PR debug/53927
[official-gcc.git] / gcc / function.c
blob441289e84bc1cc39da22785912cf53d9ec93f320
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Round a value to the lowest integer less than it that is a multiple of
78 the required alignment. Avoid using division in case the value is
79 negative. Assume the alignment is a power of two. */
80 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
82 /* Similar, but round to the next highest integer that meets the
83 alignment. */
84 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
86 /* Nonzero once virtual register instantiation has been done.
87 assign_stack_local uses frame_pointer_rtx when this is nonzero.
88 calls.c:emit_library_call_value_1 uses it to set up
89 post-instantiation libcalls. */
90 int virtuals_instantiated;
92 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
93 static GTY(()) int funcdef_no;
95 /* These variables hold pointers to functions to create and destroy
96 target specific, per-function data structures. */
97 struct machine_function * (*init_machine_status) (void);
99 /* The currently compiled function. */
100 struct function *cfun = 0;
102 /* These hashes record the prologue and epilogue insns. */
103 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
104 htab_t prologue_insn_hash;
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t epilogue_insn_hash;
109 htab_t types_used_by_vars_hash = NULL;
110 vec<tree, va_gc> *types_used_by_cur_var_decl;
112 /* Forward declarations. */
114 static struct temp_slot *find_temp_slot_from_address (rtx);
115 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
116 static void pad_below (struct args_size *, enum machine_mode, tree);
117 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
118 static int all_blocks (tree, tree *);
119 static tree *get_block_vector (tree, int *);
120 extern tree debug_find_var_in_block_tree (tree, tree);
121 /* We always define `record_insns' even if it's not used so that we
122 can always export `prologue_epilogue_contains'. */
123 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
124 static bool contains (const_rtx, htab_t);
125 static void prepare_function_start (void);
126 static void do_clobber_return_reg (rtx, void *);
127 static void do_use_return_reg (rtx, void *);
129 /* Stack of nested functions. */
130 /* Keep track of the cfun stack. */
132 typedef struct function *function_p;
134 static vec<function_p> function_context_stack;
136 /* Save the current context for compilation of a nested function.
137 This is called from language-specific code. */
139 void
140 push_function_context (void)
142 if (cfun == 0)
143 allocate_struct_function (NULL, false);
145 function_context_stack.safe_push (cfun);
146 set_cfun (NULL);
149 /* Restore the last saved context, at the end of a nested function.
150 This function is called from language-specific code. */
152 void
153 pop_function_context (void)
155 struct function *p = function_context_stack.pop ();
156 set_cfun (p);
157 current_function_decl = p->decl;
159 /* Reset variables that have known state during rtx generation. */
160 virtuals_instantiated = 0;
161 generating_concat_p = 1;
164 /* Clear out all parts of the state in F that can safely be discarded
165 after the function has been parsed, but not compiled, to let
166 garbage collection reclaim the memory. */
168 void
169 free_after_parsing (struct function *f)
171 f->language = 0;
174 /* Clear out all parts of the state in F that can safely be discarded
175 after the function has been compiled, to let garbage collection
176 reclaim the memory. */
178 void
179 free_after_compilation (struct function *f)
181 prologue_insn_hash = NULL;
182 epilogue_insn_hash = NULL;
184 free (crtl->emit.regno_pointer_align);
186 memset (crtl, 0, sizeof (struct rtl_data));
187 f->eh = NULL;
188 f->machine = NULL;
189 f->cfg = NULL;
191 regno_reg_rtx = NULL;
194 /* Return size needed for stack frame based on slots so far allocated.
195 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
196 the caller may have to do that. */
198 HOST_WIDE_INT
199 get_frame_size (void)
201 if (FRAME_GROWS_DOWNWARD)
202 return -frame_offset;
203 else
204 return frame_offset;
207 /* Issue an error message and return TRUE if frame OFFSET overflows in
208 the signed target pointer arithmetics for function FUNC. Otherwise
209 return FALSE. */
211 bool
212 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
214 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
216 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
217 /* Leave room for the fixed part of the frame. */
218 - 64 * UNITS_PER_WORD)
220 error_at (DECL_SOURCE_LOCATION (func),
221 "total size of local objects too large");
222 return TRUE;
225 return FALSE;
228 /* Return stack slot alignment in bits for TYPE and MODE. */
230 static unsigned int
231 get_stack_local_alignment (tree type, enum machine_mode mode)
233 unsigned int alignment;
235 if (mode == BLKmode)
236 alignment = BIGGEST_ALIGNMENT;
237 else
238 alignment = GET_MODE_ALIGNMENT (mode);
240 /* Allow the frond-end to (possibly) increase the alignment of this
241 stack slot. */
242 if (! type)
243 type = lang_hooks.types.type_for_mode (mode, 0);
245 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
248 /* Determine whether it is possible to fit a stack slot of size SIZE and
249 alignment ALIGNMENT into an area in the stack frame that starts at
250 frame offset START and has a length of LENGTH. If so, store the frame
251 offset to be used for the stack slot in *POFFSET and return true;
252 return false otherwise. This function will extend the frame size when
253 given a start/length pair that lies at the end of the frame. */
255 static bool
256 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
257 HOST_WIDE_INT size, unsigned int alignment,
258 HOST_WIDE_INT *poffset)
260 HOST_WIDE_INT this_frame_offset;
261 int frame_off, frame_alignment, frame_phase;
263 /* Calculate how many bytes the start of local variables is off from
264 stack alignment. */
265 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
266 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
267 frame_phase = frame_off ? frame_alignment - frame_off : 0;
269 /* Round the frame offset to the specified alignment. */
271 /* We must be careful here, since FRAME_OFFSET might be negative and
272 division with a negative dividend isn't as well defined as we might
273 like. So we instead assume that ALIGNMENT is a power of two and
274 use logical operations which are unambiguous. */
275 if (FRAME_GROWS_DOWNWARD)
276 this_frame_offset
277 = (FLOOR_ROUND (start + length - size - frame_phase,
278 (unsigned HOST_WIDE_INT) alignment)
279 + frame_phase);
280 else
281 this_frame_offset
282 = (CEIL_ROUND (start - frame_phase,
283 (unsigned HOST_WIDE_INT) alignment)
284 + frame_phase);
286 /* See if it fits. If this space is at the edge of the frame,
287 consider extending the frame to make it fit. Our caller relies on
288 this when allocating a new slot. */
289 if (frame_offset == start && this_frame_offset < frame_offset)
290 frame_offset = this_frame_offset;
291 else if (this_frame_offset < start)
292 return false;
293 else if (start + length == frame_offset
294 && this_frame_offset + size > start + length)
295 frame_offset = this_frame_offset + size;
296 else if (this_frame_offset + size > start + length)
297 return false;
299 *poffset = this_frame_offset;
300 return true;
303 /* Create a new frame_space structure describing free space in the stack
304 frame beginning at START and ending at END, and chain it into the
305 function's frame_space_list. */
307 static void
308 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
310 struct frame_space *space = ggc_alloc<frame_space> ();
311 space->next = crtl->frame_space_list;
312 crtl->frame_space_list = space;
313 space->start = start;
314 space->length = end - start;
317 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
318 with machine mode MODE.
320 ALIGN controls the amount of alignment for the address of the slot:
321 0 means according to MODE,
322 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
323 -2 means use BITS_PER_UNIT,
324 positive specifies alignment boundary in bits.
326 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
327 alignment and ASLK_RECORD_PAD bit set if we should remember
328 extra space we allocated for alignment purposes. When we are
329 called from assign_stack_temp_for_type, it is not set so we don't
330 track the same stack slot in two independent lists.
332 We do not round to stack_boundary here. */
335 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
336 int align, int kind)
338 rtx x, addr;
339 int bigend_correction = 0;
340 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
341 unsigned int alignment, alignment_in_bits;
343 if (align == 0)
345 alignment = get_stack_local_alignment (NULL, mode);
346 alignment /= BITS_PER_UNIT;
348 else if (align == -1)
350 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
351 size = CEIL_ROUND (size, alignment);
353 else if (align == -2)
354 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
355 else
356 alignment = align / BITS_PER_UNIT;
358 alignment_in_bits = alignment * BITS_PER_UNIT;
360 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
361 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
363 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
364 alignment = alignment_in_bits / BITS_PER_UNIT;
367 if (SUPPORTS_STACK_ALIGNMENT)
369 if (crtl->stack_alignment_estimated < alignment_in_bits)
371 if (!crtl->stack_realign_processed)
372 crtl->stack_alignment_estimated = alignment_in_bits;
373 else
375 /* If stack is realigned and stack alignment value
376 hasn't been finalized, it is OK not to increase
377 stack_alignment_estimated. The bigger alignment
378 requirement is recorded in stack_alignment_needed
379 below. */
380 gcc_assert (!crtl->stack_realign_finalized);
381 if (!crtl->stack_realign_needed)
383 /* It is OK to reduce the alignment as long as the
384 requested size is 0 or the estimated stack
385 alignment >= mode alignment. */
386 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
387 || size == 0
388 || (crtl->stack_alignment_estimated
389 >= GET_MODE_ALIGNMENT (mode)));
390 alignment_in_bits = crtl->stack_alignment_estimated;
391 alignment = alignment_in_bits / BITS_PER_UNIT;
397 if (crtl->stack_alignment_needed < alignment_in_bits)
398 crtl->stack_alignment_needed = alignment_in_bits;
399 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
400 crtl->max_used_stack_slot_alignment = alignment_in_bits;
402 if (mode != BLKmode || size != 0)
404 if (kind & ASLK_RECORD_PAD)
406 struct frame_space **psp;
408 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
410 struct frame_space *space = *psp;
411 if (!try_fit_stack_local (space->start, space->length, size,
412 alignment, &slot_offset))
413 continue;
414 *psp = space->next;
415 if (slot_offset > space->start)
416 add_frame_space (space->start, slot_offset);
417 if (slot_offset + size < space->start + space->length)
418 add_frame_space (slot_offset + size,
419 space->start + space->length);
420 goto found_space;
424 else if (!STACK_ALIGNMENT_NEEDED)
426 slot_offset = frame_offset;
427 goto found_space;
430 old_frame_offset = frame_offset;
432 if (FRAME_GROWS_DOWNWARD)
434 frame_offset -= size;
435 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
437 if (kind & ASLK_RECORD_PAD)
439 if (slot_offset > frame_offset)
440 add_frame_space (frame_offset, slot_offset);
441 if (slot_offset + size < old_frame_offset)
442 add_frame_space (slot_offset + size, old_frame_offset);
445 else
447 frame_offset += size;
448 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
450 if (kind & ASLK_RECORD_PAD)
452 if (slot_offset > old_frame_offset)
453 add_frame_space (old_frame_offset, slot_offset);
454 if (slot_offset + size < frame_offset)
455 add_frame_space (slot_offset + size, frame_offset);
459 found_space:
460 /* On a big-endian machine, if we are allocating more space than we will use,
461 use the least significant bytes of those that are allocated. */
462 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
463 bigend_correction = size - GET_MODE_SIZE (mode);
465 /* If we have already instantiated virtual registers, return the actual
466 address relative to the frame pointer. */
467 if (virtuals_instantiated)
468 addr = plus_constant (Pmode, frame_pointer_rtx,
469 trunc_int_for_mode
470 (slot_offset + bigend_correction
471 + STARTING_FRAME_OFFSET, Pmode));
472 else
473 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
474 trunc_int_for_mode
475 (slot_offset + bigend_correction,
476 Pmode));
478 x = gen_rtx_MEM (mode, addr);
479 set_mem_align (x, alignment_in_bits);
480 MEM_NOTRAP_P (x) = 1;
482 stack_slot_list
483 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
485 if (frame_offset_overflow (frame_offset, current_function_decl))
486 frame_offset = 0;
488 return x;
491 /* Wrap up assign_stack_local_1 with last parameter as false. */
494 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
496 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
499 /* In order to evaluate some expressions, such as function calls returning
500 structures in memory, we need to temporarily allocate stack locations.
501 We record each allocated temporary in the following structure.
503 Associated with each temporary slot is a nesting level. When we pop up
504 one level, all temporaries associated with the previous level are freed.
505 Normally, all temporaries are freed after the execution of the statement
506 in which they were created. However, if we are inside a ({...}) grouping,
507 the result may be in a temporary and hence must be preserved. If the
508 result could be in a temporary, we preserve it if we can determine which
509 one it is in. If we cannot determine which temporary may contain the
510 result, all temporaries are preserved. A temporary is preserved by
511 pretending it was allocated at the previous nesting level. */
513 struct GTY(()) temp_slot {
514 /* Points to next temporary slot. */
515 struct temp_slot *next;
516 /* Points to previous temporary slot. */
517 struct temp_slot *prev;
518 /* The rtx to used to reference the slot. */
519 rtx slot;
520 /* The size, in units, of the slot. */
521 HOST_WIDE_INT size;
522 /* The type of the object in the slot, or zero if it doesn't correspond
523 to a type. We use this to determine whether a slot can be reused.
524 It can be reused if objects of the type of the new slot will always
525 conflict with objects of the type of the old slot. */
526 tree type;
527 /* The alignment (in bits) of the slot. */
528 unsigned int align;
529 /* Nonzero if this temporary is currently in use. */
530 char in_use;
531 /* Nesting level at which this slot is being used. */
532 int level;
533 /* The offset of the slot from the frame_pointer, including extra space
534 for alignment. This info is for combine_temp_slots. */
535 HOST_WIDE_INT base_offset;
536 /* The size of the slot, including extra space for alignment. This
537 info is for combine_temp_slots. */
538 HOST_WIDE_INT full_size;
541 /* A table of addresses that represent a stack slot. The table is a mapping
542 from address RTXen to a temp slot. */
543 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
544 static size_t n_temp_slots_in_use;
546 /* Entry for the above hash table. */
547 struct GTY(()) temp_slot_address_entry {
548 hashval_t hash;
549 rtx address;
550 struct temp_slot *temp_slot;
553 /* Removes temporary slot TEMP from LIST. */
555 static void
556 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
558 if (temp->next)
559 temp->next->prev = temp->prev;
560 if (temp->prev)
561 temp->prev->next = temp->next;
562 else
563 *list = temp->next;
565 temp->prev = temp->next = NULL;
568 /* Inserts temporary slot TEMP to LIST. */
570 static void
571 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
573 temp->next = *list;
574 if (*list)
575 (*list)->prev = temp;
576 temp->prev = NULL;
577 *list = temp;
580 /* Returns the list of used temp slots at LEVEL. */
582 static struct temp_slot **
583 temp_slots_at_level (int level)
585 if (level >= (int) vec_safe_length (used_temp_slots))
586 vec_safe_grow_cleared (used_temp_slots, level + 1);
588 return &(*used_temp_slots)[level];
591 /* Returns the maximal temporary slot level. */
593 static int
594 max_slot_level (void)
596 if (!used_temp_slots)
597 return -1;
599 return used_temp_slots->length () - 1;
602 /* Moves temporary slot TEMP to LEVEL. */
604 static void
605 move_slot_to_level (struct temp_slot *temp, int level)
607 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
608 insert_slot_to_list (temp, temp_slots_at_level (level));
609 temp->level = level;
612 /* Make temporary slot TEMP available. */
614 static void
615 make_slot_available (struct temp_slot *temp)
617 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
618 insert_slot_to_list (temp, &avail_temp_slots);
619 temp->in_use = 0;
620 temp->level = -1;
621 n_temp_slots_in_use--;
624 /* Compute the hash value for an address -> temp slot mapping.
625 The value is cached on the mapping entry. */
626 static hashval_t
627 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
629 int do_not_record = 0;
630 return hash_rtx (t->address, GET_MODE (t->address),
631 &do_not_record, NULL, false);
634 /* Return the hash value for an address -> temp slot mapping. */
635 static hashval_t
636 temp_slot_address_hash (const void *p)
638 const struct temp_slot_address_entry *t;
639 t = (const struct temp_slot_address_entry *) p;
640 return t->hash;
643 /* Compare two address -> temp slot mapping entries. */
644 static int
645 temp_slot_address_eq (const void *p1, const void *p2)
647 const struct temp_slot_address_entry *t1, *t2;
648 t1 = (const struct temp_slot_address_entry *) p1;
649 t2 = (const struct temp_slot_address_entry *) p2;
650 return exp_equiv_p (t1->address, t2->address, 0, true);
653 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
654 static void
655 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
657 void **slot;
658 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
659 t->address = address;
660 t->temp_slot = temp_slot;
661 t->hash = temp_slot_address_compute_hash (t);
662 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
663 *slot = t;
666 /* Remove an address -> temp slot mapping entry if the temp slot is
667 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
668 static int
669 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
671 const struct temp_slot_address_entry *t;
672 t = (const struct temp_slot_address_entry *) *slot;
673 if (! t->temp_slot->in_use)
674 htab_clear_slot (temp_slot_address_table, slot);
675 return 1;
678 /* Remove all mappings of addresses to unused temp slots. */
679 static void
680 remove_unused_temp_slot_addresses (void)
682 /* Use quicker clearing if there aren't any active temp slots. */
683 if (n_temp_slots_in_use)
684 htab_traverse (temp_slot_address_table,
685 remove_unused_temp_slot_addresses_1,
686 NULL);
687 else
688 htab_empty (temp_slot_address_table);
691 /* Find the temp slot corresponding to the object at address X. */
693 static struct temp_slot *
694 find_temp_slot_from_address (rtx x)
696 struct temp_slot *p;
697 struct temp_slot_address_entry tmp, *t;
699 /* First try the easy way:
700 See if X exists in the address -> temp slot mapping. */
701 tmp.address = x;
702 tmp.temp_slot = NULL;
703 tmp.hash = temp_slot_address_compute_hash (&tmp);
704 t = (struct temp_slot_address_entry *)
705 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
706 if (t)
707 return t->temp_slot;
709 /* If we have a sum involving a register, see if it points to a temp
710 slot. */
711 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
712 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
713 return p;
714 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
715 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
716 return p;
718 /* Last resort: Address is a virtual stack var address. */
719 if (GET_CODE (x) == PLUS
720 && XEXP (x, 0) == virtual_stack_vars_rtx
721 && CONST_INT_P (XEXP (x, 1)))
723 int i;
724 for (i = max_slot_level (); i >= 0; i--)
725 for (p = *temp_slots_at_level (i); p; p = p->next)
727 if (INTVAL (XEXP (x, 1)) >= p->base_offset
728 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
729 return p;
733 return NULL;
736 /* Allocate a temporary stack slot and record it for possible later
737 reuse.
739 MODE is the machine mode to be given to the returned rtx.
741 SIZE is the size in units of the space required. We do no rounding here
742 since assign_stack_local will do any required rounding.
744 TYPE is the type that will be used for the stack slot. */
747 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
748 tree type)
750 unsigned int align;
751 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
752 rtx slot;
754 /* If SIZE is -1 it means that somebody tried to allocate a temporary
755 of a variable size. */
756 gcc_assert (size != -1);
758 align = get_stack_local_alignment (type, mode);
760 /* Try to find an available, already-allocated temporary of the proper
761 mode which meets the size and alignment requirements. Choose the
762 smallest one with the closest alignment.
764 If assign_stack_temp is called outside of the tree->rtl expansion,
765 we cannot reuse the stack slots (that may still refer to
766 VIRTUAL_STACK_VARS_REGNUM). */
767 if (!virtuals_instantiated)
769 for (p = avail_temp_slots; p; p = p->next)
771 if (p->align >= align && p->size >= size
772 && GET_MODE (p->slot) == mode
773 && objects_must_conflict_p (p->type, type)
774 && (best_p == 0 || best_p->size > p->size
775 || (best_p->size == p->size && best_p->align > p->align)))
777 if (p->align == align && p->size == size)
779 selected = p;
780 cut_slot_from_list (selected, &avail_temp_slots);
781 best_p = 0;
782 break;
784 best_p = p;
789 /* Make our best, if any, the one to use. */
790 if (best_p)
792 selected = best_p;
793 cut_slot_from_list (selected, &avail_temp_slots);
795 /* If there are enough aligned bytes left over, make them into a new
796 temp_slot so that the extra bytes don't get wasted. Do this only
797 for BLKmode slots, so that we can be sure of the alignment. */
798 if (GET_MODE (best_p->slot) == BLKmode)
800 int alignment = best_p->align / BITS_PER_UNIT;
801 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
803 if (best_p->size - rounded_size >= alignment)
805 p = ggc_alloc<temp_slot> ();
806 p->in_use = 0;
807 p->size = best_p->size - rounded_size;
808 p->base_offset = best_p->base_offset + rounded_size;
809 p->full_size = best_p->full_size - rounded_size;
810 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
811 p->align = best_p->align;
812 p->type = best_p->type;
813 insert_slot_to_list (p, &avail_temp_slots);
815 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
816 stack_slot_list);
818 best_p->size = rounded_size;
819 best_p->full_size = rounded_size;
824 /* If we still didn't find one, make a new temporary. */
825 if (selected == 0)
827 HOST_WIDE_INT frame_offset_old = frame_offset;
829 p = ggc_alloc<temp_slot> ();
831 /* We are passing an explicit alignment request to assign_stack_local.
832 One side effect of that is assign_stack_local will not round SIZE
833 to ensure the frame offset remains suitably aligned.
835 So for requests which depended on the rounding of SIZE, we go ahead
836 and round it now. We also make sure ALIGNMENT is at least
837 BIGGEST_ALIGNMENT. */
838 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
839 p->slot = assign_stack_local_1 (mode,
840 (mode == BLKmode
841 ? CEIL_ROUND (size,
842 (int) align
843 / BITS_PER_UNIT)
844 : size),
845 align, 0);
847 p->align = align;
849 /* The following slot size computation is necessary because we don't
850 know the actual size of the temporary slot until assign_stack_local
851 has performed all the frame alignment and size rounding for the
852 requested temporary. Note that extra space added for alignment
853 can be either above or below this stack slot depending on which
854 way the frame grows. We include the extra space if and only if it
855 is above this slot. */
856 if (FRAME_GROWS_DOWNWARD)
857 p->size = frame_offset_old - frame_offset;
858 else
859 p->size = size;
861 /* Now define the fields used by combine_temp_slots. */
862 if (FRAME_GROWS_DOWNWARD)
864 p->base_offset = frame_offset;
865 p->full_size = frame_offset_old - frame_offset;
867 else
869 p->base_offset = frame_offset_old;
870 p->full_size = frame_offset - frame_offset_old;
873 selected = p;
876 p = selected;
877 p->in_use = 1;
878 p->type = type;
879 p->level = temp_slot_level;
880 n_temp_slots_in_use++;
882 pp = temp_slots_at_level (p->level);
883 insert_slot_to_list (p, pp);
884 insert_temp_slot_address (XEXP (p->slot, 0), p);
886 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
887 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
888 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
890 /* If we know the alias set for the memory that will be used, use
891 it. If there's no TYPE, then we don't know anything about the
892 alias set for the memory. */
893 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
894 set_mem_align (slot, align);
896 /* If a type is specified, set the relevant flags. */
897 if (type != 0)
898 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
899 MEM_NOTRAP_P (slot) = 1;
901 return slot;
904 /* Allocate a temporary stack slot and record it for possible later
905 reuse. First two arguments are same as in preceding function. */
908 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
910 return assign_stack_temp_for_type (mode, size, NULL_TREE);
913 /* Assign a temporary.
914 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
915 and so that should be used in error messages. In either case, we
916 allocate of the given type.
917 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
918 it is 0 if a register is OK.
919 DONT_PROMOTE is 1 if we should not promote values in register
920 to wider modes. */
923 assign_temp (tree type_or_decl, int memory_required,
924 int dont_promote ATTRIBUTE_UNUSED)
926 tree type, decl;
927 enum machine_mode mode;
928 #ifdef PROMOTE_MODE
929 int unsignedp;
930 #endif
932 if (DECL_P (type_or_decl))
933 decl = type_or_decl, type = TREE_TYPE (decl);
934 else
935 decl = NULL, type = type_or_decl;
937 mode = TYPE_MODE (type);
938 #ifdef PROMOTE_MODE
939 unsignedp = TYPE_UNSIGNED (type);
940 #endif
942 if (mode == BLKmode || memory_required)
944 HOST_WIDE_INT size = int_size_in_bytes (type);
945 rtx tmp;
947 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
948 problems with allocating the stack space. */
949 if (size == 0)
950 size = 1;
952 /* Unfortunately, we don't yet know how to allocate variable-sized
953 temporaries. However, sometimes we can find a fixed upper limit on
954 the size, so try that instead. */
955 else if (size == -1)
956 size = max_int_size_in_bytes (type);
958 /* The size of the temporary may be too large to fit into an integer. */
959 /* ??? Not sure this should happen except for user silliness, so limit
960 this to things that aren't compiler-generated temporaries. The
961 rest of the time we'll die in assign_stack_temp_for_type. */
962 if (decl && size == -1
963 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
965 error ("size of variable %q+D is too large", decl);
966 size = 1;
969 tmp = assign_stack_temp_for_type (mode, size, type);
970 return tmp;
973 #ifdef PROMOTE_MODE
974 if (! dont_promote)
975 mode = promote_mode (type, mode, &unsignedp);
976 #endif
978 return gen_reg_rtx (mode);
981 /* Combine temporary stack slots which are adjacent on the stack.
983 This allows for better use of already allocated stack space. This is only
984 done for BLKmode slots because we can be sure that we won't have alignment
985 problems in this case. */
987 static void
988 combine_temp_slots (void)
990 struct temp_slot *p, *q, *next, *next_q;
991 int num_slots;
993 /* We can't combine slots, because the information about which slot
994 is in which alias set will be lost. */
995 if (flag_strict_aliasing)
996 return;
998 /* If there are a lot of temp slots, don't do anything unless
999 high levels of optimization. */
1000 if (! flag_expensive_optimizations)
1001 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1002 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1003 return;
1005 for (p = avail_temp_slots; p; p = next)
1007 int delete_p = 0;
1009 next = p->next;
1011 if (GET_MODE (p->slot) != BLKmode)
1012 continue;
1014 for (q = p->next; q; q = next_q)
1016 int delete_q = 0;
1018 next_q = q->next;
1020 if (GET_MODE (q->slot) != BLKmode)
1021 continue;
1023 if (p->base_offset + p->full_size == q->base_offset)
1025 /* Q comes after P; combine Q into P. */
1026 p->size += q->size;
1027 p->full_size += q->full_size;
1028 delete_q = 1;
1030 else if (q->base_offset + q->full_size == p->base_offset)
1032 /* P comes after Q; combine P into Q. */
1033 q->size += p->size;
1034 q->full_size += p->full_size;
1035 delete_p = 1;
1036 break;
1038 if (delete_q)
1039 cut_slot_from_list (q, &avail_temp_slots);
1042 /* Either delete P or advance past it. */
1043 if (delete_p)
1044 cut_slot_from_list (p, &avail_temp_slots);
1048 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1049 slot that previously was known by OLD_RTX. */
1051 void
1052 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1054 struct temp_slot *p;
1056 if (rtx_equal_p (old_rtx, new_rtx))
1057 return;
1059 p = find_temp_slot_from_address (old_rtx);
1061 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1062 NEW_RTX is a register, see if one operand of the PLUS is a
1063 temporary location. If so, NEW_RTX points into it. Otherwise,
1064 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1065 in common between them. If so, try a recursive call on those
1066 values. */
1067 if (p == 0)
1069 if (GET_CODE (old_rtx) != PLUS)
1070 return;
1072 if (REG_P (new_rtx))
1074 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1075 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1076 return;
1078 else if (GET_CODE (new_rtx) != PLUS)
1079 return;
1081 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1082 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1083 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1084 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1086 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1087 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1088 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1090 return;
1093 /* Otherwise add an alias for the temp's address. */
1094 insert_temp_slot_address (new_rtx, p);
1097 /* If X could be a reference to a temporary slot, mark that slot as
1098 belonging to the to one level higher than the current level. If X
1099 matched one of our slots, just mark that one. Otherwise, we can't
1100 easily predict which it is, so upgrade all of them.
1102 This is called when an ({...}) construct occurs and a statement
1103 returns a value in memory. */
1105 void
1106 preserve_temp_slots (rtx x)
1108 struct temp_slot *p = 0, *next;
1110 if (x == 0)
1111 return;
1113 /* If X is a register that is being used as a pointer, see if we have
1114 a temporary slot we know it points to. */
1115 if (REG_P (x) && REG_POINTER (x))
1116 p = find_temp_slot_from_address (x);
1118 /* If X is not in memory or is at a constant address, it cannot be in
1119 a temporary slot. */
1120 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1121 return;
1123 /* First see if we can find a match. */
1124 if (p == 0)
1125 p = find_temp_slot_from_address (XEXP (x, 0));
1127 if (p != 0)
1129 if (p->level == temp_slot_level)
1130 move_slot_to_level (p, temp_slot_level - 1);
1131 return;
1134 /* Otherwise, preserve all non-kept slots at this level. */
1135 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1137 next = p->next;
1138 move_slot_to_level (p, temp_slot_level - 1);
1142 /* Free all temporaries used so far. This is normally called at the
1143 end of generating code for a statement. */
1145 void
1146 free_temp_slots (void)
1148 struct temp_slot *p, *next;
1149 bool some_available = false;
1151 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1153 next = p->next;
1154 make_slot_available (p);
1155 some_available = true;
1158 if (some_available)
1160 remove_unused_temp_slot_addresses ();
1161 combine_temp_slots ();
1165 /* Push deeper into the nesting level for stack temporaries. */
1167 void
1168 push_temp_slots (void)
1170 temp_slot_level++;
1173 /* Pop a temporary nesting level. All slots in use in the current level
1174 are freed. */
1176 void
1177 pop_temp_slots (void)
1179 free_temp_slots ();
1180 temp_slot_level--;
1183 /* Initialize temporary slots. */
1185 void
1186 init_temp_slots (void)
1188 /* We have not allocated any temporaries yet. */
1189 avail_temp_slots = 0;
1190 vec_alloc (used_temp_slots, 0);
1191 temp_slot_level = 0;
1192 n_temp_slots_in_use = 0;
1194 /* Set up the table to map addresses to temp slots. */
1195 if (! temp_slot_address_table)
1196 temp_slot_address_table = htab_create_ggc (32,
1197 temp_slot_address_hash,
1198 temp_slot_address_eq,
1199 NULL);
1200 else
1201 htab_empty (temp_slot_address_table);
1204 /* Functions and data structures to keep track of the values hard regs
1205 had at the start of the function. */
1207 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1208 and has_hard_reg_initial_val.. */
1209 typedef struct GTY(()) initial_value_pair {
1210 rtx hard_reg;
1211 rtx pseudo;
1212 } initial_value_pair;
1213 /* ??? This could be a VEC but there is currently no way to define an
1214 opaque VEC type. This could be worked around by defining struct
1215 initial_value_pair in function.h. */
1216 typedef struct GTY(()) initial_value_struct {
1217 int num_entries;
1218 int max_entries;
1219 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1220 } initial_value_struct;
1222 /* If a pseudo represents an initial hard reg (or expression), return
1223 it, else return NULL_RTX. */
1226 get_hard_reg_initial_reg (rtx reg)
1228 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1229 int i;
1231 if (ivs == 0)
1232 return NULL_RTX;
1234 for (i = 0; i < ivs->num_entries; i++)
1235 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1236 return ivs->entries[i].hard_reg;
1238 return NULL_RTX;
1241 /* Make sure that there's a pseudo register of mode MODE that stores the
1242 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1245 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1247 struct initial_value_struct *ivs;
1248 rtx rv;
1250 rv = has_hard_reg_initial_val (mode, regno);
1251 if (rv)
1252 return rv;
1254 ivs = crtl->hard_reg_initial_vals;
1255 if (ivs == 0)
1257 ivs = ggc_alloc<initial_value_struct> ();
1258 ivs->num_entries = 0;
1259 ivs->max_entries = 5;
1260 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1261 crtl->hard_reg_initial_vals = ivs;
1264 if (ivs->num_entries >= ivs->max_entries)
1266 ivs->max_entries += 5;
1267 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1268 ivs->max_entries);
1271 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1272 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1274 return ivs->entries[ivs->num_entries++].pseudo;
1277 /* See if get_hard_reg_initial_val has been used to create a pseudo
1278 for the initial value of hard register REGNO in mode MODE. Return
1279 the associated pseudo if so, otherwise return NULL. */
1282 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1284 struct initial_value_struct *ivs;
1285 int i;
1287 ivs = crtl->hard_reg_initial_vals;
1288 if (ivs != 0)
1289 for (i = 0; i < ivs->num_entries; i++)
1290 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1291 && REGNO (ivs->entries[i].hard_reg) == regno)
1292 return ivs->entries[i].pseudo;
1294 return NULL_RTX;
1297 unsigned int
1298 emit_initial_value_sets (void)
1300 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1301 int i;
1302 rtx seq;
1304 if (ivs == 0)
1305 return 0;
1307 start_sequence ();
1308 for (i = 0; i < ivs->num_entries; i++)
1309 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1310 seq = get_insns ();
1311 end_sequence ();
1313 emit_insn_at_entry (seq);
1314 return 0;
1317 /* Return the hardreg-pseudoreg initial values pair entry I and
1318 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1319 bool
1320 initial_value_entry (int i, rtx *hreg, rtx *preg)
1322 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1323 if (!ivs || i >= ivs->num_entries)
1324 return false;
1326 *hreg = ivs->entries[i].hard_reg;
1327 *preg = ivs->entries[i].pseudo;
1328 return true;
1331 /* These routines are responsible for converting virtual register references
1332 to the actual hard register references once RTL generation is complete.
1334 The following four variables are used for communication between the
1335 routines. They contain the offsets of the virtual registers from their
1336 respective hard registers. */
1338 static int in_arg_offset;
1339 static int var_offset;
1340 static int dynamic_offset;
1341 static int out_arg_offset;
1342 static int cfa_offset;
1344 /* In most machines, the stack pointer register is equivalent to the bottom
1345 of the stack. */
1347 #ifndef STACK_POINTER_OFFSET
1348 #define STACK_POINTER_OFFSET 0
1349 #endif
1351 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1352 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1353 #endif
1355 /* If not defined, pick an appropriate default for the offset of dynamically
1356 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1357 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1359 #ifndef STACK_DYNAMIC_OFFSET
1361 /* The bottom of the stack points to the actual arguments. If
1362 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1363 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1364 stack space for register parameters is not pushed by the caller, but
1365 rather part of the fixed stack areas and hence not included in
1366 `crtl->outgoing_args_size'. Nevertheless, we must allow
1367 for it when allocating stack dynamic objects. */
1369 #ifdef INCOMING_REG_PARM_STACK_SPACE
1370 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1371 ((ACCUMULATE_OUTGOING_ARGS \
1372 ? (crtl->outgoing_args_size \
1373 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1374 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1375 : 0) + (STACK_POINTER_OFFSET))
1376 #else
1377 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1378 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1379 + (STACK_POINTER_OFFSET))
1380 #endif
1381 #endif
1384 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1385 is a virtual register, return the equivalent hard register and set the
1386 offset indirectly through the pointer. Otherwise, return 0. */
1388 static rtx
1389 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1391 rtx new_rtx;
1392 HOST_WIDE_INT offset;
1394 if (x == virtual_incoming_args_rtx)
1396 if (stack_realign_drap)
1398 /* Replace virtual_incoming_args_rtx with internal arg
1399 pointer if DRAP is used to realign stack. */
1400 new_rtx = crtl->args.internal_arg_pointer;
1401 offset = 0;
1403 else
1404 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1406 else if (x == virtual_stack_vars_rtx)
1407 new_rtx = frame_pointer_rtx, offset = var_offset;
1408 else if (x == virtual_stack_dynamic_rtx)
1409 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1410 else if (x == virtual_outgoing_args_rtx)
1411 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1412 else if (x == virtual_cfa_rtx)
1414 #ifdef FRAME_POINTER_CFA_OFFSET
1415 new_rtx = frame_pointer_rtx;
1416 #else
1417 new_rtx = arg_pointer_rtx;
1418 #endif
1419 offset = cfa_offset;
1421 else if (x == virtual_preferred_stack_boundary_rtx)
1423 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1424 offset = 0;
1426 else
1427 return NULL_RTX;
1429 *poffset = offset;
1430 return new_rtx;
1433 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1434 Instantiate any virtual registers present inside of *LOC. The expression
1435 is simplified, as much as possible, but is not to be considered "valid"
1436 in any sense implied by the target. If any change is made, set CHANGED
1437 to true. */
1439 static int
1440 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1442 HOST_WIDE_INT offset;
1443 bool *changed = (bool *) data;
1444 rtx x, new_rtx;
1446 x = *loc;
1447 if (x == 0)
1448 return 0;
1450 switch (GET_CODE (x))
1452 case REG:
1453 new_rtx = instantiate_new_reg (x, &offset);
1454 if (new_rtx)
1456 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1457 if (changed)
1458 *changed = true;
1460 return -1;
1462 case PLUS:
1463 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1464 if (new_rtx)
1466 XEXP (x, 0) = new_rtx;
1467 *loc = plus_constant (GET_MODE (x), x, offset, true);
1468 if (changed)
1469 *changed = true;
1470 return -1;
1473 /* FIXME -- from old code */
1474 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1475 we can commute the PLUS and SUBREG because pointers into the
1476 frame are well-behaved. */
1477 break;
1479 default:
1480 break;
1483 return 0;
1486 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1487 matches the predicate for insn CODE operand OPERAND. */
1489 static int
1490 safe_insn_predicate (int code, int operand, rtx x)
1492 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1495 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1496 registers present inside of insn. The result will be a valid insn. */
1498 static void
1499 instantiate_virtual_regs_in_insn (rtx insn)
1501 HOST_WIDE_INT offset;
1502 int insn_code, i;
1503 bool any_change = false;
1504 rtx set, new_rtx, x, seq;
1506 /* There are some special cases to be handled first. */
1507 set = single_set (insn);
1508 if (set)
1510 /* We're allowed to assign to a virtual register. This is interpreted
1511 to mean that the underlying register gets assigned the inverse
1512 transformation. This is used, for example, in the handling of
1513 non-local gotos. */
1514 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1515 if (new_rtx)
1517 start_sequence ();
1519 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1520 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1521 gen_int_mode (-offset, GET_MODE (new_rtx)));
1522 x = force_operand (x, new_rtx);
1523 if (x != new_rtx)
1524 emit_move_insn (new_rtx, x);
1526 seq = get_insns ();
1527 end_sequence ();
1529 emit_insn_before (seq, insn);
1530 delete_insn (insn);
1531 return;
1534 /* Handle a straight copy from a virtual register by generating a
1535 new add insn. The difference between this and falling through
1536 to the generic case is avoiding a new pseudo and eliminating a
1537 move insn in the initial rtl stream. */
1538 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1539 if (new_rtx && offset != 0
1540 && REG_P (SET_DEST (set))
1541 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1543 start_sequence ();
1545 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1546 gen_int_mode (offset,
1547 GET_MODE (SET_DEST (set))),
1548 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1549 if (x != SET_DEST (set))
1550 emit_move_insn (SET_DEST (set), x);
1552 seq = get_insns ();
1553 end_sequence ();
1555 emit_insn_before (seq, insn);
1556 delete_insn (insn);
1557 return;
1560 extract_insn (insn);
1561 insn_code = INSN_CODE (insn);
1563 /* Handle a plus involving a virtual register by determining if the
1564 operands remain valid if they're modified in place. */
1565 if (GET_CODE (SET_SRC (set)) == PLUS
1566 && recog_data.n_operands >= 3
1567 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1568 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1569 && CONST_INT_P (recog_data.operand[2])
1570 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1572 offset += INTVAL (recog_data.operand[2]);
1574 /* If the sum is zero, then replace with a plain move. */
1575 if (offset == 0
1576 && REG_P (SET_DEST (set))
1577 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1579 start_sequence ();
1580 emit_move_insn (SET_DEST (set), new_rtx);
1581 seq = get_insns ();
1582 end_sequence ();
1584 emit_insn_before (seq, insn);
1585 delete_insn (insn);
1586 return;
1589 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1591 /* Using validate_change and apply_change_group here leaves
1592 recog_data in an invalid state. Since we know exactly what
1593 we want to check, do those two by hand. */
1594 if (safe_insn_predicate (insn_code, 1, new_rtx)
1595 && safe_insn_predicate (insn_code, 2, x))
1597 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1598 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1599 any_change = true;
1601 /* Fall through into the regular operand fixup loop in
1602 order to take care of operands other than 1 and 2. */
1606 else
1608 extract_insn (insn);
1609 insn_code = INSN_CODE (insn);
1612 /* In the general case, we expect virtual registers to appear only in
1613 operands, and then only as either bare registers or inside memories. */
1614 for (i = 0; i < recog_data.n_operands; ++i)
1616 x = recog_data.operand[i];
1617 switch (GET_CODE (x))
1619 case MEM:
1621 rtx addr = XEXP (x, 0);
1622 bool changed = false;
1624 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1625 if (!changed)
1626 continue;
1628 start_sequence ();
1629 x = replace_equiv_address (x, addr, true);
1630 /* It may happen that the address with the virtual reg
1631 was valid (e.g. based on the virtual stack reg, which might
1632 be acceptable to the predicates with all offsets), whereas
1633 the address now isn't anymore, for instance when the address
1634 is still offsetted, but the base reg isn't virtual-stack-reg
1635 anymore. Below we would do a force_reg on the whole operand,
1636 but this insn might actually only accept memory. Hence,
1637 before doing that last resort, try to reload the address into
1638 a register, so this operand stays a MEM. */
1639 if (!safe_insn_predicate (insn_code, i, x))
1641 addr = force_reg (GET_MODE (addr), addr);
1642 x = replace_equiv_address (x, addr, true);
1644 seq = get_insns ();
1645 end_sequence ();
1646 if (seq)
1647 emit_insn_before (seq, insn);
1649 break;
1651 case REG:
1652 new_rtx = instantiate_new_reg (x, &offset);
1653 if (new_rtx == NULL)
1654 continue;
1655 if (offset == 0)
1656 x = new_rtx;
1657 else
1659 start_sequence ();
1661 /* Careful, special mode predicates may have stuff in
1662 insn_data[insn_code].operand[i].mode that isn't useful
1663 to us for computing a new value. */
1664 /* ??? Recognize address_operand and/or "p" constraints
1665 to see if (plus new offset) is a valid before we put
1666 this through expand_simple_binop. */
1667 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1668 gen_int_mode (offset, GET_MODE (x)),
1669 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1670 seq = get_insns ();
1671 end_sequence ();
1672 emit_insn_before (seq, insn);
1674 break;
1676 case SUBREG:
1677 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1678 if (new_rtx == NULL)
1679 continue;
1680 if (offset != 0)
1682 start_sequence ();
1683 new_rtx = expand_simple_binop
1684 (GET_MODE (new_rtx), PLUS, new_rtx,
1685 gen_int_mode (offset, GET_MODE (new_rtx)),
1686 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1687 seq = get_insns ();
1688 end_sequence ();
1689 emit_insn_before (seq, insn);
1691 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1692 GET_MODE (new_rtx), SUBREG_BYTE (x));
1693 gcc_assert (x);
1694 break;
1696 default:
1697 continue;
1700 /* At this point, X contains the new value for the operand.
1701 Validate the new value vs the insn predicate. Note that
1702 asm insns will have insn_code -1 here. */
1703 if (!safe_insn_predicate (insn_code, i, x))
1705 start_sequence ();
1706 if (REG_P (x))
1708 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1709 x = copy_to_reg (x);
1711 else
1712 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1713 seq = get_insns ();
1714 end_sequence ();
1715 if (seq)
1716 emit_insn_before (seq, insn);
1719 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1720 any_change = true;
1723 if (any_change)
1725 /* Propagate operand changes into the duplicates. */
1726 for (i = 0; i < recog_data.n_dups; ++i)
1727 *recog_data.dup_loc[i]
1728 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1730 /* Force re-recognition of the instruction for validation. */
1731 INSN_CODE (insn) = -1;
1734 if (asm_noperands (PATTERN (insn)) >= 0)
1736 if (!check_asm_operands (PATTERN (insn)))
1738 error_for_asm (insn, "impossible constraint in %<asm%>");
1739 /* For asm goto, instead of fixing up all the edges
1740 just clear the template and clear input operands
1741 (asm goto doesn't have any output operands). */
1742 if (JUMP_P (insn))
1744 rtx asm_op = extract_asm_operands (PATTERN (insn));
1745 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1746 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1747 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1749 else
1750 delete_insn (insn);
1753 else
1755 if (recog_memoized (insn) < 0)
1756 fatal_insn_not_found (insn);
1760 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1761 do any instantiation required. */
1763 void
1764 instantiate_decl_rtl (rtx x)
1766 rtx addr;
1768 if (x == 0)
1769 return;
1771 /* If this is a CONCAT, recurse for the pieces. */
1772 if (GET_CODE (x) == CONCAT)
1774 instantiate_decl_rtl (XEXP (x, 0));
1775 instantiate_decl_rtl (XEXP (x, 1));
1776 return;
1779 /* If this is not a MEM, no need to do anything. Similarly if the
1780 address is a constant or a register that is not a virtual register. */
1781 if (!MEM_P (x))
1782 return;
1784 addr = XEXP (x, 0);
1785 if (CONSTANT_P (addr)
1786 || (REG_P (addr)
1787 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1788 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1789 return;
1791 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1794 /* Helper for instantiate_decls called via walk_tree: Process all decls
1795 in the given DECL_VALUE_EXPR. */
1797 static tree
1798 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1800 tree t = *tp;
1801 if (! EXPR_P (t))
1803 *walk_subtrees = 0;
1804 if (DECL_P (t))
1806 if (DECL_RTL_SET_P (t))
1807 instantiate_decl_rtl (DECL_RTL (t));
1808 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1809 && DECL_INCOMING_RTL (t))
1810 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1811 if ((TREE_CODE (t) == VAR_DECL
1812 || TREE_CODE (t) == RESULT_DECL)
1813 && DECL_HAS_VALUE_EXPR_P (t))
1815 tree v = DECL_VALUE_EXPR (t);
1816 walk_tree (&v, instantiate_expr, NULL, NULL);
1820 return NULL;
1823 /* Subroutine of instantiate_decls: Process all decls in the given
1824 BLOCK node and all its subblocks. */
1826 static void
1827 instantiate_decls_1 (tree let)
1829 tree t;
1831 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1837 tree v = DECL_VALUE_EXPR (t);
1838 walk_tree (&v, instantiate_expr, NULL, NULL);
1842 /* Process all subblocks. */
1843 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1844 instantiate_decls_1 (t);
1847 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1848 all virtual registers in their DECL_RTL's. */
1850 static void
1851 instantiate_decls (tree fndecl)
1853 tree decl;
1854 unsigned ix;
1856 /* Process all parameters of the function. */
1857 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1859 instantiate_decl_rtl (DECL_RTL (decl));
1860 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1861 if (DECL_HAS_VALUE_EXPR_P (decl))
1863 tree v = DECL_VALUE_EXPR (decl);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 if ((decl = DECL_RESULT (fndecl))
1869 && TREE_CODE (decl) == RESULT_DECL)
1871 if (DECL_RTL_SET_P (decl))
1872 instantiate_decl_rtl (DECL_RTL (decl));
1873 if (DECL_HAS_VALUE_EXPR_P (decl))
1875 tree v = DECL_VALUE_EXPR (decl);
1876 walk_tree (&v, instantiate_expr, NULL, NULL);
1880 /* Process the saved static chain if it exists. */
1881 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1882 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1883 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1885 /* Now process all variables defined in the function or its subblocks. */
1886 instantiate_decls_1 (DECL_INITIAL (fndecl));
1888 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1889 if (DECL_RTL_SET_P (decl))
1890 instantiate_decl_rtl (DECL_RTL (decl));
1891 vec_free (cfun->local_decls);
1894 /* Pass through the INSNS of function FNDECL and convert virtual register
1895 references to hard register references. */
1897 static unsigned int
1898 instantiate_virtual_regs (void)
1900 rtx insn;
1902 /* Compute the offsets to use for this function. */
1903 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1904 var_offset = STARTING_FRAME_OFFSET;
1905 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1906 out_arg_offset = STACK_POINTER_OFFSET;
1907 #ifdef FRAME_POINTER_CFA_OFFSET
1908 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1909 #else
1910 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1911 #endif
1913 /* Initialize recognition, indicating that volatile is OK. */
1914 init_recog ();
1916 /* Scan through all the insns, instantiating every virtual register still
1917 present. */
1918 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1919 if (INSN_P (insn))
1921 /* These patterns in the instruction stream can never be recognized.
1922 Fortunately, they shouldn't contain virtual registers either. */
1923 if (GET_CODE (PATTERN (insn)) == USE
1924 || GET_CODE (PATTERN (insn)) == CLOBBER
1925 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1926 continue;
1927 else if (DEBUG_INSN_P (insn))
1928 for_each_rtx (&INSN_VAR_LOCATION (insn),
1929 instantiate_virtual_regs_in_rtx, NULL);
1930 else
1931 instantiate_virtual_regs_in_insn (insn);
1933 if (INSN_DELETED_P (insn))
1934 continue;
1936 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1938 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1939 if (CALL_P (insn))
1940 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1941 instantiate_virtual_regs_in_rtx, NULL);
1944 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1945 instantiate_decls (current_function_decl);
1947 targetm.instantiate_decls ();
1949 /* Indicate that, from now on, assign_stack_local should use
1950 frame_pointer_rtx. */
1951 virtuals_instantiated = 1;
1953 return 0;
1956 namespace {
1958 const pass_data pass_data_instantiate_virtual_regs =
1960 RTL_PASS, /* type */
1961 "vregs", /* name */
1962 OPTGROUP_NONE, /* optinfo_flags */
1963 true, /* has_execute */
1964 TV_NONE, /* tv_id */
1965 0, /* properties_required */
1966 0, /* properties_provided */
1967 0, /* properties_destroyed */
1968 0, /* todo_flags_start */
1969 0, /* todo_flags_finish */
1972 class pass_instantiate_virtual_regs : public rtl_opt_pass
1974 public:
1975 pass_instantiate_virtual_regs (gcc::context *ctxt)
1976 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1979 /* opt_pass methods: */
1980 virtual unsigned int execute (function *)
1982 return instantiate_virtual_regs ();
1985 }; // class pass_instantiate_virtual_regs
1987 } // anon namespace
1989 rtl_opt_pass *
1990 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1992 return new pass_instantiate_virtual_regs (ctxt);
1996 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1997 This means a type for which function calls must pass an address to the
1998 function or get an address back from the function.
1999 EXP may be a type node or an expression (whose type is tested). */
2002 aggregate_value_p (const_tree exp, const_tree fntype)
2004 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2005 int i, regno, nregs;
2006 rtx reg;
2008 if (fntype)
2009 switch (TREE_CODE (fntype))
2011 case CALL_EXPR:
2013 tree fndecl = get_callee_fndecl (fntype);
2014 fntype = (fndecl
2015 ? TREE_TYPE (fndecl)
2016 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2018 break;
2019 case FUNCTION_DECL:
2020 fntype = TREE_TYPE (fntype);
2021 break;
2022 case FUNCTION_TYPE:
2023 case METHOD_TYPE:
2024 break;
2025 case IDENTIFIER_NODE:
2026 fntype = NULL_TREE;
2027 break;
2028 default:
2029 /* We don't expect other tree types here. */
2030 gcc_unreachable ();
2033 if (VOID_TYPE_P (type))
2034 return 0;
2036 /* If a record should be passed the same as its first (and only) member
2037 don't pass it as an aggregate. */
2038 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2039 return aggregate_value_p (first_field (type), fntype);
2041 /* If the front end has decided that this needs to be passed by
2042 reference, do so. */
2043 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2044 && DECL_BY_REFERENCE (exp))
2045 return 1;
2047 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2048 if (fntype && TREE_ADDRESSABLE (fntype))
2049 return 1;
2051 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2052 and thus can't be returned in registers. */
2053 if (TREE_ADDRESSABLE (type))
2054 return 1;
2056 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2057 return 1;
2059 if (targetm.calls.return_in_memory (type, fntype))
2060 return 1;
2062 /* Make sure we have suitable call-clobbered regs to return
2063 the value in; if not, we must return it in memory. */
2064 reg = hard_function_value (type, 0, fntype, 0);
2066 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2067 it is OK. */
2068 if (!REG_P (reg))
2069 return 0;
2071 regno = REGNO (reg);
2072 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2073 for (i = 0; i < nregs; i++)
2074 if (! call_used_regs[regno + i])
2075 return 1;
2077 return 0;
2080 /* Return true if we should assign DECL a pseudo register; false if it
2081 should live on the local stack. */
2083 bool
2084 use_register_for_decl (const_tree decl)
2086 if (!targetm.calls.allocate_stack_slots_for_args ())
2087 return true;
2089 /* Honor volatile. */
2090 if (TREE_SIDE_EFFECTS (decl))
2091 return false;
2093 /* Honor addressability. */
2094 if (TREE_ADDRESSABLE (decl))
2095 return false;
2097 /* Only register-like things go in registers. */
2098 if (DECL_MODE (decl) == BLKmode)
2099 return false;
2101 /* If -ffloat-store specified, don't put explicit float variables
2102 into registers. */
2103 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2104 propagates values across these stores, and it probably shouldn't. */
2105 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2106 return false;
2108 /* If we're not interested in tracking debugging information for
2109 this decl, then we can certainly put it in a register. */
2110 if (DECL_IGNORED_P (decl))
2111 return true;
2113 if (optimize)
2114 return true;
2116 if (!DECL_REGISTER (decl))
2117 return false;
2119 switch (TREE_CODE (TREE_TYPE (decl)))
2121 case RECORD_TYPE:
2122 case UNION_TYPE:
2123 case QUAL_UNION_TYPE:
2124 /* When not optimizing, disregard register keyword for variables with
2125 types containing methods, otherwise the methods won't be callable
2126 from the debugger. */
2127 if (TYPE_METHODS (TREE_TYPE (decl)))
2128 return false;
2129 break;
2130 default:
2131 break;
2134 return true;
2137 /* Return true if TYPE should be passed by invisible reference. */
2139 bool
2140 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2141 tree type, bool named_arg)
2143 if (type)
2145 /* If this type contains non-trivial constructors, then it is
2146 forbidden for the middle-end to create any new copies. */
2147 if (TREE_ADDRESSABLE (type))
2148 return true;
2150 /* GCC post 3.4 passes *all* variable sized types by reference. */
2151 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2152 return true;
2154 /* If a record type should be passed the same as its first (and only)
2155 member, use the type and mode of that member. */
2156 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2158 type = TREE_TYPE (first_field (type));
2159 mode = TYPE_MODE (type);
2163 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2164 type, named_arg);
2167 /* Return true if TYPE, which is passed by reference, should be callee
2168 copied instead of caller copied. */
2170 bool
2171 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2172 tree type, bool named_arg)
2174 if (type && TREE_ADDRESSABLE (type))
2175 return false;
2176 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2177 named_arg);
2180 /* Structures to communicate between the subroutines of assign_parms.
2181 The first holds data persistent across all parameters, the second
2182 is cleared out for each parameter. */
2184 struct assign_parm_data_all
2186 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2187 should become a job of the target or otherwise encapsulated. */
2188 CUMULATIVE_ARGS args_so_far_v;
2189 cumulative_args_t args_so_far;
2190 struct args_size stack_args_size;
2191 tree function_result_decl;
2192 tree orig_fnargs;
2193 rtx first_conversion_insn;
2194 rtx last_conversion_insn;
2195 HOST_WIDE_INT pretend_args_size;
2196 HOST_WIDE_INT extra_pretend_bytes;
2197 int reg_parm_stack_space;
2200 struct assign_parm_data_one
2202 tree nominal_type;
2203 tree passed_type;
2204 rtx entry_parm;
2205 rtx stack_parm;
2206 enum machine_mode nominal_mode;
2207 enum machine_mode passed_mode;
2208 enum machine_mode promoted_mode;
2209 struct locate_and_pad_arg_data locate;
2210 int partial;
2211 BOOL_BITFIELD named_arg : 1;
2212 BOOL_BITFIELD passed_pointer : 1;
2213 BOOL_BITFIELD on_stack : 1;
2214 BOOL_BITFIELD loaded_in_reg : 1;
2217 /* A subroutine of assign_parms. Initialize ALL. */
2219 static void
2220 assign_parms_initialize_all (struct assign_parm_data_all *all)
2222 tree fntype ATTRIBUTE_UNUSED;
2224 memset (all, 0, sizeof (*all));
2226 fntype = TREE_TYPE (current_function_decl);
2228 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2229 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2230 #else
2231 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2232 current_function_decl, -1);
2233 #endif
2234 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2236 #ifdef INCOMING_REG_PARM_STACK_SPACE
2237 all->reg_parm_stack_space
2238 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2239 #endif
2242 /* If ARGS contains entries with complex types, split the entry into two
2243 entries of the component type. Return a new list of substitutions are
2244 needed, else the old list. */
2246 static void
2247 split_complex_args (vec<tree> *args)
2249 unsigned i;
2250 tree p;
2252 FOR_EACH_VEC_ELT (*args, i, p)
2254 tree type = TREE_TYPE (p);
2255 if (TREE_CODE (type) == COMPLEX_TYPE
2256 && targetm.calls.split_complex_arg (type))
2258 tree decl;
2259 tree subtype = TREE_TYPE (type);
2260 bool addressable = TREE_ADDRESSABLE (p);
2262 /* Rewrite the PARM_DECL's type with its component. */
2263 p = copy_node (p);
2264 TREE_TYPE (p) = subtype;
2265 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2266 DECL_MODE (p) = VOIDmode;
2267 DECL_SIZE (p) = NULL;
2268 DECL_SIZE_UNIT (p) = NULL;
2269 /* If this arg must go in memory, put it in a pseudo here.
2270 We can't allow it to go in memory as per normal parms,
2271 because the usual place might not have the imag part
2272 adjacent to the real part. */
2273 DECL_ARTIFICIAL (p) = addressable;
2274 DECL_IGNORED_P (p) = addressable;
2275 TREE_ADDRESSABLE (p) = 0;
2276 layout_decl (p, 0);
2277 (*args)[i] = p;
2279 /* Build a second synthetic decl. */
2280 decl = build_decl (EXPR_LOCATION (p),
2281 PARM_DECL, NULL_TREE, subtype);
2282 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2283 DECL_ARTIFICIAL (decl) = addressable;
2284 DECL_IGNORED_P (decl) = addressable;
2285 layout_decl (decl, 0);
2286 args->safe_insert (++i, decl);
2291 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2292 the hidden struct return argument, and (abi willing) complex args.
2293 Return the new parameter list. */
2295 static vec<tree>
2296 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2298 tree fndecl = current_function_decl;
2299 tree fntype = TREE_TYPE (fndecl);
2300 vec<tree> fnargs = vNULL;
2301 tree arg;
2303 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2304 fnargs.safe_push (arg);
2306 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2308 /* If struct value address is treated as the first argument, make it so. */
2309 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2310 && ! cfun->returns_pcc_struct
2311 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2313 tree type = build_pointer_type (TREE_TYPE (fntype));
2314 tree decl;
2316 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2317 PARM_DECL, get_identifier (".result_ptr"), type);
2318 DECL_ARG_TYPE (decl) = type;
2319 DECL_ARTIFICIAL (decl) = 1;
2320 DECL_NAMELESS (decl) = 1;
2321 TREE_CONSTANT (decl) = 1;
2323 DECL_CHAIN (decl) = all->orig_fnargs;
2324 all->orig_fnargs = decl;
2325 fnargs.safe_insert (0, decl);
2327 all->function_result_decl = decl;
2330 /* If the target wants to split complex arguments into scalars, do so. */
2331 if (targetm.calls.split_complex_arg)
2332 split_complex_args (&fnargs);
2334 return fnargs;
2337 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2338 data for the parameter. Incorporate ABI specifics such as pass-by-
2339 reference and type promotion. */
2341 static void
2342 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2343 struct assign_parm_data_one *data)
2345 tree nominal_type, passed_type;
2346 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2347 int unsignedp;
2349 memset (data, 0, sizeof (*data));
2351 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2352 if (!cfun->stdarg)
2353 data->named_arg = 1; /* No variadic parms. */
2354 else if (DECL_CHAIN (parm))
2355 data->named_arg = 1; /* Not the last non-variadic parm. */
2356 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2357 data->named_arg = 1; /* Only variadic ones are unnamed. */
2358 else
2359 data->named_arg = 0; /* Treat as variadic. */
2361 nominal_type = TREE_TYPE (parm);
2362 passed_type = DECL_ARG_TYPE (parm);
2364 /* Look out for errors propagating this far. Also, if the parameter's
2365 type is void then its value doesn't matter. */
2366 if (TREE_TYPE (parm) == error_mark_node
2367 /* This can happen after weird syntax errors
2368 or if an enum type is defined among the parms. */
2369 || TREE_CODE (parm) != PARM_DECL
2370 || passed_type == NULL
2371 || VOID_TYPE_P (nominal_type))
2373 nominal_type = passed_type = void_type_node;
2374 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2375 goto egress;
2378 /* Find mode of arg as it is passed, and mode of arg as it should be
2379 during execution of this function. */
2380 passed_mode = TYPE_MODE (passed_type);
2381 nominal_mode = TYPE_MODE (nominal_type);
2383 /* If the parm is to be passed as a transparent union or record, use the
2384 type of the first field for the tests below. We have already verified
2385 that the modes are the same. */
2386 if ((TREE_CODE (passed_type) == UNION_TYPE
2387 || TREE_CODE (passed_type) == RECORD_TYPE)
2388 && TYPE_TRANSPARENT_AGGR (passed_type))
2389 passed_type = TREE_TYPE (first_field (passed_type));
2391 /* See if this arg was passed by invisible reference. */
2392 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2393 passed_type, data->named_arg))
2395 passed_type = nominal_type = build_pointer_type (passed_type);
2396 data->passed_pointer = true;
2397 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2400 /* Find mode as it is passed by the ABI. */
2401 unsignedp = TYPE_UNSIGNED (passed_type);
2402 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2403 TREE_TYPE (current_function_decl), 0);
2405 egress:
2406 data->nominal_type = nominal_type;
2407 data->passed_type = passed_type;
2408 data->nominal_mode = nominal_mode;
2409 data->passed_mode = passed_mode;
2410 data->promoted_mode = promoted_mode;
2413 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2415 static void
2416 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2417 struct assign_parm_data_one *data, bool no_rtl)
2419 int varargs_pretend_bytes = 0;
2421 targetm.calls.setup_incoming_varargs (all->args_so_far,
2422 data->promoted_mode,
2423 data->passed_type,
2424 &varargs_pretend_bytes, no_rtl);
2426 /* If the back-end has requested extra stack space, record how much is
2427 needed. Do not change pretend_args_size otherwise since it may be
2428 nonzero from an earlier partial argument. */
2429 if (varargs_pretend_bytes > 0)
2430 all->pretend_args_size = varargs_pretend_bytes;
2433 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2434 the incoming location of the current parameter. */
2436 static void
2437 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2438 struct assign_parm_data_one *data)
2440 HOST_WIDE_INT pretend_bytes = 0;
2441 rtx entry_parm;
2442 bool in_regs;
2444 if (data->promoted_mode == VOIDmode)
2446 data->entry_parm = data->stack_parm = const0_rtx;
2447 return;
2450 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2451 data->promoted_mode,
2452 data->passed_type,
2453 data->named_arg);
2455 if (entry_parm == 0)
2456 data->promoted_mode = data->passed_mode;
2458 /* Determine parm's home in the stack, in case it arrives in the stack
2459 or we should pretend it did. Compute the stack position and rtx where
2460 the argument arrives and its size.
2462 There is one complexity here: If this was a parameter that would
2463 have been passed in registers, but wasn't only because it is
2464 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2465 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2466 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2467 as it was the previous time. */
2468 in_regs = entry_parm != 0;
2469 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2470 in_regs = true;
2471 #endif
2472 if (!in_regs && !data->named_arg)
2474 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2476 rtx tem;
2477 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2478 data->promoted_mode,
2479 data->passed_type, true);
2480 in_regs = tem != NULL;
2484 /* If this parameter was passed both in registers and in the stack, use
2485 the copy on the stack. */
2486 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2487 data->passed_type))
2488 entry_parm = 0;
2490 if (entry_parm)
2492 int partial;
2494 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2495 data->promoted_mode,
2496 data->passed_type,
2497 data->named_arg);
2498 data->partial = partial;
2500 /* The caller might already have allocated stack space for the
2501 register parameters. */
2502 if (partial != 0 && all->reg_parm_stack_space == 0)
2504 /* Part of this argument is passed in registers and part
2505 is passed on the stack. Ask the prologue code to extend
2506 the stack part so that we can recreate the full value.
2508 PRETEND_BYTES is the size of the registers we need to store.
2509 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2510 stack space that the prologue should allocate.
2512 Internally, gcc assumes that the argument pointer is aligned
2513 to STACK_BOUNDARY bits. This is used both for alignment
2514 optimizations (see init_emit) and to locate arguments that are
2515 aligned to more than PARM_BOUNDARY bits. We must preserve this
2516 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2517 a stack boundary. */
2519 /* We assume at most one partial arg, and it must be the first
2520 argument on the stack. */
2521 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2523 pretend_bytes = partial;
2524 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2526 /* We want to align relative to the actual stack pointer, so
2527 don't include this in the stack size until later. */
2528 all->extra_pretend_bytes = all->pretend_args_size;
2532 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2533 all->reg_parm_stack_space,
2534 entry_parm ? data->partial : 0, current_function_decl,
2535 &all->stack_args_size, &data->locate);
2537 /* Update parm_stack_boundary if this parameter is passed in the
2538 stack. */
2539 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2540 crtl->parm_stack_boundary = data->locate.boundary;
2542 /* Adjust offsets to include the pretend args. */
2543 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2544 data->locate.slot_offset.constant += pretend_bytes;
2545 data->locate.offset.constant += pretend_bytes;
2547 data->entry_parm = entry_parm;
2550 /* A subroutine of assign_parms. If there is actually space on the stack
2551 for this parm, count it in stack_args_size and return true. */
2553 static bool
2554 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2555 struct assign_parm_data_one *data)
2557 /* Trivially true if we've no incoming register. */
2558 if (data->entry_parm == NULL)
2560 /* Also true if we're partially in registers and partially not,
2561 since we've arranged to drop the entire argument on the stack. */
2562 else if (data->partial != 0)
2564 /* Also true if the target says that it's passed in both registers
2565 and on the stack. */
2566 else if (GET_CODE (data->entry_parm) == PARALLEL
2567 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2569 /* Also true if the target says that there's stack allocated for
2570 all register parameters. */
2571 else if (all->reg_parm_stack_space > 0)
2573 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2574 else
2575 return false;
2577 all->stack_args_size.constant += data->locate.size.constant;
2578 if (data->locate.size.var)
2579 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2581 return true;
2584 /* A subroutine of assign_parms. Given that this parameter is allocated
2585 stack space by the ABI, find it. */
2587 static void
2588 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2590 rtx offset_rtx, stack_parm;
2591 unsigned int align, boundary;
2593 /* If we're passing this arg using a reg, make its stack home the
2594 aligned stack slot. */
2595 if (data->entry_parm)
2596 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2597 else
2598 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2600 stack_parm = crtl->args.internal_arg_pointer;
2601 if (offset_rtx != const0_rtx)
2602 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2603 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2605 if (!data->passed_pointer)
2607 set_mem_attributes (stack_parm, parm, 1);
2608 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2609 while promoted mode's size is needed. */
2610 if (data->promoted_mode != BLKmode
2611 && data->promoted_mode != DECL_MODE (parm))
2613 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2614 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2616 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2617 data->promoted_mode);
2618 if (offset)
2619 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2624 boundary = data->locate.boundary;
2625 align = BITS_PER_UNIT;
2627 /* If we're padding upward, we know that the alignment of the slot
2628 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2629 intentionally forcing upward padding. Otherwise we have to come
2630 up with a guess at the alignment based on OFFSET_RTX. */
2631 if (data->locate.where_pad != downward || data->entry_parm)
2632 align = boundary;
2633 else if (CONST_INT_P (offset_rtx))
2635 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2636 align = align & -align;
2638 set_mem_align (stack_parm, align);
2640 if (data->entry_parm)
2641 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2643 data->stack_parm = stack_parm;
2646 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2647 always valid and contiguous. */
2649 static void
2650 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2652 rtx entry_parm = data->entry_parm;
2653 rtx stack_parm = data->stack_parm;
2655 /* If this parm was passed part in regs and part in memory, pretend it
2656 arrived entirely in memory by pushing the register-part onto the stack.
2657 In the special case of a DImode or DFmode that is split, we could put
2658 it together in a pseudoreg directly, but for now that's not worth
2659 bothering with. */
2660 if (data->partial != 0)
2662 /* Handle calls that pass values in multiple non-contiguous
2663 locations. The Irix 6 ABI has examples of this. */
2664 if (GET_CODE (entry_parm) == PARALLEL)
2665 emit_group_store (validize_mem (stack_parm), entry_parm,
2666 data->passed_type,
2667 int_size_in_bytes (data->passed_type));
2668 else
2670 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2671 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2672 data->partial / UNITS_PER_WORD);
2675 entry_parm = stack_parm;
2678 /* If we didn't decide this parm came in a register, by default it came
2679 on the stack. */
2680 else if (entry_parm == NULL)
2681 entry_parm = stack_parm;
2683 /* When an argument is passed in multiple locations, we can't make use
2684 of this information, but we can save some copying if the whole argument
2685 is passed in a single register. */
2686 else if (GET_CODE (entry_parm) == PARALLEL
2687 && data->nominal_mode != BLKmode
2688 && data->passed_mode != BLKmode)
2690 size_t i, len = XVECLEN (entry_parm, 0);
2692 for (i = 0; i < len; i++)
2693 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2694 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2695 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2696 == data->passed_mode)
2697 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2699 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2700 break;
2704 data->entry_parm = entry_parm;
2707 /* A subroutine of assign_parms. Reconstitute any values which were
2708 passed in multiple registers and would fit in a single register. */
2710 static void
2711 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2713 rtx entry_parm = data->entry_parm;
2715 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2716 This can be done with register operations rather than on the
2717 stack, even if we will store the reconstituted parameter on the
2718 stack later. */
2719 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2721 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2722 emit_group_store (parmreg, entry_parm, data->passed_type,
2723 GET_MODE_SIZE (GET_MODE (entry_parm)));
2724 entry_parm = parmreg;
2727 data->entry_parm = entry_parm;
2730 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2731 always valid and properly aligned. */
2733 static void
2734 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2736 rtx stack_parm = data->stack_parm;
2738 /* If we can't trust the parm stack slot to be aligned enough for its
2739 ultimate type, don't use that slot after entry. We'll make another
2740 stack slot, if we need one. */
2741 if (stack_parm
2742 && ((STRICT_ALIGNMENT
2743 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2744 || (data->nominal_type
2745 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2746 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2747 stack_parm = NULL;
2749 /* If parm was passed in memory, and we need to convert it on entry,
2750 don't store it back in that same slot. */
2751 else if (data->entry_parm == stack_parm
2752 && data->nominal_mode != BLKmode
2753 && data->nominal_mode != data->passed_mode)
2754 stack_parm = NULL;
2756 /* If stack protection is in effect for this function, don't leave any
2757 pointers in their passed stack slots. */
2758 else if (crtl->stack_protect_guard
2759 && (flag_stack_protect == 2
2760 || data->passed_pointer
2761 || POINTER_TYPE_P (data->nominal_type)))
2762 stack_parm = NULL;
2764 data->stack_parm = stack_parm;
2767 /* A subroutine of assign_parms. Return true if the current parameter
2768 should be stored as a BLKmode in the current frame. */
2770 static bool
2771 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2773 if (data->nominal_mode == BLKmode)
2774 return true;
2775 if (GET_MODE (data->entry_parm) == BLKmode)
2776 return true;
2778 #ifdef BLOCK_REG_PADDING
2779 /* Only assign_parm_setup_block knows how to deal with register arguments
2780 that are padded at the least significant end. */
2781 if (REG_P (data->entry_parm)
2782 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2783 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2784 == (BYTES_BIG_ENDIAN ? upward : downward)))
2785 return true;
2786 #endif
2788 return false;
2791 /* A subroutine of assign_parms. Arrange for the parameter to be
2792 present and valid in DATA->STACK_RTL. */
2794 static void
2795 assign_parm_setup_block (struct assign_parm_data_all *all,
2796 tree parm, struct assign_parm_data_one *data)
2798 rtx entry_parm = data->entry_parm;
2799 rtx stack_parm = data->stack_parm;
2800 HOST_WIDE_INT size;
2801 HOST_WIDE_INT size_stored;
2803 if (GET_CODE (entry_parm) == PARALLEL)
2804 entry_parm = emit_group_move_into_temps (entry_parm);
2806 size = int_size_in_bytes (data->passed_type);
2807 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2808 if (stack_parm == 0)
2810 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2811 stack_parm = assign_stack_local (BLKmode, size_stored,
2812 DECL_ALIGN (parm));
2813 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2814 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2815 set_mem_attributes (stack_parm, parm, 1);
2818 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2819 calls that pass values in multiple non-contiguous locations. */
2820 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2822 rtx mem;
2824 /* Note that we will be storing an integral number of words.
2825 So we have to be careful to ensure that we allocate an
2826 integral number of words. We do this above when we call
2827 assign_stack_local if space was not allocated in the argument
2828 list. If it was, this will not work if PARM_BOUNDARY is not
2829 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2830 if it becomes a problem. Exception is when BLKmode arrives
2831 with arguments not conforming to word_mode. */
2833 if (data->stack_parm == 0)
2835 else if (GET_CODE (entry_parm) == PARALLEL)
2837 else
2838 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2840 mem = validize_mem (stack_parm);
2842 /* Handle values in multiple non-contiguous locations. */
2843 if (GET_CODE (entry_parm) == PARALLEL)
2845 push_to_sequence2 (all->first_conversion_insn,
2846 all->last_conversion_insn);
2847 emit_group_store (mem, entry_parm, data->passed_type, size);
2848 all->first_conversion_insn = get_insns ();
2849 all->last_conversion_insn = get_last_insn ();
2850 end_sequence ();
2853 else if (size == 0)
2856 /* If SIZE is that of a mode no bigger than a word, just use
2857 that mode's store operation. */
2858 else if (size <= UNITS_PER_WORD)
2860 enum machine_mode mode
2861 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2863 if (mode != BLKmode
2864 #ifdef BLOCK_REG_PADDING
2865 && (size == UNITS_PER_WORD
2866 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2867 != (BYTES_BIG_ENDIAN ? upward : downward)))
2868 #endif
2871 rtx reg;
2873 /* We are really truncating a word_mode value containing
2874 SIZE bytes into a value of mode MODE. If such an
2875 operation requires no actual instructions, we can refer
2876 to the value directly in mode MODE, otherwise we must
2877 start with the register in word_mode and explicitly
2878 convert it. */
2879 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2880 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2881 else
2883 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2884 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2886 emit_move_insn (change_address (mem, mode, 0), reg);
2889 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2890 machine must be aligned to the left before storing
2891 to memory. Note that the previous test doesn't
2892 handle all cases (e.g. SIZE == 3). */
2893 else if (size != UNITS_PER_WORD
2894 #ifdef BLOCK_REG_PADDING
2895 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2896 == downward)
2897 #else
2898 && BYTES_BIG_ENDIAN
2899 #endif
2902 rtx tem, x;
2903 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2904 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2906 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2907 tem = change_address (mem, word_mode, 0);
2908 emit_move_insn (tem, x);
2910 else
2911 move_block_from_reg (REGNO (entry_parm), mem,
2912 size_stored / UNITS_PER_WORD);
2914 else
2915 move_block_from_reg (REGNO (entry_parm), mem,
2916 size_stored / UNITS_PER_WORD);
2918 else if (data->stack_parm == 0)
2920 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2921 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2922 BLOCK_OP_NORMAL);
2923 all->first_conversion_insn = get_insns ();
2924 all->last_conversion_insn = get_last_insn ();
2925 end_sequence ();
2928 data->stack_parm = stack_parm;
2929 SET_DECL_RTL (parm, stack_parm);
2932 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2933 parameter. Get it there. Perform all ABI specified conversions. */
2935 static void
2936 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2937 struct assign_parm_data_one *data)
2939 rtx parmreg, validated_mem;
2940 rtx equiv_stack_parm;
2941 enum machine_mode promoted_nominal_mode;
2942 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2943 bool did_conversion = false;
2944 bool need_conversion, moved;
2946 /* Store the parm in a pseudoregister during the function, but we may
2947 need to do it in a wider mode. Using 2 here makes the result
2948 consistent with promote_decl_mode and thus expand_expr_real_1. */
2949 promoted_nominal_mode
2950 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2951 TREE_TYPE (current_function_decl), 2);
2953 parmreg = gen_reg_rtx (promoted_nominal_mode);
2955 if (!DECL_ARTIFICIAL (parm))
2956 mark_user_reg (parmreg);
2958 /* If this was an item that we received a pointer to,
2959 set DECL_RTL appropriately. */
2960 if (data->passed_pointer)
2962 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2963 set_mem_attributes (x, parm, 1);
2964 SET_DECL_RTL (parm, x);
2966 else
2967 SET_DECL_RTL (parm, parmreg);
2969 assign_parm_remove_parallels (data);
2971 /* Copy the value into the register, thus bridging between
2972 assign_parm_find_data_types and expand_expr_real_1. */
2974 equiv_stack_parm = data->stack_parm;
2975 validated_mem = validize_mem (data->entry_parm);
2977 need_conversion = (data->nominal_mode != data->passed_mode
2978 || promoted_nominal_mode != data->promoted_mode);
2979 moved = false;
2981 if (need_conversion
2982 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2983 && data->nominal_mode == data->passed_mode
2984 && data->nominal_mode == GET_MODE (data->entry_parm))
2986 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2987 mode, by the caller. We now have to convert it to
2988 NOMINAL_MODE, if different. However, PARMREG may be in
2989 a different mode than NOMINAL_MODE if it is being stored
2990 promoted.
2992 If ENTRY_PARM is a hard register, it might be in a register
2993 not valid for operating in its mode (e.g., an odd-numbered
2994 register for a DFmode). In that case, moves are the only
2995 thing valid, so we can't do a convert from there. This
2996 occurs when the calling sequence allow such misaligned
2997 usages.
2999 In addition, the conversion may involve a call, which could
3000 clobber parameters which haven't been copied to pseudo
3001 registers yet.
3003 First, we try to emit an insn which performs the necessary
3004 conversion. We verify that this insn does not clobber any
3005 hard registers. */
3007 enum insn_code icode;
3008 rtx op0, op1;
3010 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3011 unsignedp);
3013 op0 = parmreg;
3014 op1 = validated_mem;
3015 if (icode != CODE_FOR_nothing
3016 && insn_operand_matches (icode, 0, op0)
3017 && insn_operand_matches (icode, 1, op1))
3019 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3020 rtx insn, insns, t = op1;
3021 HARD_REG_SET hardregs;
3023 start_sequence ();
3024 /* If op1 is a hard register that is likely spilled, first
3025 force it into a pseudo, otherwise combiner might extend
3026 its lifetime too much. */
3027 if (GET_CODE (t) == SUBREG)
3028 t = SUBREG_REG (t);
3029 if (REG_P (t)
3030 && HARD_REGISTER_P (t)
3031 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3032 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3034 t = gen_reg_rtx (GET_MODE (op1));
3035 emit_move_insn (t, op1);
3037 else
3038 t = op1;
3039 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3040 data->passed_mode, unsignedp);
3041 emit_insn (insn);
3042 insns = get_insns ();
3044 moved = true;
3045 CLEAR_HARD_REG_SET (hardregs);
3046 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3048 if (INSN_P (insn))
3049 note_stores (PATTERN (insn), record_hard_reg_sets,
3050 &hardregs);
3051 if (!hard_reg_set_empty_p (hardregs))
3052 moved = false;
3055 end_sequence ();
3057 if (moved)
3059 emit_insn (insns);
3060 if (equiv_stack_parm != NULL_RTX)
3061 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3062 equiv_stack_parm);
3067 if (moved)
3068 /* Nothing to do. */
3070 else if (need_conversion)
3072 /* We did not have an insn to convert directly, or the sequence
3073 generated appeared unsafe. We must first copy the parm to a
3074 pseudo reg, and save the conversion until after all
3075 parameters have been moved. */
3077 int save_tree_used;
3078 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3080 emit_move_insn (tempreg, validated_mem);
3082 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3083 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3085 if (GET_CODE (tempreg) == SUBREG
3086 && GET_MODE (tempreg) == data->nominal_mode
3087 && REG_P (SUBREG_REG (tempreg))
3088 && data->nominal_mode == data->passed_mode
3089 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3090 && GET_MODE_SIZE (GET_MODE (tempreg))
3091 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3093 /* The argument is already sign/zero extended, so note it
3094 into the subreg. */
3095 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3096 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3099 /* TREE_USED gets set erroneously during expand_assignment. */
3100 save_tree_used = TREE_USED (parm);
3101 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3102 TREE_USED (parm) = save_tree_used;
3103 all->first_conversion_insn = get_insns ();
3104 all->last_conversion_insn = get_last_insn ();
3105 end_sequence ();
3107 did_conversion = true;
3109 else
3110 emit_move_insn (parmreg, validated_mem);
3112 /* If we were passed a pointer but the actual value can safely live
3113 in a register, retrieve it and use it directly. */
3114 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3116 /* We can't use nominal_mode, because it will have been set to
3117 Pmode above. We must use the actual mode of the parm. */
3118 if (use_register_for_decl (parm))
3120 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3121 mark_user_reg (parmreg);
3123 else
3125 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3126 TYPE_MODE (TREE_TYPE (parm)),
3127 TYPE_ALIGN (TREE_TYPE (parm)));
3128 parmreg
3129 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3130 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3131 align);
3132 set_mem_attributes (parmreg, parm, 1);
3135 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3137 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3138 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3140 push_to_sequence2 (all->first_conversion_insn,
3141 all->last_conversion_insn);
3142 emit_move_insn (tempreg, DECL_RTL (parm));
3143 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3144 emit_move_insn (parmreg, tempreg);
3145 all->first_conversion_insn = get_insns ();
3146 all->last_conversion_insn = get_last_insn ();
3147 end_sequence ();
3149 did_conversion = true;
3151 else
3152 emit_move_insn (parmreg, DECL_RTL (parm));
3154 SET_DECL_RTL (parm, parmreg);
3156 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3157 now the parm. */
3158 data->stack_parm = NULL;
3161 /* Mark the register as eliminable if we did no conversion and it was
3162 copied from memory at a fixed offset, and the arg pointer was not
3163 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3164 offset formed an invalid address, such memory-equivalences as we
3165 make here would screw up life analysis for it. */
3166 if (data->nominal_mode == data->passed_mode
3167 && !did_conversion
3168 && data->stack_parm != 0
3169 && MEM_P (data->stack_parm)
3170 && data->locate.offset.var == 0
3171 && reg_mentioned_p (virtual_incoming_args_rtx,
3172 XEXP (data->stack_parm, 0)))
3174 rtx linsn = get_last_insn ();
3175 rtx sinsn, set;
3177 /* Mark complex types separately. */
3178 if (GET_CODE (parmreg) == CONCAT)
3180 enum machine_mode submode
3181 = GET_MODE_INNER (GET_MODE (parmreg));
3182 int regnor = REGNO (XEXP (parmreg, 0));
3183 int regnoi = REGNO (XEXP (parmreg, 1));
3184 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3185 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3186 GET_MODE_SIZE (submode));
3188 /* Scan backwards for the set of the real and
3189 imaginary parts. */
3190 for (sinsn = linsn; sinsn != 0;
3191 sinsn = prev_nonnote_insn (sinsn))
3193 set = single_set (sinsn);
3194 if (set == 0)
3195 continue;
3197 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3198 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3199 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3200 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3203 else
3204 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3207 /* For pointer data type, suggest pointer register. */
3208 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3209 mark_reg_pointer (parmreg,
3210 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3213 /* A subroutine of assign_parms. Allocate stack space to hold the current
3214 parameter. Get it there. Perform all ABI specified conversions. */
3216 static void
3217 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3218 struct assign_parm_data_one *data)
3220 /* Value must be stored in the stack slot STACK_PARM during function
3221 execution. */
3222 bool to_conversion = false;
3224 assign_parm_remove_parallels (data);
3226 if (data->promoted_mode != data->nominal_mode)
3228 /* Conversion is required. */
3229 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3231 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3233 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3234 to_conversion = true;
3236 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3237 TYPE_UNSIGNED (TREE_TYPE (parm)));
3239 if (data->stack_parm)
3241 int offset = subreg_lowpart_offset (data->nominal_mode,
3242 GET_MODE (data->stack_parm));
3243 /* ??? This may need a big-endian conversion on sparc64. */
3244 data->stack_parm
3245 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3246 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3247 set_mem_offset (data->stack_parm,
3248 MEM_OFFSET (data->stack_parm) + offset);
3252 if (data->entry_parm != data->stack_parm)
3254 rtx src, dest;
3256 if (data->stack_parm == 0)
3258 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3259 GET_MODE (data->entry_parm),
3260 TYPE_ALIGN (data->passed_type));
3261 data->stack_parm
3262 = assign_stack_local (GET_MODE (data->entry_parm),
3263 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3264 align);
3265 set_mem_attributes (data->stack_parm, parm, 1);
3268 dest = validize_mem (data->stack_parm);
3269 src = validize_mem (data->entry_parm);
3271 if (MEM_P (src))
3273 /* Use a block move to handle potentially misaligned entry_parm. */
3274 if (!to_conversion)
3275 push_to_sequence2 (all->first_conversion_insn,
3276 all->last_conversion_insn);
3277 to_conversion = true;
3279 emit_block_move (dest, src,
3280 GEN_INT (int_size_in_bytes (data->passed_type)),
3281 BLOCK_OP_NORMAL);
3283 else
3284 emit_move_insn (dest, src);
3287 if (to_conversion)
3289 all->first_conversion_insn = get_insns ();
3290 all->last_conversion_insn = get_last_insn ();
3291 end_sequence ();
3294 SET_DECL_RTL (parm, data->stack_parm);
3297 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3298 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3300 static void
3301 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3302 vec<tree> fnargs)
3304 tree parm;
3305 tree orig_fnargs = all->orig_fnargs;
3306 unsigned i = 0;
3308 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3310 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3311 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3313 rtx tmp, real, imag;
3314 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3316 real = DECL_RTL (fnargs[i]);
3317 imag = DECL_RTL (fnargs[i + 1]);
3318 if (inner != GET_MODE (real))
3320 real = gen_lowpart_SUBREG (inner, real);
3321 imag = gen_lowpart_SUBREG (inner, imag);
3324 if (TREE_ADDRESSABLE (parm))
3326 rtx rmem, imem;
3327 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3328 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3329 DECL_MODE (parm),
3330 TYPE_ALIGN (TREE_TYPE (parm)));
3332 /* split_complex_arg put the real and imag parts in
3333 pseudos. Move them to memory. */
3334 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3335 set_mem_attributes (tmp, parm, 1);
3336 rmem = adjust_address_nv (tmp, inner, 0);
3337 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3338 push_to_sequence2 (all->first_conversion_insn,
3339 all->last_conversion_insn);
3340 emit_move_insn (rmem, real);
3341 emit_move_insn (imem, imag);
3342 all->first_conversion_insn = get_insns ();
3343 all->last_conversion_insn = get_last_insn ();
3344 end_sequence ();
3346 else
3347 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3348 SET_DECL_RTL (parm, tmp);
3350 real = DECL_INCOMING_RTL (fnargs[i]);
3351 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3352 if (inner != GET_MODE (real))
3354 real = gen_lowpart_SUBREG (inner, real);
3355 imag = gen_lowpart_SUBREG (inner, imag);
3357 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3358 set_decl_incoming_rtl (parm, tmp, false);
3359 i++;
3364 /* Assign RTL expressions to the function's parameters. This may involve
3365 copying them into registers and using those registers as the DECL_RTL. */
3367 static void
3368 assign_parms (tree fndecl)
3370 struct assign_parm_data_all all;
3371 tree parm;
3372 vec<tree> fnargs;
3373 unsigned i;
3375 crtl->args.internal_arg_pointer
3376 = targetm.calls.internal_arg_pointer ();
3378 assign_parms_initialize_all (&all);
3379 fnargs = assign_parms_augmented_arg_list (&all);
3381 FOR_EACH_VEC_ELT (fnargs, i, parm)
3383 struct assign_parm_data_one data;
3385 /* Extract the type of PARM; adjust it according to ABI. */
3386 assign_parm_find_data_types (&all, parm, &data);
3388 /* Early out for errors and void parameters. */
3389 if (data.passed_mode == VOIDmode)
3391 SET_DECL_RTL (parm, const0_rtx);
3392 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3393 continue;
3396 /* Estimate stack alignment from parameter alignment. */
3397 if (SUPPORTS_STACK_ALIGNMENT)
3399 unsigned int align
3400 = targetm.calls.function_arg_boundary (data.promoted_mode,
3401 data.passed_type);
3402 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3403 align);
3404 if (TYPE_ALIGN (data.nominal_type) > align)
3405 align = MINIMUM_ALIGNMENT (data.nominal_type,
3406 TYPE_MODE (data.nominal_type),
3407 TYPE_ALIGN (data.nominal_type));
3408 if (crtl->stack_alignment_estimated < align)
3410 gcc_assert (!crtl->stack_realign_processed);
3411 crtl->stack_alignment_estimated = align;
3415 if (cfun->stdarg && !DECL_CHAIN (parm))
3416 assign_parms_setup_varargs (&all, &data, false);
3418 /* Find out where the parameter arrives in this function. */
3419 assign_parm_find_entry_rtl (&all, &data);
3421 /* Find out where stack space for this parameter might be. */
3422 if (assign_parm_is_stack_parm (&all, &data))
3424 assign_parm_find_stack_rtl (parm, &data);
3425 assign_parm_adjust_entry_rtl (&data);
3428 /* Record permanently how this parm was passed. */
3429 if (data.passed_pointer)
3431 rtx incoming_rtl
3432 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3433 data.entry_parm);
3434 set_decl_incoming_rtl (parm, incoming_rtl, true);
3436 else
3437 set_decl_incoming_rtl (parm, data.entry_parm, false);
3439 /* Update info on where next arg arrives in registers. */
3440 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3441 data.passed_type, data.named_arg);
3443 assign_parm_adjust_stack_rtl (&data);
3445 if (assign_parm_setup_block_p (&data))
3446 assign_parm_setup_block (&all, parm, &data);
3447 else if (data.passed_pointer || use_register_for_decl (parm))
3448 assign_parm_setup_reg (&all, parm, &data);
3449 else
3450 assign_parm_setup_stack (&all, parm, &data);
3453 if (targetm.calls.split_complex_arg)
3454 assign_parms_unsplit_complex (&all, fnargs);
3456 fnargs.release ();
3458 /* Output all parameter conversion instructions (possibly including calls)
3459 now that all parameters have been copied out of hard registers. */
3460 emit_insn (all.first_conversion_insn);
3462 /* Estimate reload stack alignment from scalar return mode. */
3463 if (SUPPORTS_STACK_ALIGNMENT)
3465 if (DECL_RESULT (fndecl))
3467 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3468 enum machine_mode mode = TYPE_MODE (type);
3470 if (mode != BLKmode
3471 && mode != VOIDmode
3472 && !AGGREGATE_TYPE_P (type))
3474 unsigned int align = GET_MODE_ALIGNMENT (mode);
3475 if (crtl->stack_alignment_estimated < align)
3477 gcc_assert (!crtl->stack_realign_processed);
3478 crtl->stack_alignment_estimated = align;
3484 /* If we are receiving a struct value address as the first argument, set up
3485 the RTL for the function result. As this might require code to convert
3486 the transmitted address to Pmode, we do this here to ensure that possible
3487 preliminary conversions of the address have been emitted already. */
3488 if (all.function_result_decl)
3490 tree result = DECL_RESULT (current_function_decl);
3491 rtx addr = DECL_RTL (all.function_result_decl);
3492 rtx x;
3494 if (DECL_BY_REFERENCE (result))
3496 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3497 x = addr;
3499 else
3501 SET_DECL_VALUE_EXPR (result,
3502 build1 (INDIRECT_REF, TREE_TYPE (result),
3503 all.function_result_decl));
3504 addr = convert_memory_address (Pmode, addr);
3505 x = gen_rtx_MEM (DECL_MODE (result), addr);
3506 set_mem_attributes (x, result, 1);
3509 DECL_HAS_VALUE_EXPR_P (result) = 1;
3511 SET_DECL_RTL (result, x);
3514 /* We have aligned all the args, so add space for the pretend args. */
3515 crtl->args.pretend_args_size = all.pretend_args_size;
3516 all.stack_args_size.constant += all.extra_pretend_bytes;
3517 crtl->args.size = all.stack_args_size.constant;
3519 /* Adjust function incoming argument size for alignment and
3520 minimum length. */
3522 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3523 crtl->args.size = CEIL_ROUND (crtl->args.size,
3524 PARM_BOUNDARY / BITS_PER_UNIT);
3526 #ifdef ARGS_GROW_DOWNWARD
3527 crtl->args.arg_offset_rtx
3528 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3529 : expand_expr (size_diffop (all.stack_args_size.var,
3530 size_int (-all.stack_args_size.constant)),
3531 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3532 #else
3533 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3534 #endif
3536 /* See how many bytes, if any, of its args a function should try to pop
3537 on return. */
3539 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3540 TREE_TYPE (fndecl),
3541 crtl->args.size);
3543 /* For stdarg.h function, save info about
3544 regs and stack space used by the named args. */
3546 crtl->args.info = all.args_so_far_v;
3548 /* Set the rtx used for the function return value. Put this in its
3549 own variable so any optimizers that need this information don't have
3550 to include tree.h. Do this here so it gets done when an inlined
3551 function gets output. */
3553 crtl->return_rtx
3554 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3555 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3557 /* If scalar return value was computed in a pseudo-reg, or was a named
3558 return value that got dumped to the stack, copy that to the hard
3559 return register. */
3560 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3562 tree decl_result = DECL_RESULT (fndecl);
3563 rtx decl_rtl = DECL_RTL (decl_result);
3565 if (REG_P (decl_rtl)
3566 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3567 : DECL_REGISTER (decl_result))
3569 rtx real_decl_rtl;
3571 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3572 fndecl, true);
3573 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3574 /* The delay slot scheduler assumes that crtl->return_rtx
3575 holds the hard register containing the return value, not a
3576 temporary pseudo. */
3577 crtl->return_rtx = real_decl_rtl;
3582 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3583 For all seen types, gimplify their sizes. */
3585 static tree
3586 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3588 tree t = *tp;
3590 *walk_subtrees = 0;
3591 if (TYPE_P (t))
3593 if (POINTER_TYPE_P (t))
3594 *walk_subtrees = 1;
3595 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3596 && !TYPE_SIZES_GIMPLIFIED (t))
3598 gimplify_type_sizes (t, (gimple_seq *) data);
3599 *walk_subtrees = 1;
3603 return NULL;
3606 /* Gimplify the parameter list for current_function_decl. This involves
3607 evaluating SAVE_EXPRs of variable sized parameters and generating code
3608 to implement callee-copies reference parameters. Returns a sequence of
3609 statements to add to the beginning of the function. */
3611 gimple_seq
3612 gimplify_parameters (void)
3614 struct assign_parm_data_all all;
3615 tree parm;
3616 gimple_seq stmts = NULL;
3617 vec<tree> fnargs;
3618 unsigned i;
3620 assign_parms_initialize_all (&all);
3621 fnargs = assign_parms_augmented_arg_list (&all);
3623 FOR_EACH_VEC_ELT (fnargs, i, parm)
3625 struct assign_parm_data_one data;
3627 /* Extract the type of PARM; adjust it according to ABI. */
3628 assign_parm_find_data_types (&all, parm, &data);
3630 /* Early out for errors and void parameters. */
3631 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3632 continue;
3634 /* Update info on where next arg arrives in registers. */
3635 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3636 data.passed_type, data.named_arg);
3638 /* ??? Once upon a time variable_size stuffed parameter list
3639 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3640 turned out to be less than manageable in the gimple world.
3641 Now we have to hunt them down ourselves. */
3642 walk_tree_without_duplicates (&data.passed_type,
3643 gimplify_parm_type, &stmts);
3645 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3647 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3648 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3651 if (data.passed_pointer)
3653 tree type = TREE_TYPE (data.passed_type);
3654 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3655 type, data.named_arg))
3657 tree local, t;
3659 /* For constant-sized objects, this is trivial; for
3660 variable-sized objects, we have to play games. */
3661 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3662 && !(flag_stack_check == GENERIC_STACK_CHECK
3663 && compare_tree_int (DECL_SIZE_UNIT (parm),
3664 STACK_CHECK_MAX_VAR_SIZE) > 0))
3666 local = create_tmp_var (type, get_name (parm));
3667 DECL_IGNORED_P (local) = 0;
3668 /* If PARM was addressable, move that flag over
3669 to the local copy, as its address will be taken,
3670 not the PARMs. Keep the parms address taken
3671 as we'll query that flag during gimplification. */
3672 if (TREE_ADDRESSABLE (parm))
3673 TREE_ADDRESSABLE (local) = 1;
3674 else if (TREE_CODE (type) == COMPLEX_TYPE
3675 || TREE_CODE (type) == VECTOR_TYPE)
3676 DECL_GIMPLE_REG_P (local) = 1;
3678 else
3680 tree ptr_type, addr;
3682 ptr_type = build_pointer_type (type);
3683 addr = create_tmp_reg (ptr_type, get_name (parm));
3684 DECL_IGNORED_P (addr) = 0;
3685 local = build_fold_indirect_ref (addr);
3687 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3688 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3689 size_int (DECL_ALIGN (parm)));
3691 /* The call has been built for a variable-sized object. */
3692 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3693 t = fold_convert (ptr_type, t);
3694 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3695 gimplify_and_add (t, &stmts);
3698 gimplify_assign (local, parm, &stmts);
3700 SET_DECL_VALUE_EXPR (parm, local);
3701 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3706 fnargs.release ();
3708 return stmts;
3711 /* Compute the size and offset from the start of the stacked arguments for a
3712 parm passed in mode PASSED_MODE and with type TYPE.
3714 INITIAL_OFFSET_PTR points to the current offset into the stacked
3715 arguments.
3717 The starting offset and size for this parm are returned in
3718 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3719 nonzero, the offset is that of stack slot, which is returned in
3720 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3721 padding required from the initial offset ptr to the stack slot.
3723 IN_REGS is nonzero if the argument will be passed in registers. It will
3724 never be set if REG_PARM_STACK_SPACE is not defined.
3726 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3727 for arguments which are passed in registers.
3729 FNDECL is the function in which the argument was defined.
3731 There are two types of rounding that are done. The first, controlled by
3732 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3733 argument list to be aligned to the specific boundary (in bits). This
3734 rounding affects the initial and starting offsets, but not the argument
3735 size.
3737 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3738 optionally rounds the size of the parm to PARM_BOUNDARY. The
3739 initial offset is not affected by this rounding, while the size always
3740 is and the starting offset may be. */
3742 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3743 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3744 callers pass in the total size of args so far as
3745 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3747 void
3748 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3749 int reg_parm_stack_space, int partial,
3750 tree fndecl ATTRIBUTE_UNUSED,
3751 struct args_size *initial_offset_ptr,
3752 struct locate_and_pad_arg_data *locate)
3754 tree sizetree;
3755 enum direction where_pad;
3756 unsigned int boundary, round_boundary;
3757 int part_size_in_regs;
3759 /* If we have found a stack parm before we reach the end of the
3760 area reserved for registers, skip that area. */
3761 if (! in_regs)
3763 if (reg_parm_stack_space > 0)
3765 if (initial_offset_ptr->var)
3767 initial_offset_ptr->var
3768 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3769 ssize_int (reg_parm_stack_space));
3770 initial_offset_ptr->constant = 0;
3772 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3773 initial_offset_ptr->constant = reg_parm_stack_space;
3777 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3779 sizetree
3780 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3781 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3782 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3783 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3784 type);
3785 locate->where_pad = where_pad;
3787 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3788 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3789 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3791 locate->boundary = boundary;
3793 if (SUPPORTS_STACK_ALIGNMENT)
3795 /* stack_alignment_estimated can't change after stack has been
3796 realigned. */
3797 if (crtl->stack_alignment_estimated < boundary)
3799 if (!crtl->stack_realign_processed)
3800 crtl->stack_alignment_estimated = boundary;
3801 else
3803 /* If stack is realigned and stack alignment value
3804 hasn't been finalized, it is OK not to increase
3805 stack_alignment_estimated. The bigger alignment
3806 requirement is recorded in stack_alignment_needed
3807 below. */
3808 gcc_assert (!crtl->stack_realign_finalized
3809 && crtl->stack_realign_needed);
3814 /* Remember if the outgoing parameter requires extra alignment on the
3815 calling function side. */
3816 if (crtl->stack_alignment_needed < boundary)
3817 crtl->stack_alignment_needed = boundary;
3818 if (crtl->preferred_stack_boundary < boundary)
3819 crtl->preferred_stack_boundary = boundary;
3821 #ifdef ARGS_GROW_DOWNWARD
3822 locate->slot_offset.constant = -initial_offset_ptr->constant;
3823 if (initial_offset_ptr->var)
3824 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3825 initial_offset_ptr->var);
3828 tree s2 = sizetree;
3829 if (where_pad != none
3830 && (!tree_fits_uhwi_p (sizetree)
3831 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3832 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3833 SUB_PARM_SIZE (locate->slot_offset, s2);
3836 locate->slot_offset.constant += part_size_in_regs;
3838 if (!in_regs || reg_parm_stack_space > 0)
3839 pad_to_arg_alignment (&locate->slot_offset, boundary,
3840 &locate->alignment_pad);
3842 locate->size.constant = (-initial_offset_ptr->constant
3843 - locate->slot_offset.constant);
3844 if (initial_offset_ptr->var)
3845 locate->size.var = size_binop (MINUS_EXPR,
3846 size_binop (MINUS_EXPR,
3847 ssize_int (0),
3848 initial_offset_ptr->var),
3849 locate->slot_offset.var);
3851 /* Pad_below needs the pre-rounded size to know how much to pad
3852 below. */
3853 locate->offset = locate->slot_offset;
3854 if (where_pad == downward)
3855 pad_below (&locate->offset, passed_mode, sizetree);
3857 #else /* !ARGS_GROW_DOWNWARD */
3858 if (!in_regs || reg_parm_stack_space > 0)
3859 pad_to_arg_alignment (initial_offset_ptr, boundary,
3860 &locate->alignment_pad);
3861 locate->slot_offset = *initial_offset_ptr;
3863 #ifdef PUSH_ROUNDING
3864 if (passed_mode != BLKmode)
3865 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3866 #endif
3868 /* Pad_below needs the pre-rounded size to know how much to pad below
3869 so this must be done before rounding up. */
3870 locate->offset = locate->slot_offset;
3871 if (where_pad == downward)
3872 pad_below (&locate->offset, passed_mode, sizetree);
3874 if (where_pad != none
3875 && (!tree_fits_uhwi_p (sizetree)
3876 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3877 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3879 ADD_PARM_SIZE (locate->size, sizetree);
3881 locate->size.constant -= part_size_in_regs;
3882 #endif /* ARGS_GROW_DOWNWARD */
3884 #ifdef FUNCTION_ARG_OFFSET
3885 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3886 #endif
3889 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3890 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3892 static void
3893 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3894 struct args_size *alignment_pad)
3896 tree save_var = NULL_TREE;
3897 HOST_WIDE_INT save_constant = 0;
3898 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3899 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3901 #ifdef SPARC_STACK_BOUNDARY_HACK
3902 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3903 the real alignment of %sp. However, when it does this, the
3904 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3905 if (SPARC_STACK_BOUNDARY_HACK)
3906 sp_offset = 0;
3907 #endif
3909 if (boundary > PARM_BOUNDARY)
3911 save_var = offset_ptr->var;
3912 save_constant = offset_ptr->constant;
3915 alignment_pad->var = NULL_TREE;
3916 alignment_pad->constant = 0;
3918 if (boundary > BITS_PER_UNIT)
3920 if (offset_ptr->var)
3922 tree sp_offset_tree = ssize_int (sp_offset);
3923 tree offset = size_binop (PLUS_EXPR,
3924 ARGS_SIZE_TREE (*offset_ptr),
3925 sp_offset_tree);
3926 #ifdef ARGS_GROW_DOWNWARD
3927 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3928 #else
3929 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3930 #endif
3932 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3933 /* ARGS_SIZE_TREE includes constant term. */
3934 offset_ptr->constant = 0;
3935 if (boundary > PARM_BOUNDARY)
3936 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3937 save_var);
3939 else
3941 offset_ptr->constant = -sp_offset +
3942 #ifdef ARGS_GROW_DOWNWARD
3943 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3944 #else
3945 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3946 #endif
3947 if (boundary > PARM_BOUNDARY)
3948 alignment_pad->constant = offset_ptr->constant - save_constant;
3953 static void
3954 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3956 if (passed_mode != BLKmode)
3958 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3959 offset_ptr->constant
3960 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3961 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3962 - GET_MODE_SIZE (passed_mode));
3964 else
3966 if (TREE_CODE (sizetree) != INTEGER_CST
3967 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3969 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3970 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3971 /* Add it in. */
3972 ADD_PARM_SIZE (*offset_ptr, s2);
3973 SUB_PARM_SIZE (*offset_ptr, sizetree);
3979 /* True if register REGNO was alive at a place where `setjmp' was
3980 called and was set more than once or is an argument. Such regs may
3981 be clobbered by `longjmp'. */
3983 static bool
3984 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3986 /* There appear to be cases where some local vars never reach the
3987 backend but have bogus regnos. */
3988 if (regno >= max_reg_num ())
3989 return false;
3991 return ((REG_N_SETS (regno) > 1
3992 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3993 regno))
3994 && REGNO_REG_SET_P (setjmp_crosses, regno));
3997 /* Walk the tree of blocks describing the binding levels within a
3998 function and warn about variables the might be killed by setjmp or
3999 vfork. This is done after calling flow_analysis before register
4000 allocation since that will clobber the pseudo-regs to hard
4001 regs. */
4003 static void
4004 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4006 tree decl, sub;
4008 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4010 if (TREE_CODE (decl) == VAR_DECL
4011 && DECL_RTL_SET_P (decl)
4012 && REG_P (DECL_RTL (decl))
4013 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4014 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4015 " %<longjmp%> or %<vfork%>", decl);
4018 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4019 setjmp_vars_warning (setjmp_crosses, sub);
4022 /* Do the appropriate part of setjmp_vars_warning
4023 but for arguments instead of local variables. */
4025 static void
4026 setjmp_args_warning (bitmap setjmp_crosses)
4028 tree decl;
4029 for (decl = DECL_ARGUMENTS (current_function_decl);
4030 decl; decl = DECL_CHAIN (decl))
4031 if (DECL_RTL (decl) != 0
4032 && REG_P (DECL_RTL (decl))
4033 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4034 warning (OPT_Wclobbered,
4035 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4036 decl);
4039 /* Generate warning messages for variables live across setjmp. */
4041 void
4042 generate_setjmp_warnings (void)
4044 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4046 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4047 || bitmap_empty_p (setjmp_crosses))
4048 return;
4050 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4051 setjmp_args_warning (setjmp_crosses);
4055 /* Reverse the order of elements in the fragment chain T of blocks,
4056 and return the new head of the chain (old last element).
4057 In addition to that clear BLOCK_SAME_RANGE flags when needed
4058 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4059 its super fragment origin. */
4061 static tree
4062 block_fragments_nreverse (tree t)
4064 tree prev = 0, block, next, prev_super = 0;
4065 tree super = BLOCK_SUPERCONTEXT (t);
4066 if (BLOCK_FRAGMENT_ORIGIN (super))
4067 super = BLOCK_FRAGMENT_ORIGIN (super);
4068 for (block = t; block; block = next)
4070 next = BLOCK_FRAGMENT_CHAIN (block);
4071 BLOCK_FRAGMENT_CHAIN (block) = prev;
4072 if ((prev && !BLOCK_SAME_RANGE (prev))
4073 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4074 != prev_super))
4075 BLOCK_SAME_RANGE (block) = 0;
4076 prev_super = BLOCK_SUPERCONTEXT (block);
4077 BLOCK_SUPERCONTEXT (block) = super;
4078 prev = block;
4080 t = BLOCK_FRAGMENT_ORIGIN (t);
4081 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4082 != prev_super)
4083 BLOCK_SAME_RANGE (t) = 0;
4084 BLOCK_SUPERCONTEXT (t) = super;
4085 return prev;
4088 /* Reverse the order of elements in the chain T of blocks,
4089 and return the new head of the chain (old last element).
4090 Also do the same on subblocks and reverse the order of elements
4091 in BLOCK_FRAGMENT_CHAIN as well. */
4093 static tree
4094 blocks_nreverse_all (tree t)
4096 tree prev = 0, block, next;
4097 for (block = t; block; block = next)
4099 next = BLOCK_CHAIN (block);
4100 BLOCK_CHAIN (block) = prev;
4101 if (BLOCK_FRAGMENT_CHAIN (block)
4102 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4104 BLOCK_FRAGMENT_CHAIN (block)
4105 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4106 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4107 BLOCK_SAME_RANGE (block) = 0;
4109 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4110 prev = block;
4112 return prev;
4116 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4117 and create duplicate blocks. */
4118 /* ??? Need an option to either create block fragments or to create
4119 abstract origin duplicates of a source block. It really depends
4120 on what optimization has been performed. */
4122 void
4123 reorder_blocks (void)
4125 tree block = DECL_INITIAL (current_function_decl);
4127 if (block == NULL_TREE)
4128 return;
4130 auto_vec<tree, 10> block_stack;
4132 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4133 clear_block_marks (block);
4135 /* Prune the old trees away, so that they don't get in the way. */
4136 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4137 BLOCK_CHAIN (block) = NULL_TREE;
4139 /* Recreate the block tree from the note nesting. */
4140 reorder_blocks_1 (get_insns (), block, &block_stack);
4141 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4144 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4146 void
4147 clear_block_marks (tree block)
4149 while (block)
4151 TREE_ASM_WRITTEN (block) = 0;
4152 clear_block_marks (BLOCK_SUBBLOCKS (block));
4153 block = BLOCK_CHAIN (block);
4157 static void
4158 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4160 rtx insn;
4161 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4163 for (insn = insns; insn; insn = NEXT_INSN (insn))
4165 if (NOTE_P (insn))
4167 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4169 tree block = NOTE_BLOCK (insn);
4170 tree origin;
4172 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4173 origin = block;
4175 if (prev_end)
4176 BLOCK_SAME_RANGE (prev_end) = 0;
4177 prev_end = NULL_TREE;
4179 /* If we have seen this block before, that means it now
4180 spans multiple address regions. Create a new fragment. */
4181 if (TREE_ASM_WRITTEN (block))
4183 tree new_block = copy_node (block);
4185 BLOCK_SAME_RANGE (new_block) = 0;
4186 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4187 BLOCK_FRAGMENT_CHAIN (new_block)
4188 = BLOCK_FRAGMENT_CHAIN (origin);
4189 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4191 NOTE_BLOCK (insn) = new_block;
4192 block = new_block;
4195 if (prev_beg == current_block && prev_beg)
4196 BLOCK_SAME_RANGE (block) = 1;
4198 prev_beg = origin;
4200 BLOCK_SUBBLOCKS (block) = 0;
4201 TREE_ASM_WRITTEN (block) = 1;
4202 /* When there's only one block for the entire function,
4203 current_block == block and we mustn't do this, it
4204 will cause infinite recursion. */
4205 if (block != current_block)
4207 tree super;
4208 if (block != origin)
4209 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4210 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4211 (origin))
4212 == current_block);
4213 if (p_block_stack->is_empty ())
4214 super = current_block;
4215 else
4217 super = p_block_stack->last ();
4218 gcc_assert (super == current_block
4219 || BLOCK_FRAGMENT_ORIGIN (super)
4220 == current_block);
4222 BLOCK_SUPERCONTEXT (block) = super;
4223 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4224 BLOCK_SUBBLOCKS (current_block) = block;
4225 current_block = origin;
4227 p_block_stack->safe_push (block);
4229 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4231 NOTE_BLOCK (insn) = p_block_stack->pop ();
4232 current_block = BLOCK_SUPERCONTEXT (current_block);
4233 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4234 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4235 prev_beg = NULL_TREE;
4236 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4237 ? NOTE_BLOCK (insn) : NULL_TREE;
4240 else
4242 prev_beg = NULL_TREE;
4243 if (prev_end)
4244 BLOCK_SAME_RANGE (prev_end) = 0;
4245 prev_end = NULL_TREE;
4250 /* Reverse the order of elements in the chain T of blocks,
4251 and return the new head of the chain (old last element). */
4253 tree
4254 blocks_nreverse (tree t)
4256 tree prev = 0, block, next;
4257 for (block = t; block; block = next)
4259 next = BLOCK_CHAIN (block);
4260 BLOCK_CHAIN (block) = prev;
4261 prev = block;
4263 return prev;
4266 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4267 by modifying the last node in chain 1 to point to chain 2. */
4269 tree
4270 block_chainon (tree op1, tree op2)
4272 tree t1;
4274 if (!op1)
4275 return op2;
4276 if (!op2)
4277 return op1;
4279 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4280 continue;
4281 BLOCK_CHAIN (t1) = op2;
4283 #ifdef ENABLE_TREE_CHECKING
4285 tree t2;
4286 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4287 gcc_assert (t2 != t1);
4289 #endif
4291 return op1;
4294 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4295 non-NULL, list them all into VECTOR, in a depth-first preorder
4296 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4297 blocks. */
4299 static int
4300 all_blocks (tree block, tree *vector)
4302 int n_blocks = 0;
4304 while (block)
4306 TREE_ASM_WRITTEN (block) = 0;
4308 /* Record this block. */
4309 if (vector)
4310 vector[n_blocks] = block;
4312 ++n_blocks;
4314 /* Record the subblocks, and their subblocks... */
4315 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4316 vector ? vector + n_blocks : 0);
4317 block = BLOCK_CHAIN (block);
4320 return n_blocks;
4323 /* Return a vector containing all the blocks rooted at BLOCK. The
4324 number of elements in the vector is stored in N_BLOCKS_P. The
4325 vector is dynamically allocated; it is the caller's responsibility
4326 to call `free' on the pointer returned. */
4328 static tree *
4329 get_block_vector (tree block, int *n_blocks_p)
4331 tree *block_vector;
4333 *n_blocks_p = all_blocks (block, NULL);
4334 block_vector = XNEWVEC (tree, *n_blocks_p);
4335 all_blocks (block, block_vector);
4337 return block_vector;
4340 static GTY(()) int next_block_index = 2;
4342 /* Set BLOCK_NUMBER for all the blocks in FN. */
4344 void
4345 number_blocks (tree fn)
4347 int i;
4348 int n_blocks;
4349 tree *block_vector;
4351 /* For SDB and XCOFF debugging output, we start numbering the blocks
4352 from 1 within each function, rather than keeping a running
4353 count. */
4354 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4355 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4356 next_block_index = 1;
4357 #endif
4359 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4361 /* The top-level BLOCK isn't numbered at all. */
4362 for (i = 1; i < n_blocks; ++i)
4363 /* We number the blocks from two. */
4364 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4366 free (block_vector);
4368 return;
4371 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4373 DEBUG_FUNCTION tree
4374 debug_find_var_in_block_tree (tree var, tree block)
4376 tree t;
4378 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4379 if (t == var)
4380 return block;
4382 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4384 tree ret = debug_find_var_in_block_tree (var, t);
4385 if (ret)
4386 return ret;
4389 return NULL_TREE;
4392 /* Keep track of whether we're in a dummy function context. If we are,
4393 we don't want to invoke the set_current_function hook, because we'll
4394 get into trouble if the hook calls target_reinit () recursively or
4395 when the initial initialization is not yet complete. */
4397 static bool in_dummy_function;
4399 /* Invoke the target hook when setting cfun. Update the optimization options
4400 if the function uses different options than the default. */
4402 static void
4403 invoke_set_current_function_hook (tree fndecl)
4405 if (!in_dummy_function)
4407 tree opts = ((fndecl)
4408 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4409 : optimization_default_node);
4411 if (!opts)
4412 opts = optimization_default_node;
4414 /* Change optimization options if needed. */
4415 if (optimization_current_node != opts)
4417 optimization_current_node = opts;
4418 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4421 targetm.set_current_function (fndecl);
4422 this_fn_optabs = this_target_optabs;
4424 if (opts != optimization_default_node)
4426 init_tree_optimization_optabs (opts);
4427 if (TREE_OPTIMIZATION_OPTABS (opts))
4428 this_fn_optabs = (struct target_optabs *)
4429 TREE_OPTIMIZATION_OPTABS (opts);
4434 /* cfun should never be set directly; use this function. */
4436 void
4437 set_cfun (struct function *new_cfun)
4439 if (cfun != new_cfun)
4441 cfun = new_cfun;
4442 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4446 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4448 static vec<function_p> cfun_stack;
4450 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4451 current_function_decl accordingly. */
4453 void
4454 push_cfun (struct function *new_cfun)
4456 gcc_assert ((!cfun && !current_function_decl)
4457 || (cfun && current_function_decl == cfun->decl));
4458 cfun_stack.safe_push (cfun);
4459 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4460 set_cfun (new_cfun);
4463 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4465 void
4466 pop_cfun (void)
4468 struct function *new_cfun = cfun_stack.pop ();
4469 /* When in_dummy_function, we do have a cfun but current_function_decl is
4470 NULL. We also allow pushing NULL cfun and subsequently changing
4471 current_function_decl to something else and have both restored by
4472 pop_cfun. */
4473 gcc_checking_assert (in_dummy_function
4474 || !cfun
4475 || current_function_decl == cfun->decl);
4476 set_cfun (new_cfun);
4477 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4480 /* Return value of funcdef and increase it. */
4482 get_next_funcdef_no (void)
4484 return funcdef_no++;
4487 /* Return value of funcdef. */
4489 get_last_funcdef_no (void)
4491 return funcdef_no;
4494 /* Allocate a function structure for FNDECL and set its contents
4495 to the defaults. Set cfun to the newly-allocated object.
4496 Some of the helper functions invoked during initialization assume
4497 that cfun has already been set. Therefore, assign the new object
4498 directly into cfun and invoke the back end hook explicitly at the
4499 very end, rather than initializing a temporary and calling set_cfun
4500 on it.
4502 ABSTRACT_P is true if this is a function that will never be seen by
4503 the middle-end. Such functions are front-end concepts (like C++
4504 function templates) that do not correspond directly to functions
4505 placed in object files. */
4507 void
4508 allocate_struct_function (tree fndecl, bool abstract_p)
4510 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4512 cfun = ggc_cleared_alloc<function> ();
4514 init_eh_for_function ();
4516 if (init_machine_status)
4517 cfun->machine = (*init_machine_status) ();
4519 #ifdef OVERRIDE_ABI_FORMAT
4520 OVERRIDE_ABI_FORMAT (fndecl);
4521 #endif
4523 if (fndecl != NULL_TREE)
4525 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4526 cfun->decl = fndecl;
4527 current_function_funcdef_no = get_next_funcdef_no ();
4530 invoke_set_current_function_hook (fndecl);
4532 if (fndecl != NULL_TREE)
4534 tree result = DECL_RESULT (fndecl);
4535 if (!abstract_p && aggregate_value_p (result, fndecl))
4537 #ifdef PCC_STATIC_STRUCT_RETURN
4538 cfun->returns_pcc_struct = 1;
4539 #endif
4540 cfun->returns_struct = 1;
4543 cfun->stdarg = stdarg_p (fntype);
4545 /* Assume all registers in stdarg functions need to be saved. */
4546 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4547 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4549 /* ??? This could be set on a per-function basis by the front-end
4550 but is this worth the hassle? */
4551 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4555 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4556 instead of just setting it. */
4558 void
4559 push_struct_function (tree fndecl)
4561 /* When in_dummy_function we might be in the middle of a pop_cfun and
4562 current_function_decl and cfun may not match. */
4563 gcc_assert (in_dummy_function
4564 || (!cfun && !current_function_decl)
4565 || (cfun && current_function_decl == cfun->decl));
4566 cfun_stack.safe_push (cfun);
4567 current_function_decl = fndecl;
4568 allocate_struct_function (fndecl, false);
4571 /* Reset crtl and other non-struct-function variables to defaults as
4572 appropriate for emitting rtl at the start of a function. */
4574 static void
4575 prepare_function_start (void)
4577 gcc_assert (!crtl->emit.x_last_insn);
4578 init_temp_slots ();
4579 init_emit ();
4580 init_varasm_status ();
4581 init_expr ();
4582 default_rtl_profile ();
4584 if (flag_stack_usage_info)
4586 cfun->su = ggc_cleared_alloc<stack_usage> ();
4587 cfun->su->static_stack_size = -1;
4590 cse_not_expected = ! optimize;
4592 /* Caller save not needed yet. */
4593 caller_save_needed = 0;
4595 /* We haven't done register allocation yet. */
4596 reg_renumber = 0;
4598 /* Indicate that we have not instantiated virtual registers yet. */
4599 virtuals_instantiated = 0;
4601 /* Indicate that we want CONCATs now. */
4602 generating_concat_p = 1;
4604 /* Indicate we have no need of a frame pointer yet. */
4605 frame_pointer_needed = 0;
4608 /* Initialize the rtl expansion mechanism so that we can do simple things
4609 like generate sequences. This is used to provide a context during global
4610 initialization of some passes. You must call expand_dummy_function_end
4611 to exit this context. */
4613 void
4614 init_dummy_function_start (void)
4616 gcc_assert (!in_dummy_function);
4617 in_dummy_function = true;
4618 push_struct_function (NULL_TREE);
4619 prepare_function_start ();
4622 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4623 and initialize static variables for generating RTL for the statements
4624 of the function. */
4626 void
4627 init_function_start (tree subr)
4629 if (subr && DECL_STRUCT_FUNCTION (subr))
4630 set_cfun (DECL_STRUCT_FUNCTION (subr));
4631 else
4632 allocate_struct_function (subr, false);
4633 prepare_function_start ();
4634 decide_function_section (subr);
4636 /* Warn if this value is an aggregate type,
4637 regardless of which calling convention we are using for it. */
4638 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4639 warning (OPT_Waggregate_return, "function returns an aggregate");
4642 /* Expand code to verify the stack_protect_guard. This is invoked at
4643 the end of a function to be protected. */
4645 #ifndef HAVE_stack_protect_test
4646 # define HAVE_stack_protect_test 0
4647 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4648 #endif
4650 void
4651 stack_protect_epilogue (void)
4653 tree guard_decl = targetm.stack_protect_guard ();
4654 rtx label = gen_label_rtx ();
4655 rtx x, y, tmp;
4657 x = expand_normal (crtl->stack_protect_guard);
4658 y = expand_normal (guard_decl);
4660 /* Allow the target to compare Y with X without leaking either into
4661 a register. */
4662 switch ((int) (HAVE_stack_protect_test != 0))
4664 case 1:
4665 tmp = gen_stack_protect_test (x, y, label);
4666 if (tmp)
4668 emit_insn (tmp);
4669 break;
4671 /* FALLTHRU */
4673 default:
4674 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4675 break;
4678 /* The noreturn predictor has been moved to the tree level. The rtl-level
4679 predictors estimate this branch about 20%, which isn't enough to get
4680 things moved out of line. Since this is the only extant case of adding
4681 a noreturn function at the rtl level, it doesn't seem worth doing ought
4682 except adding the prediction by hand. */
4683 tmp = get_last_insn ();
4684 if (JUMP_P (tmp))
4685 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4687 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4688 free_temp_slots ();
4689 emit_label (label);
4692 /* Start the RTL for a new function, and set variables used for
4693 emitting RTL.
4694 SUBR is the FUNCTION_DECL node.
4695 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4696 the function's parameters, which must be run at any return statement. */
4698 void
4699 expand_function_start (tree subr)
4701 /* Make sure volatile mem refs aren't considered
4702 valid operands of arithmetic insns. */
4703 init_recog_no_volatile ();
4705 crtl->profile
4706 = (profile_flag
4707 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4709 crtl->limit_stack
4710 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4712 /* Make the label for return statements to jump to. Do not special
4713 case machines with special return instructions -- they will be
4714 handled later during jump, ifcvt, or epilogue creation. */
4715 return_label = gen_label_rtx ();
4717 /* Initialize rtx used to return the value. */
4718 /* Do this before assign_parms so that we copy the struct value address
4719 before any library calls that assign parms might generate. */
4721 /* Decide whether to return the value in memory or in a register. */
4722 if (aggregate_value_p (DECL_RESULT (subr), subr))
4724 /* Returning something that won't go in a register. */
4725 rtx value_address = 0;
4727 #ifdef PCC_STATIC_STRUCT_RETURN
4728 if (cfun->returns_pcc_struct)
4730 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4731 value_address = assemble_static_space (size);
4733 else
4734 #endif
4736 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4737 /* Expect to be passed the address of a place to store the value.
4738 If it is passed as an argument, assign_parms will take care of
4739 it. */
4740 if (sv)
4742 value_address = gen_reg_rtx (Pmode);
4743 emit_move_insn (value_address, sv);
4746 if (value_address)
4748 rtx x = value_address;
4749 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4751 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4752 set_mem_attributes (x, DECL_RESULT (subr), 1);
4754 SET_DECL_RTL (DECL_RESULT (subr), x);
4757 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4758 /* If return mode is void, this decl rtl should not be used. */
4759 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4760 else
4762 /* Compute the return values into a pseudo reg, which we will copy
4763 into the true return register after the cleanups are done. */
4764 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4765 if (TYPE_MODE (return_type) != BLKmode
4766 && targetm.calls.return_in_msb (return_type))
4767 /* expand_function_end will insert the appropriate padding in
4768 this case. Use the return value's natural (unpadded) mode
4769 within the function proper. */
4770 SET_DECL_RTL (DECL_RESULT (subr),
4771 gen_reg_rtx (TYPE_MODE (return_type)));
4772 else
4774 /* In order to figure out what mode to use for the pseudo, we
4775 figure out what the mode of the eventual return register will
4776 actually be, and use that. */
4777 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4779 /* Structures that are returned in registers are not
4780 aggregate_value_p, so we may see a PARALLEL or a REG. */
4781 if (REG_P (hard_reg))
4782 SET_DECL_RTL (DECL_RESULT (subr),
4783 gen_reg_rtx (GET_MODE (hard_reg)));
4784 else
4786 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4787 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4791 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4792 result to the real return register(s). */
4793 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4796 /* Initialize rtx for parameters and local variables.
4797 In some cases this requires emitting insns. */
4798 assign_parms (subr);
4800 /* If function gets a static chain arg, store it. */
4801 if (cfun->static_chain_decl)
4803 tree parm = cfun->static_chain_decl;
4804 rtx local, chain, insn;
4806 local = gen_reg_rtx (Pmode);
4807 chain = targetm.calls.static_chain (current_function_decl, true);
4809 set_decl_incoming_rtl (parm, chain, false);
4810 SET_DECL_RTL (parm, local);
4811 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4813 insn = emit_move_insn (local, chain);
4815 /* Mark the register as eliminable, similar to parameters. */
4816 if (MEM_P (chain)
4817 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4818 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4820 /* If we aren't optimizing, save the static chain onto the stack. */
4821 if (!optimize)
4823 tree saved_static_chain_decl
4824 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4825 DECL_NAME (parm), TREE_TYPE (parm));
4826 rtx saved_static_chain_rtx
4827 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4828 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4829 emit_move_insn (saved_static_chain_rtx, chain);
4830 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4831 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4835 /* If the function receives a non-local goto, then store the
4836 bits we need to restore the frame pointer. */
4837 if (cfun->nonlocal_goto_save_area)
4839 tree t_save;
4840 rtx r_save;
4842 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4843 gcc_assert (DECL_RTL_SET_P (var));
4845 t_save = build4 (ARRAY_REF,
4846 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4847 cfun->nonlocal_goto_save_area,
4848 integer_zero_node, NULL_TREE, NULL_TREE);
4849 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4850 gcc_assert (GET_MODE (r_save) == Pmode);
4852 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4853 update_nonlocal_goto_save_area ();
4856 /* The following was moved from init_function_start.
4857 The move is supposed to make sdb output more accurate. */
4858 /* Indicate the beginning of the function body,
4859 as opposed to parm setup. */
4860 emit_note (NOTE_INSN_FUNCTION_BEG);
4862 gcc_assert (NOTE_P (get_last_insn ()));
4864 parm_birth_insn = get_last_insn ();
4866 if (crtl->profile)
4868 #ifdef PROFILE_HOOK
4869 PROFILE_HOOK (current_function_funcdef_no);
4870 #endif
4873 /* If we are doing generic stack checking, the probe should go here. */
4874 if (flag_stack_check == GENERIC_STACK_CHECK)
4875 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4878 /* Undo the effects of init_dummy_function_start. */
4879 void
4880 expand_dummy_function_end (void)
4882 gcc_assert (in_dummy_function);
4884 /* End any sequences that failed to be closed due to syntax errors. */
4885 while (in_sequence_p ())
4886 end_sequence ();
4888 /* Outside function body, can't compute type's actual size
4889 until next function's body starts. */
4891 free_after_parsing (cfun);
4892 free_after_compilation (cfun);
4893 pop_cfun ();
4894 in_dummy_function = false;
4897 /* Call DOIT for each hard register used as a return value from
4898 the current function. */
4900 void
4901 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4903 rtx outgoing = crtl->return_rtx;
4905 if (! outgoing)
4906 return;
4908 if (REG_P (outgoing))
4909 (*doit) (outgoing, arg);
4910 else if (GET_CODE (outgoing) == PARALLEL)
4912 int i;
4914 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4916 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4918 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4919 (*doit) (x, arg);
4924 static void
4925 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4927 emit_clobber (reg);
4930 void
4931 clobber_return_register (void)
4933 diddle_return_value (do_clobber_return_reg, NULL);
4935 /* In case we do use pseudo to return value, clobber it too. */
4936 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4938 tree decl_result = DECL_RESULT (current_function_decl);
4939 rtx decl_rtl = DECL_RTL (decl_result);
4940 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4942 do_clobber_return_reg (decl_rtl, NULL);
4947 static void
4948 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4950 emit_use (reg);
4953 static void
4954 use_return_register (void)
4956 diddle_return_value (do_use_return_reg, NULL);
4959 /* Possibly warn about unused parameters. */
4960 void
4961 do_warn_unused_parameter (tree fn)
4963 tree decl;
4965 for (decl = DECL_ARGUMENTS (fn);
4966 decl; decl = DECL_CHAIN (decl))
4967 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4968 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4969 && !TREE_NO_WARNING (decl))
4970 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4973 /* Set the location of the insn chain starting at INSN to LOC. */
4975 static void
4976 set_insn_locations (rtx insn, int loc)
4978 while (insn != NULL_RTX)
4980 if (INSN_P (insn))
4981 INSN_LOCATION (insn) = loc;
4982 insn = NEXT_INSN (insn);
4986 /* Generate RTL for the end of the current function. */
4988 void
4989 expand_function_end (void)
4991 rtx clobber_after;
4993 /* If arg_pointer_save_area was referenced only from a nested
4994 function, we will not have initialized it yet. Do that now. */
4995 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4996 get_arg_pointer_save_area ();
4998 /* If we are doing generic stack checking and this function makes calls,
4999 do a stack probe at the start of the function to ensure we have enough
5000 space for another stack frame. */
5001 if (flag_stack_check == GENERIC_STACK_CHECK)
5003 rtx insn, seq;
5005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5006 if (CALL_P (insn))
5008 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5009 start_sequence ();
5010 if (STACK_CHECK_MOVING_SP)
5011 anti_adjust_stack_and_probe (max_frame_size, true);
5012 else
5013 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5014 seq = get_insns ();
5015 end_sequence ();
5016 set_insn_locations (seq, prologue_location);
5017 emit_insn_before (seq, stack_check_probe_note);
5018 break;
5022 /* End any sequences that failed to be closed due to syntax errors. */
5023 while (in_sequence_p ())
5024 end_sequence ();
5026 clear_pending_stack_adjust ();
5027 do_pending_stack_adjust ();
5029 /* Output a linenumber for the end of the function.
5030 SDB depends on this. */
5031 set_curr_insn_location (input_location);
5033 /* Before the return label (if any), clobber the return
5034 registers so that they are not propagated live to the rest of
5035 the function. This can only happen with functions that drop
5036 through; if there had been a return statement, there would
5037 have either been a return rtx, or a jump to the return label.
5039 We delay actual code generation after the current_function_value_rtx
5040 is computed. */
5041 clobber_after = get_last_insn ();
5043 /* Output the label for the actual return from the function. */
5044 emit_label (return_label);
5046 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5048 /* Let except.c know where it should emit the call to unregister
5049 the function context for sjlj exceptions. */
5050 if (flag_exceptions)
5051 sjlj_emit_function_exit_after (get_last_insn ());
5053 else
5055 /* We want to ensure that instructions that may trap are not
5056 moved into the epilogue by scheduling, because we don't
5057 always emit unwind information for the epilogue. */
5058 if (cfun->can_throw_non_call_exceptions)
5059 emit_insn (gen_blockage ());
5062 /* If this is an implementation of throw, do what's necessary to
5063 communicate between __builtin_eh_return and the epilogue. */
5064 expand_eh_return ();
5066 /* If scalar return value was computed in a pseudo-reg, or was a named
5067 return value that got dumped to the stack, copy that to the hard
5068 return register. */
5069 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5071 tree decl_result = DECL_RESULT (current_function_decl);
5072 rtx decl_rtl = DECL_RTL (decl_result);
5074 if (REG_P (decl_rtl)
5075 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5076 : DECL_REGISTER (decl_result))
5078 rtx real_decl_rtl = crtl->return_rtx;
5080 /* This should be set in assign_parms. */
5081 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5083 /* If this is a BLKmode structure being returned in registers,
5084 then use the mode computed in expand_return. Note that if
5085 decl_rtl is memory, then its mode may have been changed,
5086 but that crtl->return_rtx has not. */
5087 if (GET_MODE (real_decl_rtl) == BLKmode)
5088 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5090 /* If a non-BLKmode return value should be padded at the least
5091 significant end of the register, shift it left by the appropriate
5092 amount. BLKmode results are handled using the group load/store
5093 machinery. */
5094 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5095 && REG_P (real_decl_rtl)
5096 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5098 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5099 REGNO (real_decl_rtl)),
5100 decl_rtl);
5101 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5103 /* If a named return value dumped decl_return to memory, then
5104 we may need to re-do the PROMOTE_MODE signed/unsigned
5105 extension. */
5106 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5108 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5109 promote_function_mode (TREE_TYPE (decl_result),
5110 GET_MODE (decl_rtl), &unsignedp,
5111 TREE_TYPE (current_function_decl), 1);
5113 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5115 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5117 /* If expand_function_start has created a PARALLEL for decl_rtl,
5118 move the result to the real return registers. Otherwise, do
5119 a group load from decl_rtl for a named return. */
5120 if (GET_CODE (decl_rtl) == PARALLEL)
5121 emit_group_move (real_decl_rtl, decl_rtl);
5122 else
5123 emit_group_load (real_decl_rtl, decl_rtl,
5124 TREE_TYPE (decl_result),
5125 int_size_in_bytes (TREE_TYPE (decl_result)));
5127 /* In the case of complex integer modes smaller than a word, we'll
5128 need to generate some non-trivial bitfield insertions. Do that
5129 on a pseudo and not the hard register. */
5130 else if (GET_CODE (decl_rtl) == CONCAT
5131 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5132 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5134 int old_generating_concat_p;
5135 rtx tmp;
5137 old_generating_concat_p = generating_concat_p;
5138 generating_concat_p = 0;
5139 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5140 generating_concat_p = old_generating_concat_p;
5142 emit_move_insn (tmp, decl_rtl);
5143 emit_move_insn (real_decl_rtl, tmp);
5145 else
5146 emit_move_insn (real_decl_rtl, decl_rtl);
5150 /* If returning a structure, arrange to return the address of the value
5151 in a place where debuggers expect to find it.
5153 If returning a structure PCC style,
5154 the caller also depends on this value.
5155 And cfun->returns_pcc_struct is not necessarily set. */
5156 if (cfun->returns_struct
5157 || cfun->returns_pcc_struct)
5159 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5160 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5161 rtx outgoing;
5163 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5164 type = TREE_TYPE (type);
5165 else
5166 value_address = XEXP (value_address, 0);
5168 outgoing = targetm.calls.function_value (build_pointer_type (type),
5169 current_function_decl, true);
5171 /* Mark this as a function return value so integrate will delete the
5172 assignment and USE below when inlining this function. */
5173 REG_FUNCTION_VALUE_P (outgoing) = 1;
5175 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5176 value_address = convert_memory_address (GET_MODE (outgoing),
5177 value_address);
5179 emit_move_insn (outgoing, value_address);
5181 /* Show return register used to hold result (in this case the address
5182 of the result. */
5183 crtl->return_rtx = outgoing;
5186 /* Emit the actual code to clobber return register. Don't emit
5187 it if clobber_after is a barrier, then the previous basic block
5188 certainly doesn't fall thru into the exit block. */
5189 if (!BARRIER_P (clobber_after))
5191 rtx seq;
5193 start_sequence ();
5194 clobber_return_register ();
5195 seq = get_insns ();
5196 end_sequence ();
5198 emit_insn_after (seq, clobber_after);
5201 /* Output the label for the naked return from the function. */
5202 if (naked_return_label)
5203 emit_label (naked_return_label);
5205 /* @@@ This is a kludge. We want to ensure that instructions that
5206 may trap are not moved into the epilogue by scheduling, because
5207 we don't always emit unwind information for the epilogue. */
5208 if (cfun->can_throw_non_call_exceptions
5209 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5210 emit_insn (gen_blockage ());
5212 /* If stack protection is enabled for this function, check the guard. */
5213 if (crtl->stack_protect_guard)
5214 stack_protect_epilogue ();
5216 /* If we had calls to alloca, and this machine needs
5217 an accurate stack pointer to exit the function,
5218 insert some code to save and restore the stack pointer. */
5219 if (! EXIT_IGNORE_STACK
5220 && cfun->calls_alloca)
5222 rtx tem = 0, seq;
5224 start_sequence ();
5225 emit_stack_save (SAVE_FUNCTION, &tem);
5226 seq = get_insns ();
5227 end_sequence ();
5228 emit_insn_before (seq, parm_birth_insn);
5230 emit_stack_restore (SAVE_FUNCTION, tem);
5233 /* ??? This should no longer be necessary since stupid is no longer with
5234 us, but there are some parts of the compiler (eg reload_combine, and
5235 sh mach_dep_reorg) that still try and compute their own lifetime info
5236 instead of using the general framework. */
5237 use_return_register ();
5241 get_arg_pointer_save_area (void)
5243 rtx ret = arg_pointer_save_area;
5245 if (! ret)
5247 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5248 arg_pointer_save_area = ret;
5251 if (! crtl->arg_pointer_save_area_init)
5253 rtx seq;
5255 /* Save the arg pointer at the beginning of the function. The
5256 generated stack slot may not be a valid memory address, so we
5257 have to check it and fix it if necessary. */
5258 start_sequence ();
5259 emit_move_insn (validize_mem (ret),
5260 crtl->args.internal_arg_pointer);
5261 seq = get_insns ();
5262 end_sequence ();
5264 push_topmost_sequence ();
5265 emit_insn_after (seq, entry_of_function ());
5266 pop_topmost_sequence ();
5268 crtl->arg_pointer_save_area_init = true;
5271 return ret;
5274 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5275 for the first time. */
5277 static void
5278 record_insns (rtx insns, rtx end, htab_t *hashp)
5280 rtx tmp;
5281 htab_t hash = *hashp;
5283 if (hash == NULL)
5284 *hashp = hash
5285 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5287 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5289 void **slot = htab_find_slot (hash, tmp, INSERT);
5290 gcc_assert (*slot == NULL);
5291 *slot = tmp;
5295 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5296 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5297 insn, then record COPY as well. */
5299 void
5300 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5302 htab_t hash;
5303 void **slot;
5305 hash = epilogue_insn_hash;
5306 if (!hash || !htab_find (hash, insn))
5308 hash = prologue_insn_hash;
5309 if (!hash || !htab_find (hash, insn))
5310 return;
5313 slot = htab_find_slot (hash, copy, INSERT);
5314 gcc_assert (*slot == NULL);
5315 *slot = copy;
5318 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5319 we can be running after reorg, SEQUENCE rtl is possible. */
5321 static bool
5322 contains (const_rtx insn, htab_t hash)
5324 if (hash == NULL)
5325 return false;
5327 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5329 int i;
5330 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5331 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5332 return true;
5333 return false;
5336 return htab_find (hash, insn) != NULL;
5340 prologue_epilogue_contains (const_rtx insn)
5342 if (contains (insn, prologue_insn_hash))
5343 return 1;
5344 if (contains (insn, epilogue_insn_hash))
5345 return 1;
5346 return 0;
5349 #ifdef HAVE_return
5350 /* Insert use of return register before the end of BB. */
5352 static void
5353 emit_use_return_register_into_block (basic_block bb)
5355 rtx seq, insn;
5356 start_sequence ();
5357 use_return_register ();
5358 seq = get_insns ();
5359 end_sequence ();
5360 insn = BB_END (bb);
5361 #ifdef HAVE_cc0
5362 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5363 insn = prev_cc0_setter (insn);
5364 #endif
5365 emit_insn_before (seq, insn);
5369 /* Create a return pattern, either simple_return or return, depending on
5370 simple_p. */
5372 static rtx
5373 gen_return_pattern (bool simple_p)
5375 #ifdef HAVE_simple_return
5376 return simple_p ? gen_simple_return () : gen_return ();
5377 #else
5378 gcc_assert (!simple_p);
5379 return gen_return ();
5380 #endif
5383 /* Insert an appropriate return pattern at the end of block BB. This
5384 also means updating block_for_insn appropriately. SIMPLE_P is
5385 the same as in gen_return_pattern and passed to it. */
5387 void
5388 emit_return_into_block (bool simple_p, basic_block bb)
5390 rtx jump, pat;
5391 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5392 pat = PATTERN (jump);
5393 if (GET_CODE (pat) == PARALLEL)
5394 pat = XVECEXP (pat, 0, 0);
5395 gcc_assert (ANY_RETURN_P (pat));
5396 JUMP_LABEL (jump) = pat;
5398 #endif
5400 /* Set JUMP_LABEL for a return insn. */
5402 void
5403 set_return_jump_label (rtx returnjump)
5405 rtx pat = PATTERN (returnjump);
5406 if (GET_CODE (pat) == PARALLEL)
5407 pat = XVECEXP (pat, 0, 0);
5408 if (ANY_RETURN_P (pat))
5409 JUMP_LABEL (returnjump) = pat;
5410 else
5411 JUMP_LABEL (returnjump) = ret_rtx;
5414 #if defined (HAVE_return) || defined (HAVE_simple_return)
5415 /* Return true if there are any active insns between HEAD and TAIL. */
5416 bool
5417 active_insn_between (rtx head, rtx tail)
5419 while (tail)
5421 if (active_insn_p (tail))
5422 return true;
5423 if (tail == head)
5424 return false;
5425 tail = PREV_INSN (tail);
5427 return false;
5430 /* LAST_BB is a block that exits, and empty of active instructions.
5431 Examine its predecessors for jumps that can be converted to
5432 (conditional) returns. */
5433 vec<edge>
5434 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5435 vec<edge> unconverted ATTRIBUTE_UNUSED)
5437 int i;
5438 basic_block bb;
5439 rtx label;
5440 edge_iterator ei;
5441 edge e;
5442 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5444 FOR_EACH_EDGE (e, ei, last_bb->preds)
5445 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5446 src_bbs.quick_push (e->src);
5448 label = BB_HEAD (last_bb);
5450 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5452 rtx jump = BB_END (bb);
5454 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5455 continue;
5457 e = find_edge (bb, last_bb);
5459 /* If we have an unconditional jump, we can replace that
5460 with a simple return instruction. */
5461 if (simplejump_p (jump))
5463 /* The use of the return register might be present in the exit
5464 fallthru block. Either:
5465 - removing the use is safe, and we should remove the use in
5466 the exit fallthru block, or
5467 - removing the use is not safe, and we should add it here.
5468 For now, we conservatively choose the latter. Either of the
5469 2 helps in crossjumping. */
5470 emit_use_return_register_into_block (bb);
5472 emit_return_into_block (simple_p, bb);
5473 delete_insn (jump);
5476 /* If we have a conditional jump branching to the last
5477 block, we can try to replace that with a conditional
5478 return instruction. */
5479 else if (condjump_p (jump))
5481 rtx dest;
5483 if (simple_p)
5484 dest = simple_return_rtx;
5485 else
5486 dest = ret_rtx;
5487 if (!redirect_jump (jump, dest, 0))
5489 #ifdef HAVE_simple_return
5490 if (simple_p)
5492 if (dump_file)
5493 fprintf (dump_file,
5494 "Failed to redirect bb %d branch.\n", bb->index);
5495 unconverted.safe_push (e);
5497 #endif
5498 continue;
5501 /* See comment in simplejump_p case above. */
5502 emit_use_return_register_into_block (bb);
5504 /* If this block has only one successor, it both jumps
5505 and falls through to the fallthru block, so we can't
5506 delete the edge. */
5507 if (single_succ_p (bb))
5508 continue;
5510 else
5512 #ifdef HAVE_simple_return
5513 if (simple_p)
5515 if (dump_file)
5516 fprintf (dump_file,
5517 "Failed to redirect bb %d branch.\n", bb->index);
5518 unconverted.safe_push (e);
5520 #endif
5521 continue;
5524 /* Fix up the CFG for the successful change we just made. */
5525 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5526 e->flags &= ~EDGE_CROSSING;
5528 src_bbs.release ();
5529 return unconverted;
5532 /* Emit a return insn for the exit fallthru block. */
5533 basic_block
5534 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5536 basic_block last_bb = exit_fallthru_edge->src;
5538 if (JUMP_P (BB_END (last_bb)))
5540 last_bb = split_edge (exit_fallthru_edge);
5541 exit_fallthru_edge = single_succ_edge (last_bb);
5543 emit_barrier_after (BB_END (last_bb));
5544 emit_return_into_block (simple_p, last_bb);
5545 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5546 return last_bb;
5548 #endif
5551 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5552 this into place with notes indicating where the prologue ends and where
5553 the epilogue begins. Update the basic block information when possible.
5555 Notes on epilogue placement:
5556 There are several kinds of edges to the exit block:
5557 * a single fallthru edge from LAST_BB
5558 * possibly, edges from blocks containing sibcalls
5559 * possibly, fake edges from infinite loops
5561 The epilogue is always emitted on the fallthru edge from the last basic
5562 block in the function, LAST_BB, into the exit block.
5564 If LAST_BB is empty except for a label, it is the target of every
5565 other basic block in the function that ends in a return. If a
5566 target has a return or simple_return pattern (possibly with
5567 conditional variants), these basic blocks can be changed so that a
5568 return insn is emitted into them, and their target is adjusted to
5569 the real exit block.
5571 Notes on shrink wrapping: We implement a fairly conservative
5572 version of shrink-wrapping rather than the textbook one. We only
5573 generate a single prologue and a single epilogue. This is
5574 sufficient to catch a number of interesting cases involving early
5575 exits.
5577 First, we identify the blocks that require the prologue to occur before
5578 them. These are the ones that modify a call-saved register, or reference
5579 any of the stack or frame pointer registers. To simplify things, we then
5580 mark everything reachable from these blocks as also requiring a prologue.
5581 This takes care of loops automatically, and avoids the need to examine
5582 whether MEMs reference the frame, since it is sufficient to check for
5583 occurrences of the stack or frame pointer.
5585 We then compute the set of blocks for which the need for a prologue
5586 is anticipatable (borrowing terminology from the shrink-wrapping
5587 description in Muchnick's book). These are the blocks which either
5588 require a prologue themselves, or those that have only successors
5589 where the prologue is anticipatable. The prologue needs to be
5590 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5591 is not. For the moment, we ensure that only one such edge exists.
5593 The epilogue is placed as described above, but we make a
5594 distinction between inserting return and simple_return patterns
5595 when modifying other blocks that end in a return. Blocks that end
5596 in a sibcall omit the sibcall_epilogue if the block is not in
5597 ANTIC. */
5599 static void
5600 thread_prologue_and_epilogue_insns (void)
5602 bool inserted;
5603 #ifdef HAVE_simple_return
5604 vec<edge> unconverted_simple_returns = vNULL;
5605 bitmap_head bb_flags;
5606 #endif
5607 rtx returnjump;
5608 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5609 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5610 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5611 edge_iterator ei;
5613 df_analyze ();
5615 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5617 inserted = false;
5618 seq = NULL_RTX;
5619 epilogue_end = NULL_RTX;
5620 returnjump = NULL_RTX;
5622 /* Can't deal with multiple successors of the entry block at the
5623 moment. Function should always have at least one entry
5624 point. */
5625 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5626 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5627 orig_entry_edge = entry_edge;
5629 split_prologue_seq = NULL_RTX;
5630 if (flag_split_stack
5631 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5632 == NULL))
5634 #ifndef HAVE_split_stack_prologue
5635 gcc_unreachable ();
5636 #else
5637 gcc_assert (HAVE_split_stack_prologue);
5639 start_sequence ();
5640 emit_insn (gen_split_stack_prologue ());
5641 split_prologue_seq = get_insns ();
5642 end_sequence ();
5644 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5645 set_insn_locations (split_prologue_seq, prologue_location);
5646 #endif
5649 prologue_seq = NULL_RTX;
5650 #ifdef HAVE_prologue
5651 if (HAVE_prologue)
5653 start_sequence ();
5654 seq = gen_prologue ();
5655 emit_insn (seq);
5657 /* Insert an explicit USE for the frame pointer
5658 if the profiling is on and the frame pointer is required. */
5659 if (crtl->profile && frame_pointer_needed)
5660 emit_use (hard_frame_pointer_rtx);
5662 /* Retain a map of the prologue insns. */
5663 record_insns (seq, NULL, &prologue_insn_hash);
5664 emit_note (NOTE_INSN_PROLOGUE_END);
5666 /* Ensure that instructions are not moved into the prologue when
5667 profiling is on. The call to the profiling routine can be
5668 emitted within the live range of a call-clobbered register. */
5669 if (!targetm.profile_before_prologue () && crtl->profile)
5670 emit_insn (gen_blockage ());
5672 prologue_seq = get_insns ();
5673 end_sequence ();
5674 set_insn_locations (prologue_seq, prologue_location);
5676 #endif
5678 #ifdef HAVE_simple_return
5679 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5681 /* Try to perform a kind of shrink-wrapping, making sure the
5682 prologue/epilogue is emitted only around those parts of the
5683 function that require it. */
5685 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5686 #endif
5688 if (split_prologue_seq != NULL_RTX)
5690 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5691 inserted = true;
5693 if (prologue_seq != NULL_RTX)
5695 insert_insn_on_edge (prologue_seq, entry_edge);
5696 inserted = true;
5699 /* If the exit block has no non-fake predecessors, we don't need
5700 an epilogue. */
5701 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5702 if ((e->flags & EDGE_FAKE) == 0)
5703 break;
5704 if (e == NULL)
5705 goto epilogue_done;
5707 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5709 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5711 #ifdef HAVE_simple_return
5712 if (entry_edge != orig_entry_edge)
5713 exit_fallthru_edge
5714 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5715 &unconverted_simple_returns,
5716 &returnjump);
5717 #endif
5718 #ifdef HAVE_return
5719 if (HAVE_return)
5721 if (exit_fallthru_edge == NULL)
5722 goto epilogue_done;
5724 if (optimize)
5726 basic_block last_bb = exit_fallthru_edge->src;
5728 if (LABEL_P (BB_HEAD (last_bb))
5729 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5730 convert_jumps_to_returns (last_bb, false, vNULL);
5732 if (EDGE_COUNT (last_bb->preds) != 0
5733 && single_succ_p (last_bb))
5735 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5736 epilogue_end = returnjump = BB_END (last_bb);
5737 #ifdef HAVE_simple_return
5738 /* Emitting the return may add a basic block.
5739 Fix bb_flags for the added block. */
5740 if (last_bb != exit_fallthru_edge->src)
5741 bitmap_set_bit (&bb_flags, last_bb->index);
5742 #endif
5743 goto epilogue_done;
5747 #endif
5749 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5750 this marker for the splits of EH_RETURN patterns, and nothing else
5751 uses the flag in the meantime. */
5752 epilogue_completed = 1;
5754 #ifdef HAVE_eh_return
5755 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5756 some targets, these get split to a special version of the epilogue
5757 code. In order to be able to properly annotate these with unwind
5758 info, try to split them now. If we get a valid split, drop an
5759 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5760 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5762 rtx prev, last, trial;
5764 if (e->flags & EDGE_FALLTHRU)
5765 continue;
5766 last = BB_END (e->src);
5767 if (!eh_returnjump_p (last))
5768 continue;
5770 prev = PREV_INSN (last);
5771 trial = try_split (PATTERN (last), last, 1);
5772 if (trial == last)
5773 continue;
5775 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5776 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5778 #endif
5780 /* If nothing falls through into the exit block, we don't need an
5781 epilogue. */
5783 if (exit_fallthru_edge == NULL)
5784 goto epilogue_done;
5786 #ifdef HAVE_epilogue
5787 if (HAVE_epilogue)
5789 start_sequence ();
5790 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5791 seq = gen_epilogue ();
5792 if (seq)
5793 emit_jump_insn (seq);
5795 /* Retain a map of the epilogue insns. */
5796 record_insns (seq, NULL, &epilogue_insn_hash);
5797 set_insn_locations (seq, epilogue_location);
5799 seq = get_insns ();
5800 returnjump = get_last_insn ();
5801 end_sequence ();
5803 insert_insn_on_edge (seq, exit_fallthru_edge);
5804 inserted = true;
5806 if (JUMP_P (returnjump))
5807 set_return_jump_label (returnjump);
5809 else
5810 #endif
5812 basic_block cur_bb;
5814 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5815 goto epilogue_done;
5816 /* We have a fall-through edge to the exit block, the source is not
5817 at the end of the function, and there will be an assembler epilogue
5818 at the end of the function.
5819 We can't use force_nonfallthru here, because that would try to
5820 use return. Inserting a jump 'by hand' is extremely messy, so
5821 we take advantage of cfg_layout_finalize using
5822 fixup_fallthru_exit_predecessor. */
5823 cfg_layout_initialize (0);
5824 FOR_EACH_BB_FN (cur_bb, cfun)
5825 if (cur_bb->index >= NUM_FIXED_BLOCKS
5826 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5827 cur_bb->aux = cur_bb->next_bb;
5828 cfg_layout_finalize ();
5831 epilogue_done:
5833 default_rtl_profile ();
5835 if (inserted)
5837 sbitmap blocks;
5839 commit_edge_insertions ();
5841 /* Look for basic blocks within the prologue insns. */
5842 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5843 bitmap_clear (blocks);
5844 bitmap_set_bit (blocks, entry_edge->dest->index);
5845 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5846 find_many_sub_basic_blocks (blocks);
5847 sbitmap_free (blocks);
5849 /* The epilogue insns we inserted may cause the exit edge to no longer
5850 be fallthru. */
5851 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5853 if (((e->flags & EDGE_FALLTHRU) != 0)
5854 && returnjump_p (BB_END (e->src)))
5855 e->flags &= ~EDGE_FALLTHRU;
5859 #ifdef HAVE_simple_return
5860 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5861 unconverted_simple_returns);
5862 #endif
5864 #ifdef HAVE_sibcall_epilogue
5865 /* Emit sibling epilogues before any sibling call sites. */
5866 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5867 ei_safe_edge (ei));
5870 basic_block bb = e->src;
5871 rtx insn = BB_END (bb);
5872 rtx ep_seq;
5874 if (!CALL_P (insn)
5875 || ! SIBLING_CALL_P (insn)
5876 #ifdef HAVE_simple_return
5877 || (entry_edge != orig_entry_edge
5878 && !bitmap_bit_p (&bb_flags, bb->index))
5879 #endif
5882 ei_next (&ei);
5883 continue;
5886 ep_seq = gen_sibcall_epilogue ();
5887 if (ep_seq)
5889 start_sequence ();
5890 emit_note (NOTE_INSN_EPILOGUE_BEG);
5891 emit_insn (ep_seq);
5892 seq = get_insns ();
5893 end_sequence ();
5895 /* Retain a map of the epilogue insns. Used in life analysis to
5896 avoid getting rid of sibcall epilogue insns. Do this before we
5897 actually emit the sequence. */
5898 record_insns (seq, NULL, &epilogue_insn_hash);
5899 set_insn_locations (seq, epilogue_location);
5901 emit_insn_before (seq, insn);
5903 ei_next (&ei);
5905 #endif
5907 #ifdef HAVE_epilogue
5908 if (epilogue_end)
5910 rtx insn, next;
5912 /* Similarly, move any line notes that appear after the epilogue.
5913 There is no need, however, to be quite so anal about the existence
5914 of such a note. Also possibly move
5915 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5916 info generation. */
5917 for (insn = epilogue_end; insn; insn = next)
5919 next = NEXT_INSN (insn);
5920 if (NOTE_P (insn)
5921 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5922 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5925 #endif
5927 #ifdef HAVE_simple_return
5928 bitmap_clear (&bb_flags);
5929 #endif
5931 /* Threading the prologue and epilogue changes the artificial refs
5932 in the entry and exit blocks. */
5933 epilogue_completed = 1;
5934 df_update_entry_exit_and_calls ();
5937 /* Reposition the prologue-end and epilogue-begin notes after
5938 instruction scheduling. */
5940 void
5941 reposition_prologue_and_epilogue_notes (void)
5943 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5944 || defined (HAVE_sibcall_epilogue)
5945 /* Since the hash table is created on demand, the fact that it is
5946 non-null is a signal that it is non-empty. */
5947 if (prologue_insn_hash != NULL)
5949 size_t len = htab_elements (prologue_insn_hash);
5950 rtx insn, last = NULL, note = NULL;
5952 /* Scan from the beginning until we reach the last prologue insn. */
5953 /* ??? While we do have the CFG intact, there are two problems:
5954 (1) The prologue can contain loops (typically probing the stack),
5955 which means that the end of the prologue isn't in the first bb.
5956 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5957 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5959 if (NOTE_P (insn))
5961 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5962 note = insn;
5964 else if (contains (insn, prologue_insn_hash))
5966 last = insn;
5967 if (--len == 0)
5968 break;
5972 if (last)
5974 if (note == NULL)
5976 /* Scan forward looking for the PROLOGUE_END note. It should
5977 be right at the beginning of the block, possibly with other
5978 insn notes that got moved there. */
5979 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5981 if (NOTE_P (note)
5982 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5983 break;
5987 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5988 if (LABEL_P (last))
5989 last = NEXT_INSN (last);
5990 reorder_insns (note, note, last);
5994 if (epilogue_insn_hash != NULL)
5996 edge_iterator ei;
5997 edge e;
5999 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6001 rtx insn, first = NULL, note = NULL;
6002 basic_block bb = e->src;
6004 /* Scan from the beginning until we reach the first epilogue insn. */
6005 FOR_BB_INSNS (bb, insn)
6007 if (NOTE_P (insn))
6009 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6011 note = insn;
6012 if (first != NULL)
6013 break;
6016 else if (first == NULL && contains (insn, epilogue_insn_hash))
6018 first = insn;
6019 if (note != NULL)
6020 break;
6024 if (note)
6026 /* If the function has a single basic block, and no real
6027 epilogue insns (e.g. sibcall with no cleanup), the
6028 epilogue note can get scheduled before the prologue
6029 note. If we have frame related prologue insns, having
6030 them scanned during the epilogue will result in a crash.
6031 In this case re-order the epilogue note to just before
6032 the last insn in the block. */
6033 if (first == NULL)
6034 first = BB_END (bb);
6036 if (PREV_INSN (first) != note)
6037 reorder_insns (note, note, PREV_INSN (first));
6041 #endif /* HAVE_prologue or HAVE_epilogue */
6044 /* Returns the name of function declared by FNDECL. */
6045 const char *
6046 fndecl_name (tree fndecl)
6048 if (fndecl == NULL)
6049 return "(nofn)";
6050 return lang_hooks.decl_printable_name (fndecl, 2);
6053 /* Returns the name of function FN. */
6054 const char *
6055 function_name (struct function *fn)
6057 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6058 return fndecl_name (fndecl);
6061 /* Returns the name of the current function. */
6062 const char *
6063 current_function_name (void)
6065 return function_name (cfun);
6069 static unsigned int
6070 rest_of_handle_check_leaf_regs (void)
6072 #ifdef LEAF_REGISTERS
6073 crtl->uses_only_leaf_regs
6074 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6075 #endif
6076 return 0;
6079 /* Insert a TYPE into the used types hash table of CFUN. */
6081 static void
6082 used_types_insert_helper (tree type, struct function *func)
6084 if (type != NULL && func != NULL)
6086 void **slot;
6088 if (func->used_types_hash == NULL)
6089 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6090 htab_eq_pointer, NULL);
6091 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6092 if (*slot == NULL)
6093 *slot = type;
6097 /* Given a type, insert it into the used hash table in cfun. */
6098 void
6099 used_types_insert (tree t)
6101 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6102 if (TYPE_NAME (t))
6103 break;
6104 else
6105 t = TREE_TYPE (t);
6106 if (TREE_CODE (t) == ERROR_MARK)
6107 return;
6108 if (TYPE_NAME (t) == NULL_TREE
6109 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6110 t = TYPE_MAIN_VARIANT (t);
6111 if (debug_info_level > DINFO_LEVEL_NONE)
6113 if (cfun)
6114 used_types_insert_helper (t, cfun);
6115 else
6117 /* So this might be a type referenced by a global variable.
6118 Record that type so that we can later decide to emit its
6119 debug information. */
6120 vec_safe_push (types_used_by_cur_var_decl, t);
6125 /* Helper to Hash a struct types_used_by_vars_entry. */
6127 static hashval_t
6128 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6130 gcc_assert (entry && entry->var_decl && entry->type);
6132 return iterative_hash_object (entry->type,
6133 iterative_hash_object (entry->var_decl, 0));
6136 /* Hash function of the types_used_by_vars_entry hash table. */
6138 hashval_t
6139 types_used_by_vars_do_hash (const void *x)
6141 const struct types_used_by_vars_entry *entry =
6142 (const struct types_used_by_vars_entry *) x;
6144 return hash_types_used_by_vars_entry (entry);
6147 /*Equality function of the types_used_by_vars_entry hash table. */
6150 types_used_by_vars_eq (const void *x1, const void *x2)
6152 const struct types_used_by_vars_entry *e1 =
6153 (const struct types_used_by_vars_entry *) x1;
6154 const struct types_used_by_vars_entry *e2 =
6155 (const struct types_used_by_vars_entry *)x2;
6157 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6160 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6162 void
6163 types_used_by_var_decl_insert (tree type, tree var_decl)
6165 if (type != NULL && var_decl != NULL)
6167 void **slot;
6168 struct types_used_by_vars_entry e;
6169 e.var_decl = var_decl;
6170 e.type = type;
6171 if (types_used_by_vars_hash == NULL)
6172 types_used_by_vars_hash =
6173 htab_create_ggc (37, types_used_by_vars_do_hash,
6174 types_used_by_vars_eq, NULL);
6175 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6176 hash_types_used_by_vars_entry (&e), INSERT);
6177 if (*slot == NULL)
6179 struct types_used_by_vars_entry *entry;
6180 entry = ggc_alloc<types_used_by_vars_entry> ();
6181 entry->type = type;
6182 entry->var_decl = var_decl;
6183 *slot = entry;
6188 namespace {
6190 const pass_data pass_data_leaf_regs =
6192 RTL_PASS, /* type */
6193 "*leaf_regs", /* name */
6194 OPTGROUP_NONE, /* optinfo_flags */
6195 true, /* has_execute */
6196 TV_NONE, /* tv_id */
6197 0, /* properties_required */
6198 0, /* properties_provided */
6199 0, /* properties_destroyed */
6200 0, /* todo_flags_start */
6201 0, /* todo_flags_finish */
6204 class pass_leaf_regs : public rtl_opt_pass
6206 public:
6207 pass_leaf_regs (gcc::context *ctxt)
6208 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6211 /* opt_pass methods: */
6212 virtual unsigned int execute (function *)
6214 return rest_of_handle_check_leaf_regs ();
6217 }; // class pass_leaf_regs
6219 } // anon namespace
6221 rtl_opt_pass *
6222 make_pass_leaf_regs (gcc::context *ctxt)
6224 return new pass_leaf_regs (ctxt);
6227 static unsigned int
6228 rest_of_handle_thread_prologue_and_epilogue (void)
6230 if (optimize)
6231 cleanup_cfg (CLEANUP_EXPENSIVE);
6233 /* On some machines, the prologue and epilogue code, or parts thereof,
6234 can be represented as RTL. Doing so lets us schedule insns between
6235 it and the rest of the code and also allows delayed branch
6236 scheduling to operate in the epilogue. */
6237 thread_prologue_and_epilogue_insns ();
6239 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6240 see PR57320. */
6241 cleanup_cfg (0);
6243 /* The stack usage info is finalized during prologue expansion. */
6244 if (flag_stack_usage_info)
6245 output_stack_usage ();
6247 return 0;
6250 namespace {
6252 const pass_data pass_data_thread_prologue_and_epilogue =
6254 RTL_PASS, /* type */
6255 "pro_and_epilogue", /* name */
6256 OPTGROUP_NONE, /* optinfo_flags */
6257 true, /* has_execute */
6258 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6259 0, /* properties_required */
6260 0, /* properties_provided */
6261 0, /* properties_destroyed */
6262 0, /* todo_flags_start */
6263 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6266 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6268 public:
6269 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6270 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6273 /* opt_pass methods: */
6274 virtual unsigned int execute (function *)
6276 return rest_of_handle_thread_prologue_and_epilogue ();
6279 }; // class pass_thread_prologue_and_epilogue
6281 } // anon namespace
6283 rtl_opt_pass *
6284 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6286 return new pass_thread_prologue_and_epilogue (ctxt);
6290 /* This mini-pass fixes fall-out from SSA in asm statements that have
6291 in-out constraints. Say you start with
6293 orig = inout;
6294 asm ("": "+mr" (inout));
6295 use (orig);
6297 which is transformed very early to use explicit output and match operands:
6299 orig = inout;
6300 asm ("": "=mr" (inout) : "0" (inout));
6301 use (orig);
6303 Or, after SSA and copyprop,
6305 asm ("": "=mr" (inout_2) : "0" (inout_1));
6306 use (inout_1);
6308 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6309 they represent two separate values, so they will get different pseudo
6310 registers during expansion. Then, since the two operands need to match
6311 per the constraints, but use different pseudo registers, reload can
6312 only register a reload for these operands. But reloads can only be
6313 satisfied by hardregs, not by memory, so we need a register for this
6314 reload, just because we are presented with non-matching operands.
6315 So, even though we allow memory for this operand, no memory can be
6316 used for it, just because the two operands don't match. This can
6317 cause reload failures on register-starved targets.
6319 So it's a symptom of reload not being able to use memory for reloads
6320 or, alternatively it's also a symptom of both operands not coming into
6321 reload as matching (in which case the pseudo could go to memory just
6322 fine, as the alternative allows it, and no reload would be necessary).
6323 We fix the latter problem here, by transforming
6325 asm ("": "=mr" (inout_2) : "0" (inout_1));
6327 back to
6329 inout_2 = inout_1;
6330 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6332 static void
6333 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6335 int i;
6336 bool changed = false;
6337 rtx op = SET_SRC (p_sets[0]);
6338 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6339 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6340 bool *output_matched = XALLOCAVEC (bool, noutputs);
6342 memset (output_matched, 0, noutputs * sizeof (bool));
6343 for (i = 0; i < ninputs; i++)
6345 rtx input, output, insns;
6346 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6347 char *end;
6348 int match, j;
6350 if (*constraint == '%')
6351 constraint++;
6353 match = strtoul (constraint, &end, 10);
6354 if (end == constraint)
6355 continue;
6357 gcc_assert (match < noutputs);
6358 output = SET_DEST (p_sets[match]);
6359 input = RTVEC_ELT (inputs, i);
6360 /* Only do the transformation for pseudos. */
6361 if (! REG_P (output)
6362 || rtx_equal_p (output, input)
6363 || (GET_MODE (input) != VOIDmode
6364 && GET_MODE (input) != GET_MODE (output)))
6365 continue;
6367 /* We can't do anything if the output is also used as input,
6368 as we're going to overwrite it. */
6369 for (j = 0; j < ninputs; j++)
6370 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6371 break;
6372 if (j != ninputs)
6373 continue;
6375 /* Avoid changing the same input several times. For
6376 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6377 only change in once (to out1), rather than changing it
6378 first to out1 and afterwards to out2. */
6379 if (i > 0)
6381 for (j = 0; j < noutputs; j++)
6382 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6383 break;
6384 if (j != noutputs)
6385 continue;
6387 output_matched[match] = true;
6389 start_sequence ();
6390 emit_move_insn (output, input);
6391 insns = get_insns ();
6392 end_sequence ();
6393 emit_insn_before (insns, insn);
6395 /* Now replace all mentions of the input with output. We can't
6396 just replace the occurrence in inputs[i], as the register might
6397 also be used in some other input (or even in an address of an
6398 output), which would mean possibly increasing the number of
6399 inputs by one (namely 'output' in addition), which might pose
6400 a too complicated problem for reload to solve. E.g. this situation:
6402 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6404 Here 'input' is used in two occurrences as input (once for the
6405 input operand, once for the address in the second output operand).
6406 If we would replace only the occurrence of the input operand (to
6407 make the matching) we would be left with this:
6409 output = input
6410 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6412 Now we suddenly have two different input values (containing the same
6413 value, but different pseudos) where we formerly had only one.
6414 With more complicated asms this might lead to reload failures
6415 which wouldn't have happen without this pass. So, iterate over
6416 all operands and replace all occurrences of the register used. */
6417 for (j = 0; j < noutputs; j++)
6418 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6419 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6420 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6421 input, output);
6422 for (j = 0; j < ninputs; j++)
6423 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6424 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6425 input, output);
6427 changed = true;
6430 if (changed)
6431 df_insn_rescan (insn);
6434 namespace {
6436 const pass_data pass_data_match_asm_constraints =
6438 RTL_PASS, /* type */
6439 "asmcons", /* name */
6440 OPTGROUP_NONE, /* optinfo_flags */
6441 true, /* has_execute */
6442 TV_NONE, /* tv_id */
6443 0, /* properties_required */
6444 0, /* properties_provided */
6445 0, /* properties_destroyed */
6446 0, /* todo_flags_start */
6447 0, /* todo_flags_finish */
6450 class pass_match_asm_constraints : public rtl_opt_pass
6452 public:
6453 pass_match_asm_constraints (gcc::context *ctxt)
6454 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6457 /* opt_pass methods: */
6458 virtual unsigned int execute (function *);
6460 }; // class pass_match_asm_constraints
6462 unsigned
6463 pass_match_asm_constraints::execute (function *fun)
6465 basic_block bb;
6466 rtx insn, pat, *p_sets;
6467 int noutputs;
6469 if (!crtl->has_asm_statement)
6470 return 0;
6472 df_set_flags (DF_DEFER_INSN_RESCAN);
6473 FOR_EACH_BB_FN (bb, fun)
6475 FOR_BB_INSNS (bb, insn)
6477 if (!INSN_P (insn))
6478 continue;
6480 pat = PATTERN (insn);
6481 if (GET_CODE (pat) == PARALLEL)
6482 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6483 else if (GET_CODE (pat) == SET)
6484 p_sets = &PATTERN (insn), noutputs = 1;
6485 else
6486 continue;
6488 if (GET_CODE (*p_sets) == SET
6489 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6490 match_asm_constraints_1 (insn, p_sets, noutputs);
6494 return TODO_df_finish;
6497 } // anon namespace
6499 rtl_opt_pass *
6500 make_pass_match_asm_constraints (gcc::context *ctxt)
6502 return new pass_match_asm_constraints (ctxt);
6506 #include "gt-function.h"