependences would violate TBAA constraints). */
277 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
278 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
279 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
280 get_alias_set (DR_REF (drb))))
281 return false;
283 /* Unknown data dependence. */
284 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
286 /* If user asserted safelen consecutive iterations can be
287 executed concurrently, assume independence. */
288 if (loop->safelen >= 2)
290 if (loop->safelen < *max_vf)
291 *max_vf = loop->safelen;
292 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
293 return false;
296 if (STMT_VINFO_GATHER_P (stmtinfo_a)
297 || STMT_VINFO_GATHER_P (stmtinfo_b))
299 if (dump_enabled_p ())
301 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
302 "versioning for alias not supported for: "
303 "can't determine dependence between ");
304 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
305 DR_REF (dra));
306 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
307 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
308 DR_REF (drb));
309 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
311 return true;
314 if (dump_enabled_p ())
316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
317 "versioning for alias required: "
318 "can't determine dependence between ");
319 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
320 DR_REF (dra));
321 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
322 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
323 DR_REF (drb));
324 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
327 /* Add to list of ddrs that need to be tested at run-time. */
328 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
331 /* Known data dependence. */
332 if (DDR_NUM_DIST_VECTS (ddr) == 0)
334 /* If user asserted safelen consecutive iterations can be
335 executed concurrently, assume independence. */
336 if (loop->safelen >= 2)
338 if (loop->safelen < *max_vf)
339 *max_vf = loop->safelen;
340 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
341 return false;
344 if (STMT_VINFO_GATHER_P (stmtinfo_a)
345 || STMT_VINFO_GATHER_P (stmtinfo_b))
347 if (dump_enabled_p ())
349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
350 "versioning for alias not supported for: "
351 "bad dist vector for ");
352 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
353 DR_REF (dra));
354 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
355 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
356 DR_REF (drb));
357 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
359 return true;
362 if (dump_enabled_p ())
364 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
365 "versioning for alias required: "
366 "bad dist vector for ");
367 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
368 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
369 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
370 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
372 /* Add to list of ddrs that need to be tested at run-time. */
373 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
376 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
377 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
379 int dist = dist_v[loop_depth];
381 if (dump_enabled_p ())
382 dump_printf_loc (MSG_NOTE, vect_location,
383 "dependence distance = %d.\n", dist);
385 if (dist == 0)
387 if (dump_enabled_p ())
389 dump_printf_loc (MSG_NOTE, vect_location,
390 "dependence distance == 0 between ");
391 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
392 dump_printf (MSG_NOTE, " and ");
393 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
394 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
397 /* When we perform grouped accesses and perform implicit CSE
398 by detecting equal accesses and doing disambiguation with
399 runtime alias tests like for
400 .. = a[i];
401 .. = a[i+1];
402 a[i] = ..;
403 a[i+1] = ..;
404 *p = ..;
405 .. = a[i];
406 .. = a[i+1];
407 where we will end up loading { a[i], a[i+1] } once, make
408 sure that inserting group loads before the first load and
409 stores after the last store will do the right thing.
410 Similar for groups like
411 a[i] = ...;
412 ... = a[i];
413 a[i+1] = ...;
414 where loads from the group interleave with the store. */
415 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
416 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
418 gimple earlier_stmt;
419 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
420 if (DR_IS_WRITE
421 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
423 if (dump_enabled_p ())
424 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
425 "READ_WRITE dependence in interleaving."
426 "\n");
427 return true;
431 continue;
434 if (dist > 0 && DDR_REVERSED_P (ddr))
436 /* If DDR_REVERSED_P the order of the data-refs in DDR was
437 reversed (to make distance vector positive), and the actual
438 distance is negative. */
439 if (dump_enabled_p ())
440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
441 "dependence distance negative.\n");
442 /* Record a negative dependence distance to later limit the
443 amount of stmt copying / unrolling we can perform.
444 Only need to handle read-after-write dependence. */
445 if (DR_IS_READ (drb)
446 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
447 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
448 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
449 continue;
452 if (abs (dist) >= 2
453 && abs (dist) < *max_vf)
455 /* The dependence distance requires reduction of the maximal
456 vectorization factor. */
457 *max_vf = abs (dist);
458 if (dump_enabled_p ())
459 dump_printf_loc (MSG_NOTE, vect_location,
460 "adjusting maximal vectorization factor to %i\n",
461 *max_vf);
464 if (abs (dist) >= *max_vf)
466 /* Dependence distance does not create dependence, as far as
467 vectorization is concerned, in this case. */
468 if (dump_enabled_p ())
469 dump_printf_loc (MSG_NOTE, vect_location,
470 "dependence distance >= VF.\n");
471 continue;
474 if (dump_enabled_p ())
476 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
477 "not vectorized, possible dependence "
478 "between data-refs ");
479 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
480 dump_printf (MSG_NOTE, " and ");
481 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
482 dump_printf (MSG_NOTE, "\n");
485 return true;
488 return false;
491 /* Function vect_analyze_data_ref_dependences.
493 Examine all the data references in the loop, and make sure there do not
494 exist any data dependences between them. Set *MAX_VF according to
495 the maximum vectorization factor the data dependences allow. */
497 bool
498 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
500 unsigned int i;
501 struct data_dependence_relation *ddr;
503 if (dump_enabled_p ())
504 dump_printf_loc (MSG_NOTE, vect_location,
505 "=== vect_analyze_data_ref_dependences ===\n");
507 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
508 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
509 &LOOP_VINFO_DDRS (loop_vinfo),
510 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
511 return false;
513 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
514 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
515 return false;
517 return true;
521 /* Function vect_slp_analyze_data_ref_dependence.
523 Return TRUE if there (might) exist a dependence between a memory-reference
524 DRA and a memory-reference DRB. When versioning for alias may check a
525 dependence at run-time, return FALSE. Adjust *MAX_VF according to
526 the data dependence. */
528 static bool
529 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
531 struct data_reference *dra = DDR_A (ddr);
532 struct data_reference *drb = DDR_B (ddr);
534 /* We need to check dependences of statements marked as unvectorizable
535 as well, they still can prohibit vectorization. */
537 /* Independent data accesses. */
538 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
539 return false;
541 if (dra == drb)
542 return false;
544 /* Read-read is OK. */
545 if (DR_IS_READ (dra) && DR_IS_READ (drb))
546 return false;
548 /* If dra and drb are part of the same interleaving chain consider
549 them independent. */
550 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
551 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
552 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
553 return false;
555 /* Unknown data dependence. */
556 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
558 if (dump_enabled_p ())
560 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
561 "can't determine dependence between ");
562 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
563 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
564 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
565 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
568 else if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location,
571 "determined dependence between ");
572 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
573 dump_printf (MSG_NOTE, " and ");
574 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
575 dump_printf (MSG_NOTE, "\n");
578 /* We do not vectorize basic blocks with write-write dependencies. */
579 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
580 return true;
582 /* If we have a read-write dependence check that the load is before the store.
583 When we vectorize basic blocks, vector load can be only before
584 corresponding scalar load, and vector store can be only after its
585 corresponding scalar store. So the order of the acceses is preserved in
586 case the load is before the store. */
587 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
588 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
590 /* That only holds for load-store pairs taking part in vectorization. */
591 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
592 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
593 return false;
596 return true;
600 /* Function vect_analyze_data_ref_dependences.
602 Examine all the data references in the basic-block, and make sure there
603 do not exist any data dependences between them. Set *MAX_VF according to
604 the maximum vectorization factor the data dependences allow. */
606 bool
607 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
609 struct data_dependence_relation *ddr;
610 unsigned int i;
612 if (dump_enabled_p ())
613 dump_printf_loc (MSG_NOTE, vect_location,
614 "=== vect_slp_analyze_data_ref_dependences ===\n");
616 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
617 &BB_VINFO_DDRS (bb_vinfo),
618 vNULL, true))
619 return false;
621 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
622 if (vect_slp_analyze_data_ref_dependence (ddr))
623 return false;
625 return true;
629 /* Function vect_compute_data_ref_alignment
631 Compute the misalignment of the data reference DR.
633 Output:
634 1. If during the misalignment computation it is found that the data reference
635 cannot be vectorized then false is returned.
636 2. DR_MISALIGNMENT (DR) is defined.
638 FOR NOW: No analysis is actually performed. Misalignment is calculated
639 only for trivial cases. TODO. */
641 static bool
642 vect_compute_data_ref_alignment (struct data_reference *dr)
644 gimple stmt = DR_STMT (dr);
645 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
646 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
647 struct loop *loop = NULL;
648 tree ref = DR_REF (dr);
649 tree vectype;
650 tree base, base_addr;
651 bool base_aligned;
652 tree misalign = NULL_TREE;
653 tree aligned_to;
654 unsigned HOST_WIDE_INT alignment;
656 if (dump_enabled_p ())
657 dump_printf_loc (MSG_NOTE, vect_location,
658 "vect_compute_data_ref_alignment:\n");
660 if (loop_vinfo)
661 loop = LOOP_VINFO_LOOP (loop_vinfo);
663 /* Initialize misalignment to unknown. */
664 SET_DR_MISALIGNMENT (dr, -1);
666 /* Strided accesses perform only component accesses, misalignment information
667 is irrelevant for them. */
668 if (STMT_VINFO_STRIDED_P (stmt_info)
669 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
670 return true;
672 if (tree_fits_shwi_p (DR_STEP (dr)))
673 misalign = DR_INIT (dr);
674 aligned_to = DR_ALIGNED_TO (dr);
675 base_addr = DR_BASE_ADDRESS (dr);
676 vectype = STMT_VINFO_VECTYPE (stmt_info);
678 /* In case the dataref is in an inner-loop of the loop that is being
679 vectorized (LOOP), we use the base and misalignment information
680 relative to the outer-loop (LOOP). This is ok only if the misalignment
681 stays the same throughout the execution of the inner-loop, which is why
682 we have to check that the stride of the dataref in the inner-loop evenly
683 divides by the vector size. */
684 if (loop && nested_in_vect_loop_p (loop, stmt))
686 tree step = DR_STEP (dr);
688 if (tree_fits_shwi_p (step)
689 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
691 if (dump_enabled_p ())
692 dump_printf_loc (MSG_NOTE, vect_location,
693 "inner step divides the vector-size.\n");
694 misalign = STMT_VINFO_DR_INIT (stmt_info);
695 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
696 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
698 else
700 if (dump_enabled_p ())
701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
702 "inner step doesn't divide the vector-size.\n");
703 misalign = NULL_TREE;
707 /* Similarly, if we're doing basic-block vectorization, we can only use
708 base and misalignment information relative to an innermost loop if the
709 misalignment stays the same throughout the execution of the loop.
710 As above, this is the case if the stride of the dataref evenly divides
711 by the vector size. */
712 if (!loop)
714 tree step = DR_STEP (dr);
716 if (tree_fits_shwi_p (step)
717 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
719 if (dump_enabled_p ())
720 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
721 "SLP: step doesn't divide the vector-size.\n");
722 misalign = NULL_TREE;
726 alignment = TYPE_ALIGN_UNIT (vectype);
728 if ((compare_tree_int (aligned_to, alignment) < 0)
729 || !misalign)
731 if (dump_enabled_p ())
733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
734 "Unknown alignment for access: ");
735 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
736 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
738 return true;
741 /* To look at alignment of the base we have to preserve an inner MEM_REF
742 as that carries alignment information of the actual access. */
743 base = ref;
744 while (handled_component_p (base))
745 base = TREE_OPERAND (base, 0);
746 if (TREE_CODE (base) == MEM_REF)
747 base = build2 (MEM_REF, TREE_TYPE (base), base_addr,
748 build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)), 0));
750 if (get_object_alignment (base) >= TYPE_ALIGN (vectype))
751 base_aligned = true;
752 else
753 base_aligned = false;
755 if (!base_aligned)
757 /* Strip an inner MEM_REF to a bare decl if possible. */
758 if (TREE_CODE (base) == MEM_REF
759 && integer_zerop (TREE_OPERAND (base, 1))
760 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
761 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
763 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
765 if (dump_enabled_p ())
767 dump_printf_loc (MSG_NOTE, vect_location,
768 "can't force alignment of ref: ");
769 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
770 dump_printf (MSG_NOTE, "\n");
772 return true;
775 /* Force the alignment of the decl.
776 NOTE: This is the only change to the code we make during
777 the analysis phase, before deciding to vectorize the loop. */
778 if (dump_enabled_p ())
780 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
781 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
782 dump_printf (MSG_NOTE, "\n");
785 ((dataref_aux *)dr->aux)->base_decl = base;
786 ((dataref_aux *)dr->aux)->base_misaligned = true;
789 /* If this is a backward running DR then first access in the larger
790 vectype actually is N-1 elements before the address in the DR.
791 Adjust misalign accordingly. */
792 if (tree_int_cst_sgn (DR_STEP (dr)) < 0)
794 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
795 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
796 otherwise we wouldn't be here. */
797 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
798 /* PLUS because DR_STEP was negative. */
799 misalign = size_binop (PLUS_EXPR, misalign, offset);
802 SET_DR_MISALIGNMENT (dr,
803 wi::mod_floor (misalign, alignment, SIGNED).to_uhwi ());
805 if (dump_enabled_p ())
807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
808 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
809 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
810 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
813 return true;
817 /* Function vect_compute_data_refs_alignment
819 Compute the misalignment of data references in the loop.
820 Return FALSE if a data reference is found that cannot be vectorized. */
822 static bool
823 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
824 bb_vec_info bb_vinfo)
826 vec<data_reference_p> datarefs;
827 struct data_reference *dr;
828 unsigned int i;
830 if (loop_vinfo)
831 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
832 else
833 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
835 FOR_EACH_VEC_ELT (datarefs, i, dr)
836 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
837 && !vect_compute_data_ref_alignment (dr))
839 if (bb_vinfo)
841 /* Mark unsupported statement as unvectorizable. */
842 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
843 continue;
845 else
846 return false;
849 return true;
853 /* Function vect_update_misalignment_for_peel
855 DR - the data reference whose misalignment is to be adjusted.
856 DR_PEEL - the data reference whose misalignment is being made
857 zero in the vector loop by the peel.
858 NPEEL - the number of iterations in the peel loop if the misalignment
859 of DR_PEEL is known at compile time. */
861 static void
862 vect_update_misalignment_for_peel (struct data_reference *dr,
863 struct data_reference *dr_peel, int npeel)
865 unsigned int i;
866 vec<dr_p> same_align_drs;
867 struct data_reference *current_dr;
868 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
869 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
870 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
871 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
873 /* For interleaved data accesses the step in the loop must be multiplied by
874 the size of the interleaving group. */
875 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
876 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
877 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
878 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
880 /* It can be assumed that the data refs with the same alignment as dr_peel
881 are aligned in the vector loop. */
882 same_align_drs
883 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
884 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
886 if (current_dr != dr)
887 continue;
888 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
889 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
890 SET_DR_MISALIGNMENT (dr, 0);
891 return;
894 if (known_alignment_for_access_p (dr)
895 && known_alignment_for_access_p (dr_peel))
897 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
898 int misal = DR_MISALIGNMENT (dr);
899 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
900 misal += negative ? -npeel * dr_size : npeel * dr_size;
901 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
902 SET_DR_MISALIGNMENT (dr, misal);
903 return;
906 if (dump_enabled_p ())
907 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
908 SET_DR_MISALIGNMENT (dr, -1);
912 /* Function vect_verify_datarefs_alignment
914 Return TRUE if all data references in the loop can be
915 handled with respect to alignment. */
917 bool
918 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
920 vec<data_reference_p> datarefs;
921 struct data_reference *dr;
922 enum dr_alignment_support supportable_dr_alignment;
923 unsigned int i;
925 if (loop_vinfo)
926 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
927 else
928 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
930 FOR_EACH_VEC_ELT (datarefs, i, dr)
932 gimple stmt = DR_STMT (dr);
933 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
935 if (!STMT_VINFO_RELEVANT_P (stmt_info))
936 continue;
938 /* For interleaving, only the alignment of the first access matters.
939 Skip statements marked as not vectorizable. */
940 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
941 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
942 || !STMT_VINFO_VECTORIZABLE (stmt_info))
943 continue;
945 /* Strided accesses perform only component accesses, alignment is
946 irrelevant for them. */
947 if (STMT_VINFO_STRIDED_P (stmt_info)
948 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
949 continue;
951 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
952 if (!supportable_dr_alignment)
954 if (dump_enabled_p ())
956 if (DR_IS_READ (dr))
957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
958 "not vectorized: unsupported unaligned load.");
959 else
960 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
961 "not vectorized: unsupported unaligned "
962 "store.");
964 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
965 DR_REF (dr));
966 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
968 return false;
970 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
971 dump_printf_loc (MSG_NOTE, vect_location,
972 "Vectorizing an unaligned access.\n");
974 return true;
977 /* Given an memory reference EXP return whether its alignment is less
978 than its size. */
980 static bool
981 not_size_aligned (tree exp)
983 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
984 return true;
986 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
987 > get_object_alignment (exp));
990 /* Function vector_alignment_reachable_p
992 Return true if vector alignment for DR is reachable by peeling
993 a few loop iterations. Return false otherwise. */
995 static bool
996 vector_alignment_reachable_p (struct data_reference *dr)
998 gimple stmt = DR_STMT (dr);
999 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1000 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1002 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1004 /* For interleaved access we peel only if number of iterations in
1005 the prolog loop ({VF - misalignment}), is a multiple of the
1006 number of the interleaved accesses. */
1007 int elem_size, mis_in_elements;
1008 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1010 /* FORNOW: handle only known alignment. */
1011 if (!known_alignment_for_access_p (dr))
1012 return false;
1014 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1015 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1017 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1018 return false;
1021 /* If misalignment is known at the compile time then allow peeling
1022 only if natural alignment is reachable through peeling. */
1023 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1025 HOST_WIDE_INT elmsize =
1026 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1027 if (dump_enabled_p ())
1029 dump_printf_loc (MSG_NOTE, vect_location,
1030 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1031 dump_printf (MSG_NOTE,
1032 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1034 if (DR_MISALIGNMENT (dr) % elmsize)
1036 if (dump_enabled_p ())
1037 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1038 "data size does not divide the misalignment.\n");
1039 return false;
1043 if (!known_alignment_for_access_p (dr))
1045 tree type = TREE_TYPE (DR_REF (dr));
1046 bool is_packed = not_size_aligned (DR_REF (dr));
1047 if (dump_enabled_p ())
1048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1049 "Unknown misalignment, is_packed = %d\n",is_packed);
1050 if ((TYPE_USER_ALIGN (type) && !is_packed)
1051 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1052 return true;
1053 else
1054 return false;
1057 return true;
1061 /* Calculate the cost of the memory access represented by DR. */
1063 static void
1064 vect_get_data_access_cost (struct data_reference *dr,
1065 unsigned int *inside_cost,
1066 unsigned int *outside_cost,
1067 stmt_vector_for_cost *body_cost_vec)
1069 gimple stmt = DR_STMT (dr);
1070 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1071 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1072 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1073 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1074 int ncopies = vf / nunits;
1076 if (DR_IS_READ (dr))
1077 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1078 NULL, body_cost_vec, false);
1079 else
1080 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1082 if (dump_enabled_p ())
1083 dump_printf_loc (MSG_NOTE, vect_location,
1084 "vect_get_data_access_cost: inside_cost = %d, "
1085 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1089 /* Insert DR into peeling hash table with NPEEL as key. */
1091 static void
1092 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1093 int npeel)
1095 struct _vect_peel_info elem, *slot;
1096 _vect_peel_info **new_slot;
1097 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1099 elem.npeel = npeel;
1100 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
1101 if (slot)
1102 slot->count++;
1103 else
1105 slot = XNEW (struct _vect_peel_info);
1106 slot->npeel = npeel;
1107 slot->dr = dr;
1108 slot->count = 1;
1109 new_slot
1110 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
1111 *new_slot = slot;
1114 if (!supportable_dr_alignment
1115 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1116 slot->count += VECT_MAX_COST;
1120 /* Traverse peeling hash table to find peeling option that aligns maximum
1121 number of data accesses. */
1124 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1125 _vect_peel_extended_info *max)
1127 vect_peel_info elem = *slot;
1129 if (elem->count > max->peel_info.count
1130 || (elem->count == max->peel_info.count
1131 && max->peel_info.npeel > elem->npeel))
1133 max->peel_info.npeel = elem->npeel;
1134 max->peel_info.count = elem->count;
1135 max->peel_info.dr = elem->dr;
1138 return 1;
1142 /* Traverse peeling hash table and calculate cost for each peeling option.
1143 Find the one with the lowest cost. */
1146 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1147 _vect_peel_extended_info *min)
1149 vect_peel_info elem = *slot;
1150 int save_misalignment, dummy;
1151 unsigned int inside_cost = 0, outside_cost = 0, i;
1152 gimple stmt = DR_STMT (elem->dr);
1153 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1154 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1155 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1156 struct data_reference *dr;
1157 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1159 prologue_cost_vec.create (2);
1160 body_cost_vec.create (2);
1161 epilogue_cost_vec.create (2);
1163 FOR_EACH_VEC_ELT (datarefs, i, dr)
1165 stmt = DR_STMT (dr);
1166 stmt_info = vinfo_for_stmt (stmt);
1167 /* For interleaving, only the alignment of the first access
1168 matters. */
1169 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1170 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1171 continue;
1173 save_misalignment = DR_MISALIGNMENT (dr);
1174 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1175 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1176 &body_cost_vec);
1177 SET_DR_MISALIGNMENT (dr, save_misalignment);
1180 auto_vec<stmt_info_for_cost> scalar_cost_vec;
1181 vect_get_single_scalar_iteration_cost (loop_vinfo, &scalar_cost_vec);
1182 outside_cost += vect_get_known_peeling_cost
1183 (loop_vinfo, elem->npeel, &dummy,
1184 &scalar_cost_vec, &prologue_cost_vec, &epilogue_cost_vec);
1186 /* Prologue and epilogue costs are added to the target model later.
1187 These costs depend only on the scalar iteration cost, the
1188 number of peeling iterations finally chosen, and the number of
1189 misaligned statements. So discard the information found here. */
1190 prologue_cost_vec.release ();
1191 epilogue_cost_vec.release ();
1193 if (inside_cost < min->inside_cost
1194 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1196 min->inside_cost = inside_cost;
1197 min->outside_cost = outside_cost;
1198 min->body_cost_vec.release ();
1199 min->body_cost_vec = body_cost_vec;
1200 min->peel_info.dr = elem->dr;
1201 min->peel_info.npeel = elem->npeel;
1203 else
1204 body_cost_vec.release ();
1206 return 1;
1210 /* Choose best peeling option by traversing peeling hash table and either
1211 choosing an option with the lowest cost (if cost model is enabled) or the
1212 option that aligns as many accesses as possible. */
1214 static struct data_reference *
1215 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1216 unsigned int *npeel,
1217 stmt_vector_for_cost *body_cost_vec)
1219 struct _vect_peel_extended_info res;
1221 res.peel_info.dr = NULL;
1222 res.body_cost_vec = stmt_vector_for_cost ();
1224 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1226 res.inside_cost = INT_MAX;
1227 res.outside_cost = INT_MAX;
1228 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1229 ->traverse <_vect_peel_extended_info *,
1230 vect_peeling_hash_get_lowest_cost> (&res);
1232 else
1234 res.peel_info.count = 0;
1235 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1236 ->traverse <_vect_peel_extended_info *,
1237 vect_peeling_hash_get_most_frequent> (&res);
1240 *npeel = res.peel_info.npeel;
1241 *body_cost_vec = res.body_cost_vec;
1242 return res.peel_info.dr;
1246 /* Function vect_enhance_data_refs_alignment
1248 This pass will use loop versioning and loop peeling in order to enhance
1249 the alignment of data references in the loop.
1251 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1252 original loop is to be vectorized. Any other loops that are created by
1253 the transformations performed in this pass - are not supposed to be
1254 vectorized. This restriction will be relaxed.
1256 This pass will require a cost model to guide it whether to apply peeling
1257 or versioning or a combination of the two. For example, the scheme that
1258 intel uses when given a loop with several memory accesses, is as follows:
1259 choose one memory access ('p') which alignment you want to force by doing
1260 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1261 other accesses are not necessarily aligned, or (2) use loop versioning to
1262 generate one loop in which all accesses are aligned, and another loop in
1263 which only 'p' is necessarily aligned.
1265 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1266 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1267 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1269 Devising a cost model is the most critical aspect of this work. It will
1270 guide us on which access to peel for, whether to use loop versioning, how
1271 many versions to create, etc. The cost model will probably consist of
1272 generic considerations as well as target specific considerations (on
1273 powerpc for example, misaligned stores are more painful than misaligned
1274 loads).
1276 Here are the general steps involved in alignment enhancements:
1278 -- original loop, before alignment analysis:
1279 for (i=0; i<N; i++){
1280 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1281 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1284 -- After vect_compute_data_refs_alignment:
1285 for (i=0; i<N; i++){
1286 x = q[i]; # DR_MISALIGNMENT(q) = 3
1287 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1290 -- Possibility 1: we do loop versioning:
1291 if (p is aligned) {
1292 for (i=0; i<N; i++){ # loop 1A
1293 x = q[i]; # DR_MISALIGNMENT(q) = 3
1294 p[i] = y; # DR_MISALIGNMENT(p) = 0
1297 else {
1298 for (i=0; i<N; i++){ # loop 1B
1299 x = q[i]; # DR_MISALIGNMENT(q) = 3
1300 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1304 -- Possibility 2: we do loop peeling:
1305 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1306 x = q[i];
1307 p[i] = y;
1309 for (i = 3; i < N; i++){ # loop 2A
1310 x = q[i]; # DR_MISALIGNMENT(q) = 0
1311 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1314 -- Possibility 3: combination of loop peeling and versioning:
1315 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1316 x = q[i];
1317 p[i] = y;
1319 if (p is aligned) {
1320 for (i = 3; i<N; i++){ # loop 3A
1321 x = q[i]; # DR_MISALIGNMENT(q) = 0
1322 p[i] = y; # DR_MISALIGNMENT(p) = 0
1325 else {
1326 for (i = 3; i<N; i++){ # loop 3B
1327 x = q[i]; # DR_MISALIGNMENT(q) = 0
1328 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1332 These loops are later passed to loop_transform to be vectorized. The
1333 vectorizer will use the alignment information to guide the transformation
1334 (whether to generate regular loads/stores, or with special handling for
1335 misalignment). */
1337 bool
1338 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1340 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1341 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1342 enum dr_alignment_support supportable_dr_alignment;
1343 struct data_reference *dr0 = NULL, *first_store = NULL;
1344 struct data_reference *dr;
1345 unsigned int i, j;
1346 bool do_peeling = false;
1347 bool do_versioning = false;
1348 bool stat;
1349 gimple stmt;
1350 stmt_vec_info stmt_info;
1351 unsigned int npeel = 0;
1352 bool all_misalignments_unknown = true;
1353 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1354 unsigned possible_npeel_number = 1;
1355 tree vectype;
1356 unsigned int nelements, mis, same_align_drs_max = 0;
1357 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1359 if (dump_enabled_p ())
1360 dump_printf_loc (MSG_NOTE, vect_location,
1361 "=== vect_enhance_data_refs_alignment ===\n");
1363 /* While cost model enhancements are expected in the future, the high level
1364 view of the code at this time is as follows:
1366 A) If there is a misaligned access then see if peeling to align
1367 this access can make all data references satisfy
1368 vect_supportable_dr_alignment. If so, update data structures
1369 as needed and return true.
1371 B) If peeling wasn't possible and there is a data reference with an
1372 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1373 then see if loop versioning checks can be used to make all data
1374 references satisfy vect_supportable_dr_alignment. If so, update
1375 data structures as needed and return true.
1377 C) If neither peeling nor versioning were successful then return false if
1378 any data reference does not satisfy vect_supportable_dr_alignment.
1380 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1382 Note, Possibility 3 above (which is peeling and versioning together) is not
1383 being done at this time. */
1385 /* (1) Peeling to force alignment. */
1387 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1388 Considerations:
1389 + How many accesses will become aligned due to the peeling
1390 - How many accesses will become unaligned due to the peeling,
1391 and the cost of misaligned accesses.
1392 - The cost of peeling (the extra runtime checks, the increase
1393 in code size). */
1395 FOR_EACH_VEC_ELT (datarefs, i, dr)
1397 stmt = DR_STMT (dr);
1398 stmt_info = vinfo_for_stmt (stmt);
1400 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1401 continue;
1403 /* For interleaving, only the alignment of the first access
1404 matters. */
1405 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1406 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1407 continue;
1409 /* For invariant accesses there is nothing to enhance. */
1410 if (integer_zerop (DR_STEP (dr)))
1411 continue;
1413 /* Strided accesses perform only component accesses, alignment is
1414 irrelevant for them. */
1415 if (STMT_VINFO_STRIDED_P (stmt_info)
1416 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1417 continue;
1419 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1420 do_peeling = vector_alignment_reachable_p (dr);
1421 if (do_peeling)
1423 if (known_alignment_for_access_p (dr))
1425 unsigned int npeel_tmp;
1426 bool negative = tree_int_cst_compare (DR_STEP (dr),
1427 size_zero_node) < 0;
1429 /* Save info about DR in the hash table. */
1430 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1431 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1432 = new hash_table<peel_info_hasher> (1);
1434 vectype = STMT_VINFO_VECTYPE (stmt_info);
1435 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1436 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1437 TREE_TYPE (DR_REF (dr))));
1438 npeel_tmp = (negative
1439 ? (mis - nelements) : (nelements - mis))
1440 & (nelements - 1);
1442 /* For multiple types, it is possible that the bigger type access
1443 will have more than one peeling option. E.g., a loop with two
1444 types: one of size (vector size / 4), and the other one of
1445 size (vector size / 8). Vectorization factor will 8. If both
1446 access are misaligned by 3, the first one needs one scalar
1447 iteration to be aligned, and the second one needs 5. But the
1448 the first one will be aligned also by peeling 5 scalar
1449 iterations, and in that case both accesses will be aligned.
1450 Hence, except for the immediate peeling amount, we also want
1451 to try to add full vector size, while we don't exceed
1452 vectorization factor.
1453 We do this automtically for cost model, since we calculate cost
1454 for every peeling option. */
1455 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1456 possible_npeel_number = vf /nelements;
1458 /* Handle the aligned case. We may decide to align some other
1459 access, making DR unaligned. */
1460 if (DR_MISALIGNMENT (dr) == 0)
1462 npeel_tmp = 0;
1463 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1464 possible_npeel_number++;
1467 for (j = 0; j < possible_npeel_number; j++)
1469 gcc_assert (npeel_tmp <= vf);
1470 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1471 npeel_tmp += nelements;
1474 all_misalignments_unknown = false;
1475 /* Data-ref that was chosen for the case that all the
1476 misalignments are unknown is not relevant anymore, since we
1477 have a data-ref with known alignment. */
1478 dr0 = NULL;
1480 else
1482 /* If we don't know any misalignment values, we prefer
1483 peeling for data-ref that has the maximum number of data-refs
1484 with the same alignment, unless the target prefers to align
1485 stores over load. */
1486 if (all_misalignments_unknown)
1488 unsigned same_align_drs
1489 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1490 if (!dr0
1491 || same_align_drs_max < same_align_drs)
1493 same_align_drs_max = same_align_drs;
1494 dr0 = dr;
1496 /* For data-refs with the same number of related
1497 accesses prefer the one where the misalign
1498 computation will be invariant in the outermost loop. */
1499 else if (same_align_drs_max == same_align_drs)
1501 struct loop *ivloop0, *ivloop;
1502 ivloop0 = outermost_invariant_loop_for_expr
1503 (loop, DR_BASE_ADDRESS (dr0));
1504 ivloop = outermost_invariant_loop_for_expr
1505 (loop, DR_BASE_ADDRESS (dr));
1506 if ((ivloop && !ivloop0)
1507 || (ivloop && ivloop0
1508 && flow_loop_nested_p (ivloop, ivloop0)))
1509 dr0 = dr;
1512 if (!first_store && DR_IS_WRITE (dr))
1513 first_store = dr;
1516 /* If there are both known and unknown misaligned accesses in the
1517 loop, we choose peeling amount according to the known
1518 accesses. */
1519 if (!supportable_dr_alignment)
1521 dr0 = dr;
1522 if (!first_store && DR_IS_WRITE (dr))
1523 first_store = dr;
1527 else
1529 if (!aligned_access_p (dr))
1531 if (dump_enabled_p ())
1532 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1533 "vector alignment may not be reachable\n");
1534 break;
1539 /* Check if we can possibly peel the loop. */
1540 if (!vect_can_advance_ivs_p (loop_vinfo)
1541 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1542 do_peeling = false;
1544 if (do_peeling
1545 && all_misalignments_unknown
1546 && vect_supportable_dr_alignment (dr0, false))
1548 /* Check if the target requires to prefer stores over loads, i.e., if
1549 misaligned stores are more expensive than misaligned loads (taking
1550 drs with same alignment into account). */
1551 if (first_store && DR_IS_READ (dr0))
1553 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1554 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1555 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1556 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1557 stmt_vector_for_cost dummy;
1558 dummy.create (2);
1560 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1561 &dummy);
1562 vect_get_data_access_cost (first_store, &store_inside_cost,
1563 &store_outside_cost, &dummy);
1565 dummy.release ();
1567 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1568 aligning the load DR0). */
1569 load_inside_penalty = store_inside_cost;
1570 load_outside_penalty = store_outside_cost;
1571 for (i = 0;
1572 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1573 DR_STMT (first_store))).iterate (i, &dr);
1574 i++)
1575 if (DR_IS_READ (dr))
1577 load_inside_penalty += load_inside_cost;
1578 load_outside_penalty += load_outside_cost;
1580 else
1582 load_inside_penalty += store_inside_cost;
1583 load_outside_penalty += store_outside_cost;
1586 /* Calculate the penalty for leaving DR0 unaligned (by
1587 aligning the FIRST_STORE). */
1588 store_inside_penalty = load_inside_cost;
1589 store_outside_penalty = load_outside_cost;
1590 for (i = 0;
1591 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1592 DR_STMT (dr0))).iterate (i, &dr);
1593 i++)
1594 if (DR_IS_READ (dr))
1596 store_inside_penalty += load_inside_cost;
1597 store_outside_penalty += load_outside_cost;
1599 else
1601 store_inside_penalty += store_inside_cost;
1602 store_outside_penalty += store_outside_cost;
1605 if (load_inside_penalty > store_inside_penalty
1606 || (load_inside_penalty == store_inside_penalty
1607 && load_outside_penalty > store_outside_penalty))
1608 dr0 = first_store;
1611 /* In case there are only loads with different unknown misalignments, use
1612 peeling only if it may help to align other accesses in the loop or
1613 if it may help improving load bandwith when we'd end up using
1614 unaligned loads. */
1615 tree dr0_vt = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr0)));
1616 if (!first_store
1617 && !STMT_VINFO_SAME_ALIGN_REFS (
1618 vinfo_for_stmt (DR_STMT (dr0))).length ()
1619 && (vect_supportable_dr_alignment (dr0, false)
1620 != dr_unaligned_supported
1621 || (builtin_vectorization_cost (vector_load, dr0_vt, 0)
1622 == builtin_vectorization_cost (unaligned_load, dr0_vt, -1))))
1623 do_peeling = false;
1626 if (do_peeling && !dr0)
1628 /* Peeling is possible, but there is no data access that is not supported
1629 unless aligned. So we try to choose the best possible peeling. */
1631 /* We should get here only if there are drs with known misalignment. */
1632 gcc_assert (!all_misalignments_unknown);
1634 /* Choose the best peeling from the hash table. */
1635 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1636 &body_cost_vec);
1637 if (!dr0 || !npeel)
1638 do_peeling = false;
1641 if (do_peeling)
1643 stmt = DR_STMT (dr0);
1644 stmt_info = vinfo_for_stmt (stmt);
1645 vectype = STMT_VINFO_VECTYPE (stmt_info);
1646 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1648 if (known_alignment_for_access_p (dr0))
1650 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1651 size_zero_node) < 0;
1652 if (!npeel)
1654 /* Since it's known at compile time, compute the number of
1655 iterations in the peeled loop (the peeling factor) for use in
1656 updating DR_MISALIGNMENT values. The peeling factor is the
1657 vectorization factor minus the misalignment as an element
1658 count. */
1659 mis = DR_MISALIGNMENT (dr0);
1660 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1661 npeel = ((negative ? mis - nelements : nelements - mis)
1662 & (nelements - 1));
1665 /* For interleaved data access every iteration accesses all the
1666 members of the group, therefore we divide the number of iterations
1667 by the group size. */
1668 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1669 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1670 npeel /= GROUP_SIZE (stmt_info);
1672 if (dump_enabled_p ())
1673 dump_printf_loc (MSG_NOTE, vect_location,
1674 "Try peeling by %d\n", npeel);
1677 /* Ensure that all data refs can be vectorized after the peel. */
1678 FOR_EACH_VEC_ELT (datarefs, i, dr)
1680 int save_misalignment;
1682 if (dr == dr0)
1683 continue;
1685 stmt = DR_STMT (dr);
1686 stmt_info = vinfo_for_stmt (stmt);
1687 /* For interleaving, only the alignment of the first access
1688 matters. */
1689 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1690 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1691 continue;
1693 /* Strided accesses perform only component accesses, alignment is
1694 irrelevant for them. */
1695 if (STMT_VINFO_STRIDED_P (stmt_info)
1696 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1697 continue;
1699 save_misalignment = DR_MISALIGNMENT (dr);
1700 vect_update_misalignment_for_peel (dr, dr0, npeel);
1701 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1702 SET_DR_MISALIGNMENT (dr, save_misalignment);
1704 if (!supportable_dr_alignment)
1706 do_peeling = false;
1707 break;
1711 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1713 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1714 if (!stat)
1715 do_peeling = false;
1716 else
1718 body_cost_vec.release ();
1719 return stat;
1723 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
1724 if (do_peeling)
1726 unsigned max_allowed_peel
1727 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1728 if (max_allowed_peel != (unsigned)-1)
1730 unsigned max_peel = npeel;
1731 if (max_peel == 0)
1733 gimple dr_stmt = DR_STMT (dr0);
1734 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1735 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1736 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1738 if (max_peel > max_allowed_peel)
1740 do_peeling = false;
1741 if (dump_enabled_p ())
1742 dump_printf_loc (MSG_NOTE, vect_location,
1743 "Disable peeling, max peels reached: %d\n", max_peel);
1748 /* Cost model #2 - if peeling may result in a remaining loop not
1749 iterating enough to be vectorized then do not peel. */
1750 if (do_peeling
1751 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1753 unsigned max_peel
1754 = npeel == 0 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1 : npeel;
1755 if (LOOP_VINFO_INT_NITERS (loop_vinfo)
1756 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + max_peel)
1757 do_peeling = false;
1760 if (do_peeling)
1762 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1763 If the misalignment of DR_i is identical to that of dr0 then set
1764 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1765 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1766 by the peeling factor times the element size of DR_i (MOD the
1767 vectorization factor times the size). Otherwise, the
1768 misalignment of DR_i must be set to unknown. */
1769 FOR_EACH_VEC_ELT (datarefs, i, dr)
1770 if (dr != dr0)
1771 vect_update_misalignment_for_peel (dr, dr0, npeel);
1773 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1774 if (npeel)
1775 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1776 else
1777 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1778 = DR_MISALIGNMENT (dr0);
1779 SET_DR_MISALIGNMENT (dr0, 0);
1780 if (dump_enabled_p ())
1782 dump_printf_loc (MSG_NOTE, vect_location,
1783 "Alignment of access forced using peeling.\n");
1784 dump_printf_loc (MSG_NOTE, vect_location,
1785 "Peeling for alignment will be applied.\n");
1787 /* The inside-loop cost will be accounted for in vectorizable_load
1788 and vectorizable_store correctly with adjusted alignments.
1789 Drop the body_cst_vec on the floor here. */
1790 body_cost_vec.release ();
1792 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1793 gcc_assert (stat);
1794 return stat;
1798 body_cost_vec.release ();
1800 /* (2) Versioning to force alignment. */
1802 /* Try versioning if:
1803 1) optimize loop for speed
1804 2) there is at least one unsupported misaligned data ref with an unknown
1805 misalignment, and
1806 3) all misaligned data refs with a known misalignment are supported, and
1807 4) the number of runtime alignment checks is within reason. */
1809 do_versioning =
1810 optimize_loop_nest_for_speed_p (loop)
1811 && (!loop->inner); /* FORNOW */
1813 if (do_versioning)
1815 FOR_EACH_VEC_ELT (datarefs, i, dr)
1817 stmt = DR_STMT (dr);
1818 stmt_info = vinfo_for_stmt (stmt);
1820 /* For interleaving, only the alignment of the first access
1821 matters. */
1822 if (aligned_access_p (dr)
1823 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1824 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1825 continue;
1827 if (STMT_VINFO_STRIDED_P (stmt_info))
1829 /* Strided loads perform only component accesses, alignment is
1830 irrelevant for them. */
1831 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1832 continue;
1833 do_versioning = false;
1834 break;
1837 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1839 if (!supportable_dr_alignment)
1841 gimple stmt;
1842 int mask;
1843 tree vectype;
1845 if (known_alignment_for_access_p (dr)
1846 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1847 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1849 do_versioning = false;
1850 break;
1853 stmt = DR_STMT (dr);
1854 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1855 gcc_assert (vectype);
1857 /* The rightmost bits of an aligned address must be zeros.
1858 Construct the mask needed for this test. For example,
1859 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1860 mask must be 15 = 0xf. */
1861 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1863 /* FORNOW: use the same mask to test all potentially unaligned
1864 references in the loop. The vectorizer currently supports
1865 a single vector size, see the reference to
1866 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1867 vectorization factor is computed. */
1868 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1869 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1870 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1871 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1872 DR_STMT (dr));
1876 /* Versioning requires at least one misaligned data reference. */
1877 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1878 do_versioning = false;
1879 else if (!do_versioning)
1880 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1883 if (do_versioning)
1885 vec<gimple> may_misalign_stmts
1886 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1887 gimple stmt;
1889 /* It can now be assumed that the data references in the statements
1890 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1891 of the loop being vectorized. */
1892 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1895 dr = STMT_VINFO_DATA_REF (stmt_info);
1896 SET_DR_MISALIGNMENT (dr, 0);
1897 if (dump_enabled_p ())
1898 dump_printf_loc (MSG_NOTE, vect_location,
1899 "Alignment of access forced using versioning.\n");
1902 if (dump_enabled_p ())
1903 dump_printf_loc (MSG_NOTE, vect_location,
1904 "Versioning for alignment will be applied.\n");
1906 /* Peeling and versioning can't be done together at this time. */
1907 gcc_assert (! (do_peeling && do_versioning));
1909 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1910 gcc_assert (stat);
1911 return stat;
1914 /* This point is reached if neither peeling nor versioning is being done. */
1915 gcc_assert (! (do_peeling || do_versioning));
1917 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1918 return stat;
1922 /* Function vect_find_same_alignment_drs.
1924 Update group and alignment relations according to the chosen
1925 vectorization factor. */
1927 static void
1928 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1929 loop_vec_info loop_vinfo)
1931 unsigned int i;
1932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1933 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1934 struct data_reference *dra = DDR_A (ddr);
1935 struct data_reference *drb = DDR_B (ddr);
1936 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1937 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1938 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1939 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1940 lambda_vector dist_v;
1941 unsigned int loop_depth;
1943 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1944 return;
1946 if (dra == drb)
1947 return;
1949 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1950 return;
1952 /* Loop-based vectorization and known data dependence. */
1953 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1954 return;
1956 /* Data-dependence analysis reports a distance vector of zero
1957 for data-references that overlap only in the first iteration
1958 but have different sign step (see PR45764).
1959 So as a sanity check require equal DR_STEP. */
1960 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1961 return;
1963 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1964 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1966 int dist = dist_v[loop_depth];
1968 if (dump_enabled_p ())
1969 dump_printf_loc (MSG_NOTE, vect_location,
1970 "dependence distance = %d.\n", dist);
1972 /* Same loop iteration. */
1973 if (dist == 0
1974 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1976 /* Two references with distance zero have the same alignment. */
1977 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1978 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1979 if (dump_enabled_p ())
1981 dump_printf_loc (MSG_NOTE, vect_location,
1982 "accesses have the same alignment.\n");
1983 dump_printf (MSG_NOTE,
1984 "dependence distance modulo vf == 0 between ");
1985 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1986 dump_printf (MSG_NOTE, " and ");
1987 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1988 dump_printf (MSG_NOTE, "\n");
1995 /* Function vect_analyze_data_refs_alignment
1997 Analyze the alignment of the data-references in the loop.
1998 Return FALSE if a data reference is found that cannot be vectorized. */
2000 bool
2001 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
2002 bb_vec_info bb_vinfo)
2004 if (dump_enabled_p ())
2005 dump_printf_loc (MSG_NOTE, vect_location,
2006 "=== vect_analyze_data_refs_alignment ===\n");
2008 /* Mark groups of data references with same alignment using
2009 data dependence information. */
2010 if (loop_vinfo)
2012 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2013 struct data_dependence_relation *ddr;
2014 unsigned int i;
2016 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2017 vect_find_same_alignment_drs (ddr, loop_vinfo);
2020 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2022 if (dump_enabled_p ())
2023 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2024 "not vectorized: can't calculate alignment "
2025 "for data ref.\n");
2026 return false;
2029 return true;
2033 /* Analyze groups of accesses: check that DR belongs to a group of
2034 accesses of legal size, step, etc. Detect gaps, single element
2035 interleaving, and other special cases. Set grouped access info.
2036 Collect groups of strided stores for further use in SLP analysis. */
2038 static bool
2039 vect_analyze_group_access (struct data_reference *dr)
2041 tree step = DR_STEP (dr);
2042 tree scalar_type = TREE_TYPE (DR_REF (dr));
2043 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2044 gimple stmt = DR_STMT (dr);
2045 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2046 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2047 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2048 HOST_WIDE_INT dr_step = -1;
2049 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2050 bool slp_impossible = false;
2051 struct loop *loop = NULL;
2053 if (loop_vinfo)
2054 loop = LOOP_VINFO_LOOP (loop_vinfo);
2056 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2057 size of the interleaving group (including gaps). */
2058 if (tree_fits_shwi_p (step))
2060 dr_step = tree_to_shwi (step);
2061 groupsize = absu_hwi (dr_step) / type_size;
2063 else
2064 groupsize = 0;
2066 /* Not consecutive access is possible only if it is a part of interleaving. */
2067 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2069 /* Check if it this DR is a part of interleaving, and is a single
2070 element of the group that is accessed in the loop. */
2072 /* Gaps are supported only for loads. STEP must be a multiple of the type
2073 size. The size of the group must be a power of 2. */
2074 if (DR_IS_READ (dr)
2075 && (dr_step % type_size) == 0
2076 && groupsize > 0
2077 && exact_log2 (groupsize) != -1)
2079 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2080 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2081 if (dump_enabled_p ())
2083 dump_printf_loc (MSG_NOTE, vect_location,
2084 "Detected single element interleaving ");
2085 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2086 dump_printf (MSG_NOTE, " step ");
2087 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2088 dump_printf (MSG_NOTE, "\n");
2091 if (loop_vinfo)
2093 if (dump_enabled_p ())
2094 dump_printf_loc (MSG_NOTE, vect_location,
2095 "Data access with gaps requires scalar "
2096 "epilogue loop\n");
2097 if (loop->inner)
2099 if (dump_enabled_p ())
2100 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2101 "Peeling for outer loop is not"
2102 " supported\n");
2103 return false;
2106 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2109 return true;
2112 if (dump_enabled_p ())
2114 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2115 "not consecutive access ");
2116 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2117 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2120 if (bb_vinfo)
2122 /* Mark the statement as unvectorizable. */
2123 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2124 return true;
2127 return false;
2130 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2132 /* First stmt in the interleaving chain. Check the chain. */
2133 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2134 struct data_reference *data_ref = dr;
2135 unsigned int count = 1;
2136 tree prev_init = DR_INIT (data_ref);
2137 gimple prev = stmt;
2138 HOST_WIDE_INT diff, gaps = 0;
2140 while (next)
2142 /* Skip same data-refs. In case that two or more stmts share
2143 data-ref (supported only for loads), we vectorize only the first
2144 stmt, and the rest get their vectorized loads from the first
2145 one. */
2146 if (!tree_int_cst_compare (DR_INIT (data_ref),
2147 DR_INIT (STMT_VINFO_DATA_REF (
2148 vinfo_for_stmt (next)))))
2150 if (DR_IS_WRITE (data_ref))
2152 if (dump_enabled_p ())
2153 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2154 "Two store stmts share the same dr.\n");
2155 return false;
2158 /* For load use the same data-ref load. */
2159 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2161 prev = next;
2162 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2163 continue;
2166 prev = next;
2167 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2169 /* All group members have the same STEP by construction. */
2170 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2172 /* Check that the distance between two accesses is equal to the type
2173 size. Otherwise, we have gaps. */
2174 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2175 - TREE_INT_CST_LOW (prev_init)) / type_size;
2176 if (diff != 1)
2178 /* FORNOW: SLP of accesses with gaps is not supported. */
2179 slp_impossible = true;
2180 if (DR_IS_WRITE (data_ref))
2182 if (dump_enabled_p ())
2183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2184 "interleaved store with gaps\n");
2185 return false;
2188 gaps += diff - 1;
2191 last_accessed_element += diff;
2193 /* Store the gap from the previous member of the group. If there is no
2194 gap in the access, GROUP_GAP is always 1. */
2195 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2197 prev_init = DR_INIT (data_ref);
2198 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2199 /* Count the number of data-refs in the chain. */
2200 count++;
2203 if (groupsize == 0)
2204 groupsize = count + gaps;
2206 /* Check that the size of the interleaving is equal to count for stores,
2207 i.e., that there are no gaps. */
2208 if (groupsize != count)
2210 if (DR_IS_READ (dr))
2212 slp_impossible = true;
2213 /* There is a gap after the last load in the group. This gap is a
2214 difference between the groupsize and the number of elements.
2215 When there is no gap, this difference should be 0. */
2216 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2218 else
2220 if (dump_enabled_p ())
2221 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2222 "interleaved store with gaps\n");
2223 return false;
2227 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2228 if (dump_enabled_p ())
2229 dump_printf_loc (MSG_NOTE, vect_location,
2230 "Detected interleaving of size %d\n", (int)groupsize);
2232 /* SLP: create an SLP data structure for every interleaving group of
2233 stores for further analysis in vect_analyse_slp. */
2234 if (DR_IS_WRITE (dr) && !slp_impossible)
2236 if (loop_vinfo)
2237 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2238 if (bb_vinfo)
2239 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2242 /* There is a gap in the end of the group. */
2243 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2245 if (dump_enabled_p ())
2246 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2247 "Data access with gaps requires scalar "
2248 "epilogue loop\n");
2249 if (loop->inner)
2251 if (dump_enabled_p ())
2252 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2253 "Peeling for outer loop is not supported\n");
2254 return false;
2257 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2261 return true;
2265 /* Analyze the access pattern of the data-reference DR.
2266 In case of non-consecutive accesses call vect_analyze_group_access() to
2267 analyze groups of accesses. */
2269 static bool
2270 vect_analyze_data_ref_access (struct data_reference *dr)
2272 tree step = DR_STEP (dr);
2273 tree scalar_type = TREE_TYPE (DR_REF (dr));
2274 gimple stmt = DR_STMT (dr);
2275 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2276 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2277 struct loop *loop = NULL;
2279 if (loop_vinfo)
2280 loop = LOOP_VINFO_LOOP (loop_vinfo);
2282 if (loop_vinfo && !step)
2284 if (dump_enabled_p ())
2285 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2286 "bad data-ref access in loop\n");
2287 return false;
2290 /* Allow invariant loads in not nested loops. */
2291 if (loop_vinfo && integer_zerop (step))
2293 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2294 if (nested_in_vect_loop_p (loop, stmt))
2296 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_NOTE, vect_location,
2298 "zero step in inner loop of nest\n");
2299 return false;
2301 return DR_IS_READ (dr);
2304 if (loop && nested_in_vect_loop_p (loop, stmt))
2306 /* Interleaved accesses are not yet supported within outer-loop
2307 vectorization for references in the inner-loop. */
2308 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2310 /* For the rest of the analysis we use the outer-loop step. */
2311 step = STMT_VINFO_DR_STEP (stmt_info);
2312 if (integer_zerop (step))
2314 if (dump_enabled_p ())
2315 dump_printf_loc (MSG_NOTE, vect_location,
2316 "zero step in outer loop.\n");
2317 if (DR_IS_READ (dr))
2318 return true;
2319 else
2320 return false;
2324 /* Consecutive? */
2325 if (TREE_CODE (step) == INTEGER_CST)
2327 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2328 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2329 || (dr_step < 0
2330 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2332 /* Mark that it is not interleaving. */
2333 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2334 return true;
2338 if (loop && nested_in_vect_loop_p (loop, stmt))
2340 if (dump_enabled_p ())
2341 dump_printf_loc (MSG_NOTE, vect_location,
2342 "grouped access in outer loop.\n");
2343 return false;
2347 /* Assume this is a DR handled by non-constant strided load case. */
2348 if (TREE_CODE (step) != INTEGER_CST)
2349 return (STMT_VINFO_STRIDED_P (stmt_info)
2350 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2351 || vect_analyze_group_access (dr)));
2353 /* Not consecutive access - check if it's a part of interleaving group. */
2354 return vect_analyze_group_access (dr);
2359 /* A helper function used in the comparator function to sort data
2360 references. T1 and T2 are two data references to be compared.
2361 The function returns -1, 0, or 1. */
2363 static int
2364 compare_tree (tree t1, tree t2)
2366 int i, cmp;
2367 enum tree_code code;
2368 char tclass;
2370 if (t1 == t2)
2371 return 0;
2372 if (t1 == NULL)
2373 return -1;
2374 if (t2 == NULL)
2375 return 1;
2378 if (TREE_CODE (t1) != TREE_CODE (t2))
2379 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2381 code = TREE_CODE (t1);
2382 switch (code)
2384 /* For const values, we can just use hash values for comparisons. */
2385 case INTEGER_CST:
2386 case REAL_CST:
2387 case FIXED_CST:
2388 case STRING_CST:
2389 case COMPLEX_CST:
2390 case VECTOR_CST:
2392 hashval_t h1 = iterative_hash_expr (t1, 0);
2393 hashval_t h2 = iterative_hash_expr (t2, 0);
2394 if (h1 != h2)
2395 return h1 < h2 ? -1 : 1;
2396 break;
2399 case SSA_NAME:
2400 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2401 if (cmp != 0)
2402 return cmp;
2404 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2405 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2406 break;
2408 default:
2409 tclass = TREE_CODE_CLASS (code);
2411 /* For var-decl, we could compare their UIDs. */
2412 if (tclass == tcc_declaration)
2414 if (DECL_UID (t1) != DECL_UID (t2))
2415 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2416 break;
2419 /* For expressions with operands, compare their operands recursively. */
2420 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2422 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2423 if (cmp != 0)
2424 return cmp;
2428 return 0;
2432 /* Compare two data-references DRA and DRB to group them into chunks
2433 suitable for grouping. */
2435 static int
2436 dr_group_sort_cmp (const void *dra_, const void *drb_)
2438 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2439 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2440 int cmp;
2442 /* Stabilize sort. */
2443 if (dra == drb)
2444 return 0;
2446 /* Ordering of DRs according to base. */
2447 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2449 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2450 if (cmp != 0)
2451 return cmp;
2454 /* And according to DR_OFFSET. */
2455 if (!dr_equal_offsets_p (dra, drb))
2457 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2458 if (cmp != 0)
2459 return cmp;
2462 /* Put reads before writes. */
2463 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2464 return DR_IS_READ (dra) ? -1 : 1;
2466 /* Then sort after access size. */
2467 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2468 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2470 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2471 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2472 if (cmp != 0)
2473 return cmp;
2476 /* And after step. */
2477 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2479 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2480 if (cmp != 0)
2481 return cmp;
2484 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2485 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2486 if (cmp == 0)
2487 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2488 return cmp;
2491 /* Function vect_analyze_data_ref_accesses.
2493 Analyze the access pattern of all the data references in the loop.
2495 FORNOW: the only access pattern that is considered vectorizable is a
2496 simple step 1 (consecutive) access.
2498 FORNOW: handle only arrays and pointer accesses. */
2500 bool
2501 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2503 unsigned int i;
2504 vec<data_reference_p> datarefs;
2505 struct data_reference *dr;
2507 if (dump_enabled_p ())
2508 dump_printf_loc (MSG_NOTE, vect_location,
2509 "=== vect_analyze_data_ref_accesses ===\n");
2511 if (loop_vinfo)
2512 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2513 else
2514 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2516 if (datarefs.is_empty ())
2517 return true;
2519 /* Sort the array of datarefs to make building the interleaving chains
2520 linear. Don't modify the original vector's order, it is needed for
2521 determining what dependencies are reversed. */
2522 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2523 datarefs_copy.qsort (dr_group_sort_cmp);
2525 /* Build the interleaving chains. */
2526 for (i = 0; i < datarefs_copy.length () - 1;)
2528 data_reference_p dra = datarefs_copy[i];
2529 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2530 stmt_vec_info lastinfo = NULL;
2531 for (i = i + 1; i < datarefs_copy.length (); ++i)
2533 data_reference_p drb = datarefs_copy[i];
2534 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2536 /* ??? Imperfect sorting (non-compatible types, non-modulo
2537 accesses, same accesses) can lead to a group to be artificially
2538 split here as we don't just skip over those. If it really
2539 matters we can push those to a worklist and re-iterate
2540 over them. The we can just skip ahead to the next DR here. */
2542 /* Check that the data-refs have same first location (except init)
2543 and they are both either store or load (not load and store,
2544 not masked loads or stores). */
2545 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2546 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2547 DR_BASE_ADDRESS (drb), 0)
2548 || !dr_equal_offsets_p (dra, drb)
2549 || !gimple_assign_single_p (DR_STMT (dra))
2550 || !gimple_assign_single_p (DR_STMT (drb)))
2551 break;
2553 /* Check that the data-refs have the same constant size. */
2554 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2555 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2556 if (!tree_fits_uhwi_p (sza)
2557 || !tree_fits_uhwi_p (szb)
2558 || !tree_int_cst_equal (sza, szb))
2559 break;
2561 /* Check that the data-refs have the same step. */
2562 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2563 break;
2565 /* Do not place the same access in the interleaving chain twice. */
2566 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2567 break;
2569 /* Check the types are compatible.
2570 ??? We don't distinguish this during sorting. */
2571 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2572 TREE_TYPE (DR_REF (drb))))
2573 break;
2575 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2576 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2577 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2578 gcc_assert (init_a < init_b);
2580 /* If init_b == init_a + the size of the type * k, we have an
2581 interleaving, and DRA is accessed before DRB. */
2582 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2583 if ((init_b - init_a) % type_size_a != 0)
2584 break;
2586 /* If we have a store, the accesses are adjacent. This splits
2587 groups into chunks we support (we don't support vectorization
2588 of stores with gaps). */
2589 if (!DR_IS_READ (dra)
2590 && (init_b - (HOST_WIDE_INT) TREE_INT_CST_LOW
2591 (DR_INIT (datarefs_copy[i-1]))
2592 != type_size_a))
2593 break;
2595 /* If the step (if not zero or non-constant) is greater than the
2596 difference between data-refs' inits this splits groups into
2597 suitable sizes. */
2598 if (tree_fits_shwi_p (DR_STEP (dra)))
2600 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2601 if (step != 0 && step <= (init_b - init_a))
2602 break;
2605 if (dump_enabled_p ())
2607 dump_printf_loc (MSG_NOTE, vect_location,
2608 "Detected interleaving ");
2609 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2610 dump_printf (MSG_NOTE, " and ");
2611 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2612 dump_printf (MSG_NOTE, "\n");
2615 /* Link the found element into the group list. */
2616 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2618 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2619 lastinfo = stmtinfo_a;
2621 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2622 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2623 lastinfo = stmtinfo_b;
2627 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2628 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2629 && !vect_analyze_data_ref_access (dr))
2631 if (dump_enabled_p ())
2632 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2633 "not vectorized: complicated access pattern.\n");
2635 if (bb_vinfo)
2637 /* Mark the statement as not vectorizable. */
2638 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2639 continue;
2641 else
2643 datarefs_copy.release ();
2644 return false;
2648 datarefs_copy.release ();
2649 return true;
2653 /* Operator == between two dr_with_seg_len objects.
2655 This equality operator is used to make sure two data refs
2656 are the same one so that we will consider to combine the
2657 aliasing checks of those two pairs of data dependent data
2658 refs. */
2660 static bool
2661 operator == (const dr_with_seg_len& d1,
2662 const dr_with_seg_len& d2)
2664 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2665 DR_BASE_ADDRESS (d2.dr), 0)
2666 && compare_tree (d1.offset, d2.offset) == 0
2667 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2670 /* Function comp_dr_with_seg_len_pair.
2672 Comparison function for sorting objects of dr_with_seg_len_pair_t
2673 so that we can combine aliasing checks in one scan. */
2675 static int
2676 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2678 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2679 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2681 const dr_with_seg_len &p11 = p1->first,
2682 &p12 = p1->second,
2683 &p21 = p2->first,
2684 &p22 = p2->second;
2686 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2687 if a and c have the same basic address snd step, and b and d have the same
2688 address and step. Therefore, if any a&c or b&d don't have the same address
2689 and step, we don't care the order of those two pairs after sorting. */
2690 int comp_res;
2692 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2693 DR_BASE_ADDRESS (p21.dr))) != 0)
2694 return comp_res;
2695 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2696 DR_BASE_ADDRESS (p22.dr))) != 0)
2697 return comp_res;
2698 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2699 return comp_res;
2700 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2701 return comp_res;
2702 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2703 return comp_res;
2704 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2705 return comp_res;
2707 return 0;
2710 /* Function vect_vfa_segment_size.
2712 Create an expression that computes the size of segment
2713 that will be accessed for a data reference. The functions takes into
2714 account that realignment loads may access one more vector.
2716 Input:
2717 DR: The data reference.
2718 LENGTH_FACTOR: segment length to consider.
2720 Return an expression whose value is the size of segment which will be
2721 accessed by DR. */
2723 static tree
2724 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2726 tree segment_length;
2728 if (integer_zerop (DR_STEP (dr)))
2729 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2730 else
2731 segment_length = size_binop (MULT_EXPR,
2732 fold_convert (sizetype, DR_STEP (dr)),
2733 fold_convert (sizetype, length_factor));
2735 if (vect_supportable_dr_alignment (dr, false)
2736 == dr_explicit_realign_optimized)
2738 tree vector_size = TYPE_SIZE_UNIT
2739 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2741 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2743 return segment_length;
2746 /* Function vect_prune_runtime_alias_test_list.
2748 Prune a list of ddrs to be tested at run-time by versioning for alias.
2749 Merge several alias checks into one if possible.
2750 Return FALSE if resulting list of ddrs is longer then allowed by
2751 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2753 bool
2754 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2756 vec<ddr_p> may_alias_ddrs =
2757 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2758 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2759 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2760 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2761 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2763 ddr_p ddr;
2764 unsigned int i;
2765 tree length_factor;
2767 if (dump_enabled_p ())
2768 dump_printf_loc (MSG_NOTE, vect_location,
2769 "=== vect_prune_runtime_alias_test_list ===\n");
2771 if (may_alias_ddrs.is_empty ())
2772 return true;
2774 /* Basically, for each pair of dependent data refs store_ptr_0
2775 and load_ptr_0, we create an expression:
2777 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2778 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2780 for aliasing checks. However, in some cases we can decrease
2781 the number of checks by combining two checks into one. For
2782 example, suppose we have another pair of data refs store_ptr_0
2783 and load_ptr_1, and if the following condition is satisfied:
2785 load_ptr_0 < load_ptr_1 &&
2786 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2788 (this condition means, in each iteration of vectorized loop,
2789 the accessed memory of store_ptr_0 cannot be between the memory
2790 of load_ptr_0 and load_ptr_1.)
2792 we then can use only the following expression to finish the
2793 alising checks between store_ptr_0 & load_ptr_0 and
2794 store_ptr_0 & load_ptr_1:
2796 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2797 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2799 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2800 same basic address. */
2802 comp_alias_ddrs.create (may_alias_ddrs.length ());
2804 /* First, we collect all data ref pairs for aliasing checks. */
2805 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2807 struct data_reference *dr_a, *dr_b;
2808 gimple dr_group_first_a, dr_group_first_b;
2809 tree segment_length_a, segment_length_b;
2810 gimple stmt_a, stmt_b;
2812 dr_a = DDR_A (ddr);
2813 stmt_a = DR_STMT (DDR_A (ddr));
2814 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2815 if (dr_group_first_a)
2817 stmt_a = dr_group_first_a;
2818 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2821 dr_b = DDR_B (ddr);
2822 stmt_b = DR_STMT (DDR_B (ddr));
2823 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2824 if (dr_group_first_b)
2826 stmt_b = dr_group_first_b;
2827 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2830 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2831 length_factor = scalar_loop_iters;
2832 else
2833 length_factor = size_int (vect_factor);
2834 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2835 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2837 dr_with_seg_len_pair_t dr_with_seg_len_pair
2838 (dr_with_seg_len (dr_a, segment_length_a),
2839 dr_with_seg_len (dr_b, segment_length_b));
2841 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2842 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2844 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2847 /* Second, we sort the collected data ref pairs so that we can scan
2848 them once to combine all possible aliasing checks. */
2849 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2851 /* Third, we scan the sorted dr pairs and check if we can combine
2852 alias checks of two neighbouring dr pairs. */
2853 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2855 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2856 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2857 *dr_b1 = &comp_alias_ddrs[i-1].second,
2858 *dr_a2 = &comp_alias_ddrs[i].first,
2859 *dr_b2 = &comp_alias_ddrs[i].second;
2861 /* Remove duplicate data ref pairs. */
2862 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2864 if (dump_enabled_p ())
2866 dump_printf_loc (MSG_NOTE, vect_location,
2867 "found equal ranges ");
2868 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2869 DR_REF (dr_a1->dr));
2870 dump_printf (MSG_NOTE, ", ");
2871 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2872 DR_REF (dr_b1->dr));
2873 dump_printf (MSG_NOTE, " and ");
2874 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2875 DR_REF (dr_a2->dr));
2876 dump_printf (MSG_NOTE, ", ");
2877 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2878 DR_REF (dr_b2->dr));
2879 dump_printf (MSG_NOTE, "\n");
2882 comp_alias_ddrs.ordered_remove (i--);
2883 continue;
2886 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2888 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2889 and DR_A1 and DR_A2 are two consecutive memrefs. */
2890 if (*dr_a1 == *dr_a2)
2892 std::swap (dr_a1, dr_b1);
2893 std::swap (dr_a2, dr_b2);
2896 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2897 DR_BASE_ADDRESS (dr_a2->dr),
2899 || !tree_fits_shwi_p (dr_a1->offset)
2900 || !tree_fits_shwi_p (dr_a2->offset))
2901 continue;
2903 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2904 - tree_to_shwi (dr_a1->offset));
2907 /* Now we check if the following condition is satisfied:
2909 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2911 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2912 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2913 have to make a best estimation. We can get the minimum value
2914 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2915 then either of the following two conditions can guarantee the
2916 one above:
2918 1: DIFF <= MIN_SEG_LEN_B
2919 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2923 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2924 ? tree_to_shwi (dr_b1->seg_len)
2925 : vect_factor);
2927 if (diff <= min_seg_len_b
2928 || (tree_fits_shwi_p (dr_a1->seg_len)
2929 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
2931 if (dump_enabled_p ())
2933 dump_printf_loc (MSG_NOTE, vect_location,
2934 "merging ranges for ");
2935 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2936 DR_REF (dr_a1->dr));
2937 dump_printf (MSG_NOTE, ", ");
2938 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2939 DR_REF (dr_b1->dr));
2940 dump_printf (MSG_NOTE, " and ");
2941 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2942 DR_REF (dr_a2->dr));
2943 dump_printf (MSG_NOTE, ", ");
2944 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2945 DR_REF (dr_b2->dr));
2946 dump_printf (MSG_NOTE, "\n");
2949 dr_a1->seg_len = size_binop (PLUS_EXPR,
2950 dr_a2->seg_len, size_int (diff));
2951 comp_alias_ddrs.ordered_remove (i--);
2956 dump_printf_loc (MSG_NOTE, vect_location,
2957 "improved number of alias checks from %d to %d\n",
2958 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2959 if ((int) comp_alias_ddrs.length () >
2960 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2961 return false;
2963 return true;
2966 /* Check whether a non-affine read in stmt is suitable for gather load
2967 and if so, return a builtin decl for that operation. */
2969 tree
2970 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2971 tree *offp, int *scalep)
2973 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2974 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2975 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2976 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2977 tree offtype = NULL_TREE;
2978 tree decl, base, off;
2979 machine_mode pmode;
2980 int punsignedp, pvolatilep;
2982 base = DR_REF (dr);
2983 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2984 see if we can use the def stmt of the address. */
2985 if (is_gimple_call (stmt)
2986 && gimple_call_internal_p (stmt)
2987 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2988 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2989 && TREE_CODE (base) == MEM_REF
2990 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2991 && integer_zerop (TREE_OPERAND (base, 1))
2992 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
2994 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
2995 if (is_gimple_assign (def_stmt)
2996 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
2997 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3000 /* The gather builtins need address of the form
3001 loop_invariant + vector * {1, 2, 4, 8}
3003 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3004 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3005 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3006 multiplications and additions in it. To get a vector, we need
3007 a single SSA_NAME that will be defined in the loop and will
3008 contain everything that is not loop invariant and that can be
3009 vectorized. The following code attempts to find such a preexistng
3010 SSA_NAME OFF and put the loop invariants into a tree BASE
3011 that can be gimplified before the loop. */
3012 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
3013 &pmode, &punsignedp, &pvolatilep, false);
3014 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3016 if (TREE_CODE (base) == MEM_REF)
3018 if (!integer_zerop (TREE_OPERAND (base, 1)))
3020 if (off == NULL_TREE)
3022 offset_int moff = mem_ref_offset (base);
3023 off = wide_int_to_tree (sizetype, moff);
3025 else
3026 off = size_binop (PLUS_EXPR, off,
3027 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3029 base = TREE_OPERAND (base, 0);
3031 else
3032 base = build_fold_addr_expr (base);
3034 if (off == NULL_TREE)
3035 off = size_zero_node;
3037 /* If base is not loop invariant, either off is 0, then we start with just
3038 the constant offset in the loop invariant BASE and continue with base
3039 as OFF, otherwise give up.
3040 We could handle that case by gimplifying the addition of base + off
3041 into some SSA_NAME and use that as off, but for now punt. */
3042 if (!expr_invariant_in_loop_p (loop, base))
3044 if (!integer_zerop (off))
3045 return NULL_TREE;
3046 off = base;
3047 base = size_int (pbitpos / BITS_PER_UNIT);
3049 /* Otherwise put base + constant offset into the loop invariant BASE
3050 and continue with OFF. */
3051 else
3053 base = fold_convert (sizetype, base);
3054 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3057 /* OFF at this point may be either a SSA_NAME or some tree expression
3058 from get_inner_reference. Try to peel off loop invariants from it
3059 into BASE as long as possible. */
3060 STRIP_NOPS (off);
3061 while (offtype == NULL_TREE)
3063 enum tree_code code;
3064 tree op0, op1, add = NULL_TREE;
3066 if (TREE_CODE (off) == SSA_NAME)
3068 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3070 if (expr_invariant_in_loop_p (loop, off))
3071 return NULL_TREE;
3073 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3074 break;
3076 op0 = gimple_assign_rhs1 (def_stmt);
3077 code = gimple_assign_rhs_code (def_stmt);
3078 op1 = gimple_assign_rhs2 (def_stmt);
3080 else
3082 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3083 return NULL_TREE;
3084 code = TREE_CODE (off);
3085 extract_ops_from_tree (off, &code, &op0, &op1);
3087 switch (code)
3089 case POINTER_PLUS_EXPR:
3090 case PLUS_EXPR:
3091 if (expr_invariant_in_loop_p (loop, op0))
3093 add = op0;
3094 off = op1;
3095 do_add:
3096 add = fold_convert (sizetype, add);
3097 if (scale != 1)
3098 add = size_binop (MULT_EXPR, add, size_int (scale));
3099 base = size_binop (PLUS_EXPR, base, add);
3100 continue;
3102 if (expr_invariant_in_loop_p (loop, op1))
3104 add = op1;
3105 off = op0;
3106 goto do_add;
3108 break;
3109 case MINUS_EXPR:
3110 if (expr_invariant_in_loop_p (loop, op1))
3112 add = fold_convert (sizetype, op1);
3113 add = size_binop (MINUS_EXPR, size_zero_node, add);
3114 off = op0;
3115 goto do_add;
3117 break;
3118 case MULT_EXPR:
3119 if (scale == 1 && tree_fits_shwi_p (op1))
3121 scale = tree_to_shwi (op1);
3122 off = op0;
3123 continue;
3125 break;
3126 case SSA_NAME:
3127 off = op0;
3128 continue;
3129 CASE_CONVERT:
3130 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3131 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3132 break;
3133 if (TYPE_PRECISION (TREE_TYPE (op0))
3134 == TYPE_PRECISION (TREE_TYPE (off)))
3136 off = op0;
3137 continue;
3139 if (TYPE_PRECISION (TREE_TYPE (op0))
3140 < TYPE_PRECISION (TREE_TYPE (off)))
3142 off = op0;
3143 offtype = TREE_TYPE (off);
3144 STRIP_NOPS (off);
3145 continue;
3147 break;
3148 default:
3149 break;
3151 break;
3154 /* If at the end OFF still isn't a SSA_NAME or isn't
3155 defined in the loop, punt. */
3156 if (TREE_CODE (off) != SSA_NAME
3157 || expr_invariant_in_loop_p (loop, off))
3158 return NULL_TREE;
3160 if (offtype == NULL_TREE)
3161 offtype = TREE_TYPE (off);
3163 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3164 offtype, scale);
3165 if (decl == NULL_TREE)
3166 return NULL_TREE;
3168 if (basep)
3169 *basep = base;
3170 if (offp)
3171 *offp = off;
3172 if (scalep)
3173 *scalep = scale;
3174 return decl;
3177 /* Function vect_analyze_data_refs.
3179 Find all the data references in the loop or basic block.
3181 The general structure of the analysis of data refs in the vectorizer is as
3182 follows:
3183 1- vect_analyze_data_refs(loop/bb): call
3184 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3185 in the loop/bb and their dependences.
3186 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3187 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3188 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3192 bool
3193 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3194 bb_vec_info bb_vinfo,
3195 int *min_vf, unsigned *n_stmts)
3197 struct loop *loop = NULL;
3198 basic_block bb = NULL;
3199 unsigned int i;
3200 vec<data_reference_p> datarefs;
3201 struct data_reference *dr;
3202 tree scalar_type;
3204 if (dump_enabled_p ())
3205 dump_printf_loc (MSG_NOTE, vect_location,
3206 "=== vect_analyze_data_refs ===\n");
3208 if (loop_vinfo)
3210 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3212 loop = LOOP_VINFO_LOOP (loop_vinfo);
3213 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3214 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3216 if (dump_enabled_p ())
3217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3218 "not vectorized: loop contains function calls"
3219 " or data references that cannot be analyzed\n");
3220 return false;
3223 for (i = 0; i < loop->num_nodes; i++)
3225 gimple_stmt_iterator gsi;
3227 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3229 gimple stmt = gsi_stmt (gsi);
3230 if (is_gimple_debug (stmt))
3231 continue;
3232 ++*n_stmts;
3233 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3235 if (is_gimple_call (stmt) && loop->safelen)
3237 tree fndecl = gimple_call_fndecl (stmt), op;
3238 if (fndecl != NULL_TREE)
3240 struct cgraph_node *node = cgraph_node::get (fndecl);
3241 if (node != NULL && node->simd_clones != NULL)
3243 unsigned int j, n = gimple_call_num_args (stmt);
3244 for (j = 0; j < n; j++)
3246 op = gimple_call_arg (stmt, j);
3247 if (DECL_P (op)
3248 || (REFERENCE_CLASS_P (op)
3249 && get_base_address (op)))
3250 break;
3252 op = gimple_call_lhs (stmt);
3253 /* Ignore #pragma omp declare simd functions
3254 if they don't have data references in the
3255 call stmt itself. */
3256 if (j == n
3257 && !(op
3258 && (DECL_P (op)
3259 || (REFERENCE_CLASS_P (op)
3260 && get_base_address (op)))))
3261 continue;
3265 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3266 if (dump_enabled_p ())
3267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3268 "not vectorized: loop contains function "
3269 "calls or data references that cannot "
3270 "be analyzed\n");
3271 return false;
3276 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3278 else
3280 gimple_stmt_iterator gsi;
3282 bb = BB_VINFO_BB (bb_vinfo);
3283 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3285 gimple stmt = gsi_stmt (gsi);
3286 if (is_gimple_debug (stmt))
3287 continue;
3288 ++*n_stmts;
3289 if (!find_data_references_in_stmt (NULL, stmt,
3290 &BB_VINFO_DATAREFS (bb_vinfo)))
3292 /* Mark the rest of the basic-block as unvectorizable. */
3293 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3295 stmt = gsi_stmt (gsi);
3296 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3298 break;
3302 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3305 /* Go through the data-refs, check that the analysis succeeded. Update
3306 pointer from stmt_vec_info struct to DR and vectype. */
3308 FOR_EACH_VEC_ELT (datarefs, i, dr)
3310 gimple stmt;
3311 stmt_vec_info stmt_info;
3312 tree base, offset, init;
3313 bool gather = false;
3314 bool simd_lane_access = false;
3315 int vf;
3317 again:
3318 if (!dr || !DR_REF (dr))
3320 if (dump_enabled_p ())
3321 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3322 "not vectorized: unhandled data-ref\n");
3323 return false;
3326 stmt = DR_STMT (dr);
3327 stmt_info = vinfo_for_stmt (stmt);
3329 /* Discard clobbers from the dataref vector. We will remove
3330 clobber stmts during vectorization. */
3331 if (gimple_clobber_p (stmt))
3333 free_data_ref (dr);
3334 if (i == datarefs.length () - 1)
3336 datarefs.pop ();
3337 break;
3339 datarefs.ordered_remove (i);
3340 dr = datarefs[i];
3341 goto again;
3344 /* Check that analysis of the data-ref succeeded. */
3345 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3346 || !DR_STEP (dr))
3348 bool maybe_gather
3349 = DR_IS_READ (dr)
3350 && !TREE_THIS_VOLATILE (DR_REF (dr))
3351 && targetm.vectorize.builtin_gather != NULL;
3352 bool maybe_simd_lane_access
3353 = loop_vinfo && loop->simduid;
3355 /* If target supports vector gather loads, or if this might be
3356 a SIMD lane access, see if they can't be used. */
3357 if (loop_vinfo
3358 && (maybe_gather || maybe_simd_lane_access)
3359 && !nested_in_vect_loop_p (loop, stmt))
3361 struct data_reference *newdr
3362 = create_data_ref (NULL, loop_containing_stmt (stmt),
3363 DR_REF (dr), stmt, true);
3364 gcc_assert (newdr != NULL && DR_REF (newdr));
3365 if (DR_BASE_ADDRESS (newdr)
3366 && DR_OFFSET (newdr)
3367 && DR_INIT (newdr)
3368 && DR_STEP (newdr)
3369 && integer_zerop (DR_STEP (newdr)))
3371 if (maybe_simd_lane_access)
3373 tree off = DR_OFFSET (newdr);
3374 STRIP_NOPS (off);
3375 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3376 && TREE_CODE (off) == MULT_EXPR
3377 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3379 tree step = TREE_OPERAND (off, 1);
3380 off = TREE_OPERAND (off, 0);
3381 STRIP_NOPS (off);
3382 if (CONVERT_EXPR_P (off)
3383 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3384 0)))
3385 < TYPE_PRECISION (TREE_TYPE (off)))
3386 off = TREE_OPERAND (off, 0);
3387 if (TREE_CODE (off) == SSA_NAME)
3389 gimple def = SSA_NAME_DEF_STMT (off);
3390 tree reft = TREE_TYPE (DR_REF (newdr));
3391 if (is_gimple_call (def)
3392 && gimple_call_internal_p (def)
3393 && (gimple_call_internal_fn (def)
3394 == IFN_GOMP_SIMD_LANE))
3396 tree arg = gimple_call_arg (def, 0);
3397 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3398 arg = SSA_NAME_VAR (arg);
3399 if (arg == loop->simduid
3400 /* For now. */
3401 && tree_int_cst_equal
3402 (TYPE_SIZE_UNIT (reft),
3403 step))
3405 DR_OFFSET (newdr) = ssize_int (0);
3406 DR_STEP (newdr) = step;
3407 DR_ALIGNED_TO (newdr)
3408 = size_int (BIGGEST_ALIGNMENT);
3409 dr = newdr;
3410 simd_lane_access = true;
3416 if (!simd_lane_access && maybe_gather)
3418 dr = newdr;
3419 gather = true;
3422 if (!gather && !simd_lane_access)
3423 free_data_ref (newdr);
3426 if (!gather && !simd_lane_access)
3428 if (dump_enabled_p ())
3430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3431 "not vectorized: data ref analysis "
3432 "failed ");
3433 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3434 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3437 if (bb_vinfo)
3438 break;
3440 return false;
3444 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3446 if (dump_enabled_p ())
3447 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3448 "not vectorized: base addr of dr is a "
3449 "constant\n");
3451 if (bb_vinfo)
3452 break;
3454 if (gather || simd_lane_access)
3455 free_data_ref (dr);
3456 return false;
3459 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3461 if (dump_enabled_p ())
3463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3464 "not vectorized: volatile type ");
3465 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3466 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3469 if (bb_vinfo)
3470 break;
3472 return false;
3475 if (stmt_can_throw_internal (stmt))
3477 if (dump_enabled_p ())
3479 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3480 "not vectorized: statement can throw an "
3481 "exception ");
3482 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3483 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3486 if (bb_vinfo)
3487 break;
3489 if (gather || simd_lane_access)
3490 free_data_ref (dr);
3491 return false;
3494 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3495 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3497 if (dump_enabled_p ())
3499 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3500 "not vectorized: statement is bitfield "
3501 "access ");
3502 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3503 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3506 if (bb_vinfo)
3507 break;
3509 if (gather || simd_lane_access)
3510 free_data_ref (dr);
3511 return false;
3514 base = unshare_expr (DR_BASE_ADDRESS (dr));
3515 offset = unshare_expr (DR_OFFSET (dr));
3516 init = unshare_expr (DR_INIT (dr));
3518 if (is_gimple_call (stmt)
3519 && (!gimple_call_internal_p (stmt)
3520 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3521 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3523 if (dump_enabled_p ())
3525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3526 "not vectorized: dr in a call ");
3527 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3528 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3531 if (bb_vinfo)
3532 break;
3534 if (gather || simd_lane_access)
3535 free_data_ref (dr);
3536 return false;
3539 /* Update DR field in stmt_vec_info struct. */
3541 /* If the dataref is in an inner-loop of the loop that is considered for
3542 for vectorization, we also want to analyze the access relative to
3543 the outer-loop (DR contains information only relative to the
3544 inner-most enclosing loop). We do that by building a reference to the
3545 first location accessed by the inner-loop, and analyze it relative to
3546 the outer-loop. */
3547 if (loop && nested_in_vect_loop_p (loop, stmt))
3549 tree outer_step, outer_base, outer_init;
3550 HOST_WIDE_INT pbitsize, pbitpos;
3551 tree poffset;
3552 machine_mode pmode;
3553 int punsignedp, pvolatilep;
3554 affine_iv base_iv, offset_iv;
3555 tree dinit;
3557 /* Build a reference to the first location accessed by the
3558 inner-loop: *(BASE+INIT). (The first location is actually
3559 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3560 tree inner_base = build_fold_indirect_ref
3561 (fold_build_pointer_plus (base, init));
3563 if (dump_enabled_p ())
3565 dump_printf_loc (MSG_NOTE, vect_location,
3566 "analyze in outer-loop: ");
3567 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3568 dump_printf (MSG_NOTE, "\n");
3571 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3572 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3573 gcc_assert (outer_base != NULL_TREE);
3575 if (pbitpos % BITS_PER_UNIT != 0)
3577 if (dump_enabled_p ())
3578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3579 "failed: bit offset alignment.\n");
3580 return false;
3583 outer_base = build_fold_addr_expr (outer_base);
3584 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3585 &base_iv, false))
3587 if (dump_enabled_p ())
3588 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3589 "failed: evolution of base is not affine.\n");
3590 return false;
3593 if (offset)
3595 if (poffset)
3596 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3597 poffset);
3598 else
3599 poffset = offset;
3602 if (!poffset)
3604 offset_iv.base = ssize_int (0);
3605 offset_iv.step = ssize_int (0);
3607 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3608 &offset_iv, false))
3610 if (dump_enabled_p ())
3611 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3612 "evolution of offset is not affine.\n");
3613 return false;
3616 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3617 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3618 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3619 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3620 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3622 outer_step = size_binop (PLUS_EXPR,
3623 fold_convert (ssizetype, base_iv.step),
3624 fold_convert (ssizetype, offset_iv.step));
3626 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3627 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3628 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3629 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3630 STMT_VINFO_DR_OFFSET (stmt_info) =
3631 fold_convert (ssizetype, offset_iv.base);
3632 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3633 size_int (highest_pow2_factor (offset_iv.base));
3635 if (dump_enabled_p ())
3637 dump_printf_loc (MSG_NOTE, vect_location,
3638 "\touter base_address: ");
3639 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3640 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3641 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3642 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3643 STMT_VINFO_DR_OFFSET (stmt_info));
3644 dump_printf (MSG_NOTE,
3645 "\n\touter constant offset from base address: ");
3646 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3647 STMT_VINFO_DR_INIT (stmt_info));
3648 dump_printf (MSG_NOTE, "\n\touter step: ");
3649 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3650 STMT_VINFO_DR_STEP (stmt_info));
3651 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3652 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3653 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3654 dump_printf (MSG_NOTE, "\n");
3658 if (STMT_VINFO_DATA_REF (stmt_info))
3660 if (dump_enabled_p ())
3662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3663 "not vectorized: more than one data ref "
3664 "in stmt: ");
3665 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3666 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3669 if (bb_vinfo)
3670 break;
3672 if (gather || simd_lane_access)
3673 free_data_ref (dr);
3674 return false;
3677 STMT_VINFO_DATA_REF (stmt_info) = dr;
3678 if (simd_lane_access)
3680 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3681 free_data_ref (datarefs[i]);
3682 datarefs[i] = dr;
3685 /* Set vectype for STMT. */
3686 scalar_type = TREE_TYPE (DR_REF (dr));
3687 STMT_VINFO_VECTYPE (stmt_info)
3688 = get_vectype_for_scalar_type (scalar_type);
3689 if (!STMT_VINFO_VECTYPE (stmt_info))
3691 if (dump_enabled_p ())
3693 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3694 "not vectorized: no vectype for stmt: ");
3695 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3696 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3697 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3698 scalar_type);
3699 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3702 if (bb_vinfo)
3703 break;
3705 if (gather || simd_lane_access)
3707 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3708 if (gather)
3709 free_data_ref (dr);
3711 return false;
3713 else
3715 if (dump_enabled_p ())
3717 dump_printf_loc (MSG_NOTE, vect_location,
3718 "got vectype for stmt: ");
3719 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3720 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3721 STMT_VINFO_VECTYPE (stmt_info));
3722 dump_printf (MSG_NOTE, "\n");
3726 /* Adjust the minimal vectorization factor according to the
3727 vector type. */
3728 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3729 if (vf > *min_vf)
3730 *min_vf = vf;
3732 if (gather)
3734 tree off;
3736 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3737 if (gather
3738 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3739 gather = false;
3740 if (!gather)
3742 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3743 free_data_ref (dr);
3744 if (dump_enabled_p ())
3746 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3747 "not vectorized: not suitable for gather "
3748 "load ");
3749 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3750 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3752 return false;
3755 datarefs[i] = dr;
3756 STMT_VINFO_GATHER_P (stmt_info) = true;
3758 else if (loop_vinfo
3759 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3761 if (nested_in_vect_loop_p (loop, stmt))
3763 if (dump_enabled_p ())
3765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3766 "not vectorized: not suitable for strided "
3767 "load ");
3768 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3769 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3771 return false;
3773 STMT_VINFO_STRIDED_P (stmt_info) = true;
3777 /* If we stopped analysis at the first dataref we could not analyze
3778 when trying to vectorize a basic-block mark the rest of the datarefs
3779 as not vectorizable and truncate the vector of datarefs. That
3780 avoids spending useless time in analyzing their dependence. */
3781 if (i != datarefs.length ())
3783 gcc_assert (bb_vinfo != NULL);
3784 for (unsigned j = i; j < datarefs.length (); ++j)
3786 data_reference_p dr = datarefs[j];
3787 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3788 free_data_ref (dr);
3790 datarefs.truncate (i);
3793 return true;
3797 /* Function vect_get_new_vect_var.
3799 Returns a name for a new variable. The current naming scheme appends the
3800 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3801 the name of vectorizer generated variables, and appends that to NAME if
3802 provided. */
3804 tree
3805 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3807 const char *prefix;
3808 tree new_vect_var;
3810 switch (var_kind)
3812 case vect_simple_var:
3813 prefix = "vect";
3814 break;
3815 case vect_scalar_var:
3816 prefix = "stmp";
3817 break;
3818 case vect_pointer_var:
3819 prefix = "vectp";
3820 break;
3821 default:
3822 gcc_unreachable ();
3825 if (name)
3827 char* tmp = concat (prefix, "_", name, NULL);
3828 new_vect_var = create_tmp_reg (type, tmp);
3829 free (tmp);
3831 else
3832 new_vect_var = create_tmp_reg (type, prefix);
3834 return new_vect_var;
3837 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
3839 static void
3840 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr,
3841 stmt_vec_info stmt_info)
3843 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
3844 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3845 int misalign = DR_MISALIGNMENT (dr);
3846 if (misalign == -1)
3847 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
3848 else
3849 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name), align, misalign);
3852 /* Function vect_create_addr_base_for_vector_ref.
3854 Create an expression that computes the address of the first memory location
3855 that will be accessed for a data reference.
3857 Input:
3858 STMT: The statement containing the data reference.
3859 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3860 OFFSET: Optional. If supplied, it is be added to the initial address.
3861 LOOP: Specify relative to which loop-nest should the address be computed.
3862 For example, when the dataref is in an inner-loop nested in an
3863 outer-loop that is now being vectorized, LOOP can be either the
3864 outer-loop, or the inner-loop. The first memory location accessed
3865 by the following dataref ('in' points to short):
3867 for (i=0; i<N; i++)
3868 for (j=0; j<M; j++)
3869 s += in[i+j]
3871 is as follows:
3872 if LOOP=i_loop: &in (relative to i_loop)
3873 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3874 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3875 initial address. Unlike OFFSET, which is number of elements to
3876 be added, BYTE_OFFSET is measured in bytes.
3878 Output:
3879 1. Return an SSA_NAME whose value is the address of the memory location of
3880 the first vector of the data reference.
3881 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3882 these statement(s) which define the returned SSA_NAME.
3884 FORNOW: We are only handling array accesses with step 1. */
3886 tree
3887 vect_create_addr_base_for_vector_ref (gimple stmt,
3888 gimple_seq *new_stmt_list,
3889 tree offset,
3890 struct loop *loop,
3891 tree byte_offset)
3893 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3894 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3895 tree data_ref_base;
3896 const char *base_name;
3897 tree addr_base;
3898 tree dest;
3899 gimple_seq seq = NULL;
3900 tree base_offset;
3901 tree init;
3902 tree vect_ptr_type;
3903 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3904 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3906 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3908 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3910 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3912 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3913 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3914 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3916 else
3918 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3919 base_offset = unshare_expr (DR_OFFSET (dr));
3920 init = unshare_expr (DR_INIT (dr));
3923 if (loop_vinfo)
3924 base_name = get_name (data_ref_base);
3925 else
3927 base_offset = ssize_int (0);
3928 init = ssize_int (0);
3929 base_name = get_name (DR_REF (dr));
3932 /* Create base_offset */
3933 base_offset = size_binop (PLUS_EXPR,
3934 fold_convert (sizetype, base_offset),
3935 fold_convert (sizetype, init));
3937 if (offset)
3939 offset = fold_build2 (MULT_EXPR, sizetype,
3940 fold_convert (sizetype, offset), step);
3941 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3942 base_offset, offset);
3944 if (byte_offset)
3946 byte_offset = fold_convert (sizetype, byte_offset);
3947 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3948 base_offset, byte_offset);
3951 /* base + base_offset */
3952 if (loop_vinfo)
3953 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3954 else
3956 addr_base = build1 (ADDR_EXPR,
3957 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3958 unshare_expr (DR_REF (dr)));
3961 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3962 addr_base = fold_convert (vect_ptr_type, addr_base);
3963 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3964 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
3965 gimple_seq_add_seq (new_stmt_list, seq);
3967 if (DR_PTR_INFO (dr)
3968 && TREE_CODE (addr_base) == SSA_NAME)
3970 vect_duplicate_ssa_name_ptr_info (addr_base, dr, stmt_info);
3971 if (offset || byte_offset)
3972 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3975 if (dump_enabled_p ())
3977 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3978 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3979 dump_printf (MSG_NOTE, "\n");
3982 return addr_base;
3986 /* Function vect_create_data_ref_ptr.
3988 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3989 location accessed in the loop by STMT, along with the def-use update
3990 chain to appropriately advance the pointer through the loop iterations.
3991 Also set aliasing information for the pointer. This pointer is used by
3992 the callers to this function to create a memory reference expression for
3993 vector load/store access.
3995 Input:
3996 1. STMT: a stmt that references memory. Expected to be of the form
3997 GIMPLE_ASSIGN <name, data-ref> or
3998 GIMPLE_ASSIGN <data-ref, name>.
3999 2. AGGR_TYPE: the type of the reference, which should be either a vector
4000 or an array.
4001 3. AT_LOOP: the loop where the vector memref is to be created.
4002 4. OFFSET (optional): an offset to be added to the initial address accessed
4003 by the data-ref in STMT.
4004 5. BSI: location where the new stmts are to be placed if there is no loop
4005 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4006 pointing to the initial address.
4007 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4008 to the initial address accessed by the data-ref in STMT. This is
4009 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4010 in bytes.
4012 Output:
4013 1. Declare a new ptr to vector_type, and have it point to the base of the
4014 data reference (initial addressed accessed by the data reference).
4015 For example, for vector of type V8HI, the following code is generated:
4017 v8hi *ap;
4018 ap = (v8hi *)initial_address;
4020 if OFFSET is not supplied:
4021 initial_address = &a[init];
4022 if OFFSET is supplied:
4023 initial_address = &a[init + OFFSET];
4024 if BYTE_OFFSET is supplied:
4025 initial_address = &a[init] + BYTE_OFFSET;
4027 Return the initial_address in INITIAL_ADDRESS.
4029 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4030 update the pointer in each iteration of the loop.
4032 Return the increment stmt that updates the pointer in PTR_INCR.
4034 3. Set INV_P to true if the access pattern of the data reference in the
4035 vectorized loop is invariant. Set it to false otherwise.
4037 4. Return the pointer. */
4039 tree
4040 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4041 tree offset, tree *initial_address,
4042 gimple_stmt_iterator *gsi, gimple *ptr_incr,
4043 bool only_init, bool *inv_p, tree byte_offset)
4045 const char *base_name;
4046 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4047 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4048 struct loop *loop = NULL;
4049 bool nested_in_vect_loop = false;
4050 struct loop *containing_loop = NULL;
4051 tree aggr_ptr_type;
4052 tree aggr_ptr;
4053 tree new_temp;
4054 gimple vec_stmt;
4055 gimple_seq new_stmt_list = NULL;
4056 edge pe = NULL;
4057 basic_block new_bb;
4058 tree aggr_ptr_init;
4059 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4060 tree aptr;
4061 gimple_stmt_iterator incr_gsi;
4062 bool insert_after;
4063 tree indx_before_incr, indx_after_incr;
4064 gimple incr;
4065 tree step;
4066 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4068 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4069 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4071 if (loop_vinfo)
4073 loop = LOOP_VINFO_LOOP (loop_vinfo);
4074 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4075 containing_loop = (gimple_bb (stmt))->loop_father;
4076 pe = loop_preheader_edge (loop);
4078 else
4080 gcc_assert (bb_vinfo);
4081 only_init = true;
4082 *ptr_incr = NULL;
4085 /* Check the step (evolution) of the load in LOOP, and record
4086 whether it's invariant. */
4087 if (nested_in_vect_loop)
4088 step = STMT_VINFO_DR_STEP (stmt_info);
4089 else
4090 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4092 if (integer_zerop (step))
4093 *inv_p = true;
4094 else
4095 *inv_p = false;
4097 /* Create an expression for the first address accessed by this load
4098 in LOOP. */
4099 base_name = get_name (DR_BASE_ADDRESS (dr));
4101 if (dump_enabled_p ())
4103 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4104 dump_printf_loc (MSG_NOTE, vect_location,
4105 "create %s-pointer variable to type: ",
4106 get_tree_code_name (TREE_CODE (aggr_type)));
4107 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4108 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4109 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4110 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4111 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4112 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4113 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4114 else
4115 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4116 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4117 dump_printf (MSG_NOTE, "\n");
4120 /* (1) Create the new aggregate-pointer variable.
4121 Vector and array types inherit the alias set of their component
4122 type by default so we need to use a ref-all pointer if the data
4123 reference does not conflict with the created aggregated data
4124 reference because it is not addressable. */
4125 bool need_ref_all = false;
4126 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4127 get_alias_set (DR_REF (dr))))
4128 need_ref_all = true;
4129 /* Likewise for any of the data references in the stmt group. */
4130 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4132 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4135 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4136 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4137 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4138 get_alias_set (DR_REF (sdr))))
4140 need_ref_all = true;
4141 break;
4143 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4145 while (orig_stmt);
4147 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4148 need_ref_all);
4149 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4152 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4153 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4154 def-use update cycles for the pointer: one relative to the outer-loop
4155 (LOOP), which is what steps (3) and (4) below do. The other is relative
4156 to the inner-loop (which is the inner-most loop containing the dataref),
4157 and this is done be step (5) below.
4159 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4160 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4161 redundant. Steps (3),(4) create the following:
4163 vp0 = &base_addr;
4164 LOOP: vp1 = phi(vp0,vp2)
4167 vp2 = vp1 + step
4168 goto LOOP
4170 If there is an inner-loop nested in loop, then step (5) will also be
4171 applied, and an additional update in the inner-loop will be created:
4173 vp0 = &base_addr;
4174 LOOP: vp1 = phi(vp0,vp2)
4176 inner: vp3 = phi(vp1,vp4)
4177 vp4 = vp3 + inner_step
4178 if () goto inner
4180 vp2 = vp1 + step
4181 if () goto LOOP */
4183 /* (2) Calculate the initial address of the aggregate-pointer, and set
4184 the aggregate-pointer to point to it before the loop. */
4186 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4188 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4189 offset, loop, byte_offset);
4190 if (new_stmt_list)
4192 if (pe)
4194 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4195 gcc_assert (!new_bb);
4197 else
4198 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4201 *initial_address = new_temp;
4203 /* Create: p = (aggr_type *) initial_base */
4204 if (TREE_CODE (new_temp) != SSA_NAME
4205 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
4207 vec_stmt = gimple_build_assign (aggr_ptr,
4208 fold_convert (aggr_ptr_type, new_temp));
4209 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
4210 /* Copy the points-to information if it exists. */
4211 if (DR_PTR_INFO (dr))
4212 vect_duplicate_ssa_name_ptr_info (aggr_ptr_init, dr, stmt_info);
4213 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
4214 if (pe)
4216 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4217 gcc_assert (!new_bb);
4219 else
4220 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
4222 else
4223 aggr_ptr_init = new_temp;
4225 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4226 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4227 inner-loop nested in LOOP (during outer-loop vectorization). */
4229 /* No update in loop is required. */
4230 if (only_init && (!loop_vinfo || at_loop == loop))
4231 aptr = aggr_ptr_init;
4232 else
4234 /* The step of the aggregate pointer is the type size. */
4235 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4236 /* One exception to the above is when the scalar step of the load in
4237 LOOP is zero. In this case the step here is also zero. */
4238 if (*inv_p)
4239 iv_step = size_zero_node;
4240 else if (tree_int_cst_sgn (step) == -1)
4241 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4243 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4245 create_iv (aggr_ptr_init,
4246 fold_convert (aggr_ptr_type, iv_step),
4247 aggr_ptr, loop, &incr_gsi, insert_after,
4248 &indx_before_incr, &indx_after_incr);
4249 incr = gsi_stmt (incr_gsi);
4250 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4252 /* Copy the points-to information if it exists. */
4253 if (DR_PTR_INFO (dr))
4255 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4256 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4258 if (ptr_incr)
4259 *ptr_incr = incr;
4261 aptr = indx_before_incr;
4264 if (!nested_in_vect_loop || only_init)
4265 return aptr;
4268 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4269 nested in LOOP, if exists. */
4271 gcc_assert (nested_in_vect_loop);
4272 if (!only_init)
4274 standard_iv_increment_position (containing_loop, &incr_gsi,
4275 &insert_after);
4276 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4277 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4278 &indx_after_incr);
4279 incr = gsi_stmt (incr_gsi);
4280 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4282 /* Copy the points-to information if it exists. */
4283 if (DR_PTR_INFO (dr))
4285 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4286 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4288 if (ptr_incr)
4289 *ptr_incr = incr;
4291 return indx_before_incr;
4293 else
4294 gcc_unreachable ();
4298 /* Function bump_vector_ptr
4300 Increment a pointer (to a vector type) by vector-size. If requested,
4301 i.e. if PTR-INCR is given, then also connect the new increment stmt
4302 to the existing def-use update-chain of the pointer, by modifying
4303 the PTR_INCR as illustrated below:
4305 The pointer def-use update-chain before this function:
4306 DATAREF_PTR = phi (p_0, p_2)
4307 ....
4308 PTR_INCR: p_2 = DATAREF_PTR + step
4310 The pointer def-use update-chain after this function:
4311 DATAREF_PTR = phi (p_0, p_2)
4312 ....
4313 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4314 ....
4315 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4317 Input:
4318 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4319 in the loop.
4320 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4321 the loop. The increment amount across iterations is expected
4322 to be vector_size.
4323 BSI - location where the new update stmt is to be placed.
4324 STMT - the original scalar memory-access stmt that is being vectorized.
4325 BUMP - optional. The offset by which to bump the pointer. If not given,
4326 the offset is assumed to be vector_size.
4328 Output: Return NEW_DATAREF_PTR as illustrated above.
4332 tree
4333 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4334 gimple stmt, tree bump)
4336 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4337 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4338 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4339 tree update = TYPE_SIZE_UNIT (vectype);
4340 gassign *incr_stmt;
4341 ssa_op_iter iter;
4342 use_operand_p use_p;
4343 tree new_dataref_ptr;
4345 if (bump)
4346 update = bump;
4348 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4349 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4350 dataref_ptr, update);
4351 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4353 /* Copy the points-to information if it exists. */
4354 if (DR_PTR_INFO (dr))
4356 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4357 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4360 if (!ptr_incr)
4361 return new_dataref_ptr;
4363 /* Update the vector-pointer's cross-iteration increment. */
4364 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4366 tree use = USE_FROM_PTR (use_p);
4368 if (use == dataref_ptr)
4369 SET_USE (use_p, new_dataref_ptr);
4370 else
4371 gcc_assert (tree_int_cst_compare (use, update) == 0);
4374 return new_dataref_ptr;
4378 /* Function vect_create_destination_var.
4380 Create a new temporary of type VECTYPE. */
4382 tree
4383 vect_create_destination_var (tree scalar_dest, tree vectype)
4385 tree vec_dest;
4386 const char *name;
4387 char *new_name;
4388 tree type;
4389 enum vect_var_kind kind;
4391 kind = vectype ? vect_simple_var : vect_scalar_var;
4392 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4394 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4396 name = get_name (scalar_dest);
4397 if (name)
4398 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4399 else
4400 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
4401 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4402 free (new_name);
4404 return vec_dest;
4407 /* Function vect_grouped_store_supported.
4409 Returns TRUE if interleave high and interleave low permutations
4410 are supported, and FALSE otherwise. */
4412 bool
4413 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4415 machine_mode mode = TYPE_MODE (vectype);
4417 /* vect_permute_store_chain requires the group size to be equal to 3 or
4418 be a power of two. */
4419 if (count != 3 && exact_log2 (count) == -1)
4421 if (dump_enabled_p ())
4422 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4423 "the size of the group of accesses"
4424 " is not a power of 2 or not eqaul to 3\n");
4425 return false;
4428 /* Check that the permutation is supported. */
4429 if (VECTOR_MODE_P (mode))
4431 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4432 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4434 if (count == 3)
4436 unsigned int j0 = 0, j1 = 0, j2 = 0;
4437 unsigned int i, j;
4439 for (j = 0; j < 3; j++)
4441 int nelt0 = ((3 - j) * nelt) % 3;
4442 int nelt1 = ((3 - j) * nelt + 1) % 3;
4443 int nelt2 = ((3 - j) * nelt + 2) % 3;
4444 for (i = 0; i < nelt; i++)
4446 if (3 * i + nelt0 < nelt)
4447 sel[3 * i + nelt0] = j0++;
4448 if (3 * i + nelt1 < nelt)
4449 sel[3 * i + nelt1] = nelt + j1++;
4450 if (3 * i + nelt2 < nelt)
4451 sel[3 * i + nelt2] = 0;
4453 if (!can_vec_perm_p (mode, false, sel))
4455 if (dump_enabled_p ())
4456 dump_printf (MSG_MISSED_OPTIMIZATION,
4457 "permutaion op not supported by target.\n");
4458 return false;
4461 for (i = 0; i < nelt; i++)
4463 if (3 * i + nelt0 < nelt)
4464 sel[3 * i + nelt0] = 3 * i + nelt0;
4465 if (3 * i + nelt1 < nelt)
4466 sel[3 * i + nelt1] = 3 * i + nelt1;
4467 if (3 * i + nelt2 < nelt)
4468 sel[3 * i + nelt2] = nelt + j2++;
4470 if (!can_vec_perm_p (mode, false, sel))
4472 if (dump_enabled_p ())
4473 dump_printf (MSG_MISSED_OPTIMIZATION,
4474 "permutaion op not supported by target.\n");
4475 return false;
4478 return true;
4480 else
4482 /* If length is not equal to 3 then only power of 2 is supported. */
4483 gcc_assert (exact_log2 (count) != -1);
4485 for (i = 0; i < nelt / 2; i++)
4487 sel[i * 2] = i;
4488 sel[i * 2 + 1] = i + nelt;
4490 if (can_vec_perm_p (mode, false, sel))
4492 for (i = 0; i < nelt; i++)
4493 sel[i] += nelt / 2;
4494 if (can_vec_perm_p (mode, false, sel))
4495 return true;
4500 if (dump_enabled_p ())
4501 dump_printf (MSG_MISSED_OPTIMIZATION,
4502 "permutaion op not supported by target.\n");
4503 return false;
4507 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4508 type VECTYPE. */
4510 bool
4511 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4513 return vect_lanes_optab_supported_p ("vec_store_lanes",
4514 vec_store_lanes_optab,
4515 vectype, count);
4519 /* Function vect_permute_store_chain.
4521 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4522 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4523 the data correctly for the stores. Return the final references for stores
4524 in RESULT_CHAIN.
4526 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4527 The input is 4 vectors each containing 8 elements. We assign a number to
4528 each element, the input sequence is:
4530 1st vec: 0 1 2 3 4 5 6 7
4531 2nd vec: 8 9 10 11 12 13 14 15
4532 3rd vec: 16 17 18 19 20 21 22 23
4533 4th vec: 24 25 26 27 28 29 30 31
4535 The output sequence should be:
4537 1st vec: 0 8 16 24 1 9 17 25
4538 2nd vec: 2 10 18 26 3 11 19 27
4539 3rd vec: 4 12 20 28 5 13 21 30
4540 4th vec: 6 14 22 30 7 15 23 31
4542 i.e., we interleave the contents of the four vectors in their order.
4544 We use interleave_high/low instructions to create such output. The input of
4545 each interleave_high/low operation is two vectors:
4546 1st vec 2nd vec
4547 0 1 2 3 4 5 6 7
4548 the even elements of the result vector are obtained left-to-right from the
4549 high/low elements of the first vector. The odd elements of the result are
4550 obtained left-to-right from the high/low elements of the second vector.
4551 The output of interleave_high will be: 0 4 1 5
4552 and of interleave_low: 2 6 3 7
4555 The permutation is done in log LENGTH stages. In each stage interleave_high
4556 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4557 where the first argument is taken from the first half of DR_CHAIN and the
4558 second argument from it's second half.
4559 In our example,
4561 I1: interleave_high (1st vec, 3rd vec)
4562 I2: interleave_low (1st vec, 3rd vec)
4563 I3: interleave_high (2nd vec, 4th vec)
4564 I4: interleave_low (2nd vec, 4th vec)
4566 The output for the first stage is:
4568 I1: 0 16 1 17 2 18 3 19
4569 I2: 4 20 5 21 6 22 7 23
4570 I3: 8 24 9 25 10 26 11 27
4571 I4: 12 28 13 29 14 30 15 31
4573 The output of the second stage, i.e. the final result is:
4575 I1: 0 8 16 24 1 9 17 25
4576 I2: 2 10 18 26 3 11 19 27
4577 I3: 4 12 20 28 5 13 21 30
4578 I4: 6 14 22 30 7 15 23 31. */
4580 void
4581 vect_permute_store_chain (vec<tree> dr_chain,
4582 unsigned int length,
4583 gimple stmt,
4584 gimple_stmt_iterator *gsi,
4585 vec<tree> *result_chain)
4587 tree vect1, vect2, high, low;
4588 gimple perm_stmt;
4589 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4590 tree perm_mask_low, perm_mask_high;
4591 tree data_ref;
4592 tree perm3_mask_low, perm3_mask_high;
4593 unsigned int i, n, log_length = exact_log2 (length);
4594 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4595 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4597 result_chain->quick_grow (length);
4598 memcpy (result_chain->address (), dr_chain.address (),
4599 length * sizeof (tree));
4601 if (length == 3)
4603 unsigned int j0 = 0, j1 = 0, j2 = 0;
4605 for (j = 0; j < 3; j++)
4607 int nelt0 = ((3 - j) * nelt) % 3;
4608 int nelt1 = ((3 - j) * nelt + 1) % 3;
4609 int nelt2 = ((3 - j) * nelt + 2) % 3;
4611 for (i = 0; i < nelt; i++)
4613 if (3 * i + nelt0 < nelt)
4614 sel[3 * i + nelt0] = j0++;
4615 if (3 * i + nelt1 < nelt)
4616 sel[3 * i + nelt1] = nelt + j1++;
4617 if (3 * i + nelt2 < nelt)
4618 sel[3 * i + nelt2] = 0;
4620 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4622 for (i = 0; i < nelt; i++)
4624 if (3 * i + nelt0 < nelt)
4625 sel[3 * i + nelt0] = 3 * i + nelt0;
4626 if (3 * i + nelt1 < nelt)
4627 sel[3 * i + nelt1] = 3 * i + nelt1;
4628 if (3 * i + nelt2 < nelt)
4629 sel[3 * i + nelt2] = nelt + j2++;
4631 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4633 vect1 = dr_chain[0];
4634 vect2 = dr_chain[1];
4636 /* Create interleaving stmt:
4637 low = VEC_PERM_EXPR <vect1, vect2,
4638 {j, nelt, *, j + 1, nelt + j + 1, *,
4639 j + 2, nelt + j + 2, *, ...}> */
4640 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4641 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4642 vect2, perm3_mask_low);
4643 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4645 vect1 = data_ref;
4646 vect2 = dr_chain[2];
4647 /* Create interleaving stmt:
4648 low = VEC_PERM_EXPR <vect1, vect2,
4649 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4650 6, 7, nelt + j + 2, ...}> */
4651 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4652 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4653 vect2, perm3_mask_high);
4654 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4655 (*result_chain)[j] = data_ref;
4658 else
4660 /* If length is not equal to 3 then only power of 2 is supported. */
4661 gcc_assert (exact_log2 (length) != -1);
4663 for (i = 0, n = nelt / 2; i < n; i++)
4665 sel[i * 2] = i;
4666 sel[i * 2 + 1] = i + nelt;
4668 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4670 for (i = 0; i < nelt; i++)
4671 sel[i] += nelt / 2;
4672 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4674 for (i = 0, n = log_length; i < n; i++)
4676 for (j = 0; j < length/2; j++)
4678 vect1 = dr_chain[j];
4679 vect2 = dr_chain[j+length/2];
4681 /* Create interleaving stmt:
4682 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4683 ...}> */
4684 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4685 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
4686 vect2, perm_mask_high);
4687 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4688 (*result_chain)[2*j] = high;
4690 /* Create interleaving stmt:
4691 low = VEC_PERM_EXPR <vect1, vect2,
4692 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4693 ...}> */
4694 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4695 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
4696 vect2, perm_mask_low);
4697 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4698 (*result_chain)[2*j+1] = low;
4700 memcpy (dr_chain.address (), result_chain->address (),
4701 length * sizeof (tree));
4706 /* Function vect_setup_realignment
4708 This function is called when vectorizing an unaligned load using
4709 the dr_explicit_realign[_optimized] scheme.
4710 This function generates the following code at the loop prolog:
4712 p = initial_addr;
4713 x msq_init = *(floor(p)); # prolog load
4714 realignment_token = call target_builtin;
4715 loop:
4716 x msq = phi (msq_init, ---)
4718 The stmts marked with x are generated only for the case of
4719 dr_explicit_realign_optimized.
4721 The code above sets up a new (vector) pointer, pointing to the first
4722 location accessed by STMT, and a "floor-aligned" load using that pointer.
4723 It also generates code to compute the "realignment-token" (if the relevant
4724 target hook was defined), and creates a phi-node at the loop-header bb
4725 whose arguments are the result of the prolog-load (created by this
4726 function) and the result of a load that takes place in the loop (to be
4727 created by the caller to this function).
4729 For the case of dr_explicit_realign_optimized:
4730 The caller to this function uses the phi-result (msq) to create the
4731 realignment code inside the loop, and sets up the missing phi argument,
4732 as follows:
4733 loop:
4734 msq = phi (msq_init, lsq)
4735 lsq = *(floor(p')); # load in loop
4736 result = realign_load (msq, lsq, realignment_token);
4738 For the case of dr_explicit_realign:
4739 loop:
4740 msq = *(floor(p)); # load in loop
4741 p' = p + (VS-1);
4742 lsq = *(floor(p')); # load in loop
4743 result = realign_load (msq, lsq, realignment_token);
4745 Input:
4746 STMT - (scalar) load stmt to be vectorized. This load accesses
4747 a memory location that may be unaligned.
4748 BSI - place where new code is to be inserted.
4749 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4750 is used.
4752 Output:
4753 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4754 target hook, if defined.
4755 Return value - the result of the loop-header phi node. */
4757 tree
4758 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4759 tree *realignment_token,
4760 enum dr_alignment_support alignment_support_scheme,
4761 tree init_addr,
4762 struct loop **at_loop)
4764 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4765 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4766 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4767 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4768 struct loop *loop = NULL;
4769 edge pe = NULL;
4770 tree scalar_dest = gimple_assign_lhs (stmt);
4771 tree vec_dest;
4772 gimple inc;
4773 tree ptr;
4774 tree data_ref;
4775 basic_block new_bb;
4776 tree msq_init = NULL_TREE;
4777 tree new_temp;
4778 gphi *phi_stmt;
4779 tree msq = NULL_TREE;
4780 gimple_seq stmts = NULL;
4781 bool inv_p;
4782 bool compute_in_loop = false;
4783 bool nested_in_vect_loop = false;
4784 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4785 struct loop *loop_for_initial_load = NULL;
4787 if (loop_vinfo)
4789 loop = LOOP_VINFO_LOOP (loop_vinfo);
4790 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4793 gcc_assert (alignment_support_scheme == dr_explicit_realign
4794 || alignment_support_scheme == dr_explicit_realign_optimized);
4796 /* We need to generate three things:
4797 1. the misalignment computation
4798 2. the extra vector load (for the optimized realignment scheme).
4799 3. the phi node for the two vectors from which the realignment is
4800 done (for the optimized realignment scheme). */
4802 /* 1. Determine where to generate the misalignment computation.
4804 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4805 calculation will be generated by this function, outside the loop (in the
4806 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4807 caller, inside the loop.
4809 Background: If the misalignment remains fixed throughout the iterations of
4810 the loop, then both realignment schemes are applicable, and also the
4811 misalignment computation can be done outside LOOP. This is because we are
4812 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4813 are a multiple of VS (the Vector Size), and therefore the misalignment in
4814 different vectorized LOOP iterations is always the same.
4815 The problem arises only if the memory access is in an inner-loop nested
4816 inside LOOP, which is now being vectorized using outer-loop vectorization.
4817 This is the only case when the misalignment of the memory access may not
4818 remain fixed throughout the iterations of the inner-loop (as explained in
4819 detail in vect_supportable_dr_alignment). In this case, not only is the
4820 optimized realignment scheme not applicable, but also the misalignment
4821 computation (and generation of the realignment token that is passed to
4822 REALIGN_LOAD) have to be done inside the loop.
4824 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4825 or not, which in turn determines if the misalignment is computed inside
4826 the inner-loop, or outside LOOP. */
4828 if (init_addr != NULL_TREE || !loop_vinfo)
4830 compute_in_loop = true;
4831 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4835 /* 2. Determine where to generate the extra vector load.
4837 For the optimized realignment scheme, instead of generating two vector
4838 loads in each iteration, we generate a single extra vector load in the
4839 preheader of the loop, and in each iteration reuse the result of the
4840 vector load from the previous iteration. In case the memory access is in
4841 an inner-loop nested inside LOOP, which is now being vectorized using
4842 outer-loop vectorization, we need to determine whether this initial vector
4843 load should be generated at the preheader of the inner-loop, or can be
4844 generated at the preheader of LOOP. If the memory access has no evolution
4845 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4846 to be generated inside LOOP (in the preheader of the inner-loop). */
4848 if (nested_in_vect_loop)
4850 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4851 bool invariant_in_outerloop =
4852 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4853 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4855 else
4856 loop_for_initial_load = loop;
4857 if (at_loop)
4858 *at_loop = loop_for_initial_load;
4860 if (loop_for_initial_load)
4861 pe = loop_preheader_edge (loop_for_initial_load);
4863 /* 3. For the case of the optimized realignment, create the first vector
4864 load at the loop preheader. */
4866 if (alignment_support_scheme == dr_explicit_realign_optimized)
4868 /* Create msq_init = *(floor(p1)) in the loop preheader */
4869 gassign *new_stmt;
4871 gcc_assert (!compute_in_loop);
4872 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4873 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4874 NULL_TREE, &init_addr, NULL, &inc,
4875 true, &inv_p);
4876 new_temp = copy_ssa_name (ptr);
4877 new_stmt = gimple_build_assign
4878 (new_temp, BIT_AND_EXPR, ptr,
4879 build_int_cst (TREE_TYPE (ptr),
4880 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4881 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4882 gcc_assert (!new_bb);
4883 data_ref
4884 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4885 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4886 new_stmt = gimple_build_assign (vec_dest, data_ref);
4887 new_temp = make_ssa_name (vec_dest, new_stmt);
4888 gimple_assign_set_lhs (new_stmt, new_temp);
4889 if (pe)
4891 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4892 gcc_assert (!new_bb);
4894 else
4895 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4897 msq_init = gimple_assign_lhs (new_stmt);
4900 /* 4. Create realignment token using a target builtin, if available.
4901 It is done either inside the containing loop, or before LOOP (as
4902 determined above). */
4904 if (targetm.vectorize.builtin_mask_for_load)
4906 gcall *new_stmt;
4907 tree builtin_decl;
4909 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4910 if (!init_addr)
4912 /* Generate the INIT_ADDR computation outside LOOP. */
4913 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4914 NULL_TREE, loop);
4915 if (loop)
4917 pe = loop_preheader_edge (loop);
4918 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4919 gcc_assert (!new_bb);
4921 else
4922 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4925 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4926 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4927 vec_dest =
4928 vect_create_destination_var (scalar_dest,
4929 gimple_call_return_type (new_stmt));
4930 new_temp = make_ssa_name (vec_dest, new_stmt);
4931 gimple_call_set_lhs (new_stmt, new_temp);
4933 if (compute_in_loop)
4934 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4935 else
4937 /* Generate the misalignment computation outside LOOP. */
4938 pe = loop_preheader_edge (loop);
4939 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4940 gcc_assert (!new_bb);
4943 *realignment_token = gimple_call_lhs (new_stmt);
4945 /* The result of the CALL_EXPR to this builtin is determined from
4946 the value of the parameter and no global variables are touched
4947 which makes the builtin a "const" function. Requiring the
4948 builtin to have the "const" attribute makes it unnecessary
4949 to call mark_call_clobbered. */
4950 gcc_assert (TREE_READONLY (builtin_decl));
4953 if (alignment_support_scheme == dr_explicit_realign)
4954 return msq;
4956 gcc_assert (!compute_in_loop);
4957 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4960 /* 5. Create msq = phi <msq_init, lsq> in loop */
4962 pe = loop_preheader_edge (containing_loop);
4963 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4964 msq = make_ssa_name (vec_dest);
4965 phi_stmt = create_phi_node (msq, containing_loop->header);
4966 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4968 return msq;
4972 /* Function vect_grouped_load_supported.
4974 Returns TRUE if even and odd permutations are supported,
4975 and FALSE otherwise. */
4977 bool
4978 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4980 machine_mode mode = TYPE_MODE (vectype);
4982 /* vect_permute_load_chain requires the group size to be equal to 3 or
4983 be a power of two. */
4984 if (count != 3 && exact_log2 (count) == -1)
4986 if (dump_enabled_p ())
4987 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4988 "the size of the group of accesses"
4989 " is not a power of 2 or not equal to 3\n");
4990 return false;
4993 /* Check that the permutation is supported. */
4994 if (VECTOR_MODE_P (mode))
4996 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
4997 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4999 if (count == 3)
5001 unsigned int k;
5002 for (k = 0; k < 3; k++)
5004 for (i = 0; i < nelt; i++)
5005 if (3 * i + k < 2 * nelt)
5006 sel[i] = 3 * i + k;
5007 else
5008 sel[i] = 0;
5009 if (!can_vec_perm_p (mode, false, sel))
5011 if (dump_enabled_p ())
5012 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5013 "shuffle of 3 loads is not supported by"
5014 " target\n");
5015 return false;
5017 for (i = 0, j = 0; i < nelt; i++)
5018 if (3 * i + k < 2 * nelt)
5019 sel[i] = i;
5020 else
5021 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5022 if (!can_vec_perm_p (mode, false, sel))
5024 if (dump_enabled_p ())
5025 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5026 "shuffle of 3 loads is not supported by"
5027 " target\n");
5028 return false;
5031 return true;
5033 else
5035 /* If length is not equal to 3 then only power of 2 is supported. */
5036 gcc_assert (exact_log2 (count) != -1);
5037 for (i = 0; i < nelt; i++)
5038 sel[i] = i * 2;
5039 if (can_vec_perm_p (mode, false, sel))
5041 for (i = 0; i < nelt; i++)
5042 sel[i] = i * 2 + 1;
5043 if (can_vec_perm_p (mode, false, sel))
5044 return true;
5049 if (dump_enabled_p ())
5050 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5051 "extract even/odd not supported by target\n");
5052 return false;
5055 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5056 type VECTYPE. */
5058 bool
5059 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5061 return vect_lanes_optab_supported_p ("vec_load_lanes",
5062 vec_load_lanes_optab,
5063 vectype, count);
5066 /* Function vect_permute_load_chain.
5068 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5069 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5070 the input data correctly. Return the final references for loads in
5071 RESULT_CHAIN.
5073 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5074 The input is 4 vectors each containing 8 elements. We assign a number to each
5075 element, the input sequence is:
5077 1st vec: 0 1 2 3 4 5 6 7
5078 2nd vec: 8 9 10 11 12 13 14 15
5079 3rd vec: 16 17 18 19 20 21 22 23
5080 4th vec: 24 25 26 27 28 29 30 31
5082 The output sequence should be:
5084 1st vec: 0 4 8 12 16 20 24 28
5085 2nd vec: 1 5 9 13 17 21 25 29
5086 3rd vec: 2 6 10 14 18 22 26 30
5087 4th vec: 3 7 11 15 19 23 27 31
5089 i.e., the first output vector should contain the first elements of each
5090 interleaving group, etc.
5092 We use extract_even/odd instructions to create such output. The input of
5093 each extract_even/odd operation is two vectors
5094 1st vec 2nd vec
5095 0 1 2 3 4 5 6 7
5097 and the output is the vector of extracted even/odd elements. The output of
5098 extract_even will be: 0 2 4 6
5099 and of extract_odd: 1 3 5 7
5102 The permutation is done in log LENGTH stages. In each stage extract_even
5103 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5104 their order. In our example,
5106 E1: extract_even (1st vec, 2nd vec)
5107 E2: extract_odd (1st vec, 2nd vec)
5108 E3: extract_even (3rd vec, 4th vec)
5109 E4: extract_odd (3rd vec, 4th vec)
5111 The output for the first stage will be:
5113 E1: 0 2 4 6 8 10 12 14
5114 E2: 1 3 5 7 9 11 13 15
5115 E3: 16 18 20 22 24 26 28 30
5116 E4: 17 19 21 23 25 27 29 31
5118 In order to proceed and create the correct sequence for the next stage (or
5119 for the correct output, if the second stage is the last one, as in our
5120 example), we first put the output of extract_even operation and then the
5121 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5122 The input for the second stage is:
5124 1st vec (E1): 0 2 4 6 8 10 12 14
5125 2nd vec (E3): 16 18 20 22 24 26 28 30
5126 3rd vec (E2): 1 3 5 7 9 11 13 15
5127 4th vec (E4): 17 19 21 23 25 27 29 31
5129 The output of the second stage:
5131 E1: 0 4 8 12 16 20 24 28
5132 E2: 2 6 10 14 18 22 26 30
5133 E3: 1 5 9 13 17 21 25 29
5134 E4: 3 7 11 15 19 23 27 31
5136 And RESULT_CHAIN after reordering:
5138 1st vec (E1): 0 4 8 12 16 20 24 28
5139 2nd vec (E3): 1 5 9 13 17 21 25 29
5140 3rd vec (E2): 2 6 10 14 18 22 26 30
5141 4th vec (E4): 3 7 11 15 19 23 27 31. */
5143 static void
5144 vect_permute_load_chain (vec<tree> dr_chain,
5145 unsigned int length,
5146 gimple stmt,
5147 gimple_stmt_iterator *gsi,
5148 vec<tree> *result_chain)
5150 tree data_ref, first_vect, second_vect;
5151 tree perm_mask_even, perm_mask_odd;
5152 tree perm3_mask_low, perm3_mask_high;
5153 gimple perm_stmt;
5154 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5155 unsigned int i, j, log_length = exact_log2 (length);
5156 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5157 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5159 result_chain->quick_grow (length);
5160 memcpy (result_chain->address (), dr_chain.address (),
5161 length * sizeof (tree));
5163 if (length == 3)
5165 unsigned int k;
5167 for (k = 0; k < 3; k++)
5169 for (i = 0; i < nelt; i++)
5170 if (3 * i + k < 2 * nelt)
5171 sel[i] = 3 * i + k;
5172 else
5173 sel[i] = 0;
5174 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5176 for (i = 0, j = 0; i < nelt; i++)
5177 if (3 * i + k < 2 * nelt)
5178 sel[i] = i;
5179 else
5180 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5182 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5184 first_vect = dr_chain[0];
5185 second_vect = dr_chain[1];
5187 /* Create interleaving stmt (low part of):
5188 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5189 ...}> */
5190 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5191 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5192 second_vect, perm3_mask_low);
5193 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5195 /* Create interleaving stmt (high part of):
5196 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5197 ...}> */
5198 first_vect = data_ref;
5199 second_vect = dr_chain[2];
5200 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5201 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5202 second_vect, perm3_mask_high);
5203 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5204 (*result_chain)[k] = data_ref;
5207 else
5209 /* If length is not equal to 3 then only power of 2 is supported. */
5210 gcc_assert (exact_log2 (length) != -1);
5212 for (i = 0; i < nelt; ++i)
5213 sel[i] = i * 2;
5214 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5216 for (i = 0; i < nelt; ++i)
5217 sel[i] = i * 2 + 1;
5218 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5220 for (i = 0; i < log_length; i++)
5222 for (j = 0; j < length; j += 2)
5224 first_vect = dr_chain[j];
5225 second_vect = dr_chain[j+1];
5227 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5228 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5229 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5230 first_vect, second_vect,
5231 perm_mask_even);
5232 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5233 (*result_chain)[j/2] = data_ref;
5235 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5236 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5237 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5238 first_vect, second_vect,
5239 perm_mask_odd);
5240 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5241 (*result_chain)[j/2+length/2] = data_ref;
5243 memcpy (dr_chain.address (), result_chain->address (),
5244 length * sizeof (tree));
5249 /* Function vect_shift_permute_load_chain.
5251 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5252 sequence of stmts to reorder the input data accordingly.
5253 Return the final references for loads in RESULT_CHAIN.
5254 Return true if successed, false otherwise.
5256 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5257 The input is 3 vectors each containing 8 elements. We assign a
5258 number to each element, the input sequence is:
5260 1st vec: 0 1 2 3 4 5 6 7
5261 2nd vec: 8 9 10 11 12 13 14 15
5262 3rd vec: 16 17 18 19 20 21 22 23
5264 The output sequence should be:
5266 1st vec: 0 3 6 9 12 15 18 21
5267 2nd vec: 1 4 7 10 13 16 19 22
5268 3rd vec: 2 5 8 11 14 17 20 23
5270 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5272 First we shuffle all 3 vectors to get correct elements order:
5274 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5275 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5276 3rd vec: (16 19 22) (17 20 23) (18 21)
5278 Next we unite and shift vector 3 times:
5280 1st step:
5281 shift right by 6 the concatenation of:
5282 "1st vec" and "2nd vec"
5283 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5284 "2nd vec" and "3rd vec"
5285 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5286 "3rd vec" and "1st vec"
5287 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5288 | New vectors |
5290 So that now new vectors are:
5292 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5293 2nd vec: (10 13) (16 19 22) (17 20 23)
5294 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5296 2nd step:
5297 shift right by 5 the concatenation of:
5298 "1st vec" and "3rd vec"
5299 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5300 "2nd vec" and "1st vec"
5301 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5302 "3rd vec" and "2nd vec"
5303 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5304 | New vectors |
5306 So that now new vectors are:
5308 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5309 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5310 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5312 3rd step:
5313 shift right by 5 the concatenation of:
5314 "1st vec" and "1st vec"
5315 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5316 shift right by 3 the concatenation of:
5317 "2nd vec" and "2nd vec"
5318 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5319 | New vectors |
5321 So that now all vectors are READY:
5322 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5323 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5324 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5326 This algorithm is faster than one in vect_permute_load_chain if:
5327 1. "shift of a concatination" is faster than general permutation.
5328 This is usually so.
5329 2. The TARGET machine can't execute vector instructions in parallel.
5330 This is because each step of the algorithm depends on previous.
5331 The algorithm in vect_permute_load_chain is much more parallel.
5333 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5336 static bool
5337 vect_shift_permute_load_chain (vec<tree> dr_chain,
5338 unsigned int length,
5339 gimple stmt,
5340 gimple_stmt_iterator *gsi,
5341 vec<tree> *result_chain)
5343 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5344 tree perm2_mask1, perm2_mask2, perm3_mask;
5345 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5346 gimple perm_stmt;
5348 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5349 unsigned int i;
5350 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5351 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5352 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5353 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5355 result_chain->quick_grow (length);
5356 memcpy (result_chain->address (), dr_chain.address (),
5357 length * sizeof (tree));
5359 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5361 unsigned int j, log_length = exact_log2 (length);
5362 for (i = 0; i < nelt / 2; ++i)
5363 sel[i] = i * 2;
5364 for (i = 0; i < nelt / 2; ++i)
5365 sel[nelt / 2 + i] = i * 2 + 1;
5366 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5368 if (dump_enabled_p ())
5369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5370 "shuffle of 2 fields structure is not \
5371 supported by target\n");
5372 return false;
5374 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5376 for (i = 0; i < nelt / 2; ++i)
5377 sel[i] = i * 2 + 1;
5378 for (i = 0; i < nelt / 2; ++i)
5379 sel[nelt / 2 + i] = i * 2;
5380 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5382 if (dump_enabled_p ())
5383 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5384 "shuffle of 2 fields structure is not \
5385 supported by target\n");
5386 return false;
5388 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5390 /* Generating permutation constant to shift all elements.
5391 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5392 for (i = 0; i < nelt; i++)
5393 sel[i] = nelt / 2 + i;
5394 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5396 if (dump_enabled_p ())
5397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5398 "shift permutation is not supported by target\n");
5399 return false;
5401 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5403 /* Generating permutation constant to select vector from 2.
5404 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5405 for (i = 0; i < nelt / 2; i++)
5406 sel[i] = i;
5407 for (i = nelt / 2; i < nelt; i++)
5408 sel[i] = nelt + i;
5409 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5411 if (dump_enabled_p ())
5412 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5413 "select is not supported by target\n");
5414 return false;
5416 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5418 for (i = 0; i < log_length; i++)
5420 for (j = 0; j < length; j += 2)
5422 first_vect = dr_chain[j];
5423 second_vect = dr_chain[j + 1];
5425 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5426 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5427 first_vect, first_vect,
5428 perm2_mask1);
5429 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5430 vect[0] = data_ref;
5432 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5433 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5434 second_vect, second_vect,
5435 perm2_mask2);
5436 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5437 vect[1] = data_ref;
5439 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5440 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5441 vect[0], vect[1], shift1_mask);
5442 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5443 (*result_chain)[j/2 + length/2] = data_ref;
5445 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5446 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5447 vect[0], vect[1], select_mask);
5448 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5449 (*result_chain)[j/2] = data_ref;
5451 memcpy (dr_chain.address (), result_chain->address (),
5452 length * sizeof (tree));
5454 return true;
5456 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5458 unsigned int k = 0, l = 0;
5460 /* Generating permutation constant to get all elements in rigth order.
5461 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5462 for (i = 0; i < nelt; i++)
5464 if (3 * k + (l % 3) >= nelt)
5466 k = 0;
5467 l += (3 - (nelt % 3));
5469 sel[i] = 3 * k + (l % 3);
5470 k++;
5472 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5474 if (dump_enabled_p ())
5475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5476 "shuffle of 3 fields structure is not \
5477 supported by target\n");
5478 return false;
5480 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5482 /* Generating permutation constant to shift all elements.
5483 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5484 for (i = 0; i < nelt; i++)
5485 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5486 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5488 if (dump_enabled_p ())
5489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5490 "shift permutation is not supported by target\n");
5491 return false;
5493 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5495 /* Generating permutation constant to shift all elements.
5496 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5497 for (i = 0; i < nelt; i++)
5498 sel[i] = 2 * (nelt / 3) + 1 + i;
5499 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5501 if (dump_enabled_p ())
5502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5503 "shift permutation is not supported by target\n");
5504 return false;
5506 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5508 /* Generating permutation constant to shift all elements.
5509 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5510 for (i = 0; i < nelt; i++)
5511 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5512 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5514 if (dump_enabled_p ())
5515 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5516 "shift permutation is not supported by target\n");
5517 return false;
5519 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5521 /* Generating permutation constant to shift all elements.
5522 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5523 for (i = 0; i < nelt; i++)
5524 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5525 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5527 if (dump_enabled_p ())
5528 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5529 "shift permutation is not supported by target\n");
5530 return false;
5532 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5534 for (k = 0; k < 3; k++)
5536 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5537 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5538 dr_chain[k], dr_chain[k],
5539 perm3_mask);
5540 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5541 vect[k] = data_ref;
5544 for (k = 0; k < 3; k++)
5546 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5547 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5548 vect[k % 3], vect[(k + 1) % 3],
5549 shift1_mask);
5550 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5551 vect_shift[k] = data_ref;
5554 for (k = 0; k < 3; k++)
5556 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5557 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5558 vect_shift[(4 - k) % 3],
5559 vect_shift[(3 - k) % 3],
5560 shift2_mask);
5561 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5562 vect[k] = data_ref;
5565 (*result_chain)[3 - (nelt % 3)] = vect[2];
5567 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5568 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
5569 vect[0], shift3_mask);
5570 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5571 (*result_chain)[nelt % 3] = data_ref;
5573 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5574 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
5575 vect[1], shift4_mask);
5576 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5577 (*result_chain)[0] = data_ref;
5578 return true;
5580 return false;
5583 /* Function vect_transform_grouped_load.
5585 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5586 to perform their permutation and ascribe the result vectorized statements to
5587 the scalar statements.
5590 void
5591 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
5592 gimple_stmt_iterator *gsi)
5594 machine_mode mode;
5595 vec<tree> result_chain = vNULL;
5597 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5598 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5599 vectors, that are ready for vector computation. */
5600 result_chain.create (size);
5602 /* If reassociation width for vector type is 2 or greater target machine can
5603 execute 2 or more vector instructions in parallel. Otherwise try to
5604 get chain for loads group using vect_shift_permute_load_chain. */
5605 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5606 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5607 || exact_log2 (size) != -1
5608 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5609 gsi, &result_chain))
5610 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5611 vect_record_grouped_load_vectors (stmt, result_chain);
5612 result_chain.release ();
5615 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5616 generated as part of the vectorization of STMT. Assign the statement
5617 for each vector to the associated scalar statement. */
5619 void
5620 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5622 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5623 gimple next_stmt, new_stmt;
5624 unsigned int i, gap_count;
5625 tree tmp_data_ref;
5627 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5628 Since we scan the chain starting from it's first node, their order
5629 corresponds the order of data-refs in RESULT_CHAIN. */
5630 next_stmt = first_stmt;
5631 gap_count = 1;
5632 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5634 if (!next_stmt)
5635 break;
5637 /* Skip the gaps. Loads created for the gaps will be removed by dead
5638 code elimination pass later. No need to check for the first stmt in
5639 the group, since it always exists.
5640 GROUP_GAP is the number of steps in elements from the previous
5641 access (if there is no gap GROUP_GAP is 1). We skip loads that
5642 correspond to the gaps. */
5643 if (next_stmt != first_stmt
5644 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5646 gap_count++;
5647 continue;
5650 while (next_stmt)
5652 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5653 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5654 copies, and we put the new vector statement in the first available
5655 RELATED_STMT. */
5656 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5657 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5658 else
5660 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5662 gimple prev_stmt =
5663 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5664 gimple rel_stmt =
5665 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5666 while (rel_stmt)
5668 prev_stmt = rel_stmt;
5669 rel_stmt =
5670 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5673 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5674 new_stmt;
5678 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5679 gap_count = 1;
5680 /* If NEXT_STMT accesses the same DR as the previous statement,
5681 put the same TMP_DATA_REF as its vectorized statement; otherwise
5682 get the next data-ref from RESULT_CHAIN. */
5683 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5684 break;
5689 /* Function vect_force_dr_alignment_p.
5691 Returns whether the alignment of a DECL can be forced to be aligned
5692 on ALIGNMENT bit boundary. */
5694 bool
5695 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5697 if (TREE_CODE (decl) != VAR_DECL)
5698 return false;
5700 if (decl_in_symtab_p (decl)
5701 && !symtab_node::get (decl)->can_increase_alignment_p ())
5702 return false;
5704 if (TREE_STATIC (decl))
5705 return (alignment <= MAX_OFILE_ALIGNMENT);
5706 else
5707 return (alignment <= MAX_STACK_ALIGNMENT);
5711 /* Return whether the data reference DR is supported with respect to its
5712 alignment.
5713 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5714 it is aligned, i.e., check if it is possible to vectorize it with different
5715 alignment. */
5717 enum dr_alignment_support
5718 vect_supportable_dr_alignment (struct data_reference *dr,
5719 bool check_aligned_accesses)
5721 gimple stmt = DR_STMT (dr);
5722 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5723 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5724 machine_mode mode = TYPE_MODE (vectype);
5725 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5726 struct loop *vect_loop = NULL;
5727 bool nested_in_vect_loop = false;
5729 if (aligned_access_p (dr) && !check_aligned_accesses)
5730 return dr_aligned;
5732 /* For now assume all conditional loads/stores support unaligned
5733 access without any special code. */
5734 if (is_gimple_call (stmt)
5735 && gimple_call_internal_p (stmt)
5736 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5737 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5738 return dr_unaligned_supported;
5740 if (loop_vinfo)
5742 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5743 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5746 /* Possibly unaligned access. */
5748 /* We can choose between using the implicit realignment scheme (generating
5749 a misaligned_move stmt) and the explicit realignment scheme (generating
5750 aligned loads with a REALIGN_LOAD). There are two variants to the
5751 explicit realignment scheme: optimized, and unoptimized.
5752 We can optimize the realignment only if the step between consecutive
5753 vector loads is equal to the vector size. Since the vector memory
5754 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5755 is guaranteed that the misalignment amount remains the same throughout the
5756 execution of the vectorized loop. Therefore, we can create the
5757 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5758 at the loop preheader.
5760 However, in the case of outer-loop vectorization, when vectorizing a
5761 memory access in the inner-loop nested within the LOOP that is now being
5762 vectorized, while it is guaranteed that the misalignment of the
5763 vectorized memory access will remain the same in different outer-loop
5764 iterations, it is *not* guaranteed that is will remain the same throughout
5765 the execution of the inner-loop. This is because the inner-loop advances
5766 with the original scalar step (and not in steps of VS). If the inner-loop
5767 step happens to be a multiple of VS, then the misalignment remains fixed
5768 and we can use the optimized realignment scheme. For example:
5770 for (i=0; i<N; i++)
5771 for (j=0; j<M; j++)
5772 s += a[i+j];
5774 When vectorizing the i-loop in the above example, the step between
5775 consecutive vector loads is 1, and so the misalignment does not remain
5776 fixed across the execution of the inner-loop, and the realignment cannot
5777 be optimized (as illustrated in the following pseudo vectorized loop):
5779 for (i=0; i<N; i+=4)
5780 for (j=0; j<M; j++){
5781 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5782 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5783 // (assuming that we start from an aligned address).
5786 We therefore have to use the unoptimized realignment scheme:
5788 for (i=0; i<N; i+=4)
5789 for (j=k; j<M; j+=4)
5790 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5791 // that the misalignment of the initial address is
5792 // 0).
5794 The loop can then be vectorized as follows:
5796 for (k=0; k<4; k++){
5797 rt = get_realignment_token (&vp[k]);
5798 for (i=0; i<N; i+=4){
5799 v1 = vp[i+k];
5800 for (j=k; j<M; j+=4){
5801 v2 = vp[i+j+VS-1];
5802 va = REALIGN_LOAD <v1,v2,rt>;
5803 vs += va;
5804 v1 = v2;
5807 } */
5809 if (DR_IS_READ (dr))
5811 bool is_packed = false;
5812 tree type = (TREE_TYPE (DR_REF (dr)));
5814 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5815 && (!targetm.vectorize.builtin_mask_for_load
5816 || targetm.vectorize.builtin_mask_for_load ()))
5818 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5819 if ((nested_in_vect_loop
5820 && (TREE_INT_CST_LOW (DR_STEP (dr))
5821 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5822 || !loop_vinfo)
5823 return dr_explicit_realign;
5824 else
5825 return dr_explicit_realign_optimized;
5827 if (!known_alignment_for_access_p (dr))
5828 is_packed = not_size_aligned (DR_REF (dr));
5830 if ((TYPE_USER_ALIGN (type) && !is_packed)
5831 || targetm.vectorize.
5832 support_vector_misalignment (mode, type,
5833 DR_MISALIGNMENT (dr), is_packed))
5834 /* Can't software pipeline the loads, but can at least do them. */
5835 return dr_unaligned_supported;
5837 else
5839 bool is_packed = false;
5840 tree type = (TREE_TYPE (DR_REF (dr)));
5842 if (!known_alignment_for_access_p (dr))
5843 is_packed = not_size_aligned (DR_REF (dr));
5845 if ((TYPE_USER_ALIGN (type) && !is_packed)
5846 || targetm.vectorize.
5847 support_vector_misalignment (mode, type,
5848 DR_MISALIGNMENT (dr), is_packed))
5849 return dr_unaligned_supported;
5852 /* Unsupported. */
5853 return dr_unaligned_unsupported;