2005-12-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / combine.c
blob1361b10d27c04c83d237cdd8e6e8e0af5fe1e373
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_notes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
172 Therefore, we maintain the following fields:
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
188 (The next two parameters are out of date).
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
202 /* Record last value assigned to (hard or pseudo) register n. */
204 rtx last_set_value;
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
209 int last_set_table_tick;
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
214 int last_set_label;
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
229 char last_set_invalid;
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
241 If an entry is zero, it means that we don't know anything special. */
243 unsigned char sign_bit_copies;
245 unsigned HOST_WIDE_INT nonzero_bits;
248 static struct reg_stat *reg_stat;
250 /* Record the cuid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set;
255 /* Record the cuid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_cuid;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx subst_insn;
268 /* This is the lowest CUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this CUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_cuid;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
286 static rtx added_links_insn;
288 /* Basic block in which we are performing combines. */
289 static basic_block this_basic_block;
291 /* A bitmap indicating which blocks had registers go dead at entry.
292 After combine, we'll need to re-do global life analysis with
293 those blocks as starting points. */
294 static sbitmap refresh_blocks;
296 /* The following array records the insn_rtx_cost for every insn
297 in the instruction stream. */
299 static int *uid_insn_cost;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int last_insn_cost;
305 /* Incremented for each label. */
307 static int label_tick;
309 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
310 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
312 static enum machine_mode nonzero_bits_mode;
314 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
315 be safely used. It is zero while computing them and after combine has
316 completed. This former test prevents propagating values based on
317 previously set values, which can be incorrect if a variable is modified
318 in a loop. */
320 static int nonzero_sign_valid;
323 /* Record one modification to rtl structure
324 to be undone by storing old_contents into *where.
325 is_int is 1 if the contents are an int. */
327 struct undo
329 struct undo *next;
330 int is_int;
331 union {rtx r; int i;} old_contents;
332 union {rtx *r; int *i;} where;
335 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
336 num_undo says how many are currently recorded.
338 other_insn is nonzero if we have modified some other insn in the process
339 of working on subst_insn. It must be verified too. */
341 struct undobuf
343 struct undo *undos;
344 struct undo *frees;
345 rtx other_insn;
348 static struct undobuf undobuf;
350 /* Number of times the pseudo being substituted for
351 was found and replaced. */
353 static int n_occurrences;
355 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned HOST_WIDE_INT,
358 unsigned HOST_WIDE_INT *);
359 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
360 enum machine_mode,
361 unsigned int, unsigned int *);
362 static void do_SUBST (rtx *, rtx);
363 static void do_SUBST_INT (int *, int);
364 static void init_reg_last (void);
365 static void setup_incoming_promotions (void);
366 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
367 static int cant_combine_insn_p (rtx);
368 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
369 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
370 static int contains_muldiv (rtx);
371 static rtx try_combine (rtx, rtx, rtx, int *);
372 static void undo_all (void);
373 static void undo_commit (void);
374 static rtx *find_split_point (rtx *, rtx);
375 static rtx subst (rtx, rtx, rtx, int, int);
376 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
377 static rtx simplify_if_then_else (rtx);
378 static rtx simplify_set (rtx);
379 static rtx simplify_logical (rtx);
380 static rtx expand_compound_operation (rtx);
381 static rtx expand_field_assignment (rtx);
382 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
383 rtx, unsigned HOST_WIDE_INT, int, int, int);
384 static rtx extract_left_shift (rtx, int);
385 static rtx make_compound_operation (rtx, enum rtx_code);
386 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
387 unsigned HOST_WIDE_INT *);
388 static rtx canon_reg_for_combine (rtx, rtx);
389 static rtx force_to_mode (rtx, enum machine_mode,
390 unsigned HOST_WIDE_INT, int);
391 static rtx if_then_else_cond (rtx, rtx *, rtx *);
392 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
393 static int rtx_equal_for_field_assignment_p (rtx, rtx);
394 static rtx make_field_assignment (rtx);
395 static rtx apply_distributive_law (rtx);
396 static rtx distribute_and_simplify_rtx (rtx, int);
397 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
398 unsigned HOST_WIDE_INT);
399 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
400 unsigned HOST_WIDE_INT);
401 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
402 HOST_WIDE_INT, enum machine_mode, int *);
403 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
404 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
405 int);
406 static int recog_for_combine (rtx *, rtx, rtx *);
407 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
408 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
409 static void update_table_tick (rtx);
410 static void record_value_for_reg (rtx, rtx, rtx);
411 static void check_promoted_subreg (rtx, rtx);
412 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
413 static void record_dead_and_set_regs (rtx);
414 static int get_last_value_validate (rtx *, rtx, int, int);
415 static rtx get_last_value (rtx);
416 static int use_crosses_set_p (rtx, int);
417 static void reg_dead_at_p_1 (rtx, rtx, void *);
418 static int reg_dead_at_p (rtx, rtx);
419 static void move_deaths (rtx, rtx, int, rtx, rtx *);
420 static int reg_bitfield_target_p (rtx, rtx);
421 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
422 static void distribute_links (rtx);
423 static void mark_used_regs_combine (rtx);
424 static int insn_cuid (rtx);
425 static void record_promoted_value (rtx, rtx);
426 static int unmentioned_reg_p_1 (rtx *, void *);
427 static bool unmentioned_reg_p (rtx, rtx);
430 /* It is not safe to use ordinary gen_lowpart in combine.
431 See comments in gen_lowpart_for_combine. */
432 #undef RTL_HOOKS_GEN_LOWPART
433 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
435 /* Our implementation of gen_lowpart never emits a new pseudo. */
436 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
437 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
439 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
440 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
442 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
443 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
445 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
448 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
449 insn. The substitution can be undone by undo_all. If INTO is already
450 set to NEWVAL, do not record this change. Because computing NEWVAL might
451 also call SUBST, we have to compute it before we put anything into
452 the undo table. */
454 static void
455 do_SUBST (rtx *into, rtx newval)
457 struct undo *buf;
458 rtx oldval = *into;
460 if (oldval == newval)
461 return;
463 /* We'd like to catch as many invalid transformations here as
464 possible. Unfortunately, there are way too many mode changes
465 that are perfectly valid, so we'd waste too much effort for
466 little gain doing the checks here. Focus on catching invalid
467 transformations involving integer constants. */
468 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
469 && GET_CODE (newval) == CONST_INT)
471 /* Sanity check that we're replacing oldval with a CONST_INT
472 that is a valid sign-extension for the original mode. */
473 gcc_assert (INTVAL (newval)
474 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
476 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
477 CONST_INT is not valid, because after the replacement, the
478 original mode would be gone. Unfortunately, we can't tell
479 when do_SUBST is called to replace the operand thereof, so we
480 perform this test on oldval instead, checking whether an
481 invalid replacement took place before we got here. */
482 gcc_assert (!(GET_CODE (oldval) == SUBREG
483 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
484 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
485 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
488 if (undobuf.frees)
489 buf = undobuf.frees, undobuf.frees = buf->next;
490 else
491 buf = xmalloc (sizeof (struct undo));
493 buf->is_int = 0;
494 buf->where.r = into;
495 buf->old_contents.r = oldval;
496 *into = newval;
498 buf->next = undobuf.undos, undobuf.undos = buf;
501 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
503 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
504 for the value of a HOST_WIDE_INT value (including CONST_INT) is
505 not safe. */
507 static void
508 do_SUBST_INT (int *into, int newval)
510 struct undo *buf;
511 int oldval = *into;
513 if (oldval == newval)
514 return;
516 if (undobuf.frees)
517 buf = undobuf.frees, undobuf.frees = buf->next;
518 else
519 buf = xmalloc (sizeof (struct undo));
521 buf->is_int = 1;
522 buf->where.i = into;
523 buf->old_contents.i = oldval;
524 *into = newval;
526 buf->next = undobuf.undos, undobuf.undos = buf;
529 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
531 /* Subroutine of try_combine. Determine whether the combine replacement
532 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
533 that the original instruction sequence I1, I2 and I3. Note that I1
534 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
535 costs of all instructions can be estimated, and the replacements are
536 more expensive than the original sequence. */
538 static bool
539 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
541 int i1_cost, i2_cost, i3_cost;
542 int new_i2_cost, new_i3_cost;
543 int old_cost, new_cost;
545 /* Lookup the original insn_rtx_costs. */
546 i2_cost = INSN_UID (i2) <= last_insn_cost
547 ? uid_insn_cost[INSN_UID (i2)] : 0;
548 i3_cost = INSN_UID (i3) <= last_insn_cost
549 ? uid_insn_cost[INSN_UID (i3)] : 0;
551 if (i1)
553 i1_cost = INSN_UID (i1) <= last_insn_cost
554 ? uid_insn_cost[INSN_UID (i1)] : 0;
555 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
556 ? i1_cost + i2_cost + i3_cost : 0;
558 else
560 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
561 i1_cost = 0;
564 /* Calculate the replacement insn_rtx_costs. */
565 new_i3_cost = insn_rtx_cost (newpat);
566 if (newi2pat)
568 new_i2_cost = insn_rtx_cost (newi2pat);
569 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
570 ? new_i2_cost + new_i3_cost : 0;
572 else
574 new_cost = new_i3_cost;
575 new_i2_cost = 0;
578 if (undobuf.other_insn)
580 int old_other_cost, new_other_cost;
582 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
583 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
584 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
585 if (old_other_cost > 0 && new_other_cost > 0)
587 old_cost += old_other_cost;
588 new_cost += new_other_cost;
590 else
591 old_cost = 0;
594 /* Disallow this recombination if both new_cost and old_cost are
595 greater than zero, and new_cost is greater than old cost. */
596 if (old_cost > 0
597 && new_cost > old_cost)
599 if (dump_file)
601 if (i1)
603 fprintf (dump_file,
604 "rejecting combination of insns %d, %d and %d\n",
605 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
606 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
607 i1_cost, i2_cost, i3_cost, old_cost);
609 else
611 fprintf (dump_file,
612 "rejecting combination of insns %d and %d\n",
613 INSN_UID (i2), INSN_UID (i3));
614 fprintf (dump_file, "original costs %d + %d = %d\n",
615 i2_cost, i3_cost, old_cost);
618 if (newi2pat)
620 fprintf (dump_file, "replacement costs %d + %d = %d\n",
621 new_i2_cost, new_i3_cost, new_cost);
623 else
624 fprintf (dump_file, "replacement cost %d\n", new_cost);
627 return false;
630 /* Update the uid_insn_cost array with the replacement costs. */
631 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
632 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
633 if (i1)
634 uid_insn_cost[INSN_UID (i1)] = 0;
636 return true;
639 /* Main entry point for combiner. F is the first insn of the function.
640 NREGS is the first unused pseudo-reg number.
642 Return nonzero if the combiner has turned an indirect jump
643 instruction into a direct jump. */
645 combine_instructions (rtx f, unsigned int nregs)
647 rtx insn, next;
648 #ifdef HAVE_cc0
649 rtx prev;
650 #endif
651 int i;
652 unsigned int j = 0;
653 rtx links, nextlinks;
654 sbitmap_iterator sbi;
656 int new_direct_jump_p = 0;
658 combine_attempts = 0;
659 combine_merges = 0;
660 combine_extras = 0;
661 combine_successes = 0;
663 combine_max_regno = nregs;
665 rtl_hooks = combine_rtl_hooks;
667 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
669 init_recog_no_volatile ();
671 /* Compute maximum uid value so uid_cuid can be allocated. */
673 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
674 if (INSN_UID (insn) > i)
675 i = INSN_UID (insn);
677 uid_cuid = xmalloc ((i + 1) * sizeof (int));
678 max_uid_cuid = i;
680 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
682 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
683 problems when, for example, we have j <<= 1 in a loop. */
685 nonzero_sign_valid = 0;
687 /* Compute the mapping from uids to cuids.
688 Cuids are numbers assigned to insns, like uids,
689 except that cuids increase monotonically through the code.
691 Scan all SETs and see if we can deduce anything about what
692 bits are known to be zero for some registers and how many copies
693 of the sign bit are known to exist for those registers.
695 Also set any known values so that we can use it while searching
696 for what bits are known to be set. */
698 label_tick = 1;
700 setup_incoming_promotions ();
702 refresh_blocks = sbitmap_alloc (last_basic_block);
703 sbitmap_zero (refresh_blocks);
705 /* Allocate array of current insn_rtx_costs. */
706 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
707 last_insn_cost = max_uid_cuid;
709 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
711 uid_cuid[INSN_UID (insn)] = ++i;
712 subst_low_cuid = i;
713 subst_insn = insn;
715 if (INSN_P (insn))
717 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
718 NULL);
719 record_dead_and_set_regs (insn);
721 #ifdef AUTO_INC_DEC
722 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
723 if (REG_NOTE_KIND (links) == REG_INC)
724 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
725 NULL);
726 #endif
728 /* Record the current insn_rtx_cost of this instruction. */
729 if (NONJUMP_INSN_P (insn))
730 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
731 if (dump_file)
732 fprintf(dump_file, "insn_cost %d: %d\n",
733 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
736 if (LABEL_P (insn))
737 label_tick++;
740 nonzero_sign_valid = 1;
742 /* Now scan all the insns in forward order. */
744 label_tick = 1;
745 last_call_cuid = 0;
746 mem_last_set = 0;
747 init_reg_last ();
748 setup_incoming_promotions ();
750 FOR_EACH_BB (this_basic_block)
752 for (insn = BB_HEAD (this_basic_block);
753 insn != NEXT_INSN (BB_END (this_basic_block));
754 insn = next ? next : NEXT_INSN (insn))
756 next = 0;
758 if (LABEL_P (insn))
759 label_tick++;
761 else if (INSN_P (insn))
763 /* See if we know about function return values before this
764 insn based upon SUBREG flags. */
765 check_promoted_subreg (insn, PATTERN (insn));
767 /* Try this insn with each insn it links back to. */
769 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
770 if ((next = try_combine (insn, XEXP (links, 0),
771 NULL_RTX, &new_direct_jump_p)) != 0)
772 goto retry;
774 /* Try each sequence of three linked insns ending with this one. */
776 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
778 rtx link = XEXP (links, 0);
780 /* If the linked insn has been replaced by a note, then there
781 is no point in pursuing this chain any further. */
782 if (NOTE_P (link))
783 continue;
785 for (nextlinks = LOG_LINKS (link);
786 nextlinks;
787 nextlinks = XEXP (nextlinks, 1))
788 if ((next = try_combine (insn, link,
789 XEXP (nextlinks, 0),
790 &new_direct_jump_p)) != 0)
791 goto retry;
794 #ifdef HAVE_cc0
795 /* Try to combine a jump insn that uses CC0
796 with a preceding insn that sets CC0, and maybe with its
797 logical predecessor as well.
798 This is how we make decrement-and-branch insns.
799 We need this special code because data flow connections
800 via CC0 do not get entered in LOG_LINKS. */
802 if (JUMP_P (insn)
803 && (prev = prev_nonnote_insn (insn)) != 0
804 && NONJUMP_INSN_P (prev)
805 && sets_cc0_p (PATTERN (prev)))
807 if ((next = try_combine (insn, prev,
808 NULL_RTX, &new_direct_jump_p)) != 0)
809 goto retry;
811 for (nextlinks = LOG_LINKS (prev); nextlinks;
812 nextlinks = XEXP (nextlinks, 1))
813 if ((next = try_combine (insn, prev,
814 XEXP (nextlinks, 0),
815 &new_direct_jump_p)) != 0)
816 goto retry;
819 /* Do the same for an insn that explicitly references CC0. */
820 if (NONJUMP_INSN_P (insn)
821 && (prev = prev_nonnote_insn (insn)) != 0
822 && NONJUMP_INSN_P (prev)
823 && sets_cc0_p (PATTERN (prev))
824 && GET_CODE (PATTERN (insn)) == SET
825 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
827 if ((next = try_combine (insn, prev,
828 NULL_RTX, &new_direct_jump_p)) != 0)
829 goto retry;
831 for (nextlinks = LOG_LINKS (prev); nextlinks;
832 nextlinks = XEXP (nextlinks, 1))
833 if ((next = try_combine (insn, prev,
834 XEXP (nextlinks, 0),
835 &new_direct_jump_p)) != 0)
836 goto retry;
839 /* Finally, see if any of the insns that this insn links to
840 explicitly references CC0. If so, try this insn, that insn,
841 and its predecessor if it sets CC0. */
842 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
843 if (NONJUMP_INSN_P (XEXP (links, 0))
844 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
845 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
846 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
847 && NONJUMP_INSN_P (prev)
848 && sets_cc0_p (PATTERN (prev))
849 && (next = try_combine (insn, XEXP (links, 0),
850 prev, &new_direct_jump_p)) != 0)
851 goto retry;
852 #endif
854 /* Try combining an insn with two different insns whose results it
855 uses. */
856 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
857 for (nextlinks = XEXP (links, 1); nextlinks;
858 nextlinks = XEXP (nextlinks, 1))
859 if ((next = try_combine (insn, XEXP (links, 0),
860 XEXP (nextlinks, 0),
861 &new_direct_jump_p)) != 0)
862 goto retry;
864 /* Try this insn with each REG_EQUAL note it links back to. */
865 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
867 rtx set, note;
868 rtx temp = XEXP (links, 0);
869 if ((set = single_set (temp)) != 0
870 && (note = find_reg_equal_equiv_note (temp)) != 0
871 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
872 /* Avoid using a register that may already been marked
873 dead by an earlier instruction. */
874 && ! unmentioned_reg_p (note, SET_SRC (set))
875 && (GET_MODE (note) == VOIDmode
876 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
877 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
879 /* Temporarily replace the set's source with the
880 contents of the REG_EQUAL note. The insn will
881 be deleted or recognized by try_combine. */
882 rtx orig = SET_SRC (set);
883 SET_SRC (set) = note;
884 next = try_combine (insn, temp, NULL_RTX,
885 &new_direct_jump_p);
886 if (next)
887 goto retry;
888 SET_SRC (set) = orig;
892 if (!NOTE_P (insn))
893 record_dead_and_set_regs (insn);
895 retry:
900 clear_bb_flags ();
902 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
903 BASIC_BLOCK (j)->flags |= BB_DIRTY;
904 new_direct_jump_p |= purge_all_dead_edges ();
905 delete_noop_moves ();
907 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
908 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
909 | PROP_KILL_DEAD_CODE);
911 /* Clean up. */
912 sbitmap_free (refresh_blocks);
913 free (uid_insn_cost);
914 free (reg_stat);
915 free (uid_cuid);
918 struct undo *undo, *next;
919 for (undo = undobuf.frees; undo; undo = next)
921 next = undo->next;
922 free (undo);
924 undobuf.frees = 0;
927 total_attempts += combine_attempts;
928 total_merges += combine_merges;
929 total_extras += combine_extras;
930 total_successes += combine_successes;
932 nonzero_sign_valid = 0;
933 rtl_hooks = general_rtl_hooks;
935 /* Make recognizer allow volatile MEMs again. */
936 init_recog ();
938 return new_direct_jump_p;
941 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
943 static void
944 init_reg_last (void)
946 unsigned int i;
947 for (i = 0; i < combine_max_regno; i++)
948 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
951 /* Set up any promoted values for incoming argument registers. */
953 static void
954 setup_incoming_promotions (void)
956 unsigned int regno;
957 rtx reg;
958 enum machine_mode mode;
959 int unsignedp;
960 rtx first = get_insns ();
962 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
964 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
965 /* Check whether this register can hold an incoming pointer
966 argument. FUNCTION_ARG_REGNO_P tests outgoing register
967 numbers, so translate if necessary due to register windows. */
968 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
969 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
971 record_value_for_reg
972 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
973 : SIGN_EXTEND),
974 GET_MODE (reg),
975 gen_rtx_CLOBBER (mode, const0_rtx)));
980 /* Called via note_stores. If X is a pseudo that is narrower than
981 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
983 If we are setting only a portion of X and we can't figure out what
984 portion, assume all bits will be used since we don't know what will
985 be happening.
987 Similarly, set how many bits of X are known to be copies of the sign bit
988 at all locations in the function. This is the smallest number implied
989 by any set of X. */
991 static void
992 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
993 void *data ATTRIBUTE_UNUSED)
995 unsigned int num;
997 if (REG_P (x)
998 && REGNO (x) >= FIRST_PSEUDO_REGISTER
999 /* If this register is undefined at the start of the file, we can't
1000 say what its contents were. */
1001 && ! REGNO_REG_SET_P
1002 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1003 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1005 if (set == 0 || GET_CODE (set) == CLOBBER)
1007 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1008 reg_stat[REGNO (x)].sign_bit_copies = 1;
1009 return;
1012 /* If this is a complex assignment, see if we can convert it into a
1013 simple assignment. */
1014 set = expand_field_assignment (set);
1016 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1017 set what we know about X. */
1019 if (SET_DEST (set) == x
1020 || (GET_CODE (SET_DEST (set)) == SUBREG
1021 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1022 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1023 && SUBREG_REG (SET_DEST (set)) == x))
1025 rtx src = SET_SRC (set);
1027 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1028 /* If X is narrower than a word and SRC is a non-negative
1029 constant that would appear negative in the mode of X,
1030 sign-extend it for use in reg_stat[].nonzero_bits because some
1031 machines (maybe most) will actually do the sign-extension
1032 and this is the conservative approach.
1034 ??? For 2.5, try to tighten up the MD files in this regard
1035 instead of this kludge. */
1037 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1038 && GET_CODE (src) == CONST_INT
1039 && INTVAL (src) > 0
1040 && 0 != (INTVAL (src)
1041 & ((HOST_WIDE_INT) 1
1042 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1043 src = GEN_INT (INTVAL (src)
1044 | ((HOST_WIDE_INT) (-1)
1045 << GET_MODE_BITSIZE (GET_MODE (x))));
1046 #endif
1048 /* Don't call nonzero_bits if it cannot change anything. */
1049 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1050 reg_stat[REGNO (x)].nonzero_bits
1051 |= nonzero_bits (src, nonzero_bits_mode);
1052 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1053 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1054 || reg_stat[REGNO (x)].sign_bit_copies > num)
1055 reg_stat[REGNO (x)].sign_bit_copies = num;
1057 else
1059 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1060 reg_stat[REGNO (x)].sign_bit_copies = 1;
1065 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1066 insns that were previously combined into I3 or that will be combined
1067 into the merger of INSN and I3.
1069 Return 0 if the combination is not allowed for any reason.
1071 If the combination is allowed, *PDEST will be set to the single
1072 destination of INSN and *PSRC to the single source, and this function
1073 will return 1. */
1075 static int
1076 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1077 rtx *pdest, rtx *psrc)
1079 int i;
1080 rtx set = 0, src, dest;
1081 rtx p;
1082 #ifdef AUTO_INC_DEC
1083 rtx link;
1084 #endif
1085 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1086 && next_active_insn (succ) == i3)
1087 : next_active_insn (insn) == i3);
1089 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1090 or a PARALLEL consisting of such a SET and CLOBBERs.
1092 If INSN has CLOBBER parallel parts, ignore them for our processing.
1093 By definition, these happen during the execution of the insn. When it
1094 is merged with another insn, all bets are off. If they are, in fact,
1095 needed and aren't also supplied in I3, they may be added by
1096 recog_for_combine. Otherwise, it won't match.
1098 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1099 note.
1101 Get the source and destination of INSN. If more than one, can't
1102 combine. */
1104 if (GET_CODE (PATTERN (insn)) == SET)
1105 set = PATTERN (insn);
1106 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1107 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1109 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1111 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1112 rtx note;
1114 switch (GET_CODE (elt))
1116 /* This is important to combine floating point insns
1117 for the SH4 port. */
1118 case USE:
1119 /* Combining an isolated USE doesn't make sense.
1120 We depend here on combinable_i3pat to reject them. */
1121 /* The code below this loop only verifies that the inputs of
1122 the SET in INSN do not change. We call reg_set_between_p
1123 to verify that the REG in the USE does not change between
1124 I3 and INSN.
1125 If the USE in INSN was for a pseudo register, the matching
1126 insn pattern will likely match any register; combining this
1127 with any other USE would only be safe if we knew that the
1128 used registers have identical values, or if there was
1129 something to tell them apart, e.g. different modes. For
1130 now, we forgo such complicated tests and simply disallow
1131 combining of USES of pseudo registers with any other USE. */
1132 if (REG_P (XEXP (elt, 0))
1133 && GET_CODE (PATTERN (i3)) == PARALLEL)
1135 rtx i3pat = PATTERN (i3);
1136 int i = XVECLEN (i3pat, 0) - 1;
1137 unsigned int regno = REGNO (XEXP (elt, 0));
1141 rtx i3elt = XVECEXP (i3pat, 0, i);
1143 if (GET_CODE (i3elt) == USE
1144 && REG_P (XEXP (i3elt, 0))
1145 && (REGNO (XEXP (i3elt, 0)) == regno
1146 ? reg_set_between_p (XEXP (elt, 0),
1147 PREV_INSN (insn), i3)
1148 : regno >= FIRST_PSEUDO_REGISTER))
1149 return 0;
1151 while (--i >= 0);
1153 break;
1155 /* We can ignore CLOBBERs. */
1156 case CLOBBER:
1157 break;
1159 case SET:
1160 /* Ignore SETs whose result isn't used but not those that
1161 have side-effects. */
1162 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1163 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1164 || INTVAL (XEXP (note, 0)) <= 0)
1165 && ! side_effects_p (elt))
1166 break;
1168 /* If we have already found a SET, this is a second one and
1169 so we cannot combine with this insn. */
1170 if (set)
1171 return 0;
1173 set = elt;
1174 break;
1176 default:
1177 /* Anything else means we can't combine. */
1178 return 0;
1182 if (set == 0
1183 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1184 so don't do anything with it. */
1185 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1186 return 0;
1188 else
1189 return 0;
1191 if (set == 0)
1192 return 0;
1194 set = expand_field_assignment (set);
1195 src = SET_SRC (set), dest = SET_DEST (set);
1197 /* Don't eliminate a store in the stack pointer. */
1198 if (dest == stack_pointer_rtx
1199 /* Don't combine with an insn that sets a register to itself if it has
1200 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1201 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1202 /* Can't merge an ASM_OPERANDS. */
1203 || GET_CODE (src) == ASM_OPERANDS
1204 /* Can't merge a function call. */
1205 || GET_CODE (src) == CALL
1206 /* Don't eliminate a function call argument. */
1207 || (CALL_P (i3)
1208 && (find_reg_fusage (i3, USE, dest)
1209 || (REG_P (dest)
1210 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1211 && global_regs[REGNO (dest)])))
1212 /* Don't substitute into an incremented register. */
1213 || FIND_REG_INC_NOTE (i3, dest)
1214 || (succ && FIND_REG_INC_NOTE (succ, dest))
1215 /* Don't substitute into a non-local goto, this confuses CFG. */
1216 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1217 #if 0
1218 /* Don't combine the end of a libcall into anything. */
1219 /* ??? This gives worse code, and appears to be unnecessary, since no
1220 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1221 use REG_RETVAL notes for noconflict blocks, but other code here
1222 makes sure that those insns don't disappear. */
1223 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1224 #endif
1225 /* Make sure that DEST is not used after SUCC but before I3. */
1226 || (succ && ! all_adjacent
1227 && reg_used_between_p (dest, succ, i3))
1228 /* Make sure that the value that is to be substituted for the register
1229 does not use any registers whose values alter in between. However,
1230 If the insns are adjacent, a use can't cross a set even though we
1231 think it might (this can happen for a sequence of insns each setting
1232 the same destination; last_set of that register might point to
1233 a NOTE). If INSN has a REG_EQUIV note, the register is always
1234 equivalent to the memory so the substitution is valid even if there
1235 are intervening stores. Also, don't move a volatile asm or
1236 UNSPEC_VOLATILE across any other insns. */
1237 || (! all_adjacent
1238 && (((!MEM_P (src)
1239 || ! find_reg_note (insn, REG_EQUIV, src))
1240 && use_crosses_set_p (src, INSN_CUID (insn)))
1241 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1242 || GET_CODE (src) == UNSPEC_VOLATILE))
1243 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1244 better register allocation by not doing the combine. */
1245 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1246 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1247 /* Don't combine across a CALL_INSN, because that would possibly
1248 change whether the life span of some REGs crosses calls or not,
1249 and it is a pain to update that information.
1250 Exception: if source is a constant, moving it later can't hurt.
1251 Accept that special case, because it helps -fforce-addr a lot. */
1252 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1253 return 0;
1255 /* DEST must either be a REG or CC0. */
1256 if (REG_P (dest))
1258 /* If register alignment is being enforced for multi-word items in all
1259 cases except for parameters, it is possible to have a register copy
1260 insn referencing a hard register that is not allowed to contain the
1261 mode being copied and which would not be valid as an operand of most
1262 insns. Eliminate this problem by not combining with such an insn.
1264 Also, on some machines we don't want to extend the life of a hard
1265 register. */
1267 if (REG_P (src)
1268 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1269 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1270 /* Don't extend the life of a hard register unless it is
1271 user variable (if we have few registers) or it can't
1272 fit into the desired register (meaning something special
1273 is going on).
1274 Also avoid substituting a return register into I3, because
1275 reload can't handle a conflict with constraints of other
1276 inputs. */
1277 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1278 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1279 return 0;
1281 else if (GET_CODE (dest) != CC0)
1282 return 0;
1285 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1286 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1287 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1289 /* Don't substitute for a register intended as a clobberable
1290 operand. */
1291 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1292 if (rtx_equal_p (reg, dest))
1293 return 0;
1295 /* If the clobber represents an earlyclobber operand, we must not
1296 substitute an expression containing the clobbered register.
1297 As we do not analyze the constraint strings here, we have to
1298 make the conservative assumption. However, if the register is
1299 a fixed hard reg, the clobber cannot represent any operand;
1300 we leave it up to the machine description to either accept or
1301 reject use-and-clobber patterns. */
1302 if (!REG_P (reg)
1303 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1304 || !fixed_regs[REGNO (reg)])
1305 if (reg_overlap_mentioned_p (reg, src))
1306 return 0;
1309 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1310 or not), reject, unless nothing volatile comes between it and I3 */
1312 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1314 /* Make sure succ doesn't contain a volatile reference. */
1315 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1316 return 0;
1318 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1319 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1320 return 0;
1323 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1324 to be an explicit register variable, and was chosen for a reason. */
1326 if (GET_CODE (src) == ASM_OPERANDS
1327 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1328 return 0;
1330 /* If there are any volatile insns between INSN and I3, reject, because
1331 they might affect machine state. */
1333 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1334 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1335 return 0;
1337 /* If INSN contains an autoincrement or autodecrement, make sure that
1338 register is not used between there and I3, and not already used in
1339 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1340 Also insist that I3 not be a jump; if it were one
1341 and the incremented register were spilled, we would lose. */
1343 #ifdef AUTO_INC_DEC
1344 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1345 if (REG_NOTE_KIND (link) == REG_INC
1346 && (JUMP_P (i3)
1347 || reg_used_between_p (XEXP (link, 0), insn, i3)
1348 || (pred != NULL_RTX
1349 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1350 || (succ != NULL_RTX
1351 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1352 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1353 return 0;
1354 #endif
1356 #ifdef HAVE_cc0
1357 /* Don't combine an insn that follows a CC0-setting insn.
1358 An insn that uses CC0 must not be separated from the one that sets it.
1359 We do, however, allow I2 to follow a CC0-setting insn if that insn
1360 is passed as I1; in that case it will be deleted also.
1361 We also allow combining in this case if all the insns are adjacent
1362 because that would leave the two CC0 insns adjacent as well.
1363 It would be more logical to test whether CC0 occurs inside I1 or I2,
1364 but that would be much slower, and this ought to be equivalent. */
1366 p = prev_nonnote_insn (insn);
1367 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1368 && ! all_adjacent)
1369 return 0;
1370 #endif
1372 /* If we get here, we have passed all the tests and the combination is
1373 to be allowed. */
1375 *pdest = dest;
1376 *psrc = src;
1378 return 1;
1381 /* LOC is the location within I3 that contains its pattern or the component
1382 of a PARALLEL of the pattern. We validate that it is valid for combining.
1384 One problem is if I3 modifies its output, as opposed to replacing it
1385 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1386 so would produce an insn that is not equivalent to the original insns.
1388 Consider:
1390 (set (reg:DI 101) (reg:DI 100))
1391 (set (subreg:SI (reg:DI 101) 0) <foo>)
1393 This is NOT equivalent to:
1395 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1396 (set (reg:DI 101) (reg:DI 100))])
1398 Not only does this modify 100 (in which case it might still be valid
1399 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1401 We can also run into a problem if I2 sets a register that I1
1402 uses and I1 gets directly substituted into I3 (not via I2). In that
1403 case, we would be getting the wrong value of I2DEST into I3, so we
1404 must reject the combination. This case occurs when I2 and I1 both
1405 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1406 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1407 of a SET must prevent combination from occurring.
1409 Before doing the above check, we first try to expand a field assignment
1410 into a set of logical operations.
1412 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1413 we place a register that is both set and used within I3. If more than one
1414 such register is detected, we fail.
1416 Return 1 if the combination is valid, zero otherwise. */
1418 static int
1419 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1420 int i1_not_in_src, rtx *pi3dest_killed)
1422 rtx x = *loc;
1424 if (GET_CODE (x) == SET)
1426 rtx set = x ;
1427 rtx dest = SET_DEST (set);
1428 rtx src = SET_SRC (set);
1429 rtx inner_dest = dest;
1430 rtx subdest;
1432 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1433 || GET_CODE (inner_dest) == SUBREG
1434 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1435 inner_dest = XEXP (inner_dest, 0);
1437 /* Check for the case where I3 modifies its output, as discussed
1438 above. We don't want to prevent pseudos from being combined
1439 into the address of a MEM, so only prevent the combination if
1440 i1 or i2 set the same MEM. */
1441 if ((inner_dest != dest &&
1442 (!MEM_P (inner_dest)
1443 || rtx_equal_p (i2dest, inner_dest)
1444 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1445 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1446 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1448 /* This is the same test done in can_combine_p except we can't test
1449 all_adjacent; we don't have to, since this instruction will stay
1450 in place, thus we are not considering increasing the lifetime of
1451 INNER_DEST.
1453 Also, if this insn sets a function argument, combining it with
1454 something that might need a spill could clobber a previous
1455 function argument; the all_adjacent test in can_combine_p also
1456 checks this; here, we do a more specific test for this case. */
1458 || (REG_P (inner_dest)
1459 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1460 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1461 GET_MODE (inner_dest))))
1462 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1463 return 0;
1465 /* If DEST is used in I3, it is being killed in this insn, so
1466 record that for later. We have to consider paradoxical
1467 subregs here, since they kill the whole register, but we
1468 ignore partial subregs, STRICT_LOW_PART, etc.
1469 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1470 STACK_POINTER_REGNUM, since these are always considered to be
1471 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1472 subdest = dest;
1473 if (GET_CODE (subdest) == SUBREG
1474 && (GET_MODE_SIZE (GET_MODE (subdest))
1475 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1476 subdest = SUBREG_REG (subdest);
1477 if (pi3dest_killed
1478 && REG_P (subdest)
1479 && reg_referenced_p (subdest, PATTERN (i3))
1480 && REGNO (subdest) != FRAME_POINTER_REGNUM
1481 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1482 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1483 #endif
1484 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1485 && (REGNO (subdest) != ARG_POINTER_REGNUM
1486 || ! fixed_regs [REGNO (subdest)])
1487 #endif
1488 && REGNO (subdest) != STACK_POINTER_REGNUM)
1490 if (*pi3dest_killed)
1491 return 0;
1493 *pi3dest_killed = subdest;
1497 else if (GET_CODE (x) == PARALLEL)
1499 int i;
1501 for (i = 0; i < XVECLEN (x, 0); i++)
1502 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1503 i1_not_in_src, pi3dest_killed))
1504 return 0;
1507 return 1;
1510 /* Return 1 if X is an arithmetic expression that contains a multiplication
1511 and division. We don't count multiplications by powers of two here. */
1513 static int
1514 contains_muldiv (rtx x)
1516 switch (GET_CODE (x))
1518 case MOD: case DIV: case UMOD: case UDIV:
1519 return 1;
1521 case MULT:
1522 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1523 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1524 default:
1525 if (BINARY_P (x))
1526 return contains_muldiv (XEXP (x, 0))
1527 || contains_muldiv (XEXP (x, 1));
1529 if (UNARY_P (x))
1530 return contains_muldiv (XEXP (x, 0));
1532 return 0;
1536 /* Determine whether INSN can be used in a combination. Return nonzero if
1537 not. This is used in try_combine to detect early some cases where we
1538 can't perform combinations. */
1540 static int
1541 cant_combine_insn_p (rtx insn)
1543 rtx set;
1544 rtx src, dest;
1546 /* If this isn't really an insn, we can't do anything.
1547 This can occur when flow deletes an insn that it has merged into an
1548 auto-increment address. */
1549 if (! INSN_P (insn))
1550 return 1;
1552 /* Never combine loads and stores involving hard regs that are likely
1553 to be spilled. The register allocator can usually handle such
1554 reg-reg moves by tying. If we allow the combiner to make
1555 substitutions of likely-spilled regs, reload might die.
1556 As an exception, we allow combinations involving fixed regs; these are
1557 not available to the register allocator so there's no risk involved. */
1559 set = single_set (insn);
1560 if (! set)
1561 return 0;
1562 src = SET_SRC (set);
1563 dest = SET_DEST (set);
1564 if (GET_CODE (src) == SUBREG)
1565 src = SUBREG_REG (src);
1566 if (GET_CODE (dest) == SUBREG)
1567 dest = SUBREG_REG (dest);
1568 if (REG_P (src) && REG_P (dest)
1569 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1570 && ! fixed_regs[REGNO (src)]
1571 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1572 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1573 && ! fixed_regs[REGNO (dest)]
1574 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1575 return 1;
1577 return 0;
1580 struct likely_spilled_retval_info
1582 unsigned regno, nregs;
1583 unsigned mask;
1586 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1587 hard registers that are known to be written to / clobbered in full. */
1588 static void
1589 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1591 struct likely_spilled_retval_info *info = data;
1592 unsigned regno, nregs;
1593 unsigned new_mask;
1595 if (!REG_P (XEXP (set, 0)))
1596 return;
1597 regno = REGNO (x);
1598 if (regno >= info->regno + info->nregs)
1599 return;
1600 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1601 if (regno + nregs <= info->regno)
1602 return;
1603 new_mask = (2U << (nregs - 1)) - 1;
1604 if (regno < info->regno)
1605 new_mask >>= info->regno - regno;
1606 else
1607 new_mask <<= regno - info->regno;
1608 info->mask &= new_mask;
1611 /* Return nonzero iff part of the return value is live during INSN, and
1612 it is likely spilled. This can happen when more than one insn is needed
1613 to copy the return value, e.g. when we consider to combine into the
1614 second copy insn for a complex value. */
1616 static int
1617 likely_spilled_retval_p (rtx insn)
1619 rtx use = BB_END (this_basic_block);
1620 rtx reg, p;
1621 unsigned regno, nregs;
1622 /* We assume here that no machine mode needs more than
1623 32 hard registers when the value overlaps with a register
1624 for which FUNCTION_VALUE_REGNO_P is true. */
1625 unsigned mask;
1626 struct likely_spilled_retval_info info;
1628 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1629 return 0;
1630 reg = XEXP (PATTERN (use), 0);
1631 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1632 return 0;
1633 regno = REGNO (reg);
1634 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1635 if (nregs == 1)
1636 return 0;
1637 mask = (2U << (nregs - 1)) - 1;
1639 /* Disregard parts of the return value that are set later. */
1640 info.regno = regno;
1641 info.nregs = nregs;
1642 info.mask = mask;
1643 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1644 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1645 mask = info.mask;
1647 /* Check if any of the (probably) live return value registers is
1648 likely spilled. */
1649 nregs --;
1652 if ((mask & 1 << nregs)
1653 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1654 return 1;
1655 } while (nregs--);
1656 return 0;
1659 /* Adjust INSN after we made a change to its destination.
1661 Changing the destination can invalidate notes that say something about
1662 the results of the insn and a LOG_LINK pointing to the insn. */
1664 static void
1665 adjust_for_new_dest (rtx insn)
1667 rtx *loc;
1669 /* For notes, be conservative and simply remove them. */
1670 loc = &REG_NOTES (insn);
1671 while (*loc)
1673 enum reg_note kind = REG_NOTE_KIND (*loc);
1674 if (kind == REG_EQUAL || kind == REG_EQUIV)
1675 *loc = XEXP (*loc, 1);
1676 else
1677 loc = &XEXP (*loc, 1);
1680 /* The new insn will have a destination that was previously the destination
1681 of an insn just above it. Call distribute_links to make a LOG_LINK from
1682 the next use of that destination. */
1683 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1686 /* Return TRUE if combine can reuse reg X in mode MODE.
1687 ADDED_SETS is nonzero if the original set is still required. */
1688 static bool
1689 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1691 unsigned int regno;
1693 if (!REG_P(x))
1694 return false;
1696 regno = REGNO (x);
1697 /* Allow hard registers if the new mode is legal, and occupies no more
1698 registers than the old mode. */
1699 if (regno < FIRST_PSEUDO_REGISTER)
1700 return (HARD_REGNO_MODE_OK (regno, mode)
1701 && (hard_regno_nregs[regno][GET_MODE (x)]
1702 >= hard_regno_nregs[regno][mode]));
1704 /* Or a pseudo that is only used once. */
1705 return (REG_N_SETS (regno) == 1 && !added_sets
1706 && !REG_USERVAR_P (x));
1709 /* Try to combine the insns I1 and I2 into I3.
1710 Here I1 and I2 appear earlier than I3.
1711 I1 can be zero; then we combine just I2 into I3.
1713 If we are combining three insns and the resulting insn is not recognized,
1714 try splitting it into two insns. If that happens, I2 and I3 are retained
1715 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1716 are pseudo-deleted.
1718 Return 0 if the combination does not work. Then nothing is changed.
1719 If we did the combination, return the insn at which combine should
1720 resume scanning.
1722 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1723 new direct jump instruction. */
1725 static rtx
1726 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1728 /* New patterns for I3 and I2, respectively. */
1729 rtx newpat, newi2pat = 0;
1730 rtvec newpat_vec_with_clobbers = 0;
1731 int substed_i2 = 0, substed_i1 = 0;
1732 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1733 int added_sets_1, added_sets_2;
1734 /* Total number of SETs to put into I3. */
1735 int total_sets;
1736 /* Nonzero if I2's body now appears in I3. */
1737 int i2_is_used;
1738 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1739 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1740 /* Contains I3 if the destination of I3 is used in its source, which means
1741 that the old life of I3 is being killed. If that usage is placed into
1742 I2 and not in I3, a REG_DEAD note must be made. */
1743 rtx i3dest_killed = 0;
1744 /* SET_DEST and SET_SRC of I2 and I1. */
1745 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1746 /* PATTERN (I2), or a copy of it in certain cases. */
1747 rtx i2pat;
1748 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1749 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1750 int i2dest_killed = 0, i1dest_killed = 0;
1751 int i1_feeds_i3 = 0;
1752 /* Notes that must be added to REG_NOTES in I3 and I2. */
1753 rtx new_i3_notes, new_i2_notes;
1754 /* Notes that we substituted I3 into I2 instead of the normal case. */
1755 int i3_subst_into_i2 = 0;
1756 /* Notes that I1, I2 or I3 is a MULT operation. */
1757 int have_mult = 0;
1758 int swap_i2i3 = 0;
1760 int maxreg;
1761 rtx temp;
1762 rtx link;
1763 int i;
1765 /* Exit early if one of the insns involved can't be used for
1766 combinations. */
1767 if (cant_combine_insn_p (i3)
1768 || cant_combine_insn_p (i2)
1769 || (i1 && cant_combine_insn_p (i1))
1770 || likely_spilled_retval_p (i3)
1771 /* We also can't do anything if I3 has a
1772 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1773 libcall. */
1774 #if 0
1775 /* ??? This gives worse code, and appears to be unnecessary, since no
1776 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1777 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1778 #endif
1780 return 0;
1782 combine_attempts++;
1783 undobuf.other_insn = 0;
1785 /* Reset the hard register usage information. */
1786 CLEAR_HARD_REG_SET (newpat_used_regs);
1788 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1789 code below, set I1 to be the earlier of the two insns. */
1790 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1791 temp = i1, i1 = i2, i2 = temp;
1793 added_links_insn = 0;
1795 /* First check for one important special-case that the code below will
1796 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1797 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1798 we may be able to replace that destination with the destination of I3.
1799 This occurs in the common code where we compute both a quotient and
1800 remainder into a structure, in which case we want to do the computation
1801 directly into the structure to avoid register-register copies.
1803 Note that this case handles both multiple sets in I2 and also
1804 cases where I2 has a number of CLOBBER or PARALLELs.
1806 We make very conservative checks below and only try to handle the
1807 most common cases of this. For example, we only handle the case
1808 where I2 and I3 are adjacent to avoid making difficult register
1809 usage tests. */
1811 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1812 && REG_P (SET_SRC (PATTERN (i3)))
1813 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1814 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1815 && GET_CODE (PATTERN (i2)) == PARALLEL
1816 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1817 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1818 below would need to check what is inside (and reg_overlap_mentioned_p
1819 doesn't support those codes anyway). Don't allow those destinations;
1820 the resulting insn isn't likely to be recognized anyway. */
1821 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1822 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1823 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1824 SET_DEST (PATTERN (i3)))
1825 && next_real_insn (i2) == i3)
1827 rtx p2 = PATTERN (i2);
1829 /* Make sure that the destination of I3,
1830 which we are going to substitute into one output of I2,
1831 is not used within another output of I2. We must avoid making this:
1832 (parallel [(set (mem (reg 69)) ...)
1833 (set (reg 69) ...)])
1834 which is not well-defined as to order of actions.
1835 (Besides, reload can't handle output reloads for this.)
1837 The problem can also happen if the dest of I3 is a memory ref,
1838 if another dest in I2 is an indirect memory ref. */
1839 for (i = 0; i < XVECLEN (p2, 0); i++)
1840 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1841 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1842 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1843 SET_DEST (XVECEXP (p2, 0, i))))
1844 break;
1846 if (i == XVECLEN (p2, 0))
1847 for (i = 0; i < XVECLEN (p2, 0); i++)
1848 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1849 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1850 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1852 combine_merges++;
1854 subst_insn = i3;
1855 subst_low_cuid = INSN_CUID (i2);
1857 added_sets_2 = added_sets_1 = 0;
1858 i2dest = SET_SRC (PATTERN (i3));
1859 i2dest_killed = dead_or_set_p (i2, i2dest);
1861 /* Replace the dest in I2 with our dest and make the resulting
1862 insn the new pattern for I3. Then skip to where we
1863 validate the pattern. Everything was set up above. */
1864 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1865 SET_DEST (PATTERN (i3)));
1867 newpat = p2;
1868 i3_subst_into_i2 = 1;
1869 goto validate_replacement;
1873 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1874 one of those words to another constant, merge them by making a new
1875 constant. */
1876 if (i1 == 0
1877 && (temp = single_set (i2)) != 0
1878 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1879 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1880 && REG_P (SET_DEST (temp))
1881 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1882 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1883 && GET_CODE (PATTERN (i3)) == SET
1884 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1885 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1886 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1887 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1888 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1890 HOST_WIDE_INT lo, hi;
1892 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1893 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1894 else
1896 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1897 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1900 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1902 /* We don't handle the case of the target word being wider
1903 than a host wide int. */
1904 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1906 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1907 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1908 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1910 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1911 hi = INTVAL (SET_SRC (PATTERN (i3)));
1912 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1914 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1915 >> (HOST_BITS_PER_WIDE_INT - 1));
1917 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1918 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1919 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1920 (INTVAL (SET_SRC (PATTERN (i3)))));
1921 if (hi == sign)
1922 hi = lo < 0 ? -1 : 0;
1924 else
1925 /* We don't handle the case of the higher word not fitting
1926 entirely in either hi or lo. */
1927 gcc_unreachable ();
1929 combine_merges++;
1930 subst_insn = i3;
1931 subst_low_cuid = INSN_CUID (i2);
1932 added_sets_2 = added_sets_1 = 0;
1933 i2dest = SET_DEST (temp);
1934 i2dest_killed = dead_or_set_p (i2, i2dest);
1936 SUBST (SET_SRC (temp),
1937 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1939 newpat = PATTERN (i2);
1940 goto validate_replacement;
1943 #ifndef HAVE_cc0
1944 /* If we have no I1 and I2 looks like:
1945 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1946 (set Y OP)])
1947 make up a dummy I1 that is
1948 (set Y OP)
1949 and change I2 to be
1950 (set (reg:CC X) (compare:CC Y (const_int 0)))
1952 (We can ignore any trailing CLOBBERs.)
1954 This undoes a previous combination and allows us to match a branch-and-
1955 decrement insn. */
1957 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1958 && XVECLEN (PATTERN (i2), 0) >= 2
1959 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1960 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1961 == MODE_CC)
1962 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1963 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1964 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1965 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1966 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1967 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1969 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1970 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1971 break;
1973 if (i == 1)
1975 /* We make I1 with the same INSN_UID as I2. This gives it
1976 the same INSN_CUID for value tracking. Our fake I1 will
1977 never appear in the insn stream so giving it the same INSN_UID
1978 as I2 will not cause a problem. */
1980 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1981 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1982 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1983 NULL_RTX);
1985 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1986 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1987 SET_DEST (PATTERN (i1)));
1990 #endif
1992 /* Verify that I2 and I1 are valid for combining. */
1993 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1994 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1996 undo_all ();
1997 return 0;
2000 /* Record whether I2DEST is used in I2SRC and similarly for the other
2001 cases. Knowing this will help in register status updating below. */
2002 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2003 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2004 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2005 i2dest_killed = dead_or_set_p (i2, i2dest);
2006 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2008 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2009 in I2SRC. */
2010 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2012 /* Ensure that I3's pattern can be the destination of combines. */
2013 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2014 i1 && i2dest_in_i1src && i1_feeds_i3,
2015 &i3dest_killed))
2017 undo_all ();
2018 return 0;
2021 /* See if any of the insns is a MULT operation. Unless one is, we will
2022 reject a combination that is, since it must be slower. Be conservative
2023 here. */
2024 if (GET_CODE (i2src) == MULT
2025 || (i1 != 0 && GET_CODE (i1src) == MULT)
2026 || (GET_CODE (PATTERN (i3)) == SET
2027 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2028 have_mult = 1;
2030 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2031 We used to do this EXCEPT in one case: I3 has a post-inc in an
2032 output operand. However, that exception can give rise to insns like
2033 mov r3,(r3)+
2034 which is a famous insn on the PDP-11 where the value of r3 used as the
2035 source was model-dependent. Avoid this sort of thing. */
2037 #if 0
2038 if (!(GET_CODE (PATTERN (i3)) == SET
2039 && REG_P (SET_SRC (PATTERN (i3)))
2040 && MEM_P (SET_DEST (PATTERN (i3)))
2041 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2042 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2043 /* It's not the exception. */
2044 #endif
2045 #ifdef AUTO_INC_DEC
2046 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2047 if (REG_NOTE_KIND (link) == REG_INC
2048 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2049 || (i1 != 0
2050 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2052 undo_all ();
2053 return 0;
2055 #endif
2057 /* See if the SETs in I1 or I2 need to be kept around in the merged
2058 instruction: whenever the value set there is still needed past I3.
2059 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2061 For the SET in I1, we have two cases: If I1 and I2 independently
2062 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2064 in I1 needs to be kept around unless I1DEST dies or is set in either
2065 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2066 I1DEST. If so, we know I1 feeds into I2. */
2068 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2070 added_sets_1
2071 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2072 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2074 /* If the set in I2 needs to be kept around, we must make a copy of
2075 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2076 PATTERN (I2), we are only substituting for the original I1DEST, not into
2077 an already-substituted copy. This also prevents making self-referential
2078 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2079 I2DEST. */
2081 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2082 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2083 : PATTERN (i2));
2085 if (added_sets_2)
2086 i2pat = copy_rtx (i2pat);
2088 combine_merges++;
2090 /* Substitute in the latest insn for the regs set by the earlier ones. */
2092 maxreg = max_reg_num ();
2094 subst_insn = i3;
2096 #ifndef HAVE_cc0
2097 /* Many machines that don't use CC0 have insns that can both perform an
2098 arithmetic operation and set the condition code. These operations will
2099 be represented as a PARALLEL with the first element of the vector
2100 being a COMPARE of an arithmetic operation with the constant zero.
2101 The second element of the vector will set some pseudo to the result
2102 of the same arithmetic operation. If we simplify the COMPARE, we won't
2103 match such a pattern and so will generate an extra insn. Here we test
2104 for this case, where both the comparison and the operation result are
2105 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2106 I2SRC. Later we will make the PARALLEL that contains I2. */
2108 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2109 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2110 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2111 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2113 #ifdef SELECT_CC_MODE
2114 rtx *cc_use;
2115 enum machine_mode compare_mode;
2116 #endif
2118 newpat = PATTERN (i3);
2119 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2121 i2_is_used = 1;
2123 #ifdef SELECT_CC_MODE
2124 /* See if a COMPARE with the operand we substituted in should be done
2125 with the mode that is currently being used. If not, do the same
2126 processing we do in `subst' for a SET; namely, if the destination
2127 is used only once, try to replace it with a register of the proper
2128 mode and also replace the COMPARE. */
2129 if (undobuf.other_insn == 0
2130 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2131 &undobuf.other_insn))
2132 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2133 i2src, const0_rtx))
2134 != GET_MODE (SET_DEST (newpat))))
2136 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2137 compare_mode))
2139 unsigned int regno = REGNO (SET_DEST (newpat));
2140 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2142 if (regno >= FIRST_PSEUDO_REGISTER)
2143 SUBST (regno_reg_rtx[regno], new_dest);
2145 SUBST (SET_DEST (newpat), new_dest);
2146 SUBST (XEXP (*cc_use, 0), new_dest);
2147 SUBST (SET_SRC (newpat),
2148 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2150 else
2151 undobuf.other_insn = 0;
2153 #endif
2155 else
2156 #endif
2158 /* It is possible that the source of I2 or I1 may be performing
2159 an unneeded operation, such as a ZERO_EXTEND of something
2160 that is known to have the high part zero. Handle that case
2161 by letting subst look at the innermost one of them.
2163 Another way to do this would be to have a function that tries
2164 to simplify a single insn instead of merging two or more
2165 insns. We don't do this because of the potential of infinite
2166 loops and because of the potential extra memory required.
2167 However, doing it the way we are is a bit of a kludge and
2168 doesn't catch all cases.
2170 But only do this if -fexpensive-optimizations since it slows
2171 things down and doesn't usually win.
2173 This is not done in the COMPARE case above because the
2174 unmodified I2PAT is used in the PARALLEL and so a pattern
2175 with a modified I2SRC would not match. */
2177 if (flag_expensive_optimizations)
2179 /* Pass pc_rtx so no substitutions are done, just
2180 simplifications. */
2181 if (i1)
2183 subst_low_cuid = INSN_CUID (i1);
2184 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2186 else
2188 subst_low_cuid = INSN_CUID (i2);
2189 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2193 n_occurrences = 0; /* `subst' counts here */
2195 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2196 need to make a unique copy of I2SRC each time we substitute it
2197 to avoid self-referential rtl. */
2199 subst_low_cuid = INSN_CUID (i2);
2200 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2201 ! i1_feeds_i3 && i1dest_in_i1src);
2202 substed_i2 = 1;
2204 /* Record whether i2's body now appears within i3's body. */
2205 i2_is_used = n_occurrences;
2208 /* If we already got a failure, don't try to do more. Otherwise,
2209 try to substitute in I1 if we have it. */
2211 if (i1 && GET_CODE (newpat) != CLOBBER)
2213 /* Before we can do this substitution, we must redo the test done
2214 above (see detailed comments there) that ensures that I1DEST
2215 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2217 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2218 0, (rtx*) 0))
2220 undo_all ();
2221 return 0;
2224 n_occurrences = 0;
2225 subst_low_cuid = INSN_CUID (i1);
2226 newpat = subst (newpat, i1dest, i1src, 0, 0);
2227 substed_i1 = 1;
2230 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2231 to count all the ways that I2SRC and I1SRC can be used. */
2232 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2233 && i2_is_used + added_sets_2 > 1)
2234 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2235 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2236 > 1))
2237 /* Fail if we tried to make a new register. */
2238 || max_reg_num () != maxreg
2239 /* Fail if we couldn't do something and have a CLOBBER. */
2240 || GET_CODE (newpat) == CLOBBER
2241 /* Fail if this new pattern is a MULT and we didn't have one before
2242 at the outer level. */
2243 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2244 && ! have_mult))
2246 undo_all ();
2247 return 0;
2250 /* If the actions of the earlier insns must be kept
2251 in addition to substituting them into the latest one,
2252 we must make a new PARALLEL for the latest insn
2253 to hold additional the SETs. */
2255 if (added_sets_1 || added_sets_2)
2257 combine_extras++;
2259 if (GET_CODE (newpat) == PARALLEL)
2261 rtvec old = XVEC (newpat, 0);
2262 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2263 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2264 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2265 sizeof (old->elem[0]) * old->num_elem);
2267 else
2269 rtx old = newpat;
2270 total_sets = 1 + added_sets_1 + added_sets_2;
2271 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2272 XVECEXP (newpat, 0, 0) = old;
2275 if (added_sets_1)
2276 XVECEXP (newpat, 0, --total_sets)
2277 = (GET_CODE (PATTERN (i1)) == PARALLEL
2278 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2280 if (added_sets_2)
2282 /* If there is no I1, use I2's body as is. We used to also not do
2283 the subst call below if I2 was substituted into I3,
2284 but that could lose a simplification. */
2285 if (i1 == 0)
2286 XVECEXP (newpat, 0, --total_sets) = i2pat;
2287 else
2288 /* See comment where i2pat is assigned. */
2289 XVECEXP (newpat, 0, --total_sets)
2290 = subst (i2pat, i1dest, i1src, 0, 0);
2294 /* We come here when we are replacing a destination in I2 with the
2295 destination of I3. */
2296 validate_replacement:
2298 /* Note which hard regs this insn has as inputs. */
2299 mark_used_regs_combine (newpat);
2301 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2302 consider splitting this pattern, we might need these clobbers. */
2303 if (i1 && GET_CODE (newpat) == PARALLEL
2304 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2306 int len = XVECLEN (newpat, 0);
2308 newpat_vec_with_clobbers = rtvec_alloc (len);
2309 for (i = 0; i < len; i++)
2310 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2313 /* Is the result of combination a valid instruction? */
2314 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2316 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2317 the second SET's destination is a register that is unused and isn't
2318 marked as an instruction that might trap in an EH region. In that case,
2319 we just need the first SET. This can occur when simplifying a divmod
2320 insn. We *must* test for this case here because the code below that
2321 splits two independent SETs doesn't handle this case correctly when it
2322 updates the register status.
2324 It's pointless doing this if we originally had two sets, one from
2325 i3, and one from i2. Combining then splitting the parallel results
2326 in the original i2 again plus an invalid insn (which we delete).
2327 The net effect is only to move instructions around, which makes
2328 debug info less accurate.
2330 Also check the case where the first SET's destination is unused.
2331 That would not cause incorrect code, but does cause an unneeded
2332 insn to remain. */
2334 if (insn_code_number < 0
2335 && !(added_sets_2 && i1 == 0)
2336 && GET_CODE (newpat) == PARALLEL
2337 && XVECLEN (newpat, 0) == 2
2338 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2339 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2340 && asm_noperands (newpat) < 0)
2342 rtx set0 = XVECEXP (newpat, 0, 0);
2343 rtx set1 = XVECEXP (newpat, 0, 1);
2344 rtx note;
2346 if (((REG_P (SET_DEST (set1))
2347 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2348 || (GET_CODE (SET_DEST (set1)) == SUBREG
2349 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2350 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2351 || INTVAL (XEXP (note, 0)) <= 0)
2352 && ! side_effects_p (SET_SRC (set1)))
2354 newpat = set0;
2355 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2358 else if (((REG_P (SET_DEST (set0))
2359 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2360 || (GET_CODE (SET_DEST (set0)) == SUBREG
2361 && find_reg_note (i3, REG_UNUSED,
2362 SUBREG_REG (SET_DEST (set0)))))
2363 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2364 || INTVAL (XEXP (note, 0)) <= 0)
2365 && ! side_effects_p (SET_SRC (set0)))
2367 newpat = set1;
2368 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2370 if (insn_code_number >= 0)
2372 /* If we will be able to accept this, we have made a
2373 change to the destination of I3. This requires us to
2374 do a few adjustments. */
2376 PATTERN (i3) = newpat;
2377 adjust_for_new_dest (i3);
2382 /* If we were combining three insns and the result is a simple SET
2383 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2384 insns. There are two ways to do this. It can be split using a
2385 machine-specific method (like when you have an addition of a large
2386 constant) or by combine in the function find_split_point. */
2388 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2389 && asm_noperands (newpat) < 0)
2391 rtx m_split, *split;
2392 rtx ni2dest = i2dest;
2394 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2395 use I2DEST as a scratch register will help. In the latter case,
2396 convert I2DEST to the mode of the source of NEWPAT if we can. */
2398 m_split = split_insns (newpat, i3);
2400 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2401 inputs of NEWPAT. */
2403 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2404 possible to try that as a scratch reg. This would require adding
2405 more code to make it work though. */
2407 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2409 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2410 /* If I2DEST is a hard register or the only use of a pseudo,
2411 we can change its mode. */
2412 if (new_mode != GET_MODE (i2dest)
2413 && new_mode != VOIDmode
2414 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2415 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2416 REGNO (i2dest));
2418 m_split = split_insns (gen_rtx_PARALLEL
2419 (VOIDmode,
2420 gen_rtvec (2, newpat,
2421 gen_rtx_CLOBBER (VOIDmode,
2422 ni2dest))),
2423 i3);
2424 /* If the split with the mode-changed register didn't work, try
2425 the original register. */
2426 if (! m_split && ni2dest != i2dest)
2428 ni2dest = i2dest;
2429 m_split = split_insns (gen_rtx_PARALLEL
2430 (VOIDmode,
2431 gen_rtvec (2, newpat,
2432 gen_rtx_CLOBBER (VOIDmode,
2433 i2dest))),
2434 i3);
2438 /* If recog_for_combine has discarded clobbers, try to use them
2439 again for the split. */
2440 if (m_split == 0 && newpat_vec_with_clobbers)
2441 m_split
2442 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2443 newpat_vec_with_clobbers), i3);
2445 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2447 m_split = PATTERN (m_split);
2448 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2449 if (insn_code_number >= 0)
2450 newpat = m_split;
2452 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2453 && (next_real_insn (i2) == i3
2454 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2456 rtx i2set, i3set;
2457 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2458 newi2pat = PATTERN (m_split);
2460 i3set = single_set (NEXT_INSN (m_split));
2461 i2set = single_set (m_split);
2463 /* In case we changed the mode of I2DEST, replace it in the
2464 pseudo-register table here. We can't do it above in case this
2465 code doesn't get executed and we do a split the other way. */
2467 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2468 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2470 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2472 /* If I2 or I3 has multiple SETs, we won't know how to track
2473 register status, so don't use these insns. If I2's destination
2474 is used between I2 and I3, we also can't use these insns. */
2476 if (i2_code_number >= 0 && i2set && i3set
2477 && (next_real_insn (i2) == i3
2478 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2479 insn_code_number = recog_for_combine (&newi3pat, i3,
2480 &new_i3_notes);
2481 if (insn_code_number >= 0)
2482 newpat = newi3pat;
2484 /* It is possible that both insns now set the destination of I3.
2485 If so, we must show an extra use of it. */
2487 if (insn_code_number >= 0)
2489 rtx new_i3_dest = SET_DEST (i3set);
2490 rtx new_i2_dest = SET_DEST (i2set);
2492 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2493 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2494 || GET_CODE (new_i3_dest) == SUBREG)
2495 new_i3_dest = XEXP (new_i3_dest, 0);
2497 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2498 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2499 || GET_CODE (new_i2_dest) == SUBREG)
2500 new_i2_dest = XEXP (new_i2_dest, 0);
2502 if (REG_P (new_i3_dest)
2503 && REG_P (new_i2_dest)
2504 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2505 REG_N_SETS (REGNO (new_i2_dest))++;
2509 /* If we can split it and use I2DEST, go ahead and see if that
2510 helps things be recognized. Verify that none of the registers
2511 are set between I2 and I3. */
2512 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2513 #ifdef HAVE_cc0
2514 && REG_P (i2dest)
2515 #endif
2516 /* We need I2DEST in the proper mode. If it is a hard register
2517 or the only use of a pseudo, we can change its mode.
2518 Make sure we don't change a hard register to have a mode that
2519 isn't valid for it, or change the number of registers. */
2520 && (GET_MODE (*split) == GET_MODE (i2dest)
2521 || GET_MODE (*split) == VOIDmode
2522 || can_change_dest_mode (i2dest, added_sets_2,
2523 GET_MODE (*split)))
2524 && (next_real_insn (i2) == i3
2525 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2526 /* We can't overwrite I2DEST if its value is still used by
2527 NEWPAT. */
2528 && ! reg_referenced_p (i2dest, newpat))
2530 rtx newdest = i2dest;
2531 enum rtx_code split_code = GET_CODE (*split);
2532 enum machine_mode split_mode = GET_MODE (*split);
2533 bool subst_done = false;
2534 newi2pat = NULL_RTX;
2536 /* Get NEWDEST as a register in the proper mode. We have already
2537 validated that we can do this. */
2538 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2540 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2542 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2543 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2546 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2547 an ASHIFT. This can occur if it was inside a PLUS and hence
2548 appeared to be a memory address. This is a kludge. */
2549 if (split_code == MULT
2550 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2551 && INTVAL (XEXP (*split, 1)) > 0
2552 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2554 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2555 XEXP (*split, 0), GEN_INT (i)));
2556 /* Update split_code because we may not have a multiply
2557 anymore. */
2558 split_code = GET_CODE (*split);
2561 #ifdef INSN_SCHEDULING
2562 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2563 be written as a ZERO_EXTEND. */
2564 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2566 #ifdef LOAD_EXTEND_OP
2567 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2568 what it really is. */
2569 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2570 == SIGN_EXTEND)
2571 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2572 SUBREG_REG (*split)));
2573 else
2574 #endif
2575 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2576 SUBREG_REG (*split)));
2578 #endif
2580 /* Attempt to split binary operators using arithmetic identities. */
2581 if (BINARY_P (SET_SRC (newpat))
2582 && split_mode == GET_MODE (SET_SRC (newpat))
2583 && ! side_effects_p (SET_SRC (newpat)))
2585 rtx setsrc = SET_SRC (newpat);
2586 enum machine_mode mode = GET_MODE (setsrc);
2587 enum rtx_code code = GET_CODE (setsrc);
2588 rtx src_op0 = XEXP (setsrc, 0);
2589 rtx src_op1 = XEXP (setsrc, 1);
2591 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
2592 if (rtx_equal_p (src_op0, src_op1))
2594 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
2595 SUBST (XEXP (setsrc, 0), newdest);
2596 SUBST (XEXP (setsrc, 1), newdest);
2597 subst_done = true;
2599 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
2600 else if ((code == PLUS || code == MULT)
2601 && GET_CODE (src_op0) == code
2602 && GET_CODE (XEXP (src_op0, 0)) == code
2603 && (INTEGRAL_MODE_P (mode)
2604 || (FLOAT_MODE_P (mode)
2605 && flag_unsafe_math_optimizations)))
2607 rtx p = XEXP (XEXP (src_op0, 0), 0);
2608 rtx q = XEXP (XEXP (src_op0, 0), 1);
2609 rtx r = XEXP (src_op0, 1);
2610 rtx s = src_op1;
2612 /* Split both "((X op Y) op X) op Y" and
2613 "((X op Y) op Y) op X" as "T op T" where T is
2614 "X op Y". */
2615 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
2616 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
2618 newi2pat = gen_rtx_SET (VOIDmode, newdest,
2619 XEXP (src_op0, 0));
2620 SUBST (XEXP (setsrc, 0), newdest);
2621 SUBST (XEXP (setsrc, 1), newdest);
2622 subst_done = true;
2624 /* Split "((X op X) op Y) op Y)" as "T op T" where
2625 T is "X op Y". */
2626 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
2628 rtx tmp = simplify_gen_binary (code, mode, p, r);
2629 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
2630 SUBST (XEXP (setsrc, 0), newdest);
2631 SUBST (XEXP (setsrc, 1), newdest);
2632 subst_done = true;
2637 if (!subst_done)
2639 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2640 SUBST (*split, newdest);
2643 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2645 /* recog_for_combine might have added CLOBBERs to newi2pat.
2646 Make sure NEWPAT does not depend on the clobbered regs. */
2647 if (GET_CODE (newi2pat) == PARALLEL)
2648 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2649 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2651 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2652 if (reg_overlap_mentioned_p (reg, newpat))
2654 undo_all ();
2655 return 0;
2659 /* If the split point was a MULT and we didn't have one before,
2660 don't use one now. */
2661 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2662 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2666 /* Check for a case where we loaded from memory in a narrow mode and
2667 then sign extended it, but we need both registers. In that case,
2668 we have a PARALLEL with both loads from the same memory location.
2669 We can split this into a load from memory followed by a register-register
2670 copy. This saves at least one insn, more if register allocation can
2671 eliminate the copy.
2673 We cannot do this if the destination of the first assignment is a
2674 condition code register or cc0. We eliminate this case by making sure
2675 the SET_DEST and SET_SRC have the same mode.
2677 We cannot do this if the destination of the second assignment is
2678 a register that we have already assumed is zero-extended. Similarly
2679 for a SUBREG of such a register. */
2681 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2682 && GET_CODE (newpat) == PARALLEL
2683 && XVECLEN (newpat, 0) == 2
2684 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2685 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2686 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2687 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2688 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2689 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2690 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2691 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2692 INSN_CUID (i2))
2693 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2694 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2695 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2696 (REG_P (temp)
2697 && reg_stat[REGNO (temp)].nonzero_bits != 0
2698 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2699 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2700 && (reg_stat[REGNO (temp)].nonzero_bits
2701 != GET_MODE_MASK (word_mode))))
2702 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2703 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2704 (REG_P (temp)
2705 && reg_stat[REGNO (temp)].nonzero_bits != 0
2706 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2707 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2708 && (reg_stat[REGNO (temp)].nonzero_bits
2709 != GET_MODE_MASK (word_mode)))))
2710 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2711 SET_SRC (XVECEXP (newpat, 0, 1)))
2712 && ! find_reg_note (i3, REG_UNUSED,
2713 SET_DEST (XVECEXP (newpat, 0, 0))))
2715 rtx ni2dest;
2717 newi2pat = XVECEXP (newpat, 0, 0);
2718 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2719 newpat = XVECEXP (newpat, 0, 1);
2720 SUBST (SET_SRC (newpat),
2721 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2722 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2724 if (i2_code_number >= 0)
2725 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2727 if (insn_code_number >= 0)
2728 swap_i2i3 = 1;
2731 /* Similarly, check for a case where we have a PARALLEL of two independent
2732 SETs but we started with three insns. In this case, we can do the sets
2733 as two separate insns. This case occurs when some SET allows two
2734 other insns to combine, but the destination of that SET is still live. */
2736 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2737 && GET_CODE (newpat) == PARALLEL
2738 && XVECLEN (newpat, 0) == 2
2739 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2740 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2741 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2742 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2743 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2744 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2745 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2746 INSN_CUID (i2))
2747 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2748 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2749 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2750 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2751 XVECEXP (newpat, 0, 0))
2752 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2753 XVECEXP (newpat, 0, 1))
2754 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2755 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2757 /* Normally, it doesn't matter which of the two is done first,
2758 but it does if one references cc0. In that case, it has to
2759 be first. */
2760 #ifdef HAVE_cc0
2761 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2763 newi2pat = XVECEXP (newpat, 0, 0);
2764 newpat = XVECEXP (newpat, 0, 1);
2766 else
2767 #endif
2769 newi2pat = XVECEXP (newpat, 0, 1);
2770 newpat = XVECEXP (newpat, 0, 0);
2773 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2775 if (i2_code_number >= 0)
2776 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2779 /* If it still isn't recognized, fail and change things back the way they
2780 were. */
2781 if ((insn_code_number < 0
2782 /* Is the result a reasonable ASM_OPERANDS? */
2783 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2785 undo_all ();
2786 return 0;
2789 /* If we had to change another insn, make sure it is valid also. */
2790 if (undobuf.other_insn)
2792 rtx other_pat = PATTERN (undobuf.other_insn);
2793 rtx new_other_notes;
2794 rtx note, next;
2796 CLEAR_HARD_REG_SET (newpat_used_regs);
2798 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2799 &new_other_notes);
2801 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2803 undo_all ();
2804 return 0;
2807 PATTERN (undobuf.other_insn) = other_pat;
2809 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2810 are still valid. Then add any non-duplicate notes added by
2811 recog_for_combine. */
2812 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2814 next = XEXP (note, 1);
2816 if (REG_NOTE_KIND (note) == REG_UNUSED
2817 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2819 if (REG_P (XEXP (note, 0)))
2820 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2822 remove_note (undobuf.other_insn, note);
2826 for (note = new_other_notes; note; note = XEXP (note, 1))
2827 if (REG_P (XEXP (note, 0)))
2828 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2830 distribute_notes (new_other_notes, undobuf.other_insn,
2831 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2833 #ifdef HAVE_cc0
2834 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2835 they are adjacent to each other or not. */
2837 rtx p = prev_nonnote_insn (i3);
2838 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2839 && sets_cc0_p (newi2pat))
2841 undo_all ();
2842 return 0;
2845 #endif
2847 /* Only allow this combination if insn_rtx_costs reports that the
2848 replacement instructions are cheaper than the originals. */
2849 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2851 undo_all ();
2852 return 0;
2855 /* We now know that we can do this combination. Merge the insns and
2856 update the status of registers and LOG_LINKS. */
2858 if (swap_i2i3)
2860 rtx insn;
2861 rtx link;
2862 rtx ni2dest;
2864 /* I3 now uses what used to be its destination and which is now
2865 I2's destination. This requires us to do a few adjustments. */
2866 PATTERN (i3) = newpat;
2867 adjust_for_new_dest (i3);
2869 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2870 so we still will.
2872 However, some later insn might be using I2's dest and have
2873 a LOG_LINK pointing at I3. We must remove this link.
2874 The simplest way to remove the link is to point it at I1,
2875 which we know will be a NOTE. */
2877 /* newi2pat is usually a SET here; however, recog_for_combine might
2878 have added some clobbers. */
2879 if (GET_CODE (newi2pat) == PARALLEL)
2880 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2881 else
2882 ni2dest = SET_DEST (newi2pat);
2884 for (insn = NEXT_INSN (i3);
2885 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2886 || insn != BB_HEAD (this_basic_block->next_bb));
2887 insn = NEXT_INSN (insn))
2889 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2891 for (link = LOG_LINKS (insn); link;
2892 link = XEXP (link, 1))
2893 if (XEXP (link, 0) == i3)
2894 XEXP (link, 0) = i1;
2896 break;
2902 rtx i3notes, i2notes, i1notes = 0;
2903 rtx i3links, i2links, i1links = 0;
2904 rtx midnotes = 0;
2905 unsigned int regno;
2906 /* Compute which registers we expect to eliminate. newi2pat may be setting
2907 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2908 same as i3dest, in which case newi2pat may be setting i1dest. */
2909 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2910 || i2dest_in_i2src || i2dest_in_i1src
2911 || !i2dest_killed
2912 ? 0 : i2dest);
2913 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2914 || (newi2pat && reg_set_p (i1dest, newi2pat))
2915 || !i1dest_killed
2916 ? 0 : i1dest);
2918 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2919 clear them. */
2920 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2921 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2922 if (i1)
2923 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2925 /* Ensure that we do not have something that should not be shared but
2926 occurs multiple times in the new insns. Check this by first
2927 resetting all the `used' flags and then copying anything is shared. */
2929 reset_used_flags (i3notes);
2930 reset_used_flags (i2notes);
2931 reset_used_flags (i1notes);
2932 reset_used_flags (newpat);
2933 reset_used_flags (newi2pat);
2934 if (undobuf.other_insn)
2935 reset_used_flags (PATTERN (undobuf.other_insn));
2937 i3notes = copy_rtx_if_shared (i3notes);
2938 i2notes = copy_rtx_if_shared (i2notes);
2939 i1notes = copy_rtx_if_shared (i1notes);
2940 newpat = copy_rtx_if_shared (newpat);
2941 newi2pat = copy_rtx_if_shared (newi2pat);
2942 if (undobuf.other_insn)
2943 reset_used_flags (PATTERN (undobuf.other_insn));
2945 INSN_CODE (i3) = insn_code_number;
2946 PATTERN (i3) = newpat;
2948 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2950 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2952 reset_used_flags (call_usage);
2953 call_usage = copy_rtx (call_usage);
2955 if (substed_i2)
2956 replace_rtx (call_usage, i2dest, i2src);
2958 if (substed_i1)
2959 replace_rtx (call_usage, i1dest, i1src);
2961 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2964 if (undobuf.other_insn)
2965 INSN_CODE (undobuf.other_insn) = other_code_number;
2967 /* We had one special case above where I2 had more than one set and
2968 we replaced a destination of one of those sets with the destination
2969 of I3. In that case, we have to update LOG_LINKS of insns later
2970 in this basic block. Note that this (expensive) case is rare.
2972 Also, in this case, we must pretend that all REG_NOTEs for I2
2973 actually came from I3, so that REG_UNUSED notes from I2 will be
2974 properly handled. */
2976 if (i3_subst_into_i2)
2978 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2979 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2980 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2981 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2982 && ! find_reg_note (i2, REG_UNUSED,
2983 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2984 for (temp = NEXT_INSN (i2);
2985 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2986 || BB_HEAD (this_basic_block) != temp);
2987 temp = NEXT_INSN (temp))
2988 if (temp != i3 && INSN_P (temp))
2989 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2990 if (XEXP (link, 0) == i2)
2991 XEXP (link, 0) = i3;
2993 if (i3notes)
2995 rtx link = i3notes;
2996 while (XEXP (link, 1))
2997 link = XEXP (link, 1);
2998 XEXP (link, 1) = i2notes;
3000 else
3001 i3notes = i2notes;
3002 i2notes = 0;
3005 LOG_LINKS (i3) = 0;
3006 REG_NOTES (i3) = 0;
3007 LOG_LINKS (i2) = 0;
3008 REG_NOTES (i2) = 0;
3010 if (newi2pat)
3012 INSN_CODE (i2) = i2_code_number;
3013 PATTERN (i2) = newi2pat;
3015 else
3016 SET_INSN_DELETED (i2);
3018 if (i1)
3020 LOG_LINKS (i1) = 0;
3021 REG_NOTES (i1) = 0;
3022 SET_INSN_DELETED (i1);
3025 /* Get death notes for everything that is now used in either I3 or
3026 I2 and used to die in a previous insn. If we built two new
3027 patterns, move from I1 to I2 then I2 to I3 so that we get the
3028 proper movement on registers that I2 modifies. */
3030 if (newi2pat)
3032 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
3033 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
3035 else
3036 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
3037 i3, &midnotes);
3039 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3040 if (i3notes)
3041 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3042 elim_i2, elim_i1);
3043 if (i2notes)
3044 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3045 elim_i2, elim_i1);
3046 if (i1notes)
3047 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3048 elim_i2, elim_i1);
3049 if (midnotes)
3050 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3051 elim_i2, elim_i1);
3053 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3054 know these are REG_UNUSED and want them to go to the desired insn,
3055 so we always pass it as i3. We have not counted the notes in
3056 reg_n_deaths yet, so we need to do so now. */
3058 if (newi2pat && new_i2_notes)
3060 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
3061 if (REG_P (XEXP (temp, 0)))
3062 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3064 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3067 if (new_i3_notes)
3069 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3070 if (REG_P (XEXP (temp, 0)))
3071 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3073 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3076 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3077 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3078 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3079 in that case, it might delete I2. Similarly for I2 and I1.
3080 Show an additional death due to the REG_DEAD note we make here. If
3081 we discard it in distribute_notes, we will decrement it again. */
3083 if (i3dest_killed)
3085 if (REG_P (i3dest_killed))
3086 REG_N_DEATHS (REGNO (i3dest_killed))++;
3088 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3089 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3090 NULL_RTX),
3091 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3092 else
3093 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3094 NULL_RTX),
3095 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3096 elim_i2, elim_i1);
3099 if (i2dest_in_i2src)
3101 if (REG_P (i2dest))
3102 REG_N_DEATHS (REGNO (i2dest))++;
3104 if (newi2pat && reg_set_p (i2dest, newi2pat))
3105 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3106 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3107 else
3108 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3109 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3110 NULL_RTX, NULL_RTX);
3113 if (i1dest_in_i1src)
3115 if (REG_P (i1dest))
3116 REG_N_DEATHS (REGNO (i1dest))++;
3118 if (newi2pat && reg_set_p (i1dest, newi2pat))
3119 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3120 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3121 else
3122 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3123 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3124 NULL_RTX, NULL_RTX);
3127 distribute_links (i3links);
3128 distribute_links (i2links);
3129 distribute_links (i1links);
3131 if (REG_P (i2dest))
3133 rtx link;
3134 rtx i2_insn = 0, i2_val = 0, set;
3136 /* The insn that used to set this register doesn't exist, and
3137 this life of the register may not exist either. See if one of
3138 I3's links points to an insn that sets I2DEST. If it does,
3139 that is now the last known value for I2DEST. If we don't update
3140 this and I2 set the register to a value that depended on its old
3141 contents, we will get confused. If this insn is used, thing
3142 will be set correctly in combine_instructions. */
3144 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3145 if ((set = single_set (XEXP (link, 0))) != 0
3146 && rtx_equal_p (i2dest, SET_DEST (set)))
3147 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3149 record_value_for_reg (i2dest, i2_insn, i2_val);
3151 /* If the reg formerly set in I2 died only once and that was in I3,
3152 zero its use count so it won't make `reload' do any work. */
3153 if (! added_sets_2
3154 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3155 && ! i2dest_in_i2src)
3157 regno = REGNO (i2dest);
3158 REG_N_SETS (regno)--;
3162 if (i1 && REG_P (i1dest))
3164 rtx link;
3165 rtx i1_insn = 0, i1_val = 0, set;
3167 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3168 if ((set = single_set (XEXP (link, 0))) != 0
3169 && rtx_equal_p (i1dest, SET_DEST (set)))
3170 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3172 record_value_for_reg (i1dest, i1_insn, i1_val);
3174 regno = REGNO (i1dest);
3175 if (! added_sets_1 && ! i1dest_in_i1src)
3176 REG_N_SETS (regno)--;
3179 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3180 been made to this insn. The order of
3181 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3182 can affect nonzero_bits of newpat */
3183 if (newi2pat)
3184 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3185 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3187 /* Set new_direct_jump_p if a new return or simple jump instruction
3188 has been created.
3190 If I3 is now an unconditional jump, ensure that it has a
3191 BARRIER following it since it may have initially been a
3192 conditional jump. It may also be the last nonnote insn. */
3194 if (returnjump_p (i3) || any_uncondjump_p (i3))
3196 *new_direct_jump_p = 1;
3197 mark_jump_label (PATTERN (i3), i3, 0);
3199 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3200 || !BARRIER_P (temp))
3201 emit_barrier_after (i3);
3204 if (undobuf.other_insn != NULL_RTX
3205 && (returnjump_p (undobuf.other_insn)
3206 || any_uncondjump_p (undobuf.other_insn)))
3208 *new_direct_jump_p = 1;
3210 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3211 || !BARRIER_P (temp))
3212 emit_barrier_after (undobuf.other_insn);
3215 /* An NOOP jump does not need barrier, but it does need cleaning up
3216 of CFG. */
3217 if (GET_CODE (newpat) == SET
3218 && SET_SRC (newpat) == pc_rtx
3219 && SET_DEST (newpat) == pc_rtx)
3220 *new_direct_jump_p = 1;
3223 combine_successes++;
3224 undo_commit ();
3226 if (added_links_insn
3227 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3228 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3229 return added_links_insn;
3230 else
3231 return newi2pat ? i2 : i3;
3234 /* Undo all the modifications recorded in undobuf. */
3236 static void
3237 undo_all (void)
3239 struct undo *undo, *next;
3241 for (undo = undobuf.undos; undo; undo = next)
3243 next = undo->next;
3244 if (undo->is_int)
3245 *undo->where.i = undo->old_contents.i;
3246 else
3247 *undo->where.r = undo->old_contents.r;
3249 undo->next = undobuf.frees;
3250 undobuf.frees = undo;
3253 undobuf.undos = 0;
3256 /* We've committed to accepting the changes we made. Move all
3257 of the undos to the free list. */
3259 static void
3260 undo_commit (void)
3262 struct undo *undo, *next;
3264 for (undo = undobuf.undos; undo; undo = next)
3266 next = undo->next;
3267 undo->next = undobuf.frees;
3268 undobuf.frees = undo;
3270 undobuf.undos = 0;
3274 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3275 where we have an arithmetic expression and return that point. LOC will
3276 be inside INSN.
3278 try_combine will call this function to see if an insn can be split into
3279 two insns. */
3281 static rtx *
3282 find_split_point (rtx *loc, rtx insn)
3284 rtx x = *loc;
3285 enum rtx_code code = GET_CODE (x);
3286 rtx *split;
3287 unsigned HOST_WIDE_INT len = 0;
3288 HOST_WIDE_INT pos = 0;
3289 int unsignedp = 0;
3290 rtx inner = NULL_RTX;
3292 /* First special-case some codes. */
3293 switch (code)
3295 case SUBREG:
3296 #ifdef INSN_SCHEDULING
3297 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3298 point. */
3299 if (MEM_P (SUBREG_REG (x)))
3300 return loc;
3301 #endif
3302 return find_split_point (&SUBREG_REG (x), insn);
3304 case MEM:
3305 #ifdef HAVE_lo_sum
3306 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3307 using LO_SUM and HIGH. */
3308 if (GET_CODE (XEXP (x, 0)) == CONST
3309 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3311 SUBST (XEXP (x, 0),
3312 gen_rtx_LO_SUM (Pmode,
3313 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3314 XEXP (x, 0)));
3315 return &XEXP (XEXP (x, 0), 0);
3317 #endif
3319 /* If we have a PLUS whose second operand is a constant and the
3320 address is not valid, perhaps will can split it up using
3321 the machine-specific way to split large constants. We use
3322 the first pseudo-reg (one of the virtual regs) as a placeholder;
3323 it will not remain in the result. */
3324 if (GET_CODE (XEXP (x, 0)) == PLUS
3325 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3326 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3328 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3329 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3330 subst_insn);
3332 /* This should have produced two insns, each of which sets our
3333 placeholder. If the source of the second is a valid address,
3334 we can make put both sources together and make a split point
3335 in the middle. */
3337 if (seq
3338 && NEXT_INSN (seq) != NULL_RTX
3339 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3340 && NONJUMP_INSN_P (seq)
3341 && GET_CODE (PATTERN (seq)) == SET
3342 && SET_DEST (PATTERN (seq)) == reg
3343 && ! reg_mentioned_p (reg,
3344 SET_SRC (PATTERN (seq)))
3345 && NONJUMP_INSN_P (NEXT_INSN (seq))
3346 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3347 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3348 && memory_address_p (GET_MODE (x),
3349 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3351 rtx src1 = SET_SRC (PATTERN (seq));
3352 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3354 /* Replace the placeholder in SRC2 with SRC1. If we can
3355 find where in SRC2 it was placed, that can become our
3356 split point and we can replace this address with SRC2.
3357 Just try two obvious places. */
3359 src2 = replace_rtx (src2, reg, src1);
3360 split = 0;
3361 if (XEXP (src2, 0) == src1)
3362 split = &XEXP (src2, 0);
3363 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3364 && XEXP (XEXP (src2, 0), 0) == src1)
3365 split = &XEXP (XEXP (src2, 0), 0);
3367 if (split)
3369 SUBST (XEXP (x, 0), src2);
3370 return split;
3374 /* If that didn't work, perhaps the first operand is complex and
3375 needs to be computed separately, so make a split point there.
3376 This will occur on machines that just support REG + CONST
3377 and have a constant moved through some previous computation. */
3379 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3380 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3381 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3382 return &XEXP (XEXP (x, 0), 0);
3384 break;
3386 case SET:
3387 #ifdef HAVE_cc0
3388 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3389 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3390 we need to put the operand into a register. So split at that
3391 point. */
3393 if (SET_DEST (x) == cc0_rtx
3394 && GET_CODE (SET_SRC (x)) != COMPARE
3395 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3396 && !OBJECT_P (SET_SRC (x))
3397 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3398 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3399 return &SET_SRC (x);
3400 #endif
3402 /* See if we can split SET_SRC as it stands. */
3403 split = find_split_point (&SET_SRC (x), insn);
3404 if (split && split != &SET_SRC (x))
3405 return split;
3407 /* See if we can split SET_DEST as it stands. */
3408 split = find_split_point (&SET_DEST (x), insn);
3409 if (split && split != &SET_DEST (x))
3410 return split;
3412 /* See if this is a bitfield assignment with everything constant. If
3413 so, this is an IOR of an AND, so split it into that. */
3414 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3415 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3416 <= HOST_BITS_PER_WIDE_INT)
3417 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3418 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3419 && GET_CODE (SET_SRC (x)) == CONST_INT
3420 && ((INTVAL (XEXP (SET_DEST (x), 1))
3421 + INTVAL (XEXP (SET_DEST (x), 2)))
3422 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3423 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3425 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3426 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3427 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3428 rtx dest = XEXP (SET_DEST (x), 0);
3429 enum machine_mode mode = GET_MODE (dest);
3430 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3431 rtx or_mask;
3433 if (BITS_BIG_ENDIAN)
3434 pos = GET_MODE_BITSIZE (mode) - len - pos;
3436 or_mask = gen_int_mode (src << pos, mode);
3437 if (src == mask)
3438 SUBST (SET_SRC (x),
3439 simplify_gen_binary (IOR, mode, dest, or_mask));
3440 else
3442 rtx negmask = gen_int_mode (~(mask << pos), mode);
3443 SUBST (SET_SRC (x),
3444 simplify_gen_binary (IOR, mode,
3445 simplify_gen_binary (AND, mode,
3446 dest, negmask),
3447 or_mask));
3450 SUBST (SET_DEST (x), dest);
3452 split = find_split_point (&SET_SRC (x), insn);
3453 if (split && split != &SET_SRC (x))
3454 return split;
3457 /* Otherwise, see if this is an operation that we can split into two.
3458 If so, try to split that. */
3459 code = GET_CODE (SET_SRC (x));
3461 switch (code)
3463 case AND:
3464 /* If we are AND'ing with a large constant that is only a single
3465 bit and the result is only being used in a context where we
3466 need to know if it is zero or nonzero, replace it with a bit
3467 extraction. This will avoid the large constant, which might
3468 have taken more than one insn to make. If the constant were
3469 not a valid argument to the AND but took only one insn to make,
3470 this is no worse, but if it took more than one insn, it will
3471 be better. */
3473 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3474 && REG_P (XEXP (SET_SRC (x), 0))
3475 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3476 && REG_P (SET_DEST (x))
3477 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3478 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3479 && XEXP (*split, 0) == SET_DEST (x)
3480 && XEXP (*split, 1) == const0_rtx)
3482 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3483 XEXP (SET_SRC (x), 0),
3484 pos, NULL_RTX, 1, 1, 0, 0);
3485 if (extraction != 0)
3487 SUBST (SET_SRC (x), extraction);
3488 return find_split_point (loc, insn);
3491 break;
3493 case NE:
3494 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3495 is known to be on, this can be converted into a NEG of a shift. */
3496 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3497 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3498 && 1 <= (pos = exact_log2
3499 (nonzero_bits (XEXP (SET_SRC (x), 0),
3500 GET_MODE (XEXP (SET_SRC (x), 0))))))
3502 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3504 SUBST (SET_SRC (x),
3505 gen_rtx_NEG (mode,
3506 gen_rtx_LSHIFTRT (mode,
3507 XEXP (SET_SRC (x), 0),
3508 GEN_INT (pos))));
3510 split = find_split_point (&SET_SRC (x), insn);
3511 if (split && split != &SET_SRC (x))
3512 return split;
3514 break;
3516 case SIGN_EXTEND:
3517 inner = XEXP (SET_SRC (x), 0);
3519 /* We can't optimize if either mode is a partial integer
3520 mode as we don't know how many bits are significant
3521 in those modes. */
3522 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3523 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3524 break;
3526 pos = 0;
3527 len = GET_MODE_BITSIZE (GET_MODE (inner));
3528 unsignedp = 0;
3529 break;
3531 case SIGN_EXTRACT:
3532 case ZERO_EXTRACT:
3533 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3534 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3536 inner = XEXP (SET_SRC (x), 0);
3537 len = INTVAL (XEXP (SET_SRC (x), 1));
3538 pos = INTVAL (XEXP (SET_SRC (x), 2));
3540 if (BITS_BIG_ENDIAN)
3541 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3542 unsignedp = (code == ZERO_EXTRACT);
3544 break;
3546 default:
3547 break;
3550 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3552 enum machine_mode mode = GET_MODE (SET_SRC (x));
3554 /* For unsigned, we have a choice of a shift followed by an
3555 AND or two shifts. Use two shifts for field sizes where the
3556 constant might be too large. We assume here that we can
3557 always at least get 8-bit constants in an AND insn, which is
3558 true for every current RISC. */
3560 if (unsignedp && len <= 8)
3562 SUBST (SET_SRC (x),
3563 gen_rtx_AND (mode,
3564 gen_rtx_LSHIFTRT
3565 (mode, gen_lowpart (mode, inner),
3566 GEN_INT (pos)),
3567 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3569 split = find_split_point (&SET_SRC (x), insn);
3570 if (split && split != &SET_SRC (x))
3571 return split;
3573 else
3575 SUBST (SET_SRC (x),
3576 gen_rtx_fmt_ee
3577 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3578 gen_rtx_ASHIFT (mode,
3579 gen_lowpart (mode, inner),
3580 GEN_INT (GET_MODE_BITSIZE (mode)
3581 - len - pos)),
3582 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3584 split = find_split_point (&SET_SRC (x), insn);
3585 if (split && split != &SET_SRC (x))
3586 return split;
3590 /* See if this is a simple operation with a constant as the second
3591 operand. It might be that this constant is out of range and hence
3592 could be used as a split point. */
3593 if (BINARY_P (SET_SRC (x))
3594 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3595 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3596 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3597 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3598 return &XEXP (SET_SRC (x), 1);
3600 /* Finally, see if this is a simple operation with its first operand
3601 not in a register. The operation might require this operand in a
3602 register, so return it as a split point. We can always do this
3603 because if the first operand were another operation, we would have
3604 already found it as a split point. */
3605 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3606 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3607 return &XEXP (SET_SRC (x), 0);
3609 return 0;
3611 case AND:
3612 case IOR:
3613 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3614 it is better to write this as (not (ior A B)) so we can split it.
3615 Similarly for IOR. */
3616 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3618 SUBST (*loc,
3619 gen_rtx_NOT (GET_MODE (x),
3620 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3621 GET_MODE (x),
3622 XEXP (XEXP (x, 0), 0),
3623 XEXP (XEXP (x, 1), 0))));
3624 return find_split_point (loc, insn);
3627 /* Many RISC machines have a large set of logical insns. If the
3628 second operand is a NOT, put it first so we will try to split the
3629 other operand first. */
3630 if (GET_CODE (XEXP (x, 1)) == NOT)
3632 rtx tem = XEXP (x, 0);
3633 SUBST (XEXP (x, 0), XEXP (x, 1));
3634 SUBST (XEXP (x, 1), tem);
3636 break;
3638 default:
3639 break;
3642 /* Otherwise, select our actions depending on our rtx class. */
3643 switch (GET_RTX_CLASS (code))
3645 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3646 case RTX_TERNARY:
3647 split = find_split_point (&XEXP (x, 2), insn);
3648 if (split)
3649 return split;
3650 /* ... fall through ... */
3651 case RTX_BIN_ARITH:
3652 case RTX_COMM_ARITH:
3653 case RTX_COMPARE:
3654 case RTX_COMM_COMPARE:
3655 split = find_split_point (&XEXP (x, 1), insn);
3656 if (split)
3657 return split;
3658 /* ... fall through ... */
3659 case RTX_UNARY:
3660 /* Some machines have (and (shift ...) ...) insns. If X is not
3661 an AND, but XEXP (X, 0) is, use it as our split point. */
3662 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3663 return &XEXP (x, 0);
3665 split = find_split_point (&XEXP (x, 0), insn);
3666 if (split)
3667 return split;
3668 return loc;
3670 default:
3671 /* Otherwise, we don't have a split point. */
3672 return 0;
3676 /* Throughout X, replace FROM with TO, and return the result.
3677 The result is TO if X is FROM;
3678 otherwise the result is X, but its contents may have been modified.
3679 If they were modified, a record was made in undobuf so that
3680 undo_all will (among other things) return X to its original state.
3682 If the number of changes necessary is too much to record to undo,
3683 the excess changes are not made, so the result is invalid.
3684 The changes already made can still be undone.
3685 undobuf.num_undo is incremented for such changes, so by testing that
3686 the caller can tell whether the result is valid.
3688 `n_occurrences' is incremented each time FROM is replaced.
3690 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3692 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3693 by copying if `n_occurrences' is nonzero. */
3695 static rtx
3696 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3698 enum rtx_code code = GET_CODE (x);
3699 enum machine_mode op0_mode = VOIDmode;
3700 const char *fmt;
3701 int len, i;
3702 rtx new;
3704 /* Two expressions are equal if they are identical copies of a shared
3705 RTX or if they are both registers with the same register number
3706 and mode. */
3708 #define COMBINE_RTX_EQUAL_P(X,Y) \
3709 ((X) == (Y) \
3710 || (REG_P (X) && REG_P (Y) \
3711 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3713 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3715 n_occurrences++;
3716 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3719 /* If X and FROM are the same register but different modes, they will
3720 not have been seen as equal above. However, flow.c will make a
3721 LOG_LINKS entry for that case. If we do nothing, we will try to
3722 rerecognize our original insn and, when it succeeds, we will
3723 delete the feeding insn, which is incorrect.
3725 So force this insn not to match in this (rare) case. */
3726 if (! in_dest && code == REG && REG_P (from)
3727 && REGNO (x) == REGNO (from))
3728 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3730 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3731 of which may contain things that can be combined. */
3732 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3733 return x;
3735 /* It is possible to have a subexpression appear twice in the insn.
3736 Suppose that FROM is a register that appears within TO.
3737 Then, after that subexpression has been scanned once by `subst',
3738 the second time it is scanned, TO may be found. If we were
3739 to scan TO here, we would find FROM within it and create a
3740 self-referent rtl structure which is completely wrong. */
3741 if (COMBINE_RTX_EQUAL_P (x, to))
3742 return to;
3744 /* Parallel asm_operands need special attention because all of the
3745 inputs are shared across the arms. Furthermore, unsharing the
3746 rtl results in recognition failures. Failure to handle this case
3747 specially can result in circular rtl.
3749 Solve this by doing a normal pass across the first entry of the
3750 parallel, and only processing the SET_DESTs of the subsequent
3751 entries. Ug. */
3753 if (code == PARALLEL
3754 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3755 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3757 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3759 /* If this substitution failed, this whole thing fails. */
3760 if (GET_CODE (new) == CLOBBER
3761 && XEXP (new, 0) == const0_rtx)
3762 return new;
3764 SUBST (XVECEXP (x, 0, 0), new);
3766 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3768 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3770 if (!REG_P (dest)
3771 && GET_CODE (dest) != CC0
3772 && GET_CODE (dest) != PC)
3774 new = subst (dest, from, to, 0, unique_copy);
3776 /* If this substitution failed, this whole thing fails. */
3777 if (GET_CODE (new) == CLOBBER
3778 && XEXP (new, 0) == const0_rtx)
3779 return new;
3781 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3785 else
3787 len = GET_RTX_LENGTH (code);
3788 fmt = GET_RTX_FORMAT (code);
3790 /* We don't need to process a SET_DEST that is a register, CC0,
3791 or PC, so set up to skip this common case. All other cases
3792 where we want to suppress replacing something inside a
3793 SET_SRC are handled via the IN_DEST operand. */
3794 if (code == SET
3795 && (REG_P (SET_DEST (x))
3796 || GET_CODE (SET_DEST (x)) == CC0
3797 || GET_CODE (SET_DEST (x)) == PC))
3798 fmt = "ie";
3800 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3801 constant. */
3802 if (fmt[0] == 'e')
3803 op0_mode = GET_MODE (XEXP (x, 0));
3805 for (i = 0; i < len; i++)
3807 if (fmt[i] == 'E')
3809 int j;
3810 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3812 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3814 new = (unique_copy && n_occurrences
3815 ? copy_rtx (to) : to);
3816 n_occurrences++;
3818 else
3820 new = subst (XVECEXP (x, i, j), from, to, 0,
3821 unique_copy);
3823 /* If this substitution failed, this whole thing
3824 fails. */
3825 if (GET_CODE (new) == CLOBBER
3826 && XEXP (new, 0) == const0_rtx)
3827 return new;
3830 SUBST (XVECEXP (x, i, j), new);
3833 else if (fmt[i] == 'e')
3835 /* If this is a register being set, ignore it. */
3836 new = XEXP (x, i);
3837 if (in_dest
3838 && i == 0
3839 && (((code == SUBREG || code == ZERO_EXTRACT)
3840 && REG_P (new))
3841 || code == STRICT_LOW_PART))
3844 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3846 /* In general, don't install a subreg involving two
3847 modes not tieable. It can worsen register
3848 allocation, and can even make invalid reload
3849 insns, since the reg inside may need to be copied
3850 from in the outside mode, and that may be invalid
3851 if it is an fp reg copied in integer mode.
3853 We allow two exceptions to this: It is valid if
3854 it is inside another SUBREG and the mode of that
3855 SUBREG and the mode of the inside of TO is
3856 tieable and it is valid if X is a SET that copies
3857 FROM to CC0. */
3859 if (GET_CODE (to) == SUBREG
3860 && ! MODES_TIEABLE_P (GET_MODE (to),
3861 GET_MODE (SUBREG_REG (to)))
3862 && ! (code == SUBREG
3863 && MODES_TIEABLE_P (GET_MODE (x),
3864 GET_MODE (SUBREG_REG (to))))
3865 #ifdef HAVE_cc0
3866 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3867 #endif
3869 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3871 #ifdef CANNOT_CHANGE_MODE_CLASS
3872 if (code == SUBREG
3873 && REG_P (to)
3874 && REGNO (to) < FIRST_PSEUDO_REGISTER
3875 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3876 GET_MODE (to),
3877 GET_MODE (x)))
3878 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3879 #endif
3881 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3882 n_occurrences++;
3884 else
3885 /* If we are in a SET_DEST, suppress most cases unless we
3886 have gone inside a MEM, in which case we want to
3887 simplify the address. We assume here that things that
3888 are actually part of the destination have their inner
3889 parts in the first expression. This is true for SUBREG,
3890 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3891 things aside from REG and MEM that should appear in a
3892 SET_DEST. */
3893 new = subst (XEXP (x, i), from, to,
3894 (((in_dest
3895 && (code == SUBREG || code == STRICT_LOW_PART
3896 || code == ZERO_EXTRACT))
3897 || code == SET)
3898 && i == 0), unique_copy);
3900 /* If we found that we will have to reject this combination,
3901 indicate that by returning the CLOBBER ourselves, rather than
3902 an expression containing it. This will speed things up as
3903 well as prevent accidents where two CLOBBERs are considered
3904 to be equal, thus producing an incorrect simplification. */
3906 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3907 return new;
3909 if (GET_CODE (x) == SUBREG
3910 && (GET_CODE (new) == CONST_INT
3911 || GET_CODE (new) == CONST_DOUBLE))
3913 enum machine_mode mode = GET_MODE (x);
3915 x = simplify_subreg (GET_MODE (x), new,
3916 GET_MODE (SUBREG_REG (x)),
3917 SUBREG_BYTE (x));
3918 if (! x)
3919 x = gen_rtx_CLOBBER (mode, const0_rtx);
3921 else if (GET_CODE (new) == CONST_INT
3922 && GET_CODE (x) == ZERO_EXTEND)
3924 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3925 new, GET_MODE (XEXP (x, 0)));
3926 gcc_assert (x);
3928 else
3929 SUBST (XEXP (x, i), new);
3934 /* Try to simplify X. If the simplification changed the code, it is likely
3935 that further simplification will help, so loop, but limit the number
3936 of repetitions that will be performed. */
3938 for (i = 0; i < 4; i++)
3940 /* If X is sufficiently simple, don't bother trying to do anything
3941 with it. */
3942 if (code != CONST_INT && code != REG && code != CLOBBER)
3943 x = combine_simplify_rtx (x, op0_mode, in_dest);
3945 if (GET_CODE (x) == code)
3946 break;
3948 code = GET_CODE (x);
3950 /* We no longer know the original mode of operand 0 since we
3951 have changed the form of X) */
3952 op0_mode = VOIDmode;
3955 return x;
3958 /* Simplify X, a piece of RTL. We just operate on the expression at the
3959 outer level; call `subst' to simplify recursively. Return the new
3960 expression.
3962 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3963 if we are inside a SET_DEST. */
3965 static rtx
3966 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3968 enum rtx_code code = GET_CODE (x);
3969 enum machine_mode mode = GET_MODE (x);
3970 rtx temp;
3971 int i;
3973 /* If this is a commutative operation, put a constant last and a complex
3974 expression first. We don't need to do this for comparisons here. */
3975 if (COMMUTATIVE_ARITH_P (x)
3976 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3978 temp = XEXP (x, 0);
3979 SUBST (XEXP (x, 0), XEXP (x, 1));
3980 SUBST (XEXP (x, 1), temp);
3983 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3984 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3985 things. Check for cases where both arms are testing the same
3986 condition.
3988 Don't do anything if all operands are very simple. */
3990 if ((BINARY_P (x)
3991 && ((!OBJECT_P (XEXP (x, 0))
3992 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3993 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3994 || (!OBJECT_P (XEXP (x, 1))
3995 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3996 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3997 || (UNARY_P (x)
3998 && (!OBJECT_P (XEXP (x, 0))
3999 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4000 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4002 rtx cond, true_rtx, false_rtx;
4004 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4005 if (cond != 0
4006 /* If everything is a comparison, what we have is highly unlikely
4007 to be simpler, so don't use it. */
4008 && ! (COMPARISON_P (x)
4009 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4011 rtx cop1 = const0_rtx;
4012 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4014 if (cond_code == NE && COMPARISON_P (cond))
4015 return x;
4017 /* Simplify the alternative arms; this may collapse the true and
4018 false arms to store-flag values. Be careful to use copy_rtx
4019 here since true_rtx or false_rtx might share RTL with x as a
4020 result of the if_then_else_cond call above. */
4021 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4022 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4024 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4025 is unlikely to be simpler. */
4026 if (general_operand (true_rtx, VOIDmode)
4027 && general_operand (false_rtx, VOIDmode))
4029 enum rtx_code reversed;
4031 /* Restarting if we generate a store-flag expression will cause
4032 us to loop. Just drop through in this case. */
4034 /* If the result values are STORE_FLAG_VALUE and zero, we can
4035 just make the comparison operation. */
4036 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4037 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4038 cond, cop1);
4039 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4040 && ((reversed = reversed_comparison_code_parts
4041 (cond_code, cond, cop1, NULL))
4042 != UNKNOWN))
4043 x = simplify_gen_relational (reversed, mode, VOIDmode,
4044 cond, cop1);
4046 /* Likewise, we can make the negate of a comparison operation
4047 if the result values are - STORE_FLAG_VALUE and zero. */
4048 else if (GET_CODE (true_rtx) == CONST_INT
4049 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4050 && false_rtx == const0_rtx)
4051 x = simplify_gen_unary (NEG, mode,
4052 simplify_gen_relational (cond_code,
4053 mode, VOIDmode,
4054 cond, cop1),
4055 mode);
4056 else if (GET_CODE (false_rtx) == CONST_INT
4057 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4058 && true_rtx == const0_rtx
4059 && ((reversed = reversed_comparison_code_parts
4060 (cond_code, cond, cop1, NULL))
4061 != UNKNOWN))
4062 x = simplify_gen_unary (NEG, mode,
4063 simplify_gen_relational (reversed,
4064 mode, VOIDmode,
4065 cond, cop1),
4066 mode);
4067 else
4068 return gen_rtx_IF_THEN_ELSE (mode,
4069 simplify_gen_relational (cond_code,
4070 mode,
4071 VOIDmode,
4072 cond,
4073 cop1),
4074 true_rtx, false_rtx);
4076 code = GET_CODE (x);
4077 op0_mode = VOIDmode;
4082 /* Try to fold this expression in case we have constants that weren't
4083 present before. */
4084 temp = 0;
4085 switch (GET_RTX_CLASS (code))
4087 case RTX_UNARY:
4088 if (op0_mode == VOIDmode)
4089 op0_mode = GET_MODE (XEXP (x, 0));
4090 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4091 break;
4092 case RTX_COMPARE:
4093 case RTX_COMM_COMPARE:
4095 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4096 if (cmp_mode == VOIDmode)
4098 cmp_mode = GET_MODE (XEXP (x, 1));
4099 if (cmp_mode == VOIDmode)
4100 cmp_mode = op0_mode;
4102 temp = simplify_relational_operation (code, mode, cmp_mode,
4103 XEXP (x, 0), XEXP (x, 1));
4105 break;
4106 case RTX_COMM_ARITH:
4107 case RTX_BIN_ARITH:
4108 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4109 break;
4110 case RTX_BITFIELD_OPS:
4111 case RTX_TERNARY:
4112 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4113 XEXP (x, 1), XEXP (x, 2));
4114 break;
4115 default:
4116 break;
4119 if (temp)
4121 x = temp;
4122 code = GET_CODE (temp);
4123 op0_mode = VOIDmode;
4124 mode = GET_MODE (temp);
4127 /* First see if we can apply the inverse distributive law. */
4128 if (code == PLUS || code == MINUS
4129 || code == AND || code == IOR || code == XOR)
4131 x = apply_distributive_law (x);
4132 code = GET_CODE (x);
4133 op0_mode = VOIDmode;
4136 /* If CODE is an associative operation not otherwise handled, see if we
4137 can associate some operands. This can win if they are constants or
4138 if they are logically related (i.e. (a & b) & a). */
4139 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4140 || code == AND || code == IOR || code == XOR
4141 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4142 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4143 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4145 if (GET_CODE (XEXP (x, 0)) == code)
4147 rtx other = XEXP (XEXP (x, 0), 0);
4148 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4149 rtx inner_op1 = XEXP (x, 1);
4150 rtx inner;
4152 /* Make sure we pass the constant operand if any as the second
4153 one if this is a commutative operation. */
4154 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4156 rtx tem = inner_op0;
4157 inner_op0 = inner_op1;
4158 inner_op1 = tem;
4160 inner = simplify_binary_operation (code == MINUS ? PLUS
4161 : code == DIV ? MULT
4162 : code,
4163 mode, inner_op0, inner_op1);
4165 /* For commutative operations, try the other pair if that one
4166 didn't simplify. */
4167 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4169 other = XEXP (XEXP (x, 0), 1);
4170 inner = simplify_binary_operation (code, mode,
4171 XEXP (XEXP (x, 0), 0),
4172 XEXP (x, 1));
4175 if (inner)
4176 return simplify_gen_binary (code, mode, other, inner);
4180 /* A little bit of algebraic simplification here. */
4181 switch (code)
4183 case MEM:
4184 /* Ensure that our address has any ASHIFTs converted to MULT in case
4185 address-recognizing predicates are called later. */
4186 temp = make_compound_operation (XEXP (x, 0), MEM);
4187 SUBST (XEXP (x, 0), temp);
4188 break;
4190 case SUBREG:
4191 if (op0_mode == VOIDmode)
4192 op0_mode = GET_MODE (SUBREG_REG (x));
4194 /* See if this can be moved to simplify_subreg. */
4195 if (CONSTANT_P (SUBREG_REG (x))
4196 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4197 /* Don't call gen_lowpart if the inner mode
4198 is VOIDmode and we cannot simplify it, as SUBREG without
4199 inner mode is invalid. */
4200 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4201 || gen_lowpart_common (mode, SUBREG_REG (x))))
4202 return gen_lowpart (mode, SUBREG_REG (x));
4204 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4205 break;
4207 rtx temp;
4208 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4209 SUBREG_BYTE (x));
4210 if (temp)
4211 return temp;
4214 /* Don't change the mode of the MEM if that would change the meaning
4215 of the address. */
4216 if (MEM_P (SUBREG_REG (x))
4217 && (MEM_VOLATILE_P (SUBREG_REG (x))
4218 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4219 return gen_rtx_CLOBBER (mode, const0_rtx);
4221 /* Note that we cannot do any narrowing for non-constants since
4222 we might have been counting on using the fact that some bits were
4223 zero. We now do this in the SET. */
4225 break;
4227 case NEG:
4228 temp = expand_compound_operation (XEXP (x, 0));
4230 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4231 replaced by (lshiftrt X C). This will convert
4232 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4234 if (GET_CODE (temp) == ASHIFTRT
4235 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4236 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4237 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4238 INTVAL (XEXP (temp, 1)));
4240 /* If X has only a single bit that might be nonzero, say, bit I, convert
4241 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4242 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4243 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4244 or a SUBREG of one since we'd be making the expression more
4245 complex if it was just a register. */
4247 if (!REG_P (temp)
4248 && ! (GET_CODE (temp) == SUBREG
4249 && REG_P (SUBREG_REG (temp)))
4250 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4252 rtx temp1 = simplify_shift_const
4253 (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4255 GET_MODE_BITSIZE (mode) - 1 - i),
4256 GET_MODE_BITSIZE (mode) - 1 - i);
4258 /* If all we did was surround TEMP with the two shifts, we
4259 haven't improved anything, so don't use it. Otherwise,
4260 we are better off with TEMP1. */
4261 if (GET_CODE (temp1) != ASHIFTRT
4262 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4263 || XEXP (XEXP (temp1, 0), 0) != temp)
4264 return temp1;
4266 break;
4268 case TRUNCATE:
4269 /* We can't handle truncation to a partial integer mode here
4270 because we don't know the real bitsize of the partial
4271 integer mode. */
4272 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4273 break;
4275 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4276 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4277 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4278 SUBST (XEXP (x, 0),
4279 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4280 GET_MODE_MASK (mode), 0));
4282 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4283 whose value is a comparison can be replaced with a subreg if
4284 STORE_FLAG_VALUE permits. */
4285 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4286 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4287 && (temp = get_last_value (XEXP (x, 0)))
4288 && COMPARISON_P (temp))
4289 return gen_lowpart (mode, XEXP (x, 0));
4290 break;
4292 #ifdef HAVE_cc0
4293 case COMPARE:
4294 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4295 using cc0, in which case we want to leave it as a COMPARE
4296 so we can distinguish it from a register-register-copy. */
4297 if (XEXP (x, 1) == const0_rtx)
4298 return XEXP (x, 0);
4300 /* x - 0 is the same as x unless x's mode has signed zeros and
4301 allows rounding towards -infinity. Under those conditions,
4302 0 - 0 is -0. */
4303 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4304 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4305 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4306 return XEXP (x, 0);
4307 break;
4308 #endif
4310 case CONST:
4311 /* (const (const X)) can become (const X). Do it this way rather than
4312 returning the inner CONST since CONST can be shared with a
4313 REG_EQUAL note. */
4314 if (GET_CODE (XEXP (x, 0)) == CONST)
4315 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4316 break;
4318 #ifdef HAVE_lo_sum
4319 case LO_SUM:
4320 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4321 can add in an offset. find_split_point will split this address up
4322 again if it doesn't match. */
4323 if (GET_CODE (XEXP (x, 0)) == HIGH
4324 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4325 return XEXP (x, 1);
4326 break;
4327 #endif
4329 case PLUS:
4330 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4331 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4332 bit-field and can be replaced by either a sign_extend or a
4333 sign_extract. The `and' may be a zero_extend and the two
4334 <c>, -<c> constants may be reversed. */
4335 if (GET_CODE (XEXP (x, 0)) == XOR
4336 && GET_CODE (XEXP (x, 1)) == CONST_INT
4337 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4338 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4339 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4340 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4341 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4342 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4343 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4344 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4345 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4346 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4347 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4348 == (unsigned int) i + 1))))
4349 return simplify_shift_const
4350 (NULL_RTX, ASHIFTRT, mode,
4351 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4352 XEXP (XEXP (XEXP (x, 0), 0), 0),
4353 GET_MODE_BITSIZE (mode) - (i + 1)),
4354 GET_MODE_BITSIZE (mode) - (i + 1));
4356 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4357 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4358 the bitsize of the mode - 1. This allows simplification of
4359 "a = (b & 8) == 0;" */
4360 if (XEXP (x, 1) == constm1_rtx
4361 && !REG_P (XEXP (x, 0))
4362 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4363 && REG_P (SUBREG_REG (XEXP (x, 0))))
4364 && nonzero_bits (XEXP (x, 0), mode) == 1)
4365 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4366 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4367 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4368 GET_MODE_BITSIZE (mode) - 1),
4369 GET_MODE_BITSIZE (mode) - 1);
4371 /* If we are adding two things that have no bits in common, convert
4372 the addition into an IOR. This will often be further simplified,
4373 for example in cases like ((a & 1) + (a & 2)), which can
4374 become a & 3. */
4376 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4377 && (nonzero_bits (XEXP (x, 0), mode)
4378 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4380 /* Try to simplify the expression further. */
4381 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4382 temp = combine_simplify_rtx (tor, mode, in_dest);
4384 /* If we could, great. If not, do not go ahead with the IOR
4385 replacement, since PLUS appears in many special purpose
4386 address arithmetic instructions. */
4387 if (GET_CODE (temp) != CLOBBER && temp != tor)
4388 return temp;
4390 break;
4392 case MINUS:
4393 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4394 (and <foo> (const_int pow2-1)) */
4395 if (GET_CODE (XEXP (x, 1)) == AND
4396 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4397 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4398 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4399 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4400 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4401 break;
4403 case MULT:
4404 /* If we have (mult (plus A B) C), apply the distributive law and then
4405 the inverse distributive law to see if things simplify. This
4406 occurs mostly in addresses, often when unrolling loops. */
4408 if (GET_CODE (XEXP (x, 0)) == PLUS)
4410 rtx result = distribute_and_simplify_rtx (x, 0);
4411 if (result)
4412 return result;
4415 /* Try simplify a*(b/c) as (a*b)/c. */
4416 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4417 && GET_CODE (XEXP (x, 0)) == DIV)
4419 rtx tem = simplify_binary_operation (MULT, mode,
4420 XEXP (XEXP (x, 0), 0),
4421 XEXP (x, 1));
4422 if (tem)
4423 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4425 break;
4427 case UDIV:
4428 /* If this is a divide by a power of two, treat it as a shift if
4429 its first operand is a shift. */
4430 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4431 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4432 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4433 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4434 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4435 || GET_CODE (XEXP (x, 0)) == ROTATE
4436 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4437 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4438 break;
4440 case EQ: case NE:
4441 case GT: case GTU: case GE: case GEU:
4442 case LT: case LTU: case LE: case LEU:
4443 case UNEQ: case LTGT:
4444 case UNGT: case UNGE:
4445 case UNLT: case UNLE:
4446 case UNORDERED: case ORDERED:
4447 /* If the first operand is a condition code, we can't do anything
4448 with it. */
4449 if (GET_CODE (XEXP (x, 0)) == COMPARE
4450 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4451 && ! CC0_P (XEXP (x, 0))))
4453 rtx op0 = XEXP (x, 0);
4454 rtx op1 = XEXP (x, 1);
4455 enum rtx_code new_code;
4457 if (GET_CODE (op0) == COMPARE)
4458 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4460 /* Simplify our comparison, if possible. */
4461 new_code = simplify_comparison (code, &op0, &op1);
4463 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4464 if only the low-order bit is possibly nonzero in X (such as when
4465 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4466 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4467 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4468 (plus X 1).
4470 Remove any ZERO_EXTRACT we made when thinking this was a
4471 comparison. It may now be simpler to use, e.g., an AND. If a
4472 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4473 the call to make_compound_operation in the SET case. */
4475 if (STORE_FLAG_VALUE == 1
4476 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4477 && op1 == const0_rtx
4478 && mode == GET_MODE (op0)
4479 && nonzero_bits (op0, mode) == 1)
4480 return gen_lowpart (mode,
4481 expand_compound_operation (op0));
4483 else if (STORE_FLAG_VALUE == 1
4484 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4485 && op1 == const0_rtx
4486 && mode == GET_MODE (op0)
4487 && (num_sign_bit_copies (op0, mode)
4488 == GET_MODE_BITSIZE (mode)))
4490 op0 = expand_compound_operation (op0);
4491 return simplify_gen_unary (NEG, mode,
4492 gen_lowpart (mode, op0),
4493 mode);
4496 else if (STORE_FLAG_VALUE == 1
4497 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4498 && op1 == const0_rtx
4499 && mode == GET_MODE (op0)
4500 && nonzero_bits (op0, mode) == 1)
4502 op0 = expand_compound_operation (op0);
4503 return simplify_gen_binary (XOR, mode,
4504 gen_lowpart (mode, op0),
4505 const1_rtx);
4508 else if (STORE_FLAG_VALUE == 1
4509 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4510 && op1 == const0_rtx
4511 && mode == GET_MODE (op0)
4512 && (num_sign_bit_copies (op0, mode)
4513 == GET_MODE_BITSIZE (mode)))
4515 op0 = expand_compound_operation (op0);
4516 return plus_constant (gen_lowpart (mode, op0), 1);
4519 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4520 those above. */
4521 if (STORE_FLAG_VALUE == -1
4522 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4523 && op1 == const0_rtx
4524 && (num_sign_bit_copies (op0, mode)
4525 == GET_MODE_BITSIZE (mode)))
4526 return gen_lowpart (mode,
4527 expand_compound_operation (op0));
4529 else if (STORE_FLAG_VALUE == -1
4530 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4531 && op1 == const0_rtx
4532 && mode == GET_MODE (op0)
4533 && nonzero_bits (op0, mode) == 1)
4535 op0 = expand_compound_operation (op0);
4536 return simplify_gen_unary (NEG, mode,
4537 gen_lowpart (mode, op0),
4538 mode);
4541 else if (STORE_FLAG_VALUE == -1
4542 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4543 && op1 == const0_rtx
4544 && mode == GET_MODE (op0)
4545 && (num_sign_bit_copies (op0, mode)
4546 == GET_MODE_BITSIZE (mode)))
4548 op0 = expand_compound_operation (op0);
4549 return simplify_gen_unary (NOT, mode,
4550 gen_lowpart (mode, op0),
4551 mode);
4554 /* If X is 0/1, (eq X 0) is X-1. */
4555 else if (STORE_FLAG_VALUE == -1
4556 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4557 && op1 == const0_rtx
4558 && mode == GET_MODE (op0)
4559 && nonzero_bits (op0, mode) == 1)
4561 op0 = expand_compound_operation (op0);
4562 return plus_constant (gen_lowpart (mode, op0), -1);
4565 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4566 one bit that might be nonzero, we can convert (ne x 0) to
4567 (ashift x c) where C puts the bit in the sign bit. Remove any
4568 AND with STORE_FLAG_VALUE when we are done, since we are only
4569 going to test the sign bit. */
4570 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4571 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4572 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4573 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4574 && op1 == const0_rtx
4575 && mode == GET_MODE (op0)
4576 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4578 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4579 expand_compound_operation (op0),
4580 GET_MODE_BITSIZE (mode) - 1 - i);
4581 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4582 return XEXP (x, 0);
4583 else
4584 return x;
4587 /* If the code changed, return a whole new comparison. */
4588 if (new_code != code)
4589 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4591 /* Otherwise, keep this operation, but maybe change its operands.
4592 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4593 SUBST (XEXP (x, 0), op0);
4594 SUBST (XEXP (x, 1), op1);
4596 break;
4598 case IF_THEN_ELSE:
4599 return simplify_if_then_else (x);
4601 case ZERO_EXTRACT:
4602 case SIGN_EXTRACT:
4603 case ZERO_EXTEND:
4604 case SIGN_EXTEND:
4605 /* If we are processing SET_DEST, we are done. */
4606 if (in_dest)
4607 return x;
4609 return expand_compound_operation (x);
4611 case SET:
4612 return simplify_set (x);
4614 case AND:
4615 case IOR:
4616 return simplify_logical (x);
4618 case ASHIFT:
4619 case LSHIFTRT:
4620 case ASHIFTRT:
4621 case ROTATE:
4622 case ROTATERT:
4623 /* If this is a shift by a constant amount, simplify it. */
4624 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4625 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4626 INTVAL (XEXP (x, 1)));
4628 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4629 SUBST (XEXP (x, 1),
4630 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4631 ((HOST_WIDE_INT) 1
4632 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4633 - 1,
4634 0));
4635 break;
4637 default:
4638 break;
4641 return x;
4644 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4646 static rtx
4647 simplify_if_then_else (rtx x)
4649 enum machine_mode mode = GET_MODE (x);
4650 rtx cond = XEXP (x, 0);
4651 rtx true_rtx = XEXP (x, 1);
4652 rtx false_rtx = XEXP (x, 2);
4653 enum rtx_code true_code = GET_CODE (cond);
4654 int comparison_p = COMPARISON_P (cond);
4655 rtx temp;
4656 int i;
4657 enum rtx_code false_code;
4658 rtx reversed;
4660 /* Simplify storing of the truth value. */
4661 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4662 return simplify_gen_relational (true_code, mode, VOIDmode,
4663 XEXP (cond, 0), XEXP (cond, 1));
4665 /* Also when the truth value has to be reversed. */
4666 if (comparison_p
4667 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4668 && (reversed = reversed_comparison (cond, mode)))
4669 return reversed;
4671 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4672 in it is being compared against certain values. Get the true and false
4673 comparisons and see if that says anything about the value of each arm. */
4675 if (comparison_p
4676 && ((false_code = reversed_comparison_code (cond, NULL))
4677 != UNKNOWN)
4678 && REG_P (XEXP (cond, 0)))
4680 HOST_WIDE_INT nzb;
4681 rtx from = XEXP (cond, 0);
4682 rtx true_val = XEXP (cond, 1);
4683 rtx false_val = true_val;
4684 int swapped = 0;
4686 /* If FALSE_CODE is EQ, swap the codes and arms. */
4688 if (false_code == EQ)
4690 swapped = 1, true_code = EQ, false_code = NE;
4691 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4694 /* If we are comparing against zero and the expression being tested has
4695 only a single bit that might be nonzero, that is its value when it is
4696 not equal to zero. Similarly if it is known to be -1 or 0. */
4698 if (true_code == EQ && true_val == const0_rtx
4699 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4700 false_code = EQ, false_val = GEN_INT (nzb);
4701 else if (true_code == EQ && true_val == const0_rtx
4702 && (num_sign_bit_copies (from, GET_MODE (from))
4703 == GET_MODE_BITSIZE (GET_MODE (from))))
4704 false_code = EQ, false_val = constm1_rtx;
4706 /* Now simplify an arm if we know the value of the register in the
4707 branch and it is used in the arm. Be careful due to the potential
4708 of locally-shared RTL. */
4710 if (reg_mentioned_p (from, true_rtx))
4711 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4712 from, true_val),
4713 pc_rtx, pc_rtx, 0, 0);
4714 if (reg_mentioned_p (from, false_rtx))
4715 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4716 from, false_val),
4717 pc_rtx, pc_rtx, 0, 0);
4719 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4720 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4722 true_rtx = XEXP (x, 1);
4723 false_rtx = XEXP (x, 2);
4724 true_code = GET_CODE (cond);
4727 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4728 reversed, do so to avoid needing two sets of patterns for
4729 subtract-and-branch insns. Similarly if we have a constant in the true
4730 arm, the false arm is the same as the first operand of the comparison, or
4731 the false arm is more complicated than the true arm. */
4733 if (comparison_p
4734 && reversed_comparison_code (cond, NULL) != UNKNOWN
4735 && (true_rtx == pc_rtx
4736 || (CONSTANT_P (true_rtx)
4737 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4738 || true_rtx == const0_rtx
4739 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4740 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4741 && !OBJECT_P (false_rtx))
4742 || reg_mentioned_p (true_rtx, false_rtx)
4743 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4745 true_code = reversed_comparison_code (cond, NULL);
4746 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4747 SUBST (XEXP (x, 1), false_rtx);
4748 SUBST (XEXP (x, 2), true_rtx);
4750 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4751 cond = XEXP (x, 0);
4753 /* It is possible that the conditional has been simplified out. */
4754 true_code = GET_CODE (cond);
4755 comparison_p = COMPARISON_P (cond);
4758 /* If the two arms are identical, we don't need the comparison. */
4760 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4761 return true_rtx;
4763 /* Convert a == b ? b : a to "a". */
4764 if (true_code == EQ && ! side_effects_p (cond)
4765 && !HONOR_NANS (mode)
4766 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4767 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4768 return false_rtx;
4769 else if (true_code == NE && ! side_effects_p (cond)
4770 && !HONOR_NANS (mode)
4771 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4772 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4773 return true_rtx;
4775 /* Look for cases where we have (abs x) or (neg (abs X)). */
4777 if (GET_MODE_CLASS (mode) == MODE_INT
4778 && GET_CODE (false_rtx) == NEG
4779 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4780 && comparison_p
4781 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4782 && ! side_effects_p (true_rtx))
4783 switch (true_code)
4785 case GT:
4786 case GE:
4787 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4788 case LT:
4789 case LE:
4790 return
4791 simplify_gen_unary (NEG, mode,
4792 simplify_gen_unary (ABS, mode, true_rtx, mode),
4793 mode);
4794 default:
4795 break;
4798 /* Look for MIN or MAX. */
4800 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4801 && comparison_p
4802 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4803 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4804 && ! side_effects_p (cond))
4805 switch (true_code)
4807 case GE:
4808 case GT:
4809 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4810 case LE:
4811 case LT:
4812 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4813 case GEU:
4814 case GTU:
4815 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4816 case LEU:
4817 case LTU:
4818 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4819 default:
4820 break;
4823 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4824 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4825 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4826 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4827 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4828 neither 1 or -1, but it isn't worth checking for. */
4830 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4831 && comparison_p
4832 && GET_MODE_CLASS (mode) == MODE_INT
4833 && ! side_effects_p (x))
4835 rtx t = make_compound_operation (true_rtx, SET);
4836 rtx f = make_compound_operation (false_rtx, SET);
4837 rtx cond_op0 = XEXP (cond, 0);
4838 rtx cond_op1 = XEXP (cond, 1);
4839 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4840 enum machine_mode m = mode;
4841 rtx z = 0, c1 = NULL_RTX;
4843 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4844 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4845 || GET_CODE (t) == ASHIFT
4846 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4847 && rtx_equal_p (XEXP (t, 0), f))
4848 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4850 /* If an identity-zero op is commutative, check whether there
4851 would be a match if we swapped the operands. */
4852 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4853 || GET_CODE (t) == XOR)
4854 && rtx_equal_p (XEXP (t, 1), f))
4855 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4856 else if (GET_CODE (t) == SIGN_EXTEND
4857 && (GET_CODE (XEXP (t, 0)) == PLUS
4858 || GET_CODE (XEXP (t, 0)) == MINUS
4859 || GET_CODE (XEXP (t, 0)) == IOR
4860 || GET_CODE (XEXP (t, 0)) == XOR
4861 || GET_CODE (XEXP (t, 0)) == ASHIFT
4862 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4863 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4864 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4865 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4866 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4867 && (num_sign_bit_copies (f, GET_MODE (f))
4868 > (unsigned int)
4869 (GET_MODE_BITSIZE (mode)
4870 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4872 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4873 extend_op = SIGN_EXTEND;
4874 m = GET_MODE (XEXP (t, 0));
4876 else if (GET_CODE (t) == SIGN_EXTEND
4877 && (GET_CODE (XEXP (t, 0)) == PLUS
4878 || GET_CODE (XEXP (t, 0)) == IOR
4879 || GET_CODE (XEXP (t, 0)) == XOR)
4880 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4881 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4882 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4883 && (num_sign_bit_copies (f, GET_MODE (f))
4884 > (unsigned int)
4885 (GET_MODE_BITSIZE (mode)
4886 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4888 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4889 extend_op = SIGN_EXTEND;
4890 m = GET_MODE (XEXP (t, 0));
4892 else if (GET_CODE (t) == ZERO_EXTEND
4893 && (GET_CODE (XEXP (t, 0)) == PLUS
4894 || GET_CODE (XEXP (t, 0)) == MINUS
4895 || GET_CODE (XEXP (t, 0)) == IOR
4896 || GET_CODE (XEXP (t, 0)) == XOR
4897 || GET_CODE (XEXP (t, 0)) == ASHIFT
4898 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4899 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4900 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4901 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4902 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4903 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4904 && ((nonzero_bits (f, GET_MODE (f))
4905 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4906 == 0))
4908 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4909 extend_op = ZERO_EXTEND;
4910 m = GET_MODE (XEXP (t, 0));
4912 else if (GET_CODE (t) == ZERO_EXTEND
4913 && (GET_CODE (XEXP (t, 0)) == PLUS
4914 || GET_CODE (XEXP (t, 0)) == IOR
4915 || GET_CODE (XEXP (t, 0)) == XOR)
4916 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4917 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4918 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4919 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4920 && ((nonzero_bits (f, GET_MODE (f))
4921 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4922 == 0))
4924 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4925 extend_op = ZERO_EXTEND;
4926 m = GET_MODE (XEXP (t, 0));
4929 if (z)
4931 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
4932 cond_op0, cond_op1),
4933 pc_rtx, pc_rtx, 0, 0);
4934 temp = simplify_gen_binary (MULT, m, temp,
4935 simplify_gen_binary (MULT, m, c1,
4936 const_true_rtx));
4937 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4938 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
4940 if (extend_op != UNKNOWN)
4941 temp = simplify_gen_unary (extend_op, mode, temp, m);
4943 return temp;
4947 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4948 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4949 negation of a single bit, we can convert this operation to a shift. We
4950 can actually do this more generally, but it doesn't seem worth it. */
4952 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4953 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4954 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4955 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4956 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4957 == GET_MODE_BITSIZE (mode))
4958 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4959 return
4960 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4961 gen_lowpart (mode, XEXP (cond, 0)), i);
4963 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4964 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4965 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4966 && GET_MODE (XEXP (cond, 0)) == mode
4967 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4968 == nonzero_bits (XEXP (cond, 0), mode)
4969 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4970 return XEXP (cond, 0);
4972 return x;
4975 /* Simplify X, a SET expression. Return the new expression. */
4977 static rtx
4978 simplify_set (rtx x)
4980 rtx src = SET_SRC (x);
4981 rtx dest = SET_DEST (x);
4982 enum machine_mode mode
4983 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4984 rtx other_insn;
4985 rtx *cc_use;
4987 /* (set (pc) (return)) gets written as (return). */
4988 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4989 return src;
4991 /* Now that we know for sure which bits of SRC we are using, see if we can
4992 simplify the expression for the object knowing that we only need the
4993 low-order bits. */
4995 if (GET_MODE_CLASS (mode) == MODE_INT
4996 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4998 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
4999 SUBST (SET_SRC (x), src);
5002 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5003 the comparison result and try to simplify it unless we already have used
5004 undobuf.other_insn. */
5005 if ((GET_MODE_CLASS (mode) == MODE_CC
5006 || GET_CODE (src) == COMPARE
5007 || CC0_P (dest))
5008 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5009 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5010 && COMPARISON_P (*cc_use)
5011 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5013 enum rtx_code old_code = GET_CODE (*cc_use);
5014 enum rtx_code new_code;
5015 rtx op0, op1, tmp;
5016 int other_changed = 0;
5017 enum machine_mode compare_mode = GET_MODE (dest);
5019 if (GET_CODE (src) == COMPARE)
5020 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5021 else
5022 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5024 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5025 op0, op1);
5026 if (!tmp)
5027 new_code = old_code;
5028 else if (!CONSTANT_P (tmp))
5030 new_code = GET_CODE (tmp);
5031 op0 = XEXP (tmp, 0);
5032 op1 = XEXP (tmp, 1);
5034 else
5036 rtx pat = PATTERN (other_insn);
5037 undobuf.other_insn = other_insn;
5038 SUBST (*cc_use, tmp);
5040 /* Attempt to simplify CC user. */
5041 if (GET_CODE (pat) == SET)
5043 rtx new = simplify_rtx (SET_SRC (pat));
5044 if (new != NULL_RTX)
5045 SUBST (SET_SRC (pat), new);
5048 /* Convert X into a no-op move. */
5049 SUBST (SET_DEST (x), pc_rtx);
5050 SUBST (SET_SRC (x), pc_rtx);
5051 return x;
5054 /* Simplify our comparison, if possible. */
5055 new_code = simplify_comparison (new_code, &op0, &op1);
5057 #ifdef SELECT_CC_MODE
5058 /* If this machine has CC modes other than CCmode, check to see if we
5059 need to use a different CC mode here. */
5060 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5061 compare_mode = GET_MODE (op0);
5062 else
5063 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5065 #ifndef HAVE_cc0
5066 /* If the mode changed, we have to change SET_DEST, the mode in the
5067 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5068 a hard register, just build new versions with the proper mode. If it
5069 is a pseudo, we lose unless it is only time we set the pseudo, in
5070 which case we can safely change its mode. */
5071 if (compare_mode != GET_MODE (dest))
5073 if (can_change_dest_mode (dest, 0, compare_mode))
5075 unsigned int regno = REGNO (dest);
5076 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5078 if (regno >= FIRST_PSEUDO_REGISTER)
5079 SUBST (regno_reg_rtx[regno], new_dest);
5081 SUBST (SET_DEST (x), new_dest);
5082 SUBST (XEXP (*cc_use, 0), new_dest);
5083 other_changed = 1;
5085 dest = new_dest;
5088 #endif /* cc0 */
5089 #endif /* SELECT_CC_MODE */
5091 /* If the code changed, we have to build a new comparison in
5092 undobuf.other_insn. */
5093 if (new_code != old_code)
5095 int other_changed_previously = other_changed;
5096 unsigned HOST_WIDE_INT mask;
5098 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5099 dest, const0_rtx));
5100 other_changed = 1;
5102 /* If the only change we made was to change an EQ into an NE or
5103 vice versa, OP0 has only one bit that might be nonzero, and OP1
5104 is zero, check if changing the user of the condition code will
5105 produce a valid insn. If it won't, we can keep the original code
5106 in that insn by surrounding our operation with an XOR. */
5108 if (((old_code == NE && new_code == EQ)
5109 || (old_code == EQ && new_code == NE))
5110 && ! other_changed_previously && op1 == const0_rtx
5111 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5112 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5114 rtx pat = PATTERN (other_insn), note = 0;
5116 if ((recog_for_combine (&pat, other_insn, &note) < 0
5117 && ! check_asm_operands (pat)))
5119 PUT_CODE (*cc_use, old_code);
5120 other_changed = 0;
5122 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5123 op0, GEN_INT (mask));
5128 if (other_changed)
5129 undobuf.other_insn = other_insn;
5131 #ifdef HAVE_cc0
5132 /* If we are now comparing against zero, change our source if
5133 needed. If we do not use cc0, we always have a COMPARE. */
5134 if (op1 == const0_rtx && dest == cc0_rtx)
5136 SUBST (SET_SRC (x), op0);
5137 src = op0;
5139 else
5140 #endif
5142 /* Otherwise, if we didn't previously have a COMPARE in the
5143 correct mode, we need one. */
5144 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5146 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5147 src = SET_SRC (x);
5149 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5151 SUBST(SET_SRC (x), op0);
5152 src = SET_SRC (x);
5154 else
5156 /* Otherwise, update the COMPARE if needed. */
5157 SUBST (XEXP (src, 0), op0);
5158 SUBST (XEXP (src, 1), op1);
5161 else
5163 /* Get SET_SRC in a form where we have placed back any
5164 compound expressions. Then do the checks below. */
5165 src = make_compound_operation (src, SET);
5166 SUBST (SET_SRC (x), src);
5169 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5170 and X being a REG or (subreg (reg)), we may be able to convert this to
5171 (set (subreg:m2 x) (op)).
5173 We can always do this if M1 is narrower than M2 because that means that
5174 we only care about the low bits of the result.
5176 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5177 perform a narrower operation than requested since the high-order bits will
5178 be undefined. On machine where it is defined, this transformation is safe
5179 as long as M1 and M2 have the same number of words. */
5181 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5182 && !OBJECT_P (SUBREG_REG (src))
5183 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5184 / UNITS_PER_WORD)
5185 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5186 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5187 #ifndef WORD_REGISTER_OPERATIONS
5188 && (GET_MODE_SIZE (GET_MODE (src))
5189 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5190 #endif
5191 #ifdef CANNOT_CHANGE_MODE_CLASS
5192 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5193 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5194 GET_MODE (SUBREG_REG (src)),
5195 GET_MODE (src)))
5196 #endif
5197 && (REG_P (dest)
5198 || (GET_CODE (dest) == SUBREG
5199 && REG_P (SUBREG_REG (dest)))))
5201 SUBST (SET_DEST (x),
5202 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5203 dest));
5204 SUBST (SET_SRC (x), SUBREG_REG (src));
5206 src = SET_SRC (x), dest = SET_DEST (x);
5209 #ifdef HAVE_cc0
5210 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5211 in SRC. */
5212 if (dest == cc0_rtx
5213 && GET_CODE (src) == SUBREG
5214 && subreg_lowpart_p (src)
5215 && (GET_MODE_BITSIZE (GET_MODE (src))
5216 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5218 rtx inner = SUBREG_REG (src);
5219 enum machine_mode inner_mode = GET_MODE (inner);
5221 /* Here we make sure that we don't have a sign bit on. */
5222 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5223 && (nonzero_bits (inner, inner_mode)
5224 < ((unsigned HOST_WIDE_INT) 1
5225 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5227 SUBST (SET_SRC (x), inner);
5228 src = SET_SRC (x);
5231 #endif
5233 #ifdef LOAD_EXTEND_OP
5234 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5235 would require a paradoxical subreg. Replace the subreg with a
5236 zero_extend to avoid the reload that would otherwise be required. */
5238 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5239 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5240 && SUBREG_BYTE (src) == 0
5241 && (GET_MODE_SIZE (GET_MODE (src))
5242 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5243 && MEM_P (SUBREG_REG (src)))
5245 SUBST (SET_SRC (x),
5246 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5247 GET_MODE (src), SUBREG_REG (src)));
5249 src = SET_SRC (x);
5251 #endif
5253 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5254 are comparing an item known to be 0 or -1 against 0, use a logical
5255 operation instead. Check for one of the arms being an IOR of the other
5256 arm with some value. We compute three terms to be IOR'ed together. In
5257 practice, at most two will be nonzero. Then we do the IOR's. */
5259 if (GET_CODE (dest) != PC
5260 && GET_CODE (src) == IF_THEN_ELSE
5261 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5262 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5263 && XEXP (XEXP (src, 0), 1) == const0_rtx
5264 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5265 #ifdef HAVE_conditional_move
5266 && ! can_conditionally_move_p (GET_MODE (src))
5267 #endif
5268 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5269 GET_MODE (XEXP (XEXP (src, 0), 0)))
5270 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5271 && ! side_effects_p (src))
5273 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5274 ? XEXP (src, 1) : XEXP (src, 2));
5275 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5276 ? XEXP (src, 2) : XEXP (src, 1));
5277 rtx term1 = const0_rtx, term2, term3;
5279 if (GET_CODE (true_rtx) == IOR
5280 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5281 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5282 else if (GET_CODE (true_rtx) == IOR
5283 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5284 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5285 else if (GET_CODE (false_rtx) == IOR
5286 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5287 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5288 else if (GET_CODE (false_rtx) == IOR
5289 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5290 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5292 term2 = simplify_gen_binary (AND, GET_MODE (src),
5293 XEXP (XEXP (src, 0), 0), true_rtx);
5294 term3 = simplify_gen_binary (AND, GET_MODE (src),
5295 simplify_gen_unary (NOT, GET_MODE (src),
5296 XEXP (XEXP (src, 0), 0),
5297 GET_MODE (src)),
5298 false_rtx);
5300 SUBST (SET_SRC (x),
5301 simplify_gen_binary (IOR, GET_MODE (src),
5302 simplify_gen_binary (IOR, GET_MODE (src),
5303 term1, term2),
5304 term3));
5306 src = SET_SRC (x);
5309 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5310 whole thing fail. */
5311 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5312 return src;
5313 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5314 return dest;
5315 else
5316 /* Convert this into a field assignment operation, if possible. */
5317 return make_field_assignment (x);
5320 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5321 result. */
5323 static rtx
5324 simplify_logical (rtx x)
5326 enum machine_mode mode = GET_MODE (x);
5327 rtx op0 = XEXP (x, 0);
5328 rtx op1 = XEXP (x, 1);
5330 switch (GET_CODE (x))
5332 case AND:
5333 /* We can call simplify_and_const_int only if we don't lose
5334 any (sign) bits when converting INTVAL (op1) to
5335 "unsigned HOST_WIDE_INT". */
5336 if (GET_CODE (op1) == CONST_INT
5337 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5338 || INTVAL (op1) > 0))
5340 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5341 if (GET_CODE (x) != AND)
5342 return x;
5344 op0 = XEXP (x, 0);
5345 op1 = XEXP (x, 1);
5348 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5349 apply the distributive law and then the inverse distributive
5350 law to see if things simplify. */
5351 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5353 rtx result = distribute_and_simplify_rtx (x, 0);
5354 if (result)
5355 return result;
5357 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5359 rtx result = distribute_and_simplify_rtx (x, 1);
5360 if (result)
5361 return result;
5363 break;
5365 case IOR:
5366 /* If we have (ior (and A B) C), apply the distributive law and then
5367 the inverse distributive law to see if things simplify. */
5369 if (GET_CODE (op0) == AND)
5371 rtx result = distribute_and_simplify_rtx (x, 0);
5372 if (result)
5373 return result;
5376 if (GET_CODE (op1) == AND)
5378 rtx result = distribute_and_simplify_rtx (x, 1);
5379 if (result)
5380 return result;
5382 break;
5384 default:
5385 gcc_unreachable ();
5388 return x;
5391 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5392 operations" because they can be replaced with two more basic operations.
5393 ZERO_EXTEND is also considered "compound" because it can be replaced with
5394 an AND operation, which is simpler, though only one operation.
5396 The function expand_compound_operation is called with an rtx expression
5397 and will convert it to the appropriate shifts and AND operations,
5398 simplifying at each stage.
5400 The function make_compound_operation is called to convert an expression
5401 consisting of shifts and ANDs into the equivalent compound expression.
5402 It is the inverse of this function, loosely speaking. */
5404 static rtx
5405 expand_compound_operation (rtx x)
5407 unsigned HOST_WIDE_INT pos = 0, len;
5408 int unsignedp = 0;
5409 unsigned int modewidth;
5410 rtx tem;
5412 switch (GET_CODE (x))
5414 case ZERO_EXTEND:
5415 unsignedp = 1;
5416 case SIGN_EXTEND:
5417 /* We can't necessarily use a const_int for a multiword mode;
5418 it depends on implicitly extending the value.
5419 Since we don't know the right way to extend it,
5420 we can't tell whether the implicit way is right.
5422 Even for a mode that is no wider than a const_int,
5423 we can't win, because we need to sign extend one of its bits through
5424 the rest of it, and we don't know which bit. */
5425 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5426 return x;
5428 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5429 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5430 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5431 reloaded. If not for that, MEM's would very rarely be safe.
5433 Reject MODEs bigger than a word, because we might not be able
5434 to reference a two-register group starting with an arbitrary register
5435 (and currently gen_lowpart might crash for a SUBREG). */
5437 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5438 return x;
5440 /* Reject MODEs that aren't scalar integers because turning vector
5441 or complex modes into shifts causes problems. */
5443 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5444 return x;
5446 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5447 /* If the inner object has VOIDmode (the only way this can happen
5448 is if it is an ASM_OPERANDS), we can't do anything since we don't
5449 know how much masking to do. */
5450 if (len == 0)
5451 return x;
5453 break;
5455 case ZERO_EXTRACT:
5456 unsignedp = 1;
5458 /* ... fall through ... */
5460 case SIGN_EXTRACT:
5461 /* If the operand is a CLOBBER, just return it. */
5462 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5463 return XEXP (x, 0);
5465 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5466 || GET_CODE (XEXP (x, 2)) != CONST_INT
5467 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5468 return x;
5470 /* Reject MODEs that aren't scalar integers because turning vector
5471 or complex modes into shifts causes problems. */
5473 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5474 return x;
5476 len = INTVAL (XEXP (x, 1));
5477 pos = INTVAL (XEXP (x, 2));
5479 /* If this goes outside the object being extracted, replace the object
5480 with a (use (mem ...)) construct that only combine understands
5481 and is used only for this purpose. */
5482 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5483 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5485 if (BITS_BIG_ENDIAN)
5486 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5488 break;
5490 default:
5491 return x;
5493 /* Convert sign extension to zero extension, if we know that the high
5494 bit is not set, as this is easier to optimize. It will be converted
5495 back to cheaper alternative in make_extraction. */
5496 if (GET_CODE (x) == SIGN_EXTEND
5497 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5498 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5499 & ~(((unsigned HOST_WIDE_INT)
5500 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5501 >> 1))
5502 == 0)))
5504 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5505 rtx temp2 = expand_compound_operation (temp);
5507 /* Make sure this is a profitable operation. */
5508 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5509 return temp2;
5510 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5511 return temp;
5512 else
5513 return x;
5516 /* We can optimize some special cases of ZERO_EXTEND. */
5517 if (GET_CODE (x) == ZERO_EXTEND)
5519 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5520 know that the last value didn't have any inappropriate bits
5521 set. */
5522 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5523 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5524 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5525 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5526 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5527 return XEXP (XEXP (x, 0), 0);
5529 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5530 if (GET_CODE (XEXP (x, 0)) == SUBREG
5531 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5532 && subreg_lowpart_p (XEXP (x, 0))
5533 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5534 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5535 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5536 return SUBREG_REG (XEXP (x, 0));
5538 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5539 is a comparison and STORE_FLAG_VALUE permits. This is like
5540 the first case, but it works even when GET_MODE (x) is larger
5541 than HOST_WIDE_INT. */
5542 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5543 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5544 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5545 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5546 <= HOST_BITS_PER_WIDE_INT)
5547 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5548 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5549 return XEXP (XEXP (x, 0), 0);
5551 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5552 if (GET_CODE (XEXP (x, 0)) == SUBREG
5553 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5554 && subreg_lowpart_p (XEXP (x, 0))
5555 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5556 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5557 <= HOST_BITS_PER_WIDE_INT)
5558 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5559 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5560 return SUBREG_REG (XEXP (x, 0));
5564 /* If we reach here, we want to return a pair of shifts. The inner
5565 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5566 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5567 logical depending on the value of UNSIGNEDP.
5569 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5570 converted into an AND of a shift.
5572 We must check for the case where the left shift would have a negative
5573 count. This can happen in a case like (x >> 31) & 255 on machines
5574 that can't shift by a constant. On those machines, we would first
5575 combine the shift with the AND to produce a variable-position
5576 extraction. Then the constant of 31 would be substituted in to produce
5577 a such a position. */
5579 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5580 if (modewidth + len >= pos)
5581 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5582 GET_MODE (x),
5583 simplify_shift_const (NULL_RTX, ASHIFT,
5584 GET_MODE (x),
5585 XEXP (x, 0),
5586 modewidth - pos - len),
5587 modewidth - len);
5589 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5590 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5591 simplify_shift_const (NULL_RTX, LSHIFTRT,
5592 GET_MODE (x),
5593 XEXP (x, 0), pos),
5594 ((HOST_WIDE_INT) 1 << len) - 1);
5595 else
5596 /* Any other cases we can't handle. */
5597 return x;
5599 /* If we couldn't do this for some reason, return the original
5600 expression. */
5601 if (GET_CODE (tem) == CLOBBER)
5602 return x;
5604 return tem;
5607 /* X is a SET which contains an assignment of one object into
5608 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5609 or certain SUBREGS). If possible, convert it into a series of
5610 logical operations.
5612 We half-heartedly support variable positions, but do not at all
5613 support variable lengths. */
5615 static rtx
5616 expand_field_assignment (rtx x)
5618 rtx inner;
5619 rtx pos; /* Always counts from low bit. */
5620 int len;
5621 rtx mask, cleared, masked;
5622 enum machine_mode compute_mode;
5624 /* Loop until we find something we can't simplify. */
5625 while (1)
5627 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5628 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5630 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5631 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5632 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5634 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5635 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5637 inner = XEXP (SET_DEST (x), 0);
5638 len = INTVAL (XEXP (SET_DEST (x), 1));
5639 pos = XEXP (SET_DEST (x), 2);
5641 /* If the position is constant and spans the width of INNER,
5642 surround INNER with a USE to indicate this. */
5643 if (GET_CODE (pos) == CONST_INT
5644 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5645 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5647 if (BITS_BIG_ENDIAN)
5649 if (GET_CODE (pos) == CONST_INT)
5650 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5651 - INTVAL (pos));
5652 else if (GET_CODE (pos) == MINUS
5653 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5654 && (INTVAL (XEXP (pos, 1))
5655 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5656 /* If position is ADJUST - X, new position is X. */
5657 pos = XEXP (pos, 0);
5658 else
5659 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5660 GEN_INT (GET_MODE_BITSIZE (
5661 GET_MODE (inner))
5662 - len),
5663 pos);
5667 /* A SUBREG between two modes that occupy the same numbers of words
5668 can be done by moving the SUBREG to the source. */
5669 else if (GET_CODE (SET_DEST (x)) == SUBREG
5670 /* We need SUBREGs to compute nonzero_bits properly. */
5671 && nonzero_sign_valid
5672 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5673 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5674 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5675 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5677 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5678 gen_lowpart
5679 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5680 SET_SRC (x)));
5681 continue;
5683 else
5684 break;
5686 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5687 inner = SUBREG_REG (inner);
5689 compute_mode = GET_MODE (inner);
5691 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5692 if (! SCALAR_INT_MODE_P (compute_mode))
5694 enum machine_mode imode;
5696 /* Don't do anything for vector or complex integral types. */
5697 if (! FLOAT_MODE_P (compute_mode))
5698 break;
5700 /* Try to find an integral mode to pun with. */
5701 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5702 if (imode == BLKmode)
5703 break;
5705 compute_mode = imode;
5706 inner = gen_lowpart (imode, inner);
5709 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5710 if (len >= HOST_BITS_PER_WIDE_INT)
5711 break;
5713 /* Now compute the equivalent expression. Make a copy of INNER
5714 for the SET_DEST in case it is a MEM into which we will substitute;
5715 we don't want shared RTL in that case. */
5716 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5717 cleared = simplify_gen_binary (AND, compute_mode,
5718 simplify_gen_unary (NOT, compute_mode,
5719 simplify_gen_binary (ASHIFT,
5720 compute_mode,
5721 mask, pos),
5722 compute_mode),
5723 inner);
5724 masked = simplify_gen_binary (ASHIFT, compute_mode,
5725 simplify_gen_binary (
5726 AND, compute_mode,
5727 gen_lowpart (compute_mode, SET_SRC (x)),
5728 mask),
5729 pos);
5731 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
5732 simplify_gen_binary (IOR, compute_mode,
5733 cleared, masked));
5736 return x;
5739 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5740 it is an RTX that represents a variable starting position; otherwise,
5741 POS is the (constant) starting bit position (counted from the LSB).
5743 INNER may be a USE. This will occur when we started with a bitfield
5744 that went outside the boundary of the object in memory, which is
5745 allowed on most machines. To isolate this case, we produce a USE
5746 whose mode is wide enough and surround the MEM with it. The only
5747 code that understands the USE is this routine. If it is not removed,
5748 it will cause the resulting insn not to match.
5750 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5751 signed reference.
5753 IN_DEST is nonzero if this is a reference in the destination of a
5754 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5755 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5756 be used.
5758 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5759 ZERO_EXTRACT should be built even for bits starting at bit 0.
5761 MODE is the desired mode of the result (if IN_DEST == 0).
5763 The result is an RTX for the extraction or NULL_RTX if the target
5764 can't handle it. */
5766 static rtx
5767 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5768 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5769 int in_dest, int in_compare)
5771 /* This mode describes the size of the storage area
5772 to fetch the overall value from. Within that, we
5773 ignore the POS lowest bits, etc. */
5774 enum machine_mode is_mode = GET_MODE (inner);
5775 enum machine_mode inner_mode;
5776 enum machine_mode wanted_inner_mode = byte_mode;
5777 enum machine_mode wanted_inner_reg_mode = word_mode;
5778 enum machine_mode pos_mode = word_mode;
5779 enum machine_mode extraction_mode = word_mode;
5780 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5781 int spans_byte = 0;
5782 rtx new = 0;
5783 rtx orig_pos_rtx = pos_rtx;
5784 HOST_WIDE_INT orig_pos;
5786 /* Get some information about INNER and get the innermost object. */
5787 if (GET_CODE (inner) == USE)
5788 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5789 /* We don't need to adjust the position because we set up the USE
5790 to pretend that it was a full-word object. */
5791 spans_byte = 1, inner = XEXP (inner, 0);
5792 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5794 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5795 consider just the QI as the memory to extract from.
5796 The subreg adds or removes high bits; its mode is
5797 irrelevant to the meaning of this extraction,
5798 since POS and LEN count from the lsb. */
5799 if (MEM_P (SUBREG_REG (inner)))
5800 is_mode = GET_MODE (SUBREG_REG (inner));
5801 inner = SUBREG_REG (inner);
5803 else if (GET_CODE (inner) == ASHIFT
5804 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5805 && pos_rtx == 0 && pos == 0
5806 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5808 /* We're extracting the least significant bits of an rtx
5809 (ashift X (const_int C)), where LEN > C. Extract the
5810 least significant (LEN - C) bits of X, giving an rtx
5811 whose mode is MODE, then shift it left C times. */
5812 new = make_extraction (mode, XEXP (inner, 0),
5813 0, 0, len - INTVAL (XEXP (inner, 1)),
5814 unsignedp, in_dest, in_compare);
5815 if (new != 0)
5816 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5819 inner_mode = GET_MODE (inner);
5821 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5822 pos = INTVAL (pos_rtx), pos_rtx = 0;
5824 /* See if this can be done without an extraction. We never can if the
5825 width of the field is not the same as that of some integer mode. For
5826 registers, we can only avoid the extraction if the position is at the
5827 low-order bit and this is either not in the destination or we have the
5828 appropriate STRICT_LOW_PART operation available.
5830 For MEM, we can avoid an extract if the field starts on an appropriate
5831 boundary and we can change the mode of the memory reference. However,
5832 we cannot directly access the MEM if we have a USE and the underlying
5833 MEM is not TMODE. This combination means that MEM was being used in a
5834 context where bits outside its mode were being referenced; that is only
5835 valid in bit-field insns. */
5837 if (tmode != BLKmode
5838 && ! (spans_byte && inner_mode != tmode)
5839 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5840 && !MEM_P (inner)
5841 && (! in_dest
5842 || (REG_P (inner)
5843 && have_insn_for (STRICT_LOW_PART, tmode))))
5844 || (MEM_P (inner) && pos_rtx == 0
5845 && (pos
5846 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5847 : BITS_PER_UNIT)) == 0
5848 /* We can't do this if we are widening INNER_MODE (it
5849 may not be aligned, for one thing). */
5850 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5851 && (inner_mode == tmode
5852 || (! mode_dependent_address_p (XEXP (inner, 0))
5853 && ! MEM_VOLATILE_P (inner))))))
5855 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5856 field. If the original and current mode are the same, we need not
5857 adjust the offset. Otherwise, we do if bytes big endian.
5859 If INNER is not a MEM, get a piece consisting of just the field
5860 of interest (in this case POS % BITS_PER_WORD must be 0). */
5862 if (MEM_P (inner))
5864 HOST_WIDE_INT offset;
5866 /* POS counts from lsb, but make OFFSET count in memory order. */
5867 if (BYTES_BIG_ENDIAN)
5868 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5869 else
5870 offset = pos / BITS_PER_UNIT;
5872 new = adjust_address_nv (inner, tmode, offset);
5874 else if (REG_P (inner))
5876 if (tmode != inner_mode)
5878 /* We can't call gen_lowpart in a DEST since we
5879 always want a SUBREG (see below) and it would sometimes
5880 return a new hard register. */
5881 if (pos || in_dest)
5883 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
5885 if (WORDS_BIG_ENDIAN
5886 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
5887 final_word = ((GET_MODE_SIZE (inner_mode)
5888 - GET_MODE_SIZE (tmode))
5889 / UNITS_PER_WORD) - final_word;
5891 final_word *= UNITS_PER_WORD;
5892 if (BYTES_BIG_ENDIAN &&
5893 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
5894 final_word += (GET_MODE_SIZE (inner_mode)
5895 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
5897 /* Avoid creating invalid subregs, for example when
5898 simplifying (x>>32)&255. */
5899 if (!validate_subreg (tmode, inner_mode, inner, final_word))
5900 return NULL_RTX;
5902 new = gen_rtx_SUBREG (tmode, inner, final_word);
5904 else
5905 new = gen_lowpart (tmode, inner);
5907 else
5908 new = inner;
5910 else
5911 new = force_to_mode (inner, tmode,
5912 len >= HOST_BITS_PER_WIDE_INT
5913 ? ~(unsigned HOST_WIDE_INT) 0
5914 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
5917 /* If this extraction is going into the destination of a SET,
5918 make a STRICT_LOW_PART unless we made a MEM. */
5920 if (in_dest)
5921 return (MEM_P (new) ? new
5922 : (GET_CODE (new) != SUBREG
5923 ? gen_rtx_CLOBBER (tmode, const0_rtx)
5924 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
5926 if (mode == tmode)
5927 return new;
5929 if (GET_CODE (new) == CONST_INT)
5930 return gen_int_mode (INTVAL (new), mode);
5932 /* If we know that no extraneous bits are set, and that the high
5933 bit is not set, convert the extraction to the cheaper of
5934 sign and zero extension, that are equivalent in these cases. */
5935 if (flag_expensive_optimizations
5936 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
5937 && ((nonzero_bits (new, tmode)
5938 & ~(((unsigned HOST_WIDE_INT)
5939 GET_MODE_MASK (tmode))
5940 >> 1))
5941 == 0)))
5943 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
5944 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
5946 /* Prefer ZERO_EXTENSION, since it gives more information to
5947 backends. */
5948 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
5949 return temp;
5950 return temp1;
5953 /* Otherwise, sign- or zero-extend unless we already are in the
5954 proper mode. */
5956 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
5957 mode, new));
5960 /* Unless this is a COMPARE or we have a funny memory reference,
5961 don't do anything with zero-extending field extracts starting at
5962 the low-order bit since they are simple AND operations. */
5963 if (pos_rtx == 0 && pos == 0 && ! in_dest
5964 && ! in_compare && ! spans_byte && unsignedp)
5965 return 0;
5967 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
5968 we would be spanning bytes or if the position is not a constant and the
5969 length is not 1. In all other cases, we would only be going outside
5970 our object in cases when an original shift would have been
5971 undefined. */
5972 if (! spans_byte && MEM_P (inner)
5973 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
5974 || (pos_rtx != 0 && len != 1)))
5975 return 0;
5977 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5978 and the mode for the result. */
5979 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
5981 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
5982 pos_mode = mode_for_extraction (EP_insv, 2);
5983 extraction_mode = mode_for_extraction (EP_insv, 3);
5986 if (! in_dest && unsignedp
5987 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
5989 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
5990 pos_mode = mode_for_extraction (EP_extzv, 3);
5991 extraction_mode = mode_for_extraction (EP_extzv, 0);
5994 if (! in_dest && ! unsignedp
5995 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
5997 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
5998 pos_mode = mode_for_extraction (EP_extv, 3);
5999 extraction_mode = mode_for_extraction (EP_extv, 0);
6002 /* Never narrow an object, since that might not be safe. */
6004 if (mode != VOIDmode
6005 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6006 extraction_mode = mode;
6008 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6009 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6010 pos_mode = GET_MODE (pos_rtx);
6012 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6013 if we have to change the mode of memory and cannot, the desired mode is
6014 EXTRACTION_MODE. */
6015 if (!MEM_P (inner))
6016 wanted_inner_mode = wanted_inner_reg_mode;
6017 else if (inner_mode != wanted_inner_mode
6018 && (mode_dependent_address_p (XEXP (inner, 0))
6019 || MEM_VOLATILE_P (inner)))
6020 wanted_inner_mode = extraction_mode;
6022 orig_pos = pos;
6024 if (BITS_BIG_ENDIAN)
6026 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6027 BITS_BIG_ENDIAN style. If position is constant, compute new
6028 position. Otherwise, build subtraction.
6029 Note that POS is relative to the mode of the original argument.
6030 If it's a MEM we need to recompute POS relative to that.
6031 However, if we're extracting from (or inserting into) a register,
6032 we want to recompute POS relative to wanted_inner_mode. */
6033 int width = (MEM_P (inner)
6034 ? GET_MODE_BITSIZE (is_mode)
6035 : GET_MODE_BITSIZE (wanted_inner_mode));
6037 if (pos_rtx == 0)
6038 pos = width - len - pos;
6039 else
6040 pos_rtx
6041 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6042 /* POS may be less than 0 now, but we check for that below.
6043 Note that it can only be less than 0 if !MEM_P (inner). */
6046 /* If INNER has a wider mode, make it smaller. If this is a constant
6047 extract, try to adjust the byte to point to the byte containing
6048 the value. */
6049 if (wanted_inner_mode != VOIDmode
6050 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6051 && ((MEM_P (inner)
6052 && (inner_mode == wanted_inner_mode
6053 || (! mode_dependent_address_p (XEXP (inner, 0))
6054 && ! MEM_VOLATILE_P (inner))))))
6056 int offset = 0;
6058 /* The computations below will be correct if the machine is big
6059 endian in both bits and bytes or little endian in bits and bytes.
6060 If it is mixed, we must adjust. */
6062 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6063 adjust OFFSET to compensate. */
6064 if (BYTES_BIG_ENDIAN
6065 && ! spans_byte
6066 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6067 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6069 /* If this is a constant position, we can move to the desired byte.
6070 Be careful not to go beyond the original object and maintain the
6071 natural alignment of the memory. */
6072 if (pos_rtx == 0)
6074 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6075 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6076 pos %= GET_MODE_BITSIZE (bfmode);
6079 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6080 && ! spans_byte
6081 && is_mode != wanted_inner_mode)
6082 offset = (GET_MODE_SIZE (is_mode)
6083 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6085 if (offset != 0 || inner_mode != wanted_inner_mode)
6086 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6089 /* If INNER is not memory, we can always get it into the proper mode. If we
6090 are changing its mode, POS must be a constant and smaller than the size
6091 of the new mode. */
6092 else if (!MEM_P (inner))
6094 if (GET_MODE (inner) != wanted_inner_mode
6095 && (pos_rtx != 0
6096 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6097 return 0;
6099 inner = force_to_mode (inner, wanted_inner_mode,
6100 pos_rtx
6101 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6102 ? ~(unsigned HOST_WIDE_INT) 0
6103 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6104 << orig_pos),
6108 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6109 have to zero extend. Otherwise, we can just use a SUBREG. */
6110 if (pos_rtx != 0
6111 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6113 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6115 /* If we know that no extraneous bits are set, and that the high
6116 bit is not set, convert extraction to cheaper one - either
6117 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6118 cases. */
6119 if (flag_expensive_optimizations
6120 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6121 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6122 & ~(((unsigned HOST_WIDE_INT)
6123 GET_MODE_MASK (GET_MODE (pos_rtx)))
6124 >> 1))
6125 == 0)))
6127 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6129 /* Prefer ZERO_EXTENSION, since it gives more information to
6130 backends. */
6131 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6132 temp = temp1;
6134 pos_rtx = temp;
6136 else if (pos_rtx != 0
6137 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6138 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6140 /* Make POS_RTX unless we already have it and it is correct. If we don't
6141 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6142 be a CONST_INT. */
6143 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6144 pos_rtx = orig_pos_rtx;
6146 else if (pos_rtx == 0)
6147 pos_rtx = GEN_INT (pos);
6149 /* Make the required operation. See if we can use existing rtx. */
6150 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6151 extraction_mode, inner, GEN_INT (len), pos_rtx);
6152 if (! in_dest)
6153 new = gen_lowpart (mode, new);
6155 return new;
6158 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6159 with any other operations in X. Return X without that shift if so. */
6161 static rtx
6162 extract_left_shift (rtx x, int count)
6164 enum rtx_code code = GET_CODE (x);
6165 enum machine_mode mode = GET_MODE (x);
6166 rtx tem;
6168 switch (code)
6170 case ASHIFT:
6171 /* This is the shift itself. If it is wide enough, we will return
6172 either the value being shifted if the shift count is equal to
6173 COUNT or a shift for the difference. */
6174 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6175 && INTVAL (XEXP (x, 1)) >= count)
6176 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6177 INTVAL (XEXP (x, 1)) - count);
6178 break;
6180 case NEG: case NOT:
6181 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6182 return simplify_gen_unary (code, mode, tem, mode);
6184 break;
6186 case PLUS: case IOR: case XOR: case AND:
6187 /* If we can safely shift this constant and we find the inner shift,
6188 make a new operation. */
6189 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6190 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6191 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6192 return simplify_gen_binary (code, mode, tem,
6193 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6195 break;
6197 default:
6198 break;
6201 return 0;
6204 /* Look at the expression rooted at X. Look for expressions
6205 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6206 Form these expressions.
6208 Return the new rtx, usually just X.
6210 Also, for machines like the VAX that don't have logical shift insns,
6211 try to convert logical to arithmetic shift operations in cases where
6212 they are equivalent. This undoes the canonicalizations to logical
6213 shifts done elsewhere.
6215 We try, as much as possible, to re-use rtl expressions to save memory.
6217 IN_CODE says what kind of expression we are processing. Normally, it is
6218 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6219 being kludges), it is MEM. When processing the arguments of a comparison
6220 or a COMPARE against zero, it is COMPARE. */
6222 static rtx
6223 make_compound_operation (rtx x, enum rtx_code in_code)
6225 enum rtx_code code = GET_CODE (x);
6226 enum machine_mode mode = GET_MODE (x);
6227 int mode_width = GET_MODE_BITSIZE (mode);
6228 rtx rhs, lhs;
6229 enum rtx_code next_code;
6230 int i;
6231 rtx new = 0;
6232 rtx tem;
6233 const char *fmt;
6235 /* Select the code to be used in recursive calls. Once we are inside an
6236 address, we stay there. If we have a comparison, set to COMPARE,
6237 but once inside, go back to our default of SET. */
6239 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6240 : ((code == COMPARE || COMPARISON_P (x))
6241 && XEXP (x, 1) == const0_rtx) ? COMPARE
6242 : in_code == COMPARE ? SET : in_code);
6244 /* Process depending on the code of this operation. If NEW is set
6245 nonzero, it will be returned. */
6247 switch (code)
6249 case ASHIFT:
6250 /* Convert shifts by constants into multiplications if inside
6251 an address. */
6252 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6253 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6254 && INTVAL (XEXP (x, 1)) >= 0)
6256 new = make_compound_operation (XEXP (x, 0), next_code);
6257 new = gen_rtx_MULT (mode, new,
6258 GEN_INT ((HOST_WIDE_INT) 1
6259 << INTVAL (XEXP (x, 1))));
6261 break;
6263 case AND:
6264 /* If the second operand is not a constant, we can't do anything
6265 with it. */
6266 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6267 break;
6269 /* If the constant is a power of two minus one and the first operand
6270 is a logical right shift, make an extraction. */
6271 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6272 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6274 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6275 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6276 0, in_code == COMPARE);
6279 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6280 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6281 && subreg_lowpart_p (XEXP (x, 0))
6282 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6283 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6285 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6286 next_code);
6287 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6288 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6289 0, in_code == COMPARE);
6291 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6292 else if ((GET_CODE (XEXP (x, 0)) == XOR
6293 || GET_CODE (XEXP (x, 0)) == IOR)
6294 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6295 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6296 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6298 /* Apply the distributive law, and then try to make extractions. */
6299 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6300 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6301 XEXP (x, 1)),
6302 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6303 XEXP (x, 1)));
6304 new = make_compound_operation (new, in_code);
6307 /* If we are have (and (rotate X C) M) and C is larger than the number
6308 of bits in M, this is an extraction. */
6310 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6311 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6312 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6313 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6315 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6316 new = make_extraction (mode, new,
6317 (GET_MODE_BITSIZE (mode)
6318 - INTVAL (XEXP (XEXP (x, 0), 1))),
6319 NULL_RTX, i, 1, 0, in_code == COMPARE);
6322 /* On machines without logical shifts, if the operand of the AND is
6323 a logical shift and our mask turns off all the propagated sign
6324 bits, we can replace the logical shift with an arithmetic shift. */
6325 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6326 && !have_insn_for (LSHIFTRT, mode)
6327 && have_insn_for (ASHIFTRT, mode)
6328 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6329 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6330 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6331 && mode_width <= HOST_BITS_PER_WIDE_INT)
6333 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6335 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6336 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6337 SUBST (XEXP (x, 0),
6338 gen_rtx_ASHIFTRT (mode,
6339 make_compound_operation
6340 (XEXP (XEXP (x, 0), 0), next_code),
6341 XEXP (XEXP (x, 0), 1)));
6344 /* If the constant is one less than a power of two, this might be
6345 representable by an extraction even if no shift is present.
6346 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6347 we are in a COMPARE. */
6348 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6349 new = make_extraction (mode,
6350 make_compound_operation (XEXP (x, 0),
6351 next_code),
6352 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6354 /* If we are in a comparison and this is an AND with a power of two,
6355 convert this into the appropriate bit extract. */
6356 else if (in_code == COMPARE
6357 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6358 new = make_extraction (mode,
6359 make_compound_operation (XEXP (x, 0),
6360 next_code),
6361 i, NULL_RTX, 1, 1, 0, 1);
6363 break;
6365 case LSHIFTRT:
6366 /* If the sign bit is known to be zero, replace this with an
6367 arithmetic shift. */
6368 if (have_insn_for (ASHIFTRT, mode)
6369 && ! have_insn_for (LSHIFTRT, mode)
6370 && mode_width <= HOST_BITS_PER_WIDE_INT
6371 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6373 new = gen_rtx_ASHIFTRT (mode,
6374 make_compound_operation (XEXP (x, 0),
6375 next_code),
6376 XEXP (x, 1));
6377 break;
6380 /* ... fall through ... */
6382 case ASHIFTRT:
6383 lhs = XEXP (x, 0);
6384 rhs = XEXP (x, 1);
6386 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6387 this is a SIGN_EXTRACT. */
6388 if (GET_CODE (rhs) == CONST_INT
6389 && GET_CODE (lhs) == ASHIFT
6390 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6391 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6393 new = make_compound_operation (XEXP (lhs, 0), next_code);
6394 new = make_extraction (mode, new,
6395 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6396 NULL_RTX, mode_width - INTVAL (rhs),
6397 code == LSHIFTRT, 0, in_code == COMPARE);
6398 break;
6401 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6402 If so, try to merge the shifts into a SIGN_EXTEND. We could
6403 also do this for some cases of SIGN_EXTRACT, but it doesn't
6404 seem worth the effort; the case checked for occurs on Alpha. */
6406 if (!OBJECT_P (lhs)
6407 && ! (GET_CODE (lhs) == SUBREG
6408 && (OBJECT_P (SUBREG_REG (lhs))))
6409 && GET_CODE (rhs) == CONST_INT
6410 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6411 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6412 new = make_extraction (mode, make_compound_operation (new, next_code),
6413 0, NULL_RTX, mode_width - INTVAL (rhs),
6414 code == LSHIFTRT, 0, in_code == COMPARE);
6416 break;
6418 case SUBREG:
6419 /* Call ourselves recursively on the inner expression. If we are
6420 narrowing the object and it has a different RTL code from
6421 what it originally did, do this SUBREG as a force_to_mode. */
6423 tem = make_compound_operation (SUBREG_REG (x), in_code);
6426 rtx simplified;
6427 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6428 SUBREG_BYTE (x));
6430 if (simplified)
6431 tem = simplified;
6433 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6434 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6435 && subreg_lowpart_p (x))
6437 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6440 /* If we have something other than a SUBREG, we might have
6441 done an expansion, so rerun ourselves. */
6442 if (GET_CODE (newer) != SUBREG)
6443 newer = make_compound_operation (newer, in_code);
6445 return newer;
6448 if (simplified)
6449 return tem;
6451 break;
6453 default:
6454 break;
6457 if (new)
6459 x = gen_lowpart (mode, new);
6460 code = GET_CODE (x);
6463 /* Now recursively process each operand of this operation. */
6464 fmt = GET_RTX_FORMAT (code);
6465 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6466 if (fmt[i] == 'e')
6468 new = make_compound_operation (XEXP (x, i), next_code);
6469 SUBST (XEXP (x, i), new);
6472 /* If this is a commutative operation, the changes to the operands
6473 may have made it noncanonical. */
6474 if (COMMUTATIVE_ARITH_P (x)
6475 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6477 tem = XEXP (x, 0);
6478 SUBST (XEXP (x, 0), XEXP (x, 1));
6479 SUBST (XEXP (x, 1), tem);
6482 return x;
6485 /* Given M see if it is a value that would select a field of bits
6486 within an item, but not the entire word. Return -1 if not.
6487 Otherwise, return the starting position of the field, where 0 is the
6488 low-order bit.
6490 *PLEN is set to the length of the field. */
6492 static int
6493 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6495 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6496 int pos = exact_log2 (m & -m);
6497 int len = 0;
6499 if (pos >= 0)
6500 /* Now shift off the low-order zero bits and see if we have a
6501 power of two minus 1. */
6502 len = exact_log2 ((m >> pos) + 1);
6504 if (len <= 0)
6505 pos = -1;
6507 *plen = len;
6508 return pos;
6511 /* If X refers to a register that equals REG in value, replace these
6512 references with REG. */
6513 static rtx
6514 canon_reg_for_combine (rtx x, rtx reg)
6516 rtx op0, op1, op2;
6517 const char *fmt;
6518 int i;
6519 bool copied;
6521 enum rtx_code code = GET_CODE (x);
6522 switch (GET_RTX_CLASS (code))
6524 case RTX_UNARY:
6525 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6526 if (op0 != XEXP (x, 0))
6527 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
6528 GET_MODE (reg));
6529 break;
6531 case RTX_BIN_ARITH:
6532 case RTX_COMM_ARITH:
6533 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6534 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6535 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6536 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
6537 break;
6539 case RTX_COMPARE:
6540 case RTX_COMM_COMPARE:
6541 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6542 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6543 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6544 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
6545 GET_MODE (op0), op0, op1);
6546 break;
6548 case RTX_TERNARY:
6549 case RTX_BITFIELD_OPS:
6550 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
6551 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
6552 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
6553 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
6554 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
6555 GET_MODE (op0), op0, op1, op2);
6557 case RTX_OBJ:
6558 if (REG_P (x))
6560 if (rtx_equal_p (get_last_value (reg), x)
6561 || rtx_equal_p (reg, get_last_value (x)))
6562 return reg;
6563 else
6564 break;
6567 /* fall through */
6569 default:
6570 fmt = GET_RTX_FORMAT (code);
6571 copied = false;
6572 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6573 if (fmt[i] == 'e')
6575 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
6576 if (op != XEXP (x, i))
6578 if (!copied)
6580 copied = true;
6581 x = copy_rtx (x);
6583 XEXP (x, i) = op;
6586 else if (fmt[i] == 'E')
6588 int j;
6589 for (j = 0; j < XVECLEN (x, i); j++)
6591 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
6592 if (op != XVECEXP (x, i, j))
6594 if (!copied)
6596 copied = true;
6597 x = copy_rtx (x);
6599 XVECEXP (x, i, j) = op;
6604 break;
6607 return x;
6610 /* See if X can be simplified knowing that we will only refer to it in
6611 MODE and will only refer to those bits that are nonzero in MASK.
6612 If other bits are being computed or if masking operations are done
6613 that select a superset of the bits in MASK, they can sometimes be
6614 ignored.
6616 Return a possibly simplified expression, but always convert X to
6617 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6619 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6620 are all off in X. This is used when X will be complemented, by either
6621 NOT, NEG, or XOR. */
6623 static rtx
6624 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6625 int just_select)
6627 enum rtx_code code = GET_CODE (x);
6628 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6629 enum machine_mode op_mode;
6630 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6631 rtx op0, op1, temp;
6633 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6634 code below will do the wrong thing since the mode of such an
6635 expression is VOIDmode.
6637 Also do nothing if X is a CLOBBER; this can happen if X was
6638 the return value from a call to gen_lowpart. */
6639 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6640 return x;
6642 /* We want to perform the operation is its present mode unless we know
6643 that the operation is valid in MODE, in which case we do the operation
6644 in MODE. */
6645 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6646 && have_insn_for (code, mode))
6647 ? mode : GET_MODE (x));
6649 /* It is not valid to do a right-shift in a narrower mode
6650 than the one it came in with. */
6651 if ((code == LSHIFTRT || code == ASHIFTRT)
6652 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6653 op_mode = GET_MODE (x);
6655 /* Truncate MASK to fit OP_MODE. */
6656 if (op_mode)
6657 mask &= GET_MODE_MASK (op_mode);
6659 /* When we have an arithmetic operation, or a shift whose count we
6660 do not know, we need to assume that all bits up to the highest-order
6661 bit in MASK will be needed. This is how we form such a mask. */
6662 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6663 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6664 else
6665 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6666 - 1);
6668 /* Determine what bits of X are guaranteed to be (non)zero. */
6669 nonzero = nonzero_bits (x, mode);
6671 /* If none of the bits in X are needed, return a zero. */
6672 if (! just_select && (nonzero & mask) == 0)
6673 x = const0_rtx;
6675 /* If X is a CONST_INT, return a new one. Do this here since the
6676 test below will fail. */
6677 if (GET_CODE (x) == CONST_INT)
6679 if (SCALAR_INT_MODE_P (mode))
6680 return gen_int_mode (INTVAL (x) & mask, mode);
6681 else
6683 x = GEN_INT (INTVAL (x) & mask);
6684 return gen_lowpart_common (mode, x);
6688 /* If X is narrower than MODE and we want all the bits in X's mode, just
6689 get X in the proper mode. */
6690 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6691 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6692 return gen_lowpart (mode, x);
6694 switch (code)
6696 case CLOBBER:
6697 /* If X is a (clobber (const_int)), return it since we know we are
6698 generating something that won't match. */
6699 return x;
6701 case USE:
6702 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6703 spanned the boundary of the MEM. If we are now masking so it is
6704 within that boundary, we don't need the USE any more. */
6705 if (! BITS_BIG_ENDIAN
6706 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6707 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
6708 break;
6710 case SIGN_EXTEND:
6711 case ZERO_EXTEND:
6712 case ZERO_EXTRACT:
6713 case SIGN_EXTRACT:
6714 x = expand_compound_operation (x);
6715 if (GET_CODE (x) != code)
6716 return force_to_mode (x, mode, mask, next_select);
6717 break;
6719 case SUBREG:
6720 if (subreg_lowpart_p (x)
6721 /* We can ignore the effect of this SUBREG if it narrows the mode or
6722 if the constant masks to zero all the bits the mode doesn't
6723 have. */
6724 && ((GET_MODE_SIZE (GET_MODE (x))
6725 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6726 || (0 == (mask
6727 & GET_MODE_MASK (GET_MODE (x))
6728 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6729 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
6730 break;
6732 case AND:
6733 /* If this is an AND with a constant, convert it into an AND
6734 whose constant is the AND of that constant with MASK. If it
6735 remains an AND of MASK, delete it since it is redundant. */
6737 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6739 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6740 mask & INTVAL (XEXP (x, 1)));
6742 /* If X is still an AND, see if it is an AND with a mask that
6743 is just some low-order bits. If so, and it is MASK, we don't
6744 need it. */
6746 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6747 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6748 == mask))
6749 x = XEXP (x, 0);
6751 /* If it remains an AND, try making another AND with the bits
6752 in the mode mask that aren't in MASK turned on. If the
6753 constant in the AND is wide enough, this might make a
6754 cheaper constant. */
6756 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6757 && GET_MODE_MASK (GET_MODE (x)) != mask
6758 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6760 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6761 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6762 int width = GET_MODE_BITSIZE (GET_MODE (x));
6763 rtx y;
6765 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6766 number, sign extend it. */
6767 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6768 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6769 cval |= (HOST_WIDE_INT) -1 << width;
6771 y = simplify_gen_binary (AND, GET_MODE (x),
6772 XEXP (x, 0), GEN_INT (cval));
6773 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6774 x = y;
6777 break;
6780 goto binop;
6782 case PLUS:
6783 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6784 low-order bits (as in an alignment operation) and FOO is already
6785 aligned to that boundary, mask C1 to that boundary as well.
6786 This may eliminate that PLUS and, later, the AND. */
6789 unsigned int width = GET_MODE_BITSIZE (mode);
6790 unsigned HOST_WIDE_INT smask = mask;
6792 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6793 number, sign extend it. */
6795 if (width < HOST_BITS_PER_WIDE_INT
6796 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6797 smask |= (HOST_WIDE_INT) -1 << width;
6799 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6800 && exact_log2 (- smask) >= 0
6801 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6802 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6803 return force_to_mode (plus_constant (XEXP (x, 0),
6804 (INTVAL (XEXP (x, 1)) & smask)),
6805 mode, smask, next_select);
6808 /* ... fall through ... */
6810 case MULT:
6811 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6812 most significant bit in MASK since carries from those bits will
6813 affect the bits we are interested in. */
6814 mask = fuller_mask;
6815 goto binop;
6817 case MINUS:
6818 /* If X is (minus C Y) where C's least set bit is larger than any bit
6819 in the mask, then we may replace with (neg Y). */
6820 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6821 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6822 & -INTVAL (XEXP (x, 0))))
6823 > mask))
6825 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6826 GET_MODE (x));
6827 return force_to_mode (x, mode, mask, next_select);
6830 /* Similarly, if C contains every bit in the fuller_mask, then we may
6831 replace with (not Y). */
6832 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6833 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6834 == INTVAL (XEXP (x, 0))))
6836 x = simplify_gen_unary (NOT, GET_MODE (x),
6837 XEXP (x, 1), GET_MODE (x));
6838 return force_to_mode (x, mode, mask, next_select);
6841 mask = fuller_mask;
6842 goto binop;
6844 case IOR:
6845 case XOR:
6846 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6847 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6848 operation which may be a bitfield extraction. Ensure that the
6849 constant we form is not wider than the mode of X. */
6851 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6852 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6853 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6854 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6855 && GET_CODE (XEXP (x, 1)) == CONST_INT
6856 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6857 + floor_log2 (INTVAL (XEXP (x, 1))))
6858 < GET_MODE_BITSIZE (GET_MODE (x)))
6859 && (INTVAL (XEXP (x, 1))
6860 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6862 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6863 << INTVAL (XEXP (XEXP (x, 0), 1)));
6864 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
6865 XEXP (XEXP (x, 0), 0), temp);
6866 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
6867 XEXP (XEXP (x, 0), 1));
6868 return force_to_mode (x, mode, mask, next_select);
6871 binop:
6872 /* For most binary operations, just propagate into the operation and
6873 change the mode if we have an operation of that mode. */
6875 op0 = gen_lowpart (op_mode,
6876 force_to_mode (XEXP (x, 0), mode, mask,
6877 next_select));
6878 op1 = gen_lowpart (op_mode,
6879 force_to_mode (XEXP (x, 1), mode, mask,
6880 next_select));
6882 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6883 x = simplify_gen_binary (code, op_mode, op0, op1);
6884 break;
6886 case ASHIFT:
6887 /* For left shifts, do the same, but just for the first operand.
6888 However, we cannot do anything with shifts where we cannot
6889 guarantee that the counts are smaller than the size of the mode
6890 because such a count will have a different meaning in a
6891 wider mode. */
6893 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6894 && INTVAL (XEXP (x, 1)) >= 0
6895 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6896 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6897 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6898 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6899 break;
6901 /* If the shift count is a constant and we can do arithmetic in
6902 the mode of the shift, refine which bits we need. Otherwise, use the
6903 conservative form of the mask. */
6904 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6905 && INTVAL (XEXP (x, 1)) >= 0
6906 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6907 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6908 mask >>= INTVAL (XEXP (x, 1));
6909 else
6910 mask = fuller_mask;
6912 op0 = gen_lowpart (op_mode,
6913 force_to_mode (XEXP (x, 0), op_mode,
6914 mask, next_select));
6916 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6917 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
6918 break;
6920 case LSHIFTRT:
6921 /* Here we can only do something if the shift count is a constant,
6922 this shift constant is valid for the host, and we can do arithmetic
6923 in OP_MODE. */
6925 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6926 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6927 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6929 rtx inner = XEXP (x, 0);
6930 unsigned HOST_WIDE_INT inner_mask;
6932 /* Select the mask of the bits we need for the shift operand. */
6933 inner_mask = mask << INTVAL (XEXP (x, 1));
6935 /* We can only change the mode of the shift if we can do arithmetic
6936 in the mode of the shift and INNER_MASK is no wider than the
6937 width of X's mode. */
6938 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
6939 op_mode = GET_MODE (x);
6941 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
6943 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6944 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6947 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6948 shift and AND produces only copies of the sign bit (C2 is one less
6949 than a power of two), we can do this with just a shift. */
6951 if (GET_CODE (x) == LSHIFTRT
6952 && GET_CODE (XEXP (x, 1)) == CONST_INT
6953 /* The shift puts one of the sign bit copies in the least significant
6954 bit. */
6955 && ((INTVAL (XEXP (x, 1))
6956 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
6957 >= GET_MODE_BITSIZE (GET_MODE (x)))
6958 && exact_log2 (mask + 1) >= 0
6959 /* Number of bits left after the shift must be more than the mask
6960 needs. */
6961 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
6962 <= GET_MODE_BITSIZE (GET_MODE (x)))
6963 /* Must be more sign bit copies than the mask needs. */
6964 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6965 >= exact_log2 (mask + 1)))
6966 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
6967 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
6968 - exact_log2 (mask + 1)));
6970 goto shiftrt;
6972 case ASHIFTRT:
6973 /* If we are just looking for the sign bit, we don't need this shift at
6974 all, even if it has a variable count. */
6975 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6976 && (mask == ((unsigned HOST_WIDE_INT) 1
6977 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
6978 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
6980 /* If this is a shift by a constant, get a mask that contains those bits
6981 that are not copies of the sign bit. We then have two cases: If
6982 MASK only includes those bits, this can be a logical shift, which may
6983 allow simplifications. If MASK is a single-bit field not within
6984 those bits, we are requesting a copy of the sign bit and hence can
6985 shift the sign bit to the appropriate location. */
6987 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
6988 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
6990 int i;
6992 /* If the considered data is wider than HOST_WIDE_INT, we can't
6993 represent a mask for all its bits in a single scalar.
6994 But we only care about the lower bits, so calculate these. */
6996 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
6998 nonzero = ~(HOST_WIDE_INT) 0;
7000 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7001 is the number of bits a full-width mask would have set.
7002 We need only shift if these are fewer than nonzero can
7003 hold. If not, we must keep all bits set in nonzero. */
7005 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7006 < HOST_BITS_PER_WIDE_INT)
7007 nonzero >>= INTVAL (XEXP (x, 1))
7008 + HOST_BITS_PER_WIDE_INT
7009 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7011 else
7013 nonzero = GET_MODE_MASK (GET_MODE (x));
7014 nonzero >>= INTVAL (XEXP (x, 1));
7017 if ((mask & ~nonzero) == 0)
7019 x = simplify_shift_const (x, LSHIFTRT, GET_MODE (x),
7020 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7021 if (GET_CODE (x) != ASHIFTRT)
7022 return force_to_mode (x, mode, mask, next_select);
7025 else if ((i = exact_log2 (mask)) >= 0)
7027 x = simplify_shift_const
7028 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7029 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7031 if (GET_CODE (x) != ASHIFTRT)
7032 return force_to_mode (x, mode, mask, next_select);
7036 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7037 even if the shift count isn't a constant. */
7038 if (mask == 1)
7039 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7040 XEXP (x, 0), XEXP (x, 1));
7042 shiftrt:
7044 /* If this is a zero- or sign-extension operation that just affects bits
7045 we don't care about, remove it. Be sure the call above returned
7046 something that is still a shift. */
7048 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7049 && GET_CODE (XEXP (x, 1)) == CONST_INT
7050 && INTVAL (XEXP (x, 1)) >= 0
7051 && (INTVAL (XEXP (x, 1))
7052 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7053 && GET_CODE (XEXP (x, 0)) == ASHIFT
7054 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7055 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7056 next_select);
7058 break;
7060 case ROTATE:
7061 case ROTATERT:
7062 /* If the shift count is constant and we can do computations
7063 in the mode of X, compute where the bits we care about are.
7064 Otherwise, we can't do anything. Don't change the mode of
7065 the shift or propagate MODE into the shift, though. */
7066 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7067 && INTVAL (XEXP (x, 1)) >= 0)
7069 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7070 GET_MODE (x), GEN_INT (mask),
7071 XEXP (x, 1));
7072 if (temp && GET_CODE (temp) == CONST_INT)
7073 SUBST (XEXP (x, 0),
7074 force_to_mode (XEXP (x, 0), GET_MODE (x),
7075 INTVAL (temp), next_select));
7077 break;
7079 case NEG:
7080 /* If we just want the low-order bit, the NEG isn't needed since it
7081 won't change the low-order bit. */
7082 if (mask == 1)
7083 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7085 /* We need any bits less significant than the most significant bit in
7086 MASK since carries from those bits will affect the bits we are
7087 interested in. */
7088 mask = fuller_mask;
7089 goto unop;
7091 case NOT:
7092 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7093 same as the XOR case above. Ensure that the constant we form is not
7094 wider than the mode of X. */
7096 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7097 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7098 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7099 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7100 < GET_MODE_BITSIZE (GET_MODE (x)))
7101 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7103 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7104 GET_MODE (x));
7105 temp = simplify_gen_binary (XOR, GET_MODE (x),
7106 XEXP (XEXP (x, 0), 0), temp);
7107 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7108 temp, XEXP (XEXP (x, 0), 1));
7110 return force_to_mode (x, mode, mask, next_select);
7113 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7114 use the full mask inside the NOT. */
7115 mask = fuller_mask;
7117 unop:
7118 op0 = gen_lowpart (op_mode,
7119 force_to_mode (XEXP (x, 0), mode, mask,
7120 next_select));
7121 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7122 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7123 break;
7125 case NE:
7126 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7127 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7128 which is equal to STORE_FLAG_VALUE. */
7129 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7130 && GET_MODE (XEXP (x, 0)) == mode
7131 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7132 && (nonzero_bits (XEXP (x, 0), mode)
7133 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7134 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7136 break;
7138 case IF_THEN_ELSE:
7139 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7140 written in a narrower mode. We play it safe and do not do so. */
7142 SUBST (XEXP (x, 1),
7143 gen_lowpart (GET_MODE (x), force_to_mode (XEXP (x, 1), mode,
7144 mask, next_select)));
7145 SUBST (XEXP (x, 2),
7146 gen_lowpart (GET_MODE (x), force_to_mode (XEXP (x, 2), mode,
7147 mask, next_select)));
7148 break;
7150 default:
7151 break;
7154 /* Ensure we return a value of the proper mode. */
7155 return gen_lowpart (mode, x);
7158 /* Return nonzero if X is an expression that has one of two values depending on
7159 whether some other value is zero or nonzero. In that case, we return the
7160 value that is being tested, *PTRUE is set to the value if the rtx being
7161 returned has a nonzero value, and *PFALSE is set to the other alternative.
7163 If we return zero, we set *PTRUE and *PFALSE to X. */
7165 static rtx
7166 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7168 enum machine_mode mode = GET_MODE (x);
7169 enum rtx_code code = GET_CODE (x);
7170 rtx cond0, cond1, true0, true1, false0, false1;
7171 unsigned HOST_WIDE_INT nz;
7173 /* If we are comparing a value against zero, we are done. */
7174 if ((code == NE || code == EQ)
7175 && XEXP (x, 1) == const0_rtx)
7177 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7178 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7179 return XEXP (x, 0);
7182 /* If this is a unary operation whose operand has one of two values, apply
7183 our opcode to compute those values. */
7184 else if (UNARY_P (x)
7185 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7187 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7188 *pfalse = simplify_gen_unary (code, mode, false0,
7189 GET_MODE (XEXP (x, 0)));
7190 return cond0;
7193 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7194 make can't possibly match and would suppress other optimizations. */
7195 else if (code == COMPARE)
7198 /* If this is a binary operation, see if either side has only one of two
7199 values. If either one does or if both do and they are conditional on
7200 the same value, compute the new true and false values. */
7201 else if (BINARY_P (x))
7203 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7204 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7206 if ((cond0 != 0 || cond1 != 0)
7207 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7209 /* If if_then_else_cond returned zero, then true/false are the
7210 same rtl. We must copy one of them to prevent invalid rtl
7211 sharing. */
7212 if (cond0 == 0)
7213 true0 = copy_rtx (true0);
7214 else if (cond1 == 0)
7215 true1 = copy_rtx (true1);
7217 if (COMPARISON_P (x))
7219 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7220 true0, true1);
7221 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7222 false0, false1);
7224 else
7226 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7227 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7230 return cond0 ? cond0 : cond1;
7233 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7234 operands is zero when the other is nonzero, and vice-versa,
7235 and STORE_FLAG_VALUE is 1 or -1. */
7237 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7238 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7239 || code == UMAX)
7240 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7242 rtx op0 = XEXP (XEXP (x, 0), 1);
7243 rtx op1 = XEXP (XEXP (x, 1), 1);
7245 cond0 = XEXP (XEXP (x, 0), 0);
7246 cond1 = XEXP (XEXP (x, 1), 0);
7248 if (COMPARISON_P (cond0)
7249 && COMPARISON_P (cond1)
7250 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7251 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7252 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7253 || ((swap_condition (GET_CODE (cond0))
7254 == reversed_comparison_code (cond1, NULL))
7255 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7256 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7257 && ! side_effects_p (x))
7259 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7260 *pfalse = simplify_gen_binary (MULT, mode,
7261 (code == MINUS
7262 ? simplify_gen_unary (NEG, mode,
7263 op1, mode)
7264 : op1),
7265 const_true_rtx);
7266 return cond0;
7270 /* Similarly for MULT, AND and UMIN, except that for these the result
7271 is always zero. */
7272 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7273 && (code == MULT || code == AND || code == UMIN)
7274 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7276 cond0 = XEXP (XEXP (x, 0), 0);
7277 cond1 = XEXP (XEXP (x, 1), 0);
7279 if (COMPARISON_P (cond0)
7280 && COMPARISON_P (cond1)
7281 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7282 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7283 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7284 || ((swap_condition (GET_CODE (cond0))
7285 == reversed_comparison_code (cond1, NULL))
7286 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7287 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7288 && ! side_effects_p (x))
7290 *ptrue = *pfalse = const0_rtx;
7291 return cond0;
7296 else if (code == IF_THEN_ELSE)
7298 /* If we have IF_THEN_ELSE already, extract the condition and
7299 canonicalize it if it is NE or EQ. */
7300 cond0 = XEXP (x, 0);
7301 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7302 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7303 return XEXP (cond0, 0);
7304 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7306 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7307 return XEXP (cond0, 0);
7309 else
7310 return cond0;
7313 /* If X is a SUBREG, we can narrow both the true and false values
7314 if the inner expression, if there is a condition. */
7315 else if (code == SUBREG
7316 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7317 &true0, &false0)))
7319 true0 = simplify_gen_subreg (mode, true0,
7320 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7321 false0 = simplify_gen_subreg (mode, false0,
7322 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7323 if (true0 && false0)
7325 *ptrue = true0;
7326 *pfalse = false0;
7327 return cond0;
7331 /* If X is a constant, this isn't special and will cause confusions
7332 if we treat it as such. Likewise if it is equivalent to a constant. */
7333 else if (CONSTANT_P (x)
7334 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7337 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7338 will be least confusing to the rest of the compiler. */
7339 else if (mode == BImode)
7341 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7342 return x;
7345 /* If X is known to be either 0 or -1, those are the true and
7346 false values when testing X. */
7347 else if (x == constm1_rtx || x == const0_rtx
7348 || (mode != VOIDmode
7349 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7351 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7352 return x;
7355 /* Likewise for 0 or a single bit. */
7356 else if (SCALAR_INT_MODE_P (mode)
7357 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7358 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7360 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7361 return x;
7364 /* Otherwise fail; show no condition with true and false values the same. */
7365 *ptrue = *pfalse = x;
7366 return 0;
7369 /* Return the value of expression X given the fact that condition COND
7370 is known to be true when applied to REG as its first operand and VAL
7371 as its second. X is known to not be shared and so can be modified in
7372 place.
7374 We only handle the simplest cases, and specifically those cases that
7375 arise with IF_THEN_ELSE expressions. */
7377 static rtx
7378 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7380 enum rtx_code code = GET_CODE (x);
7381 rtx temp;
7382 const char *fmt;
7383 int i, j;
7385 if (side_effects_p (x))
7386 return x;
7388 /* If either operand of the condition is a floating point value,
7389 then we have to avoid collapsing an EQ comparison. */
7390 if (cond == EQ
7391 && rtx_equal_p (x, reg)
7392 && ! FLOAT_MODE_P (GET_MODE (x))
7393 && ! FLOAT_MODE_P (GET_MODE (val)))
7394 return val;
7396 if (cond == UNEQ && rtx_equal_p (x, reg))
7397 return val;
7399 /* If X is (abs REG) and we know something about REG's relationship
7400 with zero, we may be able to simplify this. */
7402 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7403 switch (cond)
7405 case GE: case GT: case EQ:
7406 return XEXP (x, 0);
7407 case LT: case LE:
7408 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7409 XEXP (x, 0),
7410 GET_MODE (XEXP (x, 0)));
7411 default:
7412 break;
7415 /* The only other cases we handle are MIN, MAX, and comparisons if the
7416 operands are the same as REG and VAL. */
7418 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7420 if (rtx_equal_p (XEXP (x, 0), val))
7421 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7423 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7425 if (COMPARISON_P (x))
7427 if (comparison_dominates_p (cond, code))
7428 return const_true_rtx;
7430 code = reversed_comparison_code (x, NULL);
7431 if (code != UNKNOWN
7432 && comparison_dominates_p (cond, code))
7433 return const0_rtx;
7434 else
7435 return x;
7437 else if (code == SMAX || code == SMIN
7438 || code == UMIN || code == UMAX)
7440 int unsignedp = (code == UMIN || code == UMAX);
7442 /* Do not reverse the condition when it is NE or EQ.
7443 This is because we cannot conclude anything about
7444 the value of 'SMAX (x, y)' when x is not equal to y,
7445 but we can when x equals y. */
7446 if ((code == SMAX || code == UMAX)
7447 && ! (cond == EQ || cond == NE))
7448 cond = reverse_condition (cond);
7450 switch (cond)
7452 case GE: case GT:
7453 return unsignedp ? x : XEXP (x, 1);
7454 case LE: case LT:
7455 return unsignedp ? x : XEXP (x, 0);
7456 case GEU: case GTU:
7457 return unsignedp ? XEXP (x, 1) : x;
7458 case LEU: case LTU:
7459 return unsignedp ? XEXP (x, 0) : x;
7460 default:
7461 break;
7466 else if (code == SUBREG)
7468 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7469 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7471 if (SUBREG_REG (x) != r)
7473 /* We must simplify subreg here, before we lose track of the
7474 original inner_mode. */
7475 new = simplify_subreg (GET_MODE (x), r,
7476 inner_mode, SUBREG_BYTE (x));
7477 if (new)
7478 return new;
7479 else
7480 SUBST (SUBREG_REG (x), r);
7483 return x;
7485 /* We don't have to handle SIGN_EXTEND here, because even in the
7486 case of replacing something with a modeless CONST_INT, a
7487 CONST_INT is already (supposed to be) a valid sign extension for
7488 its narrower mode, which implies it's already properly
7489 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7490 story is different. */
7491 else if (code == ZERO_EXTEND)
7493 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7494 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7496 if (XEXP (x, 0) != r)
7498 /* We must simplify the zero_extend here, before we lose
7499 track of the original inner_mode. */
7500 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7501 r, inner_mode);
7502 if (new)
7503 return new;
7504 else
7505 SUBST (XEXP (x, 0), r);
7508 return x;
7511 fmt = GET_RTX_FORMAT (code);
7512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7514 if (fmt[i] == 'e')
7515 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7516 else if (fmt[i] == 'E')
7517 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7518 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7519 cond, reg, val));
7522 return x;
7525 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7526 assignment as a field assignment. */
7528 static int
7529 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7531 if (x == y || rtx_equal_p (x, y))
7532 return 1;
7534 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7535 return 0;
7537 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7538 Note that all SUBREGs of MEM are paradoxical; otherwise they
7539 would have been rewritten. */
7540 if (MEM_P (x) && GET_CODE (y) == SUBREG
7541 && MEM_P (SUBREG_REG (y))
7542 && rtx_equal_p (SUBREG_REG (y),
7543 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7544 return 1;
7546 if (MEM_P (y) && GET_CODE (x) == SUBREG
7547 && MEM_P (SUBREG_REG (x))
7548 && rtx_equal_p (SUBREG_REG (x),
7549 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7550 return 1;
7552 /* We used to see if get_last_value of X and Y were the same but that's
7553 not correct. In one direction, we'll cause the assignment to have
7554 the wrong destination and in the case, we'll import a register into this
7555 insn that might have already have been dead. So fail if none of the
7556 above cases are true. */
7557 return 0;
7560 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7561 Return that assignment if so.
7563 We only handle the most common cases. */
7565 static rtx
7566 make_field_assignment (rtx x)
7568 rtx dest = SET_DEST (x);
7569 rtx src = SET_SRC (x);
7570 rtx assign;
7571 rtx rhs, lhs;
7572 HOST_WIDE_INT c1;
7573 HOST_WIDE_INT pos;
7574 unsigned HOST_WIDE_INT len;
7575 rtx other;
7576 enum machine_mode mode;
7578 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7579 a clear of a one-bit field. We will have changed it to
7580 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7581 for a SUBREG. */
7583 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7584 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7585 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7586 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7588 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7589 1, 1, 1, 0);
7590 if (assign != 0)
7591 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7592 return x;
7595 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7596 && subreg_lowpart_p (XEXP (src, 0))
7597 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7598 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7599 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7600 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7601 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7602 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7604 assign = make_extraction (VOIDmode, dest, 0,
7605 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7606 1, 1, 1, 0);
7607 if (assign != 0)
7608 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7609 return x;
7612 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7613 one-bit field. */
7614 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7615 && XEXP (XEXP (src, 0), 0) == const1_rtx
7616 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7618 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7619 1, 1, 1, 0);
7620 if (assign != 0)
7621 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7622 return x;
7625 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7626 SRC is an AND with all bits of that field set, then we can discard
7627 the AND. */
7628 if (GET_CODE (dest) == ZERO_EXTRACT
7629 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7630 && GET_CODE (src) == AND
7631 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7633 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7634 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7635 unsigned HOST_WIDE_INT ze_mask;
7637 if (width >= HOST_BITS_PER_WIDE_INT)
7638 ze_mask = -1;
7639 else
7640 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7642 /* Complete overlap. We can remove the source AND. */
7643 if ((and_mask & ze_mask) == ze_mask)
7644 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7646 /* Partial overlap. We can reduce the source AND. */
7647 if ((and_mask & ze_mask) != and_mask)
7649 mode = GET_MODE (src);
7650 src = gen_rtx_AND (mode, XEXP (src, 0),
7651 gen_int_mode (and_mask & ze_mask, mode));
7652 return gen_rtx_SET (VOIDmode, dest, src);
7656 /* The other case we handle is assignments into a constant-position
7657 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7658 a mask that has all one bits except for a group of zero bits and
7659 OTHER is known to have zeros where C1 has ones, this is such an
7660 assignment. Compute the position and length from C1. Shift OTHER
7661 to the appropriate position, force it to the required mode, and
7662 make the extraction. Check for the AND in both operands. */
7664 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7665 return x;
7667 rhs = expand_compound_operation (XEXP (src, 0));
7668 lhs = expand_compound_operation (XEXP (src, 1));
7670 if (GET_CODE (rhs) == AND
7671 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7672 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7673 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7674 else if (GET_CODE (lhs) == AND
7675 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7676 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7677 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7678 else
7679 return x;
7681 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7682 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7683 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7684 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7685 return x;
7687 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7688 if (assign == 0)
7689 return x;
7691 /* The mode to use for the source is the mode of the assignment, or of
7692 what is inside a possible STRICT_LOW_PART. */
7693 mode = (GET_CODE (assign) == STRICT_LOW_PART
7694 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7696 /* Shift OTHER right POS places and make it the source, restricting it
7697 to the proper length and mode. */
7699 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
7700 GET_MODE (src),
7701 other, pos),
7702 dest);
7703 src = force_to_mode (src, mode,
7704 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7705 ? ~(unsigned HOST_WIDE_INT) 0
7706 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7709 /* If SRC is masked by an AND that does not make a difference in
7710 the value being stored, strip it. */
7711 if (GET_CODE (assign) == ZERO_EXTRACT
7712 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7713 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7714 && GET_CODE (src) == AND
7715 && GET_CODE (XEXP (src, 1)) == CONST_INT
7716 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7717 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7718 src = XEXP (src, 0);
7720 return gen_rtx_SET (VOIDmode, assign, src);
7723 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7724 if so. */
7726 static rtx
7727 apply_distributive_law (rtx x)
7729 enum rtx_code code = GET_CODE (x);
7730 enum rtx_code inner_code;
7731 rtx lhs, rhs, other;
7732 rtx tem;
7734 /* Distributivity is not true for floating point as it can change the
7735 value. So we don't do it unless -funsafe-math-optimizations. */
7736 if (FLOAT_MODE_P (GET_MODE (x))
7737 && ! flag_unsafe_math_optimizations)
7738 return x;
7740 /* The outer operation can only be one of the following: */
7741 if (code != IOR && code != AND && code != XOR
7742 && code != PLUS && code != MINUS)
7743 return x;
7745 lhs = XEXP (x, 0);
7746 rhs = XEXP (x, 1);
7748 /* If either operand is a primitive we can't do anything, so get out
7749 fast. */
7750 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7751 return x;
7753 lhs = expand_compound_operation (lhs);
7754 rhs = expand_compound_operation (rhs);
7755 inner_code = GET_CODE (lhs);
7756 if (inner_code != GET_CODE (rhs))
7757 return x;
7759 /* See if the inner and outer operations distribute. */
7760 switch (inner_code)
7762 case LSHIFTRT:
7763 case ASHIFTRT:
7764 case AND:
7765 case IOR:
7766 /* These all distribute except over PLUS. */
7767 if (code == PLUS || code == MINUS)
7768 return x;
7769 break;
7771 case MULT:
7772 if (code != PLUS && code != MINUS)
7773 return x;
7774 break;
7776 case ASHIFT:
7777 /* This is also a multiply, so it distributes over everything. */
7778 break;
7780 case SUBREG:
7781 /* Non-paradoxical SUBREGs distributes over all operations,
7782 provided the inner modes and byte offsets are the same, this
7783 is an extraction of a low-order part, we don't convert an fp
7784 operation to int or vice versa, this is not a vector mode,
7785 and we would not be converting a single-word operation into a
7786 multi-word operation. The latter test is not required, but
7787 it prevents generating unneeded multi-word operations. Some
7788 of the previous tests are redundant given the latter test,
7789 but are retained because they are required for correctness.
7791 We produce the result slightly differently in this case. */
7793 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7794 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7795 || ! subreg_lowpart_p (lhs)
7796 || (GET_MODE_CLASS (GET_MODE (lhs))
7797 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7798 || (GET_MODE_SIZE (GET_MODE (lhs))
7799 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7800 || VECTOR_MODE_P (GET_MODE (lhs))
7801 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7802 return x;
7804 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7805 SUBREG_REG (lhs), SUBREG_REG (rhs));
7806 return gen_lowpart (GET_MODE (x), tem);
7808 default:
7809 return x;
7812 /* Set LHS and RHS to the inner operands (A and B in the example
7813 above) and set OTHER to the common operand (C in the example).
7814 There is only one way to do this unless the inner operation is
7815 commutative. */
7816 if (COMMUTATIVE_ARITH_P (lhs)
7817 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7818 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7819 else if (COMMUTATIVE_ARITH_P (lhs)
7820 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7821 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7822 else if (COMMUTATIVE_ARITH_P (lhs)
7823 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7824 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7825 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7826 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7827 else
7828 return x;
7830 /* Form the new inner operation, seeing if it simplifies first. */
7831 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
7833 /* There is one exception to the general way of distributing:
7834 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7835 if (code == XOR && inner_code == IOR)
7837 inner_code = AND;
7838 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7841 /* We may be able to continuing distributing the result, so call
7842 ourselves recursively on the inner operation before forming the
7843 outer operation, which we return. */
7844 return simplify_gen_binary (inner_code, GET_MODE (x),
7845 apply_distributive_law (tem), other);
7848 /* See if X is of the form (* (+ A B) C), and if so convert to
7849 (+ (* A C) (* B C)) and try to simplify.
7851 Most of the time, this results in no change. However, if some of
7852 the operands are the same or inverses of each other, simplifications
7853 will result.
7855 For example, (and (ior A B) (not B)) can occur as the result of
7856 expanding a bit field assignment. When we apply the distributive
7857 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
7858 which then simplifies to (and (A (not B))).
7860 Note that no checks happen on the validity of applying the inverse
7861 distributive law. This is pointless since we can do it in the
7862 few places where this routine is called.
7864 N is the index of the term that is decomposed (the arithmetic operation,
7865 i.e. (+ A B) in the first example above). !N is the index of the term that
7866 is distributed, i.e. of C in the first example above. */
7867 static rtx
7868 distribute_and_simplify_rtx (rtx x, int n)
7870 enum machine_mode mode;
7871 enum rtx_code outer_code, inner_code;
7872 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
7874 decomposed = XEXP (x, n);
7875 if (!ARITHMETIC_P (decomposed))
7876 return NULL_RTX;
7878 mode = GET_MODE (x);
7879 outer_code = GET_CODE (x);
7880 distributed = XEXP (x, !n);
7882 inner_code = GET_CODE (decomposed);
7883 inner_op0 = XEXP (decomposed, 0);
7884 inner_op1 = XEXP (decomposed, 1);
7886 /* Special case (and (xor B C) (not A)), which is equivalent to
7887 (xor (ior A B) (ior A C)) */
7888 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
7890 distributed = XEXP (distributed, 0);
7891 outer_code = IOR;
7894 if (n == 0)
7896 /* Distribute the second term. */
7897 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
7898 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
7900 else
7902 /* Distribute the first term. */
7903 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
7904 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
7907 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
7908 new_op0, new_op1));
7909 if (GET_CODE (tmp) != outer_code
7910 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
7911 return tmp;
7913 return NULL_RTX;
7916 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
7917 in MODE. Return an equivalent form, if different from (and VAROP
7918 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
7920 static rtx
7921 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
7922 unsigned HOST_WIDE_INT constop)
7924 unsigned HOST_WIDE_INT nonzero;
7925 unsigned HOST_WIDE_INT orig_constop;
7926 rtx orig_varop;
7927 int i;
7929 orig_varop = varop;
7930 orig_constop = constop;
7931 if (GET_CODE (varop) == CLOBBER)
7932 return NULL_RTX;
7934 /* Simplify VAROP knowing that we will be only looking at some of the
7935 bits in it.
7937 Note by passing in CONSTOP, we guarantee that the bits not set in
7938 CONSTOP are not significant and will never be examined. We must
7939 ensure that is the case by explicitly masking out those bits
7940 before returning. */
7941 varop = force_to_mode (varop, mode, constop, 0);
7943 /* If VAROP is a CLOBBER, we will fail so return it. */
7944 if (GET_CODE (varop) == CLOBBER)
7945 return varop;
7947 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7948 to VAROP and return the new constant. */
7949 if (GET_CODE (varop) == CONST_INT)
7950 return gen_int_mode (INTVAL (varop) & constop, mode);
7952 /* See what bits may be nonzero in VAROP. Unlike the general case of
7953 a call to nonzero_bits, here we don't care about bits outside
7954 MODE. */
7956 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7958 /* Turn off all bits in the constant that are known to already be zero.
7959 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7960 which is tested below. */
7962 constop &= nonzero;
7964 /* If we don't have any bits left, return zero. */
7965 if (constop == 0)
7966 return const0_rtx;
7968 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7969 a power of two, we can replace this with an ASHIFT. */
7970 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7971 && (i = exact_log2 (constop)) >= 0)
7972 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7974 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7975 or XOR, then try to apply the distributive law. This may eliminate
7976 operations if either branch can be simplified because of the AND.
7977 It may also make some cases more complex, but those cases probably
7978 won't match a pattern either with or without this. */
7980 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7981 return
7982 gen_lowpart
7983 (mode,
7984 apply_distributive_law
7985 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
7986 simplify_and_const_int (NULL_RTX,
7987 GET_MODE (varop),
7988 XEXP (varop, 0),
7989 constop),
7990 simplify_and_const_int (NULL_RTX,
7991 GET_MODE (varop),
7992 XEXP (varop, 1),
7993 constop))));
7995 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
7996 the AND and see if one of the operands simplifies to zero. If so, we
7997 may eliminate it. */
7999 if (GET_CODE (varop) == PLUS
8000 && exact_log2 (constop + 1) >= 0)
8002 rtx o0, o1;
8004 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8005 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8006 if (o0 == const0_rtx)
8007 return o1;
8008 if (o1 == const0_rtx)
8009 return o0;
8012 /* Make a SUBREG if necessary. If we can't make it, fail. */
8013 varop = gen_lowpart (mode, varop);
8014 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8015 return NULL_RTX;
8017 /* If we are only masking insignificant bits, return VAROP. */
8018 if (constop == nonzero)
8019 return varop;
8021 if (varop == orig_varop && constop == orig_constop)
8022 return NULL_RTX;
8024 /* Otherwise, return an AND. */
8025 constop = trunc_int_for_mode (constop, mode);
8026 return simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8030 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8031 in MODE.
8033 Return an equivalent form, if different from X. Otherwise, return X. If
8034 X is zero, we are to always construct the equivalent form. */
8036 static rtx
8037 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8038 unsigned HOST_WIDE_INT constop)
8040 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8041 if (tem)
8042 return tem;
8044 if (!x)
8045 x = simplify_gen_binary (AND, GET_MODE (varop), varop, GEN_INT (constop));
8046 if (GET_MODE (x) != mode)
8047 x = gen_lowpart (mode, x);
8048 return x;
8051 /* Given a REG, X, compute which bits in X can be nonzero.
8052 We don't care about bits outside of those defined in MODE.
8054 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8055 a shift, AND, or zero_extract, we can do better. */
8057 static rtx
8058 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8059 rtx known_x ATTRIBUTE_UNUSED,
8060 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8061 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8062 unsigned HOST_WIDE_INT *nonzero)
8064 rtx tem;
8066 /* If X is a register whose nonzero bits value is current, use it.
8067 Otherwise, if X is a register whose value we can find, use that
8068 value. Otherwise, use the previously-computed global nonzero bits
8069 for this register. */
8071 if (reg_stat[REGNO (x)].last_set_value != 0
8072 && (reg_stat[REGNO (x)].last_set_mode == mode
8073 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8074 && GET_MODE_CLASS (mode) == MODE_INT))
8075 && (reg_stat[REGNO (x)].last_set_label == label_tick
8076 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8077 && REG_N_SETS (REGNO (x)) == 1
8078 && ! REGNO_REG_SET_P
8079 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8080 REGNO (x))))
8081 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8083 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8084 return NULL;
8087 tem = get_last_value (x);
8089 if (tem)
8091 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8092 /* If X is narrower than MODE and TEM is a non-negative
8093 constant that would appear negative in the mode of X,
8094 sign-extend it for use in reg_nonzero_bits because some
8095 machines (maybe most) will actually do the sign-extension
8096 and this is the conservative approach.
8098 ??? For 2.5, try to tighten up the MD files in this regard
8099 instead of this kludge. */
8101 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8102 && GET_CODE (tem) == CONST_INT
8103 && INTVAL (tem) > 0
8104 && 0 != (INTVAL (tem)
8105 & ((HOST_WIDE_INT) 1
8106 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8107 tem = GEN_INT (INTVAL (tem)
8108 | ((HOST_WIDE_INT) (-1)
8109 << GET_MODE_BITSIZE (GET_MODE (x))));
8110 #endif
8111 return tem;
8113 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8115 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8117 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8118 /* We don't know anything about the upper bits. */
8119 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8120 *nonzero &= mask;
8123 return NULL;
8126 /* Return the number of bits at the high-order end of X that are known to
8127 be equal to the sign bit. X will be used in mode MODE; if MODE is
8128 VOIDmode, X will be used in its own mode. The returned value will always
8129 be between 1 and the number of bits in MODE. */
8131 static rtx
8132 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8133 rtx known_x ATTRIBUTE_UNUSED,
8134 enum machine_mode known_mode
8135 ATTRIBUTE_UNUSED,
8136 unsigned int known_ret ATTRIBUTE_UNUSED,
8137 unsigned int *result)
8139 rtx tem;
8141 if (reg_stat[REGNO (x)].last_set_value != 0
8142 && reg_stat[REGNO (x)].last_set_mode == mode
8143 && (reg_stat[REGNO (x)].last_set_label == label_tick
8144 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8145 && REG_N_SETS (REGNO (x)) == 1
8146 && ! REGNO_REG_SET_P
8147 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8148 REGNO (x))))
8149 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8151 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8152 return NULL;
8155 tem = get_last_value (x);
8156 if (tem != 0)
8157 return tem;
8159 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8160 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8161 *result = reg_stat[REGNO (x)].sign_bit_copies;
8163 return NULL;
8166 /* Return the number of "extended" bits there are in X, when interpreted
8167 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8168 unsigned quantities, this is the number of high-order zero bits.
8169 For signed quantities, this is the number of copies of the sign bit
8170 minus 1. In both case, this function returns the number of "spare"
8171 bits. For example, if two quantities for which this function returns
8172 at least 1 are added, the addition is known not to overflow.
8174 This function will always return 0 unless called during combine, which
8175 implies that it must be called from a define_split. */
8177 unsigned int
8178 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8180 if (nonzero_sign_valid == 0)
8181 return 0;
8183 return (unsignedp
8184 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8185 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8186 - floor_log2 (nonzero_bits (x, mode)))
8187 : 0)
8188 : num_sign_bit_copies (x, mode) - 1);
8191 /* This function is called from `simplify_shift_const' to merge two
8192 outer operations. Specifically, we have already found that we need
8193 to perform operation *POP0 with constant *PCONST0 at the outermost
8194 position. We would now like to also perform OP1 with constant CONST1
8195 (with *POP0 being done last).
8197 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8198 the resulting operation. *PCOMP_P is set to 1 if we would need to
8199 complement the innermost operand, otherwise it is unchanged.
8201 MODE is the mode in which the operation will be done. No bits outside
8202 the width of this mode matter. It is assumed that the width of this mode
8203 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8205 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8206 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8207 result is simply *PCONST0.
8209 If the resulting operation cannot be expressed as one operation, we
8210 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8212 static int
8213 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8215 enum rtx_code op0 = *pop0;
8216 HOST_WIDE_INT const0 = *pconst0;
8218 const0 &= GET_MODE_MASK (mode);
8219 const1 &= GET_MODE_MASK (mode);
8221 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8222 if (op0 == AND)
8223 const1 &= const0;
8225 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8226 if OP0 is SET. */
8228 if (op1 == UNKNOWN || op0 == SET)
8229 return 1;
8231 else if (op0 == UNKNOWN)
8232 op0 = op1, const0 = const1;
8234 else if (op0 == op1)
8236 switch (op0)
8238 case AND:
8239 const0 &= const1;
8240 break;
8241 case IOR:
8242 const0 |= const1;
8243 break;
8244 case XOR:
8245 const0 ^= const1;
8246 break;
8247 case PLUS:
8248 const0 += const1;
8249 break;
8250 case NEG:
8251 op0 = UNKNOWN;
8252 break;
8253 default:
8254 break;
8258 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8259 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8260 return 0;
8262 /* If the two constants aren't the same, we can't do anything. The
8263 remaining six cases can all be done. */
8264 else if (const0 != const1)
8265 return 0;
8267 else
8268 switch (op0)
8270 case IOR:
8271 if (op1 == AND)
8272 /* (a & b) | b == b */
8273 op0 = SET;
8274 else /* op1 == XOR */
8275 /* (a ^ b) | b == a | b */
8277 break;
8279 case XOR:
8280 if (op1 == AND)
8281 /* (a & b) ^ b == (~a) & b */
8282 op0 = AND, *pcomp_p = 1;
8283 else /* op1 == IOR */
8284 /* (a | b) ^ b == a & ~b */
8285 op0 = AND, const0 = ~const0;
8286 break;
8288 case AND:
8289 if (op1 == IOR)
8290 /* (a | b) & b == b */
8291 op0 = SET;
8292 else /* op1 == XOR */
8293 /* (a ^ b) & b) == (~a) & b */
8294 *pcomp_p = 1;
8295 break;
8296 default:
8297 break;
8300 /* Check for NO-OP cases. */
8301 const0 &= GET_MODE_MASK (mode);
8302 if (const0 == 0
8303 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8304 op0 = UNKNOWN;
8305 else if (const0 == 0 && op0 == AND)
8306 op0 = SET;
8307 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8308 && op0 == AND)
8309 op0 = UNKNOWN;
8311 /* ??? Slightly redundant with the above mask, but not entirely.
8312 Moving this above means we'd have to sign-extend the mode mask
8313 for the final test. */
8314 const0 = trunc_int_for_mode (const0, mode);
8316 *pop0 = op0;
8317 *pconst0 = const0;
8319 return 1;
8322 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8323 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8324 simplify it. Otherwise, return a simplified value.
8326 The shift is normally computed in the widest mode we find in VAROP, as
8327 long as it isn't a different number of words than RESULT_MODE. Exceptions
8328 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8330 static rtx
8331 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8332 rtx varop, int orig_count)
8334 enum rtx_code orig_code = code;
8335 rtx orig_varop = varop;
8336 int count;
8337 enum machine_mode mode = result_mode;
8338 enum machine_mode shift_mode, tmode;
8339 unsigned int mode_words
8340 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8341 /* We form (outer_op (code varop count) (outer_const)). */
8342 enum rtx_code outer_op = UNKNOWN;
8343 HOST_WIDE_INT outer_const = 0;
8344 int complement_p = 0;
8345 rtx new, x;
8347 /* Make sure and truncate the "natural" shift on the way in. We don't
8348 want to do this inside the loop as it makes it more difficult to
8349 combine shifts. */
8350 if (SHIFT_COUNT_TRUNCATED)
8351 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8353 /* If we were given an invalid count, don't do anything except exactly
8354 what was requested. */
8356 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8357 return NULL_RTX;
8359 count = orig_count;
8361 /* Unless one of the branches of the `if' in this loop does a `continue',
8362 we will `break' the loop after the `if'. */
8364 while (count != 0)
8366 /* If we have an operand of (clobber (const_int 0)), fail. */
8367 if (GET_CODE (varop) == CLOBBER)
8368 return NULL_RTX;
8370 /* If we discovered we had to complement VAROP, leave. Making a NOT
8371 here would cause an infinite loop. */
8372 if (complement_p)
8373 break;
8375 /* Convert ROTATERT to ROTATE. */
8376 if (code == ROTATERT)
8378 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8379 code = ROTATE;
8380 if (VECTOR_MODE_P (result_mode))
8381 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8382 else
8383 count = bitsize - count;
8386 /* We need to determine what mode we will do the shift in. If the
8387 shift is a right shift or a ROTATE, we must always do it in the mode
8388 it was originally done in. Otherwise, we can do it in MODE, the
8389 widest mode encountered. */
8390 shift_mode
8391 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8392 ? result_mode : mode);
8394 /* Handle cases where the count is greater than the size of the mode
8395 minus 1. For ASHIFT, use the size minus one as the count (this can
8396 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8397 take the count modulo the size. For other shifts, the result is
8398 zero.
8400 Since these shifts are being produced by the compiler by combining
8401 multiple operations, each of which are defined, we know what the
8402 result is supposed to be. */
8404 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
8406 if (code == ASHIFTRT)
8407 count = GET_MODE_BITSIZE (shift_mode) - 1;
8408 else if (code == ROTATE || code == ROTATERT)
8409 count %= GET_MODE_BITSIZE (shift_mode);
8410 else
8412 /* We can't simply return zero because there may be an
8413 outer op. */
8414 varop = const0_rtx;
8415 count = 0;
8416 break;
8420 /* An arithmetic right shift of a quantity known to be -1 or 0
8421 is a no-op. */
8422 if (code == ASHIFTRT
8423 && (num_sign_bit_copies (varop, shift_mode)
8424 == GET_MODE_BITSIZE (shift_mode)))
8426 count = 0;
8427 break;
8430 /* If we are doing an arithmetic right shift and discarding all but
8431 the sign bit copies, this is equivalent to doing a shift by the
8432 bitsize minus one. Convert it into that shift because it will often
8433 allow other simplifications. */
8435 if (code == ASHIFTRT
8436 && (count + num_sign_bit_copies (varop, shift_mode)
8437 >= GET_MODE_BITSIZE (shift_mode)))
8438 count = GET_MODE_BITSIZE (shift_mode) - 1;
8440 /* We simplify the tests below and elsewhere by converting
8441 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8442 `make_compound_operation' will convert it to an ASHIFTRT for
8443 those machines (such as VAX) that don't have an LSHIFTRT. */
8444 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8445 && code == ASHIFTRT
8446 && ((nonzero_bits (varop, shift_mode)
8447 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8448 == 0))
8449 code = LSHIFTRT;
8451 if (code == LSHIFTRT
8452 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8453 && !(nonzero_bits (varop, shift_mode) >> count))
8454 varop = const0_rtx;
8455 if (code == ASHIFT
8456 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8457 && !((nonzero_bits (varop, shift_mode) << count)
8458 & GET_MODE_MASK (shift_mode)))
8459 varop = const0_rtx;
8461 switch (GET_CODE (varop))
8463 case SIGN_EXTEND:
8464 case ZERO_EXTEND:
8465 case SIGN_EXTRACT:
8466 case ZERO_EXTRACT:
8467 new = expand_compound_operation (varop);
8468 if (new != varop)
8470 varop = new;
8471 continue;
8473 break;
8475 case MEM:
8476 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8477 minus the width of a smaller mode, we can do this with a
8478 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8479 if ((code == ASHIFTRT || code == LSHIFTRT)
8480 && ! mode_dependent_address_p (XEXP (varop, 0))
8481 && ! MEM_VOLATILE_P (varop)
8482 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8483 MODE_INT, 1)) != BLKmode)
8485 new = adjust_address_nv (varop, tmode,
8486 BYTES_BIG_ENDIAN ? 0
8487 : count / BITS_PER_UNIT);
8489 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8490 : ZERO_EXTEND, mode, new);
8491 count = 0;
8492 continue;
8494 break;
8496 case USE:
8497 /* Similar to the case above, except that we can only do this if
8498 the resulting mode is the same as that of the underlying
8499 MEM and adjust the address depending on the *bits* endianness
8500 because of the way that bit-field extract insns are defined. */
8501 if ((code == ASHIFTRT || code == LSHIFTRT)
8502 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8503 MODE_INT, 1)) != BLKmode
8504 && tmode == GET_MODE (XEXP (varop, 0)))
8506 if (BITS_BIG_ENDIAN)
8507 new = XEXP (varop, 0);
8508 else
8510 new = copy_rtx (XEXP (varop, 0));
8511 SUBST (XEXP (new, 0),
8512 plus_constant (XEXP (new, 0),
8513 count / BITS_PER_UNIT));
8516 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8517 : ZERO_EXTEND, mode, new);
8518 count = 0;
8519 continue;
8521 break;
8523 case SUBREG:
8524 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8525 the same number of words as what we've seen so far. Then store
8526 the widest mode in MODE. */
8527 if (subreg_lowpart_p (varop)
8528 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8529 > GET_MODE_SIZE (GET_MODE (varop)))
8530 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8532 == mode_words)
8534 varop = SUBREG_REG (varop);
8535 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8536 mode = GET_MODE (varop);
8537 continue;
8539 break;
8541 case MULT:
8542 /* Some machines use MULT instead of ASHIFT because MULT
8543 is cheaper. But it is still better on those machines to
8544 merge two shifts into one. */
8545 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8546 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8548 varop
8549 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8550 XEXP (varop, 0),
8551 GEN_INT (exact_log2 (
8552 INTVAL (XEXP (varop, 1)))));
8553 continue;
8555 break;
8557 case UDIV:
8558 /* Similar, for when divides are cheaper. */
8559 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8560 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8562 varop
8563 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8564 XEXP (varop, 0),
8565 GEN_INT (exact_log2 (
8566 INTVAL (XEXP (varop, 1)))));
8567 continue;
8569 break;
8571 case ASHIFTRT:
8572 /* If we are extracting just the sign bit of an arithmetic
8573 right shift, that shift is not needed. However, the sign
8574 bit of a wider mode may be different from what would be
8575 interpreted as the sign bit in a narrower mode, so, if
8576 the result is narrower, don't discard the shift. */
8577 if (code == LSHIFTRT
8578 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8579 && (GET_MODE_BITSIZE (result_mode)
8580 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8582 varop = XEXP (varop, 0);
8583 continue;
8586 /* ... fall through ... */
8588 case LSHIFTRT:
8589 case ASHIFT:
8590 case ROTATE:
8591 /* Here we have two nested shifts. The result is usually the
8592 AND of a new shift with a mask. We compute the result below. */
8593 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8594 && INTVAL (XEXP (varop, 1)) >= 0
8595 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8596 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8597 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8599 enum rtx_code first_code = GET_CODE (varop);
8600 unsigned int first_count = INTVAL (XEXP (varop, 1));
8601 unsigned HOST_WIDE_INT mask;
8602 rtx mask_rtx;
8604 /* We have one common special case. We can't do any merging if
8605 the inner code is an ASHIFTRT of a smaller mode. However, if
8606 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8607 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8608 we can convert it to
8609 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8610 This simplifies certain SIGN_EXTEND operations. */
8611 if (code == ASHIFT && first_code == ASHIFTRT
8612 && count == (GET_MODE_BITSIZE (result_mode)
8613 - GET_MODE_BITSIZE (GET_MODE (varop))))
8615 /* C3 has the low-order C1 bits zero. */
8617 mask = (GET_MODE_MASK (mode)
8618 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8620 varop = simplify_and_const_int (NULL_RTX, result_mode,
8621 XEXP (varop, 0), mask);
8622 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8623 varop, count);
8624 count = first_count;
8625 code = ASHIFTRT;
8626 continue;
8629 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8630 than C1 high-order bits equal to the sign bit, we can convert
8631 this to either an ASHIFT or an ASHIFTRT depending on the
8632 two counts.
8634 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8636 if (code == ASHIFTRT && first_code == ASHIFT
8637 && GET_MODE (varop) == shift_mode
8638 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8639 > first_count))
8641 varop = XEXP (varop, 0);
8642 count -= first_count;
8643 if (count < 0)
8645 count = -count;
8646 code = ASHIFT;
8649 continue;
8652 /* There are some cases we can't do. If CODE is ASHIFTRT,
8653 we can only do this if FIRST_CODE is also ASHIFTRT.
8655 We can't do the case when CODE is ROTATE and FIRST_CODE is
8656 ASHIFTRT.
8658 If the mode of this shift is not the mode of the outer shift,
8659 we can't do this if either shift is a right shift or ROTATE.
8661 Finally, we can't do any of these if the mode is too wide
8662 unless the codes are the same.
8664 Handle the case where the shift codes are the same
8665 first. */
8667 if (code == first_code)
8669 if (GET_MODE (varop) != result_mode
8670 && (code == ASHIFTRT || code == LSHIFTRT
8671 || code == ROTATE))
8672 break;
8674 count += first_count;
8675 varop = XEXP (varop, 0);
8676 continue;
8679 if (code == ASHIFTRT
8680 || (code == ROTATE && first_code == ASHIFTRT)
8681 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8682 || (GET_MODE (varop) != result_mode
8683 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8684 || first_code == ROTATE
8685 || code == ROTATE)))
8686 break;
8688 /* To compute the mask to apply after the shift, shift the
8689 nonzero bits of the inner shift the same way the
8690 outer shift will. */
8692 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8694 mask_rtx
8695 = simplify_const_binary_operation (code, result_mode, mask_rtx,
8696 GEN_INT (count));
8698 /* Give up if we can't compute an outer operation to use. */
8699 if (mask_rtx == 0
8700 || GET_CODE (mask_rtx) != CONST_INT
8701 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8702 INTVAL (mask_rtx),
8703 result_mode, &complement_p))
8704 break;
8706 /* If the shifts are in the same direction, we add the
8707 counts. Otherwise, we subtract them. */
8708 if ((code == ASHIFTRT || code == LSHIFTRT)
8709 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8710 count += first_count;
8711 else
8712 count -= first_count;
8714 /* If COUNT is positive, the new shift is usually CODE,
8715 except for the two exceptions below, in which case it is
8716 FIRST_CODE. If the count is negative, FIRST_CODE should
8717 always be used */
8718 if (count > 0
8719 && ((first_code == ROTATE && code == ASHIFT)
8720 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8721 code = first_code;
8722 else if (count < 0)
8723 code = first_code, count = -count;
8725 varop = XEXP (varop, 0);
8726 continue;
8729 /* If we have (A << B << C) for any shift, we can convert this to
8730 (A << C << B). This wins if A is a constant. Only try this if
8731 B is not a constant. */
8733 else if (GET_CODE (varop) == code
8734 && GET_CODE (XEXP (varop, 0)) == CONST_INT
8735 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
8737 rtx new = simplify_const_binary_operation (code, mode,
8738 XEXP (varop, 0),
8739 GEN_INT (count));
8740 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8741 count = 0;
8742 continue;
8744 break;
8746 case NOT:
8747 /* Make this fit the case below. */
8748 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8749 GEN_INT (GET_MODE_MASK (mode)));
8750 continue;
8752 case IOR:
8753 case AND:
8754 case XOR:
8755 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8756 with C the size of VAROP - 1 and the shift is logical if
8757 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8758 we have an (le X 0) operation. If we have an arithmetic shift
8759 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8760 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8762 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8763 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8764 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8765 && (code == LSHIFTRT || code == ASHIFTRT)
8766 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8767 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8769 count = 0;
8770 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8771 const0_rtx);
8773 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8774 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8776 continue;
8779 /* If we have (shift (logical)), move the logical to the outside
8780 to allow it to possibly combine with another logical and the
8781 shift to combine with another shift. This also canonicalizes to
8782 what a ZERO_EXTRACT looks like. Also, some machines have
8783 (and (shift)) insns. */
8785 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8786 /* We can't do this if we have (ashiftrt (xor)) and the
8787 constant has its sign bit set in shift_mode. */
8788 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8789 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8790 shift_mode))
8791 && (new = simplify_const_binary_operation (code, result_mode,
8792 XEXP (varop, 1),
8793 GEN_INT (count))) != 0
8794 && GET_CODE (new) == CONST_INT
8795 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8796 INTVAL (new), result_mode, &complement_p))
8798 varop = XEXP (varop, 0);
8799 continue;
8802 /* If we can't do that, try to simplify the shift in each arm of the
8803 logical expression, make a new logical expression, and apply
8804 the inverse distributive law. This also can't be done
8805 for some (ashiftrt (xor)). */
8806 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8807 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8808 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8809 shift_mode)))
8811 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8812 XEXP (varop, 0), count);
8813 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8814 XEXP (varop, 1), count);
8816 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
8817 lhs, rhs);
8818 varop = apply_distributive_law (varop);
8820 count = 0;
8821 continue;
8823 break;
8825 case EQ:
8826 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8827 says that the sign bit can be tested, FOO has mode MODE, C is
8828 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8829 that may be nonzero. */
8830 if (code == LSHIFTRT
8831 && XEXP (varop, 1) == const0_rtx
8832 && GET_MODE (XEXP (varop, 0)) == result_mode
8833 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8834 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8835 && STORE_FLAG_VALUE == -1
8836 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8837 && merge_outer_ops (&outer_op, &outer_const, XOR,
8838 (HOST_WIDE_INT) 1, result_mode,
8839 &complement_p))
8841 varop = XEXP (varop, 0);
8842 count = 0;
8843 continue;
8845 break;
8847 case NEG:
8848 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8849 than the number of bits in the mode is equivalent to A. */
8850 if (code == LSHIFTRT
8851 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8852 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8854 varop = XEXP (varop, 0);
8855 count = 0;
8856 continue;
8859 /* NEG commutes with ASHIFT since it is multiplication. Move the
8860 NEG outside to allow shifts to combine. */
8861 if (code == ASHIFT
8862 && merge_outer_ops (&outer_op, &outer_const, NEG,
8863 (HOST_WIDE_INT) 0, result_mode,
8864 &complement_p))
8866 varop = XEXP (varop, 0);
8867 continue;
8869 break;
8871 case PLUS:
8872 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8873 is one less than the number of bits in the mode is
8874 equivalent to (xor A 1). */
8875 if (code == LSHIFTRT
8876 && count == (GET_MODE_BITSIZE (result_mode) - 1)
8877 && XEXP (varop, 1) == constm1_rtx
8878 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8879 && merge_outer_ops (&outer_op, &outer_const, XOR,
8880 (HOST_WIDE_INT) 1, result_mode,
8881 &complement_p))
8883 count = 0;
8884 varop = XEXP (varop, 0);
8885 continue;
8888 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8889 that might be nonzero in BAR are those being shifted out and those
8890 bits are known zero in FOO, we can replace the PLUS with FOO.
8891 Similarly in the other operand order. This code occurs when
8892 we are computing the size of a variable-size array. */
8894 if ((code == ASHIFTRT || code == LSHIFTRT)
8895 && count < HOST_BITS_PER_WIDE_INT
8896 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8897 && (nonzero_bits (XEXP (varop, 1), result_mode)
8898 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8900 varop = XEXP (varop, 0);
8901 continue;
8903 else if ((code == ASHIFTRT || code == LSHIFTRT)
8904 && count < HOST_BITS_PER_WIDE_INT
8905 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8906 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8907 >> count)
8908 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8909 & nonzero_bits (XEXP (varop, 1),
8910 result_mode)))
8912 varop = XEXP (varop, 1);
8913 continue;
8916 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
8917 if (code == ASHIFT
8918 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8919 && (new = simplify_const_binary_operation (ASHIFT, result_mode,
8920 XEXP (varop, 1),
8921 GEN_INT (count))) != 0
8922 && GET_CODE (new) == CONST_INT
8923 && merge_outer_ops (&outer_op, &outer_const, PLUS,
8924 INTVAL (new), result_mode, &complement_p))
8926 varop = XEXP (varop, 0);
8927 continue;
8930 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
8931 signbit', and attempt to change the PLUS to an XOR and move it to
8932 the outer operation as is done above in the AND/IOR/XOR case
8933 leg for shift(logical). See details in logical handling above
8934 for reasoning in doing so. */
8935 if (code == LSHIFTRT
8936 && GET_CODE (XEXP (varop, 1)) == CONST_INT
8937 && mode_signbit_p (result_mode, XEXP (varop, 1))
8938 && (new = simplify_const_binary_operation (code, result_mode,
8939 XEXP (varop, 1),
8940 GEN_INT (count))) != 0
8941 && GET_CODE (new) == CONST_INT
8942 && merge_outer_ops (&outer_op, &outer_const, XOR,
8943 INTVAL (new), result_mode, &complement_p))
8945 varop = XEXP (varop, 0);
8946 continue;
8949 break;
8951 case MINUS:
8952 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
8953 with C the size of VAROP - 1 and the shift is logical if
8954 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8955 we have a (gt X 0) operation. If the shift is arithmetic with
8956 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
8957 we have a (neg (gt X 0)) operation. */
8959 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8960 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
8961 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8962 && (code == LSHIFTRT || code == ASHIFTRT)
8963 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8964 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
8965 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8967 count = 0;
8968 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
8969 const0_rtx);
8971 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8972 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8974 continue;
8976 break;
8978 case TRUNCATE:
8979 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
8980 if the truncate does not affect the value. */
8981 if (code == LSHIFTRT
8982 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
8983 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
8984 && (INTVAL (XEXP (XEXP (varop, 0), 1))
8985 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
8986 - GET_MODE_BITSIZE (GET_MODE (varop)))))
8988 rtx varop_inner = XEXP (varop, 0);
8990 varop_inner
8991 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
8992 XEXP (varop_inner, 0),
8993 GEN_INT
8994 (count + INTVAL (XEXP (varop_inner, 1))));
8995 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
8996 count = 0;
8997 continue;
8999 break;
9001 default:
9002 break;
9005 break;
9008 /* We need to determine what mode to do the shift in. If the shift is
9009 a right shift or ROTATE, we must always do it in the mode it was
9010 originally done in. Otherwise, we can do it in MODE, the widest mode
9011 encountered. The code we care about is that of the shift that will
9012 actually be done, not the shift that was originally requested. */
9013 shift_mode
9014 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9015 ? result_mode : mode);
9017 /* We have now finished analyzing the shift. The result should be
9018 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9019 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9020 to the result of the shift. OUTER_CONST is the relevant constant,
9021 but we must turn off all bits turned off in the shift. */
9023 if (outer_op == UNKNOWN
9024 && orig_code == code && orig_count == count
9025 && varop == orig_varop
9026 && shift_mode == GET_MODE (varop))
9027 return NULL_RTX;
9029 /* Make a SUBREG if necessary. If we can't make it, fail. */
9030 varop = gen_lowpart (shift_mode, varop);
9031 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9032 return NULL_RTX;
9034 /* If we have an outer operation and we just made a shift, it is
9035 possible that we could have simplified the shift were it not
9036 for the outer operation. So try to do the simplification
9037 recursively. */
9039 if (outer_op != UNKNOWN)
9040 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9041 else
9042 x = NULL_RTX;
9044 if (x == NULL_RTX)
9045 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9047 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9048 turn off all the bits that the shift would have turned off. */
9049 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9050 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9051 GET_MODE_MASK (result_mode) >> orig_count);
9053 /* Do the remainder of the processing in RESULT_MODE. */
9054 x = gen_lowpart (result_mode, x);
9056 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9057 operation. */
9058 if (complement_p)
9059 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9061 if (outer_op != UNKNOWN)
9063 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9064 outer_const = trunc_int_for_mode (outer_const, result_mode);
9066 if (outer_op == AND)
9067 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9068 else if (outer_op == SET)
9069 /* This means that we have determined that the result is
9070 equivalent to a constant. This should be rare. */
9071 x = GEN_INT (outer_const);
9072 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9073 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9074 else
9075 x = simplify_gen_binary (outer_op, result_mode, x,
9076 GEN_INT (outer_const));
9079 return x;
9082 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9083 The result of the shift is RESULT_MODE. If we cannot simplify it,
9084 return X or, if it is NULL, synthesize the expression with
9085 simplify_gen_binary. Otherwise, return a simplified value.
9087 The shift is normally computed in the widest mode we find in VAROP, as
9088 long as it isn't a different number of words than RESULT_MODE. Exceptions
9089 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9091 static rtx
9092 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9093 rtx varop, int count)
9095 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9096 if (tem)
9097 return tem;
9099 if (!x)
9100 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9101 if (GET_MODE (x) != result_mode)
9102 x = gen_lowpart (result_mode, x);
9103 return x;
9107 /* Like recog, but we receive the address of a pointer to a new pattern.
9108 We try to match the rtx that the pointer points to.
9109 If that fails, we may try to modify or replace the pattern,
9110 storing the replacement into the same pointer object.
9112 Modifications include deletion or addition of CLOBBERs.
9114 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9115 the CLOBBERs are placed.
9117 The value is the final insn code from the pattern ultimately matched,
9118 or -1. */
9120 static int
9121 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9123 rtx pat = *pnewpat;
9124 int insn_code_number;
9125 int num_clobbers_to_add = 0;
9126 int i;
9127 rtx notes = 0;
9128 rtx old_notes, old_pat;
9130 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9131 we use to indicate that something didn't match. If we find such a
9132 thing, force rejection. */
9133 if (GET_CODE (pat) == PARALLEL)
9134 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9135 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9136 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9137 return -1;
9139 old_pat = PATTERN (insn);
9140 old_notes = REG_NOTES (insn);
9141 PATTERN (insn) = pat;
9142 REG_NOTES (insn) = 0;
9144 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9146 /* If it isn't, there is the possibility that we previously had an insn
9147 that clobbered some register as a side effect, but the combined
9148 insn doesn't need to do that. So try once more without the clobbers
9149 unless this represents an ASM insn. */
9151 if (insn_code_number < 0 && ! check_asm_operands (pat)
9152 && GET_CODE (pat) == PARALLEL)
9154 int pos;
9156 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9157 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9159 if (i != pos)
9160 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9161 pos++;
9164 SUBST_INT (XVECLEN (pat, 0), pos);
9166 if (pos == 1)
9167 pat = XVECEXP (pat, 0, 0);
9169 PATTERN (insn) = pat;
9170 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9172 PATTERN (insn) = old_pat;
9173 REG_NOTES (insn) = old_notes;
9175 /* Recognize all noop sets, these will be killed by followup pass. */
9176 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9177 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9179 /* If we had any clobbers to add, make a new pattern than contains
9180 them. Then check to make sure that all of them are dead. */
9181 if (num_clobbers_to_add)
9183 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9184 rtvec_alloc (GET_CODE (pat) == PARALLEL
9185 ? (XVECLEN (pat, 0)
9186 + num_clobbers_to_add)
9187 : num_clobbers_to_add + 1));
9189 if (GET_CODE (pat) == PARALLEL)
9190 for (i = 0; i < XVECLEN (pat, 0); i++)
9191 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9192 else
9193 XVECEXP (newpat, 0, 0) = pat;
9195 add_clobbers (newpat, insn_code_number);
9197 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9198 i < XVECLEN (newpat, 0); i++)
9200 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9201 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9202 return -1;
9203 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9204 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9206 pat = newpat;
9209 *pnewpat = pat;
9210 *pnotes = notes;
9212 return insn_code_number;
9215 /* Like gen_lowpart_general but for use by combine. In combine it
9216 is not possible to create any new pseudoregs. However, it is
9217 safe to create invalid memory addresses, because combine will
9218 try to recognize them and all they will do is make the combine
9219 attempt fail.
9221 If for some reason this cannot do its job, an rtx
9222 (clobber (const_int 0)) is returned.
9223 An insn containing that will not be recognized. */
9225 static rtx
9226 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9228 enum machine_mode imode = GET_MODE (x);
9229 unsigned int osize = GET_MODE_SIZE (omode);
9230 unsigned int isize = GET_MODE_SIZE (imode);
9231 rtx result;
9233 if (omode == imode)
9234 return x;
9236 /* Return identity if this is a CONST or symbolic reference. */
9237 if (omode == Pmode
9238 && (GET_CODE (x) == CONST
9239 || GET_CODE (x) == SYMBOL_REF
9240 || GET_CODE (x) == LABEL_REF))
9241 return x;
9243 /* We can only support MODE being wider than a word if X is a
9244 constant integer or has a mode the same size. */
9245 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9246 && ! ((imode == VOIDmode
9247 && (GET_CODE (x) == CONST_INT
9248 || GET_CODE (x) == CONST_DOUBLE))
9249 || isize == osize))
9250 goto fail;
9252 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9253 won't know what to do. So we will strip off the SUBREG here and
9254 process normally. */
9255 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9257 x = SUBREG_REG (x);
9259 /* For use in case we fall down into the address adjustments
9260 further below, we need to adjust the known mode and size of
9261 x; imode and isize, since we just adjusted x. */
9262 imode = GET_MODE (x);
9264 if (imode == omode)
9265 return x;
9267 isize = GET_MODE_SIZE (imode);
9270 result = gen_lowpart_common (omode, x);
9272 #ifdef CANNOT_CHANGE_MODE_CLASS
9273 if (result != 0 && GET_CODE (result) == SUBREG)
9274 record_subregs_of_mode (result);
9275 #endif
9277 if (result)
9278 return result;
9280 if (MEM_P (x))
9282 int offset = 0;
9284 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9285 address. */
9286 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9287 goto fail;
9289 /* If we want to refer to something bigger than the original memref,
9290 generate a paradoxical subreg instead. That will force a reload
9291 of the original memref X. */
9292 if (isize < osize)
9293 return gen_rtx_SUBREG (omode, x, 0);
9295 if (WORDS_BIG_ENDIAN)
9296 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9298 /* Adjust the address so that the address-after-the-data is
9299 unchanged. */
9300 if (BYTES_BIG_ENDIAN)
9301 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9303 return adjust_address_nv (x, omode, offset);
9306 /* If X is a comparison operator, rewrite it in a new mode. This
9307 probably won't match, but may allow further simplifications. */
9308 else if (COMPARISON_P (x))
9309 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9311 /* If we couldn't simplify X any other way, just enclose it in a
9312 SUBREG. Normally, this SUBREG won't match, but some patterns may
9313 include an explicit SUBREG or we may simplify it further in combine. */
9314 else
9316 int offset = 0;
9317 rtx res;
9319 offset = subreg_lowpart_offset (omode, imode);
9320 if (imode == VOIDmode)
9322 imode = int_mode_for_mode (omode);
9323 x = gen_lowpart_common (imode, x);
9324 if (x == NULL)
9325 goto fail;
9327 res = simplify_gen_subreg (omode, x, imode, offset);
9328 if (res)
9329 return res;
9332 fail:
9333 return gen_rtx_CLOBBER (imode, const0_rtx);
9336 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9337 comparison code that will be tested.
9339 The result is a possibly different comparison code to use. *POP0 and
9340 *POP1 may be updated.
9342 It is possible that we might detect that a comparison is either always
9343 true or always false. However, we do not perform general constant
9344 folding in combine, so this knowledge isn't useful. Such tautologies
9345 should have been detected earlier. Hence we ignore all such cases. */
9347 static enum rtx_code
9348 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9350 rtx op0 = *pop0;
9351 rtx op1 = *pop1;
9352 rtx tem, tem1;
9353 int i;
9354 enum machine_mode mode, tmode;
9356 /* Try a few ways of applying the same transformation to both operands. */
9357 while (1)
9359 #ifndef WORD_REGISTER_OPERATIONS
9360 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9361 so check specially. */
9362 if (code != GTU && code != GEU && code != LTU && code != LEU
9363 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9364 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9365 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9366 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9367 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9368 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9369 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9370 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9371 && XEXP (op0, 1) == XEXP (op1, 1)
9372 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9373 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9374 && (INTVAL (XEXP (op0, 1))
9375 == (GET_MODE_BITSIZE (GET_MODE (op0))
9376 - (GET_MODE_BITSIZE
9377 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9379 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9380 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9382 #endif
9384 /* If both operands are the same constant shift, see if we can ignore the
9385 shift. We can if the shift is a rotate or if the bits shifted out of
9386 this shift are known to be zero for both inputs and if the type of
9387 comparison is compatible with the shift. */
9388 if (GET_CODE (op0) == GET_CODE (op1)
9389 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9390 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9391 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9392 && (code != GT && code != LT && code != GE && code != LE))
9393 || (GET_CODE (op0) == ASHIFTRT
9394 && (code != GTU && code != LTU
9395 && code != GEU && code != LEU)))
9396 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9397 && INTVAL (XEXP (op0, 1)) >= 0
9398 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9399 && XEXP (op0, 1) == XEXP (op1, 1))
9401 enum machine_mode mode = GET_MODE (op0);
9402 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9403 int shift_count = INTVAL (XEXP (op0, 1));
9405 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9406 mask &= (mask >> shift_count) << shift_count;
9407 else if (GET_CODE (op0) == ASHIFT)
9408 mask = (mask & (mask << shift_count)) >> shift_count;
9410 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9411 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9412 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9413 else
9414 break;
9417 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9418 SUBREGs are of the same mode, and, in both cases, the AND would
9419 be redundant if the comparison was done in the narrower mode,
9420 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9421 and the operand's possibly nonzero bits are 0xffffff01; in that case
9422 if we only care about QImode, we don't need the AND). This case
9423 occurs if the output mode of an scc insn is not SImode and
9424 STORE_FLAG_VALUE == 1 (e.g., the 386).
9426 Similarly, check for a case where the AND's are ZERO_EXTEND
9427 operations from some narrower mode even though a SUBREG is not
9428 present. */
9430 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9431 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9432 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9434 rtx inner_op0 = XEXP (op0, 0);
9435 rtx inner_op1 = XEXP (op1, 0);
9436 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9437 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9438 int changed = 0;
9440 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9441 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9442 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9443 && (GET_MODE (SUBREG_REG (inner_op0))
9444 == GET_MODE (SUBREG_REG (inner_op1)))
9445 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9446 <= HOST_BITS_PER_WIDE_INT)
9447 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9448 GET_MODE (SUBREG_REG (inner_op0)))))
9449 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9450 GET_MODE (SUBREG_REG (inner_op1))))))
9452 op0 = SUBREG_REG (inner_op0);
9453 op1 = SUBREG_REG (inner_op1);
9455 /* The resulting comparison is always unsigned since we masked
9456 off the original sign bit. */
9457 code = unsigned_condition (code);
9459 changed = 1;
9462 else if (c0 == c1)
9463 for (tmode = GET_CLASS_NARROWEST_MODE
9464 (GET_MODE_CLASS (GET_MODE (op0)));
9465 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9466 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9468 op0 = gen_lowpart (tmode, inner_op0);
9469 op1 = gen_lowpart (tmode, inner_op1);
9470 code = unsigned_condition (code);
9471 changed = 1;
9472 break;
9475 if (! changed)
9476 break;
9479 /* If both operands are NOT, we can strip off the outer operation
9480 and adjust the comparison code for swapped operands; similarly for
9481 NEG, except that this must be an equality comparison. */
9482 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9483 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9484 && (code == EQ || code == NE)))
9485 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9487 else
9488 break;
9491 /* If the first operand is a constant, swap the operands and adjust the
9492 comparison code appropriately, but don't do this if the second operand
9493 is already a constant integer. */
9494 if (swap_commutative_operands_p (op0, op1))
9496 tem = op0, op0 = op1, op1 = tem;
9497 code = swap_condition (code);
9500 /* We now enter a loop during which we will try to simplify the comparison.
9501 For the most part, we only are concerned with comparisons with zero,
9502 but some things may really be comparisons with zero but not start
9503 out looking that way. */
9505 while (GET_CODE (op1) == CONST_INT)
9507 enum machine_mode mode = GET_MODE (op0);
9508 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9509 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9510 int equality_comparison_p;
9511 int sign_bit_comparison_p;
9512 int unsigned_comparison_p;
9513 HOST_WIDE_INT const_op;
9515 /* We only want to handle integral modes. This catches VOIDmode,
9516 CCmode, and the floating-point modes. An exception is that we
9517 can handle VOIDmode if OP0 is a COMPARE or a comparison
9518 operation. */
9520 if (GET_MODE_CLASS (mode) != MODE_INT
9521 && ! (mode == VOIDmode
9522 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9523 break;
9525 /* Get the constant we are comparing against and turn off all bits
9526 not on in our mode. */
9527 const_op = INTVAL (op1);
9528 if (mode != VOIDmode)
9529 const_op = trunc_int_for_mode (const_op, mode);
9530 op1 = GEN_INT (const_op);
9532 /* If we are comparing against a constant power of two and the value
9533 being compared can only have that single bit nonzero (e.g., it was
9534 `and'ed with that bit), we can replace this with a comparison
9535 with zero. */
9536 if (const_op
9537 && (code == EQ || code == NE || code == GE || code == GEU
9538 || code == LT || code == LTU)
9539 && mode_width <= HOST_BITS_PER_WIDE_INT
9540 && exact_log2 (const_op) >= 0
9541 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9543 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9544 op1 = const0_rtx, const_op = 0;
9547 /* Similarly, if we are comparing a value known to be either -1 or
9548 0 with -1, change it to the opposite comparison against zero. */
9550 if (const_op == -1
9551 && (code == EQ || code == NE || code == GT || code == LE
9552 || code == GEU || code == LTU)
9553 && num_sign_bit_copies (op0, mode) == mode_width)
9555 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9556 op1 = const0_rtx, const_op = 0;
9559 /* Do some canonicalizations based on the comparison code. We prefer
9560 comparisons against zero and then prefer equality comparisons.
9561 If we can reduce the size of a constant, we will do that too. */
9563 switch (code)
9565 case LT:
9566 /* < C is equivalent to <= (C - 1) */
9567 if (const_op > 0)
9569 const_op -= 1;
9570 op1 = GEN_INT (const_op);
9571 code = LE;
9572 /* ... fall through to LE case below. */
9574 else
9575 break;
9577 case LE:
9578 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9579 if (const_op < 0)
9581 const_op += 1;
9582 op1 = GEN_INT (const_op);
9583 code = LT;
9586 /* If we are doing a <= 0 comparison on a value known to have
9587 a zero sign bit, we can replace this with == 0. */
9588 else if (const_op == 0
9589 && mode_width <= HOST_BITS_PER_WIDE_INT
9590 && (nonzero_bits (op0, mode)
9591 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9592 code = EQ;
9593 break;
9595 case GE:
9596 /* >= C is equivalent to > (C - 1). */
9597 if (const_op > 0)
9599 const_op -= 1;
9600 op1 = GEN_INT (const_op);
9601 code = GT;
9602 /* ... fall through to GT below. */
9604 else
9605 break;
9607 case GT:
9608 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9609 if (const_op < 0)
9611 const_op += 1;
9612 op1 = GEN_INT (const_op);
9613 code = GE;
9616 /* If we are doing a > 0 comparison on a value known to have
9617 a zero sign bit, we can replace this with != 0. */
9618 else if (const_op == 0
9619 && mode_width <= HOST_BITS_PER_WIDE_INT
9620 && (nonzero_bits (op0, mode)
9621 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9622 code = NE;
9623 break;
9625 case LTU:
9626 /* < C is equivalent to <= (C - 1). */
9627 if (const_op > 0)
9629 const_op -= 1;
9630 op1 = GEN_INT (const_op);
9631 code = LEU;
9632 /* ... fall through ... */
9635 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9636 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9637 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9639 const_op = 0, op1 = const0_rtx;
9640 code = GE;
9641 break;
9643 else
9644 break;
9646 case LEU:
9647 /* unsigned <= 0 is equivalent to == 0 */
9648 if (const_op == 0)
9649 code = EQ;
9651 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9652 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9653 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9655 const_op = 0, op1 = const0_rtx;
9656 code = GE;
9658 break;
9660 case GEU:
9661 /* >= C is equivalent to > (C - 1). */
9662 if (const_op > 1)
9664 const_op -= 1;
9665 op1 = GEN_INT (const_op);
9666 code = GTU;
9667 /* ... fall through ... */
9670 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9671 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9672 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9674 const_op = 0, op1 = const0_rtx;
9675 code = LT;
9676 break;
9678 else
9679 break;
9681 case GTU:
9682 /* unsigned > 0 is equivalent to != 0 */
9683 if (const_op == 0)
9684 code = NE;
9686 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9687 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9688 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9690 const_op = 0, op1 = const0_rtx;
9691 code = LT;
9693 break;
9695 default:
9696 break;
9699 /* Compute some predicates to simplify code below. */
9701 equality_comparison_p = (code == EQ || code == NE);
9702 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9703 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9704 || code == GEU);
9706 /* If this is a sign bit comparison and we can do arithmetic in
9707 MODE, say that we will only be needing the sign bit of OP0. */
9708 if (sign_bit_comparison_p
9709 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9710 op0 = force_to_mode (op0, mode,
9711 ((HOST_WIDE_INT) 1
9712 << (GET_MODE_BITSIZE (mode) - 1)),
9715 /* Now try cases based on the opcode of OP0. If none of the cases
9716 does a "continue", we exit this loop immediately after the
9717 switch. */
9719 switch (GET_CODE (op0))
9721 case ZERO_EXTRACT:
9722 /* If we are extracting a single bit from a variable position in
9723 a constant that has only a single bit set and are comparing it
9724 with zero, we can convert this into an equality comparison
9725 between the position and the location of the single bit. */
9726 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9727 have already reduced the shift count modulo the word size. */
9728 if (!SHIFT_COUNT_TRUNCATED
9729 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9730 && XEXP (op0, 1) == const1_rtx
9731 && equality_comparison_p && const_op == 0
9732 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9734 if (BITS_BIG_ENDIAN)
9736 enum machine_mode new_mode
9737 = mode_for_extraction (EP_extzv, 1);
9738 if (new_mode == MAX_MACHINE_MODE)
9739 i = BITS_PER_WORD - 1 - i;
9740 else
9742 mode = new_mode;
9743 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9747 op0 = XEXP (op0, 2);
9748 op1 = GEN_INT (i);
9749 const_op = i;
9751 /* Result is nonzero iff shift count is equal to I. */
9752 code = reverse_condition (code);
9753 continue;
9756 /* ... fall through ... */
9758 case SIGN_EXTRACT:
9759 tem = expand_compound_operation (op0);
9760 if (tem != op0)
9762 op0 = tem;
9763 continue;
9765 break;
9767 case NOT:
9768 /* If testing for equality, we can take the NOT of the constant. */
9769 if (equality_comparison_p
9770 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9772 op0 = XEXP (op0, 0);
9773 op1 = tem;
9774 continue;
9777 /* If just looking at the sign bit, reverse the sense of the
9778 comparison. */
9779 if (sign_bit_comparison_p)
9781 op0 = XEXP (op0, 0);
9782 code = (code == GE ? LT : GE);
9783 continue;
9785 break;
9787 case NEG:
9788 /* If testing for equality, we can take the NEG of the constant. */
9789 if (equality_comparison_p
9790 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9792 op0 = XEXP (op0, 0);
9793 op1 = tem;
9794 continue;
9797 /* The remaining cases only apply to comparisons with zero. */
9798 if (const_op != 0)
9799 break;
9801 /* When X is ABS or is known positive,
9802 (neg X) is < 0 if and only if X != 0. */
9804 if (sign_bit_comparison_p
9805 && (GET_CODE (XEXP (op0, 0)) == ABS
9806 || (mode_width <= HOST_BITS_PER_WIDE_INT
9807 && (nonzero_bits (XEXP (op0, 0), mode)
9808 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9810 op0 = XEXP (op0, 0);
9811 code = (code == LT ? NE : EQ);
9812 continue;
9815 /* If we have NEG of something whose two high-order bits are the
9816 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9817 if (num_sign_bit_copies (op0, mode) >= 2)
9819 op0 = XEXP (op0, 0);
9820 code = swap_condition (code);
9821 continue;
9823 break;
9825 case ROTATE:
9826 /* If we are testing equality and our count is a constant, we
9827 can perform the inverse operation on our RHS. */
9828 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9829 && (tem = simplify_binary_operation (ROTATERT, mode,
9830 op1, XEXP (op0, 1))) != 0)
9832 op0 = XEXP (op0, 0);
9833 op1 = tem;
9834 continue;
9837 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9838 a particular bit. Convert it to an AND of a constant of that
9839 bit. This will be converted into a ZERO_EXTRACT. */
9840 if (const_op == 0 && sign_bit_comparison_p
9841 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9842 && mode_width <= HOST_BITS_PER_WIDE_INT)
9844 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9845 ((HOST_WIDE_INT) 1
9846 << (mode_width - 1
9847 - INTVAL (XEXP (op0, 1)))));
9848 code = (code == LT ? NE : EQ);
9849 continue;
9852 /* Fall through. */
9854 case ABS:
9855 /* ABS is ignorable inside an equality comparison with zero. */
9856 if (const_op == 0 && equality_comparison_p)
9858 op0 = XEXP (op0, 0);
9859 continue;
9861 break;
9863 case SIGN_EXTEND:
9864 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
9865 (compare FOO CONST) if CONST fits in FOO's mode and we
9866 are either testing inequality or have an unsigned
9867 comparison with ZERO_EXTEND or a signed comparison with
9868 SIGN_EXTEND. But don't do it if we don't have a compare
9869 insn of the given mode, since we'd have to revert it
9870 later on, and then we wouldn't know whether to sign- or
9871 zero-extend. */
9872 mode = GET_MODE (XEXP (op0, 0));
9873 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
9874 && ! unsigned_comparison_p
9875 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9876 && ((unsigned HOST_WIDE_INT) const_op
9877 < (((unsigned HOST_WIDE_INT) 1
9878 << (GET_MODE_BITSIZE (mode) - 1))))
9879 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
9881 op0 = XEXP (op0, 0);
9882 continue;
9884 break;
9886 case SUBREG:
9887 /* Check for the case where we are comparing A - C1 with C2, that is
9889 (subreg:MODE (plus (A) (-C1))) op (C2)
9891 with C1 a constant, and try to lift the SUBREG, i.e. to do the
9892 comparison in the wider mode. One of the following two conditions
9893 must be true in order for this to be valid:
9895 1. The mode extension results in the same bit pattern being added
9896 on both sides and the comparison is equality or unsigned. As
9897 C2 has been truncated to fit in MODE, the pattern can only be
9898 all 0s or all 1s.
9900 2. The mode extension results in the sign bit being copied on
9901 each side.
9903 The difficulty here is that we have predicates for A but not for
9904 (A - C1) so we need to check that C1 is within proper bounds so
9905 as to perturbate A as little as possible. */
9907 if (mode_width <= HOST_BITS_PER_WIDE_INT
9908 && subreg_lowpart_p (op0)
9909 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
9910 && GET_CODE (SUBREG_REG (op0)) == PLUS
9911 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
9913 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
9914 rtx a = XEXP (SUBREG_REG (op0), 0);
9915 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
9917 if ((c1 > 0
9918 && (unsigned HOST_WIDE_INT) c1
9919 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
9920 && (equality_comparison_p || unsigned_comparison_p)
9921 /* (A - C1) zero-extends if it is positive and sign-extends
9922 if it is negative, C2 both zero- and sign-extends. */
9923 && ((0 == (nonzero_bits (a, inner_mode)
9924 & ~GET_MODE_MASK (mode))
9925 && const_op >= 0)
9926 /* (A - C1) sign-extends if it is positive and 1-extends
9927 if it is negative, C2 both sign- and 1-extends. */
9928 || (num_sign_bit_copies (a, inner_mode)
9929 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
9930 - mode_width)
9931 && const_op < 0)))
9932 || ((unsigned HOST_WIDE_INT) c1
9933 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
9934 /* (A - C1) always sign-extends, like C2. */
9935 && num_sign_bit_copies (a, inner_mode)
9936 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
9937 - (mode_width - 1))))
9939 op0 = SUBREG_REG (op0);
9940 continue;
9944 /* If the inner mode is narrower and we are extracting the low part,
9945 we can treat the SUBREG as if it were a ZERO_EXTEND. */
9946 if (subreg_lowpart_p (op0)
9947 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
9948 /* Fall through */ ;
9949 else
9950 break;
9952 /* ... fall through ... */
9954 case ZERO_EXTEND:
9955 mode = GET_MODE (XEXP (op0, 0));
9956 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
9957 && (unsigned_comparison_p || equality_comparison_p)
9958 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9959 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
9960 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
9962 op0 = XEXP (op0, 0);
9963 continue;
9965 break;
9967 case PLUS:
9968 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
9969 this for equality comparisons due to pathological cases involving
9970 overflows. */
9971 if (equality_comparison_p
9972 && 0 != (tem = simplify_binary_operation (MINUS, mode,
9973 op1, XEXP (op0, 1))))
9975 op0 = XEXP (op0, 0);
9976 op1 = tem;
9977 continue;
9980 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
9981 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
9982 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
9984 op0 = XEXP (XEXP (op0, 0), 0);
9985 code = (code == LT ? EQ : NE);
9986 continue;
9988 break;
9990 case MINUS:
9991 /* We used to optimize signed comparisons against zero, but that
9992 was incorrect. Unsigned comparisons against zero (GTU, LEU)
9993 arrive here as equality comparisons, or (GEU, LTU) are
9994 optimized away. No need to special-case them. */
9996 /* (eq (minus A B) C) -> (eq A (plus B C)) or
9997 (eq B (minus A C)), whichever simplifies. We can only do
9998 this for equality comparisons due to pathological cases involving
9999 overflows. */
10000 if (equality_comparison_p
10001 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10002 XEXP (op0, 1), op1)))
10004 op0 = XEXP (op0, 0);
10005 op1 = tem;
10006 continue;
10009 if (equality_comparison_p
10010 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10011 XEXP (op0, 0), op1)))
10013 op0 = XEXP (op0, 1);
10014 op1 = tem;
10015 continue;
10018 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10019 of bits in X minus 1, is one iff X > 0. */
10020 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10021 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10022 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10023 == mode_width - 1
10024 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10026 op0 = XEXP (op0, 1);
10027 code = (code == GE ? LE : GT);
10028 continue;
10030 break;
10032 case XOR:
10033 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10034 if C is zero or B is a constant. */
10035 if (equality_comparison_p
10036 && 0 != (tem = simplify_binary_operation (XOR, mode,
10037 XEXP (op0, 1), op1)))
10039 op0 = XEXP (op0, 0);
10040 op1 = tem;
10041 continue;
10043 break;
10045 case EQ: case NE:
10046 case UNEQ: case LTGT:
10047 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10048 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10049 case UNORDERED: case ORDERED:
10050 /* We can't do anything if OP0 is a condition code value, rather
10051 than an actual data value. */
10052 if (const_op != 0
10053 || CC0_P (XEXP (op0, 0))
10054 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10055 break;
10057 /* Get the two operands being compared. */
10058 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10059 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10060 else
10061 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10063 /* Check for the cases where we simply want the result of the
10064 earlier test or the opposite of that result. */
10065 if (code == NE || code == EQ
10066 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10067 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10068 && (STORE_FLAG_VALUE
10069 & (((HOST_WIDE_INT) 1
10070 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10071 && (code == LT || code == GE)))
10073 enum rtx_code new_code;
10074 if (code == LT || code == NE)
10075 new_code = GET_CODE (op0);
10076 else
10077 new_code = reversed_comparison_code (op0, NULL);
10079 if (new_code != UNKNOWN)
10081 code = new_code;
10082 op0 = tem;
10083 op1 = tem1;
10084 continue;
10087 break;
10089 case IOR:
10090 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10091 iff X <= 0. */
10092 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10093 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10094 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10096 op0 = XEXP (op0, 1);
10097 code = (code == GE ? GT : LE);
10098 continue;
10100 break;
10102 case AND:
10103 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10104 will be converted to a ZERO_EXTRACT later. */
10105 if (const_op == 0 && equality_comparison_p
10106 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10107 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10109 op0 = simplify_and_const_int
10110 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10111 XEXP (op0, 1),
10112 XEXP (XEXP (op0, 0), 1)),
10113 (HOST_WIDE_INT) 1);
10114 continue;
10117 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10118 zero and X is a comparison and C1 and C2 describe only bits set
10119 in STORE_FLAG_VALUE, we can compare with X. */
10120 if (const_op == 0 && equality_comparison_p
10121 && mode_width <= HOST_BITS_PER_WIDE_INT
10122 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10123 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10124 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10125 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10126 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10128 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10129 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10130 if ((~STORE_FLAG_VALUE & mask) == 0
10131 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10132 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10133 && COMPARISON_P (tem))))
10135 op0 = XEXP (XEXP (op0, 0), 0);
10136 continue;
10140 /* If we are doing an equality comparison of an AND of a bit equal
10141 to the sign bit, replace this with a LT or GE comparison of
10142 the underlying value. */
10143 if (equality_comparison_p
10144 && const_op == 0
10145 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10146 && mode_width <= HOST_BITS_PER_WIDE_INT
10147 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10148 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10150 op0 = XEXP (op0, 0);
10151 code = (code == EQ ? GE : LT);
10152 continue;
10155 /* If this AND operation is really a ZERO_EXTEND from a narrower
10156 mode, the constant fits within that mode, and this is either an
10157 equality or unsigned comparison, try to do this comparison in
10158 the narrower mode. */
10159 if ((equality_comparison_p || unsigned_comparison_p)
10160 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10161 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10162 & GET_MODE_MASK (mode))
10163 + 1)) >= 0
10164 && const_op >> i == 0
10165 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10167 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10168 continue;
10171 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10172 fits in both M1 and M2 and the SUBREG is either paradoxical
10173 or represents the low part, permute the SUBREG and the AND
10174 and try again. */
10175 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10177 unsigned HOST_WIDE_INT c1;
10178 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10179 /* Require an integral mode, to avoid creating something like
10180 (AND:SF ...). */
10181 if (SCALAR_INT_MODE_P (tmode)
10182 /* It is unsafe to commute the AND into the SUBREG if the
10183 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10184 not defined. As originally written the upper bits
10185 have a defined value due to the AND operation.
10186 However, if we commute the AND inside the SUBREG then
10187 they no longer have defined values and the meaning of
10188 the code has been changed. */
10189 && (0
10190 #ifdef WORD_REGISTER_OPERATIONS
10191 || (mode_width > GET_MODE_BITSIZE (tmode)
10192 && mode_width <= BITS_PER_WORD)
10193 #endif
10194 || (mode_width <= GET_MODE_BITSIZE (tmode)
10195 && subreg_lowpart_p (XEXP (op0, 0))))
10196 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10197 && mode_width <= HOST_BITS_PER_WIDE_INT
10198 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10199 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10200 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10201 && c1 != mask
10202 && c1 != GET_MODE_MASK (tmode))
10204 op0 = simplify_gen_binary (AND, tmode,
10205 SUBREG_REG (XEXP (op0, 0)),
10206 gen_int_mode (c1, tmode));
10207 op0 = gen_lowpart (mode, op0);
10208 continue;
10212 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10213 if (const_op == 0 && equality_comparison_p
10214 && XEXP (op0, 1) == const1_rtx
10215 && GET_CODE (XEXP (op0, 0)) == NOT)
10217 op0 = simplify_and_const_int
10218 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10219 code = (code == NE ? EQ : NE);
10220 continue;
10223 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10224 (eq (and (lshiftrt X) 1) 0).
10225 Also handle the case where (not X) is expressed using xor. */
10226 if (const_op == 0 && equality_comparison_p
10227 && XEXP (op0, 1) == const1_rtx
10228 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10230 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10231 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10233 if (GET_CODE (shift_op) == NOT
10234 || (GET_CODE (shift_op) == XOR
10235 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10236 && GET_CODE (shift_count) == CONST_INT
10237 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10238 && (INTVAL (XEXP (shift_op, 1))
10239 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10241 op0 = simplify_and_const_int
10242 (NULL_RTX, mode,
10243 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10244 (HOST_WIDE_INT) 1);
10245 code = (code == NE ? EQ : NE);
10246 continue;
10249 break;
10251 case ASHIFT:
10252 /* If we have (compare (ashift FOO N) (const_int C)) and
10253 the high order N bits of FOO (N+1 if an inequality comparison)
10254 are known to be zero, we can do this by comparing FOO with C
10255 shifted right N bits so long as the low-order N bits of C are
10256 zero. */
10257 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10258 && INTVAL (XEXP (op0, 1)) >= 0
10259 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10260 < HOST_BITS_PER_WIDE_INT)
10261 && ((const_op
10262 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10263 && mode_width <= HOST_BITS_PER_WIDE_INT
10264 && (nonzero_bits (XEXP (op0, 0), mode)
10265 & ~(mask >> (INTVAL (XEXP (op0, 1))
10266 + ! equality_comparison_p))) == 0)
10268 /* We must perform a logical shift, not an arithmetic one,
10269 as we want the top N bits of C to be zero. */
10270 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10272 temp >>= INTVAL (XEXP (op0, 1));
10273 op1 = gen_int_mode (temp, mode);
10274 op0 = XEXP (op0, 0);
10275 continue;
10278 /* If we are doing a sign bit comparison, it means we are testing
10279 a particular bit. Convert it to the appropriate AND. */
10280 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10281 && mode_width <= HOST_BITS_PER_WIDE_INT)
10283 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10284 ((HOST_WIDE_INT) 1
10285 << (mode_width - 1
10286 - INTVAL (XEXP (op0, 1)))));
10287 code = (code == LT ? NE : EQ);
10288 continue;
10291 /* If this an equality comparison with zero and we are shifting
10292 the low bit to the sign bit, we can convert this to an AND of the
10293 low-order bit. */
10294 if (const_op == 0 && equality_comparison_p
10295 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10296 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10297 == mode_width - 1)
10299 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10300 (HOST_WIDE_INT) 1);
10301 continue;
10303 break;
10305 case ASHIFTRT:
10306 /* If this is an equality comparison with zero, we can do this
10307 as a logical shift, which might be much simpler. */
10308 if (equality_comparison_p && const_op == 0
10309 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10311 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10312 XEXP (op0, 0),
10313 INTVAL (XEXP (op0, 1)));
10314 continue;
10317 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10318 do the comparison in a narrower mode. */
10319 if (! unsigned_comparison_p
10320 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10321 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10322 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10323 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10324 MODE_INT, 1)) != BLKmode
10325 && (((unsigned HOST_WIDE_INT) const_op
10326 + (GET_MODE_MASK (tmode) >> 1) + 1)
10327 <= GET_MODE_MASK (tmode)))
10329 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10330 continue;
10333 /* Likewise if OP0 is a PLUS of a sign extension with a
10334 constant, which is usually represented with the PLUS
10335 between the shifts. */
10336 if (! unsigned_comparison_p
10337 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10338 && GET_CODE (XEXP (op0, 0)) == PLUS
10339 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10340 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10341 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10342 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10343 MODE_INT, 1)) != BLKmode
10344 && (((unsigned HOST_WIDE_INT) const_op
10345 + (GET_MODE_MASK (tmode) >> 1) + 1)
10346 <= GET_MODE_MASK (tmode)))
10348 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10349 rtx add_const = XEXP (XEXP (op0, 0), 1);
10350 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10351 add_const, XEXP (op0, 1));
10353 op0 = simplify_gen_binary (PLUS, tmode,
10354 gen_lowpart (tmode, inner),
10355 new_const);
10356 continue;
10359 /* ... fall through ... */
10360 case LSHIFTRT:
10361 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10362 the low order N bits of FOO are known to be zero, we can do this
10363 by comparing FOO with C shifted left N bits so long as no
10364 overflow occurs. */
10365 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10366 && INTVAL (XEXP (op0, 1)) >= 0
10367 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10368 && mode_width <= HOST_BITS_PER_WIDE_INT
10369 && (nonzero_bits (XEXP (op0, 0), mode)
10370 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10371 && (((unsigned HOST_WIDE_INT) const_op
10372 + (GET_CODE (op0) != LSHIFTRT
10373 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10374 + 1)
10375 : 0))
10376 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10378 /* If the shift was logical, then we must make the condition
10379 unsigned. */
10380 if (GET_CODE (op0) == LSHIFTRT)
10381 code = unsigned_condition (code);
10383 const_op <<= INTVAL (XEXP (op0, 1));
10384 op1 = GEN_INT (const_op);
10385 op0 = XEXP (op0, 0);
10386 continue;
10389 /* If we are using this shift to extract just the sign bit, we
10390 can replace this with an LT or GE comparison. */
10391 if (const_op == 0
10392 && (equality_comparison_p || sign_bit_comparison_p)
10393 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10394 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10395 == mode_width - 1)
10397 op0 = XEXP (op0, 0);
10398 code = (code == NE || code == GT ? LT : GE);
10399 continue;
10401 break;
10403 default:
10404 break;
10407 break;
10410 /* Now make any compound operations involved in this comparison. Then,
10411 check for an outmost SUBREG on OP0 that is not doing anything or is
10412 paradoxical. The latter transformation must only be performed when
10413 it is known that the "extra" bits will be the same in op0 and op1 or
10414 that they don't matter. There are three cases to consider:
10416 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10417 care bits and we can assume they have any convenient value. So
10418 making the transformation is safe.
10420 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10421 In this case the upper bits of op0 are undefined. We should not make
10422 the simplification in that case as we do not know the contents of
10423 those bits.
10425 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10426 UNKNOWN. In that case we know those bits are zeros or ones. We must
10427 also be sure that they are the same as the upper bits of op1.
10429 We can never remove a SUBREG for a non-equality comparison because
10430 the sign bit is in a different place in the underlying object. */
10432 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10433 op1 = make_compound_operation (op1, SET);
10435 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10436 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10437 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10438 && (code == NE || code == EQ))
10440 if (GET_MODE_SIZE (GET_MODE (op0))
10441 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10443 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10444 implemented. */
10445 if (REG_P (SUBREG_REG (op0)))
10447 op0 = SUBREG_REG (op0);
10448 op1 = gen_lowpart (GET_MODE (op0), op1);
10451 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10452 <= HOST_BITS_PER_WIDE_INT)
10453 && (nonzero_bits (SUBREG_REG (op0),
10454 GET_MODE (SUBREG_REG (op0)))
10455 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10457 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10459 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10460 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10461 op0 = SUBREG_REG (op0), op1 = tem;
10465 /* We now do the opposite procedure: Some machines don't have compare
10466 insns in all modes. If OP0's mode is an integer mode smaller than a
10467 word and we can't do a compare in that mode, see if there is a larger
10468 mode for which we can do the compare. There are a number of cases in
10469 which we can use the wider mode. */
10471 mode = GET_MODE (op0);
10472 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10473 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10474 && ! have_insn_for (COMPARE, mode))
10475 for (tmode = GET_MODE_WIDER_MODE (mode);
10476 (tmode != VOIDmode
10477 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10478 tmode = GET_MODE_WIDER_MODE (tmode))
10479 if (have_insn_for (COMPARE, tmode))
10481 int zero_extended;
10483 /* If the only nonzero bits in OP0 and OP1 are those in the
10484 narrower mode and this is an equality or unsigned comparison,
10485 we can use the wider mode. Similarly for sign-extended
10486 values, in which case it is true for all comparisons. */
10487 zero_extended = ((code == EQ || code == NE
10488 || code == GEU || code == GTU
10489 || code == LEU || code == LTU)
10490 && (nonzero_bits (op0, tmode)
10491 & ~GET_MODE_MASK (mode)) == 0
10492 && ((GET_CODE (op1) == CONST_INT
10493 || (nonzero_bits (op1, tmode)
10494 & ~GET_MODE_MASK (mode)) == 0)));
10496 if (zero_extended
10497 || ((num_sign_bit_copies (op0, tmode)
10498 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10499 - GET_MODE_BITSIZE (mode)))
10500 && (num_sign_bit_copies (op1, tmode)
10501 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10502 - GET_MODE_BITSIZE (mode)))))
10504 /* If OP0 is an AND and we don't have an AND in MODE either,
10505 make a new AND in the proper mode. */
10506 if (GET_CODE (op0) == AND
10507 && !have_insn_for (AND, mode))
10508 op0 = simplify_gen_binary (AND, tmode,
10509 gen_lowpart (tmode,
10510 XEXP (op0, 0)),
10511 gen_lowpart (tmode,
10512 XEXP (op0, 1)));
10514 op0 = gen_lowpart (tmode, op0);
10515 if (zero_extended && GET_CODE (op1) == CONST_INT)
10516 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10517 op1 = gen_lowpart (tmode, op1);
10518 break;
10521 /* If this is a test for negative, we can make an explicit
10522 test of the sign bit. */
10524 if (op1 == const0_rtx && (code == LT || code == GE)
10525 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10527 op0 = simplify_gen_binary (AND, tmode,
10528 gen_lowpart (tmode, op0),
10529 GEN_INT ((HOST_WIDE_INT) 1
10530 << (GET_MODE_BITSIZE (mode)
10531 - 1)));
10532 code = (code == LT) ? NE : EQ;
10533 break;
10537 #ifdef CANONICALIZE_COMPARISON
10538 /* If this machine only supports a subset of valid comparisons, see if we
10539 can convert an unsupported one into a supported one. */
10540 CANONICALIZE_COMPARISON (code, op0, op1);
10541 #endif
10543 *pop0 = op0;
10544 *pop1 = op1;
10546 return code;
10549 /* Utility function for record_value_for_reg. Count number of
10550 rtxs in X. */
10551 static int
10552 count_rtxs (rtx x)
10554 enum rtx_code code = GET_CODE (x);
10555 const char *fmt;
10556 int i, ret = 1;
10558 if (GET_RTX_CLASS (code) == '2'
10559 || GET_RTX_CLASS (code) == 'c')
10561 rtx x0 = XEXP (x, 0);
10562 rtx x1 = XEXP (x, 1);
10564 if (x0 == x1)
10565 return 1 + 2 * count_rtxs (x0);
10567 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10568 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10569 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10570 return 2 + 2 * count_rtxs (x0)
10571 + count_rtxs (x == XEXP (x1, 0)
10572 ? XEXP (x1, 1) : XEXP (x1, 0));
10574 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10575 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10576 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10577 return 2 + 2 * count_rtxs (x1)
10578 + count_rtxs (x == XEXP (x0, 0)
10579 ? XEXP (x0, 1) : XEXP (x0, 0));
10582 fmt = GET_RTX_FORMAT (code);
10583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10584 if (fmt[i] == 'e')
10585 ret += count_rtxs (XEXP (x, i));
10587 return ret;
10590 /* Utility function for following routine. Called when X is part of a value
10591 being stored into last_set_value. Sets last_set_table_tick
10592 for each register mentioned. Similar to mention_regs in cse.c */
10594 static void
10595 update_table_tick (rtx x)
10597 enum rtx_code code = GET_CODE (x);
10598 const char *fmt = GET_RTX_FORMAT (code);
10599 int i;
10601 if (code == REG)
10603 unsigned int regno = REGNO (x);
10604 unsigned int endregno
10605 = regno + (regno < FIRST_PSEUDO_REGISTER
10606 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10607 unsigned int r;
10609 for (r = regno; r < endregno; r++)
10610 reg_stat[r].last_set_table_tick = label_tick;
10612 return;
10615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10616 /* Note that we can't have an "E" in values stored; see
10617 get_last_value_validate. */
10618 if (fmt[i] == 'e')
10620 /* Check for identical subexpressions. If x contains
10621 identical subexpression we only have to traverse one of
10622 them. */
10623 if (i == 0 && ARITHMETIC_P (x))
10625 /* Note that at this point x1 has already been
10626 processed. */
10627 rtx x0 = XEXP (x, 0);
10628 rtx x1 = XEXP (x, 1);
10630 /* If x0 and x1 are identical then there is no need to
10631 process x0. */
10632 if (x0 == x1)
10633 break;
10635 /* If x0 is identical to a subexpression of x1 then while
10636 processing x1, x0 has already been processed. Thus we
10637 are done with x. */
10638 if (ARITHMETIC_P (x1)
10639 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10640 break;
10642 /* If x1 is identical to a subexpression of x0 then we
10643 still have to process the rest of x0. */
10644 if (ARITHMETIC_P (x0)
10645 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10647 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10648 break;
10652 update_table_tick (XEXP (x, i));
10656 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10657 are saying that the register is clobbered and we no longer know its
10658 value. If INSN is zero, don't update reg_stat[].last_set; this is
10659 only permitted with VALUE also zero and is used to invalidate the
10660 register. */
10662 static void
10663 record_value_for_reg (rtx reg, rtx insn, rtx value)
10665 unsigned int regno = REGNO (reg);
10666 unsigned int endregno
10667 = regno + (regno < FIRST_PSEUDO_REGISTER
10668 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10669 unsigned int i;
10671 /* If VALUE contains REG and we have a previous value for REG, substitute
10672 the previous value. */
10673 if (value && insn && reg_overlap_mentioned_p (reg, value))
10675 rtx tem;
10677 /* Set things up so get_last_value is allowed to see anything set up to
10678 our insn. */
10679 subst_low_cuid = INSN_CUID (insn);
10680 tem = get_last_value (reg);
10682 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10683 it isn't going to be useful and will take a lot of time to process,
10684 so just use the CLOBBER. */
10686 if (tem)
10688 if (ARITHMETIC_P (tem)
10689 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10690 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10691 tem = XEXP (tem, 0);
10692 else if (count_occurrences (value, reg, 1) >= 2)
10694 /* If there are two or more occurrences of REG in VALUE,
10695 prevent the value from growing too much. */
10696 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10697 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10700 value = replace_rtx (copy_rtx (value), reg, tem);
10704 /* For each register modified, show we don't know its value, that
10705 we don't know about its bitwise content, that its value has been
10706 updated, and that we don't know the location of the death of the
10707 register. */
10708 for (i = regno; i < endregno; i++)
10710 if (insn)
10711 reg_stat[i].last_set = insn;
10713 reg_stat[i].last_set_value = 0;
10714 reg_stat[i].last_set_mode = 0;
10715 reg_stat[i].last_set_nonzero_bits = 0;
10716 reg_stat[i].last_set_sign_bit_copies = 0;
10717 reg_stat[i].last_death = 0;
10720 /* Mark registers that are being referenced in this value. */
10721 if (value)
10722 update_table_tick (value);
10724 /* Now update the status of each register being set.
10725 If someone is using this register in this block, set this register
10726 to invalid since we will get confused between the two lives in this
10727 basic block. This makes using this register always invalid. In cse, we
10728 scan the table to invalidate all entries using this register, but this
10729 is too much work for us. */
10731 for (i = regno; i < endregno; i++)
10733 reg_stat[i].last_set_label = label_tick;
10734 if (value && reg_stat[i].last_set_table_tick == label_tick)
10735 reg_stat[i].last_set_invalid = 1;
10736 else
10737 reg_stat[i].last_set_invalid = 0;
10740 /* The value being assigned might refer to X (like in "x++;"). In that
10741 case, we must replace it with (clobber (const_int 0)) to prevent
10742 infinite loops. */
10743 if (value && ! get_last_value_validate (&value, insn,
10744 reg_stat[regno].last_set_label, 0))
10746 value = copy_rtx (value);
10747 if (! get_last_value_validate (&value, insn,
10748 reg_stat[regno].last_set_label, 1))
10749 value = 0;
10752 /* For the main register being modified, update the value, the mode, the
10753 nonzero bits, and the number of sign bit copies. */
10755 reg_stat[regno].last_set_value = value;
10757 if (value)
10759 enum machine_mode mode = GET_MODE (reg);
10760 subst_low_cuid = INSN_CUID (insn);
10761 reg_stat[regno].last_set_mode = mode;
10762 if (GET_MODE_CLASS (mode) == MODE_INT
10763 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10764 mode = nonzero_bits_mode;
10765 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10766 reg_stat[regno].last_set_sign_bit_copies
10767 = num_sign_bit_copies (value, GET_MODE (reg));
10771 /* Called via note_stores from record_dead_and_set_regs to handle one
10772 SET or CLOBBER in an insn. DATA is the instruction in which the
10773 set is occurring. */
10775 static void
10776 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10778 rtx record_dead_insn = (rtx) data;
10780 if (GET_CODE (dest) == SUBREG)
10781 dest = SUBREG_REG (dest);
10783 if (REG_P (dest))
10785 /* If we are setting the whole register, we know its value. Otherwise
10786 show that we don't know the value. We can handle SUBREG in
10787 some cases. */
10788 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10789 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10790 else if (GET_CODE (setter) == SET
10791 && GET_CODE (SET_DEST (setter)) == SUBREG
10792 && SUBREG_REG (SET_DEST (setter)) == dest
10793 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10794 && subreg_lowpart_p (SET_DEST (setter)))
10795 record_value_for_reg (dest, record_dead_insn,
10796 gen_lowpart (GET_MODE (dest),
10797 SET_SRC (setter)));
10798 else
10799 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10801 else if (MEM_P (dest)
10802 /* Ignore pushes, they clobber nothing. */
10803 && ! push_operand (dest, GET_MODE (dest)))
10804 mem_last_set = INSN_CUID (record_dead_insn);
10807 /* Update the records of when each REG was most recently set or killed
10808 for the things done by INSN. This is the last thing done in processing
10809 INSN in the combiner loop.
10811 We update reg_stat[], in particular fields last_set, last_set_value,
10812 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10813 last_death, and also the similar information mem_last_set (which insn
10814 most recently modified memory) and last_call_cuid (which insn was the
10815 most recent subroutine call). */
10817 static void
10818 record_dead_and_set_regs (rtx insn)
10820 rtx link;
10821 unsigned int i;
10823 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10825 if (REG_NOTE_KIND (link) == REG_DEAD
10826 && REG_P (XEXP (link, 0)))
10828 unsigned int regno = REGNO (XEXP (link, 0));
10829 unsigned int endregno
10830 = regno + (regno < FIRST_PSEUDO_REGISTER
10831 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10832 : 1);
10834 for (i = regno; i < endregno; i++)
10835 reg_stat[i].last_death = insn;
10837 else if (REG_NOTE_KIND (link) == REG_INC)
10838 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10841 if (CALL_P (insn))
10843 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10844 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10846 reg_stat[i].last_set_value = 0;
10847 reg_stat[i].last_set_mode = 0;
10848 reg_stat[i].last_set_nonzero_bits = 0;
10849 reg_stat[i].last_set_sign_bit_copies = 0;
10850 reg_stat[i].last_death = 0;
10853 last_call_cuid = mem_last_set = INSN_CUID (insn);
10855 /* Don't bother recording what this insn does. It might set the
10856 return value register, but we can't combine into a call
10857 pattern anyway, so there's no point trying (and it may cause
10858 a crash, if e.g. we wind up asking for last_set_value of a
10859 SUBREG of the return value register). */
10860 return;
10863 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10866 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10867 register present in the SUBREG, so for each such SUBREG go back and
10868 adjust nonzero and sign bit information of the registers that are
10869 known to have some zero/sign bits set.
10871 This is needed because when combine blows the SUBREGs away, the
10872 information on zero/sign bits is lost and further combines can be
10873 missed because of that. */
10875 static void
10876 record_promoted_value (rtx insn, rtx subreg)
10878 rtx links, set;
10879 unsigned int regno = REGNO (SUBREG_REG (subreg));
10880 enum machine_mode mode = GET_MODE (subreg);
10882 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10883 return;
10885 for (links = LOG_LINKS (insn); links;)
10887 insn = XEXP (links, 0);
10888 set = single_set (insn);
10890 if (! set || !REG_P (SET_DEST (set))
10891 || REGNO (SET_DEST (set)) != regno
10892 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10894 links = XEXP (links, 1);
10895 continue;
10898 if (reg_stat[regno].last_set == insn)
10900 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10901 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10904 if (REG_P (SET_SRC (set)))
10906 regno = REGNO (SET_SRC (set));
10907 links = LOG_LINKS (insn);
10909 else
10910 break;
10914 /* Scan X for promoted SUBREGs. For each one found,
10915 note what it implies to the registers used in it. */
10917 static void
10918 check_promoted_subreg (rtx insn, rtx x)
10920 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
10921 && REG_P (SUBREG_REG (x)))
10922 record_promoted_value (insn, x);
10923 else
10925 const char *format = GET_RTX_FORMAT (GET_CODE (x));
10926 int i, j;
10928 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
10929 switch (format[i])
10931 case 'e':
10932 check_promoted_subreg (insn, XEXP (x, i));
10933 break;
10934 case 'V':
10935 case 'E':
10936 if (XVEC (x, i) != 0)
10937 for (j = 0; j < XVECLEN (x, i); j++)
10938 check_promoted_subreg (insn, XVECEXP (x, i, j));
10939 break;
10944 /* Utility routine for the following function. Verify that all the registers
10945 mentioned in *LOC are valid when *LOC was part of a value set when
10946 label_tick == TICK. Return 0 if some are not.
10948 If REPLACE is nonzero, replace the invalid reference with
10949 (clobber (const_int 0)) and return 1. This replacement is useful because
10950 we often can get useful information about the form of a value (e.g., if
10951 it was produced by a shift that always produces -1 or 0) even though
10952 we don't know exactly what registers it was produced from. */
10954 static int
10955 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
10957 rtx x = *loc;
10958 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
10959 int len = GET_RTX_LENGTH (GET_CODE (x));
10960 int i;
10962 if (REG_P (x))
10964 unsigned int regno = REGNO (x);
10965 unsigned int endregno
10966 = regno + (regno < FIRST_PSEUDO_REGISTER
10967 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10968 unsigned int j;
10970 for (j = regno; j < endregno; j++)
10971 if (reg_stat[j].last_set_invalid
10972 /* If this is a pseudo-register that was only set once and not
10973 live at the beginning of the function, it is always valid. */
10974 || (! (regno >= FIRST_PSEUDO_REGISTER
10975 && REG_N_SETS (regno) == 1
10976 && (! REGNO_REG_SET_P
10977 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
10978 regno)))
10979 && reg_stat[j].last_set_label > tick))
10981 if (replace)
10982 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10983 return replace;
10986 return 1;
10988 /* If this is a memory reference, make sure that there were
10989 no stores after it that might have clobbered the value. We don't
10990 have alias info, so we assume any store invalidates it. */
10991 else if (MEM_P (x) && !MEM_READONLY_P (x)
10992 && INSN_CUID (insn) <= mem_last_set)
10994 if (replace)
10995 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10996 return replace;
10999 for (i = 0; i < len; i++)
11001 if (fmt[i] == 'e')
11003 /* Check for identical subexpressions. If x contains
11004 identical subexpression we only have to traverse one of
11005 them. */
11006 if (i == 1 && ARITHMETIC_P (x))
11008 /* Note that at this point x0 has already been checked
11009 and found valid. */
11010 rtx x0 = XEXP (x, 0);
11011 rtx x1 = XEXP (x, 1);
11013 /* If x0 and x1 are identical then x is also valid. */
11014 if (x0 == x1)
11015 return 1;
11017 /* If x1 is identical to a subexpression of x0 then
11018 while checking x0, x1 has already been checked. Thus
11019 it is valid and so as x. */
11020 if (ARITHMETIC_P (x0)
11021 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11022 return 1;
11024 /* If x0 is identical to a subexpression of x1 then x is
11025 valid iff the rest of x1 is valid. */
11026 if (ARITHMETIC_P (x1)
11027 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11028 return
11029 get_last_value_validate (&XEXP (x1,
11030 x0 == XEXP (x1, 0) ? 1 : 0),
11031 insn, tick, replace);
11034 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11035 replace) == 0)
11036 return 0;
11038 /* Don't bother with these. They shouldn't occur anyway. */
11039 else if (fmt[i] == 'E')
11040 return 0;
11043 /* If we haven't found a reason for it to be invalid, it is valid. */
11044 return 1;
11047 /* Get the last value assigned to X, if known. Some registers
11048 in the value may be replaced with (clobber (const_int 0)) if their value
11049 is known longer known reliably. */
11051 static rtx
11052 get_last_value (rtx x)
11054 unsigned int regno;
11055 rtx value;
11057 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11058 then convert it to the desired mode. If this is a paradoxical SUBREG,
11059 we cannot predict what values the "extra" bits might have. */
11060 if (GET_CODE (x) == SUBREG
11061 && subreg_lowpart_p (x)
11062 && (GET_MODE_SIZE (GET_MODE (x))
11063 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11064 && (value = get_last_value (SUBREG_REG (x))) != 0)
11065 return gen_lowpart (GET_MODE (x), value);
11067 if (!REG_P (x))
11068 return 0;
11070 regno = REGNO (x);
11071 value = reg_stat[regno].last_set_value;
11073 /* If we don't have a value, or if it isn't for this basic block and
11074 it's either a hard register, set more than once, or it's a live
11075 at the beginning of the function, return 0.
11077 Because if it's not live at the beginning of the function then the reg
11078 is always set before being used (is never used without being set).
11079 And, if it's set only once, and it's always set before use, then all
11080 uses must have the same last value, even if it's not from this basic
11081 block. */
11083 if (value == 0
11084 || (reg_stat[regno].last_set_label != label_tick
11085 && (regno < FIRST_PSEUDO_REGISTER
11086 || REG_N_SETS (regno) != 1
11087 || (REGNO_REG_SET_P
11088 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11089 regno)))))
11090 return 0;
11092 /* If the value was set in a later insn than the ones we are processing,
11093 we can't use it even if the register was only set once. */
11094 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11095 return 0;
11097 /* If the value has all its registers valid, return it. */
11098 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11099 reg_stat[regno].last_set_label, 0))
11100 return value;
11102 /* Otherwise, make a copy and replace any invalid register with
11103 (clobber (const_int 0)). If that fails for some reason, return 0. */
11105 value = copy_rtx (value);
11106 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11107 reg_stat[regno].last_set_label, 1))
11108 return value;
11110 return 0;
11113 /* Return nonzero if expression X refers to a REG or to memory
11114 that is set in an instruction more recent than FROM_CUID. */
11116 static int
11117 use_crosses_set_p (rtx x, int from_cuid)
11119 const char *fmt;
11120 int i;
11121 enum rtx_code code = GET_CODE (x);
11123 if (code == REG)
11125 unsigned int regno = REGNO (x);
11126 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11127 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11129 #ifdef PUSH_ROUNDING
11130 /* Don't allow uses of the stack pointer to be moved,
11131 because we don't know whether the move crosses a push insn. */
11132 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11133 return 1;
11134 #endif
11135 for (; regno < endreg; regno++)
11136 if (reg_stat[regno].last_set
11137 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11138 return 1;
11139 return 0;
11142 if (code == MEM && mem_last_set > from_cuid)
11143 return 1;
11145 fmt = GET_RTX_FORMAT (code);
11147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11149 if (fmt[i] == 'E')
11151 int j;
11152 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11153 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11154 return 1;
11156 else if (fmt[i] == 'e'
11157 && use_crosses_set_p (XEXP (x, i), from_cuid))
11158 return 1;
11160 return 0;
11163 /* Define three variables used for communication between the following
11164 routines. */
11166 static unsigned int reg_dead_regno, reg_dead_endregno;
11167 static int reg_dead_flag;
11169 /* Function called via note_stores from reg_dead_at_p.
11171 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11172 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11174 static void
11175 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11177 unsigned int regno, endregno;
11179 if (!REG_P (dest))
11180 return;
11182 regno = REGNO (dest);
11183 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11184 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11186 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11187 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11190 /* Return nonzero if REG is known to be dead at INSN.
11192 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11193 referencing REG, it is dead. If we hit a SET referencing REG, it is
11194 live. Otherwise, see if it is live or dead at the start of the basic
11195 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11196 must be assumed to be always live. */
11198 static int
11199 reg_dead_at_p (rtx reg, rtx insn)
11201 basic_block block;
11202 unsigned int i;
11204 /* Set variables for reg_dead_at_p_1. */
11205 reg_dead_regno = REGNO (reg);
11206 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11207 ? hard_regno_nregs[reg_dead_regno]
11208 [GET_MODE (reg)]
11209 : 1);
11211 reg_dead_flag = 0;
11213 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11214 we allow the machine description to decide whether use-and-clobber
11215 patterns are OK. */
11216 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11218 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11219 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11220 return 0;
11223 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11224 beginning of function. */
11225 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11226 insn = prev_nonnote_insn (insn))
11228 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11229 if (reg_dead_flag)
11230 return reg_dead_flag == 1 ? 1 : 0;
11232 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11233 return 1;
11236 /* Get the basic block that we were in. */
11237 if (insn == 0)
11238 block = ENTRY_BLOCK_PTR->next_bb;
11239 else
11241 FOR_EACH_BB (block)
11242 if (insn == BB_HEAD (block))
11243 break;
11245 if (block == EXIT_BLOCK_PTR)
11246 return 0;
11249 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11250 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11251 return 0;
11253 return 1;
11256 /* Note hard registers in X that are used. This code is similar to
11257 that in flow.c, but much simpler since we don't care about pseudos. */
11259 static void
11260 mark_used_regs_combine (rtx x)
11262 RTX_CODE code = GET_CODE (x);
11263 unsigned int regno;
11264 int i;
11266 switch (code)
11268 case LABEL_REF:
11269 case SYMBOL_REF:
11270 case CONST_INT:
11271 case CONST:
11272 case CONST_DOUBLE:
11273 case CONST_VECTOR:
11274 case PC:
11275 case ADDR_VEC:
11276 case ADDR_DIFF_VEC:
11277 case ASM_INPUT:
11278 #ifdef HAVE_cc0
11279 /* CC0 must die in the insn after it is set, so we don't need to take
11280 special note of it here. */
11281 case CC0:
11282 #endif
11283 return;
11285 case CLOBBER:
11286 /* If we are clobbering a MEM, mark any hard registers inside the
11287 address as used. */
11288 if (MEM_P (XEXP (x, 0)))
11289 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11290 return;
11292 case REG:
11293 regno = REGNO (x);
11294 /* A hard reg in a wide mode may really be multiple registers.
11295 If so, mark all of them just like the first. */
11296 if (regno < FIRST_PSEUDO_REGISTER)
11298 unsigned int endregno, r;
11300 /* None of this applies to the stack, frame or arg pointers. */
11301 if (regno == STACK_POINTER_REGNUM
11302 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11303 || regno == HARD_FRAME_POINTER_REGNUM
11304 #endif
11305 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11306 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11307 #endif
11308 || regno == FRAME_POINTER_REGNUM)
11309 return;
11311 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11312 for (r = regno; r < endregno; r++)
11313 SET_HARD_REG_BIT (newpat_used_regs, r);
11315 return;
11317 case SET:
11319 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11320 the address. */
11321 rtx testreg = SET_DEST (x);
11323 while (GET_CODE (testreg) == SUBREG
11324 || GET_CODE (testreg) == ZERO_EXTRACT
11325 || GET_CODE (testreg) == STRICT_LOW_PART)
11326 testreg = XEXP (testreg, 0);
11328 if (MEM_P (testreg))
11329 mark_used_regs_combine (XEXP (testreg, 0));
11331 mark_used_regs_combine (SET_SRC (x));
11333 return;
11335 default:
11336 break;
11339 /* Recursively scan the operands of this expression. */
11342 const char *fmt = GET_RTX_FORMAT (code);
11344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11346 if (fmt[i] == 'e')
11347 mark_used_regs_combine (XEXP (x, i));
11348 else if (fmt[i] == 'E')
11350 int j;
11352 for (j = 0; j < XVECLEN (x, i); j++)
11353 mark_used_regs_combine (XVECEXP (x, i, j));
11359 /* Remove register number REGNO from the dead registers list of INSN.
11361 Return the note used to record the death, if there was one. */
11364 remove_death (unsigned int regno, rtx insn)
11366 rtx note = find_regno_note (insn, REG_DEAD, regno);
11368 if (note)
11370 REG_N_DEATHS (regno)--;
11371 remove_note (insn, note);
11374 return note;
11377 /* For each register (hardware or pseudo) used within expression X, if its
11378 death is in an instruction with cuid between FROM_CUID (inclusive) and
11379 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11380 list headed by PNOTES.
11382 That said, don't move registers killed by maybe_kill_insn.
11384 This is done when X is being merged by combination into TO_INSN. These
11385 notes will then be distributed as needed. */
11387 static void
11388 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11389 rtx *pnotes)
11391 const char *fmt;
11392 int len, i;
11393 enum rtx_code code = GET_CODE (x);
11395 if (code == REG)
11397 unsigned int regno = REGNO (x);
11398 rtx where_dead = reg_stat[regno].last_death;
11399 rtx before_dead, after_dead;
11401 /* Don't move the register if it gets killed in between from and to. */
11402 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11403 && ! reg_referenced_p (x, maybe_kill_insn))
11404 return;
11406 /* WHERE_DEAD could be a USE insn made by combine, so first we
11407 make sure that we have insns with valid INSN_CUID values. */
11408 before_dead = where_dead;
11409 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11410 before_dead = PREV_INSN (before_dead);
11412 after_dead = where_dead;
11413 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11414 after_dead = NEXT_INSN (after_dead);
11416 if (before_dead && after_dead
11417 && INSN_CUID (before_dead) >= from_cuid
11418 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11419 || (where_dead != after_dead
11420 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11422 rtx note = remove_death (regno, where_dead);
11424 /* It is possible for the call above to return 0. This can occur
11425 when last_death points to I2 or I1 that we combined with.
11426 In that case make a new note.
11428 We must also check for the case where X is a hard register
11429 and NOTE is a death note for a range of hard registers
11430 including X. In that case, we must put REG_DEAD notes for
11431 the remaining registers in place of NOTE. */
11433 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11434 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11435 > GET_MODE_SIZE (GET_MODE (x))))
11437 unsigned int deadregno = REGNO (XEXP (note, 0));
11438 unsigned int deadend
11439 = (deadregno + hard_regno_nregs[deadregno]
11440 [GET_MODE (XEXP (note, 0))]);
11441 unsigned int ourend
11442 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11443 unsigned int i;
11445 for (i = deadregno; i < deadend; i++)
11446 if (i < regno || i >= ourend)
11447 REG_NOTES (where_dead)
11448 = gen_rtx_EXPR_LIST (REG_DEAD,
11449 regno_reg_rtx[i],
11450 REG_NOTES (where_dead));
11453 /* If we didn't find any note, or if we found a REG_DEAD note that
11454 covers only part of the given reg, and we have a multi-reg hard
11455 register, then to be safe we must check for REG_DEAD notes
11456 for each register other than the first. They could have
11457 their own REG_DEAD notes lying around. */
11458 else if ((note == 0
11459 || (note != 0
11460 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11461 < GET_MODE_SIZE (GET_MODE (x)))))
11462 && regno < FIRST_PSEUDO_REGISTER
11463 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11465 unsigned int ourend
11466 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11467 unsigned int i, offset;
11468 rtx oldnotes = 0;
11470 if (note)
11471 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11472 else
11473 offset = 1;
11475 for (i = regno + offset; i < ourend; i++)
11476 move_deaths (regno_reg_rtx[i],
11477 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11480 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11482 XEXP (note, 1) = *pnotes;
11483 *pnotes = note;
11485 else
11486 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11488 REG_N_DEATHS (regno)++;
11491 return;
11494 else if (GET_CODE (x) == SET)
11496 rtx dest = SET_DEST (x);
11498 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11500 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11501 that accesses one word of a multi-word item, some
11502 piece of everything register in the expression is used by
11503 this insn, so remove any old death. */
11504 /* ??? So why do we test for equality of the sizes? */
11506 if (GET_CODE (dest) == ZERO_EXTRACT
11507 || GET_CODE (dest) == STRICT_LOW_PART
11508 || (GET_CODE (dest) == SUBREG
11509 && (((GET_MODE_SIZE (GET_MODE (dest))
11510 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11512 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11514 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11515 return;
11518 /* If this is some other SUBREG, we know it replaces the entire
11519 value, so use that as the destination. */
11520 if (GET_CODE (dest) == SUBREG)
11521 dest = SUBREG_REG (dest);
11523 /* If this is a MEM, adjust deaths of anything used in the address.
11524 For a REG (the only other possibility), the entire value is
11525 being replaced so the old value is not used in this insn. */
11527 if (MEM_P (dest))
11528 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11529 to_insn, pnotes);
11530 return;
11533 else if (GET_CODE (x) == CLOBBER)
11534 return;
11536 len = GET_RTX_LENGTH (code);
11537 fmt = GET_RTX_FORMAT (code);
11539 for (i = 0; i < len; i++)
11541 if (fmt[i] == 'E')
11543 int j;
11544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11545 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11546 to_insn, pnotes);
11548 else if (fmt[i] == 'e')
11549 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11553 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11554 pattern of an insn. X must be a REG. */
11556 static int
11557 reg_bitfield_target_p (rtx x, rtx body)
11559 int i;
11561 if (GET_CODE (body) == SET)
11563 rtx dest = SET_DEST (body);
11564 rtx target;
11565 unsigned int regno, tregno, endregno, endtregno;
11567 if (GET_CODE (dest) == ZERO_EXTRACT)
11568 target = XEXP (dest, 0);
11569 else if (GET_CODE (dest) == STRICT_LOW_PART)
11570 target = SUBREG_REG (XEXP (dest, 0));
11571 else
11572 return 0;
11574 if (GET_CODE (target) == SUBREG)
11575 target = SUBREG_REG (target);
11577 if (!REG_P (target))
11578 return 0;
11580 tregno = REGNO (target), regno = REGNO (x);
11581 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11582 return target == x;
11584 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11585 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11587 return endregno > tregno && regno < endtregno;
11590 else if (GET_CODE (body) == PARALLEL)
11591 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11592 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11593 return 1;
11595 return 0;
11598 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11599 as appropriate. I3 and I2 are the insns resulting from the combination
11600 insns including FROM (I2 may be zero).
11602 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11603 not need REG_DEAD notes because they are being substituted for. This
11604 saves searching in the most common cases.
11606 Each note in the list is either ignored or placed on some insns, depending
11607 on the type of note. */
11609 static void
11610 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
11611 rtx elim_i1)
11613 rtx note, next_note;
11614 rtx tem;
11616 for (note = notes; note; note = next_note)
11618 rtx place = 0, place2 = 0;
11620 /* If this NOTE references a pseudo register, ensure it references
11621 the latest copy of that register. */
11622 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11623 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11624 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11626 next_note = XEXP (note, 1);
11627 switch (REG_NOTE_KIND (note))
11629 case REG_BR_PROB:
11630 case REG_BR_PRED:
11631 /* Doesn't matter much where we put this, as long as it's somewhere.
11632 It is preferable to keep these notes on branches, which is most
11633 likely to be i3. */
11634 place = i3;
11635 break;
11637 case REG_VALUE_PROFILE:
11638 /* Just get rid of this note, as it is unused later anyway. */
11639 break;
11641 case REG_NON_LOCAL_GOTO:
11642 if (JUMP_P (i3))
11643 place = i3;
11644 else
11646 gcc_assert (i2 && JUMP_P (i2));
11647 place = i2;
11649 break;
11651 case REG_EH_REGION:
11652 /* These notes must remain with the call or trapping instruction. */
11653 if (CALL_P (i3))
11654 place = i3;
11655 else if (i2 && CALL_P (i2))
11656 place = i2;
11657 else
11659 gcc_assert (flag_non_call_exceptions);
11660 if (may_trap_p (i3))
11661 place = i3;
11662 else if (i2 && may_trap_p (i2))
11663 place = i2;
11664 /* ??? Otherwise assume we've combined things such that we
11665 can now prove that the instructions can't trap. Drop the
11666 note in this case. */
11668 break;
11670 case REG_NORETURN:
11671 case REG_SETJMP:
11672 /* These notes must remain with the call. It should not be
11673 possible for both I2 and I3 to be a call. */
11674 if (CALL_P (i3))
11675 place = i3;
11676 else
11678 gcc_assert (i2 && CALL_P (i2));
11679 place = i2;
11681 break;
11683 case REG_UNUSED:
11684 /* Any clobbers for i3 may still exist, and so we must process
11685 REG_UNUSED notes from that insn.
11687 Any clobbers from i2 or i1 can only exist if they were added by
11688 recog_for_combine. In that case, recog_for_combine created the
11689 necessary REG_UNUSED notes. Trying to keep any original
11690 REG_UNUSED notes from these insns can cause incorrect output
11691 if it is for the same register as the original i3 dest.
11692 In that case, we will notice that the register is set in i3,
11693 and then add a REG_UNUSED note for the destination of i3, which
11694 is wrong. However, it is possible to have REG_UNUSED notes from
11695 i2 or i1 for register which were both used and clobbered, so
11696 we keep notes from i2 or i1 if they will turn into REG_DEAD
11697 notes. */
11699 /* If this register is set or clobbered in I3, put the note there
11700 unless there is one already. */
11701 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11703 if (from_insn != i3)
11704 break;
11706 if (! (REG_P (XEXP (note, 0))
11707 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11708 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11709 place = i3;
11711 /* Otherwise, if this register is used by I3, then this register
11712 now dies here, so we must put a REG_DEAD note here unless there
11713 is one already. */
11714 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11715 && ! (REG_P (XEXP (note, 0))
11716 ? find_regno_note (i3, REG_DEAD,
11717 REGNO (XEXP (note, 0)))
11718 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11720 PUT_REG_NOTE_KIND (note, REG_DEAD);
11721 place = i3;
11723 break;
11725 case REG_EQUAL:
11726 case REG_EQUIV:
11727 case REG_NOALIAS:
11728 /* These notes say something about results of an insn. We can
11729 only support them if they used to be on I3 in which case they
11730 remain on I3. Otherwise they are ignored.
11732 If the note refers to an expression that is not a constant, we
11733 must also ignore the note since we cannot tell whether the
11734 equivalence is still true. It might be possible to do
11735 slightly better than this (we only have a problem if I2DEST
11736 or I1DEST is present in the expression), but it doesn't
11737 seem worth the trouble. */
11739 if (from_insn == i3
11740 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11741 place = i3;
11742 break;
11744 case REG_INC:
11745 case REG_NO_CONFLICT:
11746 /* These notes say something about how a register is used. They must
11747 be present on any use of the register in I2 or I3. */
11748 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11749 place = i3;
11751 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11753 if (place)
11754 place2 = i2;
11755 else
11756 place = i2;
11758 break;
11760 case REG_LABEL:
11761 /* This can show up in several ways -- either directly in the
11762 pattern, or hidden off in the constant pool with (or without?)
11763 a REG_EQUAL note. */
11764 /* ??? Ignore the without-reg_equal-note problem for now. */
11765 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11766 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11767 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11768 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11769 place = i3;
11771 if (i2
11772 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11773 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11774 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11775 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11777 if (place)
11778 place2 = i2;
11779 else
11780 place = i2;
11783 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11784 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11785 if (place && JUMP_P (place))
11787 rtx label = JUMP_LABEL (place);
11789 if (!label)
11790 JUMP_LABEL (place) = XEXP (note, 0);
11791 else
11793 gcc_assert (label == XEXP (note, 0));
11794 if (LABEL_P (label))
11795 LABEL_NUSES (label)--;
11797 place = 0;
11799 if (place2 && JUMP_P (place2))
11801 rtx label = JUMP_LABEL (place2);
11803 if (!label)
11804 JUMP_LABEL (place2) = XEXP (note, 0);
11805 else
11807 gcc_assert (label == XEXP (note, 0));
11808 if (LABEL_P (label))
11809 LABEL_NUSES (label)--;
11811 place2 = 0;
11813 break;
11815 case REG_NONNEG:
11816 /* This note says something about the value of a register prior
11817 to the execution of an insn. It is too much trouble to see
11818 if the note is still correct in all situations. It is better
11819 to simply delete it. */
11820 break;
11822 case REG_RETVAL:
11823 /* If the insn previously containing this note still exists,
11824 put it back where it was. Otherwise move it to the previous
11825 insn. Adjust the corresponding REG_LIBCALL note. */
11826 if (!NOTE_P (from_insn))
11827 place = from_insn;
11828 else
11830 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11831 place = prev_real_insn (from_insn);
11832 if (tem && place)
11833 XEXP (tem, 0) = place;
11834 /* If we're deleting the last remaining instruction of a
11835 libcall sequence, don't add the notes. */
11836 else if (XEXP (note, 0) == from_insn)
11837 tem = place = 0;
11838 /* Don't add the dangling REG_RETVAL note. */
11839 else if (! tem)
11840 place = 0;
11842 break;
11844 case REG_LIBCALL:
11845 /* This is handled similarly to REG_RETVAL. */
11846 if (!NOTE_P (from_insn))
11847 place = from_insn;
11848 else
11850 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11851 place = next_real_insn (from_insn);
11852 if (tem && place)
11853 XEXP (tem, 0) = place;
11854 /* If we're deleting the last remaining instruction of a
11855 libcall sequence, don't add the notes. */
11856 else if (XEXP (note, 0) == from_insn)
11857 tem = place = 0;
11858 /* Don't add the dangling REG_LIBCALL note. */
11859 else if (! tem)
11860 place = 0;
11862 break;
11864 case REG_DEAD:
11865 /* If the register is used as an input in I3, it dies there.
11866 Similarly for I2, if it is nonzero and adjacent to I3.
11868 If the register is not used as an input in either I3 or I2
11869 and it is not one of the registers we were supposed to eliminate,
11870 there are two possibilities. We might have a non-adjacent I2
11871 or we might have somehow eliminated an additional register
11872 from a computation. For example, we might have had A & B where
11873 we discover that B will always be zero. In this case we will
11874 eliminate the reference to A.
11876 In both cases, we must search to see if we can find a previous
11877 use of A and put the death note there. */
11879 if (from_insn
11880 && CALL_P (from_insn)
11881 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11882 place = from_insn;
11883 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11884 place = i3;
11885 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11886 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11887 place = i2;
11889 if (place == 0
11890 && (rtx_equal_p (XEXP (note, 0), elim_i2)
11891 || rtx_equal_p (XEXP (note, 0), elim_i1)))
11892 break;
11894 if (place == 0)
11896 basic_block bb = this_basic_block;
11898 /* You might think you could search back from FROM_INSN
11899 rather than from I3, but combine tries to split invalid
11900 combined instructions. This can result in the old I2
11901 or I1 moving later in the insn sequence. */
11902 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11904 if (! INSN_P (tem))
11906 if (tem == BB_HEAD (bb))
11907 break;
11908 continue;
11911 /* If the register is being set at TEM, see if that is all
11912 TEM is doing. If so, delete TEM. Otherwise, make this
11913 into a REG_UNUSED note instead. Don't delete sets to
11914 global register vars. */
11915 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11916 || !global_regs[REGNO (XEXP (note, 0))])
11917 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11919 rtx set = single_set (tem);
11920 rtx inner_dest = 0;
11921 #ifdef HAVE_cc0
11922 rtx cc0_setter = NULL_RTX;
11923 #endif
11925 if (set != 0)
11926 for (inner_dest = SET_DEST (set);
11927 (GET_CODE (inner_dest) == STRICT_LOW_PART
11928 || GET_CODE (inner_dest) == SUBREG
11929 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11930 inner_dest = XEXP (inner_dest, 0))
11933 /* Verify that it was the set, and not a clobber that
11934 modified the register.
11936 CC0 targets must be careful to maintain setter/user
11937 pairs. If we cannot delete the setter due to side
11938 effects, mark the user with an UNUSED note instead
11939 of deleting it. */
11941 if (set != 0 && ! side_effects_p (SET_SRC (set))
11942 && rtx_equal_p (XEXP (note, 0), inner_dest)
11943 #ifdef HAVE_cc0
11944 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11945 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11946 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11947 #endif
11950 /* Move the notes and links of TEM elsewhere.
11951 This might delete other dead insns recursively.
11952 First set the pattern to something that won't use
11953 any register. */
11954 rtx old_notes = REG_NOTES (tem);
11956 PATTERN (tem) = pc_rtx;
11957 REG_NOTES (tem) = NULL;
11959 distribute_notes (old_notes, tem, tem, NULL_RTX,
11960 NULL_RTX, NULL_RTX);
11961 distribute_links (LOG_LINKS (tem));
11963 SET_INSN_DELETED (tem);
11965 #ifdef HAVE_cc0
11966 /* Delete the setter too. */
11967 if (cc0_setter)
11969 PATTERN (cc0_setter) = pc_rtx;
11970 old_notes = REG_NOTES (cc0_setter);
11971 REG_NOTES (cc0_setter) = NULL;
11973 distribute_notes (old_notes, cc0_setter,
11974 cc0_setter, NULL_RTX,
11975 NULL_RTX, NULL_RTX);
11976 distribute_links (LOG_LINKS (cc0_setter));
11978 SET_INSN_DELETED (cc0_setter);
11980 #endif
11982 else
11984 PUT_REG_NOTE_KIND (note, REG_UNUSED);
11986 /* If there isn't already a REG_UNUSED note, put one
11987 here. Do not place a REG_DEAD note, even if
11988 the register is also used here; that would not
11989 match the algorithm used in lifetime analysis
11990 and can cause the consistency check in the
11991 scheduler to fail. */
11992 if (! find_regno_note (tem, REG_UNUSED,
11993 REGNO (XEXP (note, 0))))
11994 place = tem;
11995 break;
11998 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
11999 || (CALL_P (tem)
12000 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12002 /* This may not be the correct place for the death
12003 note if FROM_INSN is before TEM, and the reg is
12004 set between FROM_INSN and TEM. The reg might
12005 die two or more times. An existing death note
12006 means we are looking at the wrong live range. */
12007 if (from_insn
12008 && INSN_CUID (from_insn) < INSN_CUID (tem)
12009 && find_regno_note (tem, REG_DEAD,
12010 REGNO (XEXP (note, 0))))
12012 tem = from_insn;
12013 if (tem == BB_HEAD (bb))
12014 break;
12015 continue;
12018 place = tem;
12020 /* If we are doing a 3->2 combination, and we have a
12021 register which formerly died in i3 and was not used
12022 by i2, which now no longer dies in i3 and is used in
12023 i2 but does not die in i2, and place is between i2
12024 and i3, then we may need to move a link from place to
12025 i2. */
12026 if (i2 && INSN_UID (place) <= max_uid_cuid
12027 && INSN_CUID (place) > INSN_CUID (i2)
12028 && from_insn
12029 && INSN_CUID (from_insn) > INSN_CUID (i2)
12030 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12032 rtx links = LOG_LINKS (place);
12033 LOG_LINKS (place) = 0;
12034 distribute_links (links);
12036 break;
12039 if (tem == BB_HEAD (bb))
12040 break;
12043 /* We haven't found an insn for the death note and it
12044 is still a REG_DEAD note, but we have hit the beginning
12045 of the block. If the existing life info says the reg
12046 was dead, there's nothing left to do. Otherwise, we'll
12047 need to do a global life update after combine. */
12048 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12049 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12050 REGNO (XEXP (note, 0))))
12051 SET_BIT (refresh_blocks, this_basic_block->index);
12054 /* If the register is set or already dead at PLACE, we needn't do
12055 anything with this note if it is still a REG_DEAD note.
12056 We check here if it is set at all, not if is it totally replaced,
12057 which is what `dead_or_set_p' checks, so also check for it being
12058 set partially. */
12060 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12062 unsigned int regno = REGNO (XEXP (note, 0));
12064 /* Similarly, if the instruction on which we want to place
12065 the note is a noop, we'll need do a global live update
12066 after we remove them in delete_noop_moves. */
12067 if (noop_move_p (place))
12068 SET_BIT (refresh_blocks, this_basic_block->index);
12070 if (dead_or_set_p (place, XEXP (note, 0))
12071 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12073 /* Unless the register previously died in PLACE, clear
12074 last_death. [I no longer understand why this is
12075 being done.] */
12076 if (reg_stat[regno].last_death != place)
12077 reg_stat[regno].last_death = 0;
12078 place = 0;
12080 else
12081 reg_stat[regno].last_death = place;
12083 /* If this is a death note for a hard reg that is occupying
12084 multiple registers, ensure that we are still using all
12085 parts of the object. If we find a piece of the object
12086 that is unused, we must arrange for an appropriate REG_DEAD
12087 note to be added for it. However, we can't just emit a USE
12088 and tag the note to it, since the register might actually
12089 be dead; so we recourse, and the recursive call then finds
12090 the previous insn that used this register. */
12092 if (place && regno < FIRST_PSEUDO_REGISTER
12093 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12095 unsigned int endregno
12096 = regno + hard_regno_nregs[regno]
12097 [GET_MODE (XEXP (note, 0))];
12098 int all_used = 1;
12099 unsigned int i;
12101 for (i = regno; i < endregno; i++)
12102 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12103 && ! find_regno_fusage (place, USE, i))
12104 || dead_or_set_regno_p (place, i))
12105 all_used = 0;
12107 if (! all_used)
12109 /* Put only REG_DEAD notes for pieces that are
12110 not already dead or set. */
12112 for (i = regno; i < endregno;
12113 i += hard_regno_nregs[i][reg_raw_mode[i]])
12115 rtx piece = regno_reg_rtx[i];
12116 basic_block bb = this_basic_block;
12118 if (! dead_or_set_p (place, piece)
12119 && ! reg_bitfield_target_p (piece,
12120 PATTERN (place)))
12122 rtx new_note
12123 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12125 distribute_notes (new_note, place, place,
12126 NULL_RTX, NULL_RTX, NULL_RTX);
12128 else if (! refers_to_regno_p (i, i + 1,
12129 PATTERN (place), 0)
12130 && ! find_regno_fusage (place, USE, i))
12131 for (tem = PREV_INSN (place); ;
12132 tem = PREV_INSN (tem))
12134 if (! INSN_P (tem))
12136 if (tem == BB_HEAD (bb))
12138 SET_BIT (refresh_blocks,
12139 this_basic_block->index);
12140 break;
12142 continue;
12144 if (dead_or_set_p (tem, piece)
12145 || reg_bitfield_target_p (piece,
12146 PATTERN (tem)))
12148 REG_NOTES (tem)
12149 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12150 REG_NOTES (tem));
12151 break;
12157 place = 0;
12161 break;
12163 default:
12164 /* Any other notes should not be present at this point in the
12165 compilation. */
12166 gcc_unreachable ();
12169 if (place)
12171 XEXP (note, 1) = REG_NOTES (place);
12172 REG_NOTES (place) = note;
12174 else if ((REG_NOTE_KIND (note) == REG_DEAD
12175 || REG_NOTE_KIND (note) == REG_UNUSED)
12176 && REG_P (XEXP (note, 0)))
12177 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12179 if (place2)
12181 if ((REG_NOTE_KIND (note) == REG_DEAD
12182 || REG_NOTE_KIND (note) == REG_UNUSED)
12183 && REG_P (XEXP (note, 0)))
12184 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12186 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12187 REG_NOTE_KIND (note),
12188 XEXP (note, 0),
12189 REG_NOTES (place2));
12194 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12195 I3, I2, and I1 to new locations. This is also called to add a link
12196 pointing at I3 when I3's destination is changed. */
12198 static void
12199 distribute_links (rtx links)
12201 rtx link, next_link;
12203 for (link = links; link; link = next_link)
12205 rtx place = 0;
12206 rtx insn;
12207 rtx set, reg;
12209 next_link = XEXP (link, 1);
12211 /* If the insn that this link points to is a NOTE or isn't a single
12212 set, ignore it. In the latter case, it isn't clear what we
12213 can do other than ignore the link, since we can't tell which
12214 register it was for. Such links wouldn't be used by combine
12215 anyway.
12217 It is not possible for the destination of the target of the link to
12218 have been changed by combine. The only potential of this is if we
12219 replace I3, I2, and I1 by I3 and I2. But in that case the
12220 destination of I2 also remains unchanged. */
12222 if (NOTE_P (XEXP (link, 0))
12223 || (set = single_set (XEXP (link, 0))) == 0)
12224 continue;
12226 reg = SET_DEST (set);
12227 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12228 || GET_CODE (reg) == STRICT_LOW_PART)
12229 reg = XEXP (reg, 0);
12231 /* A LOG_LINK is defined as being placed on the first insn that uses
12232 a register and points to the insn that sets the register. Start
12233 searching at the next insn after the target of the link and stop
12234 when we reach a set of the register or the end of the basic block.
12236 Note that this correctly handles the link that used to point from
12237 I3 to I2. Also note that not much searching is typically done here
12238 since most links don't point very far away. */
12240 for (insn = NEXT_INSN (XEXP (link, 0));
12241 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12242 || BB_HEAD (this_basic_block->next_bb) != insn));
12243 insn = NEXT_INSN (insn))
12244 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12246 if (reg_referenced_p (reg, PATTERN (insn)))
12247 place = insn;
12248 break;
12250 else if (CALL_P (insn)
12251 && find_reg_fusage (insn, USE, reg))
12253 place = insn;
12254 break;
12256 else if (INSN_P (insn) && reg_set_p (reg, insn))
12257 break;
12259 /* If we found a place to put the link, place it there unless there
12260 is already a link to the same insn as LINK at that point. */
12262 if (place)
12264 rtx link2;
12266 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12267 if (XEXP (link2, 0) == XEXP (link, 0))
12268 break;
12270 if (link2 == 0)
12272 XEXP (link, 1) = LOG_LINKS (place);
12273 LOG_LINKS (place) = link;
12275 /* Set added_links_insn to the earliest insn we added a
12276 link to. */
12277 if (added_links_insn == 0
12278 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12279 added_links_insn = place;
12285 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12286 Check whether the expression pointer to by LOC is a register or
12287 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12288 Otherwise return zero. */
12290 static int
12291 unmentioned_reg_p_1 (rtx *loc, void *expr)
12293 rtx x = *loc;
12295 if (x != NULL_RTX
12296 && (REG_P (x) || MEM_P (x))
12297 && ! reg_mentioned_p (x, (rtx) expr))
12298 return 1;
12299 return 0;
12302 /* Check for any register or memory mentioned in EQUIV that is not
12303 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12304 of EXPR where some registers may have been replaced by constants. */
12306 static bool
12307 unmentioned_reg_p (rtx equiv, rtx expr)
12309 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12312 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12314 static int
12315 insn_cuid (rtx insn)
12317 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12318 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12319 insn = NEXT_INSN (insn);
12321 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12323 return INSN_CUID (insn);
12326 void
12327 dump_combine_stats (FILE *file)
12329 fprintf
12330 (file,
12331 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12332 combine_attempts, combine_merges, combine_extras, combine_successes);
12335 void
12336 dump_combine_total_stats (FILE *file)
12338 fprintf
12339 (file,
12340 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12341 total_attempts, total_merges, total_extras, total_successes);
12345 static bool
12346 gate_handle_combine (void)
12348 return (optimize > 0);
12351 /* Try combining insns through substitution. */
12352 static void
12353 rest_of_handle_combine (void)
12355 int rebuild_jump_labels_after_combine
12356 = combine_instructions (get_insns (), max_reg_num ());
12358 /* Combining insns may have turned an indirect jump into a
12359 direct jump. Rebuild the JUMP_LABEL fields of jumping
12360 instructions. */
12361 if (rebuild_jump_labels_after_combine)
12363 timevar_push (TV_JUMP);
12364 rebuild_jump_labels (get_insns ());
12365 timevar_pop (TV_JUMP);
12367 delete_dead_jumptables ();
12368 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12372 struct tree_opt_pass pass_combine =
12374 "combine", /* name */
12375 gate_handle_combine, /* gate */
12376 rest_of_handle_combine, /* execute */
12377 NULL, /* sub */
12378 NULL, /* next */
12379 0, /* static_pass_number */
12380 TV_COMBINE, /* tv_id */
12381 0, /* properties_required */
12382 0, /* properties_provided */
12383 0, /* properties_destroyed */
12384 0, /* todo_flags_start */
12385 TODO_dump_func |
12386 TODO_ggc_collect, /* todo_flags_finish */
12387 'c' /* letter */