* builtins.c (expand_builtin_setjmp_receiver): Const-ify.
[official-gcc.git] / gcc / config / sparc / sparc.h
blobbf43ba9684923ce80b46ee4c99785ed50195ca11
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
101 #define SPARC_DEFAULT_CMODEL CM_32
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
126 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
127 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
129 #define CPP_CPU32_DEFAULT_SPEC ""
130 #define ASM_CPU32_DEFAULT_SPEC ""
132 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
133 /* ??? What does Sun's CC pass? */
134 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
135 /* ??? It's not clear how other assemblers will handle this, so by default
136 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
137 is handled in sol2.h. */
138 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
139 #endif
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
141 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
142 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
143 #endif
145 #else
147 #define CPP_CPU64_DEFAULT_SPEC ""
148 #define ASM_CPU64_DEFAULT_SPEC ""
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
152 #define CPP_CPU32_DEFAULT_SPEC ""
153 #define ASM_CPU32_DEFAULT_SPEC ""
154 #endif
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
157 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
158 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
159 #endif
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
162 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
163 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
164 #endif
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
167 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
168 #define ASM_CPU32_DEFAULT_SPEC ""
169 #endif
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
172 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
173 #define ASM_CPU32_DEFAULT_SPEC ""
174 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
177 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
178 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
179 #endif
181 #endif
183 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
184 Unrecognized value in TARGET_CPU_DEFAULT.
185 #endif
187 #ifdef SPARC_BI_ARCH
189 #define CPP_CPU_DEFAULT_SPEC \
190 (DEFAULT_ARCH32_P ? "\
191 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
192 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
193 " : "\
194 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
195 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
197 #define ASM_CPU_DEFAULT_SPEC \
198 (DEFAULT_ARCH32_P ? "\
199 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
200 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
201 " : "\
202 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
203 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
206 #else /* !SPARC_BI_ARCH */
208 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
209 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
211 #endif /* !SPARC_BI_ARCH */
213 /* Names to predefine in the preprocessor for this target machine.
214 ??? It would be nice to not include any subtarget specific values here,
215 however there's no way to portably provide subtarget values to
216 CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into
217 foo, __foo and __foo__. */
219 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem=unix -Asystem=bsd"
221 /* Define macros to distinguish architectures. */
223 /* Common CPP definitions used by CPP_SPEC amongst the various targets
224 for handling -mcpu=xxx switches. */
225 #define CPP_CPU_SPEC "\
226 %{msoft-float:-D_SOFT_FLOAT} \
227 %{mcypress:} \
228 %{msparclite:-D__sparclite__} \
229 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
230 %{mv8:-D__sparc_v8__} \
231 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
232 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
233 %{mcpu=sparclite:-D__sparclite__} \
234 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
235 %{mcpu=v8:-D__sparc_v8__} \
236 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
237 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
238 %{mcpu=sparclite86x:-D__sparclite86x__} \
239 %{mcpu=v9:-D__sparc_v9__} \
240 %{mcpu=ultrasparc:-D__sparc_v9__} \
241 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
244 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
245 the right varags.h file when bootstrapping. */
246 /* ??? It's not clear what value we want to use for -Acpu/machine for
247 sparc64 in 32 bit environments, so for now we only use `sparc64' in
248 64 bit environments. */
250 #ifdef SPARC_BI_ARCH
252 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
253 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
254 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
255 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
257 #else
259 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
260 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
262 #endif
264 #define CPP_ARCH_DEFAULT_SPEC \
265 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
267 #define CPP_ARCH_SPEC "\
268 %{m32:%(cpp_arch32)} \
269 %{m64:%(cpp_arch64)} \
270 %{!m32:%{!m64:%(cpp_arch_default)}} \
273 /* Macros to distinguish endianness. */
274 #define CPP_ENDIAN_SPEC "\
275 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
276 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
278 /* Macros to distinguish the particular subtarget. */
279 #define CPP_SUBTARGET_SPEC ""
281 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
283 /* Prevent error on `-sun4' and `-target sun4' options. */
284 /* This used to translate -dalign to -malign, but that is no good
285 because it can't turn off the usual meaning of making debugging dumps. */
286 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
287 ??? Delete support for -m<cpu> for 2.9. */
289 #define CC1_SPEC "\
290 %{sun4:} %{target:} \
291 %{mcypress:-mcpu=cypress} \
292 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
293 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
296 /* Override in target specific files. */
297 #define ASM_CPU_SPEC "\
298 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
299 %{msparclite:-Asparclite} \
300 %{mf930:-Asparclite} %{mf934:-Asparclite} \
301 %{mcpu=sparclite:-Asparclite} \
302 %{mcpu=sparclite86x:-Asparclite} \
303 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
304 %{mv8plus:-Av8plus} \
305 %{mcpu=v9:-Av9} \
306 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
307 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
310 /* Word size selection, among other things.
311 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
313 #define ASM_ARCH32_SPEC "-32"
314 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
315 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
316 #else
317 #define ASM_ARCH64_SPEC "-64"
318 #endif
319 #define ASM_ARCH_DEFAULT_SPEC \
320 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
322 #define ASM_ARCH_SPEC "\
323 %{m32:%(asm_arch32)} \
324 %{m64:%(asm_arch64)} \
325 %{!m32:%{!m64:%(asm_arch_default)}} \
328 #ifdef HAVE_AS_RELAX_OPTION
329 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
330 #else
331 #define ASM_RELAX_SPEC ""
332 #endif
334 /* Special flags to the Sun-4 assembler when using pipe for input. */
336 #define ASM_SPEC "\
337 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
338 %(asm_cpu) %(asm_relax)"
340 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
342 /* Provide required defaults for linker -e and -d switches. */
344 #define LINK_SPEC \
345 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
346 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
348 /* This macro defines names of additional specifications to put in the specs
349 that can be used in various specifications like CC1_SPEC. Its definition
350 is an initializer with a subgrouping for each command option.
352 Each subgrouping contains a string constant, that defines the
353 specification name, and a string constant that used by the GNU CC driver
354 program.
356 Do not define this macro if it does not need to do anything. */
358 #define EXTRA_SPECS \
359 { "cpp_cpu", CPP_CPU_SPEC }, \
360 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
361 { "cpp_arch32", CPP_ARCH32_SPEC }, \
362 { "cpp_arch64", CPP_ARCH64_SPEC }, \
363 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
364 { "cpp_arch", CPP_ARCH_SPEC }, \
365 { "cpp_endian", CPP_ENDIAN_SPEC }, \
366 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
367 { "asm_cpu", ASM_CPU_SPEC }, \
368 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
369 { "asm_arch32", ASM_ARCH32_SPEC }, \
370 { "asm_arch64", ASM_ARCH64_SPEC }, \
371 { "asm_relax", ASM_RELAX_SPEC }, \
372 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
373 { "asm_arch", ASM_ARCH_SPEC }, \
374 SUBTARGET_EXTRA_SPECS
376 #define SUBTARGET_EXTRA_SPECS
378 #ifdef SPARC_BI_ARCH
379 #define NO_BUILTIN_PTRDIFF_TYPE
380 #define NO_BUILTIN_SIZE_TYPE
381 #endif
382 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
383 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
385 /* ??? This should be 32 bits for v9 but what can we do? */
386 #define WCHAR_TYPE "short unsigned int"
387 #define WCHAR_TYPE_SIZE 16
388 #define MAX_WCHAR_TYPE_SIZE 16
390 /* Show we can debug even without a frame pointer. */
391 #define CAN_DEBUG_WITHOUT_FP
393 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
394 code into the rtl. Also, if we are profiling, we cannot eliminate
395 the frame pointer (because the return address will get smashed). */
397 #define OVERRIDE_OPTIONS \
398 do { \
399 if (profile_flag || profile_block_flag || profile_arc_flag) \
401 if (flag_pic) \
403 const char *const pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
404 warning ("%s and profiling conflict: disabling %s", \
405 pic_string, pic_string); \
406 flag_pic = 0; \
408 flag_omit_frame_pointer = 0; \
410 sparc_override_options (); \
411 SUBTARGET_OVERRIDE_OPTIONS; \
412 } while (0)
414 /* This is meant to be redefined in the host dependent files. */
415 #define SUBTARGET_OVERRIDE_OPTIONS
417 /* These compiler options take an argument. We ignore -target for now. */
419 #define WORD_SWITCH_TAKES_ARG(STR) \
420 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
421 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
423 /* Print subsidiary information on the compiler version in use. */
425 #define TARGET_VERSION fprintf (stderr, " (sparc)");
427 /* Generate DBX debugging information. */
429 #define DBX_DEBUGGING_INFO
431 /* Run-time compilation parameters selecting different hardware subsets. */
433 extern int target_flags;
435 /* Nonzero if we should generate code to use the fpu. */
436 #define MASK_FPU 1
437 #define TARGET_FPU (target_flags & MASK_FPU)
439 /* Nonzero if we should use function_epilogue(). Otherwise, we
440 use fast return insns, but lose some generality. */
441 #define MASK_EPILOGUE 2
442 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
444 /* Nonzero if we should assume that double pointers might be unaligned.
445 This can happen when linking gcc compiled code with other compilers,
446 because the ABI only guarantees 4 byte alignment. */
447 #define MASK_UNALIGNED_DOUBLES 4
448 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
450 /* Nonzero means that we should generate code for a v8 sparc. */
451 #define MASK_V8 0x8
452 #define TARGET_V8 (target_flags & MASK_V8)
454 /* Nonzero means that we should generate code for a sparclite.
455 This enables the sparclite specific instructions, but does not affect
456 whether FPU instructions are emitted. */
457 #define MASK_SPARCLITE 0x10
458 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
460 /* Nonzero if we're compiling for the sparclet. */
461 #define MASK_SPARCLET 0x20
462 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
464 /* Nonzero if we're compiling for v9 sparc.
465 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
466 the word size is 64. */
467 #define MASK_V9 0x40
468 #define TARGET_V9 (target_flags & MASK_V9)
470 /* Non-zero to generate code that uses the instructions deprecated in
471 the v9 architecture. This option only applies to v9 systems. */
472 /* ??? This isn't user selectable yet. It's used to enable such insns
473 on 32 bit v9 systems and for the moment they're permanently disabled
474 on 64 bit v9 systems. */
475 #define MASK_DEPRECATED_V8_INSNS 0x80
476 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
478 /* Mask of all CPU selection flags. */
479 #define MASK_ISA \
480 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
482 /* Non-zero means don't pass `-assert pure-text' to the linker. */
483 #define MASK_IMPURE_TEXT 0x100
484 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
486 /* Nonzero means that we should generate code using a flat register window
487 model, i.e. no save/restore instructions are generated, which is
488 compatible with normal sparc code.
489 The frame pointer is %i7 instead of %fp. */
490 #define MASK_FLAT 0x200
491 #define TARGET_FLAT (target_flags & MASK_FLAT)
493 /* Nonzero means use the registers that the Sparc ABI reserves for
494 application software. This must be the default to coincide with the
495 setting in FIXED_REGISTERS. */
496 #define MASK_APP_REGS 0x400
497 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
499 /* Option to select how quad word floating point is implemented.
500 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
501 Otherwise, we use the SPARC ABI quad library functions. */
502 #define MASK_HARD_QUAD 0x800
503 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
505 /* Non-zero on little-endian machines. */
506 /* ??? Little endian support currently only exists for sparclet-aout and
507 sparc64-elf configurations. May eventually want to expand the support
508 to all targets, but for now it's kept local to only those two. */
509 #define MASK_LITTLE_ENDIAN 0x1000
510 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
512 /* 0x2000, 0x4000 are unused */
514 /* Nonzero if pointers are 64 bits. */
515 #define MASK_PTR64 0x8000
516 #define TARGET_PTR64 (target_flags & MASK_PTR64)
518 /* Nonzero if generating code to run in a 64 bit environment.
519 This is intended to only be used by TARGET_ARCH{32,64} as they are the
520 mechanism used to control compile time or run time selection. */
521 #define MASK_64BIT 0x10000
522 #define TARGET_64BIT (target_flags & MASK_64BIT)
524 /* 0x20000,0x40000 unused */
526 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
527 adding 2047 to %sp. This option is for v9 only and is the default. */
528 #define MASK_STACK_BIAS 0x80000
529 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
531 /* 0x100000,0x200000 unused */
533 /* Non-zero means -m{,no-}fpu was passed on the command line. */
534 #define MASK_FPU_SET 0x400000
535 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
537 /* Use the UltraSPARC Visual Instruction Set extensions. */
538 #define MASK_VIS 0x1000000
539 #define TARGET_VIS (target_flags & MASK_VIS)
541 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
542 the current out and global registers and Linux 2.2+ as well. */
543 #define MASK_V8PLUS 0x2000000
544 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
546 /* Force a the fastest alignment on structures to take advantage of
547 faster copies. */
548 #define MASK_FASTER_STRUCTS 0x4000000
549 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
551 /* Use IEEE quad long double. */
552 #define MASK_LONG_DOUBLE_128 0x8000000
553 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
555 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
556 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
557 to get high 32 bits. False in V8+ or V9 because multiply stores
558 a 64 bit result in a register. */
560 #define TARGET_HARD_MUL32 \
561 ((TARGET_V8 || TARGET_SPARCLITE \
562 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
563 && ! TARGET_V8PLUS && TARGET_ARCH32)
565 #define TARGET_HARD_MUL \
566 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
567 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
570 /* Macro to define tables used to set the flags.
571 This is a list in braces of pairs in braces,
572 each pair being { "NAME", VALUE }
573 where VALUE is the bits to set or minus the bits to clear.
574 An empty string NAME is used to identify the default VALUE. */
576 #define TARGET_SWITCHES \
577 { {"fpu", MASK_FPU | MASK_FPU_SET, \
578 N_("Use hardware fp") }, \
579 {"no-fpu", -MASK_FPU, \
580 N_("Do not use hardware fp") }, \
581 {"no-fpu", MASK_FPU_SET, NULL, }, \
582 {"hard-float", MASK_FPU | MASK_FPU_SET, \
583 N_("Use hardware fp") }, \
584 {"soft-float", -MASK_FPU, \
585 N_("Do not use hardware fp") }, \
586 {"soft-float", MASK_FPU_SET, NULL }, \
587 {"epilogue", MASK_EPILOGUE, \
588 N_("Use function_epilogue()") }, \
589 {"no-epilogue", -MASK_EPILOGUE, \
590 N_("Do not use function_epilogue()") }, \
591 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
592 N_("Assume possible double misalignment") }, \
593 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
594 N_("Assume all doubles are aligned") }, \
595 {"impure-text", MASK_IMPURE_TEXT, \
596 N_("Pass -assert pure-text to linker") }, \
597 {"no-impure-text", -MASK_IMPURE_TEXT, \
598 N_("Do not pass -assert pure-text to linker") }, \
599 {"flat", MASK_FLAT, \
600 N_("Use flat register window model") }, \
601 {"no-flat", -MASK_FLAT, \
602 N_("Do not use flat register window model") }, \
603 {"app-regs", MASK_APP_REGS, \
604 N_("Use ABI reserved registers") }, \
605 {"no-app-regs", -MASK_APP_REGS, \
606 N_("Do not use ABI reserved registers") }, \
607 {"hard-quad-float", MASK_HARD_QUAD, \
608 N_("Use hardware quad fp instructions") }, \
609 {"soft-quad-float", -MASK_HARD_QUAD, \
610 N_("Do not use hardware quad fp instructions") }, \
611 {"v8plus", MASK_V8PLUS, \
612 N_("Compile for v8plus ABI") }, \
613 {"no-v8plus", -MASK_V8PLUS, \
614 N_("Do not compile for v8plus ABI") }, \
615 {"vis", MASK_VIS, \
616 N_("Utilize Visual Instruction Set") }, \
617 {"no-vis", -MASK_VIS, \
618 N_("Do not utilize Visual Instruction Set") }, \
619 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
620 {"cypress", 0, \
621 N_("Optimize for Cypress processors") }, \
622 {"sparclite", 0, \
623 N_("Optimize for SparcLite processors") }, \
624 {"f930", 0, \
625 N_("Optimize for F930 processors") }, \
626 {"f934", 0, \
627 N_("Optimize for F934 processors") }, \
628 {"v8", 0, \
629 N_("Use V8 Sparc ISA") }, \
630 {"supersparc", 0, \
631 N_("Optimize for SuperSparc processors") }, \
632 /* End of deprecated options. */ \
633 {"ptr64", MASK_PTR64, \
634 N_("Pointers are 64-bit") }, \
635 {"ptr32", -MASK_PTR64, \
636 N_("Pointers are 32-bit") }, \
637 {"32", -MASK_64BIT, \
638 N_("Use 32-bit ABI") }, \
639 {"64", MASK_64BIT, \
640 N_("Use 64-bit ABI") }, \
641 {"stack-bias", MASK_STACK_BIAS, \
642 N_("Use stack bias") }, \
643 {"no-stack-bias", -MASK_STACK_BIAS, \
644 N_("Do not use stack bias") }, \
645 {"faster-structs", MASK_FASTER_STRUCTS, \
646 N_("Use structs on stronger alignment for double-word copies") }, \
647 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
648 N_("Do not use structs on stronger alignment for double-word copies") }, \
649 {"relax", 0, \
650 N_("Optimize tail call instructions in assembler and linker") }, \
651 {"no-relax", 0, \
652 N_("Do not optimize tail call instructions in assembler or linker") }, \
653 SUBTARGET_SWITCHES \
654 { "", TARGET_DEFAULT, ""}}
656 /* MASK_APP_REGS must always be the default because that's what
657 FIXED_REGISTERS is set to and -ffixed- is processed before
658 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
659 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
661 /* This is meant to be redefined in target specific files. */
662 #define SUBTARGET_SWITCHES
664 /* Processor type.
665 These must match the values for the cpu attribute in sparc.md. */
666 enum processor_type {
667 PROCESSOR_V7,
668 PROCESSOR_CYPRESS,
669 PROCESSOR_V8,
670 PROCESSOR_SUPERSPARC,
671 PROCESSOR_SPARCLITE,
672 PROCESSOR_F930,
673 PROCESSOR_F934,
674 PROCESSOR_HYPERSPARC,
675 PROCESSOR_SPARCLITE86X,
676 PROCESSOR_SPARCLET,
677 PROCESSOR_TSC701,
678 PROCESSOR_V9,
679 PROCESSOR_ULTRASPARC
682 /* This is set from -m{cpu,tune}=xxx. */
683 extern enum processor_type sparc_cpu;
685 /* Recast the cpu class to be the cpu attribute.
686 Every file includes us, but not every file includes insn-attr.h. */
687 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
689 /* This macro is similar to `TARGET_SWITCHES' but defines names of
690 command options that have values. Its definition is an
691 initializer with a subgrouping for each command option.
693 Each subgrouping contains a string constant, that defines the
694 fixed part of the option name, and the address of a variable.
695 The variable, type `char *', is set to the variable part of the
696 given option if the fixed part matches. The actual option name
697 is made by appending `-m' to the specified name.
699 Here is an example which defines `-mshort-data-NUMBER'. If the
700 given option is `-mshort-data-512', the variable `m88k_short_data'
701 will be set to the string `"512"'.
703 extern char *m88k_short_data;
704 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
706 #define TARGET_OPTIONS \
708 { "cpu=", &sparc_select[1].string, \
709 N_("Use features of and schedule code for given CPU") }, \
710 { "tune=", &sparc_select[2].string, \
711 N_("Schedule code for given CPU") }, \
712 { "cmodel=", &sparc_cmodel_string, \
713 N_("Use given Sparc code model") }, \
714 SUBTARGET_OPTIONS \
717 /* This is meant to be redefined in target specific files. */
718 #define SUBTARGET_OPTIONS
720 /* sparc_select[0] is reserved for the default cpu. */
721 struct sparc_cpu_select
723 const char *string;
724 const char *const name;
725 const int set_tune_p;
726 const int set_arch_p;
729 extern struct sparc_cpu_select sparc_select[];
731 /* target machine storage layout */
733 /* Define for cross-compilation to a sparc target with no TFmode from a host
734 with a different float format (e.g. VAX). */
735 #define REAL_ARITHMETIC
737 /* Define this if most significant bit is lowest numbered
738 in instructions that operate on numbered bit-fields. */
739 #define BITS_BIG_ENDIAN 1
741 /* Define this if most significant byte of a word is the lowest numbered. */
742 #define BYTES_BIG_ENDIAN 1
744 /* Define this if most significant word of a multiword number is the lowest
745 numbered. */
746 #define WORDS_BIG_ENDIAN 1
748 /* Define this to set the endianness to use in libgcc2.c, which can
749 not depend on target_flags. */
750 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
751 #define LIBGCC2_WORDS_BIG_ENDIAN 0
752 #else
753 #define LIBGCC2_WORDS_BIG_ENDIAN 1
754 #endif
756 /* number of bits in an addressable storage unit */
757 #define BITS_PER_UNIT 8
759 /* Width in bits of a "word", which is the contents of a machine register.
760 Note that this is not necessarily the width of data type `int';
761 if using 16-bit ints on a 68000, this would still be 32.
762 But on a machine with 16-bit registers, this would be 16. */
763 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
764 #define MAX_BITS_PER_WORD 64
766 /* Width of a word, in units (bytes). */
767 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
768 #define MIN_UNITS_PER_WORD 4
770 /* Now define the sizes of the C data types. */
772 #define SHORT_TYPE_SIZE 16
773 #define INT_TYPE_SIZE 32
774 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
775 #define LONG_LONG_TYPE_SIZE 64
776 #define FLOAT_TYPE_SIZE 32
777 #define DOUBLE_TYPE_SIZE 64
779 #ifdef SPARC_BI_ARCH
780 #define MAX_LONG_TYPE_SIZE 64
781 #endif
783 #if 0
784 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
785 Instead, it is enabled in sol2.h, because it does work under Solaris. */
786 /* Define for support of TFmode long double and REAL_ARITHMETIC.
787 Sparc ABI says that long double is 4 words. */
788 #define LONG_DOUBLE_TYPE_SIZE 128
789 #endif
791 /* Width in bits of a pointer.
792 See also the macro `Pmode' defined below. */
793 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
795 /* If we have to extend pointers (only when TARGET_ARCH64 and not
796 TARGET_PTR64), we want to do it unsigned. This macro does nothing
797 if ptr_mode and Pmode are the same. */
798 #define POINTERS_EXTEND_UNSIGNED 1
800 /* A macro to update MODE and UNSIGNEDP when an object whose type
801 is TYPE and which has the specified mode and signedness is to be
802 stored in a register. This macro is only called when TYPE is a
803 scalar type. */
804 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
805 if (TARGET_ARCH64 \
806 && GET_MODE_CLASS (MODE) == MODE_INT \
807 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
808 (MODE) = DImode;
810 /* Define this macro if the promotion described by PROMOTE_MODE
811 should also be done for outgoing function arguments. */
812 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
813 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
814 for this value. */
815 #define PROMOTE_FUNCTION_ARGS
817 /* Define this macro if the promotion described by PROMOTE_MODE
818 should also be done for the return value of functions.
819 If this macro is defined, FUNCTION_VALUE must perform the same
820 promotions done by PROMOTE_MODE. */
821 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
822 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
823 for this value. */
824 #define PROMOTE_FUNCTION_RETURN
826 /* Define this macro if the promotion described by PROMOTE_MODE
827 should _only_ be performed for outgoing function arguments or
828 function return values, as specified by PROMOTE_FUNCTION_ARGS
829 and PROMOTE_FUNCTION_RETURN, respectively. */
830 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
831 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
832 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
833 for arithmetic operations which do zero/sign extension at the same time,
834 so without this we end up with a srl/sra after every assignment to an
835 user variable, which means very very bad code. */
836 #define PROMOTE_FOR_CALL_ONLY
838 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
839 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
841 /* Boundary (in *bits*) on which stack pointer should be aligned. */
842 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
844 /* ALIGN FRAMES on double word boundaries */
846 #define SPARC_STACK_ALIGN(LOC) \
847 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
849 /* Allocation boundary (in *bits*) for the code of a function. */
850 #define FUNCTION_BOUNDARY 32
852 /* Alignment of field after `int : 0' in a structure. */
853 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
855 /* Every structure's size must be a multiple of this. */
856 #define STRUCTURE_SIZE_BOUNDARY 8
858 /* A bitfield declared as `int' forces `int' alignment for the struct. */
859 #define PCC_BITFIELD_TYPE_MATTERS 1
861 /* No data type wants to be aligned rounder than this. */
862 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
864 /* The best alignment to use in cases where we have a choice. */
865 #define FASTEST_ALIGNMENT 64
867 /* Define this macro as an expression for the alignment of a structure
868 (given by STRUCT as a tree node) if the alignment computed in the
869 usual way is COMPUTED and the alignment explicitly specified was
870 SPECIFIED.
872 The default is to use SPECIFIED if it is larger; otherwise, use
873 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
874 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
875 (TARGET_FASTER_STRUCTS ? \
876 ((TREE_CODE (STRUCT) == RECORD_TYPE \
877 || TREE_CODE (STRUCT) == UNION_TYPE \
878 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
879 && TYPE_FIELDS (STRUCT) != 0 \
880 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
881 : MAX ((COMPUTED), (SPECIFIED))) \
882 : MAX ((COMPUTED), (SPECIFIED)))
884 /* Make strings word-aligned so strcpy from constants will be faster. */
885 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
886 ((TREE_CODE (EXP) == STRING_CST \
887 && (ALIGN) < FASTEST_ALIGNMENT) \
888 ? FASTEST_ALIGNMENT : (ALIGN))
890 /* Make arrays of chars word-aligned for the same reasons. */
891 #define DATA_ALIGNMENT(TYPE, ALIGN) \
892 (TREE_CODE (TYPE) == ARRAY_TYPE \
893 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
894 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
896 /* Set this nonzero if move instructions will actually fail to work
897 when given unaligned data. */
898 #define STRICT_ALIGNMENT 1
900 /* Things that must be doubleword aligned cannot go in the text section,
901 because the linker fails to align the text section enough!
902 Put them in the data section. This macro is only used in this file. */
903 #define MAX_TEXT_ALIGN 32
905 /* This forces all variables and constants to the data section when PIC.
906 This is because the SunOS 4 shared library scheme thinks everything in
907 text is a function, and patches the address to point to a loader stub. */
908 /* This is defined to zero for every system which doesn't use the a.out object
909 file format. */
910 #ifndef SUNOS4_SHARED_LIBRARIES
911 #define SUNOS4_SHARED_LIBRARIES 0
912 #endif
914 /* This is defined differently for v9 in a cover file. */
915 #define SELECT_SECTION(T,RELOC,ALIGN) \
917 if (TREE_CODE (T) == VAR_DECL) \
919 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
920 && DECL_INITIAL (T) \
921 && (DECL_INITIAL (T) == error_mark_node \
922 || TREE_CONSTANT (DECL_INITIAL (T))) \
923 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
924 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
925 text_section (); \
926 else \
927 data_section (); \
929 else if (TREE_CODE (T) == CONSTRUCTOR) \
931 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
932 data_section (); \
934 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
936 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
937 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
938 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
939 data_section (); \
940 else \
941 text_section (); \
945 /* Use text section for a constant
946 unless we need more alignment than that offers. */
947 /* This is defined differently for v9 in a cover file. */
948 #define SELECT_RTX_SECTION(MODE, X, ALIGN) \
950 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
951 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
952 text_section (); \
953 else \
954 data_section (); \
957 /* Standard register usage. */
959 /* Number of actual hardware registers.
960 The hardware registers are assigned numbers for the compiler
961 from 0 to just below FIRST_PSEUDO_REGISTER.
962 All registers that the compiler knows about must be given numbers,
963 even those that are not normally considered general registers.
965 SPARC has 32 integer registers and 32 floating point registers.
966 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
967 accessible. We still account for them to simplify register computations
968 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
969 32+32+32+4 == 100.
970 Register 100 is used as the integer condition code register. */
972 #define FIRST_PSEUDO_REGISTER 101
974 #define SPARC_FIRST_FP_REG 32
975 /* Additional V9 fp regs. */
976 #define SPARC_FIRST_V9_FP_REG 64
977 #define SPARC_LAST_V9_FP_REG 95
978 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
979 #define SPARC_FIRST_V9_FCC_REG 96
980 #define SPARC_LAST_V9_FCC_REG 99
981 /* V8 fcc reg. */
982 #define SPARC_FCC_REG 96
983 /* Integer CC reg. We don't distinguish %icc from %xcc. */
984 #define SPARC_ICC_REG 100
986 /* Nonzero if REGNO is an fp reg. */
987 #define SPARC_FP_REG_P(REGNO) \
988 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
990 /* Argument passing regs. */
991 #define SPARC_OUTGOING_INT_ARG_FIRST 8
992 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
993 #define SPARC_FP_ARG_FIRST 32
995 /* 1 for registers that have pervasive standard uses
996 and are not available for the register allocator.
998 On non-v9 systems:
999 g1 is free to use as temporary.
1000 g2-g4 are reserved for applications. Gcc normally uses them as
1001 temporaries, but this can be disabled via the -mno-app-regs option.
1002 g5 through g7 are reserved for the operating system.
1004 On v9 systems:
1005 g1,g5 are free to use as temporaries, and are free to use between calls
1006 if the call is to an external function via the PLT.
1007 g4 is free to use as a temporary in the non-embedded case.
1008 g4 is reserved in the embedded case.
1009 g2-g3 are reserved for applications. Gcc normally uses them as
1010 temporaries, but this can be disabled via the -mno-app-regs option.
1011 g6-g7 are reserved for the operating system (or application in
1012 embedded case).
1013 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
1014 currently be a fixed register until this pattern is rewritten.
1015 Register 1 is also used when restoring call-preserved registers in large
1016 stack frames.
1018 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
1019 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
1022 #define FIXED_REGISTERS \
1023 {1, 0, 2, 2, 2, 2, 1, 1, \
1024 0, 0, 0, 0, 0, 0, 1, 0, \
1025 0, 0, 0, 0, 0, 0, 0, 0, \
1026 0, 0, 0, 0, 0, 0, 1, 1, \
1028 0, 0, 0, 0, 0, 0, 0, 0, \
1029 0, 0, 0, 0, 0, 0, 0, 0, \
1030 0, 0, 0, 0, 0, 0, 0, 0, \
1031 0, 0, 0, 0, 0, 0, 0, 0, \
1033 0, 0, 0, 0, 0, 0, 0, 0, \
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035 0, 0, 0, 0, 0, 0, 0, 0, \
1036 0, 0, 0, 0, 0, 0, 0, 0, \
1038 0, 0, 0, 0, 0}
1040 /* 1 for registers not available across function calls.
1041 These must include the FIXED_REGISTERS and also any
1042 registers that can be used without being saved.
1043 The latter must include the registers where values are returned
1044 and the register where structure-value addresses are passed.
1045 Aside from that, you can include as many other registers as you like. */
1047 #define CALL_USED_REGISTERS \
1048 {1, 1, 1, 1, 1, 1, 1, 1, \
1049 1, 1, 1, 1, 1, 1, 1, 1, \
1050 0, 0, 0, 0, 0, 0, 0, 0, \
1051 0, 0, 0, 0, 0, 0, 1, 1, \
1053 1, 1, 1, 1, 1, 1, 1, 1, \
1054 1, 1, 1, 1, 1, 1, 1, 1, \
1055 1, 1, 1, 1, 1, 1, 1, 1, \
1056 1, 1, 1, 1, 1, 1, 1, 1, \
1058 1, 1, 1, 1, 1, 1, 1, 1, \
1059 1, 1, 1, 1, 1, 1, 1, 1, \
1060 1, 1, 1, 1, 1, 1, 1, 1, \
1061 1, 1, 1, 1, 1, 1, 1, 1, \
1063 1, 1, 1, 1, 1}
1065 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
1066 they won't be allocated. */
1068 #define CONDITIONAL_REGISTER_USAGE \
1069 do \
1071 if (flag_pic) \
1073 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1074 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1076 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
1077 /* then honour it. */ \
1078 if (TARGET_ARCH32 && fixed_regs[5]) \
1079 fixed_regs[5] = 1; \
1080 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1081 fixed_regs[5] = 0; \
1082 if (! TARGET_V9) \
1084 int regno; \
1085 for (regno = SPARC_FIRST_V9_FP_REG; \
1086 regno <= SPARC_LAST_V9_FP_REG; \
1087 regno++) \
1088 fixed_regs[regno] = 1; \
1089 /* %fcc0 is used by v8 and v9. */ \
1090 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1091 regno <= SPARC_LAST_V9_FCC_REG; \
1092 regno++) \
1093 fixed_regs[regno] = 1; \
1095 if (! TARGET_FPU) \
1097 int regno; \
1098 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1099 fixed_regs[regno] = 1; \
1101 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1102 /* then honour it. Likewise with g3 and g4. */ \
1103 if (fixed_regs[2] == 2) \
1104 fixed_regs[2] = ! TARGET_APP_REGS; \
1105 if (fixed_regs[3] == 2) \
1106 fixed_regs[3] = ! TARGET_APP_REGS; \
1107 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1108 fixed_regs[4] = ! TARGET_APP_REGS; \
1109 else if (TARGET_CM_EMBMEDANY) \
1110 fixed_regs[4] = 1; \
1111 else if (fixed_regs[4] == 2) \
1112 fixed_regs[4] = 0; \
1113 if (TARGET_FLAT) \
1115 /* Let the compiler believe the frame pointer is still \
1116 %fp, but output it as %i7. */ \
1117 fixed_regs[31] = 1; \
1118 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1119 /* Disable leaf functions */ \
1120 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1122 if (profile_block_flag) \
1124 /* %g1 and %g2 (sparc32) resp. %g4 (sparc64) must be \
1125 fixed, because BLOCK_PROFILER uses them. */ \
1126 fixed_regs[1] = 1; \
1127 fixed_regs[TARGET_ARCH64 ? 4 : 2] = 1; \
1130 while (0)
1132 /* Return number of consecutive hard regs needed starting at reg REGNO
1133 to hold something of mode MODE.
1134 This is ordinarily the length in words of a value of mode MODE
1135 but can be less for certain modes in special long registers.
1137 On SPARC, ordinary registers hold 32 bits worth;
1138 this means both integer and floating point registers.
1139 On v9, integer regs hold 64 bits worth; floating point regs hold
1140 32 bits worth (this includes the new fp regs as even the odd ones are
1141 included in the hard register count). */
1143 #define HARD_REGNO_NREGS(REGNO, MODE) \
1144 (TARGET_ARCH64 \
1145 ? ((REGNO) < 32 \
1146 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1147 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1148 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1150 /* Due to the ARCH64 descrepancy above we must override these
1151 next two macros too. */
1152 #define REG_SIZE(R) \
1153 (TARGET_ARCH64 \
1154 && ((GET_CODE (R) == REG \
1155 && ((REGNO (R) >= FIRST_PSEUDO_REGISTER \
1156 && FLOAT_MODE_P (GET_MODE (R))) \
1157 || (REGNO (R) < FIRST_PSEUDO_REGISTER \
1158 && REGNO (R) >= 32))) \
1159 || (GET_CODE (R) == SUBREG \
1160 && ((REGNO (SUBREG_REG (R)) >= FIRST_PSEUDO_REGISTER \
1161 && FLOAT_MODE_P (GET_MODE (SUBREG_REG (R)))) \
1162 || (REGNO (SUBREG_REG (R)) < FIRST_PSEUDO_REGISTER \
1163 && REGNO (SUBREG_REG (R)) >= 32)))) \
1164 ? (GET_MODE_SIZE (GET_MODE (R)) + 3) / 4 \
1165 : (GET_MODE_SIZE (GET_MODE (R)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1167 #define REGMODE_NATURAL_SIZE(MODE) \
1168 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1170 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1171 See sparc.c for how we initialize this. */
1172 extern int *hard_regno_mode_classes;
1173 extern int sparc_mode_class[];
1175 /* ??? Because of the funny way we pass parameters we should allow certain
1176 ??? types of float/complex values to be in integer registers during
1177 ??? RTL generation. This only matters on arch32. */
1178 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1179 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1181 /* Value is 1 if it is a good idea to tie two pseudo registers
1182 when one has mode MODE1 and one has mode MODE2.
1183 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1184 for any hard reg, then this must be 0 for correct output.
1186 For V9: SFmode can't be combined with other float modes, because they can't
1187 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1188 registers, but SFmode will. */
1189 #define MODES_TIEABLE_P(MODE1, MODE2) \
1190 ((MODE1) == (MODE2) \
1191 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1192 && (! TARGET_V9 \
1193 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1194 || (MODE1 != SFmode && MODE2 != SFmode)))))
1196 /* Specify the registers used for certain standard purposes.
1197 The values of these macros are register numbers. */
1199 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1200 /* #define PC_REGNUM */
1202 /* Register to use for pushing function arguments. */
1203 #define STACK_POINTER_REGNUM 14
1205 /* Actual top-of-stack address is 92/176 greater than the contents of the
1206 stack pointer register for !v9/v9. That is:
1207 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1208 address, and 6*4 bytes for the 6 register parameters.
1209 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1210 parameter regs. */
1211 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1213 /* The stack bias (amount by which the hardware register is offset by). */
1214 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1216 /* Is stack biased? */
1217 #define STACK_BIAS SPARC_STACK_BIAS
1219 /* Base register for access to local variables of the function. */
1220 #define FRAME_POINTER_REGNUM 30
1222 #if 0
1223 /* Register that is used for the return address for the flat model. */
1224 #define RETURN_ADDR_REGNUM 15
1225 #endif
1227 /* Value should be nonzero if functions must have frame pointers.
1228 Zero means the frame pointer need not be set up (and parms
1229 may be accessed via the stack pointer) in functions that seem suitable.
1230 This is computed in `reload', in reload1.c.
1231 Used in flow.c, global.c, and reload1.c.
1233 Being a non-leaf function does not mean a frame pointer is needed in the
1234 flat window model. However, the debugger won't be able to backtrace through
1235 us with out it. */
1236 #define FRAME_POINTER_REQUIRED \
1237 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1238 || !leaf_function_p ()) \
1239 : ! (leaf_function_p () && only_leaf_regs_used ()))
1241 /* C statement to store the difference between the frame pointer
1242 and the stack pointer values immediately after the function prologue.
1244 Note, we always pretend that this is a leaf function because if
1245 it's not, there's no point in trying to eliminate the
1246 frame pointer. If it is a leaf function, we guessed right! */
1247 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1248 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1249 : compute_frame_size (get_frame_size (), 1)))
1251 /* Base register for access to arguments of the function. */
1252 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1254 /* Register in which static-chain is passed to a function. This must
1255 not be a register used by the prologue. */
1256 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1258 /* Register which holds offset table for position-independent
1259 data references. */
1261 #define PIC_OFFSET_TABLE_REGNUM 23
1263 /* Pick a default value we can notice from override_options:
1264 !v9: Default is on.
1265 v9: Default is off. */
1267 #define DEFAULT_PCC_STRUCT_RETURN -1
1269 /* Sparc ABI says that quad-precision floats and all structures are returned
1270 in memory.
1271 For v9: unions <= 32 bytes in size are returned in int regs,
1272 structures up to 32 bytes are returned in int and fp regs. */
1274 #define RETURN_IN_MEMORY(TYPE) \
1275 (TARGET_ARCH32 \
1276 ? (TYPE_MODE (TYPE) == BLKmode \
1277 || TYPE_MODE (TYPE) == TFmode \
1278 || TYPE_MODE (TYPE) == TCmode) \
1279 : (TYPE_MODE (TYPE) == BLKmode \
1280 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1282 /* Functions which return large structures get the address
1283 to place the wanted value at offset 64 from the frame.
1284 Must reserve 64 bytes for the in and local registers.
1285 v9: Functions which return large structures get the address to place the
1286 wanted value from an invisible first argument. */
1287 /* Used only in other #defines in this file. */
1288 #define STRUCT_VALUE_OFFSET 64
1290 #define STRUCT_VALUE \
1291 (TARGET_ARCH64 \
1292 ? 0 \
1293 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1294 STRUCT_VALUE_OFFSET)))
1296 #define STRUCT_VALUE_INCOMING \
1297 (TARGET_ARCH64 \
1298 ? 0 \
1299 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1300 STRUCT_VALUE_OFFSET)))
1302 /* Define the classes of registers for register constraints in the
1303 machine description. Also define ranges of constants.
1305 One of the classes must always be named ALL_REGS and include all hard regs.
1306 If there is more than one class, another class must be named NO_REGS
1307 and contain no registers.
1309 The name GENERAL_REGS must be the name of a class (or an alias for
1310 another name such as ALL_REGS). This is the class of registers
1311 that is allowed by "g" or "r" in a register constraint.
1312 Also, registers outside this class are allocated only when
1313 instructions express preferences for them.
1315 The classes must be numbered in nondecreasing order; that is,
1316 a larger-numbered class must never be contained completely
1317 in a smaller-numbered class.
1319 For any two classes, it is very desirable that there be another
1320 class that represents their union. */
1322 /* The SPARC has various kinds of registers: general, floating point,
1323 and condition codes [well, it has others as well, but none that we
1324 care directly about].
1326 For v9 we must distinguish between the upper and lower floating point
1327 registers because the upper ones can't hold SFmode values.
1328 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1329 satisfying a group need for a class will also satisfy a single need for
1330 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1331 regs.
1333 It is important that one class contains all the general and all the standard
1334 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1335 because reg_class_record() will bias the selection in favor of fp regs,
1336 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1337 because FP_REGS > GENERAL_REGS.
1339 It is also important that one class contain all the general and all the
1340 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1341 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1342 allocate_reload_reg() to bypass it causing an abort because the compiler
1343 thinks it doesn't have a spill reg when in fact it does.
1345 v9 also has 4 floating point condition code registers. Since we don't
1346 have a class that is the union of FPCC_REGS with either of the others,
1347 it is important that it appear first. Otherwise the compiler will die
1348 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1349 constraints.
1351 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1352 may try to use it to hold an SImode value. See register_operand.
1353 ??? Should %fcc[0123] be handled similarly?
1356 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1357 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1358 ALL_REGS, LIM_REG_CLASSES };
1360 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1362 /* Give names of register classes as strings for dump file. */
1364 #define REG_CLASS_NAMES \
1365 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1366 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1367 "ALL_REGS" }
1369 /* Define which registers fit in which classes.
1370 This is an initializer for a vector of HARD_REG_SET
1371 of length N_REG_CLASSES. */
1373 #define REG_CLASS_CONTENTS \
1374 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1375 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1376 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1378 /* The same information, inverted:
1379 Return the class number of the smallest class containing
1380 reg number REGNO. This could be a conditional expression
1381 or could index an array. */
1383 extern enum reg_class sparc_regno_reg_class[];
1385 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1387 /* This is the order in which to allocate registers normally.
1389 We put %f0/%f1 last among the float registers, so as to make it more
1390 likely that a pseudo-register which dies in the float return register
1391 will get allocated to the float return register, thus saving a move
1392 instruction at the end of the function. */
1394 #define REG_ALLOC_ORDER \
1395 { 8, 9, 10, 11, 12, 13, 2, 3, \
1396 15, 16, 17, 18, 19, 20, 21, 22, \
1397 23, 24, 25, 26, 27, 28, 29, 31, \
1398 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1399 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1400 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1401 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1402 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1403 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1404 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1405 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1406 32, 33, /* %f0,%f1 */ \
1407 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1408 1, 4, 5, 6, 7, 0, 14, 30}
1410 /* This is the order in which to allocate registers for
1411 leaf functions. If all registers can fit in the "gi" registers,
1412 then we have the possibility of having a leaf function. */
1414 #define REG_LEAF_ALLOC_ORDER \
1415 { 2, 3, 24, 25, 26, 27, 28, 29, \
1416 4, 5, 6, 7, 1, \
1417 15, 8, 9, 10, 11, 12, 13, \
1418 16, 17, 18, 19, 20, 21, 22, 23, \
1419 34, 35, 36, 37, 38, 39, \
1420 40, 41, 42, 43, 44, 45, 46, 47, \
1421 48, 49, 50, 51, 52, 53, 54, 55, \
1422 56, 57, 58, 59, 60, 61, 62, 63, \
1423 64, 65, 66, 67, 68, 69, 70, 71, \
1424 72, 73, 74, 75, 76, 77, 78, 79, \
1425 80, 81, 82, 83, 84, 85, 86, 87, \
1426 88, 89, 90, 91, 92, 93, 94, 95, \
1427 32, 33, \
1428 96, 97, 98, 99, 100, \
1429 0, 14, 30, 31}
1431 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1433 extern char sparc_leaf_regs[];
1434 #define LEAF_REGISTERS sparc_leaf_regs
1436 extern const char leaf_reg_remap[];
1437 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1439 /* The class value for index registers, and the one for base regs. */
1440 #define INDEX_REG_CLASS GENERAL_REGS
1441 #define BASE_REG_CLASS GENERAL_REGS
1443 /* Local macro to handle the two v9 classes of FP regs. */
1444 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1446 /* Get reg_class from a letter such as appears in the machine description.
1447 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1448 .md file for v8 and v9.
1449 'd' and 'b' are used for single and double precision VIS operations,
1450 if TARGET_VIS.
1451 'h' is used for V8+ 64 bit global and out registers. */
1453 #define REG_CLASS_FROM_LETTER(C) \
1454 (TARGET_V9 \
1455 ? ((C) == 'f' ? FP_REGS \
1456 : (C) == 'e' ? EXTRA_FP_REGS \
1457 : (C) == 'c' ? FPCC_REGS \
1458 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1459 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1460 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1461 : NO_REGS) \
1462 : ((C) == 'f' ? FP_REGS \
1463 : (C) == 'e' ? FP_REGS \
1464 : (C) == 'c' ? FPCC_REGS \
1465 : NO_REGS))
1467 /* The letters I, J, K, L and M in a register constraint string
1468 can be used to stand for particular ranges of immediate operands.
1469 This macro defines what the ranges are.
1470 C is the letter, and VALUE is a constant value.
1471 Return 1 if VALUE is in the range specified by C.
1473 `I' is used for the range of constants an insn can actually contain.
1474 `J' is used for the range which is just zero (since that is R0).
1475 `K' is used for constants which can be loaded with a single sethi insn.
1476 `L' is used for the range of constants supported by the movcc insns.
1477 `M' is used for the range of constants supported by the movrcc insns. */
1479 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1480 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1481 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1482 /* 10 and 11 bit immediates are only used for a few specific insns.
1483 SMALL_INT is used throughout the port so we continue to use it. */
1484 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1485 /* 13 bit immediate, considering only the low 32 bits */
1486 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1487 #define SPARC_SETHI_P(X) \
1488 (((unsigned HOST_WIDE_INT) (X) & \
1489 (TARGET_ARCH64 ? ~(unsigned HOST_WIDE_INT) 0xfffffc00 : 0x3ff)) == 0)
1491 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1492 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1493 : (C) == 'J' ? (VALUE) == 0 \
1494 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1495 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1496 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1497 : 0)
1499 /* Similar, but for floating constants, and defining letters G and H.
1500 Here VALUE is the CONST_DOUBLE rtx itself. */
1502 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1503 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1504 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1505 : 0)
1507 /* Given an rtx X being reloaded into a reg required to be
1508 in class CLASS, return the class of reg to actually use.
1509 In general this is just CLASS; but on some machines
1510 in some cases it is preferable to use a more restrictive class. */
1511 /* - We can't load constants into FP registers.
1512 - We can't load FP constants into integer registers when soft-float,
1513 because there is no soft-float pattern with a r/F constraint.
1514 - We can't load FP constants into integer registers for TFmode unless
1515 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1516 - Try and reload integer constants (symbolic or otherwise) back into
1517 registers directly, rather than having them dumped to memory. */
1519 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1520 (CONSTANT_P (X) \
1521 ? ((FP_REG_CLASS_P (CLASS) \
1522 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1523 && ! TARGET_FPU) \
1524 || (GET_MODE (X) == TFmode \
1525 && ! fp_zero_operand (X, TFmode))) \
1526 ? NO_REGS \
1527 : (!FP_REG_CLASS_P (CLASS) \
1528 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1529 ? GENERAL_REGS \
1530 : (CLASS)) \
1531 : (CLASS))
1533 /* Return the register class of a scratch register needed to load IN into
1534 a register of class CLASS in MODE.
1536 We need a temporary when loading/storing a HImode/QImode value
1537 between memory and the FPU registers. This can happen when combine puts
1538 a paradoxical subreg in a float/fix conversion insn. */
1540 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1541 ((FP_REG_CLASS_P (CLASS) \
1542 && ((MODE) == HImode || (MODE) == QImode) \
1543 && (GET_CODE (IN) == MEM \
1544 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1545 && true_regnum (IN) == -1))) \
1546 ? GENERAL_REGS \
1547 : (((TARGET_CM_MEDANY \
1548 && symbolic_operand ((IN), (MODE))) \
1549 || (TARGET_CM_EMBMEDANY \
1550 && text_segment_operand ((IN), (MODE)))) \
1551 && !flag_pic) \
1552 ? GENERAL_REGS \
1553 : NO_REGS)
1555 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1556 ((FP_REG_CLASS_P (CLASS) \
1557 && ((MODE) == HImode || (MODE) == QImode) \
1558 && (GET_CODE (IN) == MEM \
1559 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1560 && true_regnum (IN) == -1))) \
1561 ? GENERAL_REGS \
1562 : (((TARGET_CM_MEDANY \
1563 && symbolic_operand ((IN), (MODE))) \
1564 || (TARGET_CM_EMBMEDANY \
1565 && text_segment_operand ((IN), (MODE)))) \
1566 && !flag_pic) \
1567 ? GENERAL_REGS \
1568 : NO_REGS)
1570 /* On SPARC it is not possible to directly move data between
1571 GENERAL_REGS and FP_REGS. */
1572 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1573 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1575 /* Return the stack location to use for secondary memory needed reloads.
1576 We want to use the reserved location just below the frame pointer.
1577 However, we must ensure that there is a frame, so use assign_stack_local
1578 if the frame size is zero. */
1579 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1580 (get_frame_size () == 0 \
1581 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1582 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1583 STARTING_FRAME_OFFSET)))
1585 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1586 because the movsi and movsf patterns don't handle r/f moves.
1587 For v8 we copy the default definition. */
1588 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1589 (TARGET_ARCH64 \
1590 ? (GET_MODE_BITSIZE (MODE) < 32 \
1591 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1592 : MODE) \
1593 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1594 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1595 : MODE))
1597 /* Return the maximum number of consecutive registers
1598 needed to represent mode MODE in a register of class CLASS. */
1599 /* On SPARC, this is the size of MODE in words. */
1600 #define CLASS_MAX_NREGS(CLASS, MODE) \
1601 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1602 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1604 /* Stack layout; function entry, exit and calling. */
1606 /* Define the number of register that can hold parameters.
1607 This macro is only used in other macro definitions below and in sparc.c.
1608 MODE is the mode of the argument.
1609 !v9: All args are passed in %o0-%o5.
1610 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1611 See the description in sparc.c. */
1612 #define NPARM_REGS(MODE) \
1613 (TARGET_ARCH64 \
1614 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1615 : 6)
1617 /* Define this if pushing a word on the stack
1618 makes the stack pointer a smaller address. */
1619 #define STACK_GROWS_DOWNWARD
1621 /* Define this if the nominal address of the stack frame
1622 is at the high-address end of the local variables;
1623 that is, each additional local variable allocated
1624 goes at a more negative offset in the frame. */
1625 #define FRAME_GROWS_DOWNWARD
1627 /* Offset within stack frame to start allocating local variables at.
1628 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1629 first local allocated. Otherwise, it is the offset to the BEGINNING
1630 of the first local allocated. */
1631 /* This allows space for one TFmode floating point value. */
1632 #define STARTING_FRAME_OFFSET \
1633 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1634 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1636 /* If we generate an insn to push BYTES bytes,
1637 this says how many the stack pointer really advances by.
1638 On SPARC, don't define this because there are no push insns. */
1639 /* #define PUSH_ROUNDING(BYTES) */
1641 /* Offset of first parameter from the argument pointer register value.
1642 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1643 even if this function isn't going to use it.
1644 v9: This is 128 for the ins and locals. */
1645 #define FIRST_PARM_OFFSET(FNDECL) \
1646 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1647 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1649 /* Offset from the argument pointer register value to the CFA.
1650 This is different from FIRST_PARM_OFFSET because the register window
1651 comes between the CFA and the arguments. */
1653 #define ARG_POINTER_CFA_OFFSET(FNDECL) SPARC_STACK_BIAS
1655 /* When a parameter is passed in a register, stack space is still
1656 allocated for it.
1657 !v9: All 6 possible integer registers have backing store allocated.
1658 v9: Only space for the arguments passed is allocated. */
1659 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1660 meaning to the backend. Further, we need to be able to detect if a
1661 varargs/unprototyped function is called, as they may want to spill more
1662 registers than we've provided space. Ugly, ugly. So for now we retain
1663 all 6 slots even for v9. */
1664 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1666 /* Keep the stack pointer constant throughout the function.
1667 This is both an optimization and a necessity: longjmp
1668 doesn't behave itself when the stack pointer moves within
1669 the function! */
1670 #define ACCUMULATE_OUTGOING_ARGS 1
1672 /* Value is the number of bytes of arguments automatically
1673 popped when returning from a subroutine call.
1674 FUNDECL is the declaration node of the function (as a tree),
1675 FUNTYPE is the data type of the function (as a tree),
1676 or for a library call it is an identifier node for the subroutine name.
1677 SIZE is the number of bytes of arguments passed on the stack. */
1679 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1681 /* Some subroutine macros specific to this machine.
1682 When !TARGET_FPU, put float return values in the general registers,
1683 since we don't have any fp registers. */
1684 #define BASE_RETURN_VALUE_REG(MODE) \
1685 (TARGET_ARCH64 \
1686 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1687 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1689 #define BASE_OUTGOING_VALUE_REG(MODE) \
1690 (TARGET_ARCH64 \
1691 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1692 : TARGET_FLAT ? 8 : 24) \
1693 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1694 : (TARGET_FLAT ? 8 : 24)))
1696 #define BASE_PASSING_ARG_REG(MODE) \
1697 (TARGET_ARCH64 \
1698 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1699 : 8)
1701 /* ??? FIXME -- seems wrong for v9 structure passing... */
1702 #define BASE_INCOMING_ARG_REG(MODE) \
1703 (TARGET_ARCH64 \
1704 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1705 : TARGET_FLAT ? 8 : 24) \
1706 : (TARGET_FLAT ? 8 : 24))
1708 /* Define this macro if the target machine has "register windows". This
1709 C expression returns the register number as seen by the called function
1710 corresponding to register number OUT as seen by the calling function.
1711 Return OUT if register number OUT is not an outbound register. */
1713 #define INCOMING_REGNO(OUT) \
1714 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1716 /* Define this macro if the target machine has "register windows". This
1717 C expression returns the register number as seen by the calling function
1718 corresponding to register number IN as seen by the called function.
1719 Return IN if register number IN is not an inbound register. */
1721 #define OUTGOING_REGNO(IN) \
1722 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1724 /* Define this macro if the target machine has register windows. This
1725 C expression returns true if the register is call-saved but is in the
1726 register window. */
1728 #define LOCAL_REGNO(REGNO) \
1729 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1731 /* Define how to find the value returned by a function.
1732 VALTYPE is the data type of the value (as a tree).
1733 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1734 otherwise, FUNC is 0. */
1736 /* On SPARC the value is found in the first "output" register. */
1738 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1739 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1741 /* But the called function leaves it in the first "input" register. */
1743 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1744 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1746 /* Define how to find the value returned by a library function
1747 assuming the value has mode MODE. */
1749 #define LIBCALL_VALUE(MODE) \
1750 function_value (NULL_TREE, (MODE), 1)
1752 /* 1 if N is a possible register number for a function value
1753 as seen by the caller.
1754 On SPARC, the first "output" reg is used for integer values,
1755 and the first floating point register is used for floating point values. */
1757 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1759 /* Define the size of space to allocate for the return value of an
1760 untyped_call. */
1762 #define APPLY_RESULT_SIZE 16
1764 /* 1 if N is a possible register number for function argument passing.
1765 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1767 #define FUNCTION_ARG_REGNO_P(N) \
1768 (TARGET_ARCH64 \
1769 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1770 : ((N) >= 8 && (N) <= 13))
1772 /* Define a data type for recording info about an argument list
1773 during the scan of that argument list. This data type should
1774 hold all necessary information about the function itself
1775 and about the args processed so far, enough to enable macros
1776 such as FUNCTION_ARG to determine where the next arg should go.
1778 On SPARC (!v9), this is a single integer, which is a number of words
1779 of arguments scanned so far (including the invisible argument,
1780 if any, which holds the structure-value-address).
1781 Thus 7 or more means all following args should go on the stack.
1783 For v9, we also need to know whether a prototype is present. */
1785 struct sparc_args {
1786 int words; /* number of words passed so far */
1787 int prototype_p; /* non-zero if a prototype is present */
1788 int libcall_p; /* non-zero if a library call */
1790 #define CUMULATIVE_ARGS struct sparc_args
1792 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1793 for a call to a function whose data type is FNTYPE.
1794 For a library call, FNTYPE is 0. */
1796 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1797 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1799 /* Update the data in CUM to advance over an argument
1800 of mode MODE and data type TYPE.
1801 TYPE is null for libcalls where that information may not be available. */
1803 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1804 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1806 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1808 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1809 ((TYPE) != 0 \
1810 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1811 || TREE_ADDRESSABLE (TYPE)))
1813 /* Determine where to put an argument to a function.
1814 Value is zero to push the argument on the stack,
1815 or a hard register in which to store the argument.
1817 MODE is the argument's machine mode.
1818 TYPE is the data type of the argument (as a tree).
1819 This is null for libcalls where that information may
1820 not be available.
1821 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1822 the preceding args and about the function being called.
1823 NAMED is nonzero if this argument is a named parameter
1824 (otherwise it is an extra parameter matching an ellipsis). */
1826 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1827 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1829 /* Define where a function finds its arguments.
1830 This is different from FUNCTION_ARG because of register windows. */
1832 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1833 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1835 /* For an arg passed partly in registers and partly in memory,
1836 this is the number of registers used.
1837 For args passed entirely in registers or entirely in memory, zero. */
1839 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1840 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1842 /* A C expression that indicates when an argument must be passed by reference.
1843 If nonzero for an argument, a copy of that argument is made in memory and a
1844 pointer to the argument is passed instead of the argument itself.
1845 The pointer is passed in whatever way is appropriate for passing a pointer
1846 to that type. */
1848 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1849 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1851 /* If defined, a C expression which determines whether, and in which direction,
1852 to pad out an argument with extra space. The value should be of type
1853 `enum direction': either `upward' to pad above the argument,
1854 `downward' to pad below, or `none' to inhibit padding. */
1856 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1857 function_arg_padding ((MODE), (TYPE))
1859 /* If defined, a C expression that gives the alignment boundary, in bits,
1860 of an argument with the specified mode and type. If it is not defined,
1861 PARM_BOUNDARY is used for all arguments.
1862 For sparc64, objects requiring 16 byte alignment are passed that way. */
1864 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1865 ((TARGET_ARCH64 \
1866 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1867 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1868 ? 128 : PARM_BOUNDARY)
1870 /* Define the information needed to generate branch and scc insns. This is
1871 stored from the compare operation. Note that we can't use "rtx" here
1872 since it hasn't been defined! */
1874 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1877 /* Generate the special assembly code needed to tell the assembler whatever
1878 it might need to know about the return value of a function.
1880 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1881 information to the assembler relating to peephole optimization (done in
1882 the assembler). */
1884 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1885 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1887 /* Output the label for a function definition. */
1889 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1890 do { \
1891 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1892 ASM_OUTPUT_LABEL (FILE, NAME); \
1893 } while (0)
1895 /* Output the special assembly code needed to tell the assembler some
1896 register is used as global register variable.
1898 SPARC 64bit psABI declares registers %g2 and %g3 as application
1899 registers and %g6 and %g7 as OS registers. Any object using them
1900 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1901 and how they are used (scratch or some global variable).
1902 Linker will then refuse to link together objects which use those
1903 registers incompatibly.
1905 Unless the registers are used for scratch, two different global
1906 registers cannot be declared to the same name, so in the unlikely
1907 case of a global register variable occupying more than one register
1908 we prefix the second and following registers with .gnu.part1. etc. */
1910 extern char sparc_hard_reg_printed[8];
1912 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1913 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1914 do { \
1915 if (TARGET_ARCH64) \
1917 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1918 int reg; \
1919 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1920 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1922 if (reg == (REGNO)) \
1923 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1924 else \
1925 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1926 reg, reg - (REGNO), (NAME)); \
1927 sparc_hard_reg_printed[reg] = 1; \
1930 } while (0)
1931 #endif
1934 /* Output assembler code to FILE to increment profiler label # LABELNO
1935 for profiling a function entry. */
1937 #define FUNCTION_PROFILER(FILE, LABELNO) \
1938 sparc_function_profiler(FILE, LABELNO)
1940 /* Set the name of the mcount function for the system. */
1942 #define MCOUNT_FUNCTION "*mcount"
1944 /* The following macro shall output assembler code to FILE
1945 to initialize basic-block profiling. */
1947 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1948 sparc_function_block_profiler(FILE, BLOCK_OR_LABEL)
1950 /* The following macro shall output assembler code to FILE
1951 to increment a counter associated with basic block number BLOCKNO. */
1953 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1954 sparc_block_profiler (FILE, BLOCKNO)
1956 /* The following macro shall output assembler code to FILE
1957 to indicate a return from function during basic-block profiling. */
1959 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1960 sparc_function_block_profiler_exit(FILE)
1962 #ifdef IN_LIBGCC2
1964 /* The function `__bb_trace_func' is called in every basic block
1965 and is not allowed to change the machine state. Saving (restoring)
1966 the state can either be done in the BLOCK_PROFILER macro,
1967 before calling function (rsp. after returning from function)
1968 `__bb_trace_func', or it can be done inside the function by
1969 defining the macros:
1971 MACHINE_STATE_SAVE(ID)
1972 MACHINE_STATE_RESTORE(ID)
1974 In the latter case care must be taken, that the prologue code
1975 of function `__bb_trace_func' does not already change the
1976 state prior to saving it with MACHINE_STATE_SAVE.
1978 The parameter `ID' is a string identifying a unique macro use.
1980 On sparc it is sufficient to save the psw register to memory.
1981 Unfortunately the psw register can be read in supervisor mode only,
1982 so we read only the condition codes by using branch instructions
1983 and hope that this is enough.
1985 On V9, life is much sweater: there is a user accessible %ccr
1986 register, but we use it for 64bit libraries only. */
1988 #if TARGET_ARCH32
1990 #define MACHINE_STATE_SAVE(ID) \
1991 int ms_flags, ms_saveret; \
1992 asm volatile( \
1993 "mov %%g2,%1\n\
1994 mov %%g0,%0\n\
1995 be,a LFLGNZ"ID"\n\
1996 or %0,4,%0\n\
1997 LFLGNZ"ID":\n\
1998 bcs,a LFLGNC"ID"\n\
1999 or %0,1,%0\n\
2000 LFLGNC"ID":\n\
2001 bvs,a LFLGNV"ID"\n\
2002 or %0,2,%0\n\
2003 LFLGNV"ID":\n\
2004 bneg,a LFLGNN"ID"\n\
2005 or %0,8,%0\n\
2006 LFLGNN"ID":" \
2007 : "=r"(ms_flags), "=r"(ms_saveret));
2009 #else
2011 #define MACHINE_STATE_SAVE(ID) \
2012 unsigned long ms_flags, ms_saveret; \
2013 asm volatile( \
2014 "mov %%g4,%1\n\
2015 rd %%ccr,%0" \
2016 : "=r"(ms_flags), "=r"(ms_saveret));
2018 #endif
2020 /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
2021 The psw register can be written in supervisor mode only,
2022 which is true even for simple condition codes.
2023 We use some combination of instructions to produce the
2024 proper condition codes, but some flag combinations can not
2025 be generated in this way. If this happens an unimplemented
2026 instruction will be executed to abort the program. */
2028 #if TARGET_ARCH32
2030 #define MACHINE_STATE_RESTORE(ID) \
2031 { extern char flgtab[] __asm__("LFLGTAB"ID); \
2032 int scratch; \
2033 asm volatile ( \
2034 "jmpl %2+%1,%%g0\n\
2035 ! Do part of VC in the delay slot here, as it needs 3 insns.\n\
2036 addcc 2,%3,%%g0\n\
2037 LFLGTAB" ID ":\n\
2038 ! 0\n\
2039 ba LFLGRET"ID"\n\
2040 orcc 1,%%g0,%%g0\n\
2041 ! C\n\
2042 ba LFLGRET"ID"\n\
2043 addcc 2,%3,%%g0\n\
2044 ! V\n\
2045 unimp\n\
2046 nop\n\
2047 ! VC\n\
2048 ba LFLGRET"ID"\n\
2049 addxcc %4,%4,%0\n\
2050 ! Z\n\
2051 ba LFLGRET"ID"\n\
2052 subcc %%g0,%%g0,%%g0\n\
2053 ! ZC\n\
2054 ba LFLGRET"ID"\n\
2055 addcc 1,%3,%0\n\
2056 ! ZVC\n\
2057 ba LFLGRET"ID"\n\
2058 addcc %4,%4,%0\n\
2059 ! N\n\
2060 ba LFLGRET"ID"\n\
2061 orcc %%g0,-1,%%g0\n\
2062 ! NC\n\
2063 ba LFLGRET"ID"\n\
2064 addcc %%g0,%3,%%g0\n\
2065 ! NV\n\
2066 unimp\n\
2067 nop\n\
2068 ! NVC\n\
2069 unimp\n\
2070 nop\n\
2071 ! NZ\n\
2072 unimp\n\
2073 nop\n\
2074 ! NZC\n\
2075 unimp\n\
2076 nop\n\
2077 ! NZV\n\
2078 unimp\n\
2079 nop\n\
2080 ! NZVC\n\
2081 unimp\n\
2082 nop\n\
2083 LFLGRET"ID":\n\
2084 mov %5,%%g2" \
2085 : "=r"(scratch) \
2086 : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \
2087 "r"(0x80000000), "r"(ms_saveret) \
2088 : "cc", "g2"); }
2090 #else
2092 #define MACHINE_STATE_RESTORE(ID) \
2093 asm volatile ( \
2094 "wr %0,0,%%ccr\n\
2095 mov %1,%%g4" \
2096 : : "r"(ms_flags), "r"(ms_saveret) \
2097 : "cc", "g4");
2099 #endif
2101 #endif /* IN_LIBGCC2 */
2103 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2104 the stack pointer does not matter. The value is tested only in
2105 functions that have frame pointers.
2106 No definition is equivalent to always zero. */
2108 #define EXIT_IGNORE_STACK \
2109 (get_frame_size () != 0 \
2110 || current_function_calls_alloca || current_function_outgoing_args_size)
2112 #define DELAY_SLOTS_FOR_EPILOGUE \
2113 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2114 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2115 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
2116 : eligible_for_epilogue_delay (trial, slots_filled))
2118 /* Define registers used by the epilogue and return instruction. */
2119 #define EPILOGUE_USES(REGNO) \
2120 (!TARGET_FLAT && REGNO == 31)
2122 /* Length in units of the trampoline for entering a nested function. */
2124 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
2126 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
2128 /* Emit RTL insns to initialize the variable parts of a trampoline.
2129 FNADDR is an RTX for the address of the function's pure code.
2130 CXT is an RTX for the static chain value for the function. */
2132 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2133 if (TARGET_ARCH64) \
2134 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2135 else \
2136 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
2138 /* Generate necessary RTL for __builtin_saveregs(). */
2140 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
2142 /* Implement `va_start' for varargs and stdarg. */
2143 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2144 sparc_va_start (stdarg, valist, nextarg)
2146 /* Implement `va_arg'. */
2147 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2148 sparc_va_arg (valist, type)
2150 /* Define this macro if the location where a function argument is passed
2151 depends on whether or not it is a named argument.
2153 This macro controls how the NAMED argument to FUNCTION_ARG
2154 is set for varargs and stdarg functions. With this macro defined,
2155 the NAMED argument is always true for named arguments, and false for
2156 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
2157 is defined, then all arguments are treated as named. Otherwise, all named
2158 arguments except the last are treated as named.
2159 For the v9 we want NAMED to mean what it says it means. */
2161 #define STRICT_ARGUMENT_NAMING TARGET_V9
2163 /* We do not allow sibling calls if -mflat, nor
2164 we do not allow indirect calls to be optimized into sibling calls. */
2165 #define FUNCTION_OK_FOR_SIBCALL(DECL) (DECL && ! TARGET_FLAT)
2167 /* Generate RTL to flush the register windows so as to make arbitrary frames
2168 available. */
2169 #define SETUP_FRAME_ADDRESSES() \
2170 emit_insn (gen_flush_register_windows ())
2172 /* Given an rtx for the address of a frame,
2173 return an rtx for the address of the word in the frame
2174 that holds the dynamic chain--the previous frame's address.
2175 ??? -mflat support? */
2176 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
2178 /* The return address isn't on the stack, it is in a register, so we can't
2179 access it from the current frame pointer. We can access it from the
2180 previous frame pointer though by reading a value from the register window
2181 save area. */
2182 #define RETURN_ADDR_IN_PREVIOUS_FRAME
2184 /* This is the offset of the return address to the true next instruction to be
2185 executed for the current function. */
2186 #define RETURN_ADDR_OFFSET \
2187 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2189 /* The current return address is in %i7. The return address of anything
2190 farther back is in the register window save area at [%fp+60]. */
2191 /* ??? This ignores the fact that the actual return address is +8 for normal
2192 returns, and +12 for structure returns. */
2193 #define RETURN_ADDR_RTX(count, frame) \
2194 ((count == -1) \
2195 ? gen_rtx_REG (Pmode, 31) \
2196 : gen_rtx_MEM (Pmode, \
2197 memory_address (Pmode, plus_constant (frame, \
2198 15 * UNITS_PER_WORD))))
2200 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2201 +12, but always using +8 is close enough for frame unwind purposes.
2202 Actually, just using %o7 is close enough for unwinding, but %o7+8
2203 is something you can return to. */
2204 #define INCOMING_RETURN_ADDR_RTX \
2205 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2206 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
2208 /* The offset from the incoming value of %sp to the top of the stack frame
2209 for the current function. On sparc64, we have to account for the stack
2210 bias if present. */
2211 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2213 /* Describe how we implement __builtin_eh_return. */
2214 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2215 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2216 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2218 /* Addressing modes, and classification of registers for them. */
2220 /* #define HAVE_POST_INCREMENT 0 */
2221 /* #define HAVE_POST_DECREMENT 0 */
2223 /* #define HAVE_PRE_DECREMENT 0 */
2224 /* #define HAVE_PRE_INCREMENT 0 */
2226 /* Macros to check register numbers against specific register classes. */
2228 /* These assume that REGNO is a hard or pseudo reg number.
2229 They give nonzero only if REGNO is a hard reg of the suitable class
2230 or a pseudo reg currently allocated to a suitable hard reg.
2231 Since they use reg_renumber, they are safe only once reg_renumber
2232 has been allocated, which happens in local-alloc.c. */
2234 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2235 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2236 #define REGNO_OK_FOR_BASE_P(REGNO) \
2237 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2238 #define REGNO_OK_FOR_FP_P(REGNO) \
2239 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2240 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2241 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2242 (TARGET_V9 \
2243 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2244 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2246 /* Now macros that check whether X is a register and also,
2247 strictly, whether it is in a specified class.
2249 These macros are specific to the SPARC, and may be used only
2250 in code for printing assembler insns and in conditions for
2251 define_optimization. */
2253 /* 1 if X is an fp register. */
2255 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2257 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2258 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2260 /* Maximum number of registers that can appear in a valid memory address. */
2262 #define MAX_REGS_PER_ADDRESS 2
2264 /* Recognize any constant value that is a valid address.
2265 When PIC, we do not accept an address that would require a scratch reg
2266 to load into a register. */
2268 #define CONSTANT_ADDRESS_P(X) \
2269 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2270 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2271 || (GET_CODE (X) == CONST \
2272 && ! (flag_pic && pic_address_needs_scratch (X))))
2274 /* Define this, so that when PIC, reload won't try to reload invalid
2275 addresses which require two reload registers. */
2277 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2279 /* Nonzero if the constant value X is a legitimate general operand.
2280 Anything can be made to work except floating point constants.
2281 If TARGET_VIS, 0.0 can be made to work as well. */
2283 #define LEGITIMATE_CONSTANT_P(X) \
2284 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2285 (TARGET_VIS && \
2286 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2287 GET_MODE (X) == TFmode) && \
2288 fp_zero_operand (X, GET_MODE (X))))
2290 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2291 and check its validity for a certain class.
2292 We have two alternate definitions for each of them.
2293 The usual definition accepts all pseudo regs; the other rejects
2294 them unless they have been allocated suitable hard regs.
2295 The symbol REG_OK_STRICT causes the latter definition to be used.
2297 Most source files want to accept pseudo regs in the hope that
2298 they will get allocated to the class that the insn wants them to be in.
2299 Source files for reload pass need to be strict.
2300 After reload, it makes no difference, since pseudo regs have
2301 been eliminated by then. */
2303 /* Optional extra constraints for this machine.
2305 'Q' handles floating point constants which can be moved into
2306 an integer register with a single sethi instruction.
2308 'R' handles floating point constants which can be moved into
2309 an integer register with a single mov instruction.
2311 'S' handles floating point constants which can be moved into
2312 an integer register using a high/lo_sum sequence.
2314 'T' handles memory addresses where the alignment is known to
2315 be at least 8 bytes.
2317 `U' handles all pseudo registers or a hard even numbered
2318 integer register, needed for ldd/std instructions. */
2320 #define EXTRA_CONSTRAINT_BASE(OP, C) \
2321 ((C) == 'Q' ? fp_sethi_p(OP) \
2322 : (C) == 'R' ? fp_mov_p(OP) \
2323 : (C) == 'S' ? fp_high_losum_p(OP) \
2324 : 0)
2326 #ifndef REG_OK_STRICT
2328 /* Nonzero if X is a hard reg that can be used as an index
2329 or if it is a pseudo reg. */
2330 #define REG_OK_FOR_INDEX_P(X) \
2331 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2332 /* Nonzero if X is a hard reg that can be used as a base reg
2333 or if it is a pseudo reg. */
2334 #define REG_OK_FOR_BASE_P(X) \
2335 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2337 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64. */
2339 #define EXTRA_CONSTRAINT(OP, C) \
2340 (EXTRA_CONSTRAINT_BASE(OP, C) \
2341 || ((! TARGET_ARCH64 && (C) == 'T') \
2342 ? (mem_min_alignment (OP, 8)) \
2343 : ((! TARGET_ARCH64 && (C) == 'U') \
2344 ? (register_ok_for_ldd (OP)) \
2345 : 0)))
2347 #else
2349 /* Nonzero if X is a hard reg that can be used as an index. */
2350 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2351 /* Nonzero if X is a hard reg that can be used as a base reg. */
2352 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2354 #define EXTRA_CONSTRAINT(OP, C) \
2355 (EXTRA_CONSTRAINT_BASE(OP, C) \
2356 || ((! TARGET_ARCH64 && (C) == 'T') \
2357 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2358 : ((! TARGET_ARCH64 && (C) == 'U') \
2359 ? (GET_CODE (OP) == REG \
2360 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2361 || reg_renumber[REGNO (OP)] >= 0) \
2362 && register_ok_for_ldd (OP)) \
2363 : 0)))
2365 #endif
2367 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2369 #ifdef HAVE_AS_OFFSETABLE_LO10
2370 #define USE_AS_OFFSETABLE_LO10 1
2371 #else
2372 #define USE_AS_OFFSETABLE_LO10 0
2373 #endif
2375 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2376 that is a valid memory address for an instruction.
2377 The MODE argument is the machine mode for the MEM expression
2378 that wants to use this address.
2380 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2381 ordinarily. This changes a bit when generating PIC.
2383 If you change this, execute "rm explow.o recog.o reload.o". */
2385 #define RTX_OK_FOR_BASE_P(X) \
2386 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2387 || (GET_CODE (X) == SUBREG \
2388 && GET_CODE (SUBREG_REG (X)) == REG \
2389 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2391 #define RTX_OK_FOR_INDEX_P(X) \
2392 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2393 || (GET_CODE (X) == SUBREG \
2394 && GET_CODE (SUBREG_REG (X)) == REG \
2395 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2397 #define RTX_OK_FOR_OFFSET_P(X) \
2398 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2400 #define RTX_OK_FOR_OLO10_P(X) \
2401 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2403 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2404 { if (RTX_OK_FOR_BASE_P (X)) \
2405 goto ADDR; \
2406 else if (GET_CODE (X) == PLUS) \
2408 register rtx op0 = XEXP (X, 0); \
2409 register rtx op1 = XEXP (X, 1); \
2410 if (flag_pic && op0 == pic_offset_table_rtx) \
2412 if (RTX_OK_FOR_BASE_P (op1)) \
2413 goto ADDR; \
2414 else if (flag_pic == 1 \
2415 && GET_CODE (op1) != REG \
2416 && GET_CODE (op1) != LO_SUM \
2417 && GET_CODE (op1) != MEM \
2418 && (GET_CODE (op1) != CONST_INT \
2419 || SMALL_INT (op1))) \
2420 goto ADDR; \
2422 else if (RTX_OK_FOR_BASE_P (op0)) \
2424 if ((RTX_OK_FOR_INDEX_P (op1) \
2425 /* We prohibit REG + REG for TFmode when \
2426 there are no instructions which accept \
2427 REG+REG instructions. We do this \
2428 because REG+REG is not an offsetable \
2429 address. If we get the situation \
2430 in reload where source and destination \
2431 of a movtf pattern are both MEMs with \
2432 REG+REG address, then only one of them \
2433 gets converted to an offsetable \
2434 address. */ \
2435 && (MODE != TFmode \
2436 || (TARGET_FPU && TARGET_ARCH64 \
2437 && TARGET_V9 \
2438 && TARGET_HARD_QUAD)) \
2439 /* We prohibit REG + REG on ARCH32 if \
2440 not optimizing for DFmode/DImode \
2441 because then mem_min_alignment is \
2442 likely to be zero after reload and the \
2443 forced split would lack a matching \
2444 splitter pattern. */ \
2445 && (TARGET_ARCH64 || optimize \
2446 || (MODE != DFmode \
2447 && MODE != DImode))) \
2448 || RTX_OK_FOR_OFFSET_P (op1)) \
2449 goto ADDR; \
2451 else if (RTX_OK_FOR_BASE_P (op1)) \
2453 if ((RTX_OK_FOR_INDEX_P (op0) \
2454 /* See the previous comment. */ \
2455 && (MODE != TFmode \
2456 || (TARGET_FPU && TARGET_ARCH64 \
2457 && TARGET_V9 \
2458 && TARGET_HARD_QUAD)) \
2459 && (TARGET_ARCH64 || optimize \
2460 || (MODE != DFmode \
2461 && MODE != DImode))) \
2462 || RTX_OK_FOR_OFFSET_P (op0)) \
2463 goto ADDR; \
2465 else if (USE_AS_OFFSETABLE_LO10 \
2466 && GET_CODE (op0) == LO_SUM \
2467 && TARGET_ARCH64 \
2468 && ! TARGET_CM_MEDMID \
2469 && RTX_OK_FOR_OLO10_P (op1)) \
2471 register rtx op00 = XEXP (op0, 0); \
2472 register rtx op01 = XEXP (op0, 1); \
2473 if (RTX_OK_FOR_BASE_P (op00) \
2474 && CONSTANT_P (op01)) \
2475 goto ADDR; \
2477 else if (USE_AS_OFFSETABLE_LO10 \
2478 && GET_CODE (op1) == LO_SUM \
2479 && TARGET_ARCH64 \
2480 && ! TARGET_CM_MEDMID \
2481 && RTX_OK_FOR_OLO10_P (op0)) \
2483 register rtx op10 = XEXP (op1, 0); \
2484 register rtx op11 = XEXP (op1, 1); \
2485 if (RTX_OK_FOR_BASE_P (op10) \
2486 && CONSTANT_P (op11)) \
2487 goto ADDR; \
2490 else if (GET_CODE (X) == LO_SUM) \
2492 register rtx op0 = XEXP (X, 0); \
2493 register rtx op1 = XEXP (X, 1); \
2494 if (RTX_OK_FOR_BASE_P (op0) \
2495 && CONSTANT_P (op1) \
2496 /* We can't allow TFmode, because an offset \
2497 greater than or equal to the alignment (8) \
2498 may cause the LO_SUM to overflow if !v9. */\
2499 && (MODE != TFmode || TARGET_V9)) \
2500 goto ADDR; \
2502 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2503 goto ADDR; \
2506 /* Try machine-dependent ways of modifying an illegitimate address
2507 to be legitimate. If we find one, return the new, valid address.
2508 This macro is used in only one place: `memory_address' in explow.c.
2510 OLDX is the address as it was before break_out_memory_refs was called.
2511 In some cases it is useful to look at this to decide what needs to be done.
2513 MODE and WIN are passed so that this macro can use
2514 GO_IF_LEGITIMATE_ADDRESS.
2516 It is always safe for this macro to do nothing. It exists to recognize
2517 opportunities to optimize the output. */
2519 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2520 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2521 { rtx sparc_x = (X); \
2522 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2523 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2524 force_operand (XEXP (X, 0), NULL_RTX)); \
2525 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2526 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2527 force_operand (XEXP (X, 1), NULL_RTX)); \
2528 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2529 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2530 XEXP (X, 1)); \
2531 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2532 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2533 force_operand (XEXP (X, 1), NULL_RTX)); \
2534 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2535 goto WIN; \
2536 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2537 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2538 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2539 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2540 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2541 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2542 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2543 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2544 || GET_CODE (X) == LABEL_REF) \
2545 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2546 if (memory_address_p (MODE, X)) \
2547 goto WIN; }
2549 /* Try a machine-dependent way of reloading an illegitimate address
2550 operand. If we find one, push the reload and jump to WIN. This
2551 macro is used in only one place: `find_reloads_address' in reload.c.
2553 For Sparc 32, we wish to handle addresses by splitting them into
2554 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2555 This cuts the number of extra insns by one.
2557 Do nothing when generating PIC code and the address is a
2558 symbolic operand or requires a scratch register. */
2560 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2561 do { \
2562 /* Decompose SImode constants into hi+lo_sum. We do have to \
2563 rerecognize what we produce, so be careful. */ \
2564 if (CONSTANT_P (X) \
2565 && (MODE != TFmode || TARGET_V9) \
2566 && GET_MODE (X) == SImode \
2567 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2568 && ! (flag_pic \
2569 && (symbolic_operand (X, Pmode) \
2570 || pic_address_needs_scratch (X)))) \
2572 X = gen_rtx_LO_SUM (GET_MODE (X), \
2573 gen_rtx_HIGH (GET_MODE (X), X), X); \
2574 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2575 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2576 OPNUM, TYPE); \
2577 goto WIN; \
2579 /* ??? 64-bit reloads. */ \
2580 } while (0)
2582 /* Go to LABEL if ADDR (a legitimate address expression)
2583 has an effect that depends on the machine mode it is used for.
2584 On the SPARC this is never true. */
2586 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2588 /* If we are referencing a function make the SYMBOL_REF special.
2589 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2590 so we must not add it to function addresses. */
2592 #define ENCODE_SECTION_INFO(DECL) \
2593 do { \
2594 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2595 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2596 } while (0)
2598 /* Specify the machine mode that this machine uses
2599 for the index in the tablejump instruction. */
2600 /* If we ever implement any of the full models (such as CM_FULLANY),
2601 this has to be DImode in that case */
2602 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2603 #define CASE_VECTOR_MODE \
2604 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2605 #else
2606 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2607 we have to sign extend which slows things down. */
2608 #define CASE_VECTOR_MODE \
2609 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2610 #endif
2612 /* Define as C expression which evaluates to nonzero if the tablejump
2613 instruction expects the table to contain offsets from the address of the
2614 table.
2615 Do not define this if the table should contain absolute addresses. */
2616 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2618 /* Specify the tree operation to be used to convert reals to integers. */
2619 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2621 /* This is the kind of divide that is easiest to do in the general case. */
2622 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2624 /* Define this as 1 if `char' should by default be signed; else as 0. */
2625 #define DEFAULT_SIGNED_CHAR 1
2627 /* Max number of bytes we can move from memory to memory
2628 in one reasonably fast instruction. */
2629 #define MOVE_MAX 8
2631 #if 0 /* Sun 4 has matherr, so this is no good. */
2632 /* This is the value of the error code EDOM for this machine,
2633 used by the sqrt instruction. */
2634 #define TARGET_EDOM 33
2636 /* This is how to refer to the variable errno. */
2637 #define GEN_ERRNO_RTX \
2638 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2639 #endif /* 0 */
2641 /* Define if operations between registers always perform the operation
2642 on the full register even if a narrower mode is specified. */
2643 #define WORD_REGISTER_OPERATIONS
2645 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2646 will either zero-extend or sign-extend. The value of this macro should
2647 be the code that says which one of the two operations is implicitly
2648 done, NIL if none. */
2649 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2651 /* Nonzero if access to memory by bytes is slow and undesirable.
2652 For RISC chips, it means that access to memory by bytes is no
2653 better than access by words when possible, so grab a whole word
2654 and maybe make use of that. */
2655 #define SLOW_BYTE_ACCESS 1
2657 /* We assume that the store-condition-codes instructions store 0 for false
2658 and some other value for true. This is the value stored for true. */
2660 #define STORE_FLAG_VALUE 1
2662 /* When a prototype says `char' or `short', really pass an `int'. */
2663 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2665 /* Define this to be nonzero if shift instructions ignore all but the low-order
2666 few bits. */
2667 #define SHIFT_COUNT_TRUNCATED 1
2669 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2670 is done just by pretending it is already truncated. */
2671 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2673 /* Specify the machine mode that pointers have.
2674 After generation of rtl, the compiler makes no further distinction
2675 between pointers and any other objects of this machine mode. */
2676 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2678 /* Generate calls to memcpy, memcmp and memset. */
2679 #define TARGET_MEM_FUNCTIONS
2681 /* Add any extra modes needed to represent the condition code.
2683 On the Sparc, we have a "no-overflow" mode which is used when an add or
2684 subtract insn is used to set the condition code. Different branches are
2685 used in this case for some operations.
2687 We also have two modes to indicate that the relevant condition code is
2688 in the floating-point condition code register. One for comparisons which
2689 will generate an exception if the result is unordered (CCFPEmode) and
2690 one for comparisons which will never trap (CCFPmode).
2692 CCXmode and CCX_NOOVmode are only used by v9. */
2694 #define EXTRA_CC_MODES \
2695 CC(CCXmode, "CCX") \
2696 CC(CC_NOOVmode, "CC_NOOV") \
2697 CC(CCX_NOOVmode, "CCX_NOOV") \
2698 CC(CCFPmode, "CCFP") \
2699 CC(CCFPEmode, "CCFPE")
2701 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2702 return the mode to be used for the comparison. For floating-point,
2703 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2704 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2705 processing is needed. */
2706 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2708 /* Return non-zero if MODE implies a floating point inequality can be
2709 reversed. For Sparc this is always true because we have a full
2710 compliment of ordered and unordered comparisons, but until generic
2711 code knows how to reverse it correctly we keep the old definition. */
2712 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2714 /* A function address in a call instruction for indexing purposes. */
2715 #define FUNCTION_MODE Pmode
2717 /* Define this if addresses of constant functions
2718 shouldn't be put through pseudo regs where they can be cse'd.
2719 Desirable on machines where ordinary constants are expensive
2720 but a CALL with constant address is cheap. */
2721 #define NO_FUNCTION_CSE
2723 /* alloca should avoid clobbering the old register save area. */
2724 #define SETJMP_VIA_SAVE_AREA
2726 /* Define subroutines to call to handle multiply and divide.
2727 Use the subroutines that Sun's library provides.
2728 The `*' prevents an underscore from being prepended by the compiler. */
2730 #define DIVSI3_LIBCALL "*.div"
2731 #define UDIVSI3_LIBCALL "*.udiv"
2732 #define MODSI3_LIBCALL "*.rem"
2733 #define UMODSI3_LIBCALL "*.urem"
2734 /* .umul is a little faster than .mul. */
2735 #define MULSI3_LIBCALL "*.umul"
2737 /* Define library calls for quad FP operations. These are all part of the
2738 SPARC 32bit ABI. */
2739 #define ADDTF3_LIBCALL "_Q_add"
2740 #define SUBTF3_LIBCALL "_Q_sub"
2741 #define NEGTF2_LIBCALL "_Q_neg"
2742 #define MULTF3_LIBCALL "_Q_mul"
2743 #define DIVTF3_LIBCALL "_Q_div"
2744 #define FLOATSITF2_LIBCALL "_Q_itoq"
2745 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2746 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2747 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2748 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2749 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2750 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2751 #define EQTF2_LIBCALL "_Q_feq"
2752 #define NETF2_LIBCALL "_Q_fne"
2753 #define GTTF2_LIBCALL "_Q_fgt"
2754 #define GETF2_LIBCALL "_Q_fge"
2755 #define LTTF2_LIBCALL "_Q_flt"
2756 #define LETF2_LIBCALL "_Q_fle"
2758 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2759 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2760 and the compiler will notice and try to use the TFmode sqrt instruction
2761 for calls to the builtin function sqrt, but this fails. */
2762 #define INIT_TARGET_OPTABS \
2763 do { \
2764 if (TARGET_ARCH32) \
2766 add_optab->handlers[(int) TFmode].libfunc \
2767 = init_one_libfunc (ADDTF3_LIBCALL); \
2768 sub_optab->handlers[(int) TFmode].libfunc \
2769 = init_one_libfunc (SUBTF3_LIBCALL); \
2770 neg_optab->handlers[(int) TFmode].libfunc \
2771 = init_one_libfunc (NEGTF2_LIBCALL); \
2772 smul_optab->handlers[(int) TFmode].libfunc \
2773 = init_one_libfunc (MULTF3_LIBCALL); \
2774 sdiv_optab->handlers[(int) TFmode].libfunc \
2775 = init_one_libfunc (DIVTF3_LIBCALL); \
2776 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2777 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2778 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2779 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2780 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2781 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2782 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2783 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2784 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2785 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2786 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2787 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2788 fixunstfsi_libfunc \
2789 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2790 if (TARGET_FPU) \
2791 sqrt_optab->handlers[(int) TFmode].libfunc \
2792 = init_one_libfunc ("_Q_sqrt"); \
2794 INIT_SUBTARGET_OPTABS; \
2795 } while (0)
2797 /* This is meant to be redefined in the host dependent files */
2798 #define INIT_SUBTARGET_OPTABS
2800 /* Nonzero if a floating point comparison library call for
2801 mode MODE that will return a boolean value. Zero if one
2802 of the libgcc2 functions is used. */
2803 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2805 /* Compute the cost of computing a constant rtl expression RTX
2806 whose rtx-code is CODE. The body of this macro is a portion
2807 of a switch statement. If the code is computed here,
2808 return it with a return statement. Otherwise, break from the switch. */
2810 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2811 case CONST_INT: \
2812 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2813 return 0; \
2814 case HIGH: \
2815 return 2; \
2816 case CONST: \
2817 case LABEL_REF: \
2818 case SYMBOL_REF: \
2819 return 4; \
2820 case CONST_DOUBLE: \
2821 if (GET_MODE (RTX) == DImode) \
2822 if ((XINT (RTX, 3) == 0 \
2823 && (unsigned) XINT (RTX, 2) < 0x1000) \
2824 || (XINT (RTX, 3) == -1 \
2825 && XINT (RTX, 2) < 0 \
2826 && XINT (RTX, 2) >= -0x1000)) \
2827 return 0; \
2828 return 8;
2830 #define ADDRESS_COST(RTX) 1
2832 /* Compute extra cost of moving data between one register class
2833 and another. */
2834 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2835 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2836 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2837 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2838 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2839 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2841 /* Provide the costs of a rtl expression. This is in the body of a
2842 switch on CODE. The purpose for the cost of MULT is to encourage
2843 `synth_mult' to find a synthetic multiply when reasonable.
2845 If we need more than 12 insns to do a multiply, then go out-of-line,
2846 since the call overhead will be < 10% of the cost of the multiply. */
2848 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2849 case MULT: \
2850 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2851 return (GET_MODE (X) == DImode ? \
2852 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2853 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2854 case DIV: \
2855 case UDIV: \
2856 case MOD: \
2857 case UMOD: \
2858 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2859 return (GET_MODE (X) == DImode ? \
2860 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2861 return COSTS_N_INSNS (25); \
2862 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2863 so that cse will favor the latter. */ \
2864 case FLOAT: \
2865 case FIX: \
2866 return 19;
2868 /* Conditional branches with empty delay slots have a length of two. */
2869 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2870 do { \
2871 if (GET_CODE (INSN) == CALL_INSN \
2872 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2873 LENGTH += 1; \
2874 } while (0)
2876 /* Control the assembler format that we output. */
2878 /* Output at beginning of assembler file. */
2880 #define ASM_FILE_START(file)
2882 /* A C string constant describing how to begin a comment in the target
2883 assembler language. The compiler assumes that the comment will end at
2884 the end of the line. */
2886 #define ASM_COMMENT_START "!"
2888 /* Output to assembler file text saying following lines
2889 may contain character constants, extra white space, comments, etc. */
2891 #define ASM_APP_ON ""
2893 /* Output to assembler file text saying following lines
2894 no longer contain unusual constructs. */
2896 #define ASM_APP_OFF ""
2898 /* ??? Try to make the style consistent here (_OP?). */
2900 #define ASM_LONGLONG ".xword"
2901 #define ASM_LONG ".word"
2902 #define ASM_SHORT ".half"
2903 #define ASM_BYTE_OP "\t.byte\t"
2904 #define ASM_FLOAT ".single"
2905 #define ASM_DOUBLE ".double"
2906 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2908 /* Output before read-only data. */
2910 #define TEXT_SECTION_ASM_OP "\t.text"
2912 /* Output before writable data. */
2914 #define DATA_SECTION_ASM_OP "\t.data"
2916 /* How to refer to registers in assembler output.
2917 This sequence is indexed by compiler's hard-register-number (see above). */
2919 #define REGISTER_NAMES \
2920 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2921 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2922 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2923 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2924 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2925 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2926 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2927 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2928 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2929 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2930 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2931 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2932 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2934 /* Define additional names for use in asm clobbers and asm declarations. */
2936 #define ADDITIONAL_REGISTER_NAMES \
2937 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2939 /* How to renumber registers for dbx and gdb. In the flat model, the frame
2940 pointer is really %i7. */
2942 #define DBX_REGISTER_NUMBER(REGNO) \
2943 (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO)
2945 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2946 can run past this up to a continuation point. Once we used 1500, but
2947 a single entry in C++ can run more than 500 bytes, due to the length of
2948 mangled symbol names. dbxout.c should really be fixed to do
2949 continuations when they are actually needed instead of trying to
2950 guess... */
2951 #define DBX_CONTIN_LENGTH 1000
2953 /* This is how to output a note to DBX telling it the line number
2954 to which the following sequence of instructions corresponds.
2956 This is needed for SunOS 4.0, and should not hurt for 3.2
2957 versions either. */
2958 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
2959 { static int sym_lineno = 1; \
2960 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2961 line, sym_lineno, sym_lineno); \
2962 sym_lineno += 1; }
2964 /* This is how to output the definition of a user-level label named NAME,
2965 such as the label on a static function or variable NAME. */
2967 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2968 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2970 /* This is how to output a command to make the user-level label named NAME
2971 defined for reference from other files. */
2973 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2974 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2976 /* The prefix to add to user-visible assembler symbols. */
2978 #define USER_LABEL_PREFIX "_"
2980 /* This is how to output a definition of an internal numbered label where
2981 PREFIX is the class of label and NUM is the number within the class. */
2983 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2984 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2986 /* This is how to store into the string LABEL
2987 the symbol_ref name of an internal numbered label where
2988 PREFIX is the class of label and NUM is the number within the class.
2989 This is suitable for output with `assemble_name'. */
2991 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2992 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2994 /* This is how to output an assembler line defining a `float' constant.
2995 We always have to use a .long pseudo-op to do this because the native
2996 SVR4 ELF assembler is buggy and it generates incorrect values when we
2997 try to use the .float pseudo-op instead. */
2999 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
3001 long t; \
3002 char str[30]; \
3003 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3004 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3005 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \
3006 ASM_COMMENT_START, str); \
3009 /* This is how to output an assembler line defining a `double' constant.
3010 We always have to use a .long pseudo-op to do this because the native
3011 SVR4 ELF assembler is buggy and it generates incorrect values when we
3012 try to use the .float pseudo-op instead. */
3014 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
3016 long t[2]; \
3017 char str[30]; \
3018 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3019 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3020 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3021 ASM_COMMENT_START, str); \
3022 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3025 /* This is how to output an assembler line defining a `long double'
3026 constant. */
3028 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
3030 long t[4]; \
3031 char str[30]; \
3032 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
3033 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3034 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3035 ASM_COMMENT_START, str); \
3036 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3037 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \
3038 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \
3041 /* This is how to output an assembler line defining an `int' constant. */
3043 #define ASM_OUTPUT_INT(FILE,VALUE) \
3044 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
3045 output_addr_const (FILE, (VALUE)), \
3046 fprintf (FILE, "\n"))
3048 /* This is how to output an assembler line defining a DImode constant. */
3049 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3050 output_double_int (FILE, VALUE)
3052 /* Likewise for `char' and `short' constants. */
3054 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
3055 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
3056 output_addr_const (FILE, (VALUE)), \
3057 fprintf (FILE, "\n"))
3059 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
3060 ( fprintf (FILE, "%s", ASM_BYTE_OP), \
3061 output_addr_const (FILE, (VALUE)), \
3062 fprintf (FILE, "\n"))
3064 /* This is how to output an assembler line for a numeric constant byte. */
3066 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
3067 fprintf (FILE, "%s0x%x\n", ASM_BYTE_OP, (int)(VALUE))
3069 /* This is how we hook in and defer the case-vector until the end of
3070 the function. */
3071 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
3072 sparc_defer_case_vector ((LAB),(VEC), 0)
3074 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
3075 sparc_defer_case_vector ((LAB),(VEC), 1)
3077 /* This is how to output an element of a case-vector that is absolute. */
3079 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3080 do { \
3081 char label[30]; \
3082 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
3083 if (CASE_VECTOR_MODE == SImode) \
3084 fprintf (FILE, "\t.word\t"); \
3085 else \
3086 fprintf (FILE, "\t.xword\t"); \
3087 assemble_name (FILE, label); \
3088 fputc ('\n', FILE); \
3089 } while (0)
3091 /* This is how to output an element of a case-vector that is relative.
3092 (SPARC uses such vectors only when generating PIC.) */
3094 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3095 do { \
3096 char label[30]; \
3097 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
3098 if (CASE_VECTOR_MODE == SImode) \
3099 fprintf (FILE, "\t.word\t"); \
3100 else \
3101 fprintf (FILE, "\t.xword\t"); \
3102 assemble_name (FILE, label); \
3103 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
3104 fputc ('-', FILE); \
3105 assemble_name (FILE, label); \
3106 fputc ('\n', FILE); \
3107 } while (0)
3109 /* This is what to output before and after case-vector (both
3110 relative and absolute). If .subsection -1 works, we put case-vectors
3111 at the beginning of the current section. */
3113 #ifdef HAVE_GAS_SUBSECTION_ORDERING
3115 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
3116 fprintf(FILE, "\t.subsection\t-1\n")
3118 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
3119 fprintf(FILE, "\t.previous\n")
3121 #endif
3123 /* This is how to output an assembler line
3124 that says to advance the location counter
3125 to a multiple of 2**LOG bytes. */
3127 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3128 if ((LOG) != 0) \
3129 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
3131 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3132 fprintf (FILE, "\t.skip %u\n", (SIZE))
3134 /* This says how to output an assembler line
3135 to define a global common symbol. */
3137 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3138 ( fputs ("\t.common ", (FILE)), \
3139 assemble_name ((FILE), (NAME)), \
3140 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
3142 /* This says how to output an assembler line to define a local common
3143 symbol. */
3145 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
3146 ( fputs ("\t.reserve ", (FILE)), \
3147 assemble_name ((FILE), (NAME)), \
3148 fprintf ((FILE), ",%u,\"bss\",%u\n", \
3149 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
3151 /* A C statement (sans semicolon) to output to the stdio stream
3152 FILE the assembler definition of uninitialized global DECL named
3153 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
3154 Try to use asm_output_aligned_bss to implement this macro. */
3156 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
3157 do { \
3158 fputs (".globl ", (FILE)); \
3159 assemble_name ((FILE), (NAME)); \
3160 fputs ("\n", (FILE)); \
3161 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
3162 } while (0)
3164 /* Store in OUTPUT a string (made with alloca) containing
3165 an assembler-name for a local static variable named NAME.
3166 LABELNO is an integer which is different for each call. */
3168 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3169 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3170 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3172 #define IDENT_ASM_OP "\t.ident\t"
3174 /* Output #ident as a .ident. */
3176 #define ASM_OUTPUT_IDENT(FILE, NAME) \
3177 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
3179 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
3180 Used for C++ multiple inheritance. */
3181 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
3182 do { \
3183 int reg = 0; \
3185 if (TARGET_ARCH64 \
3186 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
3187 reg = 1; \
3188 if ((DELTA) >= 4096 || (DELTA) < -4096) \
3189 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
3190 (int)(DELTA), reg, reg); \
3191 else \
3192 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
3193 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
3194 fprintf (FILE, "\tcall\t"); \
3195 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3196 fprintf (FILE, ", 0\n"); \
3197 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
3198 } while (0)
3200 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3201 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
3203 /* Print operand X (an rtx) in assembler syntax to file FILE.
3204 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3205 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3207 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3209 /* Print a memory address as an operand to reference that memory location. */
3211 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3212 { register rtx base, index = 0; \
3213 int offset = 0; \
3214 register rtx addr = ADDR; \
3215 if (GET_CODE (addr) == REG) \
3216 fputs (reg_names[REGNO (addr)], FILE); \
3217 else if (GET_CODE (addr) == PLUS) \
3219 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3220 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3221 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3222 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3223 else \
3224 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3225 if (GET_CODE (base) == LO_SUM) \
3227 if (! USE_AS_OFFSETABLE_LO10 \
3228 || TARGET_ARCH32 \
3229 || TARGET_CM_MEDMID) \
3230 abort (); \
3231 output_operand (XEXP (base, 0), 0); \
3232 fputs ("+%lo(", FILE); \
3233 output_address (XEXP (base, 1)); \
3234 fprintf (FILE, ")+%d", offset); \
3236 else \
3238 fputs (reg_names[REGNO (base)], FILE); \
3239 if (index == 0) \
3240 fprintf (FILE, "%+d", offset); \
3241 else if (GET_CODE (index) == REG) \
3242 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
3243 else if (GET_CODE (index) == SYMBOL_REF \
3244 || GET_CODE (index) == CONST) \
3245 fputc ('+', FILE), output_addr_const (FILE, index); \
3246 else abort (); \
3249 else if (GET_CODE (addr) == MINUS \
3250 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3252 output_addr_const (FILE, XEXP (addr, 0)); \
3253 fputs ("-(", FILE); \
3254 output_addr_const (FILE, XEXP (addr, 1)); \
3255 fputs ("-.)", FILE); \
3257 else if (GET_CODE (addr) == LO_SUM) \
3259 output_operand (XEXP (addr, 0), 0); \
3260 if (TARGET_CM_MEDMID) \
3261 fputs ("+%l44(", FILE); \
3262 else \
3263 fputs ("+%lo(", FILE); \
3264 output_address (XEXP (addr, 1)); \
3265 fputc (')', FILE); \
3267 else if (flag_pic && GET_CODE (addr) == CONST \
3268 && GET_CODE (XEXP (addr, 0)) == MINUS \
3269 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3270 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3271 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3273 addr = XEXP (addr, 0); \
3274 output_addr_const (FILE, XEXP (addr, 0)); \
3275 /* Group the args of the second CONST in parenthesis. */ \
3276 fputs ("-(", FILE); \
3277 /* Skip past the second CONST--it does nothing for us. */\
3278 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3279 /* Close the parenthesis. */ \
3280 fputc (')', FILE); \
3282 else \
3284 output_addr_const (FILE, addr); \
3288 /* Define the codes that are matched by predicates in sparc.c. */
3290 #define PREDICATE_CODES \
3291 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3292 {"fp_zero_operand", {CONST_DOUBLE}}, \
3293 {"intreg_operand", {SUBREG, REG}}, \
3294 {"fcc_reg_operand", {REG}}, \
3295 {"icc_or_fcc_reg_operand", {REG}}, \
3296 {"restore_operand", {REG}}, \
3297 {"call_operand", {MEM}}, \
3298 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3299 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3300 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3301 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3302 {"label_ref_operand", {LABEL_REF}}, \
3303 {"sp64_medium_pic_operand", {CONST}}, \
3304 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3305 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3306 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3307 {"splittable_symbolic_memory_operand", {MEM}}, \
3308 {"splittable_immediate_memory_operand", {MEM}}, \
3309 {"eq_or_neq", {EQ, NE}}, \
3310 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3311 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3312 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3313 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3314 {"cc_arithop", {AND, IOR, XOR}}, \
3315 {"cc_arithopn", {AND, IOR}}, \
3316 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3317 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3318 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3319 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3320 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3321 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3322 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3323 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3324 {"small_int", {CONST_INT}}, \
3325 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3326 {"uns_small_int", {CONST_INT}}, \
3327 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3328 {"clobbered_register", {REG}}, \
3329 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3330 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3331 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3333 /* The number of Pmode words for the setjmp buffer. */
3334 #define JMP_BUF_SIZE 12
3336 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)