2005-12-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / ada / sem_eval.adb
blob3e354ec1b4d2e5757bd31f290361c74f8ac0a880
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Util; use Exp_Util;
35 with Lib; use Lib;
36 with Nmake; use Nmake;
37 with Nlists; use Nlists;
38 with Opt; use Opt;
39 with Sem; use Sem;
40 with Sem_Cat; use Sem_Cat;
41 with Sem_Ch6; use Sem_Ch6;
42 with Sem_Ch8; use Sem_Ch8;
43 with Sem_Res; use Sem_Res;
44 with Sem_Util; use Sem_Util;
45 with Sem_Type; use Sem_Type;
46 with Sem_Warn; use Sem_Warn;
47 with Sinfo; use Sinfo;
48 with Snames; use Snames;
49 with Stand; use Stand;
50 with Stringt; use Stringt;
51 with Tbuild; use Tbuild;
53 package body Sem_Eval is
55 -----------------------------------------
56 -- Handling of Compile Time Evaluation --
57 -----------------------------------------
59 -- The compile time evaluation of expressions is distributed over several
60 -- Eval_xxx procedures. These procedures are called immediatedly after
61 -- a subexpression is resolved and is therefore accomplished in a bottom
62 -- up fashion. The flags are synthesized using the following approach.
64 -- Is_Static_Expression is determined by following the detailed rules
65 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
66 -- flag of the operands in many cases.
68 -- Raises_Constraint_Error is set if any of the operands have the flag
69 -- set or if an attempt to compute the value of the current expression
70 -- results in detection of a runtime constraint error.
72 -- As described in the spec, the requirement is that Is_Static_Expression
73 -- be accurately set, and in addition for nodes for which this flag is set,
74 -- Raises_Constraint_Error must also be set. Furthermore a node which has
75 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
76 -- requirement is that the expression value must be precomputed, and the
77 -- node is either a literal, or the name of a constant entity whose value
78 -- is a static expression.
80 -- The general approach is as follows. First compute Is_Static_Expression.
81 -- If the node is not static, then the flag is left off in the node and
82 -- we are all done. Otherwise for a static node, we test if any of the
83 -- operands will raise constraint error, and if so, propagate the flag
84 -- Raises_Constraint_Error to the result node and we are done (since the
85 -- error was already posted at a lower level).
87 -- For the case of a static node whose operands do not raise constraint
88 -- error, we attempt to evaluate the node. If this evaluation succeeds,
89 -- then the node is replaced by the result of this computation. If the
90 -- evaluation raises constraint error, then we rewrite the node with
91 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
92 -- to post appropriate error messages.
94 ----------------
95 -- Local Data --
96 ----------------
98 type Bits is array (Nat range <>) of Boolean;
99 -- Used to convert unsigned (modular) values for folding logical ops
101 -- The following definitions are used to maintain a cache of nodes that
102 -- have compile time known values. The cache is maintained only for
103 -- discrete types (the most common case), and is populated by calls to
104 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
105 -- since it is possible for the status to change (in particular it is
106 -- possible for a node to get replaced by a constraint error node).
108 CV_Bits : constant := 5;
109 -- Number of low order bits of Node_Id value used to reference entries
110 -- in the cache table.
112 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
113 -- Size of cache for compile time values
115 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
117 type CV_Entry is record
118 N : Node_Id;
119 V : Uint;
120 end record;
122 type CV_Cache_Array is array (CV_Range) of CV_Entry;
124 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
125 -- This is the actual cache, with entries consisting of node/value pairs,
126 -- and the impossible value Node_High_Bound used for unset entries.
128 -----------------------
129 -- Local Subprograms --
130 -----------------------
132 function From_Bits (B : Bits; T : Entity_Id) return Uint;
133 -- Converts a bit string of length B'Length to a Uint value to be used
134 -- for a target of type T, which is a modular type. This procedure
135 -- includes the necessary reduction by the modulus in the case of a
136 -- non-binary modulus (for a binary modulus, the bit string is the
137 -- right length any way so all is well).
139 function Get_String_Val (N : Node_Id) return Node_Id;
140 -- Given a tree node for a folded string or character value, returns
141 -- the corresponding string literal or character literal (one of the
142 -- two must be available, or the operand would not have been marked
143 -- as foldable in the earlier analysis of the operation).
145 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
146 -- Bits represents the number of bits in an integer value to be computed
147 -- (but the value has not been computed yet). If this value in Bits is
148 -- reasonable, a result of True is returned, with the implication that
149 -- the caller should go ahead and complete the calculation. If the value
150 -- in Bits is unreasonably large, then an error is posted on node N, and
151 -- False is returned (and the caller skips the proposed calculation).
153 procedure Out_Of_Range (N : Node_Id);
154 -- This procedure is called if it is determined that node N, which
155 -- appears in a non-static context, is a compile time known value
156 -- which is outside its range, i.e. the range of Etype. This is used
157 -- in contexts where this is an illegality if N is static, and should
158 -- generate a warning otherwise.
160 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
161 -- N and Exp are nodes representing an expression, Exp is known
162 -- to raise CE. N is rewritten in term of Exp in the optimal way.
164 function String_Type_Len (Stype : Entity_Id) return Uint;
165 -- Given a string type, determines the length of the index type, or,
166 -- if this index type is non-static, the length of the base type of
167 -- this index type. Note that if the string type is itself static,
168 -- then the index type is static, so the second case applies only
169 -- if the string type passed is non-static.
171 function Test (Cond : Boolean) return Uint;
172 pragma Inline (Test);
173 -- This function simply returns the appropriate Boolean'Pos value
174 -- corresponding to the value of Cond as a universal integer. It is
175 -- used for producing the result of the static evaluation of the
176 -- logical operators
178 procedure Test_Expression_Is_Foldable
179 (N : Node_Id;
180 Op1 : Node_Id;
181 Stat : out Boolean;
182 Fold : out Boolean);
183 -- Tests to see if expression N whose single operand is Op1 is foldable,
184 -- i.e. the operand value is known at compile time. If the operation is
185 -- foldable, then Fold is True on return, and Stat indicates whether
186 -- the result is static (i.e. both operands were static). Note that it
187 -- is quite possible for Fold to be True, and Stat to be False, since
188 -- there are cases in which we know the value of an operand even though
189 -- it is not technically static (e.g. the static lower bound of a range
190 -- whose upper bound is non-static).
192 -- If Stat is set False on return, then Expression_Is_Foldable makes a
193 -- call to Check_Non_Static_Context on the operand. If Fold is False on
194 -- return, then all processing is complete, and the caller should
195 -- return, since there is nothing else to do.
197 procedure Test_Expression_Is_Foldable
198 (N : Node_Id;
199 Op1 : Node_Id;
200 Op2 : Node_Id;
201 Stat : out Boolean;
202 Fold : out Boolean);
203 -- Same processing, except applies to an expression N with two operands
204 -- Op1 and Op2.
206 procedure To_Bits (U : Uint; B : out Bits);
207 -- Converts a Uint value to a bit string of length B'Length
209 ------------------------------
210 -- Check_Non_Static_Context --
211 ------------------------------
213 procedure Check_Non_Static_Context (N : Node_Id) is
214 T : constant Entity_Id := Etype (N);
215 Checks_On : constant Boolean :=
216 not Index_Checks_Suppressed (T)
217 and not Range_Checks_Suppressed (T);
219 begin
220 -- Ignore cases of non-scalar types or error types
222 if T = Any_Type or else not Is_Scalar_Type (T) then
223 return;
224 end if;
226 -- At this stage we have a scalar type. If we have an expression
227 -- that raises CE, then we already issued a warning or error msg
228 -- so there is nothing more to be done in this routine.
230 if Raises_Constraint_Error (N) then
231 return;
232 end if;
234 -- Now we have a scalar type which is not marked as raising a
235 -- constraint error exception. The main purpose of this routine
236 -- is to deal with static expressions appearing in a non-static
237 -- context. That means that if we do not have a static expression
238 -- then there is not much to do. The one case that we deal with
239 -- here is that if we have a floating-point value that is out of
240 -- range, then we post a warning that an infinity will result.
242 if not Is_Static_Expression (N) then
243 if Is_Floating_Point_Type (T)
244 and then Is_Out_Of_Range (N, Base_Type (T))
245 then
246 Error_Msg_N
247 ("?float value out of range, infinity will be generated", N);
248 end if;
250 return;
251 end if;
253 -- Here we have the case of outer level static expression of
254 -- scalar type, where the processing of this procedure is needed.
256 -- For real types, this is where we convert the value to a machine
257 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
258 -- only need to do this if the parent is a constant declaration,
259 -- since in other cases, gigi should do the necessary conversion
260 -- correctly, but experimentation shows that this is not the case
261 -- on all machines, in particular if we do not convert all literals
262 -- to machine values in non-static contexts, then ACVC test C490001
263 -- fails on Sparc/Solaris and SGI/Irix.
265 if Nkind (N) = N_Real_Literal
266 and then not Is_Machine_Number (N)
267 and then not Is_Generic_Type (Etype (N))
268 and then Etype (N) /= Universal_Real
269 then
270 -- Check that value is in bounds before converting to machine
271 -- number, so as not to lose case where value overflows in the
272 -- least significant bit or less. See B490001.
274 if Is_Out_Of_Range (N, Base_Type (T)) then
275 Out_Of_Range (N);
276 return;
277 end if;
279 -- Note: we have to copy the node, to avoid problems with conformance
280 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
282 Rewrite (N, New_Copy (N));
284 if not Is_Floating_Point_Type (T) then
285 Set_Realval
286 (N, Corresponding_Integer_Value (N) * Small_Value (T));
288 elsif not UR_Is_Zero (Realval (N)) then
290 -- Note: even though RM 4.9(38) specifies biased rounding,
291 -- this has been modified by AI-100 in order to prevent
292 -- confusing differences in rounding between static and
293 -- non-static expressions. AI-100 specifies that the effect
294 -- of such rounding is implementation dependent, and in GNAT
295 -- we round to nearest even to match the run-time behavior.
297 Set_Realval
298 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
299 end if;
301 Set_Is_Machine_Number (N);
302 end if;
304 -- Check for out of range universal integer. This is a non-static
305 -- context, so the integer value must be in range of the runtime
306 -- representation of universal integers.
308 -- We do this only within an expression, because that is the only
309 -- case in which non-static universal integer values can occur, and
310 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
311 -- called in contexts like the expression of a number declaration where
312 -- we certainly want to allow out of range values.
314 if Etype (N) = Universal_Integer
315 and then Nkind (N) = N_Integer_Literal
316 and then Nkind (Parent (N)) in N_Subexpr
317 and then
318 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
319 or else
320 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
321 then
322 Apply_Compile_Time_Constraint_Error
323 (N, "non-static universal integer value out of range?",
324 CE_Range_Check_Failed);
326 -- Check out of range of base type
328 elsif Is_Out_Of_Range (N, Base_Type (T)) then
329 Out_Of_Range (N);
331 -- Give warning if outside subtype (where one or both of the
332 -- bounds of the subtype is static). This warning is omitted
333 -- if the expression appears in a range that could be null
334 -- (warnings are handled elsewhere for this case).
336 elsif T /= Base_Type (T)
337 and then Nkind (Parent (N)) /= N_Range
338 then
339 if Is_In_Range (N, T) then
340 null;
342 elsif Is_Out_Of_Range (N, T) then
343 Apply_Compile_Time_Constraint_Error
344 (N, "value not in range of}?", CE_Range_Check_Failed);
346 elsif Checks_On then
347 Enable_Range_Check (N);
349 else
350 Set_Do_Range_Check (N, False);
351 end if;
352 end if;
353 end Check_Non_Static_Context;
355 ---------------------------------
356 -- Check_String_Literal_Length --
357 ---------------------------------
359 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
360 begin
361 if not Raises_Constraint_Error (N)
362 and then Is_Constrained (Ttype)
363 then
365 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
366 then
367 Apply_Compile_Time_Constraint_Error
368 (N, "string length wrong for}?",
369 CE_Length_Check_Failed,
370 Ent => Ttype,
371 Typ => Ttype);
372 end if;
373 end if;
374 end Check_String_Literal_Length;
376 --------------------------
377 -- Compile_Time_Compare --
378 --------------------------
380 function Compile_Time_Compare
381 (L, R : Node_Id;
382 Rec : Boolean := False) return Compare_Result
384 Ltyp : constant Entity_Id := Etype (L);
385 Rtyp : constant Entity_Id := Etype (R);
387 procedure Compare_Decompose
388 (N : Node_Id;
389 R : out Node_Id;
390 V : out Uint);
391 -- This procedure decomposes the node N into an expression node
392 -- and a signed offset, so that the value of N is equal to the
393 -- value of R plus the value V (which may be negative). If no
394 -- such decomposition is possible, then on return R is a copy
395 -- of N, and V is set to zero.
397 function Compare_Fixup (N : Node_Id) return Node_Id;
398 -- This function deals with replacing 'Last and 'First references
399 -- with their corresponding type bounds, which we then can compare.
400 -- The argument is the original node, the result is the identity,
401 -- unless we have a 'Last/'First reference in which case the value
402 -- returned is the appropriate type bound.
404 function Is_Same_Value (L, R : Node_Id) return Boolean;
405 -- Returns True iff L and R represent expressions that definitely
406 -- have identical (but not necessarily compile time known) values
407 -- Indeed the caller is expected to have already dealt with the
408 -- cases of compile time known values, so these are not tested here.
410 -----------------------
411 -- Compare_Decompose --
412 -----------------------
414 procedure Compare_Decompose
415 (N : Node_Id;
416 R : out Node_Id;
417 V : out Uint)
419 begin
420 if Nkind (N) = N_Op_Add
421 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
422 then
423 R := Left_Opnd (N);
424 V := Intval (Right_Opnd (N));
425 return;
427 elsif Nkind (N) = N_Op_Subtract
428 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
429 then
430 R := Left_Opnd (N);
431 V := UI_Negate (Intval (Right_Opnd (N)));
432 return;
434 elsif Nkind (N) = N_Attribute_Reference then
436 if Attribute_Name (N) = Name_Succ then
437 R := First (Expressions (N));
438 V := Uint_1;
439 return;
441 elsif Attribute_Name (N) = Name_Pred then
442 R := First (Expressions (N));
443 V := Uint_Minus_1;
444 return;
445 end if;
446 end if;
448 R := N;
449 V := Uint_0;
450 end Compare_Decompose;
452 -------------------
453 -- Compare_Fixup --
454 -------------------
456 function Compare_Fixup (N : Node_Id) return Node_Id is
457 Indx : Node_Id;
458 Xtyp : Entity_Id;
459 Subs : Nat;
461 begin
462 if Nkind (N) = N_Attribute_Reference
463 and then (Attribute_Name (N) = Name_First
464 or else
465 Attribute_Name (N) = Name_Last)
466 then
467 Xtyp := Etype (Prefix (N));
469 -- If we have no type, then just abandon the attempt to do
470 -- a fixup, this is probably the result of some other error.
472 if No (Xtyp) then
473 return N;
474 end if;
476 -- Dereference an access type
478 if Is_Access_Type (Xtyp) then
479 Xtyp := Designated_Type (Xtyp);
480 end if;
482 -- If we don't have an array type at this stage, something
483 -- is peculiar, e.g. another error, and we abandon the attempt
484 -- at a fixup.
486 if not Is_Array_Type (Xtyp) then
487 return N;
488 end if;
490 -- Ignore unconstrained array, since bounds are not meaningful
492 if not Is_Constrained (Xtyp) then
493 return N;
494 end if;
496 if Ekind (Xtyp) = E_String_Literal_Subtype then
497 if Attribute_Name (N) = Name_First then
498 return String_Literal_Low_Bound (Xtyp);
500 else -- Attribute_Name (N) = Name_Last
501 return Make_Integer_Literal (Sloc (N),
502 Intval => Intval (String_Literal_Low_Bound (Xtyp))
503 + String_Literal_Length (Xtyp));
504 end if;
505 end if;
507 -- Find correct index type
509 Indx := First_Index (Xtyp);
511 if Present (Expressions (N)) then
512 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
514 for J in 2 .. Subs loop
515 Indx := Next_Index (Indx);
516 end loop;
517 end if;
519 Xtyp := Etype (Indx);
521 if Attribute_Name (N) = Name_First then
522 return Type_Low_Bound (Xtyp);
524 else -- Attribute_Name (N) = Name_Last
525 return Type_High_Bound (Xtyp);
526 end if;
527 end if;
529 return N;
530 end Compare_Fixup;
532 -------------------
533 -- Is_Same_Value --
534 -------------------
536 function Is_Same_Value (L, R : Node_Id) return Boolean is
537 Lf : constant Node_Id := Compare_Fixup (L);
538 Rf : constant Node_Id := Compare_Fixup (R);
540 function Is_Same_Subscript (L, R : List_Id) return Boolean;
541 -- L, R are the Expressions values from two attribute nodes
542 -- for First or Last attributes. Either may be set to No_List
543 -- if no expressions are present (indicating subscript 1).
544 -- The result is True if both expressions represent the same
545 -- subscript (note that one case is where one subscript is
546 -- missing and the other is explicitly set to 1).
548 -----------------------
549 -- Is_Same_Subscript --
550 -----------------------
552 function Is_Same_Subscript (L, R : List_Id) return Boolean is
553 begin
554 if L = No_List then
555 if R = No_List then
556 return True;
557 else
558 return Expr_Value (First (R)) = Uint_1;
559 end if;
561 else
562 if R = No_List then
563 return Expr_Value (First (L)) = Uint_1;
564 else
565 return Expr_Value (First (L)) = Expr_Value (First (R));
566 end if;
567 end if;
568 end Is_Same_Subscript;
570 -- Start of processing for Is_Same_Value
572 begin
573 -- Values are the same if they are the same identifier and the
574 -- identifier refers to a constant object (E_Constant). This
575 -- does not however apply to Float types, since we may have two
576 -- NaN values and they should never compare equal.
578 if Nkind (Lf) = N_Identifier and then Nkind (Rf) = N_Identifier
579 and then Entity (Lf) = Entity (Rf)
580 and then not Is_Floating_Point_Type (Etype (L))
581 and then (Ekind (Entity (Lf)) = E_Constant or else
582 Ekind (Entity (Lf)) = E_In_Parameter or else
583 Ekind (Entity (Lf)) = E_Loop_Parameter)
584 then
585 return True;
587 -- Or if they are compile time known and identical
589 elsif Compile_Time_Known_Value (Lf)
590 and then
591 Compile_Time_Known_Value (Rf)
592 and then Expr_Value (Lf) = Expr_Value (Rf)
593 then
594 return True;
596 -- Or if they are both 'First or 'Last values applying to the
597 -- same entity (first and last don't change even if value does)
599 elsif Nkind (Lf) = N_Attribute_Reference
600 and then
601 Nkind (Rf) = N_Attribute_Reference
602 and then Attribute_Name (Lf) = Attribute_Name (Rf)
603 and then (Attribute_Name (Lf) = Name_First
604 or else
605 Attribute_Name (Lf) = Name_Last)
606 and then Is_Entity_Name (Prefix (Lf))
607 and then Is_Entity_Name (Prefix (Rf))
608 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
609 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
610 then
611 return True;
613 -- All other cases, we can't tell
615 else
616 return False;
617 end if;
618 end Is_Same_Value;
620 -- Start of processing for Compile_Time_Compare
622 begin
623 -- If either operand could raise constraint error, then we cannot
624 -- know the result at compile time (since CE may be raised!)
626 if not (Cannot_Raise_Constraint_Error (L)
627 and then
628 Cannot_Raise_Constraint_Error (R))
629 then
630 return Unknown;
631 end if;
633 -- Identical operands are most certainly equal
635 if L = R then
636 return EQ;
638 -- If expressions have no types, then do not attempt to determine
639 -- if they are the same, since something funny is going on. One
640 -- case in which this happens is during generic template analysis,
641 -- when bounds are not fully analyzed.
643 elsif No (Ltyp) or else No (Rtyp) then
644 return Unknown;
646 -- We only attempt compile time analysis for scalar values, and
647 -- not for packed arrays represented as modular types, where the
648 -- semantics of comparison is quite different.
650 elsif not Is_Scalar_Type (Ltyp)
651 or else Is_Packed_Array_Type (Ltyp)
652 then
653 return Unknown;
655 -- Case where comparison involves two compile time known values
657 elsif Compile_Time_Known_Value (L)
658 and then Compile_Time_Known_Value (R)
659 then
660 -- For the floating-point case, we have to be a little careful, since
661 -- at compile time we are dealing with universal exact values, but at
662 -- runtime, these will be in non-exact target form. That's why the
663 -- returned results are LE and GE below instead of LT and GT.
665 if Is_Floating_Point_Type (Ltyp)
666 or else
667 Is_Floating_Point_Type (Rtyp)
668 then
669 declare
670 Lo : constant Ureal := Expr_Value_R (L);
671 Hi : constant Ureal := Expr_Value_R (R);
673 begin
674 if Lo < Hi then
675 return LE;
676 elsif Lo = Hi then
677 return EQ;
678 else
679 return GE;
680 end if;
681 end;
683 -- For the integer case we know exactly (note that this includes the
684 -- fixed-point case, where we know the run time integer values now)
686 else
687 declare
688 Lo : constant Uint := Expr_Value (L);
689 Hi : constant Uint := Expr_Value (R);
691 begin
692 if Lo < Hi then
693 return LT;
694 elsif Lo = Hi then
695 return EQ;
696 else
697 return GT;
698 end if;
699 end;
700 end if;
702 -- Cases where at least one operand is not known at compile time
704 else
705 -- Here is where we check for comparisons against maximum bounds of
706 -- types, where we know that no value can be outside the bounds of
707 -- the subtype. Note that this routine is allowed to assume that all
708 -- expressions are within their subtype bounds. Callers wishing to
709 -- deal with possibly invalid values must in any case take special
710 -- steps (e.g. conversions to larger types) to avoid this kind of
711 -- optimization, which is always considered to be valid. We do not
712 -- attempt this optimization with generic types, since the type
713 -- bounds may not be meaningful in this case.
715 -- We are in danger of an infinite recursion here. It does not seem
716 -- useful to go more than one level deep, so the parameter Rec is
717 -- used to protect ourselves against this infinite recursion.
719 if not Rec
720 and then Is_Discrete_Type (Ltyp)
721 and then Is_Discrete_Type (Rtyp)
722 and then not Is_Generic_Type (Ltyp)
723 and then not Is_Generic_Type (Rtyp)
724 then
725 -- See if we can get a decisive check against one operand and
726 -- a bound of the other operand (four possible tests here).
728 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp), True) is
729 when LT => return LT;
730 when LE => return LE;
731 when EQ => return LE;
732 when others => null;
733 end case;
735 case Compile_Time_Compare (L, Type_High_Bound (Rtyp), True) is
736 when GT => return GT;
737 when GE => return GE;
738 when EQ => return GE;
739 when others => null;
740 end case;
742 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R, True) is
743 when GT => return GT;
744 when GE => return GE;
745 when EQ => return GE;
746 when others => null;
747 end case;
749 case Compile_Time_Compare (Type_High_Bound (Ltyp), R, True) is
750 when LT => return LT;
751 when LE => return LE;
752 when EQ => return LE;
753 when others => null;
754 end case;
755 end if;
757 -- Next attempt is to decompose the expressions to extract
758 -- a constant offset resulting from the use of any of the forms:
760 -- expr + literal
761 -- expr - literal
762 -- typ'Succ (expr)
763 -- typ'Pred (expr)
765 -- Then we see if the two expressions are the same value, and if so
766 -- the result is obtained by comparing the offsets.
768 declare
769 Lnode : Node_Id;
770 Loffs : Uint;
771 Rnode : Node_Id;
772 Roffs : Uint;
774 begin
775 Compare_Decompose (L, Lnode, Loffs);
776 Compare_Decompose (R, Rnode, Roffs);
778 if Is_Same_Value (Lnode, Rnode) then
779 if Loffs = Roffs then
780 return EQ;
782 elsif Loffs < Roffs then
783 return LT;
785 else
786 return GT;
787 end if;
789 -- If the expressions are different, we cannot say at compile
790 -- time how they compare, so we return the Unknown indication.
792 else
793 return Unknown;
794 end if;
795 end;
796 end if;
797 end Compile_Time_Compare;
799 -------------------------------
800 -- Compile_Time_Known_Bounds --
801 -------------------------------
803 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
804 Indx : Node_Id;
805 Typ : Entity_Id;
807 begin
808 if not Is_Array_Type (T) then
809 return False;
810 end if;
812 Indx := First_Index (T);
813 while Present (Indx) loop
814 Typ := Underlying_Type (Etype (Indx));
815 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
816 return False;
817 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
818 return False;
819 else
820 Next_Index (Indx);
821 end if;
822 end loop;
824 return True;
825 end Compile_Time_Known_Bounds;
827 ------------------------------
828 -- Compile_Time_Known_Value --
829 ------------------------------
831 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
832 K : constant Node_Kind := Nkind (Op);
833 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
835 begin
836 -- Never known at compile time if bad type or raises constraint error
837 -- or empty (latter case occurs only as a result of a previous error)
839 if No (Op)
840 or else Op = Error
841 or else Etype (Op) = Any_Type
842 or else Raises_Constraint_Error (Op)
843 then
844 return False;
845 end if;
847 -- If this is not a static expression and we are in configurable run
848 -- time mode, then we consider it not known at compile time. This
849 -- avoids anomalies where whether something is permitted with a given
850 -- configurable run-time library depends on how good the compiler is
851 -- at optimizing and knowing that things are constant when they
852 -- are non-static.
854 if Configurable_Run_Time_Mode and then not Is_Static_Expression (Op) then
855 return False;
856 end if;
858 -- If we have an entity name, then see if it is the name of a constant
859 -- and if so, test the corresponding constant value, or the name of
860 -- an enumeration literal, which is always a constant.
862 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
863 declare
864 E : constant Entity_Id := Entity (Op);
865 V : Node_Id;
867 begin
868 -- Never known at compile time if it is a packed array value.
869 -- We might want to try to evaluate these at compile time one
870 -- day, but we do not make that attempt now.
872 if Is_Packed_Array_Type (Etype (Op)) then
873 return False;
874 end if;
876 if Ekind (E) = E_Enumeration_Literal then
877 return True;
879 elsif Ekind (E) = E_Constant then
880 V := Constant_Value (E);
881 return Present (V) and then Compile_Time_Known_Value (V);
882 end if;
883 end;
885 -- We have a value, see if it is compile time known
887 else
888 -- Integer literals are worth storing in the cache
890 if K = N_Integer_Literal then
891 CV_Ent.N := Op;
892 CV_Ent.V := Intval (Op);
893 return True;
895 -- Other literals and NULL are known at compile time
897 elsif
898 K = N_Character_Literal
899 or else
900 K = N_Real_Literal
901 or else
902 K = N_String_Literal
903 or else
904 K = N_Null
905 then
906 return True;
908 -- Any reference to Null_Parameter is known at compile time. No
909 -- other attribute references (that have not already been folded)
910 -- are known at compile time.
912 elsif K = N_Attribute_Reference then
913 return Attribute_Name (Op) = Name_Null_Parameter;
914 end if;
915 end if;
917 -- If we fall through, not known at compile time
919 return False;
921 -- If we get an exception while trying to do this test, then some error
922 -- has occurred, and we simply say that the value is not known after all
924 exception
925 when others =>
926 return False;
927 end Compile_Time_Known_Value;
929 --------------------------------------
930 -- Compile_Time_Known_Value_Or_Aggr --
931 --------------------------------------
933 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
934 begin
935 -- If we have an entity name, then see if it is the name of a constant
936 -- and if so, test the corresponding constant value, or the name of
937 -- an enumeration literal, which is always a constant.
939 if Is_Entity_Name (Op) then
940 declare
941 E : constant Entity_Id := Entity (Op);
942 V : Node_Id;
944 begin
945 if Ekind (E) = E_Enumeration_Literal then
946 return True;
948 elsif Ekind (E) /= E_Constant then
949 return False;
951 else
952 V := Constant_Value (E);
953 return Present (V)
954 and then Compile_Time_Known_Value_Or_Aggr (V);
955 end if;
956 end;
958 -- We have a value, see if it is compile time known
960 else
961 if Compile_Time_Known_Value (Op) then
962 return True;
964 elsif Nkind (Op) = N_Aggregate then
966 if Present (Expressions (Op)) then
967 declare
968 Expr : Node_Id;
970 begin
971 Expr := First (Expressions (Op));
972 while Present (Expr) loop
973 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
974 return False;
975 end if;
977 Next (Expr);
978 end loop;
979 end;
980 end if;
982 if Present (Component_Associations (Op)) then
983 declare
984 Cass : Node_Id;
986 begin
987 Cass := First (Component_Associations (Op));
988 while Present (Cass) loop
989 if not
990 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
991 then
992 return False;
993 end if;
995 Next (Cass);
996 end loop;
997 end;
998 end if;
1000 return True;
1002 -- All other types of values are not known at compile time
1004 else
1005 return False;
1006 end if;
1008 end if;
1009 end Compile_Time_Known_Value_Or_Aggr;
1011 -----------------
1012 -- Eval_Actual --
1013 -----------------
1015 -- This is only called for actuals of functions that are not predefined
1016 -- operators (which have already been rewritten as operators at this
1017 -- stage), so the call can never be folded, and all that needs doing for
1018 -- the actual is to do the check for a non-static context.
1020 procedure Eval_Actual (N : Node_Id) is
1021 begin
1022 Check_Non_Static_Context (N);
1023 end Eval_Actual;
1025 --------------------
1026 -- Eval_Allocator --
1027 --------------------
1029 -- Allocators are never static, so all we have to do is to do the
1030 -- check for a non-static context if an expression is present.
1032 procedure Eval_Allocator (N : Node_Id) is
1033 Expr : constant Node_Id := Expression (N);
1035 begin
1036 if Nkind (Expr) = N_Qualified_Expression then
1037 Check_Non_Static_Context (Expression (Expr));
1038 end if;
1039 end Eval_Allocator;
1041 ------------------------
1042 -- Eval_Arithmetic_Op --
1043 ------------------------
1045 -- Arithmetic operations are static functions, so the result is static
1046 -- if both operands are static (RM 4.9(7), 4.9(20)).
1048 procedure Eval_Arithmetic_Op (N : Node_Id) is
1049 Left : constant Node_Id := Left_Opnd (N);
1050 Right : constant Node_Id := Right_Opnd (N);
1051 Ltype : constant Entity_Id := Etype (Left);
1052 Rtype : constant Entity_Id := Etype (Right);
1053 Stat : Boolean;
1054 Fold : Boolean;
1056 begin
1057 -- If not foldable we are done
1059 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1061 if not Fold then
1062 return;
1063 end if;
1065 -- Fold for cases where both operands are of integer type
1067 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1068 declare
1069 Left_Int : constant Uint := Expr_Value (Left);
1070 Right_Int : constant Uint := Expr_Value (Right);
1071 Result : Uint;
1073 begin
1074 case Nkind (N) is
1076 when N_Op_Add =>
1077 Result := Left_Int + Right_Int;
1079 when N_Op_Subtract =>
1080 Result := Left_Int - Right_Int;
1082 when N_Op_Multiply =>
1083 if OK_Bits
1084 (N, UI_From_Int
1085 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1086 then
1087 Result := Left_Int * Right_Int;
1088 else
1089 Result := Left_Int;
1090 end if;
1092 when N_Op_Divide =>
1094 -- The exception Constraint_Error is raised by integer
1095 -- division, rem and mod if the right operand is zero.
1097 if Right_Int = 0 then
1098 Apply_Compile_Time_Constraint_Error
1099 (N, "division by zero",
1100 CE_Divide_By_Zero,
1101 Warn => not Stat);
1102 return;
1104 else
1105 Result := Left_Int / Right_Int;
1106 end if;
1108 when N_Op_Mod =>
1110 -- The exception Constraint_Error is raised by integer
1111 -- division, rem and mod if the right operand is zero.
1113 if Right_Int = 0 then
1114 Apply_Compile_Time_Constraint_Error
1115 (N, "mod with zero divisor",
1116 CE_Divide_By_Zero,
1117 Warn => not Stat);
1118 return;
1119 else
1120 Result := Left_Int mod Right_Int;
1121 end if;
1123 when N_Op_Rem =>
1125 -- The exception Constraint_Error is raised by integer
1126 -- division, rem and mod if the right operand is zero.
1128 if Right_Int = 0 then
1129 Apply_Compile_Time_Constraint_Error
1130 (N, "rem with zero divisor",
1131 CE_Divide_By_Zero,
1132 Warn => not Stat);
1133 return;
1135 else
1136 Result := Left_Int rem Right_Int;
1137 end if;
1139 when others =>
1140 raise Program_Error;
1141 end case;
1143 -- Adjust the result by the modulus if the type is a modular type
1145 if Is_Modular_Integer_Type (Ltype) then
1146 Result := Result mod Modulus (Ltype);
1148 -- For a signed integer type, check non-static overflow
1150 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1151 declare
1152 BT : constant Entity_Id := Base_Type (Ltype);
1153 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1154 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1155 begin
1156 if Result < Lo or else Result > Hi then
1157 Apply_Compile_Time_Constraint_Error
1158 (N, "value not in range of }?",
1159 CE_Overflow_Check_Failed,
1160 Ent => BT);
1161 return;
1162 end if;
1163 end;
1164 end if;
1166 -- If we get here we can fold the result
1168 Fold_Uint (N, Result, Stat);
1169 end;
1171 -- Cases where at least one operand is a real. We handle the cases
1172 -- of both reals, or mixed/real integer cases (the latter happen
1173 -- only for divide and multiply, and the result is always real).
1175 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1176 declare
1177 Left_Real : Ureal;
1178 Right_Real : Ureal;
1179 Result : Ureal;
1181 begin
1182 if Is_Real_Type (Ltype) then
1183 Left_Real := Expr_Value_R (Left);
1184 else
1185 Left_Real := UR_From_Uint (Expr_Value (Left));
1186 end if;
1188 if Is_Real_Type (Rtype) then
1189 Right_Real := Expr_Value_R (Right);
1190 else
1191 Right_Real := UR_From_Uint (Expr_Value (Right));
1192 end if;
1194 if Nkind (N) = N_Op_Add then
1195 Result := Left_Real + Right_Real;
1197 elsif Nkind (N) = N_Op_Subtract then
1198 Result := Left_Real - Right_Real;
1200 elsif Nkind (N) = N_Op_Multiply then
1201 Result := Left_Real * Right_Real;
1203 else pragma Assert (Nkind (N) = N_Op_Divide);
1204 if UR_Is_Zero (Right_Real) then
1205 Apply_Compile_Time_Constraint_Error
1206 (N, "division by zero", CE_Divide_By_Zero);
1207 return;
1208 end if;
1210 Result := Left_Real / Right_Real;
1211 end if;
1213 Fold_Ureal (N, Result, Stat);
1214 end;
1215 end if;
1216 end Eval_Arithmetic_Op;
1218 ----------------------------
1219 -- Eval_Character_Literal --
1220 ----------------------------
1222 -- Nothing to be done!
1224 procedure Eval_Character_Literal (N : Node_Id) is
1225 pragma Warnings (Off, N);
1226 begin
1227 null;
1228 end Eval_Character_Literal;
1230 ---------------
1231 -- Eval_Call --
1232 ---------------
1234 -- Static function calls are either calls to predefined operators
1235 -- with static arguments, or calls to functions that rename a literal.
1236 -- Only the latter case is handled here, predefined operators are
1237 -- constant-folded elsewhere.
1238 -- If the function is itself inherited (see 7423-001) the literal of
1239 -- the parent type must be explicitly converted to the return type
1240 -- of the function.
1242 procedure Eval_Call (N : Node_Id) is
1243 Loc : constant Source_Ptr := Sloc (N);
1244 Typ : constant Entity_Id := Etype (N);
1245 Lit : Entity_Id;
1247 begin
1248 if Nkind (N) = N_Function_Call
1249 and then No (Parameter_Associations (N))
1250 and then Is_Entity_Name (Name (N))
1251 and then Present (Alias (Entity (Name (N))))
1252 and then Is_Enumeration_Type (Base_Type (Typ))
1253 then
1254 Lit := Alias (Entity (Name (N)));
1256 while Present (Alias (Lit)) loop
1257 Lit := Alias (Lit);
1258 end loop;
1260 if Ekind (Lit) = E_Enumeration_Literal then
1261 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1262 Rewrite
1263 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1264 else
1265 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1266 end if;
1268 Resolve (N, Typ);
1269 end if;
1270 end if;
1271 end Eval_Call;
1273 ------------------------
1274 -- Eval_Concatenation --
1275 ------------------------
1277 -- Concatenation is a static function, so the result is static if
1278 -- both operands are static (RM 4.9(7), 4.9(21)).
1280 procedure Eval_Concatenation (N : Node_Id) is
1281 Left : constant Node_Id := Left_Opnd (N);
1282 Right : constant Node_Id := Right_Opnd (N);
1283 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1284 Stat : Boolean;
1285 Fold : Boolean;
1287 begin
1288 -- Concatenation is never static in Ada 83, so if Ada 83
1289 -- check operand non-static context
1291 if Ada_Version = Ada_83
1292 and then Comes_From_Source (N)
1293 then
1294 Check_Non_Static_Context (Left);
1295 Check_Non_Static_Context (Right);
1296 return;
1297 end if;
1299 -- If not foldable we are done. In principle concatenation that yields
1300 -- any string type is static (i.e. an array type of character types).
1301 -- However, character types can include enumeration literals, and
1302 -- concatenation in that case cannot be described by a literal, so we
1303 -- only consider the operation static if the result is an array of
1304 -- (a descendant of) a predefined character type.
1306 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1308 if (C_Typ = Standard_Character
1309 or else C_Typ = Standard_Wide_Character
1310 or else C_Typ = Standard_Wide_Wide_Character)
1311 and then Fold
1312 then
1313 null;
1314 else
1315 Set_Is_Static_Expression (N, False);
1316 return;
1317 end if;
1319 -- Compile time string concatenation
1321 -- ??? Note that operands that are aggregates can be marked as
1322 -- static, so we should attempt at a later stage to fold
1323 -- concatenations with such aggregates.
1325 declare
1326 Left_Str : constant Node_Id := Get_String_Val (Left);
1327 Left_Len : Nat;
1328 Right_Str : constant Node_Id := Get_String_Val (Right);
1330 begin
1331 -- Establish new string literal, and store left operand. We make
1332 -- sure to use the special Start_String that takes an operand if
1333 -- the left operand is a string literal. Since this is optimized
1334 -- in the case where that is the most recently created string
1335 -- literal, we ensure efficient time/space behavior for the
1336 -- case of a concatenation of a series of string literals.
1338 if Nkind (Left_Str) = N_String_Literal then
1339 Left_Len := String_Length (Strval (Left_Str));
1340 Start_String (Strval (Left_Str));
1341 else
1342 Start_String;
1343 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
1344 Left_Len := 1;
1345 end if;
1347 -- Now append the characters of the right operand
1349 if Nkind (Right_Str) = N_String_Literal then
1350 declare
1351 S : constant String_Id := Strval (Right_Str);
1353 begin
1354 for J in 1 .. String_Length (S) loop
1355 Store_String_Char (Get_String_Char (S, J));
1356 end loop;
1357 end;
1358 else
1359 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
1360 end if;
1362 Set_Is_Static_Expression (N, Stat);
1364 if Stat then
1366 -- If left operand is the empty string, the result is the
1367 -- right operand, including its bounds if anomalous.
1369 if Left_Len = 0
1370 and then Is_Array_Type (Etype (Right))
1371 and then Etype (Right) /= Any_String
1372 then
1373 Set_Etype (N, Etype (Right));
1374 end if;
1376 Fold_Str (N, End_String, True);
1377 end if;
1378 end;
1379 end Eval_Concatenation;
1381 ---------------------------------
1382 -- Eval_Conditional_Expression --
1383 ---------------------------------
1385 -- This GNAT internal construct can never be statically folded, so the
1386 -- only required processing is to do the check for non-static context
1387 -- for the two expression operands.
1389 procedure Eval_Conditional_Expression (N : Node_Id) is
1390 Condition : constant Node_Id := First (Expressions (N));
1391 Then_Expr : constant Node_Id := Next (Condition);
1392 Else_Expr : constant Node_Id := Next (Then_Expr);
1394 begin
1395 Check_Non_Static_Context (Then_Expr);
1396 Check_Non_Static_Context (Else_Expr);
1397 end Eval_Conditional_Expression;
1399 ----------------------
1400 -- Eval_Entity_Name --
1401 ----------------------
1403 -- This procedure is used for identifiers and expanded names other than
1404 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1405 -- static if they denote a static constant (RM 4.9(6)) or if the name
1406 -- denotes an enumeration literal (RM 4.9(22)).
1408 procedure Eval_Entity_Name (N : Node_Id) is
1409 Def_Id : constant Entity_Id := Entity (N);
1410 Val : Node_Id;
1412 begin
1413 -- Enumeration literals are always considered to be constants
1414 -- and cannot raise constraint error (RM 4.9(22)).
1416 if Ekind (Def_Id) = E_Enumeration_Literal then
1417 Set_Is_Static_Expression (N);
1418 return;
1420 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1421 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1422 -- it does not violate 10.2.1(8) here, since this is not a variable.
1424 elsif Ekind (Def_Id) = E_Constant then
1426 -- Deferred constants must always be treated as nonstatic
1427 -- outside the scope of their full view.
1429 if Present (Full_View (Def_Id))
1430 and then not In_Open_Scopes (Scope (Def_Id))
1431 then
1432 Val := Empty;
1433 else
1434 Val := Constant_Value (Def_Id);
1435 end if;
1437 if Present (Val) then
1438 Set_Is_Static_Expression
1439 (N, Is_Static_Expression (Val)
1440 and then Is_Static_Subtype (Etype (Def_Id)));
1441 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1443 if not Is_Static_Expression (N)
1444 and then not Is_Generic_Type (Etype (N))
1445 then
1446 Validate_Static_Object_Name (N);
1447 end if;
1449 return;
1450 end if;
1451 end if;
1453 -- Fall through if the name is not static
1455 Validate_Static_Object_Name (N);
1456 end Eval_Entity_Name;
1458 ----------------------------
1459 -- Eval_Indexed_Component --
1460 ----------------------------
1462 -- Indexed components are never static, so we need to perform the check
1463 -- for non-static context on the index values. Then, we check if the
1464 -- value can be obtained at compile time, even though it is non-static.
1466 procedure Eval_Indexed_Component (N : Node_Id) is
1467 Expr : Node_Id;
1469 begin
1470 -- Check for non-static context on index values
1472 Expr := First (Expressions (N));
1473 while Present (Expr) loop
1474 Check_Non_Static_Context (Expr);
1475 Next (Expr);
1476 end loop;
1478 -- If the indexed component appears in an object renaming declaration
1479 -- then we do not want to try to evaluate it, since in this case we
1480 -- need the identity of the array element.
1482 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1483 return;
1485 -- Similarly if the indexed component appears as the prefix of an
1486 -- attribute we don't want to evaluate it, because at least for
1487 -- some cases of attributes we need the identify (e.g. Access, Size)
1489 elsif Nkind (Parent (N)) = N_Attribute_Reference then
1490 return;
1491 end if;
1493 -- Note: there are other cases, such as the left side of an assignment,
1494 -- or an OUT parameter for a call, where the replacement results in the
1495 -- illegal use of a constant, But these cases are illegal in the first
1496 -- place, so the replacement, though silly, is harmless.
1498 -- Now see if this is a constant array reference
1500 if List_Length (Expressions (N)) = 1
1501 and then Is_Entity_Name (Prefix (N))
1502 and then Ekind (Entity (Prefix (N))) = E_Constant
1503 and then Present (Constant_Value (Entity (Prefix (N))))
1504 then
1505 declare
1506 Loc : constant Source_Ptr := Sloc (N);
1507 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
1508 Sub : constant Node_Id := First (Expressions (N));
1510 Atyp : Entity_Id;
1511 -- Type of array
1513 Lin : Nat;
1514 -- Linear one's origin subscript value for array reference
1516 Lbd : Node_Id;
1517 -- Lower bound of the first array index
1519 Elm : Node_Id;
1520 -- Value from constant array
1522 begin
1523 Atyp := Etype (Arr);
1525 if Is_Access_Type (Atyp) then
1526 Atyp := Designated_Type (Atyp);
1527 end if;
1529 -- If we have an array type (we should have but perhaps there
1530 -- are error cases where this is not the case), then see if we
1531 -- can do a constant evaluation of the array reference.
1533 if Is_Array_Type (Atyp) then
1534 if Ekind (Atyp) = E_String_Literal_Subtype then
1535 Lbd := String_Literal_Low_Bound (Atyp);
1536 else
1537 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
1538 end if;
1540 if Compile_Time_Known_Value (Sub)
1541 and then Nkind (Arr) = N_Aggregate
1542 and then Compile_Time_Known_Value (Lbd)
1543 and then Is_Discrete_Type (Component_Type (Atyp))
1544 then
1545 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
1547 if List_Length (Expressions (Arr)) >= Lin then
1548 Elm := Pick (Expressions (Arr), Lin);
1550 -- If the resulting expression is compile time known,
1551 -- then we can rewrite the indexed component with this
1552 -- value, being sure to mark the result as non-static.
1553 -- We also reset the Sloc, in case this generates an
1554 -- error later on (e.g. 136'Access).
1556 if Compile_Time_Known_Value (Elm) then
1557 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1558 Set_Is_Static_Expression (N, False);
1559 Set_Sloc (N, Loc);
1560 end if;
1561 end if;
1562 end if;
1563 end if;
1564 end;
1565 end if;
1566 end Eval_Indexed_Component;
1568 --------------------------
1569 -- Eval_Integer_Literal --
1570 --------------------------
1572 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1573 -- as static by the analyzer. The reason we did it that early is to allow
1574 -- the possibility of turning off the Is_Static_Expression flag after
1575 -- analysis, but before resolution, when integer literals are generated
1576 -- in the expander that do not correspond to static expressions.
1578 procedure Eval_Integer_Literal (N : Node_Id) is
1579 T : constant Entity_Id := Etype (N);
1581 function In_Any_Integer_Context return Boolean;
1582 -- If the literal is resolved with a specific type in a context
1583 -- where the expected type is Any_Integer, there are no range checks
1584 -- on the literal. By the time the literal is evaluated, it carries
1585 -- the type imposed by the enclosing expression, and we must recover
1586 -- the context to determine that Any_Integer is meant.
1588 ----------------------------
1589 -- To_Any_Integer_Context --
1590 ----------------------------
1592 function In_Any_Integer_Context return Boolean is
1593 Par : constant Node_Id := Parent (N);
1594 K : constant Node_Kind := Nkind (Par);
1596 begin
1597 -- Any_Integer also appears in digits specifications for real types,
1598 -- but those have bounds smaller that those of any integer base
1599 -- type, so we can safely ignore these cases.
1601 return K = N_Number_Declaration
1602 or else K = N_Attribute_Reference
1603 or else K = N_Attribute_Definition_Clause
1604 or else K = N_Modular_Type_Definition
1605 or else K = N_Signed_Integer_Type_Definition;
1606 end In_Any_Integer_Context;
1608 -- Start of processing for Eval_Integer_Literal
1610 begin
1612 -- If the literal appears in a non-expression context, then it is
1613 -- certainly appearing in a non-static context, so check it. This
1614 -- is actually a redundant check, since Check_Non_Static_Context
1615 -- would check it, but it seems worth while avoiding the call.
1617 if Nkind (Parent (N)) not in N_Subexpr
1618 and then not In_Any_Integer_Context
1619 then
1620 Check_Non_Static_Context (N);
1621 end if;
1623 -- Modular integer literals must be in their base range
1625 if Is_Modular_Integer_Type (T)
1626 and then Is_Out_Of_Range (N, Base_Type (T))
1627 then
1628 Out_Of_Range (N);
1629 end if;
1630 end Eval_Integer_Literal;
1632 ---------------------
1633 -- Eval_Logical_Op --
1634 ---------------------
1636 -- Logical operations are static functions, so the result is potentially
1637 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1639 procedure Eval_Logical_Op (N : Node_Id) is
1640 Left : constant Node_Id := Left_Opnd (N);
1641 Right : constant Node_Id := Right_Opnd (N);
1642 Stat : Boolean;
1643 Fold : Boolean;
1645 begin
1646 -- If not foldable we are done
1648 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1650 if not Fold then
1651 return;
1652 end if;
1654 -- Compile time evaluation of logical operation
1656 declare
1657 Left_Int : constant Uint := Expr_Value (Left);
1658 Right_Int : constant Uint := Expr_Value (Right);
1660 begin
1661 if Is_Modular_Integer_Type (Etype (N)) then
1662 declare
1663 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1664 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1666 begin
1667 To_Bits (Left_Int, Left_Bits);
1668 To_Bits (Right_Int, Right_Bits);
1670 -- Note: should really be able to use array ops instead of
1671 -- these loops, but they weren't working at the time ???
1673 if Nkind (N) = N_Op_And then
1674 for J in Left_Bits'Range loop
1675 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
1676 end loop;
1678 elsif Nkind (N) = N_Op_Or then
1679 for J in Left_Bits'Range loop
1680 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
1681 end loop;
1683 else
1684 pragma Assert (Nkind (N) = N_Op_Xor);
1686 for J in Left_Bits'Range loop
1687 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
1688 end loop;
1689 end if;
1691 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
1692 end;
1694 else
1695 pragma Assert (Is_Boolean_Type (Etype (N)));
1697 if Nkind (N) = N_Op_And then
1698 Fold_Uint (N,
1699 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
1701 elsif Nkind (N) = N_Op_Or then
1702 Fold_Uint (N,
1703 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
1705 else
1706 pragma Assert (Nkind (N) = N_Op_Xor);
1707 Fold_Uint (N,
1708 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
1709 end if;
1710 end if;
1711 end;
1712 end Eval_Logical_Op;
1714 ------------------------
1715 -- Eval_Membership_Op --
1716 ------------------------
1718 -- A membership test is potentially static if the expression is static,
1719 -- and the range is a potentially static range, or is a subtype mark
1720 -- denoting a static subtype (RM 4.9(12)).
1722 procedure Eval_Membership_Op (N : Node_Id) is
1723 Left : constant Node_Id := Left_Opnd (N);
1724 Right : constant Node_Id := Right_Opnd (N);
1725 Def_Id : Entity_Id;
1726 Lo : Node_Id;
1727 Hi : Node_Id;
1728 Result : Boolean;
1729 Stat : Boolean;
1730 Fold : Boolean;
1732 begin
1733 -- Ignore if error in either operand, except to make sure that
1734 -- Any_Type is properly propagated to avoid junk cascaded errors.
1736 if Etype (Left) = Any_Type
1737 or else Etype (Right) = Any_Type
1738 then
1739 Set_Etype (N, Any_Type);
1740 return;
1741 end if;
1743 -- Case of right operand is a subtype name
1745 if Is_Entity_Name (Right) then
1746 Def_Id := Entity (Right);
1748 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
1749 and then Is_OK_Static_Subtype (Def_Id)
1750 then
1751 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1753 if not Fold or else not Stat then
1754 return;
1755 end if;
1756 else
1757 Check_Non_Static_Context (Left);
1758 return;
1759 end if;
1761 -- For string membership tests we will check the length
1762 -- further below.
1764 if not Is_String_Type (Def_Id) then
1765 Lo := Type_Low_Bound (Def_Id);
1766 Hi := Type_High_Bound (Def_Id);
1768 else
1769 Lo := Empty;
1770 Hi := Empty;
1771 end if;
1773 -- Case of right operand is a range
1775 else
1776 if Is_Static_Range (Right) then
1777 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1779 if not Fold or else not Stat then
1780 return;
1782 -- If one bound of range raises CE, then don't try to fold
1784 elsif not Is_OK_Static_Range (Right) then
1785 Check_Non_Static_Context (Left);
1786 return;
1787 end if;
1789 else
1790 Check_Non_Static_Context (Left);
1791 return;
1792 end if;
1794 -- Here we know range is an OK static range
1796 Lo := Low_Bound (Right);
1797 Hi := High_Bound (Right);
1798 end if;
1800 -- For strings we check that the length of the string expression is
1801 -- compatible with the string subtype if the subtype is constrained,
1802 -- or if unconstrained then the test is always true.
1804 if Is_String_Type (Etype (Right)) then
1805 if not Is_Constrained (Etype (Right)) then
1806 Result := True;
1808 else
1809 declare
1810 Typlen : constant Uint := String_Type_Len (Etype (Right));
1811 Strlen : constant Uint :=
1812 UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
1813 begin
1814 Result := (Typlen = Strlen);
1815 end;
1816 end if;
1818 -- Fold the membership test. We know we have a static range and Lo
1819 -- and Hi are set to the expressions for the end points of this range.
1821 elsif Is_Real_Type (Etype (Right)) then
1822 declare
1823 Leftval : constant Ureal := Expr_Value_R (Left);
1825 begin
1826 Result := Expr_Value_R (Lo) <= Leftval
1827 and then Leftval <= Expr_Value_R (Hi);
1828 end;
1830 else
1831 declare
1832 Leftval : constant Uint := Expr_Value (Left);
1834 begin
1835 Result := Expr_Value (Lo) <= Leftval
1836 and then Leftval <= Expr_Value (Hi);
1837 end;
1838 end if;
1840 if Nkind (N) = N_Not_In then
1841 Result := not Result;
1842 end if;
1844 Fold_Uint (N, Test (Result), True);
1845 Warn_On_Known_Condition (N);
1846 end Eval_Membership_Op;
1848 ------------------------
1849 -- Eval_Named_Integer --
1850 ------------------------
1852 procedure Eval_Named_Integer (N : Node_Id) is
1853 begin
1854 Fold_Uint (N,
1855 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
1856 end Eval_Named_Integer;
1858 ---------------------
1859 -- Eval_Named_Real --
1860 ---------------------
1862 procedure Eval_Named_Real (N : Node_Id) is
1863 begin
1864 Fold_Ureal (N,
1865 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
1866 end Eval_Named_Real;
1868 -------------------
1869 -- Eval_Op_Expon --
1870 -------------------
1872 -- Exponentiation is a static functions, so the result is potentially
1873 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1875 procedure Eval_Op_Expon (N : Node_Id) is
1876 Left : constant Node_Id := Left_Opnd (N);
1877 Right : constant Node_Id := Right_Opnd (N);
1878 Stat : Boolean;
1879 Fold : Boolean;
1881 begin
1882 -- If not foldable we are done
1884 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1886 if not Fold then
1887 return;
1888 end if;
1890 -- Fold exponentiation operation
1892 declare
1893 Right_Int : constant Uint := Expr_Value (Right);
1895 begin
1896 -- Integer case
1898 if Is_Integer_Type (Etype (Left)) then
1899 declare
1900 Left_Int : constant Uint := Expr_Value (Left);
1901 Result : Uint;
1903 begin
1904 -- Exponentiation of an integer raises the exception
1905 -- Constraint_Error for a negative exponent (RM 4.5.6)
1907 if Right_Int < 0 then
1908 Apply_Compile_Time_Constraint_Error
1909 (N, "integer exponent negative",
1910 CE_Range_Check_Failed,
1911 Warn => not Stat);
1912 return;
1914 else
1915 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
1916 Result := Left_Int ** Right_Int;
1917 else
1918 Result := Left_Int;
1919 end if;
1921 if Is_Modular_Integer_Type (Etype (N)) then
1922 Result := Result mod Modulus (Etype (N));
1923 end if;
1925 Fold_Uint (N, Result, Stat);
1926 end if;
1927 end;
1929 -- Real case
1931 else
1932 declare
1933 Left_Real : constant Ureal := Expr_Value_R (Left);
1935 begin
1936 -- Cannot have a zero base with a negative exponent
1938 if UR_Is_Zero (Left_Real) then
1940 if Right_Int < 0 then
1941 Apply_Compile_Time_Constraint_Error
1942 (N, "zero ** negative integer",
1943 CE_Range_Check_Failed,
1944 Warn => not Stat);
1945 return;
1946 else
1947 Fold_Ureal (N, Ureal_0, Stat);
1948 end if;
1950 else
1951 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
1952 end if;
1953 end;
1954 end if;
1955 end;
1956 end Eval_Op_Expon;
1958 -----------------
1959 -- Eval_Op_Not --
1960 -----------------
1962 -- The not operation is a static functions, so the result is potentially
1963 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
1965 procedure Eval_Op_Not (N : Node_Id) is
1966 Right : constant Node_Id := Right_Opnd (N);
1967 Stat : Boolean;
1968 Fold : Boolean;
1970 begin
1971 -- If not foldable we are done
1973 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
1975 if not Fold then
1976 return;
1977 end if;
1979 -- Fold not operation
1981 declare
1982 Rint : constant Uint := Expr_Value (Right);
1983 Typ : constant Entity_Id := Etype (N);
1985 begin
1986 -- Negation is equivalent to subtracting from the modulus minus
1987 -- one. For a binary modulus this is equivalent to the ones-
1988 -- component of the original value. For non-binary modulus this
1989 -- is an arbitrary but consistent definition.
1991 if Is_Modular_Integer_Type (Typ) then
1992 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
1994 else
1995 pragma Assert (Is_Boolean_Type (Typ));
1996 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
1997 end if;
1999 Set_Is_Static_Expression (N, Stat);
2000 end;
2001 end Eval_Op_Not;
2003 -------------------------------
2004 -- Eval_Qualified_Expression --
2005 -------------------------------
2007 -- A qualified expression is potentially static if its subtype mark denotes
2008 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2010 procedure Eval_Qualified_Expression (N : Node_Id) is
2011 Operand : constant Node_Id := Expression (N);
2012 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2014 Stat : Boolean;
2015 Fold : Boolean;
2016 Hex : Boolean;
2018 begin
2019 -- Can only fold if target is string or scalar and subtype is static
2020 -- Also, do not fold if our parent is an allocator (this is because
2021 -- the qualified expression is really part of the syntactic structure
2022 -- of an allocator, and we do not want to end up with something that
2023 -- corresponds to "new 1" where the 1 is the result of folding a
2024 -- qualified expression).
2026 if not Is_Static_Subtype (Target_Type)
2027 or else Nkind (Parent (N)) = N_Allocator
2028 then
2029 Check_Non_Static_Context (Operand);
2031 -- If operand is known to raise constraint_error, set the
2032 -- flag on the expression so it does not get optimized away.
2034 if Nkind (Operand) = N_Raise_Constraint_Error then
2035 Set_Raises_Constraint_Error (N);
2036 end if;
2038 return;
2039 end if;
2041 -- If not foldable we are done
2043 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2045 if not Fold then
2046 return;
2048 -- Don't try fold if target type has constraint error bounds
2050 elsif not Is_OK_Static_Subtype (Target_Type) then
2051 Set_Raises_Constraint_Error (N);
2052 return;
2053 end if;
2055 -- Here we will fold, save Print_In_Hex indication
2057 Hex := Nkind (Operand) = N_Integer_Literal
2058 and then Print_In_Hex (Operand);
2060 -- Fold the result of qualification
2062 if Is_Discrete_Type (Target_Type) then
2063 Fold_Uint (N, Expr_Value (Operand), Stat);
2065 -- Preserve Print_In_Hex indication
2067 if Hex and then Nkind (N) = N_Integer_Literal then
2068 Set_Print_In_Hex (N);
2069 end if;
2071 elsif Is_Real_Type (Target_Type) then
2072 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
2074 else
2075 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
2077 if not Stat then
2078 Set_Is_Static_Expression (N, False);
2079 else
2080 Check_String_Literal_Length (N, Target_Type);
2081 end if;
2083 return;
2084 end if;
2086 -- The expression may be foldable but not static
2088 Set_Is_Static_Expression (N, Stat);
2090 if Is_Out_Of_Range (N, Etype (N)) then
2091 Out_Of_Range (N);
2092 end if;
2093 end Eval_Qualified_Expression;
2095 -----------------------
2096 -- Eval_Real_Literal --
2097 -----------------------
2099 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2100 -- as static by the analyzer. The reason we did it that early is to allow
2101 -- the possibility of turning off the Is_Static_Expression flag after
2102 -- analysis, but before resolution, when integer literals are generated
2103 -- in the expander that do not correspond to static expressions.
2105 procedure Eval_Real_Literal (N : Node_Id) is
2106 begin
2107 -- If the literal appears in a non-expression context, then it is
2108 -- certainly appearing in a non-static context, so check it.
2110 if Nkind (Parent (N)) not in N_Subexpr then
2111 Check_Non_Static_Context (N);
2112 end if;
2114 end Eval_Real_Literal;
2116 ------------------------
2117 -- Eval_Relational_Op --
2118 ------------------------
2120 -- Relational operations are static functions, so the result is static
2121 -- if both operands are static (RM 4.9(7), 4.9(20)).
2123 procedure Eval_Relational_Op (N : Node_Id) is
2124 Left : constant Node_Id := Left_Opnd (N);
2125 Right : constant Node_Id := Right_Opnd (N);
2126 Typ : constant Entity_Id := Etype (Left);
2127 Result : Boolean;
2128 Stat : Boolean;
2129 Fold : Boolean;
2131 begin
2132 -- One special case to deal with first. If we can tell that
2133 -- the result will be false because the lengths of one or
2134 -- more index subtypes are compile time known and different,
2135 -- then we can replace the entire result by False. We only
2136 -- do this for one dimensional arrays, because the case of
2137 -- multi-dimensional arrays is rare and too much trouble!
2139 if Is_Array_Type (Typ)
2140 and then Number_Dimensions (Typ) = 1
2141 and then (Nkind (N) = N_Op_Eq
2142 or else Nkind (N) = N_Op_Ne)
2143 then
2144 if Raises_Constraint_Error (Left)
2145 or else Raises_Constraint_Error (Right)
2146 then
2147 return;
2148 end if;
2150 declare
2151 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2152 -- If Op is an expression for a constrained array with a
2153 -- known at compile time length, then Len is set to this
2154 -- (non-negative length). Otherwise Len is set to minus 1.
2156 -----------------------
2157 -- Get_Static_Length --
2158 -----------------------
2160 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2161 T : Entity_Id;
2163 begin
2164 if Nkind (Op) = N_String_Literal then
2165 Len := UI_From_Int (String_Length (Strval (Op)));
2167 elsif not Is_Constrained (Etype (Op)) then
2168 Len := Uint_Minus_1;
2170 else
2171 T := Etype (First_Index (Etype (Op)));
2173 if Is_Discrete_Type (T)
2174 and then
2175 Compile_Time_Known_Value (Type_Low_Bound (T))
2176 and then
2177 Compile_Time_Known_Value (Type_High_Bound (T))
2178 then
2179 Len := UI_Max (Uint_0,
2180 Expr_Value (Type_High_Bound (T)) -
2181 Expr_Value (Type_Low_Bound (T)) + 1);
2182 else
2183 Len := Uint_Minus_1;
2184 end if;
2185 end if;
2186 end Get_Static_Length;
2188 Len_L : Uint;
2189 Len_R : Uint;
2191 begin
2192 Get_Static_Length (Left, Len_L);
2193 Get_Static_Length (Right, Len_R);
2195 if Len_L /= Uint_Minus_1
2196 and then Len_R /= Uint_Minus_1
2197 and then Len_L /= Len_R
2198 then
2199 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2200 Warn_On_Known_Condition (N);
2201 return;
2202 end if;
2203 end;
2205 -- Another special case: comparisons against null for pointers that
2206 -- are known to be non-null. This is useful when migrating from Ada95
2207 -- code when non-null restrictions are added to type declarations and
2208 -- parameter specifications.
2210 elsif Is_Access_Type (Typ)
2211 and then Comes_From_Source (N)
2212 and then
2213 ((Is_Entity_Name (Left)
2214 and then Is_Known_Non_Null (Entity (Left))
2215 and then Nkind (Right) = N_Null)
2216 or else
2217 (Is_Entity_Name (Right)
2218 and then Is_Known_Non_Null (Entity (Right))
2219 and then Nkind (Left) = N_Null))
2220 then
2221 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2222 Warn_On_Known_Condition (N);
2223 return;
2224 end if;
2226 -- Can only fold if type is scalar (don't fold string ops)
2228 if not Is_Scalar_Type (Typ) then
2229 Check_Non_Static_Context (Left);
2230 Check_Non_Static_Context (Right);
2231 return;
2232 end if;
2234 -- If not foldable we are done
2236 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2238 if not Fold then
2239 return;
2240 end if;
2242 -- Integer and Enumeration (discrete) type cases
2244 if Is_Discrete_Type (Typ) then
2245 declare
2246 Left_Int : constant Uint := Expr_Value (Left);
2247 Right_Int : constant Uint := Expr_Value (Right);
2249 begin
2250 case Nkind (N) is
2251 when N_Op_Eq => Result := Left_Int = Right_Int;
2252 when N_Op_Ne => Result := Left_Int /= Right_Int;
2253 when N_Op_Lt => Result := Left_Int < Right_Int;
2254 when N_Op_Le => Result := Left_Int <= Right_Int;
2255 when N_Op_Gt => Result := Left_Int > Right_Int;
2256 when N_Op_Ge => Result := Left_Int >= Right_Int;
2258 when others =>
2259 raise Program_Error;
2260 end case;
2262 Fold_Uint (N, Test (Result), Stat);
2263 end;
2265 -- Real type case
2267 else
2268 pragma Assert (Is_Real_Type (Typ));
2270 declare
2271 Left_Real : constant Ureal := Expr_Value_R (Left);
2272 Right_Real : constant Ureal := Expr_Value_R (Right);
2274 begin
2275 case Nkind (N) is
2276 when N_Op_Eq => Result := (Left_Real = Right_Real);
2277 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2278 when N_Op_Lt => Result := (Left_Real < Right_Real);
2279 when N_Op_Le => Result := (Left_Real <= Right_Real);
2280 when N_Op_Gt => Result := (Left_Real > Right_Real);
2281 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2283 when others =>
2284 raise Program_Error;
2285 end case;
2287 Fold_Uint (N, Test (Result), Stat);
2288 end;
2289 end if;
2291 Warn_On_Known_Condition (N);
2292 end Eval_Relational_Op;
2294 ----------------
2295 -- Eval_Shift --
2296 ----------------
2298 -- Shift operations are intrinsic operations that can never be static,
2299 -- so the only processing required is to perform the required check for
2300 -- a non static context for the two operands.
2302 -- Actually we could do some compile time evaluation here some time ???
2304 procedure Eval_Shift (N : Node_Id) is
2305 begin
2306 Check_Non_Static_Context (Left_Opnd (N));
2307 Check_Non_Static_Context (Right_Opnd (N));
2308 end Eval_Shift;
2310 ------------------------
2311 -- Eval_Short_Circuit --
2312 ------------------------
2314 -- A short circuit operation is potentially static if both operands
2315 -- are potentially static (RM 4.9 (13))
2317 procedure Eval_Short_Circuit (N : Node_Id) is
2318 Kind : constant Node_Kind := Nkind (N);
2319 Left : constant Node_Id := Left_Opnd (N);
2320 Right : constant Node_Id := Right_Opnd (N);
2321 Left_Int : Uint;
2322 Rstat : constant Boolean :=
2323 Is_Static_Expression (Left)
2324 and then Is_Static_Expression (Right);
2326 begin
2327 -- Short circuit operations are never static in Ada 83
2329 if Ada_Version = Ada_83
2330 and then Comes_From_Source (N)
2331 then
2332 Check_Non_Static_Context (Left);
2333 Check_Non_Static_Context (Right);
2334 return;
2335 end if;
2337 -- Now look at the operands, we can't quite use the normal call to
2338 -- Test_Expression_Is_Foldable here because short circuit operations
2339 -- are a special case, they can still be foldable, even if the right
2340 -- operand raises constraint error.
2342 -- If either operand is Any_Type, just propagate to result and
2343 -- do not try to fold, this prevents cascaded errors.
2345 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2346 Set_Etype (N, Any_Type);
2347 return;
2349 -- If left operand raises constraint error, then replace node N with
2350 -- the raise constraint error node, and we are obviously not foldable.
2351 -- Is_Static_Expression is set from the two operands in the normal way,
2352 -- and we check the right operand if it is in a non-static context.
2354 elsif Raises_Constraint_Error (Left) then
2355 if not Rstat then
2356 Check_Non_Static_Context (Right);
2357 end if;
2359 Rewrite_In_Raise_CE (N, Left);
2360 Set_Is_Static_Expression (N, Rstat);
2361 return;
2363 -- If the result is not static, then we won't in any case fold
2365 elsif not Rstat then
2366 Check_Non_Static_Context (Left);
2367 Check_Non_Static_Context (Right);
2368 return;
2369 end if;
2371 -- Here the result is static, note that, unlike the normal processing
2372 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2373 -- the right operand raises constraint error, that's because it is not
2374 -- significant if the left operand is decisive.
2376 Set_Is_Static_Expression (N);
2378 -- It does not matter if the right operand raises constraint error if
2379 -- it will not be evaluated. So deal specially with the cases where
2380 -- the right operand is not evaluated. Note that we will fold these
2381 -- cases even if the right operand is non-static, which is fine, but
2382 -- of course in these cases the result is not potentially static.
2384 Left_Int := Expr_Value (Left);
2386 if (Kind = N_And_Then and then Is_False (Left_Int))
2387 or else (Kind = N_Or_Else and Is_True (Left_Int))
2388 then
2389 Fold_Uint (N, Left_Int, Rstat);
2390 return;
2391 end if;
2393 -- If first operand not decisive, then it does matter if the right
2394 -- operand raises constraint error, since it will be evaluated, so
2395 -- we simply replace the node with the right operand. Note that this
2396 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2397 -- (both are set to True in Right).
2399 if Raises_Constraint_Error (Right) then
2400 Rewrite_In_Raise_CE (N, Right);
2401 Check_Non_Static_Context (Left);
2402 return;
2403 end if;
2405 -- Otherwise the result depends on the right operand
2407 Fold_Uint (N, Expr_Value (Right), Rstat);
2408 return;
2409 end Eval_Short_Circuit;
2411 ----------------
2412 -- Eval_Slice --
2413 ----------------
2415 -- Slices can never be static, so the only processing required is to
2416 -- check for non-static context if an explicit range is given.
2418 procedure Eval_Slice (N : Node_Id) is
2419 Drange : constant Node_Id := Discrete_Range (N);
2421 begin
2422 if Nkind (Drange) = N_Range then
2423 Check_Non_Static_Context (Low_Bound (Drange));
2424 Check_Non_Static_Context (High_Bound (Drange));
2425 end if;
2426 end Eval_Slice;
2428 -------------------------
2429 -- Eval_String_Literal --
2430 -------------------------
2432 procedure Eval_String_Literal (N : Node_Id) is
2433 Typ : constant Entity_Id := Etype (N);
2434 Bas : constant Entity_Id := Base_Type (Typ);
2435 Xtp : Entity_Id;
2436 Len : Nat;
2437 Lo : Node_Id;
2439 begin
2440 -- Nothing to do if error type (handles cases like default expressions
2441 -- or generics where we have not yet fully resolved the type)
2443 if Bas = Any_Type or else Bas = Any_String then
2444 return;
2445 end if;
2447 -- String literals are static if the subtype is static (RM 4.9(2)), so
2448 -- reset the static expression flag (it was set unconditionally in
2449 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2450 -- the subtype is static by looking at the lower bound.
2452 if Ekind (Typ) = E_String_Literal_Subtype then
2453 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
2454 Set_Is_Static_Expression (N, False);
2455 return;
2456 end if;
2458 -- Here if Etype of string literal is normal Etype (not yet possible,
2459 -- but may be possible in future!)
2461 elsif not Is_OK_Static_Expression
2462 (Type_Low_Bound (Etype (First_Index (Typ))))
2463 then
2464 Set_Is_Static_Expression (N, False);
2465 return;
2466 end if;
2468 -- If original node was a type conversion, then result if non-static
2470 if Nkind (Original_Node (N)) = N_Type_Conversion then
2471 Set_Is_Static_Expression (N, False);
2472 return;
2473 end if;
2475 -- Test for illegal Ada 95 cases. A string literal is illegal in
2476 -- Ada 95 if its bounds are outside the index base type and this
2477 -- index type is static. This can happen in only two ways. Either
2478 -- the string literal is too long, or it is null, and the lower
2479 -- bound is type'First. In either case it is the upper bound that
2480 -- is out of range of the index type.
2482 if Ada_Version >= Ada_95 then
2483 if Root_Type (Bas) = Standard_String
2484 or else
2485 Root_Type (Bas) = Standard_Wide_String
2486 then
2487 Xtp := Standard_Positive;
2488 else
2489 Xtp := Etype (First_Index (Bas));
2490 end if;
2492 if Ekind (Typ) = E_String_Literal_Subtype then
2493 Lo := String_Literal_Low_Bound (Typ);
2494 else
2495 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
2496 end if;
2498 Len := String_Length (Strval (N));
2500 if UI_From_Int (Len) > String_Type_Len (Bas) then
2501 Apply_Compile_Time_Constraint_Error
2502 (N, "string literal too long for}", CE_Length_Check_Failed,
2503 Ent => Bas,
2504 Typ => First_Subtype (Bas));
2506 elsif Len = 0
2507 and then not Is_Generic_Type (Xtp)
2508 and then
2509 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
2510 then
2511 Apply_Compile_Time_Constraint_Error
2512 (N, "null string literal not allowed for}",
2513 CE_Length_Check_Failed,
2514 Ent => Bas,
2515 Typ => First_Subtype (Bas));
2516 end if;
2517 end if;
2518 end Eval_String_Literal;
2520 --------------------------
2521 -- Eval_Type_Conversion --
2522 --------------------------
2524 -- A type conversion is potentially static if its subtype mark is for a
2525 -- static scalar subtype, and its operand expression is potentially static
2526 -- (RM 4.9 (10))
2528 procedure Eval_Type_Conversion (N : Node_Id) is
2529 Operand : constant Node_Id := Expression (N);
2530 Source_Type : constant Entity_Id := Etype (Operand);
2531 Target_Type : constant Entity_Id := Etype (N);
2533 Stat : Boolean;
2534 Fold : Boolean;
2536 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
2537 -- Returns true if type T is an integer type, or if it is a
2538 -- fixed-point type to be treated as an integer (i.e. the flag
2539 -- Conversion_OK is set on the conversion node).
2541 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
2542 -- Returns true if type T is a floating-point type, or if it is a
2543 -- fixed-point type that is not to be treated as an integer (i.e. the
2544 -- flag Conversion_OK is not set on the conversion node).
2546 ------------------------------
2547 -- To_Be_Treated_As_Integer --
2548 ------------------------------
2550 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
2551 begin
2552 return
2553 Is_Integer_Type (T)
2554 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
2555 end To_Be_Treated_As_Integer;
2557 ---------------------------
2558 -- To_Be_Treated_As_Real --
2559 ---------------------------
2561 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
2562 begin
2563 return
2564 Is_Floating_Point_Type (T)
2565 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
2566 end To_Be_Treated_As_Real;
2568 -- Start of processing for Eval_Type_Conversion
2570 begin
2571 -- Cannot fold if target type is non-static or if semantic error
2573 if not Is_Static_Subtype (Target_Type) then
2574 Check_Non_Static_Context (Operand);
2575 return;
2577 elsif Error_Posted (N) then
2578 return;
2579 end if;
2581 -- If not foldable we are done
2583 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2585 if not Fold then
2586 return;
2588 -- Don't try fold if target type has constraint error bounds
2590 elsif not Is_OK_Static_Subtype (Target_Type) then
2591 Set_Raises_Constraint_Error (N);
2592 return;
2593 end if;
2595 -- Remaining processing depends on operand types. Note that in the
2596 -- following type test, fixed-point counts as real unless the flag
2597 -- Conversion_OK is set, in which case it counts as integer.
2599 -- Fold conversion, case of string type. The result is not static
2601 if Is_String_Type (Target_Type) then
2602 Fold_Str (N, Strval (Get_String_Val (Operand)), False);
2604 return;
2606 -- Fold conversion, case of integer target type
2608 elsif To_Be_Treated_As_Integer (Target_Type) then
2609 declare
2610 Result : Uint;
2612 begin
2613 -- Integer to integer conversion
2615 if To_Be_Treated_As_Integer (Source_Type) then
2616 Result := Expr_Value (Operand);
2618 -- Real to integer conversion
2620 else
2621 Result := UR_To_Uint (Expr_Value_R (Operand));
2622 end if;
2624 -- If fixed-point type (Conversion_OK must be set), then the
2625 -- result is logically an integer, but we must replace the
2626 -- conversion with the corresponding real literal, since the
2627 -- type from a semantic point of view is still fixed-point.
2629 if Is_Fixed_Point_Type (Target_Type) then
2630 Fold_Ureal
2631 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
2633 -- Otherwise result is integer literal
2635 else
2636 Fold_Uint (N, Result, Stat);
2637 end if;
2638 end;
2640 -- Fold conversion, case of real target type
2642 elsif To_Be_Treated_As_Real (Target_Type) then
2643 declare
2644 Result : Ureal;
2646 begin
2647 if To_Be_Treated_As_Real (Source_Type) then
2648 Result := Expr_Value_R (Operand);
2649 else
2650 Result := UR_From_Uint (Expr_Value (Operand));
2651 end if;
2653 Fold_Ureal (N, Result, Stat);
2654 end;
2656 -- Enumeration types
2658 else
2659 Fold_Uint (N, Expr_Value (Operand), Stat);
2660 end if;
2662 if Is_Out_Of_Range (N, Etype (N)) then
2663 Out_Of_Range (N);
2664 end if;
2666 end Eval_Type_Conversion;
2668 -------------------
2669 -- Eval_Unary_Op --
2670 -------------------
2672 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2673 -- are potentially static if the operand is potentially static (RM 4.9(7))
2675 procedure Eval_Unary_Op (N : Node_Id) is
2676 Right : constant Node_Id := Right_Opnd (N);
2677 Stat : Boolean;
2678 Fold : Boolean;
2680 begin
2681 -- If not foldable we are done
2683 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2685 if not Fold then
2686 return;
2687 end if;
2689 -- Fold for integer case
2691 if Is_Integer_Type (Etype (N)) then
2692 declare
2693 Rint : constant Uint := Expr_Value (Right);
2694 Result : Uint;
2696 begin
2697 -- In the case of modular unary plus and abs there is no need
2698 -- to adjust the result of the operation since if the original
2699 -- operand was in bounds the result will be in the bounds of the
2700 -- modular type. However, in the case of modular unary minus the
2701 -- result may go out of the bounds of the modular type and needs
2702 -- adjustment.
2704 if Nkind (N) = N_Op_Plus then
2705 Result := Rint;
2707 elsif Nkind (N) = N_Op_Minus then
2708 if Is_Modular_Integer_Type (Etype (N)) then
2709 Result := (-Rint) mod Modulus (Etype (N));
2710 else
2711 Result := (-Rint);
2712 end if;
2714 else
2715 pragma Assert (Nkind (N) = N_Op_Abs);
2716 Result := abs Rint;
2717 end if;
2719 Fold_Uint (N, Result, Stat);
2720 end;
2722 -- Fold for real case
2724 elsif Is_Real_Type (Etype (N)) then
2725 declare
2726 Rreal : constant Ureal := Expr_Value_R (Right);
2727 Result : Ureal;
2729 begin
2730 if Nkind (N) = N_Op_Plus then
2731 Result := Rreal;
2733 elsif Nkind (N) = N_Op_Minus then
2734 Result := UR_Negate (Rreal);
2736 else
2737 pragma Assert (Nkind (N) = N_Op_Abs);
2738 Result := abs Rreal;
2739 end if;
2741 Fold_Ureal (N, Result, Stat);
2742 end;
2743 end if;
2744 end Eval_Unary_Op;
2746 -------------------------------
2747 -- Eval_Unchecked_Conversion --
2748 -------------------------------
2750 -- Unchecked conversions can never be static, so the only required
2751 -- processing is to check for a non-static context for the operand.
2753 procedure Eval_Unchecked_Conversion (N : Node_Id) is
2754 begin
2755 Check_Non_Static_Context (Expression (N));
2756 end Eval_Unchecked_Conversion;
2758 --------------------
2759 -- Expr_Rep_Value --
2760 --------------------
2762 function Expr_Rep_Value (N : Node_Id) return Uint is
2763 Kind : constant Node_Kind := Nkind (N);
2764 Ent : Entity_Id;
2766 begin
2767 if Is_Entity_Name (N) then
2768 Ent := Entity (N);
2770 -- An enumeration literal that was either in the source or
2771 -- created as a result of static evaluation.
2773 if Ekind (Ent) = E_Enumeration_Literal then
2774 return Enumeration_Rep (Ent);
2776 -- A user defined static constant
2778 else
2779 pragma Assert (Ekind (Ent) = E_Constant);
2780 return Expr_Rep_Value (Constant_Value (Ent));
2781 end if;
2783 -- An integer literal that was either in the source or created
2784 -- as a result of static evaluation.
2786 elsif Kind = N_Integer_Literal then
2787 return Intval (N);
2789 -- A real literal for a fixed-point type. This must be the fixed-point
2790 -- case, either the literal is of a fixed-point type, or it is a bound
2791 -- of a fixed-point type, with type universal real. In either case we
2792 -- obtain the desired value from Corresponding_Integer_Value.
2794 elsif Kind = N_Real_Literal then
2795 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
2796 return Corresponding_Integer_Value (N);
2798 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2800 elsif Kind = N_Attribute_Reference
2801 and then Attribute_Name (N) = Name_Null_Parameter
2802 then
2803 return Uint_0;
2805 -- Otherwise must be character literal
2807 else
2808 pragma Assert (Kind = N_Character_Literal);
2809 Ent := Entity (N);
2811 -- Since Character literals of type Standard.Character don't
2812 -- have any defining character literals built for them, they
2813 -- do not have their Entity set, so just use their Char
2814 -- code. Otherwise for user-defined character literals use
2815 -- their Pos value as usual which is the same as the Rep value.
2817 if No (Ent) then
2818 return Char_Literal_Value (N);
2819 else
2820 return Enumeration_Rep (Ent);
2821 end if;
2822 end if;
2823 end Expr_Rep_Value;
2825 ----------------
2826 -- Expr_Value --
2827 ----------------
2829 function Expr_Value (N : Node_Id) return Uint is
2830 Kind : constant Node_Kind := Nkind (N);
2831 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
2832 Ent : Entity_Id;
2833 Val : Uint;
2835 begin
2836 -- If already in cache, then we know it's compile time known and
2837 -- we can return the value that was previously stored in the cache
2838 -- since compile time known values cannot change :-)
2840 if CV_Ent.N = N then
2841 return CV_Ent.V;
2842 end if;
2844 -- Otherwise proceed to test value
2846 if Is_Entity_Name (N) then
2847 Ent := Entity (N);
2849 -- An enumeration literal that was either in the source or
2850 -- created as a result of static evaluation.
2852 if Ekind (Ent) = E_Enumeration_Literal then
2853 Val := Enumeration_Pos (Ent);
2855 -- A user defined static constant
2857 else
2858 pragma Assert (Ekind (Ent) = E_Constant);
2859 Val := Expr_Value (Constant_Value (Ent));
2860 end if;
2862 -- An integer literal that was either in the source or created
2863 -- as a result of static evaluation.
2865 elsif Kind = N_Integer_Literal then
2866 Val := Intval (N);
2868 -- A real literal for a fixed-point type. This must be the fixed-point
2869 -- case, either the literal is of a fixed-point type, or it is a bound
2870 -- of a fixed-point type, with type universal real. In either case we
2871 -- obtain the desired value from Corresponding_Integer_Value.
2873 elsif Kind = N_Real_Literal then
2875 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
2876 Val := Corresponding_Integer_Value (N);
2878 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2880 elsif Kind = N_Attribute_Reference
2881 and then Attribute_Name (N) = Name_Null_Parameter
2882 then
2883 Val := Uint_0;
2885 -- Otherwise must be character literal
2887 else
2888 pragma Assert (Kind = N_Character_Literal);
2889 Ent := Entity (N);
2891 -- Since Character literals of type Standard.Character don't
2892 -- have any defining character literals built for them, they
2893 -- do not have their Entity set, so just use their Char
2894 -- code. Otherwise for user-defined character literals use
2895 -- their Pos value as usual.
2897 if No (Ent) then
2898 Val := Char_Literal_Value (N);
2899 else
2900 Val := Enumeration_Pos (Ent);
2901 end if;
2902 end if;
2904 -- Come here with Val set to value to be returned, set cache
2906 CV_Ent.N := N;
2907 CV_Ent.V := Val;
2908 return Val;
2909 end Expr_Value;
2911 ------------------
2912 -- Expr_Value_E --
2913 ------------------
2915 function Expr_Value_E (N : Node_Id) return Entity_Id is
2916 Ent : constant Entity_Id := Entity (N);
2918 begin
2919 if Ekind (Ent) = E_Enumeration_Literal then
2920 return Ent;
2921 else
2922 pragma Assert (Ekind (Ent) = E_Constant);
2923 return Expr_Value_E (Constant_Value (Ent));
2924 end if;
2925 end Expr_Value_E;
2927 ------------------
2928 -- Expr_Value_R --
2929 ------------------
2931 function Expr_Value_R (N : Node_Id) return Ureal is
2932 Kind : constant Node_Kind := Nkind (N);
2933 Ent : Entity_Id;
2934 Expr : Node_Id;
2936 begin
2937 if Kind = N_Real_Literal then
2938 return Realval (N);
2940 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
2941 Ent := Entity (N);
2942 pragma Assert (Ekind (Ent) = E_Constant);
2943 return Expr_Value_R (Constant_Value (Ent));
2945 elsif Kind = N_Integer_Literal then
2946 return UR_From_Uint (Expr_Value (N));
2948 -- Strange case of VAX literals, which are at this stage transformed
2949 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
2950 -- Exp_Vfpt for further details.
2952 elsif Vax_Float (Etype (N))
2953 and then Nkind (N) = N_Unchecked_Type_Conversion
2954 then
2955 Expr := Expression (N);
2957 if Nkind (Expr) = N_Function_Call
2958 and then Present (Parameter_Associations (Expr))
2959 then
2960 Expr := First (Parameter_Associations (Expr));
2962 if Nkind (Expr) = N_Real_Literal then
2963 return Realval (Expr);
2964 end if;
2965 end if;
2967 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
2969 elsif Kind = N_Attribute_Reference
2970 and then Attribute_Name (N) = Name_Null_Parameter
2971 then
2972 return Ureal_0;
2973 end if;
2975 -- If we fall through, we have a node that cannot be interepreted
2976 -- as a compile time constant. That is definitely an error.
2978 raise Program_Error;
2979 end Expr_Value_R;
2981 ------------------
2982 -- Expr_Value_S --
2983 ------------------
2985 function Expr_Value_S (N : Node_Id) return Node_Id is
2986 begin
2987 if Nkind (N) = N_String_Literal then
2988 return N;
2989 else
2990 pragma Assert (Ekind (Entity (N)) = E_Constant);
2991 return Expr_Value_S (Constant_Value (Entity (N)));
2992 end if;
2993 end Expr_Value_S;
2995 --------------------------
2996 -- Flag_Non_Static_Expr --
2997 --------------------------
2999 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3000 begin
3001 if Error_Posted (Expr) and then not All_Errors_Mode then
3002 return;
3003 else
3004 Error_Msg_F (Msg, Expr);
3005 Why_Not_Static (Expr);
3006 end if;
3007 end Flag_Non_Static_Expr;
3009 --------------
3010 -- Fold_Str --
3011 --------------
3013 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
3014 Loc : constant Source_Ptr := Sloc (N);
3015 Typ : constant Entity_Id := Etype (N);
3017 begin
3018 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
3020 -- We now have the literal with the right value, both the actual type
3021 -- and the expected type of this literal are taken from the expression
3022 -- that was evaluated.
3024 Analyze (N);
3025 Set_Is_Static_Expression (N, Static);
3026 Set_Etype (N, Typ);
3027 Resolve (N);
3028 end Fold_Str;
3030 ---------------
3031 -- Fold_Uint --
3032 ---------------
3034 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
3035 Loc : constant Source_Ptr := Sloc (N);
3036 Typ : Entity_Id := Etype (N);
3037 Ent : Entity_Id;
3039 begin
3040 -- If we are folding a named number, retain the entity in the
3041 -- literal, for ASIS use.
3043 if Is_Entity_Name (N)
3044 and then Ekind (Entity (N)) = E_Named_Integer
3045 then
3046 Ent := Entity (N);
3047 else
3048 Ent := Empty;
3049 end if;
3051 if Is_Private_Type (Typ) then
3052 Typ := Full_View (Typ);
3053 end if;
3055 -- For a result of type integer, subsitute an N_Integer_Literal node
3056 -- for the result of the compile time evaluation of the expression.
3058 if Is_Integer_Type (Typ) then
3059 Rewrite (N, Make_Integer_Literal (Loc, Val));
3060 Set_Original_Entity (N, Ent);
3062 -- Otherwise we have an enumeration type, and we substitute either
3063 -- an N_Identifier or N_Character_Literal to represent the enumeration
3064 -- literal corresponding to the given value, which must always be in
3065 -- range, because appropriate tests have already been made for this.
3067 else pragma Assert (Is_Enumeration_Type (Typ));
3068 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3069 end if;
3071 -- We now have the literal with the right value, both the actual type
3072 -- and the expected type of this literal are taken from the expression
3073 -- that was evaluated.
3075 Analyze (N);
3076 Set_Is_Static_Expression (N, Static);
3077 Set_Etype (N, Typ);
3078 Resolve (N);
3079 end Fold_Uint;
3081 ----------------
3082 -- Fold_Ureal --
3083 ----------------
3085 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
3086 Loc : constant Source_Ptr := Sloc (N);
3087 Typ : constant Entity_Id := Etype (N);
3088 Ent : Entity_Id;
3090 begin
3091 -- If we are folding a named number, retain the entity in the
3092 -- literal, for ASIS use.
3094 if Is_Entity_Name (N)
3095 and then Ekind (Entity (N)) = E_Named_Real
3096 then
3097 Ent := Entity (N);
3098 else
3099 Ent := Empty;
3100 end if;
3102 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
3103 Set_Original_Entity (N, Ent);
3105 -- Both the actual and expected type comes from the original expression
3107 Analyze (N);
3108 Set_Is_Static_Expression (N, Static);
3109 Set_Etype (N, Typ);
3110 Resolve (N);
3111 end Fold_Ureal;
3113 ---------------
3114 -- From_Bits --
3115 ---------------
3117 function From_Bits (B : Bits; T : Entity_Id) return Uint is
3118 V : Uint := Uint_0;
3120 begin
3121 for J in 0 .. B'Last loop
3122 if B (J) then
3123 V := V + 2 ** J;
3124 end if;
3125 end loop;
3127 if Non_Binary_Modulus (T) then
3128 V := V mod Modulus (T);
3129 end if;
3131 return V;
3132 end From_Bits;
3134 --------------------
3135 -- Get_String_Val --
3136 --------------------
3138 function Get_String_Val (N : Node_Id) return Node_Id is
3139 begin
3140 if Nkind (N) = N_String_Literal then
3141 return N;
3143 elsif Nkind (N) = N_Character_Literal then
3144 return N;
3146 else
3147 pragma Assert (Is_Entity_Name (N));
3148 return Get_String_Val (Constant_Value (Entity (N)));
3149 end if;
3150 end Get_String_Val;
3152 ----------------
3153 -- Initialize --
3154 ----------------
3156 procedure Initialize is
3157 begin
3158 CV_Cache := (others => (Node_High_Bound, Uint_0));
3159 end Initialize;
3161 --------------------
3162 -- In_Subrange_Of --
3163 --------------------
3165 function In_Subrange_Of
3166 (T1 : Entity_Id;
3167 T2 : Entity_Id;
3168 Fixed_Int : Boolean := False) return Boolean
3170 L1 : Node_Id;
3171 H1 : Node_Id;
3173 L2 : Node_Id;
3174 H2 : Node_Id;
3176 begin
3177 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
3178 return True;
3180 -- Never in range if both types are not scalar. Don't know if this can
3181 -- actually happen, but just in case.
3183 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
3184 return False;
3186 else
3187 L1 := Type_Low_Bound (T1);
3188 H1 := Type_High_Bound (T1);
3190 L2 := Type_Low_Bound (T2);
3191 H2 := Type_High_Bound (T2);
3193 -- Check bounds to see if comparison possible at compile time
3195 if Compile_Time_Compare (L1, L2) in Compare_GE
3196 and then
3197 Compile_Time_Compare (H1, H2) in Compare_LE
3198 then
3199 return True;
3200 end if;
3202 -- If bounds not comparable at compile time, then the bounds of T2
3203 -- must be compile time known or we cannot answer the query.
3205 if not Compile_Time_Known_Value (L2)
3206 or else not Compile_Time_Known_Value (H2)
3207 then
3208 return False;
3209 end if;
3211 -- If the bounds of T1 are know at compile time then use these
3212 -- ones, otherwise use the bounds of the base type (which are of
3213 -- course always static).
3215 if not Compile_Time_Known_Value (L1) then
3216 L1 := Type_Low_Bound (Base_Type (T1));
3217 end if;
3219 if not Compile_Time_Known_Value (H1) then
3220 H1 := Type_High_Bound (Base_Type (T1));
3221 end if;
3223 -- Fixed point types should be considered as such only if
3224 -- flag Fixed_Int is set to False.
3226 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
3227 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
3228 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
3229 then
3230 return
3231 Expr_Value_R (L2) <= Expr_Value_R (L1)
3232 and then
3233 Expr_Value_R (H2) >= Expr_Value_R (H1);
3235 else
3236 return
3237 Expr_Value (L2) <= Expr_Value (L1)
3238 and then
3239 Expr_Value (H2) >= Expr_Value (H1);
3241 end if;
3242 end if;
3244 -- If any exception occurs, it means that we have some bug in the compiler
3245 -- possibly triggered by a previous error, or by some unforseen peculiar
3246 -- occurrence. However, this is only an optimization attempt, so there is
3247 -- really no point in crashing the compiler. Instead we just decide, too
3248 -- bad, we can't figure out the answer in this case after all.
3250 exception
3251 when others =>
3253 -- Debug flag K disables this behavior (useful for debugging)
3255 if Debug_Flag_K then
3256 raise;
3257 else
3258 return False;
3259 end if;
3260 end In_Subrange_Of;
3262 -----------------
3263 -- Is_In_Range --
3264 -----------------
3266 function Is_In_Range
3267 (N : Node_Id;
3268 Typ : Entity_Id;
3269 Fixed_Int : Boolean := False;
3270 Int_Real : Boolean := False) return Boolean
3272 Val : Uint;
3273 Valr : Ureal;
3275 begin
3276 -- Universal types have no range limits, so always in range
3278 if Typ = Universal_Integer or else Typ = Universal_Real then
3279 return True;
3281 -- Never in range if not scalar type. Don't know if this can
3282 -- actually happen, but our spec allows it, so we must check!
3284 elsif not Is_Scalar_Type (Typ) then
3285 return False;
3287 -- Never in range unless we have a compile time known value
3289 elsif not Compile_Time_Known_Value (N) then
3290 return False;
3292 else
3293 declare
3294 Lo : constant Node_Id := Type_Low_Bound (Typ);
3295 Hi : constant Node_Id := Type_High_Bound (Typ);
3296 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3297 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3299 begin
3300 -- Fixed point types should be considered as such only in
3301 -- flag Fixed_Int is set to False.
3303 if Is_Floating_Point_Type (Typ)
3304 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3305 or else Int_Real
3306 then
3307 Valr := Expr_Value_R (N);
3309 if LB_Known and then Valr >= Expr_Value_R (Lo)
3310 and then UB_Known and then Valr <= Expr_Value_R (Hi)
3311 then
3312 return True;
3313 else
3314 return False;
3315 end if;
3317 else
3318 Val := Expr_Value (N);
3320 if LB_Known and then Val >= Expr_Value (Lo)
3321 and then UB_Known and then Val <= Expr_Value (Hi)
3322 then
3323 return True;
3324 else
3325 return False;
3326 end if;
3327 end if;
3328 end;
3329 end if;
3330 end Is_In_Range;
3332 -------------------
3333 -- Is_Null_Range --
3334 -------------------
3336 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3337 Typ : constant Entity_Id := Etype (Lo);
3339 begin
3340 if not Compile_Time_Known_Value (Lo)
3341 or else not Compile_Time_Known_Value (Hi)
3342 then
3343 return False;
3344 end if;
3346 if Is_Discrete_Type (Typ) then
3347 return Expr_Value (Lo) > Expr_Value (Hi);
3349 else
3350 pragma Assert (Is_Real_Type (Typ));
3351 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
3352 end if;
3353 end Is_Null_Range;
3355 -----------------------------
3356 -- Is_OK_Static_Expression --
3357 -----------------------------
3359 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
3360 begin
3361 return Is_Static_Expression (N)
3362 and then not Raises_Constraint_Error (N);
3363 end Is_OK_Static_Expression;
3365 ------------------------
3366 -- Is_OK_Static_Range --
3367 ------------------------
3369 -- A static range is a range whose bounds are static expressions, or a
3370 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3371 -- We have already converted range attribute references, so we get the
3372 -- "or" part of this rule without needing a special test.
3374 function Is_OK_Static_Range (N : Node_Id) return Boolean is
3375 begin
3376 return Is_OK_Static_Expression (Low_Bound (N))
3377 and then Is_OK_Static_Expression (High_Bound (N));
3378 end Is_OK_Static_Range;
3380 --------------------------
3381 -- Is_OK_Static_Subtype --
3382 --------------------------
3384 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3385 -- where neither bound raises constraint error when evaluated.
3387 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
3388 Base_T : constant Entity_Id := Base_Type (Typ);
3389 Anc_Subt : Entity_Id;
3391 begin
3392 -- First a quick check on the non static subtype flag. As described
3393 -- in further detail in Einfo, this flag is not decisive in all cases,
3394 -- but if it is set, then the subtype is definitely non-static.
3396 if Is_Non_Static_Subtype (Typ) then
3397 return False;
3398 end if;
3400 Anc_Subt := Ancestor_Subtype (Typ);
3402 if Anc_Subt = Empty then
3403 Anc_Subt := Base_T;
3404 end if;
3406 if Is_Generic_Type (Root_Type (Base_T))
3407 or else Is_Generic_Actual_Type (Base_T)
3408 then
3409 return False;
3411 -- String types
3413 elsif Is_String_Type (Typ) then
3414 return
3415 Ekind (Typ) = E_String_Literal_Subtype
3416 or else
3417 (Is_OK_Static_Subtype (Component_Type (Typ))
3418 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
3420 -- Scalar types
3422 elsif Is_Scalar_Type (Typ) then
3423 if Base_T = Typ then
3424 return True;
3426 else
3427 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3428 -- use Get_Type_Low,High_Bound.
3430 return Is_OK_Static_Subtype (Anc_Subt)
3431 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
3432 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
3433 end if;
3435 -- Types other than string and scalar types are never static
3437 else
3438 return False;
3439 end if;
3440 end Is_OK_Static_Subtype;
3442 ---------------------
3443 -- Is_Out_Of_Range --
3444 ---------------------
3446 function Is_Out_Of_Range
3447 (N : Node_Id;
3448 Typ : Entity_Id;
3449 Fixed_Int : Boolean := False;
3450 Int_Real : Boolean := False) return Boolean
3452 Val : Uint;
3453 Valr : Ureal;
3455 begin
3456 -- Universal types have no range limits, so always in range
3458 if Typ = Universal_Integer or else Typ = Universal_Real then
3459 return False;
3461 -- Never out of range if not scalar type. Don't know if this can
3462 -- actually happen, but our spec allows it, so we must check!
3464 elsif not Is_Scalar_Type (Typ) then
3465 return False;
3467 -- Never out of range if this is a generic type, since the bounds
3468 -- of generic types are junk. Note that if we only checked for
3469 -- static expressions (instead of compile time known values) below,
3470 -- we would not need this check, because values of a generic type
3471 -- can never be static, but they can be known at compile time.
3473 elsif Is_Generic_Type (Typ) then
3474 return False;
3476 -- Never out of range unless we have a compile time known value
3478 elsif not Compile_Time_Known_Value (N) then
3479 return False;
3481 else
3482 declare
3483 Lo : constant Node_Id := Type_Low_Bound (Typ);
3484 Hi : constant Node_Id := Type_High_Bound (Typ);
3485 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3486 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3488 begin
3489 -- Real types (note that fixed-point types are not treated
3490 -- as being of a real type if the flag Fixed_Int is set,
3491 -- since in that case they are regarded as integer types).
3493 if Is_Floating_Point_Type (Typ)
3494 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3495 or else Int_Real
3496 then
3497 Valr := Expr_Value_R (N);
3499 if LB_Known and then Valr < Expr_Value_R (Lo) then
3500 return True;
3502 elsif UB_Known and then Expr_Value_R (Hi) < Valr then
3503 return True;
3505 else
3506 return False;
3507 end if;
3509 else
3510 Val := Expr_Value (N);
3512 if LB_Known and then Val < Expr_Value (Lo) then
3513 return True;
3515 elsif UB_Known and then Expr_Value (Hi) < Val then
3516 return True;
3518 else
3519 return False;
3520 end if;
3521 end if;
3522 end;
3523 end if;
3524 end Is_Out_Of_Range;
3526 ---------------------
3527 -- Is_Static_Range --
3528 ---------------------
3530 -- A static range is a range whose bounds are static expressions, or a
3531 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3532 -- We have already converted range attribute references, so we get the
3533 -- "or" part of this rule without needing a special test.
3535 function Is_Static_Range (N : Node_Id) return Boolean is
3536 begin
3537 return Is_Static_Expression (Low_Bound (N))
3538 and then Is_Static_Expression (High_Bound (N));
3539 end Is_Static_Range;
3541 -----------------------
3542 -- Is_Static_Subtype --
3543 -----------------------
3545 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3547 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
3548 Base_T : constant Entity_Id := Base_Type (Typ);
3549 Anc_Subt : Entity_Id;
3551 begin
3552 -- First a quick check on the non static subtype flag. As described
3553 -- in further detail in Einfo, this flag is not decisive in all cases,
3554 -- but if it is set, then the subtype is definitely non-static.
3556 if Is_Non_Static_Subtype (Typ) then
3557 return False;
3558 end if;
3560 Anc_Subt := Ancestor_Subtype (Typ);
3562 if Anc_Subt = Empty then
3563 Anc_Subt := Base_T;
3564 end if;
3566 if Is_Generic_Type (Root_Type (Base_T))
3567 or else Is_Generic_Actual_Type (Base_T)
3568 then
3569 return False;
3571 -- String types
3573 elsif Is_String_Type (Typ) then
3574 return
3575 Ekind (Typ) = E_String_Literal_Subtype
3576 or else
3577 (Is_Static_Subtype (Component_Type (Typ))
3578 and then Is_Static_Subtype (Etype (First_Index (Typ))));
3580 -- Scalar types
3582 elsif Is_Scalar_Type (Typ) then
3583 if Base_T = Typ then
3584 return True;
3586 else
3587 return Is_Static_Subtype (Anc_Subt)
3588 and then Is_Static_Expression (Type_Low_Bound (Typ))
3589 and then Is_Static_Expression (Type_High_Bound (Typ));
3590 end if;
3592 -- Types other than string and scalar types are never static
3594 else
3595 return False;
3596 end if;
3597 end Is_Static_Subtype;
3599 --------------------
3600 -- Not_Null_Range --
3601 --------------------
3603 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3604 Typ : constant Entity_Id := Etype (Lo);
3606 begin
3607 if not Compile_Time_Known_Value (Lo)
3608 or else not Compile_Time_Known_Value (Hi)
3609 then
3610 return False;
3611 end if;
3613 if Is_Discrete_Type (Typ) then
3614 return Expr_Value (Lo) <= Expr_Value (Hi);
3616 else
3617 pragma Assert (Is_Real_Type (Typ));
3619 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
3620 end if;
3621 end Not_Null_Range;
3623 -------------
3624 -- OK_Bits --
3625 -------------
3627 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
3628 begin
3629 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3631 if Bits < 500_000 then
3632 return True;
3634 else
3635 Error_Msg_N ("static value too large, capacity exceeded", N);
3636 return False;
3637 end if;
3638 end OK_Bits;
3640 ------------------
3641 -- Out_Of_Range --
3642 ------------------
3644 procedure Out_Of_Range (N : Node_Id) is
3645 begin
3646 -- If we have the static expression case, then this is an illegality
3647 -- in Ada 95 mode, except that in an instance, we never generate an
3648 -- error (if the error is legitimate, it was already diagnosed in
3649 -- the template). The expression to compute the length of a packed
3650 -- array is attached to the array type itself, and deserves a separate
3651 -- message.
3653 if Is_Static_Expression (N)
3654 and then not In_Instance
3655 and then not In_Inlined_Body
3656 and then Ada_Version >= Ada_95
3657 then
3658 if Nkind (Parent (N)) = N_Defining_Identifier
3659 and then Is_Array_Type (Parent (N))
3660 and then Present (Packed_Array_Type (Parent (N)))
3661 and then Present (First_Rep_Item (Parent (N)))
3662 then
3663 Error_Msg_N
3664 ("length of packed array must not exceed Integer''Last",
3665 First_Rep_Item (Parent (N)));
3666 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
3668 else
3669 Apply_Compile_Time_Constraint_Error
3670 (N, "value not in range of}", CE_Range_Check_Failed);
3671 end if;
3673 -- Here we generate a warning for the Ada 83 case, or when we are
3674 -- in an instance, or when we have a non-static expression case.
3676 else
3677 Apply_Compile_Time_Constraint_Error
3678 (N, "value not in range of}?", CE_Range_Check_Failed);
3679 end if;
3680 end Out_Of_Range;
3682 -------------------------
3683 -- Rewrite_In_Raise_CE --
3684 -------------------------
3686 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
3687 Typ : constant Entity_Id := Etype (N);
3689 begin
3690 -- If we want to raise CE in the condition of a raise_CE node
3691 -- we may as well get rid of the condition
3693 if Present (Parent (N))
3694 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
3695 then
3696 Set_Condition (Parent (N), Empty);
3698 -- If the expression raising CE is a N_Raise_CE node, we can use
3699 -- that one. We just preserve the type of the context
3701 elsif Nkind (Exp) = N_Raise_Constraint_Error then
3702 Rewrite (N, Exp);
3703 Set_Etype (N, Typ);
3705 -- We have to build an explicit raise_ce node
3707 else
3708 Rewrite (N,
3709 Make_Raise_Constraint_Error (Sloc (Exp),
3710 Reason => CE_Range_Check_Failed));
3711 Set_Raises_Constraint_Error (N);
3712 Set_Etype (N, Typ);
3713 end if;
3714 end Rewrite_In_Raise_CE;
3716 ---------------------
3717 -- String_Type_Len --
3718 ---------------------
3720 function String_Type_Len (Stype : Entity_Id) return Uint is
3721 NT : constant Entity_Id := Etype (First_Index (Stype));
3722 T : Entity_Id;
3724 begin
3725 if Is_OK_Static_Subtype (NT) then
3726 T := NT;
3727 else
3728 T := Base_Type (NT);
3729 end if;
3731 return Expr_Value (Type_High_Bound (T)) -
3732 Expr_Value (Type_Low_Bound (T)) + 1;
3733 end String_Type_Len;
3735 ------------------------------------
3736 -- Subtypes_Statically_Compatible --
3737 ------------------------------------
3739 function Subtypes_Statically_Compatible
3740 (T1 : Entity_Id;
3741 T2 : Entity_Id) return Boolean
3743 begin
3744 if Is_Scalar_Type (T1) then
3746 -- Definitely compatible if we match
3748 if Subtypes_Statically_Match (T1, T2) then
3749 return True;
3751 -- If either subtype is nonstatic then they're not compatible
3753 elsif not Is_Static_Subtype (T1)
3754 or else not Is_Static_Subtype (T2)
3755 then
3756 return False;
3758 -- If either type has constraint error bounds, then consider that
3759 -- they match to avoid junk cascaded errors here.
3761 elsif not Is_OK_Static_Subtype (T1)
3762 or else not Is_OK_Static_Subtype (T2)
3763 then
3764 return True;
3766 -- Base types must match, but we don't check that (should
3767 -- we???) but we do at least check that both types are
3768 -- real, or both types are not real.
3770 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
3771 return False;
3773 -- Here we check the bounds
3775 else
3776 declare
3777 LB1 : constant Node_Id := Type_Low_Bound (T1);
3778 HB1 : constant Node_Id := Type_High_Bound (T1);
3779 LB2 : constant Node_Id := Type_Low_Bound (T2);
3780 HB2 : constant Node_Id := Type_High_Bound (T2);
3782 begin
3783 if Is_Real_Type (T1) then
3784 return
3785 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
3786 or else
3787 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
3788 and then
3789 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
3791 else
3792 return
3793 (Expr_Value (LB1) > Expr_Value (HB1))
3794 or else
3795 (Expr_Value (LB2) <= Expr_Value (LB1)
3796 and then
3797 Expr_Value (HB1) <= Expr_Value (HB2));
3798 end if;
3799 end;
3800 end if;
3802 elsif Is_Access_Type (T1) then
3803 return not Is_Constrained (T2)
3804 or else Subtypes_Statically_Match
3805 (Designated_Type (T1), Designated_Type (T2));
3807 else
3808 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
3809 or else Subtypes_Statically_Match (T1, T2);
3810 end if;
3811 end Subtypes_Statically_Compatible;
3813 -------------------------------
3814 -- Subtypes_Statically_Match --
3815 -------------------------------
3817 -- Subtypes statically match if they have statically matching constraints
3818 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
3819 -- they are the same identical constraint, or if they are static and the
3820 -- values match (RM 4.9.1(1)).
3822 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
3823 begin
3824 -- A type always statically matches itself
3826 if T1 = T2 then
3827 return True;
3829 -- Scalar types
3831 elsif Is_Scalar_Type (T1) then
3833 -- Base types must be the same
3835 if Base_Type (T1) /= Base_Type (T2) then
3836 return False;
3837 end if;
3839 -- A constrained numeric subtype never matches an unconstrained
3840 -- subtype, i.e. both types must be constrained or unconstrained.
3842 -- To understand the requirement for this test, see RM 4.9.1(1).
3843 -- As is made clear in RM 3.5.4(11), type Integer, for example
3844 -- is a constrained subtype with constraint bounds matching the
3845 -- bounds of its corresponding uncontrained base type. In this
3846 -- situation, Integer and Integer'Base do not statically match,
3847 -- even though they have the same bounds.
3849 -- We only apply this test to types in Standard and types that
3850 -- appear in user programs. That way, we do not have to be
3851 -- too careful about setting Is_Constrained right for itypes.
3853 if Is_Numeric_Type (T1)
3854 and then (Is_Constrained (T1) /= Is_Constrained (T2))
3855 and then (Scope (T1) = Standard_Standard
3856 or else Comes_From_Source (T1))
3857 and then (Scope (T2) = Standard_Standard
3858 or else Comes_From_Source (T2))
3859 then
3860 return False;
3862 -- A generic scalar type does not statically match its base
3863 -- type (AI-311). In this case we make sure that the formals,
3864 -- which are first subtypes of their bases, are constrained.
3866 elsif Is_Generic_Type (T1)
3867 and then Is_Generic_Type (T2)
3868 and then (Is_Constrained (T1) /= Is_Constrained (T2))
3869 then
3870 return False;
3871 end if;
3873 -- If there was an error in either range, then just assume
3874 -- the types statically match to avoid further junk errors
3876 if Error_Posted (Scalar_Range (T1))
3877 or else
3878 Error_Posted (Scalar_Range (T2))
3879 then
3880 return True;
3881 end if;
3883 -- Otherwise both types have bound that can be compared
3885 declare
3886 LB1 : constant Node_Id := Type_Low_Bound (T1);
3887 HB1 : constant Node_Id := Type_High_Bound (T1);
3888 LB2 : constant Node_Id := Type_Low_Bound (T2);
3889 HB2 : constant Node_Id := Type_High_Bound (T2);
3891 begin
3892 -- If the bounds are the same tree node, then match
3894 if LB1 = LB2 and then HB1 = HB2 then
3895 return True;
3897 -- Otherwise bounds must be static and identical value
3899 else
3900 if not Is_Static_Subtype (T1)
3901 or else not Is_Static_Subtype (T2)
3902 then
3903 return False;
3905 -- If either type has constraint error bounds, then say
3906 -- that they match to avoid junk cascaded errors here.
3908 elsif not Is_OK_Static_Subtype (T1)
3909 or else not Is_OK_Static_Subtype (T2)
3910 then
3911 return True;
3913 elsif Is_Real_Type (T1) then
3914 return
3915 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
3916 and then
3917 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
3919 else
3920 return
3921 Expr_Value (LB1) = Expr_Value (LB2)
3922 and then
3923 Expr_Value (HB1) = Expr_Value (HB2);
3924 end if;
3925 end if;
3926 end;
3928 -- Type with discriminants
3930 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
3932 -- Because of view exchanges in multiple instantiations, conformance
3933 -- checking might try to match a partial view of a type with no
3934 -- discriminants with a full view that has defaulted discriminants.
3935 -- In such a case, use the discriminant constraint of the full view,
3936 -- which must exist because we know that the two subtypes have the
3937 -- same base type.
3939 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
3940 if In_Instance then
3941 if Is_Private_Type (T2)
3942 and then Present (Full_View (T2))
3943 and then Has_Discriminants (Full_View (T2))
3944 then
3945 return Subtypes_Statically_Match (T1, Full_View (T2));
3947 elsif Is_Private_Type (T1)
3948 and then Present (Full_View (T1))
3949 and then Has_Discriminants (Full_View (T1))
3950 then
3951 return Subtypes_Statically_Match (Full_View (T1), T2);
3953 else
3954 return False;
3955 end if;
3956 else
3957 return False;
3958 end if;
3959 end if;
3961 declare
3962 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
3963 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
3965 DA1 : Elmt_Id := First_Elmt (DL1);
3966 DA2 : Elmt_Id := First_Elmt (DL2);
3968 begin
3969 if DL1 = DL2 then
3970 return True;
3972 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
3973 return False;
3974 end if;
3976 while Present (DA1) loop
3977 declare
3978 Expr1 : constant Node_Id := Node (DA1);
3979 Expr2 : constant Node_Id := Node (DA2);
3981 begin
3982 if not Is_Static_Expression (Expr1)
3983 or else not Is_Static_Expression (Expr2)
3984 then
3985 return False;
3987 -- If either expression raised a constraint error,
3988 -- consider the expressions as matching, since this
3989 -- helps to prevent cascading errors.
3991 elsif Raises_Constraint_Error (Expr1)
3992 or else Raises_Constraint_Error (Expr2)
3993 then
3994 null;
3996 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
3997 return False;
3998 end if;
3999 end;
4001 Next_Elmt (DA1);
4002 Next_Elmt (DA2);
4003 end loop;
4004 end;
4006 return True;
4008 -- A definite type does not match an indefinite or classwide type
4009 -- However, a generic type with unknown discriminants may be
4010 -- instantiated with a type with no discriminants, and conformance
4011 -- checking on an inherited operation may compare the actual with
4012 -- the subtype that renames it in the instance.
4014 elsif
4015 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4016 then
4017 if Is_Generic_Actual_Type (T1)
4018 and then Etype (T1) = T2
4019 then
4020 return True;
4021 else
4022 return False;
4023 end if;
4025 -- Array type
4027 elsif Is_Array_Type (T1) then
4029 -- If either subtype is unconstrained then both must be,
4030 -- and if both are unconstrained then no further checking
4031 -- is needed.
4033 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4034 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4035 end if;
4037 -- Both subtypes are constrained, so check that the index
4038 -- subtypes statically match.
4040 declare
4041 Index1 : Node_Id := First_Index (T1);
4042 Index2 : Node_Id := First_Index (T2);
4044 begin
4045 while Present (Index1) loop
4046 if not
4047 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4048 then
4049 return False;
4050 end if;
4052 Next_Index (Index1);
4053 Next_Index (Index2);
4054 end loop;
4056 return True;
4057 end;
4059 elsif Is_Access_Type (T1) then
4060 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4061 return False;
4063 elsif Ekind (T1) = E_Access_Subprogram_Type then
4064 return
4065 Subtype_Conformant
4066 (Designated_Type (T1),
4067 Designated_Type (T1));
4068 else
4069 return
4070 Subtypes_Statically_Match
4071 (Designated_Type (T1),
4072 Designated_Type (T2))
4073 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4074 end if;
4076 -- All other types definitely match
4078 else
4079 return True;
4080 end if;
4081 end Subtypes_Statically_Match;
4083 ----------
4084 -- Test --
4085 ----------
4087 function Test (Cond : Boolean) return Uint is
4088 begin
4089 if Cond then
4090 return Uint_1;
4091 else
4092 return Uint_0;
4093 end if;
4094 end Test;
4096 ---------------------------------
4097 -- Test_Expression_Is_Foldable --
4098 ---------------------------------
4100 -- One operand case
4102 procedure Test_Expression_Is_Foldable
4103 (N : Node_Id;
4104 Op1 : Node_Id;
4105 Stat : out Boolean;
4106 Fold : out Boolean)
4108 begin
4109 Stat := False;
4110 Fold := False;
4112 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4113 return;
4114 end if;
4116 -- If operand is Any_Type, just propagate to result and do not
4117 -- try to fold, this prevents cascaded errors.
4119 if Etype (Op1) = Any_Type then
4120 Set_Etype (N, Any_Type);
4121 return;
4123 -- If operand raises constraint error, then replace node N with the
4124 -- raise constraint error node, and we are obviously not foldable.
4125 -- Note that this replacement inherits the Is_Static_Expression flag
4126 -- from the operand.
4128 elsif Raises_Constraint_Error (Op1) then
4129 Rewrite_In_Raise_CE (N, Op1);
4130 return;
4132 -- If the operand is not static, then the result is not static, and
4133 -- all we have to do is to check the operand since it is now known
4134 -- to appear in a non-static context.
4136 elsif not Is_Static_Expression (Op1) then
4137 Check_Non_Static_Context (Op1);
4138 Fold := Compile_Time_Known_Value (Op1);
4139 return;
4141 -- An expression of a formal modular type is not foldable because
4142 -- the modulus is unknown.
4144 elsif Is_Modular_Integer_Type (Etype (Op1))
4145 and then Is_Generic_Type (Etype (Op1))
4146 then
4147 Check_Non_Static_Context (Op1);
4148 return;
4150 -- Here we have the case of an operand whose type is OK, which is
4151 -- static, and which does not raise constraint error, we can fold.
4153 else
4154 Set_Is_Static_Expression (N);
4155 Fold := True;
4156 Stat := True;
4157 end if;
4158 end Test_Expression_Is_Foldable;
4160 -- Two operand case
4162 procedure Test_Expression_Is_Foldable
4163 (N : Node_Id;
4164 Op1 : Node_Id;
4165 Op2 : Node_Id;
4166 Stat : out Boolean;
4167 Fold : out Boolean)
4169 Rstat : constant Boolean := Is_Static_Expression (Op1)
4170 and then Is_Static_Expression (Op2);
4172 begin
4173 Stat := False;
4174 Fold := False;
4176 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4177 return;
4178 end if;
4180 -- If either operand is Any_Type, just propagate to result and
4181 -- do not try to fold, this prevents cascaded errors.
4183 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
4184 Set_Etype (N, Any_Type);
4185 return;
4187 -- If left operand raises constraint error, then replace node N with
4188 -- the raise constraint error node, and we are obviously not foldable.
4189 -- Is_Static_Expression is set from the two operands in the normal way,
4190 -- and we check the right operand if it is in a non-static context.
4192 elsif Raises_Constraint_Error (Op1) then
4193 if not Rstat then
4194 Check_Non_Static_Context (Op2);
4195 end if;
4197 Rewrite_In_Raise_CE (N, Op1);
4198 Set_Is_Static_Expression (N, Rstat);
4199 return;
4201 -- Similar processing for the case of the right operand. Note that
4202 -- we don't use this routine for the short-circuit case, so we do
4203 -- not have to worry about that special case here.
4205 elsif Raises_Constraint_Error (Op2) then
4206 if not Rstat then
4207 Check_Non_Static_Context (Op1);
4208 end if;
4210 Rewrite_In_Raise_CE (N, Op2);
4211 Set_Is_Static_Expression (N, Rstat);
4212 return;
4214 -- Exclude expressions of a generic modular type, as above
4216 elsif Is_Modular_Integer_Type (Etype (Op1))
4217 and then Is_Generic_Type (Etype (Op1))
4218 then
4219 Check_Non_Static_Context (Op1);
4220 return;
4222 -- If result is not static, then check non-static contexts on operands
4223 -- since one of them may be static and the other one may not be static
4225 elsif not Rstat then
4226 Check_Non_Static_Context (Op1);
4227 Check_Non_Static_Context (Op2);
4228 Fold := Compile_Time_Known_Value (Op1)
4229 and then Compile_Time_Known_Value (Op2);
4230 return;
4232 -- Else result is static and foldable. Both operands are static,
4233 -- and neither raises constraint error, so we can definitely fold.
4235 else
4236 Set_Is_Static_Expression (N);
4237 Fold := True;
4238 Stat := True;
4239 return;
4240 end if;
4241 end Test_Expression_Is_Foldable;
4243 --------------
4244 -- To_Bits --
4245 --------------
4247 procedure To_Bits (U : Uint; B : out Bits) is
4248 begin
4249 for J in 0 .. B'Last loop
4250 B (J) := (U / (2 ** J)) mod 2 /= 0;
4251 end loop;
4252 end To_Bits;
4254 --------------------
4255 -- Why_Not_Static --
4256 --------------------
4258 procedure Why_Not_Static (Expr : Node_Id) is
4259 N : constant Node_Id := Original_Node (Expr);
4260 Typ : Entity_Id;
4261 E : Entity_Id;
4263 procedure Why_Not_Static_List (L : List_Id);
4264 -- A version that can be called on a list of expressions. Finds
4265 -- all non-static violations in any element of the list.
4267 -------------------------
4268 -- Why_Not_Static_List --
4269 -------------------------
4271 procedure Why_Not_Static_List (L : List_Id) is
4272 N : Node_Id;
4274 begin
4275 if Is_Non_Empty_List (L) then
4276 N := First (L);
4277 while Present (N) loop
4278 Why_Not_Static (N);
4279 Next (N);
4280 end loop;
4281 end if;
4282 end Why_Not_Static_List;
4284 -- Start of processing for Why_Not_Static
4286 begin
4287 -- If in ACATS mode (debug flag 2), then suppress all these
4288 -- messages, this avoids massive updates to the ACATS base line.
4290 if Debug_Flag_2 then
4291 return;
4292 end if;
4294 -- Ignore call on error or empty node
4296 if No (Expr) or else Nkind (Expr) = N_Error then
4297 return;
4298 end if;
4300 -- Preprocessing for sub expressions
4302 if Nkind (Expr) in N_Subexpr then
4304 -- Nothing to do if expression is static
4306 if Is_OK_Static_Expression (Expr) then
4307 return;
4308 end if;
4310 -- Test for constraint error raised
4312 if Raises_Constraint_Error (Expr) then
4313 Error_Msg_N
4314 ("expression raises exception, cannot be static " &
4315 "('R'M 4.9(34))!", N);
4316 return;
4317 end if;
4319 -- If no type, then something is pretty wrong, so ignore
4321 Typ := Etype (Expr);
4323 if No (Typ) then
4324 return;
4325 end if;
4327 -- Type must be scalar or string type
4329 if not Is_Scalar_Type (Typ)
4330 and then not Is_String_Type (Typ)
4331 then
4332 Error_Msg_N
4333 ("static expression must have scalar or string type " &
4334 "('R'M 4.9(2))!", N);
4335 return;
4336 end if;
4337 end if;
4339 -- If we got through those checks, test particular node kind
4341 case Nkind (N) is
4342 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
4343 E := Entity (N);
4345 if Is_Named_Number (E) then
4346 null;
4348 elsif Ekind (E) = E_Constant then
4349 if not Is_Static_Expression (Constant_Value (E)) then
4350 Error_Msg_NE
4351 ("& is not a static constant ('R'M 4.9(5))!", N, E);
4352 end if;
4354 else
4355 Error_Msg_NE
4356 ("& is not static constant or named number " &
4357 "('R'M 4.9(5))!", N, E);
4358 end if;
4360 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
4361 if Nkind (N) in N_Op_Shift then
4362 Error_Msg_N
4363 ("shift functions are never static ('R'M 4.9(6,18))!", N);
4365 else
4366 Why_Not_Static (Left_Opnd (N));
4367 Why_Not_Static (Right_Opnd (N));
4368 end if;
4370 when N_Unary_Op =>
4371 Why_Not_Static (Right_Opnd (N));
4373 when N_Attribute_Reference =>
4374 Why_Not_Static_List (Expressions (N));
4376 E := Etype (Prefix (N));
4378 if E = Standard_Void_Type then
4379 return;
4380 end if;
4382 -- Special case non-scalar'Size since this is a common error
4384 if Attribute_Name (N) = Name_Size then
4385 Error_Msg_N
4386 ("size attribute is only static for scalar type " &
4387 "('R'M 4.9(7,8))", N);
4389 -- Flag array cases
4391 elsif Is_Array_Type (E) then
4392 if Attribute_Name (N) /= Name_First
4393 and then
4394 Attribute_Name (N) /= Name_Last
4395 and then
4396 Attribute_Name (N) /= Name_Length
4397 then
4398 Error_Msg_N
4399 ("static array attribute must be Length, First, or Last " &
4400 "('R'M 4.9(8))!", N);
4402 -- Since we know the expression is not-static (we already
4403 -- tested for this, must mean array is not static).
4405 else
4406 Error_Msg_N
4407 ("prefix is non-static array ('R'M 4.9(8))!", Prefix (N));
4408 end if;
4410 return;
4412 -- Special case generic types, since again this is a common
4413 -- source of confusion.
4415 elsif Is_Generic_Actual_Type (E)
4416 or else
4417 Is_Generic_Type (E)
4418 then
4419 Error_Msg_N
4420 ("attribute of generic type is never static " &
4421 "('R'M 4.9(7,8))!", N);
4423 elsif Is_Static_Subtype (E) then
4424 null;
4426 elsif Is_Scalar_Type (E) then
4427 Error_Msg_N
4428 ("prefix type for attribute is not static scalar subtype " &
4429 "('R'M 4.9(7))!", N);
4431 else
4432 Error_Msg_N
4433 ("static attribute must apply to array/scalar type " &
4434 "('R'M 4.9(7,8))!", N);
4435 end if;
4437 when N_String_Literal =>
4438 Error_Msg_N
4439 ("subtype of string literal is non-static ('R'M 4.9(4))!", N);
4441 when N_Explicit_Dereference =>
4442 Error_Msg_N
4443 ("explicit dereference is never static ('R'M 4.9)!", N);
4445 when N_Function_Call =>
4446 Why_Not_Static_List (Parameter_Associations (N));
4447 Error_Msg_N ("non-static function call ('R'M 4.9(6,18))!", N);
4449 when N_Parameter_Association =>
4450 Why_Not_Static (Explicit_Actual_Parameter (N));
4452 when N_Indexed_Component =>
4453 Error_Msg_N
4454 ("indexed component is never static ('R'M 4.9)!", N);
4456 when N_Procedure_Call_Statement =>
4457 Error_Msg_N
4458 ("procedure call is never static ('R'M 4.9)!", N);
4460 when N_Qualified_Expression =>
4461 Why_Not_Static (Expression (N));
4463 when N_Aggregate | N_Extension_Aggregate =>
4464 Error_Msg_N
4465 ("an aggregate is never static ('R'M 4.9)!", N);
4467 when N_Range =>
4468 Why_Not_Static (Low_Bound (N));
4469 Why_Not_Static (High_Bound (N));
4471 when N_Range_Constraint =>
4472 Why_Not_Static (Range_Expression (N));
4474 when N_Subtype_Indication =>
4475 Why_Not_Static (Constraint (N));
4477 when N_Selected_Component =>
4478 Error_Msg_N
4479 ("selected component is never static ('R'M 4.9)!", N);
4481 when N_Slice =>
4482 Error_Msg_N
4483 ("slice is never static ('R'M 4.9)!", N);
4485 when N_Type_Conversion =>
4486 Why_Not_Static (Expression (N));
4488 if not Is_Scalar_Type (Etype (Prefix (N)))
4489 or else not Is_Static_Subtype (Etype (Prefix (N)))
4490 then
4491 Error_Msg_N
4492 ("static conversion requires static scalar subtype result " &
4493 "('R'M 4.9(9))!", N);
4494 end if;
4496 when N_Unchecked_Type_Conversion =>
4497 Error_Msg_N
4498 ("unchecked type conversion is never static ('R'M 4.9)!", N);
4500 when others =>
4501 null;
4503 end case;
4504 end Why_Not_Static;
4506 end Sem_Eval;