2005-12-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / ada / exp_ch5.adb
blobf28d87d33d53420cb465cfb3310a67ab3afef2d7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Dbug; use Exp_Dbug;
35 with Exp_Pakd; use Exp_Pakd;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Hostparm; use Hostparm;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Rtsfind; use Rtsfind;
45 with Sinfo; use Sinfo;
46 with Sem; use Sem;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch5; use Sem_Ch5;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Ch13; use Sem_Ch13;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_Util; use Sem_Util;
54 with Snames; use Snames;
55 with Stand; use Stand;
56 with Stringt; use Stringt;
57 with Tbuild; use Tbuild;
58 with Ttypes; use Ttypes;
59 with Uintp; use Uintp;
60 with Validsw; use Validsw;
62 package body Exp_Ch5 is
64 function Change_Of_Representation (N : Node_Id) return Boolean;
65 -- Determine if the right hand side of the assignment N is a type
66 -- conversion which requires a change of representation. Called
67 -- only for the array and record cases.
69 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
70 -- N is an assignment which assigns an array value. This routine process
71 -- the various special cases and checks required for such assignments,
72 -- including change of representation. Rhs is normally simply the right
73 -- hand side of the assignment, except that if the right hand side is
74 -- a type conversion or a qualified expression, then the Rhs is the
75 -- actual expression inside any such type conversions or qualifications.
77 function Expand_Assign_Array_Loop
78 (N : Node_Id;
79 Larray : Entity_Id;
80 Rarray : Entity_Id;
81 L_Type : Entity_Id;
82 R_Type : Entity_Id;
83 Ndim : Pos;
84 Rev : Boolean) return Node_Id;
85 -- N is an assignment statement which assigns an array value. This routine
86 -- expands the assignment into a loop (or nested loops for the case of a
87 -- multi-dimensional array) to do the assignment component by component.
88 -- Larray and Rarray are the entities of the actual arrays on the left
89 -- hand and right hand sides. L_Type and R_Type are the types of these
90 -- arrays (which may not be the same, due to either sliding, or to a
91 -- change of representation case). Ndim is the number of dimensions and
92 -- the parameter Rev indicates if the loops run normally (Rev = False),
93 -- or reversed (Rev = True). The value returned is the constructed
94 -- loop statement. Auxiliary declarations are inserted before node N
95 -- using the standard Insert_Actions mechanism.
97 procedure Expand_Assign_Record (N : Node_Id);
98 -- N is an assignment of a non-tagged record value. This routine handles
99 -- the case where the assignment must be made component by component,
100 -- either because the target is not byte aligned, or there is a change
101 -- of representation.
103 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
104 -- Generate the necessary code for controlled and tagged assignment,
105 -- that is to say, finalization of the target before, adjustement of
106 -- the target after and save and restore of the tag and finalization
107 -- pointers which are not 'part of the value' and must not be changed
108 -- upon assignment. N is the original Assignment node.
110 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean;
111 -- This function is used in processing the assignment of a record or
112 -- indexed component. The argument N is either the left hand or right
113 -- hand side of an assignment, and this function determines if there
114 -- is a record component reference where the record may be bit aligned
115 -- in a manner that causes trouble for the back end (see description
116 -- of Exp_Util.Component_May_Be_Bit_Aligned for further details).
118 ------------------------------
119 -- Change_Of_Representation --
120 ------------------------------
122 function Change_Of_Representation (N : Node_Id) return Boolean is
123 Rhs : constant Node_Id := Expression (N);
124 begin
125 return
126 Nkind (Rhs) = N_Type_Conversion
127 and then
128 not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
129 end Change_Of_Representation;
131 -------------------------
132 -- Expand_Assign_Array --
133 -------------------------
135 -- There are two issues here. First, do we let Gigi do a block move, or
136 -- do we expand out into a loop? Second, we need to set the two flags
137 -- Forwards_OK and Backwards_OK which show whether the block move (or
138 -- corresponding loops) can be legitimately done in a forwards (low to
139 -- high) or backwards (high to low) manner.
141 procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
142 Loc : constant Source_Ptr := Sloc (N);
144 Lhs : constant Node_Id := Name (N);
146 Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
147 Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
149 L_Type : constant Entity_Id :=
150 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
151 R_Type : Entity_Id :=
152 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
154 L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
155 R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
157 Crep : constant Boolean := Change_Of_Representation (N);
159 Larray : Node_Id;
160 Rarray : Node_Id;
162 Ndim : constant Pos := Number_Dimensions (L_Type);
164 Loop_Required : Boolean := False;
165 -- This switch is set to True if the array move must be done using
166 -- an explicit front end generated loop.
168 procedure Apply_Dereference (Arg : in out Node_Id);
169 -- If the argument is an access to an array, and the assignment is
170 -- converted into a procedure call, apply explicit dereference.
172 function Has_Address_Clause (Exp : Node_Id) return Boolean;
173 -- Test if Exp is a reference to an array whose declaration has
174 -- an address clause, or it is a slice of such an array.
176 function Is_Formal_Array (Exp : Node_Id) return Boolean;
177 -- Test if Exp is a reference to an array which is either a formal
178 -- parameter or a slice of a formal parameter. These are the cases
179 -- where hidden aliasing can occur.
181 function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
182 -- Determine if Exp is a reference to an array variable which is other
183 -- than an object defined in the current scope, or a slice of such
184 -- an object. Such objects can be aliased to parameters (unlike local
185 -- array references).
187 -----------------------
188 -- Apply_Dereference --
189 -----------------------
191 procedure Apply_Dereference (Arg : in out Node_Id) is
192 Typ : constant Entity_Id := Etype (Arg);
193 begin
194 if Is_Access_Type (Typ) then
195 Rewrite (Arg, Make_Explicit_Dereference (Loc,
196 Prefix => Relocate_Node (Arg)));
197 Analyze_And_Resolve (Arg, Designated_Type (Typ));
198 end if;
199 end Apply_Dereference;
201 ------------------------
202 -- Has_Address_Clause --
203 ------------------------
205 function Has_Address_Clause (Exp : Node_Id) return Boolean is
206 begin
207 return
208 (Is_Entity_Name (Exp) and then
209 Present (Address_Clause (Entity (Exp))))
210 or else
211 (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
212 end Has_Address_Clause;
214 ---------------------
215 -- Is_Formal_Array --
216 ---------------------
218 function Is_Formal_Array (Exp : Node_Id) return Boolean is
219 begin
220 return
221 (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
222 or else
223 (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
224 end Is_Formal_Array;
226 ------------------------
227 -- Is_Non_Local_Array --
228 ------------------------
230 function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
231 begin
232 return (Is_Entity_Name (Exp)
233 and then Scope (Entity (Exp)) /= Current_Scope)
234 or else (Nkind (Exp) = N_Slice
235 and then Is_Non_Local_Array (Prefix (Exp)));
236 end Is_Non_Local_Array;
238 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
240 Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
241 Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
243 Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
244 Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
246 -- Start of processing for Expand_Assign_Array
248 begin
249 -- Deal with length check, note that the length check is done with
250 -- respect to the right hand side as given, not a possible underlying
251 -- renamed object, since this would generate incorrect extra checks.
253 Apply_Length_Check (Rhs, L_Type);
255 -- We start by assuming that the move can be done in either
256 -- direction, i.e. that the two sides are completely disjoint.
258 Set_Forwards_OK (N, True);
259 Set_Backwards_OK (N, True);
261 -- Normally it is only the slice case that can lead to overlap,
262 -- and explicit checks for slices are made below. But there is
263 -- one case where the slice can be implicit and invisible to us
264 -- and that is the case where we have a one dimensional array,
265 -- and either both operands are parameters, or one is a parameter
266 -- and the other is a global variable. In this case the parameter
267 -- could be a slice that overlaps with the other parameter.
269 -- Check for the case of slices requiring an explicit loop. Normally
270 -- it is only the explicit slice cases that bother us, but in the
271 -- case of one dimensional arrays, parameters can be slices that
272 -- are passed by reference, so we can have aliasing for assignments
273 -- from one parameter to another, or assignments between parameters
274 -- and nonlocal variables. However, if the array subtype is a
275 -- constrained first subtype in the parameter case, then we don't
276 -- have to worry about overlap, since slice assignments aren't
277 -- possible (other than for a slice denoting the whole array).
279 -- Note: overlap is never possible if there is a change of
280 -- representation, so we can exclude this case.
282 if Ndim = 1
283 and then not Crep
284 and then
285 ((Lhs_Formal and Rhs_Formal)
286 or else
287 (Lhs_Formal and Rhs_Non_Local_Var)
288 or else
289 (Rhs_Formal and Lhs_Non_Local_Var))
290 and then
291 (not Is_Constrained (Etype (Lhs))
292 or else not Is_First_Subtype (Etype (Lhs)))
294 -- In the case of compiling for the Java Virtual Machine,
295 -- slices are always passed by making a copy, so we don't
296 -- have to worry about overlap. We also want to prevent
297 -- generation of "<" comparisons for array addresses,
298 -- since that's a meaningless operation on the JVM.
300 and then not Java_VM
301 then
302 Set_Forwards_OK (N, False);
303 Set_Backwards_OK (N, False);
305 -- Note: the bit-packed case is not worrisome here, since if
306 -- we have a slice passed as a parameter, it is always aligned
307 -- on a byte boundary, and if there are no explicit slices, the
308 -- assignment can be performed directly.
309 end if;
311 -- We certainly must use a loop for change of representation
312 -- and also we use the operand of the conversion on the right
313 -- hand side as the effective right hand side (the component
314 -- types must match in this situation).
316 if Crep then
317 Act_Rhs := Get_Referenced_Object (Rhs);
318 R_Type := Get_Actual_Subtype (Act_Rhs);
319 Loop_Required := True;
321 -- We require a loop if the left side is possibly bit unaligned
323 elsif Possible_Bit_Aligned_Component (Lhs)
324 or else
325 Possible_Bit_Aligned_Component (Rhs)
326 then
327 Loop_Required := True;
329 -- Arrays with controlled components are expanded into a loop
330 -- to force calls to adjust at the component level.
332 elsif Has_Controlled_Component (L_Type) then
333 Loop_Required := True;
335 -- If object is atomic, we cannot tolerate a loop
337 elsif Is_Atomic_Object (Act_Lhs)
338 or else
339 Is_Atomic_Object (Act_Rhs)
340 then
341 return;
343 -- Loop is required if we have atomic components since we have to
344 -- be sure to do any accesses on an element by element basis.
346 elsif Has_Atomic_Components (L_Type)
347 or else Has_Atomic_Components (R_Type)
348 or else Is_Atomic (Component_Type (L_Type))
349 or else Is_Atomic (Component_Type (R_Type))
350 then
351 Loop_Required := True;
353 -- Case where no slice is involved
355 elsif not L_Slice and not R_Slice then
357 -- The following code deals with the case of unconstrained bit
358 -- packed arrays. The problem is that the template for such
359 -- arrays contains the bounds of the actual source level array,
361 -- But the copy of an entire array requires the bounds of the
362 -- underlying array. It would be nice if the back end could take
363 -- care of this, but right now it does not know how, so if we
364 -- have such a type, then we expand out into a loop, which is
365 -- inefficient but works correctly. If we don't do this, we
366 -- get the wrong length computed for the array to be moved.
367 -- The two cases we need to worry about are:
369 -- Explicit deference of an unconstrained packed array type as
370 -- in the following example:
372 -- procedure C52 is
373 -- type BITS is array(INTEGER range <>) of BOOLEAN;
374 -- pragma PACK(BITS);
375 -- type A is access BITS;
376 -- P1,P2 : A;
377 -- begin
378 -- P1 := new BITS (1 .. 65_535);
379 -- P2 := new BITS (1 .. 65_535);
380 -- P2.ALL := P1.ALL;
381 -- end C52;
383 -- A formal parameter reference with an unconstrained bit
384 -- array type is the other case we need to worry about (here
385 -- we assume the same BITS type declared above:
387 -- procedure Write_All (File : out BITS; Contents : in BITS);
388 -- begin
389 -- File.Storage := Contents;
390 -- end Write_All;
392 -- We expand to a loop in either of these two cases
394 -- Question for future thought. Another potentially more efficient
395 -- approach would be to create the actual subtype, and then do an
396 -- unchecked conversion to this actual subtype ???
398 Check_Unconstrained_Bit_Packed_Array : declare
400 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
401 -- Function to perform required test for the first case,
402 -- above (dereference of an unconstrained bit packed array)
404 -----------------------
405 -- Is_UBPA_Reference --
406 -----------------------
408 function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
409 Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
410 P_Type : Entity_Id;
411 Des_Type : Entity_Id;
413 begin
414 if Present (Packed_Array_Type (Typ))
415 and then Is_Array_Type (Packed_Array_Type (Typ))
416 and then not Is_Constrained (Packed_Array_Type (Typ))
417 then
418 return True;
420 elsif Nkind (Opnd) = N_Explicit_Dereference then
421 P_Type := Underlying_Type (Etype (Prefix (Opnd)));
423 if not Is_Access_Type (P_Type) then
424 return False;
426 else
427 Des_Type := Designated_Type (P_Type);
428 return
429 Is_Bit_Packed_Array (Des_Type)
430 and then not Is_Constrained (Des_Type);
431 end if;
433 else
434 return False;
435 end if;
436 end Is_UBPA_Reference;
438 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
440 begin
441 if Is_UBPA_Reference (Lhs)
442 or else
443 Is_UBPA_Reference (Rhs)
444 then
445 Loop_Required := True;
447 -- Here if we do not have the case of a reference to a bit
448 -- packed unconstrained array case. In this case gigi can
449 -- most certainly handle the assignment if a forwards move
450 -- is allowed.
452 -- (could it handle the backwards case also???)
454 elsif Forwards_OK (N) then
455 return;
456 end if;
457 end Check_Unconstrained_Bit_Packed_Array;
459 -- The back end can always handle the assignment if the right side is a
460 -- string literal (note that overlap is definitely impossible in this
461 -- case). If the type is packed, a string literal is always converted
462 -- into aggregate, except in the case of a null slice, for which no
463 -- aggregate can be written. In that case, rewrite the assignment as a
464 -- null statement, a length check has already been emitted to verify
465 -- that the range of the left-hand side is empty.
467 -- Note that this code is not executed if we had an assignment of
468 -- a string literal to a non-bit aligned component of a record, a
469 -- case which cannot be handled by the backend
471 elsif Nkind (Rhs) = N_String_Literal then
472 if String_Length (Strval (Rhs)) = 0
473 and then Is_Bit_Packed_Array (L_Type)
474 then
475 Rewrite (N, Make_Null_Statement (Loc));
476 Analyze (N);
477 end if;
479 return;
481 -- If either operand is bit packed, then we need a loop, since we
482 -- can't be sure that the slice is byte aligned. Similarly, if either
483 -- operand is a possibly unaligned slice, then we need a loop (since
484 -- the back end cannot handle unaligned slices).
486 elsif Is_Bit_Packed_Array (L_Type)
487 or else Is_Bit_Packed_Array (R_Type)
488 or else Is_Possibly_Unaligned_Slice (Lhs)
489 or else Is_Possibly_Unaligned_Slice (Rhs)
490 then
491 Loop_Required := True;
493 -- If we are not bit-packed, and we have only one slice, then no
494 -- overlap is possible except in the parameter case, so we can let
495 -- the back end handle things.
497 elsif not (L_Slice and R_Slice) then
498 if Forwards_OK (N) then
499 return;
500 end if;
501 end if;
503 -- If the right-hand side is a string literal, introduce a temporary
504 -- for it, for use in the generated loop that will follow.
506 if Nkind (Rhs) = N_String_Literal then
507 declare
508 Temp : constant Entity_Id :=
509 Make_Defining_Identifier (Loc, Name_T);
510 Decl : Node_Id;
512 begin
513 Decl :=
514 Make_Object_Declaration (Loc,
515 Defining_Identifier => Temp,
516 Object_Definition => New_Occurrence_Of (L_Type, Loc),
517 Expression => Relocate_Node (Rhs));
519 Insert_Action (N, Decl);
520 Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
521 R_Type := Etype (Temp);
522 end;
523 end if;
525 -- Come here to complete the analysis
527 -- Loop_Required: Set to True if we know that a loop is required
528 -- regardless of overlap considerations.
530 -- Forwards_OK: Set to False if we already know that a forwards
531 -- move is not safe, else set to True.
533 -- Backwards_OK: Set to False if we already know that a backwards
534 -- move is not safe, else set to True
536 -- Our task at this stage is to complete the overlap analysis, which
537 -- can result in possibly setting Forwards_OK or Backwards_OK to
538 -- False, and then generating the final code, either by deciding
539 -- that it is OK after all to let Gigi handle it, or by generating
540 -- appropriate code in the front end.
542 declare
543 L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
544 R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
546 Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
547 Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
548 Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
549 Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
551 Act_L_Array : Node_Id;
552 Act_R_Array : Node_Id;
554 Cleft_Lo : Node_Id;
555 Cright_Lo : Node_Id;
556 Condition : Node_Id;
558 Cresult : Compare_Result;
560 begin
561 -- Get the expressions for the arrays. If we are dealing with a
562 -- private type, then convert to the underlying type. We can do
563 -- direct assignments to an array that is a private type, but
564 -- we cannot assign to elements of the array without this extra
565 -- unchecked conversion.
567 if Nkind (Act_Lhs) = N_Slice then
568 Larray := Prefix (Act_Lhs);
569 else
570 Larray := Act_Lhs;
572 if Is_Private_Type (Etype (Larray)) then
573 Larray :=
574 Unchecked_Convert_To
575 (Underlying_Type (Etype (Larray)), Larray);
576 end if;
577 end if;
579 if Nkind (Act_Rhs) = N_Slice then
580 Rarray := Prefix (Act_Rhs);
581 else
582 Rarray := Act_Rhs;
584 if Is_Private_Type (Etype (Rarray)) then
585 Rarray :=
586 Unchecked_Convert_To
587 (Underlying_Type (Etype (Rarray)), Rarray);
588 end if;
589 end if;
591 -- If both sides are slices, we must figure out whether
592 -- it is safe to do the move in one direction or the other
593 -- It is always safe if there is a change of representation
594 -- since obviously two arrays with different representations
595 -- cannot possibly overlap.
597 if (not Crep) and L_Slice and R_Slice then
598 Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
599 Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
601 -- If both left and right hand arrays are entity names, and
602 -- refer to different entities, then we know that the move
603 -- is safe (the two storage areas are completely disjoint).
605 if Is_Entity_Name (Act_L_Array)
606 and then Is_Entity_Name (Act_R_Array)
607 and then Entity (Act_L_Array) /= Entity (Act_R_Array)
608 then
609 null;
611 -- Otherwise, we assume the worst, which is that the two
612 -- arrays are the same array. There is no need to check if
613 -- we know that is the case, because if we don't know it,
614 -- we still have to assume it!
616 -- Generally if the same array is involved, then we have
617 -- an overlapping case. We will have to really assume the
618 -- worst (i.e. set neither of the OK flags) unless we can
619 -- determine the lower or upper bounds at compile time and
620 -- compare them.
622 else
623 Cresult := Compile_Time_Compare (Left_Lo, Right_Lo);
625 if Cresult = Unknown then
626 Cresult := Compile_Time_Compare (Left_Hi, Right_Hi);
627 end if;
629 case Cresult is
630 when LT | LE | EQ => Set_Backwards_OK (N, False);
631 when GT | GE => Set_Forwards_OK (N, False);
632 when NE | Unknown => Set_Backwards_OK (N, False);
633 Set_Forwards_OK (N, False);
634 end case;
635 end if;
636 end if;
638 -- If after that analysis, Forwards_OK is still True, and
639 -- Loop_Required is False, meaning that we have not discovered
640 -- some non-overlap reason for requiring a loop, then we can
641 -- still let gigi handle it.
643 if not Loop_Required then
644 if Forwards_OK (N) then
645 return;
646 else
647 null;
648 -- Here is where a memmove would be appropriate ???
649 end if;
650 end if;
652 -- At this stage we have to generate an explicit loop, and
653 -- we have the following cases:
655 -- Forwards_OK = True
657 -- Rnn : right_index := right_index'First;
658 -- for Lnn in left-index loop
659 -- left (Lnn) := right (Rnn);
660 -- Rnn := right_index'Succ (Rnn);
661 -- end loop;
663 -- Note: the above code MUST be analyzed with checks off,
664 -- because otherwise the Succ could overflow. But in any
665 -- case this is more efficient!
667 -- Forwards_OK = False, Backwards_OK = True
669 -- Rnn : right_index := right_index'Last;
670 -- for Lnn in reverse left-index loop
671 -- left (Lnn) := right (Rnn);
672 -- Rnn := right_index'Pred (Rnn);
673 -- end loop;
675 -- Note: the above code MUST be analyzed with checks off,
676 -- because otherwise the Pred could overflow. But in any
677 -- case this is more efficient!
679 -- Forwards_OK = Backwards_OK = False
681 -- This only happens if we have the same array on each side. It is
682 -- possible to create situations using overlays that violate this,
683 -- but we simply do not promise to get this "right" in this case.
685 -- There are two possible subcases. If the No_Implicit_Conditionals
686 -- restriction is set, then we generate the following code:
688 -- declare
689 -- T : constant <operand-type> := rhs;
690 -- begin
691 -- lhs := T;
692 -- end;
694 -- If implicit conditionals are permitted, then we generate:
696 -- if Left_Lo <= Right_Lo then
697 -- <code for Forwards_OK = True above>
698 -- else
699 -- <code for Backwards_OK = True above>
700 -- end if;
702 -- Cases where either Forwards_OK or Backwards_OK is true
704 if Forwards_OK (N) or else Backwards_OK (N) then
705 if Controlled_Type (Component_Type (L_Type))
706 and then Base_Type (L_Type) = Base_Type (R_Type)
707 and then Ndim = 1
708 and then not No_Ctrl_Actions (N)
709 then
710 declare
711 Proc : constant Entity_Id :=
712 TSS (Base_Type (L_Type), TSS_Slice_Assign);
713 Actuals : List_Id;
715 begin
716 Apply_Dereference (Larray);
717 Apply_Dereference (Rarray);
718 Actuals := New_List (
719 Duplicate_Subexpr (Larray, Name_Req => True),
720 Duplicate_Subexpr (Rarray, Name_Req => True),
721 Duplicate_Subexpr (Left_Lo, Name_Req => True),
722 Duplicate_Subexpr (Left_Hi, Name_Req => True),
723 Duplicate_Subexpr (Right_Lo, Name_Req => True),
724 Duplicate_Subexpr (Right_Hi, Name_Req => True));
726 Append_To (Actuals,
727 New_Occurrence_Of (
728 Boolean_Literals (not Forwards_OK (N)), Loc));
730 Rewrite (N,
731 Make_Procedure_Call_Statement (Loc,
732 Name => New_Reference_To (Proc, Loc),
733 Parameter_Associations => Actuals));
734 end;
736 else
737 Rewrite (N,
738 Expand_Assign_Array_Loop
739 (N, Larray, Rarray, L_Type, R_Type, Ndim,
740 Rev => not Forwards_OK (N)));
741 end if;
743 -- Case of both are false with No_Implicit_Conditionals
745 elsif Restriction_Active (No_Implicit_Conditionals) then
746 declare
747 T : constant Entity_Id :=
748 Make_Defining_Identifier (Loc, Chars => Name_T);
750 begin
751 Rewrite (N,
752 Make_Block_Statement (Loc,
753 Declarations => New_List (
754 Make_Object_Declaration (Loc,
755 Defining_Identifier => T,
756 Constant_Present => True,
757 Object_Definition =>
758 New_Occurrence_Of (Etype (Rhs), Loc),
759 Expression => Relocate_Node (Rhs))),
761 Handled_Statement_Sequence =>
762 Make_Handled_Sequence_Of_Statements (Loc,
763 Statements => New_List (
764 Make_Assignment_Statement (Loc,
765 Name => Relocate_Node (Lhs),
766 Expression => New_Occurrence_Of (T, Loc))))));
767 end;
769 -- Case of both are false with implicit conditionals allowed
771 else
772 -- Before we generate this code, we must ensure that the
773 -- left and right side array types are defined. They may
774 -- be itypes, and we cannot let them be defined inside the
775 -- if, since the first use in the then may not be executed.
777 Ensure_Defined (L_Type, N);
778 Ensure_Defined (R_Type, N);
780 -- We normally compare addresses to find out which way round
781 -- to do the loop, since this is realiable, and handles the
782 -- cases of parameters, conversions etc. But we can't do that
783 -- in the bit packed case or the Java VM case, because addresses
784 -- don't work there.
786 if not Is_Bit_Packed_Array (L_Type) and then not Java_VM then
787 Condition :=
788 Make_Op_Le (Loc,
789 Left_Opnd =>
790 Unchecked_Convert_To (RTE (RE_Integer_Address),
791 Make_Attribute_Reference (Loc,
792 Prefix =>
793 Make_Indexed_Component (Loc,
794 Prefix =>
795 Duplicate_Subexpr_Move_Checks (Larray, True),
796 Expressions => New_List (
797 Make_Attribute_Reference (Loc,
798 Prefix =>
799 New_Reference_To
800 (L_Index_Typ, Loc),
801 Attribute_Name => Name_First))),
802 Attribute_Name => Name_Address)),
804 Right_Opnd =>
805 Unchecked_Convert_To (RTE (RE_Integer_Address),
806 Make_Attribute_Reference (Loc,
807 Prefix =>
808 Make_Indexed_Component (Loc,
809 Prefix =>
810 Duplicate_Subexpr_Move_Checks (Rarray, True),
811 Expressions => New_List (
812 Make_Attribute_Reference (Loc,
813 Prefix =>
814 New_Reference_To
815 (R_Index_Typ, Loc),
816 Attribute_Name => Name_First))),
817 Attribute_Name => Name_Address)));
819 -- For the bit packed and Java VM cases we use the bounds.
820 -- That's OK, because we don't have to worry about parameters,
821 -- since they cannot cause overlap. Perhaps we should worry
822 -- about weird slice conversions ???
824 else
825 -- Copy the bounds and reset the Analyzed flag, because the
826 -- bounds of the index type itself may be universal, and must
827 -- must be reaanalyzed to acquire the proper type for Gigi.
829 Cleft_Lo := New_Copy_Tree (Left_Lo);
830 Cright_Lo := New_Copy_Tree (Right_Lo);
831 Set_Analyzed (Cleft_Lo, False);
832 Set_Analyzed (Cright_Lo, False);
834 Condition :=
835 Make_Op_Le (Loc,
836 Left_Opnd => Cleft_Lo,
837 Right_Opnd => Cright_Lo);
838 end if;
840 if Controlled_Type (Component_Type (L_Type))
841 and then Base_Type (L_Type) = Base_Type (R_Type)
842 and then Ndim = 1
843 and then not No_Ctrl_Actions (N)
844 then
846 -- Call TSS procedure for array assignment, passing the
847 -- the explicit bounds of right and left hand sides.
849 declare
850 Proc : constant Node_Id :=
851 TSS (Base_Type (L_Type), TSS_Slice_Assign);
852 Actuals : List_Id;
854 begin
855 Apply_Dereference (Larray);
856 Apply_Dereference (Rarray);
857 Actuals := New_List (
858 Duplicate_Subexpr (Larray, Name_Req => True),
859 Duplicate_Subexpr (Rarray, Name_Req => True),
860 Duplicate_Subexpr (Left_Lo, Name_Req => True),
861 Duplicate_Subexpr (Left_Hi, Name_Req => True),
862 Duplicate_Subexpr (Right_Lo, Name_Req => True),
863 Duplicate_Subexpr (Right_Hi, Name_Req => True));
865 Append_To (Actuals,
866 Make_Op_Not (Loc,
867 Right_Opnd => Condition));
869 Rewrite (N,
870 Make_Procedure_Call_Statement (Loc,
871 Name => New_Reference_To (Proc, Loc),
872 Parameter_Associations => Actuals));
873 end;
875 else
876 Rewrite (N,
877 Make_Implicit_If_Statement (N,
878 Condition => Condition,
880 Then_Statements => New_List (
881 Expand_Assign_Array_Loop
882 (N, Larray, Rarray, L_Type, R_Type, Ndim,
883 Rev => False)),
885 Else_Statements => New_List (
886 Expand_Assign_Array_Loop
887 (N, Larray, Rarray, L_Type, R_Type, Ndim,
888 Rev => True))));
889 end if;
890 end if;
892 Analyze (N, Suppress => All_Checks);
893 end;
895 exception
896 when RE_Not_Available =>
897 return;
898 end Expand_Assign_Array;
900 ------------------------------
901 -- Expand_Assign_Array_Loop --
902 ------------------------------
904 -- The following is an example of the loop generated for the case of
905 -- a two-dimensional array:
907 -- declare
908 -- R2b : Tm1X1 := 1;
909 -- begin
910 -- for L1b in 1 .. 100 loop
911 -- declare
912 -- R4b : Tm1X2 := 1;
913 -- begin
914 -- for L3b in 1 .. 100 loop
915 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
916 -- R4b := Tm1X2'succ(R4b);
917 -- end loop;
918 -- end;
919 -- R2b := Tm1X1'succ(R2b);
920 -- end loop;
921 -- end;
923 -- Here Rev is False, and Tm1Xn are the subscript types for the right
924 -- hand side. The declarations of R2b and R4b are inserted before the
925 -- original assignment statement.
927 function Expand_Assign_Array_Loop
928 (N : Node_Id;
929 Larray : Entity_Id;
930 Rarray : Entity_Id;
931 L_Type : Entity_Id;
932 R_Type : Entity_Id;
933 Ndim : Pos;
934 Rev : Boolean) return Node_Id
936 Loc : constant Source_Ptr := Sloc (N);
938 Lnn : array (1 .. Ndim) of Entity_Id;
939 Rnn : array (1 .. Ndim) of Entity_Id;
940 -- Entities used as subscripts on left and right sides
942 L_Index_Type : array (1 .. Ndim) of Entity_Id;
943 R_Index_Type : array (1 .. Ndim) of Entity_Id;
944 -- Left and right index types
946 Assign : Node_Id;
948 F_Or_L : Name_Id;
949 S_Or_P : Name_Id;
951 begin
952 if Rev then
953 F_Or_L := Name_Last;
954 S_Or_P := Name_Pred;
955 else
956 F_Or_L := Name_First;
957 S_Or_P := Name_Succ;
958 end if;
960 -- Setup index types and subscript entities
962 declare
963 L_Index : Node_Id;
964 R_Index : Node_Id;
966 begin
967 L_Index := First_Index (L_Type);
968 R_Index := First_Index (R_Type);
970 for J in 1 .. Ndim loop
971 Lnn (J) :=
972 Make_Defining_Identifier (Loc,
973 Chars => New_Internal_Name ('L'));
975 Rnn (J) :=
976 Make_Defining_Identifier (Loc,
977 Chars => New_Internal_Name ('R'));
979 L_Index_Type (J) := Etype (L_Index);
980 R_Index_Type (J) := Etype (R_Index);
982 Next_Index (L_Index);
983 Next_Index (R_Index);
984 end loop;
985 end;
987 -- Now construct the assignment statement
989 declare
990 ExprL : constant List_Id := New_List;
991 ExprR : constant List_Id := New_List;
993 begin
994 for J in 1 .. Ndim loop
995 Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
996 Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
997 end loop;
999 Assign :=
1000 Make_Assignment_Statement (Loc,
1001 Name =>
1002 Make_Indexed_Component (Loc,
1003 Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
1004 Expressions => ExprL),
1005 Expression =>
1006 Make_Indexed_Component (Loc,
1007 Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
1008 Expressions => ExprR));
1010 -- We set assignment OK, since there are some cases, e.g. in object
1011 -- declarations, where we are actually assigning into a constant.
1012 -- If there really is an illegality, it was caught long before now,
1013 -- and was flagged when the original assignment was analyzed.
1015 Set_Assignment_OK (Name (Assign));
1017 -- Propagate the No_Ctrl_Actions flag to individual assignments
1019 Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1020 end;
1022 -- Now construct the loop from the inside out, with the last subscript
1023 -- varying most rapidly. Note that Assign is first the raw assignment
1024 -- statement, and then subsequently the loop that wraps it up.
1026 for J in reverse 1 .. Ndim loop
1027 Assign :=
1028 Make_Block_Statement (Loc,
1029 Declarations => New_List (
1030 Make_Object_Declaration (Loc,
1031 Defining_Identifier => Rnn (J),
1032 Object_Definition =>
1033 New_Occurrence_Of (R_Index_Type (J), Loc),
1034 Expression =>
1035 Make_Attribute_Reference (Loc,
1036 Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1037 Attribute_Name => F_Or_L))),
1039 Handled_Statement_Sequence =>
1040 Make_Handled_Sequence_Of_Statements (Loc,
1041 Statements => New_List (
1042 Make_Implicit_Loop_Statement (N,
1043 Iteration_Scheme =>
1044 Make_Iteration_Scheme (Loc,
1045 Loop_Parameter_Specification =>
1046 Make_Loop_Parameter_Specification (Loc,
1047 Defining_Identifier => Lnn (J),
1048 Reverse_Present => Rev,
1049 Discrete_Subtype_Definition =>
1050 New_Reference_To (L_Index_Type (J), Loc))),
1052 Statements => New_List (
1053 Assign,
1055 Make_Assignment_Statement (Loc,
1056 Name => New_Occurrence_Of (Rnn (J), Loc),
1057 Expression =>
1058 Make_Attribute_Reference (Loc,
1059 Prefix =>
1060 New_Occurrence_Of (R_Index_Type (J), Loc),
1061 Attribute_Name => S_Or_P,
1062 Expressions => New_List (
1063 New_Occurrence_Of (Rnn (J), Loc)))))))));
1064 end loop;
1066 return Assign;
1067 end Expand_Assign_Array_Loop;
1069 --------------------------
1070 -- Expand_Assign_Record --
1071 --------------------------
1073 -- The only processing required is in the change of representation
1074 -- case, where we must expand the assignment to a series of field
1075 -- by field assignments.
1077 procedure Expand_Assign_Record (N : Node_Id) is
1078 Lhs : constant Node_Id := Name (N);
1079 Rhs : Node_Id := Expression (N);
1081 begin
1082 -- If change of representation, then extract the real right hand
1083 -- side from the type conversion, and proceed with component-wise
1084 -- assignment, since the two types are not the same as far as the
1085 -- back end is concerned.
1087 if Change_Of_Representation (N) then
1088 Rhs := Expression (Rhs);
1090 -- If this may be a case of a large bit aligned component, then
1091 -- proceed with component-wise assignment, to avoid possible
1092 -- clobbering of other components sharing bits in the first or
1093 -- last byte of the component to be assigned.
1095 elsif Possible_Bit_Aligned_Component (Lhs)
1097 Possible_Bit_Aligned_Component (Rhs)
1098 then
1099 null;
1101 -- If neither condition met, then nothing special to do, the back end
1102 -- can handle assignment of the entire component as a single entity.
1104 else
1105 return;
1106 end if;
1108 -- At this stage we know that we must do a component wise assignment
1110 declare
1111 Loc : constant Source_Ptr := Sloc (N);
1112 R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
1113 L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
1114 Decl : constant Node_Id := Declaration_Node (R_Typ);
1115 RDef : Node_Id;
1116 F : Entity_Id;
1118 function Find_Component
1119 (Typ : Entity_Id;
1120 Comp : Entity_Id) return Entity_Id;
1121 -- Find the component with the given name in the underlying record
1122 -- declaration for Typ. We need to use the actual entity because
1123 -- the type may be private and resolution by identifier alone would
1124 -- fail.
1126 function Make_Component_List_Assign
1127 (CL : Node_Id;
1128 U_U : Boolean := False) return List_Id;
1129 -- Returns a sequence of statements to assign the components that
1130 -- are referenced in the given component list. The flag U_U is
1131 -- used to force the usage of the inferred value of the variant
1132 -- part expression as the switch for the generated case statement.
1134 function Make_Field_Assign
1135 (C : Entity_Id;
1136 U_U : Boolean := False) return Node_Id;
1137 -- Given C, the entity for a discriminant or component, build an
1138 -- assignment for the corresponding field values. The flag U_U
1139 -- signals the presence of an Unchecked_Union and forces the usage
1140 -- of the inferred discriminant value of C as the right hand side
1141 -- of the assignment.
1143 function Make_Field_Assigns (CI : List_Id) return List_Id;
1144 -- Given CI, a component items list, construct series of statements
1145 -- for fieldwise assignment of the corresponding components.
1147 --------------------
1148 -- Find_Component --
1149 --------------------
1151 function Find_Component
1152 (Typ : Entity_Id;
1153 Comp : Entity_Id) return Entity_Id
1155 Utyp : constant Entity_Id := Underlying_Type (Typ);
1156 C : Entity_Id;
1158 begin
1159 C := First_Entity (Utyp);
1161 while Present (C) loop
1162 if Chars (C) = Chars (Comp) then
1163 return C;
1164 end if;
1165 Next_Entity (C);
1166 end loop;
1168 raise Program_Error;
1169 end Find_Component;
1171 --------------------------------
1172 -- Make_Component_List_Assign --
1173 --------------------------------
1175 function Make_Component_List_Assign
1176 (CL : Node_Id;
1177 U_U : Boolean := False) return List_Id
1179 CI : constant List_Id := Component_Items (CL);
1180 VP : constant Node_Id := Variant_Part (CL);
1182 Alts : List_Id;
1183 DC : Node_Id;
1184 DCH : List_Id;
1185 Expr : Node_Id;
1186 Result : List_Id;
1187 V : Node_Id;
1189 begin
1190 Result := Make_Field_Assigns (CI);
1192 if Present (VP) then
1194 V := First_Non_Pragma (Variants (VP));
1195 Alts := New_List;
1196 while Present (V) loop
1198 DCH := New_List;
1199 DC := First (Discrete_Choices (V));
1200 while Present (DC) loop
1201 Append_To (DCH, New_Copy_Tree (DC));
1202 Next (DC);
1203 end loop;
1205 Append_To (Alts,
1206 Make_Case_Statement_Alternative (Loc,
1207 Discrete_Choices => DCH,
1208 Statements =>
1209 Make_Component_List_Assign (Component_List (V))));
1210 Next_Non_Pragma (V);
1211 end loop;
1213 -- If we have an Unchecked_Union, use the value of the inferred
1214 -- discriminant of the variant part expression as the switch
1215 -- for the case statement. The case statement may later be
1216 -- folded.
1218 if U_U then
1219 Expr :=
1220 New_Copy (Get_Discriminant_Value (
1221 Entity (Name (VP)),
1222 Etype (Rhs),
1223 Discriminant_Constraint (Etype (Rhs))));
1224 else
1225 Expr :=
1226 Make_Selected_Component (Loc,
1227 Prefix => Duplicate_Subexpr (Rhs),
1228 Selector_Name =>
1229 Make_Identifier (Loc, Chars (Name (VP))));
1230 end if;
1232 Append_To (Result,
1233 Make_Case_Statement (Loc,
1234 Expression => Expr,
1235 Alternatives => Alts));
1236 end if;
1238 return Result;
1239 end Make_Component_List_Assign;
1241 -----------------------
1242 -- Make_Field_Assign --
1243 -----------------------
1245 function Make_Field_Assign
1246 (C : Entity_Id;
1247 U_U : Boolean := False) return Node_Id
1249 A : Node_Id;
1250 Expr : Node_Id;
1252 begin
1253 -- In the case of an Unchecked_Union, use the discriminant
1254 -- constraint value as on the right hand side of the assignment.
1256 if U_U then
1257 Expr :=
1258 New_Copy (Get_Discriminant_Value (C,
1259 Etype (Rhs),
1260 Discriminant_Constraint (Etype (Rhs))));
1261 else
1262 Expr :=
1263 Make_Selected_Component (Loc,
1264 Prefix => Duplicate_Subexpr (Rhs),
1265 Selector_Name => New_Occurrence_Of (C, Loc));
1266 end if;
1268 A :=
1269 Make_Assignment_Statement (Loc,
1270 Name =>
1271 Make_Selected_Component (Loc,
1272 Prefix => Duplicate_Subexpr (Lhs),
1273 Selector_Name =>
1274 New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1275 Expression => Expr);
1277 -- Set Assignment_OK, so discriminants can be assigned
1279 Set_Assignment_OK (Name (A), True);
1280 return A;
1281 end Make_Field_Assign;
1283 ------------------------
1284 -- Make_Field_Assigns --
1285 ------------------------
1287 function Make_Field_Assigns (CI : List_Id) return List_Id is
1288 Item : Node_Id;
1289 Result : List_Id;
1291 begin
1292 Item := First (CI);
1293 Result := New_List;
1294 while Present (Item) loop
1295 if Nkind (Item) = N_Component_Declaration then
1296 Append_To
1297 (Result, Make_Field_Assign (Defining_Identifier (Item)));
1298 end if;
1300 Next (Item);
1301 end loop;
1303 return Result;
1304 end Make_Field_Assigns;
1306 -- Start of processing for Expand_Assign_Record
1308 begin
1309 -- Note that we use the base types for this processing. This results
1310 -- in some extra work in the constrained case, but the change of
1311 -- representation case is so unusual that it is not worth the effort.
1313 -- First copy the discriminants. This is done unconditionally. It
1314 -- is required in the unconstrained left side case, and also in the
1315 -- case where this assignment was constructed during the expansion
1316 -- of a type conversion (since initialization of discriminants is
1317 -- suppressed in this case). It is unnecessary but harmless in
1318 -- other cases.
1320 if Has_Discriminants (L_Typ) then
1321 F := First_Discriminant (R_Typ);
1322 while Present (F) loop
1324 if Is_Unchecked_Union (Base_Type (R_Typ)) then
1325 Insert_Action (N, Make_Field_Assign (F, True));
1326 else
1327 Insert_Action (N, Make_Field_Assign (F));
1328 end if;
1330 Next_Discriminant (F);
1331 end loop;
1332 end if;
1334 -- We know the underlying type is a record, but its current view
1335 -- may be private. We must retrieve the usable record declaration.
1337 if Nkind (Decl) = N_Private_Type_Declaration
1338 and then Present (Full_View (R_Typ))
1339 then
1340 RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1341 else
1342 RDef := Type_Definition (Decl);
1343 end if;
1345 if Nkind (RDef) = N_Record_Definition
1346 and then Present (Component_List (RDef))
1347 then
1349 if Is_Unchecked_Union (R_Typ) then
1350 Insert_Actions (N,
1351 Make_Component_List_Assign (Component_List (RDef), True));
1352 else
1353 Insert_Actions
1354 (N, Make_Component_List_Assign (Component_List (RDef)));
1355 end if;
1357 Rewrite (N, Make_Null_Statement (Loc));
1358 end if;
1360 end;
1361 end Expand_Assign_Record;
1363 -----------------------------------
1364 -- Expand_N_Assignment_Statement --
1365 -----------------------------------
1367 -- This procedure implements various cases where an assignment statement
1368 -- cannot just be passed on to the back end in untransformed state.
1370 procedure Expand_N_Assignment_Statement (N : Node_Id) is
1371 Loc : constant Source_Ptr := Sloc (N);
1372 Lhs : constant Node_Id := Name (N);
1373 Rhs : constant Node_Id := Expression (N);
1374 Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
1375 Exp : Node_Id;
1377 begin
1378 -- First deal with generation of range check if required. For now
1379 -- we do this only for discrete types.
1381 if Do_Range_Check (Rhs)
1382 and then Is_Discrete_Type (Typ)
1383 then
1384 Set_Do_Range_Check (Rhs, False);
1385 Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
1386 end if;
1388 -- Check for a special case where a high level transformation is
1389 -- required. If we have either of:
1391 -- P.field := rhs;
1392 -- P (sub) := rhs;
1394 -- where P is a reference to a bit packed array, then we have to unwind
1395 -- the assignment. The exact meaning of being a reference to a bit
1396 -- packed array is as follows:
1398 -- An indexed component whose prefix is a bit packed array is a
1399 -- reference to a bit packed array.
1401 -- An indexed component or selected component whose prefix is a
1402 -- reference to a bit packed array is itself a reference ot a
1403 -- bit packed array.
1405 -- The required transformation is
1407 -- Tnn : prefix_type := P;
1408 -- Tnn.field := rhs;
1409 -- P := Tnn;
1411 -- or
1413 -- Tnn : prefix_type := P;
1414 -- Tnn (subscr) := rhs;
1415 -- P := Tnn;
1417 -- Since P is going to be evaluated more than once, any subscripts
1418 -- in P must have their evaluation forced.
1420 if (Nkind (Lhs) = N_Indexed_Component
1421 or else
1422 Nkind (Lhs) = N_Selected_Component)
1423 and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
1424 then
1425 declare
1426 BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
1427 BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
1428 Tnn : constant Entity_Id :=
1429 Make_Defining_Identifier (Loc,
1430 Chars => New_Internal_Name ('T'));
1432 begin
1433 -- Insert the post assignment first, because we want to copy
1434 -- the BPAR_Expr tree before it gets analyzed in the context
1435 -- of the pre assignment. Note that we do not analyze the
1436 -- post assignment yet (we cannot till we have completed the
1437 -- analysis of the pre assignment). As usual, the analysis
1438 -- of this post assignment will happen on its own when we
1439 -- "run into" it after finishing the current assignment.
1441 Insert_After (N,
1442 Make_Assignment_Statement (Loc,
1443 Name => New_Copy_Tree (BPAR_Expr),
1444 Expression => New_Occurrence_Of (Tnn, Loc)));
1446 -- At this stage BPAR_Expr is a reference to a bit packed
1447 -- array where the reference was not expanded in the original
1448 -- tree, since it was on the left side of an assignment. But
1449 -- in the pre-assignment statement (the object definition),
1450 -- BPAR_Expr will end up on the right hand side, and must be
1451 -- reexpanded. To achieve this, we reset the analyzed flag
1452 -- of all selected and indexed components down to the actual
1453 -- indexed component for the packed array.
1455 Exp := BPAR_Expr;
1456 loop
1457 Set_Analyzed (Exp, False);
1459 if Nkind (Exp) = N_Selected_Component
1460 or else
1461 Nkind (Exp) = N_Indexed_Component
1462 then
1463 Exp := Prefix (Exp);
1464 else
1465 exit;
1466 end if;
1467 end loop;
1469 -- Now we can insert and analyze the pre-assignment
1471 -- If the right-hand side requires a transient scope, it has
1472 -- already been placed on the stack. However, the declaration is
1473 -- inserted in the tree outside of this scope, and must reflect
1474 -- the proper scope for its variable. This awkward bit is forced
1475 -- by the stricter scope discipline imposed by GCC 2.97.
1477 declare
1478 Uses_Transient_Scope : constant Boolean :=
1479 Scope_Is_Transient
1480 and then N = Node_To_Be_Wrapped;
1482 begin
1483 if Uses_Transient_Scope then
1484 New_Scope (Scope (Current_Scope));
1485 end if;
1487 Insert_Before_And_Analyze (N,
1488 Make_Object_Declaration (Loc,
1489 Defining_Identifier => Tnn,
1490 Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
1491 Expression => BPAR_Expr));
1493 if Uses_Transient_Scope then
1494 Pop_Scope;
1495 end if;
1496 end;
1498 -- Now fix up the original assignment and continue processing
1500 Rewrite (Prefix (Lhs),
1501 New_Occurrence_Of (Tnn, Loc));
1503 -- We do not need to reanalyze that assignment, and we do not need
1504 -- to worry about references to the temporary, but we do need to
1505 -- make sure that the temporary is not marked as a true constant
1506 -- since we now have a generate assignment to it!
1508 Set_Is_True_Constant (Tnn, False);
1509 end;
1510 end if;
1512 -- When we have the appropriate type of aggregate in the
1513 -- expression (it has been determined during analysis of the
1514 -- aggregate by setting the delay flag), let's perform in place
1515 -- assignment and thus avoid creating a temporay.
1517 if Is_Delayed_Aggregate (Rhs) then
1518 Convert_Aggr_In_Assignment (N);
1519 Rewrite (N, Make_Null_Statement (Loc));
1520 Analyze (N);
1521 return;
1522 end if;
1524 -- Apply discriminant check if required. If Lhs is an access type
1525 -- to a designated type with discriminants, we must always check.
1527 if Has_Discriminants (Etype (Lhs)) then
1529 -- Skip discriminant check if change of representation. Will be
1530 -- done when the change of representation is expanded out.
1532 if not Change_Of_Representation (N) then
1533 Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
1534 end if;
1536 -- If the type is private without discriminants, and the full type
1537 -- has discriminants (necessarily with defaults) a check may still be
1538 -- necessary if the Lhs is aliased. The private determinants must be
1539 -- visible to build the discriminant constraints.
1541 -- Only an explicit dereference that comes from source indicates
1542 -- aliasing. Access to formals of protected operations and entries
1543 -- create dereferences but are not semantic aliasings.
1545 elsif Is_Private_Type (Etype (Lhs))
1546 and then Has_Discriminants (Typ)
1547 and then Nkind (Lhs) = N_Explicit_Dereference
1548 and then Comes_From_Source (Lhs)
1549 then
1550 declare
1551 Lt : constant Entity_Id := Etype (Lhs);
1552 begin
1553 Set_Etype (Lhs, Typ);
1554 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1555 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1556 Set_Etype (Lhs, Lt);
1557 end;
1559 -- If the Lhs has a private type with unknown discriminants, it
1560 -- may have a full view with discriminants, but those are nameable
1561 -- only in the underlying type, so convert the Rhs to it before
1562 -- potential checking.
1564 elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
1565 and then Has_Discriminants (Typ)
1566 then
1567 Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
1568 Apply_Discriminant_Check (Rhs, Typ, Lhs);
1570 -- In the access type case, we need the same discriminant check,
1571 -- and also range checks if we have an access to constrained array.
1573 elsif Is_Access_Type (Etype (Lhs))
1574 and then Is_Constrained (Designated_Type (Etype (Lhs)))
1575 then
1576 if Has_Discriminants (Designated_Type (Etype (Lhs))) then
1578 -- Skip discriminant check if change of representation. Will be
1579 -- done when the change of representation is expanded out.
1581 if not Change_Of_Representation (N) then
1582 Apply_Discriminant_Check (Rhs, Etype (Lhs));
1583 end if;
1585 elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
1586 Apply_Range_Check (Rhs, Etype (Lhs));
1588 if Is_Constrained (Etype (Lhs)) then
1589 Apply_Length_Check (Rhs, Etype (Lhs));
1590 end if;
1592 if Nkind (Rhs) = N_Allocator then
1593 declare
1594 Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
1595 C_Es : Check_Result;
1597 begin
1598 C_Es :=
1599 Range_Check
1600 (Lhs,
1601 Target_Typ,
1602 Etype (Designated_Type (Etype (Lhs))));
1604 Insert_Range_Checks
1605 (C_Es,
1607 Target_Typ,
1608 Sloc (Lhs),
1609 Lhs);
1610 end;
1611 end if;
1612 end if;
1614 -- Apply range check for access type case
1616 elsif Is_Access_Type (Etype (Lhs))
1617 and then Nkind (Rhs) = N_Allocator
1618 and then Nkind (Expression (Rhs)) = N_Qualified_Expression
1619 then
1620 Analyze_And_Resolve (Expression (Rhs));
1621 Apply_Range_Check
1622 (Expression (Rhs), Designated_Type (Etype (Lhs)));
1623 end if;
1625 -- Ada 2005 (AI-231): Generate the run-time check
1627 if Is_Access_Type (Typ)
1628 and then Can_Never_Be_Null (Etype (Lhs))
1629 and then not Can_Never_Be_Null (Etype (Rhs))
1630 then
1631 Apply_Constraint_Check (Rhs, Etype (Lhs));
1632 end if;
1634 -- If we are assigning an access type and the left side is an
1635 -- entity, then make sure that Is_Known_Non_Null properly
1636 -- reflects the state of the entity after the assignment
1638 if Is_Access_Type (Typ)
1639 and then Is_Entity_Name (Lhs)
1640 and then Known_Non_Null (Rhs)
1641 and then Safe_To_Capture_Value (N, Entity (Lhs))
1642 then
1643 Set_Is_Known_Non_Null (Entity (Lhs), Known_Non_Null (Rhs));
1644 end if;
1646 -- Case of assignment to a bit packed array element
1648 if Nkind (Lhs) = N_Indexed_Component
1649 and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
1650 then
1651 Expand_Bit_Packed_Element_Set (N);
1652 return;
1654 elsif Is_Tagged_Type (Typ)
1655 or else (Controlled_Type (Typ) and then not Is_Array_Type (Typ))
1656 then
1657 Tagged_Case : declare
1658 L : List_Id := No_List;
1659 Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
1661 begin
1662 -- In the controlled case, we need to make sure that function
1663 -- calls are evaluated before finalizing the target. In all
1664 -- cases, it makes the expansion easier if the side-effects
1665 -- are removed first.
1667 Remove_Side_Effects (Lhs);
1668 Remove_Side_Effects (Rhs);
1670 -- Avoid recursion in the mechanism
1672 Set_Analyzed (N);
1674 -- If dispatching assignment, we need to dispatch to _assign
1676 if Is_Class_Wide_Type (Typ)
1678 -- If the type is tagged, we may as well use the predefined
1679 -- primitive assignment. This avoids inlining a lot of code
1680 -- and in the class-wide case, the assignment is replaced by
1681 -- dispatch call to _assign. Note that this cannot be done
1682 -- when discriminant checks are locally suppressed (as in
1683 -- extension aggregate expansions) because otherwise the
1684 -- discriminant check will be performed within the _assign
1685 -- call. It is also suppressed for assignmments created by the
1686 -- expander that correspond to initializations, where we do
1687 -- want to copy the tag (No_Ctrl_Actions flag set True).
1688 -- by the expander and we do not need to mess with tags ever
1689 -- (Expand_Ctrl_Actions flag is set True in this case).
1691 or else (Is_Tagged_Type (Typ)
1692 and then Chars (Current_Scope) /= Name_uAssign
1693 and then Expand_Ctrl_Actions
1694 and then not Discriminant_Checks_Suppressed (Empty))
1695 then
1696 -- Fetch the primitive op _assign and proper type to call
1697 -- it. Because of possible conflits between private and
1698 -- full view the proper type is fetched directly from the
1699 -- operation profile.
1701 declare
1702 Op : constant Entity_Id :=
1703 Find_Prim_Op (Typ, Name_uAssign);
1704 F_Typ : Entity_Id := Etype (First_Formal (Op));
1706 begin
1707 -- If the assignment is dispatching, make sure to use the
1708 -- proper type.
1710 if Is_Class_Wide_Type (Typ) then
1711 F_Typ := Class_Wide_Type (F_Typ);
1712 end if;
1714 L := New_List;
1716 -- In case of assignment to a class-wide tagged type, before
1717 -- the assignment we generate run-time check to ensure that
1718 -- the tag of the Target is covered by the tag of the source
1720 if Is_Class_Wide_Type (Typ)
1721 and then Is_Tagged_Type (Typ)
1722 and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
1723 then
1724 Append_To (L,
1725 Make_Raise_Constraint_Error (Loc,
1726 Condition =>
1727 Make_Op_Not (Loc,
1728 Make_Function_Call (Loc,
1729 Name => New_Reference_To
1730 (RTE (RE_CW_Membership), Loc),
1731 Parameter_Associations => New_List (
1732 Make_Selected_Component (Loc,
1733 Prefix =>
1734 Duplicate_Subexpr (Lhs),
1735 Selector_Name =>
1736 Make_Identifier (Loc, Name_uTag)),
1737 Make_Selected_Component (Loc,
1738 Prefix =>
1739 Duplicate_Subexpr (Rhs),
1740 Selector_Name =>
1741 Make_Identifier (Loc, Name_uTag))))),
1742 Reason => CE_Tag_Check_Failed));
1743 end if;
1745 Append_To (L,
1746 Make_Procedure_Call_Statement (Loc,
1747 Name => New_Reference_To (Op, Loc),
1748 Parameter_Associations => New_List (
1749 Unchecked_Convert_To (F_Typ, Duplicate_Subexpr (Lhs)),
1750 Unchecked_Convert_To (F_Typ,
1751 Duplicate_Subexpr (Rhs)))));
1752 end;
1754 else
1755 L := Make_Tag_Ctrl_Assignment (N);
1757 -- We can't afford to have destructive Finalization Actions
1758 -- in the Self assignment case, so if the target and the
1759 -- source are not obviously different, code is generated to
1760 -- avoid the self assignment case
1762 -- if lhs'address /= rhs'address then
1763 -- <code for controlled and/or tagged assignment>
1764 -- end if;
1766 if not Statically_Different (Lhs, Rhs)
1767 and then Expand_Ctrl_Actions
1768 then
1769 L := New_List (
1770 Make_Implicit_If_Statement (N,
1771 Condition =>
1772 Make_Op_Ne (Loc,
1773 Left_Opnd =>
1774 Make_Attribute_Reference (Loc,
1775 Prefix => Duplicate_Subexpr (Lhs),
1776 Attribute_Name => Name_Address),
1778 Right_Opnd =>
1779 Make_Attribute_Reference (Loc,
1780 Prefix => Duplicate_Subexpr (Rhs),
1781 Attribute_Name => Name_Address)),
1783 Then_Statements => L));
1784 end if;
1786 -- We need to set up an exception handler for implementing
1787 -- 7.6.1 (18). The remaining adjustments are tackled by the
1788 -- implementation of adjust for record_controllers (see
1789 -- s-finimp.adb)
1791 -- This is skipped if we have no finalization
1793 if Expand_Ctrl_Actions
1794 and then not Restriction_Active (No_Finalization)
1795 then
1796 L := New_List (
1797 Make_Block_Statement (Loc,
1798 Handled_Statement_Sequence =>
1799 Make_Handled_Sequence_Of_Statements (Loc,
1800 Statements => L,
1801 Exception_Handlers => New_List (
1802 Make_Exception_Handler (Loc,
1803 Exception_Choices =>
1804 New_List (Make_Others_Choice (Loc)),
1805 Statements => New_List (
1806 Make_Raise_Program_Error (Loc,
1807 Reason =>
1808 PE_Finalize_Raised_Exception)
1809 ))))));
1810 end if;
1811 end if;
1813 Rewrite (N,
1814 Make_Block_Statement (Loc,
1815 Handled_Statement_Sequence =>
1816 Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
1818 -- If no restrictions on aborts, protect the whole assignement
1819 -- for controlled objects as per 9.8(11)
1821 if Controlled_Type (Typ)
1822 and then Expand_Ctrl_Actions
1823 and then Abort_Allowed
1824 then
1825 declare
1826 Blk : constant Entity_Id :=
1827 New_Internal_Entity
1828 (E_Block, Current_Scope, Sloc (N), 'B');
1830 begin
1831 Set_Scope (Blk, Current_Scope);
1832 Set_Etype (Blk, Standard_Void_Type);
1833 Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
1835 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
1836 Set_At_End_Proc (Handled_Statement_Sequence (N),
1837 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
1838 Expand_At_End_Handler
1839 (Handled_Statement_Sequence (N), Blk);
1840 end;
1841 end if;
1843 -- N has been rewritten to a block statement for which it is
1844 -- known by construction that no checks are necessary: analyze
1845 -- it with all checks suppressed.
1847 Analyze (N, Suppress => All_Checks);
1848 return;
1849 end Tagged_Case;
1851 -- Array types
1853 elsif Is_Array_Type (Typ) then
1854 declare
1855 Actual_Rhs : Node_Id := Rhs;
1857 begin
1858 while Nkind (Actual_Rhs) = N_Type_Conversion
1859 or else
1860 Nkind (Actual_Rhs) = N_Qualified_Expression
1861 loop
1862 Actual_Rhs := Expression (Actual_Rhs);
1863 end loop;
1865 Expand_Assign_Array (N, Actual_Rhs);
1866 return;
1867 end;
1869 -- Record types
1871 elsif Is_Record_Type (Typ) then
1872 Expand_Assign_Record (N);
1873 return;
1875 -- Scalar types. This is where we perform the processing related
1876 -- to the requirements of (RM 13.9.1(9-11)) concerning the handling
1877 -- of invalid scalar values.
1879 elsif Is_Scalar_Type (Typ) then
1881 -- Case where right side is known valid
1883 if Expr_Known_Valid (Rhs) then
1885 -- Here the right side is valid, so it is fine. The case to
1886 -- deal with is when the left side is a local variable reference
1887 -- whose value is not currently known to be valid. If this is
1888 -- the case, and the assignment appears in an unconditional
1889 -- context, then we can mark the left side as now being valid.
1891 if Is_Local_Variable_Reference (Lhs)
1892 and then not Is_Known_Valid (Entity (Lhs))
1893 and then In_Unconditional_Context (N)
1894 then
1895 Set_Is_Known_Valid (Entity (Lhs), True);
1896 end if;
1898 -- Case where right side may be invalid in the sense of the RM
1899 -- reference above. The RM does not require that we check for
1900 -- the validity on an assignment, but it does require that the
1901 -- assignment of an invalid value not cause erroneous behavior.
1903 -- The general approach in GNAT is to use the Is_Known_Valid flag
1904 -- to avoid the need for validity checking on assignments. However
1905 -- in some cases, we have to do validity checking in order to make
1906 -- sure that the setting of this flag is correct.
1908 else
1909 -- Validate right side if we are validating copies
1911 if Validity_Checks_On
1912 and then Validity_Check_Copies
1913 then
1914 Ensure_Valid (Rhs);
1916 -- We can propagate this to the left side where appropriate
1918 if Is_Local_Variable_Reference (Lhs)
1919 and then not Is_Known_Valid (Entity (Lhs))
1920 and then In_Unconditional_Context (N)
1921 then
1922 Set_Is_Known_Valid (Entity (Lhs), True);
1923 end if;
1925 -- Otherwise check to see what should be done
1927 -- If left side is a local variable, then we just set its
1928 -- flag to indicate that its value may no longer be valid,
1929 -- since we are copying a potentially invalid value.
1931 elsif Is_Local_Variable_Reference (Lhs) then
1932 Set_Is_Known_Valid (Entity (Lhs), False);
1934 -- Check for case of a nonlocal variable on the left side
1935 -- which is currently known to be valid. In this case, we
1936 -- simply ensure that the right side is valid. We only play
1937 -- the game of copying validity status for local variables,
1938 -- since we are doing this statically, not by tracing the
1939 -- full flow graph.
1941 elsif Is_Entity_Name (Lhs)
1942 and then Is_Known_Valid (Entity (Lhs))
1943 then
1944 -- Note that the Ensure_Valid call is ignored if the
1945 -- Validity_Checking mode is set to none so we do not
1946 -- need to worry about that case here.
1948 Ensure_Valid (Rhs);
1950 -- In all other cases, we can safely copy an invalid value
1951 -- without worrying about the status of the left side. Since
1952 -- it is not a variable reference it will not be considered
1953 -- as being known to be valid in any case.
1955 else
1956 null;
1957 end if;
1958 end if;
1959 end if;
1961 -- Defend against invalid subscripts on left side if we are in
1962 -- standard validity checking mode. No need to do this if we
1963 -- are checking all subscripts.
1965 if Validity_Checks_On
1966 and then Validity_Check_Default
1967 and then not Validity_Check_Subscripts
1968 then
1969 Check_Valid_Lvalue_Subscripts (Lhs);
1970 end if;
1972 exception
1973 when RE_Not_Available =>
1974 return;
1975 end Expand_N_Assignment_Statement;
1977 ------------------------------
1978 -- Expand_N_Block_Statement --
1979 ------------------------------
1981 -- Encode entity names defined in block statement
1983 procedure Expand_N_Block_Statement (N : Node_Id) is
1984 begin
1985 Qualify_Entity_Names (N);
1986 end Expand_N_Block_Statement;
1988 -----------------------------
1989 -- Expand_N_Case_Statement --
1990 -----------------------------
1992 procedure Expand_N_Case_Statement (N : Node_Id) is
1993 Loc : constant Source_Ptr := Sloc (N);
1994 Expr : constant Node_Id := Expression (N);
1995 Alt : Node_Id;
1996 Len : Nat;
1997 Cond : Node_Id;
1998 Choice : Node_Id;
1999 Chlist : List_Id;
2001 begin
2002 -- Check for the situation where we know at compile time which
2003 -- branch will be taken
2005 if Compile_Time_Known_Value (Expr) then
2006 Alt := Find_Static_Alternative (N);
2008 -- Move the statements from this alternative after the case
2009 -- statement. They are already analyzed, so will be skipped
2010 -- by the analyzer.
2012 Insert_List_After (N, Statements (Alt));
2014 -- That leaves the case statement as a shell. The alternative
2015 -- that will be executed is reset to a null list. So now we can
2016 -- kill the entire case statement.
2018 Kill_Dead_Code (Expression (N));
2019 Kill_Dead_Code (Alternatives (N));
2020 Rewrite (N, Make_Null_Statement (Loc));
2021 return;
2022 end if;
2024 -- Here if the choice is not determined at compile time
2026 declare
2027 Last_Alt : constant Node_Id := Last (Alternatives (N));
2029 Others_Present : Boolean;
2030 Others_Node : Node_Id;
2032 Then_Stms : List_Id;
2033 Else_Stms : List_Id;
2035 begin
2036 if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
2037 Others_Present := True;
2038 Others_Node := Last_Alt;
2039 else
2040 Others_Present := False;
2041 end if;
2043 -- First step is to worry about possible invalid argument. The RM
2044 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2045 -- outside the base range), then Constraint_Error must be raised.
2047 -- Case of validity check required (validity checks are on, the
2048 -- expression is not known to be valid, and the case statement
2049 -- comes from source -- no need to validity check internally
2050 -- generated case statements).
2052 if Validity_Check_Default then
2053 Ensure_Valid (Expr);
2054 end if;
2056 -- If there is only a single alternative, just replace it with
2057 -- the sequence of statements since obviously that is what is
2058 -- going to be executed in all cases.
2060 Len := List_Length (Alternatives (N));
2062 if Len = 1 then
2063 -- We still need to evaluate the expression if it has any
2064 -- side effects.
2066 Remove_Side_Effects (Expression (N));
2068 Insert_List_After (N, Statements (First (Alternatives (N))));
2070 -- That leaves the case statement as a shell. The alternative
2071 -- that will be executed is reset to a null list. So now we can
2072 -- kill the entire case statement.
2074 Kill_Dead_Code (Expression (N));
2075 Rewrite (N, Make_Null_Statement (Loc));
2076 return;
2077 end if;
2079 -- An optimization. If there are only two alternatives, and only
2080 -- a single choice, then rewrite the whole case statement as an
2081 -- if statement, since this can result in susbequent optimizations.
2082 -- This helps not only with case statements in the source of a
2083 -- simple form, but also with generated code (discriminant check
2084 -- functions in particular)
2086 if Len = 2 then
2087 Chlist := Discrete_Choices (First (Alternatives (N)));
2089 if List_Length (Chlist) = 1 then
2090 Choice := First (Chlist);
2092 Then_Stms := Statements (First (Alternatives (N)));
2093 Else_Stms := Statements (Last (Alternatives (N)));
2095 -- For TRUE, generate "expression", not expression = true
2097 if Nkind (Choice) = N_Identifier
2098 and then Entity (Choice) = Standard_True
2099 then
2100 Cond := Expression (N);
2102 -- For FALSE, generate "expression" and switch then/else
2104 elsif Nkind (Choice) = N_Identifier
2105 and then Entity (Choice) = Standard_False
2106 then
2107 Cond := Expression (N);
2108 Else_Stms := Statements (First (Alternatives (N)));
2109 Then_Stms := Statements (Last (Alternatives (N)));
2111 -- For a range, generate "expression in range"
2113 elsif Nkind (Choice) = N_Range
2114 or else (Nkind (Choice) = N_Attribute_Reference
2115 and then Attribute_Name (Choice) = Name_Range)
2116 or else (Is_Entity_Name (Choice)
2117 and then Is_Type (Entity (Choice)))
2118 or else Nkind (Choice) = N_Subtype_Indication
2119 then
2120 Cond :=
2121 Make_In (Loc,
2122 Left_Opnd => Expression (N),
2123 Right_Opnd => Relocate_Node (Choice));
2125 -- For any other subexpression "expression = value"
2127 else
2128 Cond :=
2129 Make_Op_Eq (Loc,
2130 Left_Opnd => Expression (N),
2131 Right_Opnd => Relocate_Node (Choice));
2132 end if;
2134 -- Now rewrite the case as an IF
2136 Rewrite (N,
2137 Make_If_Statement (Loc,
2138 Condition => Cond,
2139 Then_Statements => Then_Stms,
2140 Else_Statements => Else_Stms));
2141 Analyze (N);
2142 return;
2143 end if;
2144 end if;
2146 -- If the last alternative is not an Others choice, replace it
2147 -- with an N_Others_Choice. Note that we do not bother to call
2148 -- Analyze on the modified case statement, since it's only effect
2149 -- would be to compute the contents of the Others_Discrete_Choices
2150 -- which is not needed by the back end anyway.
2152 -- The reason we do this is that the back end always needs some
2153 -- default for a switch, so if we have not supplied one in the
2154 -- processing above for validity checking, then we need to
2155 -- supply one here.
2157 if not Others_Present then
2158 Others_Node := Make_Others_Choice (Sloc (Last_Alt));
2159 Set_Others_Discrete_Choices
2160 (Others_Node, Discrete_Choices (Last_Alt));
2161 Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
2162 end if;
2163 end;
2164 end Expand_N_Case_Statement;
2166 -----------------------------
2167 -- Expand_N_Exit_Statement --
2168 -----------------------------
2170 -- The only processing required is to deal with a possible C/Fortran
2171 -- boolean value used as the condition for the exit statement.
2173 procedure Expand_N_Exit_Statement (N : Node_Id) is
2174 begin
2175 Adjust_Condition (Condition (N));
2176 end Expand_N_Exit_Statement;
2178 -----------------------------
2179 -- Expand_N_Goto_Statement --
2180 -----------------------------
2182 -- Add poll before goto if polling active
2184 procedure Expand_N_Goto_Statement (N : Node_Id) is
2185 begin
2186 Generate_Poll_Call (N);
2187 end Expand_N_Goto_Statement;
2189 ---------------------------
2190 -- Expand_N_If_Statement --
2191 ---------------------------
2193 -- First we deal with the case of C and Fortran convention boolean
2194 -- values, with zero/non-zero semantics.
2196 -- Second, we deal with the obvious rewriting for the cases where the
2197 -- condition of the IF is known at compile time to be True or False.
2199 -- Third, we remove elsif parts which have non-empty Condition_Actions
2200 -- and rewrite as independent if statements. For example:
2202 -- if x then xs
2203 -- elsif y then ys
2204 -- ...
2205 -- end if;
2207 -- becomes
2209 -- if x then xs
2210 -- else
2211 -- <<condition actions of y>>
2212 -- if y then ys
2213 -- ...
2214 -- end if;
2215 -- end if;
2217 -- This rewriting is needed if at least one elsif part has a non-empty
2218 -- Condition_Actions list. We also do the same processing if there is
2219 -- a constant condition in an elsif part (in conjunction with the first
2220 -- processing step mentioned above, for the recursive call made to deal
2221 -- with the created inner if, this deals with properly optimizing the
2222 -- cases of constant elsif conditions).
2224 procedure Expand_N_If_Statement (N : Node_Id) is
2225 Loc : constant Source_Ptr := Sloc (N);
2226 Hed : Node_Id;
2227 E : Node_Id;
2228 New_If : Node_Id;
2230 begin
2231 Adjust_Condition (Condition (N));
2233 -- The following loop deals with constant conditions for the IF. We
2234 -- need a loop because as we eliminate False conditions, we grab the
2235 -- first elsif condition and use it as the primary condition.
2237 while Compile_Time_Known_Value (Condition (N)) loop
2239 -- If condition is True, we can simply rewrite the if statement
2240 -- now by replacing it by the series of then statements.
2242 if Is_True (Expr_Value (Condition (N))) then
2244 -- All the else parts can be killed
2246 Kill_Dead_Code (Elsif_Parts (N));
2247 Kill_Dead_Code (Else_Statements (N));
2249 Hed := Remove_Head (Then_Statements (N));
2250 Insert_List_After (N, Then_Statements (N));
2251 Rewrite (N, Hed);
2252 return;
2254 -- If condition is False, then we can delete the condition and
2255 -- the Then statements
2257 else
2258 -- We do not delete the condition if constant condition
2259 -- warnings are enabled, since otherwise we end up deleting
2260 -- the desired warning. Of course the backend will get rid
2261 -- of this True/False test anyway, so nothing is lost here.
2263 if not Constant_Condition_Warnings then
2264 Kill_Dead_Code (Condition (N));
2265 end if;
2267 Kill_Dead_Code (Then_Statements (N));
2269 -- If there are no elsif statements, then we simply replace
2270 -- the entire if statement by the sequence of else statements.
2272 if No (Elsif_Parts (N)) then
2274 if No (Else_Statements (N))
2275 or else Is_Empty_List (Else_Statements (N))
2276 then
2277 Rewrite (N,
2278 Make_Null_Statement (Sloc (N)));
2280 else
2281 Hed := Remove_Head (Else_Statements (N));
2282 Insert_List_After (N, Else_Statements (N));
2283 Rewrite (N, Hed);
2284 end if;
2286 return;
2288 -- If there are elsif statements, the first of them becomes
2289 -- the if/then section of the rebuilt if statement This is
2290 -- the case where we loop to reprocess this copied condition.
2292 else
2293 Hed := Remove_Head (Elsif_Parts (N));
2294 Insert_Actions (N, Condition_Actions (Hed));
2295 Set_Condition (N, Condition (Hed));
2296 Set_Then_Statements (N, Then_Statements (Hed));
2298 -- Hed might have been captured as the condition determining
2299 -- the current value for an entity. Now it is detached from
2300 -- the tree, so a Current_Value pointer in the condition might
2301 -- need to be updated.
2303 Check_Possible_Current_Value_Condition (N);
2305 if Is_Empty_List (Elsif_Parts (N)) then
2306 Set_Elsif_Parts (N, No_List);
2307 end if;
2308 end if;
2309 end if;
2310 end loop;
2312 -- Loop through elsif parts, dealing with constant conditions and
2313 -- possible expression actions that are present.
2315 if Present (Elsif_Parts (N)) then
2316 E := First (Elsif_Parts (N));
2317 while Present (E) loop
2318 Adjust_Condition (Condition (E));
2320 -- If there are condition actions, then we rewrite the if
2321 -- statement as indicated above. We also do the same rewrite
2322 -- if the condition is True or False. The further processing
2323 -- of this constant condition is then done by the recursive
2324 -- call to expand the newly created if statement
2326 if Present (Condition_Actions (E))
2327 or else Compile_Time_Known_Value (Condition (E))
2328 then
2329 -- Note this is not an implicit if statement, since it is
2330 -- part of an explicit if statement in the source (or of an
2331 -- implicit if statement that has already been tested).
2333 New_If :=
2334 Make_If_Statement (Sloc (E),
2335 Condition => Condition (E),
2336 Then_Statements => Then_Statements (E),
2337 Elsif_Parts => No_List,
2338 Else_Statements => Else_Statements (N));
2340 -- Elsif parts for new if come from remaining elsif's of parent
2342 while Present (Next (E)) loop
2343 if No (Elsif_Parts (New_If)) then
2344 Set_Elsif_Parts (New_If, New_List);
2345 end if;
2347 Append (Remove_Next (E), Elsif_Parts (New_If));
2348 end loop;
2350 Set_Else_Statements (N, New_List (New_If));
2352 if Present (Condition_Actions (E)) then
2353 Insert_List_Before (New_If, Condition_Actions (E));
2354 end if;
2356 Remove (E);
2358 if Is_Empty_List (Elsif_Parts (N)) then
2359 Set_Elsif_Parts (N, No_List);
2360 end if;
2362 Analyze (New_If);
2363 return;
2365 -- No special processing for that elsif part, move to next
2367 else
2368 Next (E);
2369 end if;
2370 end loop;
2371 end if;
2373 -- Some more optimizations applicable if we still have an IF statement
2375 if Nkind (N) /= N_If_Statement then
2376 return;
2377 end if;
2379 -- Another optimization, special cases that can be simplified
2381 -- if expression then
2382 -- return true;
2383 -- else
2384 -- return false;
2385 -- end if;
2387 -- can be changed to:
2389 -- return expression;
2391 -- and
2393 -- if expression then
2394 -- return false;
2395 -- else
2396 -- return true;
2397 -- end if;
2399 -- can be changed to:
2401 -- return not (expression);
2403 if Nkind (N) = N_If_Statement
2404 and then No (Elsif_Parts (N))
2405 and then Present (Else_Statements (N))
2406 and then List_Length (Then_Statements (N)) = 1
2407 and then List_Length (Else_Statements (N)) = 1
2408 then
2409 declare
2410 Then_Stm : constant Node_Id := First (Then_Statements (N));
2411 Else_Stm : constant Node_Id := First (Else_Statements (N));
2413 begin
2414 if Nkind (Then_Stm) = N_Return_Statement
2415 and then
2416 Nkind (Else_Stm) = N_Return_Statement
2417 then
2418 declare
2419 Then_Expr : constant Node_Id := Expression (Then_Stm);
2420 Else_Expr : constant Node_Id := Expression (Else_Stm);
2422 begin
2423 if Nkind (Then_Expr) = N_Identifier
2424 and then
2425 Nkind (Else_Expr) = N_Identifier
2426 then
2427 if Entity (Then_Expr) = Standard_True
2428 and then Entity (Else_Expr) = Standard_False
2429 then
2430 Rewrite (N,
2431 Make_Return_Statement (Loc,
2432 Expression => Relocate_Node (Condition (N))));
2433 Analyze (N);
2434 return;
2436 elsif Entity (Then_Expr) = Standard_False
2437 and then Entity (Else_Expr) = Standard_True
2438 then
2439 Rewrite (N,
2440 Make_Return_Statement (Loc,
2441 Expression =>
2442 Make_Op_Not (Loc,
2443 Right_Opnd => Relocate_Node (Condition (N)))));
2444 Analyze (N);
2445 return;
2446 end if;
2447 end if;
2448 end;
2449 end if;
2450 end;
2451 end if;
2452 end Expand_N_If_Statement;
2454 -----------------------------
2455 -- Expand_N_Loop_Statement --
2456 -----------------------------
2458 -- 1. Deal with while condition for C/Fortran boolean
2459 -- 2. Deal with loops with a non-standard enumeration type range
2460 -- 3. Deal with while loops where Condition_Actions is set
2461 -- 4. Insert polling call if required
2463 procedure Expand_N_Loop_Statement (N : Node_Id) is
2464 Loc : constant Source_Ptr := Sloc (N);
2465 Isc : constant Node_Id := Iteration_Scheme (N);
2467 begin
2468 if Present (Isc) then
2469 Adjust_Condition (Condition (Isc));
2470 end if;
2472 if Is_Non_Empty_List (Statements (N)) then
2473 Generate_Poll_Call (First (Statements (N)));
2474 end if;
2476 if No (Isc) then
2477 return;
2478 end if;
2480 -- Handle the case where we have a for loop with the range type being
2481 -- an enumeration type with non-standard representation. In this case
2482 -- we expand:
2484 -- for x in [reverse] a .. b loop
2485 -- ...
2486 -- end loop;
2488 -- to
2490 -- for xP in [reverse] integer
2491 -- range etype'Pos (a) .. etype'Pos (b) loop
2492 -- declare
2493 -- x : constant etype := Pos_To_Rep (xP);
2494 -- begin
2495 -- ...
2496 -- end;
2497 -- end loop;
2499 if Present (Loop_Parameter_Specification (Isc)) then
2500 declare
2501 LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
2502 Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
2503 Ltype : constant Entity_Id := Etype (Loop_Id);
2504 Btype : constant Entity_Id := Base_Type (Ltype);
2505 Expr : Node_Id;
2506 New_Id : Entity_Id;
2508 begin
2509 if not Is_Enumeration_Type (Btype)
2510 or else No (Enum_Pos_To_Rep (Btype))
2511 then
2512 return;
2513 end if;
2515 New_Id :=
2516 Make_Defining_Identifier (Loc,
2517 Chars => New_External_Name (Chars (Loop_Id), 'P'));
2519 -- If the type has a contiguous representation, successive
2520 -- values can be generated as offsets from the first literal.
2522 if Has_Contiguous_Rep (Btype) then
2523 Expr :=
2524 Unchecked_Convert_To (Btype,
2525 Make_Op_Add (Loc,
2526 Left_Opnd =>
2527 Make_Integer_Literal (Loc,
2528 Enumeration_Rep (First_Literal (Btype))),
2529 Right_Opnd => New_Reference_To (New_Id, Loc)));
2530 else
2531 -- Use the constructed array Enum_Pos_To_Rep
2533 Expr :=
2534 Make_Indexed_Component (Loc,
2535 Prefix => New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
2536 Expressions => New_List (New_Reference_To (New_Id, Loc)));
2537 end if;
2539 Rewrite (N,
2540 Make_Loop_Statement (Loc,
2541 Identifier => Identifier (N),
2543 Iteration_Scheme =>
2544 Make_Iteration_Scheme (Loc,
2545 Loop_Parameter_Specification =>
2546 Make_Loop_Parameter_Specification (Loc,
2547 Defining_Identifier => New_Id,
2548 Reverse_Present => Reverse_Present (LPS),
2550 Discrete_Subtype_Definition =>
2551 Make_Subtype_Indication (Loc,
2553 Subtype_Mark =>
2554 New_Reference_To (Standard_Natural, Loc),
2556 Constraint =>
2557 Make_Range_Constraint (Loc,
2558 Range_Expression =>
2559 Make_Range (Loc,
2561 Low_Bound =>
2562 Make_Attribute_Reference (Loc,
2563 Prefix =>
2564 New_Reference_To (Btype, Loc),
2566 Attribute_Name => Name_Pos,
2568 Expressions => New_List (
2569 Relocate_Node
2570 (Type_Low_Bound (Ltype)))),
2572 High_Bound =>
2573 Make_Attribute_Reference (Loc,
2574 Prefix =>
2575 New_Reference_To (Btype, Loc),
2577 Attribute_Name => Name_Pos,
2579 Expressions => New_List (
2580 Relocate_Node
2581 (Type_High_Bound (Ltype))))))))),
2583 Statements => New_List (
2584 Make_Block_Statement (Loc,
2585 Declarations => New_List (
2586 Make_Object_Declaration (Loc,
2587 Defining_Identifier => Loop_Id,
2588 Constant_Present => True,
2589 Object_Definition => New_Reference_To (Ltype, Loc),
2590 Expression => Expr)),
2592 Handled_Statement_Sequence =>
2593 Make_Handled_Sequence_Of_Statements (Loc,
2594 Statements => Statements (N)))),
2596 End_Label => End_Label (N)));
2597 Analyze (N);
2598 end;
2600 -- Second case, if we have a while loop with Condition_Actions set,
2601 -- then we change it into a plain loop:
2603 -- while C loop
2604 -- ...
2605 -- end loop;
2607 -- changed to:
2609 -- loop
2610 -- <<condition actions>>
2611 -- exit when not C;
2612 -- ...
2613 -- end loop
2615 elsif Present (Isc)
2616 and then Present (Condition_Actions (Isc))
2617 then
2618 declare
2619 ES : Node_Id;
2621 begin
2622 ES :=
2623 Make_Exit_Statement (Sloc (Condition (Isc)),
2624 Condition =>
2625 Make_Op_Not (Sloc (Condition (Isc)),
2626 Right_Opnd => Condition (Isc)));
2628 Prepend (ES, Statements (N));
2629 Insert_List_Before (ES, Condition_Actions (Isc));
2631 -- This is not an implicit loop, since it is generated in
2632 -- response to the loop statement being processed. If this
2633 -- is itself implicit, the restriction has already been
2634 -- checked. If not, it is an explicit loop.
2636 Rewrite (N,
2637 Make_Loop_Statement (Sloc (N),
2638 Identifier => Identifier (N),
2639 Statements => Statements (N),
2640 End_Label => End_Label (N)));
2642 Analyze (N);
2643 end;
2644 end if;
2645 end Expand_N_Loop_Statement;
2647 -------------------------------
2648 -- Expand_N_Return_Statement --
2649 -------------------------------
2651 procedure Expand_N_Return_Statement (N : Node_Id) is
2652 Loc : constant Source_Ptr := Sloc (N);
2653 Exp : constant Node_Id := Expression (N);
2654 Exptyp : Entity_Id;
2655 T : Entity_Id;
2656 Utyp : Entity_Id;
2657 Scope_Id : Entity_Id;
2658 Kind : Entity_Kind;
2659 Call : Node_Id;
2660 Acc_Stat : Node_Id;
2661 Goto_Stat : Node_Id;
2662 Lab_Node : Node_Id;
2663 Cur_Idx : Nat;
2664 Return_Type : Entity_Id;
2665 Result_Exp : Node_Id;
2666 Result_Id : Entity_Id;
2667 Result_Obj : Node_Id;
2669 begin
2670 -- Case where returned expression is present
2672 if Present (Exp) then
2674 -- Always normalize C/Fortran boolean result. This is not always
2675 -- necessary, but it seems a good idea to minimize the passing
2676 -- around of non-normalized values, and in any case this handles
2677 -- the processing of barrier functions for protected types, which
2678 -- turn the condition into a return statement.
2680 Exptyp := Etype (Exp);
2682 if Is_Boolean_Type (Exptyp)
2683 and then Nonzero_Is_True (Exptyp)
2684 then
2685 Adjust_Condition (Exp);
2686 Adjust_Result_Type (Exp, Exptyp);
2687 end if;
2689 -- Do validity check if enabled for returns
2691 if Validity_Checks_On
2692 and then Validity_Check_Returns
2693 then
2694 Ensure_Valid (Exp);
2695 end if;
2696 end if;
2698 -- Find relevant enclosing scope from which return is returning
2700 Cur_Idx := Scope_Stack.Last;
2701 loop
2702 Scope_Id := Scope_Stack.Table (Cur_Idx).Entity;
2704 if Ekind (Scope_Id) /= E_Block
2705 and then Ekind (Scope_Id) /= E_Loop
2706 then
2707 exit;
2709 else
2710 Cur_Idx := Cur_Idx - 1;
2711 pragma Assert (Cur_Idx >= 0);
2712 end if;
2713 end loop;
2715 if No (Exp) then
2716 Kind := Ekind (Scope_Id);
2718 -- If it is a return from procedures do no extra steps
2720 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
2721 return;
2722 end if;
2724 pragma Assert (Is_Entry (Scope_Id));
2726 -- Look at the enclosing block to see whether the return is from
2727 -- an accept statement or an entry body.
2729 for J in reverse 0 .. Cur_Idx loop
2730 Scope_Id := Scope_Stack.Table (J).Entity;
2731 exit when Is_Concurrent_Type (Scope_Id);
2732 end loop;
2734 -- If it is a return from accept statement it should be expanded
2735 -- as a call to RTS Complete_Rendezvous and a goto to the end of
2736 -- the accept body.
2738 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
2739 -- Expand_N_Accept_Alternative in exp_ch9.adb)
2741 if Is_Task_Type (Scope_Id) then
2743 Call := (Make_Procedure_Call_Statement (Loc,
2744 Name => New_Reference_To
2745 (RTE (RE_Complete_Rendezvous), Loc)));
2746 Insert_Before (N, Call);
2747 -- why not insert actions here???
2748 Analyze (Call);
2750 Acc_Stat := Parent (N);
2751 while Nkind (Acc_Stat) /= N_Accept_Statement loop
2752 Acc_Stat := Parent (Acc_Stat);
2753 end loop;
2755 Lab_Node := Last (Statements
2756 (Handled_Statement_Sequence (Acc_Stat)));
2758 Goto_Stat := Make_Goto_Statement (Loc,
2759 Name => New_Occurrence_Of
2760 (Entity (Identifier (Lab_Node)), Loc));
2762 Set_Analyzed (Goto_Stat);
2764 Rewrite (N, Goto_Stat);
2765 Analyze (N);
2767 -- If it is a return from an entry body, put a Complete_Entry_Body
2768 -- call in front of the return.
2770 elsif Is_Protected_Type (Scope_Id) then
2772 Call :=
2773 Make_Procedure_Call_Statement (Loc,
2774 Name => New_Reference_To
2775 (RTE (RE_Complete_Entry_Body), Loc),
2776 Parameter_Associations => New_List
2777 (Make_Attribute_Reference (Loc,
2778 Prefix =>
2779 New_Reference_To
2780 (Object_Ref
2781 (Corresponding_Body (Parent (Scope_Id))),
2782 Loc),
2783 Attribute_Name => Name_Unchecked_Access)));
2785 Insert_Before (N, Call);
2786 Analyze (Call);
2788 end if;
2790 return;
2791 end if;
2793 T := Etype (Exp);
2794 Return_Type := Etype (Scope_Id);
2795 Utyp := Underlying_Type (Return_Type);
2797 -- Check the result expression of a scalar function against
2798 -- the subtype of the function by inserting a conversion.
2799 -- This conversion must eventually be performed for other
2800 -- classes of types, but for now it's only done for scalars.
2801 -- ???
2803 if Is_Scalar_Type (T) then
2804 Rewrite (Exp, Convert_To (Return_Type, Exp));
2805 Analyze (Exp);
2806 end if;
2808 -- Deal with returning variable length objects and controlled types
2810 -- Nothing to do if we are returning by reference, or this is not
2811 -- a type that requires special processing (indicated by the fact
2812 -- that it requires a cleanup scope for the secondary stack case)
2814 if Is_Return_By_Reference_Type (T) then
2815 null;
2817 elsif not Requires_Transient_Scope (Return_Type) then
2819 -- mutable records with no variable length components are not
2820 -- returned on the sec-stack so we need to make sure that the
2821 -- backend will only copy back the size of the actual value and not
2822 -- the maximum size. We create an actual subtype for this purpose
2824 declare
2825 Ubt : constant Entity_Id := Underlying_Type (Base_Type (T));
2826 Decl : Node_Id;
2827 Ent : Entity_Id;
2828 begin
2829 if Has_Discriminants (Ubt)
2830 and then not Is_Constrained (Ubt)
2831 and then not Has_Unchecked_Union (Ubt)
2832 then
2833 Decl := Build_Actual_Subtype (Ubt, Exp);
2834 Ent := Defining_Identifier (Decl);
2835 Insert_Action (Exp, Decl);
2836 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
2837 end if;
2838 end;
2840 -- Case of secondary stack not used
2842 elsif Function_Returns_With_DSP (Scope_Id) then
2844 -- Here what we need to do is to always return by reference, since
2845 -- we will return with the stack pointer depressed. We may need to
2846 -- do a copy to a local temporary before doing this return.
2848 No_Secondary_Stack_Case : declare
2849 Local_Copy_Required : Boolean := False;
2850 -- Set to True if a local copy is required
2852 Copy_Ent : Entity_Id;
2853 -- Used for the target entity if a copy is required
2855 Decl : Node_Id;
2856 -- Declaration used to create copy if needed
2858 procedure Test_Copy_Required (Expr : Node_Id);
2859 -- Determines if Expr represents a return value for which a
2860 -- copy is required. More specifically, a copy is not required
2861 -- if Expr represents an object or component of an object that
2862 -- is either in the local subprogram frame, or is constant.
2863 -- If a copy is required, then Local_Copy_Required is set True.
2865 ------------------------
2866 -- Test_Copy_Required --
2867 ------------------------
2869 procedure Test_Copy_Required (Expr : Node_Id) is
2870 Ent : Entity_Id;
2872 begin
2873 -- If component, test prefix (object containing component)
2875 if Nkind (Expr) = N_Indexed_Component
2876 or else
2877 Nkind (Expr) = N_Selected_Component
2878 then
2879 Test_Copy_Required (Prefix (Expr));
2880 return;
2882 -- See if we have an entity name
2884 elsif Is_Entity_Name (Expr) then
2885 Ent := Entity (Expr);
2887 -- Constant entity is always OK, no copy required
2889 if Ekind (Ent) = E_Constant then
2890 return;
2892 -- No copy required for local variable
2894 elsif Ekind (Ent) = E_Variable
2895 and then Scope (Ent) = Current_Subprogram
2896 then
2897 return;
2898 end if;
2899 end if;
2901 -- All other cases require a copy
2903 Local_Copy_Required := True;
2904 end Test_Copy_Required;
2906 -- Start of processing for No_Secondary_Stack_Case
2908 begin
2909 -- No copy needed if result is from a function call.
2910 -- In this case the result is already being returned by
2911 -- reference with the stack pointer depressed.
2913 -- To make up for a gcc 2.8.1 deficiency (???), we perform
2914 -- the copy for array types if the constrained status of the
2915 -- target type is different from that of the expression.
2917 if Requires_Transient_Scope (T)
2918 and then
2919 (not Is_Array_Type (T)
2920 or else Is_Constrained (T) = Is_Constrained (Return_Type)
2921 or else Controlled_Type (T))
2922 and then Nkind (Exp) = N_Function_Call
2923 then
2924 Set_By_Ref (N);
2926 -- We always need a local copy for a controlled type, since
2927 -- we are required to finalize the local value before return.
2928 -- The copy will automatically include the required finalize.
2929 -- Moreover, gigi cannot make this copy, since we need special
2930 -- processing to ensure proper behavior for finalization.
2932 -- Note: the reason we are returning with a depressed stack
2933 -- pointer in the controlled case (even if the type involved
2934 -- is constrained) is that we must make a local copy to deal
2935 -- properly with the requirement that the local result be
2936 -- finalized.
2938 elsif Controlled_Type (Utyp) then
2939 Copy_Ent :=
2940 Make_Defining_Identifier (Loc,
2941 Chars => New_Internal_Name ('R'));
2943 -- Build declaration to do the copy, and insert it, setting
2944 -- Assignment_OK, because we may be copying a limited type.
2945 -- In addition we set the special flag to inhibit finalize
2946 -- attachment if this is a controlled type (since this attach
2947 -- must be done by the caller, otherwise if we attach it here
2948 -- we will finalize the returned result prematurely).
2950 Decl :=
2951 Make_Object_Declaration (Loc,
2952 Defining_Identifier => Copy_Ent,
2953 Object_Definition => New_Occurrence_Of (Return_Type, Loc),
2954 Expression => Relocate_Node (Exp));
2956 Set_Assignment_OK (Decl);
2957 Set_Delay_Finalize_Attach (Decl);
2958 Insert_Action (N, Decl);
2960 -- Now the actual return uses the copied value
2962 Rewrite (Exp, New_Occurrence_Of (Copy_Ent, Loc));
2963 Analyze_And_Resolve (Exp, Return_Type);
2965 -- Since we have made the copy, gigi does not have to, so
2966 -- we set the By_Ref flag to prevent another copy being made.
2968 Set_By_Ref (N);
2970 -- Non-controlled cases
2972 else
2973 Test_Copy_Required (Exp);
2975 -- If a local copy is required, then gigi will make the
2976 -- copy, otherwise, we can return the result directly,
2977 -- so set By_Ref to suppress the gigi copy.
2979 if not Local_Copy_Required then
2980 Set_By_Ref (N);
2981 end if;
2982 end if;
2983 end No_Secondary_Stack_Case;
2985 -- Here if secondary stack is used
2987 else
2988 -- Make sure that no surrounding block will reclaim the
2989 -- secondary-stack on which we are going to put the result.
2990 -- Not only may this introduce secondary stack leaks but worse,
2991 -- if the reclamation is done too early, then the result we are
2992 -- returning may get clobbered. See example in 7417-003.
2994 declare
2995 S : Entity_Id := Current_Scope;
2997 begin
2998 while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
2999 Set_Sec_Stack_Needed_For_Return (S, True);
3000 S := Enclosing_Dynamic_Scope (S);
3001 end loop;
3002 end;
3004 -- Optimize the case where the result is a function call. In this
3005 -- case either the result is already on the secondary stack, or is
3006 -- already being returned with the stack pointer depressed and no
3007 -- further processing is required except to set the By_Ref flag to
3008 -- ensure that gigi does not attempt an extra unnecessary copy.
3009 -- (actually not just unnecessary but harmfully wrong in the case
3010 -- of a controlled type, where gigi does not know how to do a copy).
3011 -- To make up for a gcc 2.8.1 deficiency (???), we perform
3012 -- the copy for array types if the constrained status of the
3013 -- target type is different from that of the expression.
3015 if Requires_Transient_Scope (T)
3016 and then
3017 (not Is_Array_Type (T)
3018 or else Is_Constrained (T) = Is_Constrained (Return_Type)
3019 or else Controlled_Type (T))
3020 and then Nkind (Exp) = N_Function_Call
3021 then
3022 Set_By_Ref (N);
3024 -- Remove side effects from the expression now so that
3025 -- other part of the expander do not have to reanalyze
3026 -- this node without this optimization
3028 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
3030 -- For controlled types, do the allocation on the sec-stack
3031 -- manually in order to call adjust at the right time
3032 -- type Anon1 is access Return_Type;
3033 -- for Anon1'Storage_pool use ss_pool;
3034 -- Anon2 : anon1 := new Return_Type'(expr);
3035 -- return Anon2.all;
3037 elsif Controlled_Type (Utyp) then
3038 declare
3039 Loc : constant Source_Ptr := Sloc (N);
3040 Temp : constant Entity_Id :=
3041 Make_Defining_Identifier (Loc,
3042 Chars => New_Internal_Name ('R'));
3043 Acc_Typ : constant Entity_Id :=
3044 Make_Defining_Identifier (Loc,
3045 Chars => New_Internal_Name ('A'));
3046 Alloc_Node : Node_Id;
3048 begin
3049 Set_Ekind (Acc_Typ, E_Access_Type);
3051 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
3053 Alloc_Node :=
3054 Make_Allocator (Loc,
3055 Expression =>
3056 Make_Qualified_Expression (Loc,
3057 Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
3058 Expression => Relocate_Node (Exp)));
3060 Insert_List_Before_And_Analyze (N, New_List (
3061 Make_Full_Type_Declaration (Loc,
3062 Defining_Identifier => Acc_Typ,
3063 Type_Definition =>
3064 Make_Access_To_Object_Definition (Loc,
3065 Subtype_Indication =>
3066 New_Reference_To (Return_Type, Loc))),
3068 Make_Object_Declaration (Loc,
3069 Defining_Identifier => Temp,
3070 Object_Definition => New_Reference_To (Acc_Typ, Loc),
3071 Expression => Alloc_Node)));
3073 Rewrite (Exp,
3074 Make_Explicit_Dereference (Loc,
3075 Prefix => New_Reference_To (Temp, Loc)));
3077 Analyze_And_Resolve (Exp, Return_Type);
3078 end;
3080 -- Otherwise use the gigi mechanism to allocate result on the
3081 -- secondary stack.
3083 else
3084 Set_Storage_Pool (N, RTE (RE_SS_Pool));
3086 -- If we are generating code for the Java VM do not use
3087 -- SS_Allocate since everything is heap-allocated anyway.
3089 if not Java_VM then
3090 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
3091 end if;
3092 end if;
3093 end if;
3095 -- Implement the rules of 6.5(8-10), which require a tag check in
3096 -- the case of a limited tagged return type, and tag reassignment
3097 -- for nonlimited tagged results. These actions are needed when
3098 -- the return type is a specific tagged type and the result
3099 -- expression is a conversion or a formal parameter, because in
3100 -- that case the tag of the expression might differ from the tag
3101 -- of the specific result type.
3103 if Is_Tagged_Type (Utyp)
3104 and then not Is_Class_Wide_Type (Utyp)
3105 and then (Nkind (Exp) = N_Type_Conversion
3106 or else Nkind (Exp) = N_Unchecked_Type_Conversion
3107 or else (Is_Entity_Name (Exp)
3108 and then Ekind (Entity (Exp)) in Formal_Kind))
3109 then
3110 -- When the return type is limited, perform a check that the
3111 -- tag of the result is the same as the tag of the return type.
3113 if Is_Limited_Type (Return_Type) then
3114 Insert_Action (Exp,
3115 Make_Raise_Constraint_Error (Loc,
3116 Condition =>
3117 Make_Op_Ne (Loc,
3118 Left_Opnd =>
3119 Make_Selected_Component (Loc,
3120 Prefix => Duplicate_Subexpr (Exp),
3121 Selector_Name =>
3122 New_Reference_To (First_Tag_Component (Utyp), Loc)),
3123 Right_Opnd =>
3124 Unchecked_Convert_To (RTE (RE_Tag),
3125 New_Reference_To
3126 (Node (First_Elmt
3127 (Access_Disp_Table (Base_Type (Utyp)))),
3128 Loc))),
3129 Reason => CE_Tag_Check_Failed));
3131 -- If the result type is a specific nonlimited tagged type,
3132 -- then we have to ensure that the tag of the result is that
3133 -- of the result type. This is handled by making a copy of the
3134 -- expression in the case where it might have a different tag,
3135 -- namely when the expression is a conversion or a formal
3136 -- parameter. We create a new object of the result type and
3137 -- initialize it from the expression, which will implicitly
3138 -- force the tag to be set appropriately.
3140 else
3141 Result_Id :=
3142 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3143 Result_Exp := New_Reference_To (Result_Id, Loc);
3145 Result_Obj :=
3146 Make_Object_Declaration (Loc,
3147 Defining_Identifier => Result_Id,
3148 Object_Definition => New_Reference_To (Return_Type, Loc),
3149 Constant_Present => True,
3150 Expression => Relocate_Node (Exp));
3152 Set_Assignment_OK (Result_Obj);
3153 Insert_Action (Exp, Result_Obj);
3155 Rewrite (Exp, Result_Exp);
3156 Analyze_And_Resolve (Exp, Return_Type);
3157 end if;
3159 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
3160 -- a check that the level of the return expression's underlying type
3161 -- is not deeper than the level of the master enclosing the function.
3162 -- Always generate the check when the type of the return expression
3163 -- is class-wide, when it's a type conversion, or when it's a formal
3164 -- parameter. Otherwise, suppress the check in the case where the
3165 -- return expression has a specific type whose level is known not to
3166 -- be statically deeper than the function's result type.
3168 elsif Ada_Version >= Ada_05
3169 and then Is_Class_Wide_Type (Return_Type)
3170 and then not Scope_Suppress (Accessibility_Check)
3171 and then
3172 (Is_Class_Wide_Type (Etype (Exp))
3173 or else Nkind (Exp) = N_Type_Conversion
3174 or else Nkind (Exp) = N_Unchecked_Type_Conversion
3175 or else (Is_Entity_Name (Exp)
3176 and then Ekind (Entity (Exp)) in Formal_Kind)
3177 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
3178 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
3179 then
3180 Insert_Action (Exp,
3181 Make_Raise_Program_Error (Loc,
3182 Condition =>
3183 Make_Op_Gt (Loc,
3184 Left_Opnd =>
3185 Make_Function_Call (Loc,
3186 Name =>
3187 New_Reference_To
3188 (RTE (RE_Get_Access_Level), Loc),
3189 Parameter_Associations =>
3190 New_List (Make_Attribute_Reference (Loc,
3191 Prefix =>
3192 Duplicate_Subexpr (Exp),
3193 Attribute_Name =>
3194 Name_Tag))),
3195 Right_Opnd =>
3196 Make_Integer_Literal (Loc,
3197 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
3198 Reason => PE_Accessibility_Check_Failed));
3199 end if;
3201 exception
3202 when RE_Not_Available =>
3203 return;
3204 end Expand_N_Return_Statement;
3206 ------------------------------
3207 -- Make_Tag_Ctrl_Assignment --
3208 ------------------------------
3210 function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
3211 Loc : constant Source_Ptr := Sloc (N);
3212 L : constant Node_Id := Name (N);
3213 T : constant Entity_Id := Underlying_Type (Etype (L));
3215 Ctrl_Act : constant Boolean := Controlled_Type (T)
3216 and then not No_Ctrl_Actions (N);
3218 Save_Tag : constant Boolean := Is_Tagged_Type (T)
3219 and then not No_Ctrl_Actions (N)
3220 and then not Java_VM;
3221 -- Tags are not saved and restored when Java_VM because JVM tags
3222 -- are represented implicitly in objects.
3224 Res : List_Id;
3225 Tag_Tmp : Entity_Id;
3227 begin
3228 Res := New_List;
3230 -- Finalize the target of the assignment when controlled.
3231 -- We have two exceptions here:
3233 -- 1. If we are in an init proc since it is an initialization
3234 -- more than an assignment
3236 -- 2. If the left-hand side is a temporary that was not initialized
3237 -- (or the parent part of a temporary since it is the case in
3238 -- extension aggregates). Such a temporary does not come from
3239 -- source. We must examine the original node for the prefix, because
3240 -- it may be a component of an entry formal, in which case it has
3241 -- been rewritten and does not appear to come from source either.
3243 -- Case of init proc
3245 if not Ctrl_Act then
3246 null;
3248 -- The left hand side is an uninitialized temporary
3250 elsif Nkind (L) = N_Type_Conversion
3251 and then Is_Entity_Name (Expression (L))
3252 and then No_Initialization (Parent (Entity (Expression (L))))
3253 then
3254 null;
3255 else
3256 Append_List_To (Res,
3257 Make_Final_Call (
3258 Ref => Duplicate_Subexpr_No_Checks (L),
3259 Typ => Etype (L),
3260 With_Detach => New_Reference_To (Standard_False, Loc)));
3261 end if;
3263 -- Save the Tag in a local variable Tag_Tmp
3265 if Save_Tag then
3266 Tag_Tmp :=
3267 Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
3269 Append_To (Res,
3270 Make_Object_Declaration (Loc,
3271 Defining_Identifier => Tag_Tmp,
3272 Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
3273 Expression =>
3274 Make_Selected_Component (Loc,
3275 Prefix => Duplicate_Subexpr_No_Checks (L),
3276 Selector_Name => New_Reference_To (First_Tag_Component (T),
3277 Loc))));
3279 -- Otherwise Tag_Tmp not used
3281 else
3282 Tag_Tmp := Empty;
3283 end if;
3285 -- Processing for controlled types and types with controlled components
3287 -- Variables of such types contain pointers used to chain them in
3288 -- finalization lists, in addition to user data. These pointers are
3289 -- specific to each object of the type, not to the value being assigned.
3290 -- Thus they need to be left intact during the assignment. We achieve
3291 -- this by constructing a Storage_Array subtype, and by overlaying
3292 -- objects of this type on the source and target of the assignment.
3293 -- The assignment is then rewritten to assignments of slices of these
3294 -- arrays, copying the user data, and leaving the pointers untouched.
3296 if Ctrl_Act then
3297 Controlled_Actions : declare
3298 Prev_Ref : Node_Id;
3299 -- A reference to the Prev component of the record controller
3301 First_After_Root : Node_Id := Empty;
3302 -- Index of first byte to be copied (used to skip
3303 -- Root_Controlled in controlled objects).
3305 Last_Before_Hole : Node_Id := Empty;
3306 -- Index of last byte to be copied before outermost record
3307 -- controller data.
3309 Hole_Length : Node_Id := Empty;
3310 -- Length of record controller data (Prev and Next pointers)
3312 First_After_Hole : Node_Id := Empty;
3313 -- Index of first byte to be copied after outermost record
3314 -- controller data.
3316 Expr, Source_Size : Node_Id;
3317 Source_Actual_Subtype : Entity_Id;
3318 -- Used for computation of the size of the data to be copied
3320 Range_Type : Entity_Id;
3321 Opaque_Type : Entity_Id;
3323 function Build_Slice
3324 (Rec : Entity_Id;
3325 Lo : Node_Id;
3326 Hi : Node_Id) return Node_Id;
3327 -- Build and return a slice of an array of type S overlaid
3328 -- on object Rec, with bounds specified by Lo and Hi. If either
3329 -- bound is empty, a default of S'First (respectively S'Last)
3330 -- is used.
3332 -----------------
3333 -- Build_Slice --
3334 -----------------
3336 function Build_Slice
3337 (Rec : Node_Id;
3338 Lo : Node_Id;
3339 Hi : Node_Id) return Node_Id
3341 Lo_Bound : Node_Id;
3342 Hi_Bound : Node_Id;
3344 Opaque : constant Node_Id :=
3345 Unchecked_Convert_To (Opaque_Type,
3346 Make_Attribute_Reference (Loc,
3347 Prefix => Rec,
3348 Attribute_Name => Name_Address));
3349 -- Access value designating an opaque storage array of
3350 -- type S overlaid on record Rec.
3352 begin
3353 -- Compute slice bounds using S'First (1) and S'Last
3354 -- as default values when not specified by the caller.
3356 if No (Lo) then
3357 Lo_Bound := Make_Integer_Literal (Loc, 1);
3358 else
3359 Lo_Bound := Lo;
3360 end if;
3362 if No (Hi) then
3363 Hi_Bound := Make_Attribute_Reference (Loc,
3364 Prefix => New_Occurrence_Of (Range_Type, Loc),
3365 Attribute_Name => Name_Last);
3366 else
3367 Hi_Bound := Hi;
3368 end if;
3370 return Make_Slice (Loc,
3371 Prefix =>
3372 Opaque,
3373 Discrete_Range => Make_Range (Loc,
3374 Lo_Bound, Hi_Bound));
3375 end Build_Slice;
3377 -- Start of processing for Controlled_Actions
3379 begin
3380 -- Create a constrained subtype of Storage_Array whose size
3381 -- corresponds to the value being assigned.
3383 -- subtype G is Storage_Offset range
3384 -- 1 .. (Expr'Size + Storage_Unit - 1) / Storage_Unit
3386 Expr := Duplicate_Subexpr_No_Checks (Expression (N));
3388 if Nkind (Expr) = N_Qualified_Expression then
3389 Expr := Expression (Expr);
3390 end if;
3392 Source_Actual_Subtype := Etype (Expr);
3394 if Has_Discriminants (Source_Actual_Subtype)
3395 and then not Is_Constrained (Source_Actual_Subtype)
3396 then
3397 Append_To (Res,
3398 Build_Actual_Subtype (Source_Actual_Subtype, Expr));
3399 Source_Actual_Subtype := Defining_Identifier (Last (Res));
3400 end if;
3402 Source_Size :=
3403 Make_Op_Add (Loc,
3404 Left_Opnd =>
3405 Make_Attribute_Reference (Loc,
3406 Prefix =>
3407 New_Occurrence_Of (Source_Actual_Subtype, Loc),
3408 Attribute_Name =>
3409 Name_Size),
3410 Right_Opnd =>
3411 Make_Integer_Literal (Loc,
3412 System_Storage_Unit - 1));
3413 Source_Size :=
3414 Make_Op_Divide (Loc,
3415 Left_Opnd => Source_Size,
3416 Right_Opnd =>
3417 Make_Integer_Literal (Loc,
3418 Intval => System_Storage_Unit));
3420 Range_Type :=
3421 Make_Defining_Identifier (Loc,
3422 New_Internal_Name ('G'));
3424 Append_To (Res,
3425 Make_Subtype_Declaration (Loc,
3426 Defining_Identifier => Range_Type,
3427 Subtype_Indication =>
3428 Make_Subtype_Indication (Loc,
3429 Subtype_Mark =>
3430 New_Reference_To (RTE (RE_Storage_Offset), Loc),
3431 Constraint => Make_Range_Constraint (Loc,
3432 Range_Expression =>
3433 Make_Range (Loc,
3434 Low_Bound => Make_Integer_Literal (Loc, 1),
3435 High_Bound => Source_Size)))));
3437 -- subtype S is Storage_Array (G)
3439 Append_To (Res,
3440 Make_Subtype_Declaration (Loc,
3441 Defining_Identifier =>
3442 Make_Defining_Identifier (Loc,
3443 New_Internal_Name ('S')),
3444 Subtype_Indication =>
3445 Make_Subtype_Indication (Loc,
3446 Subtype_Mark =>
3447 New_Reference_To (RTE (RE_Storage_Array), Loc),
3448 Constraint =>
3449 Make_Index_Or_Discriminant_Constraint (Loc,
3450 Constraints =>
3451 New_List (New_Reference_To (Range_Type, Loc))))));
3453 -- type A is access S
3455 Opaque_Type :=
3456 Make_Defining_Identifier (Loc,
3457 Chars => New_Internal_Name ('A'));
3459 Append_To (Res,
3460 Make_Full_Type_Declaration (Loc,
3461 Defining_Identifier => Opaque_Type,
3462 Type_Definition =>
3463 Make_Access_To_Object_Definition (Loc,
3464 Subtype_Indication =>
3465 New_Occurrence_Of (
3466 Defining_Identifier (Last (Res)), Loc))));
3468 -- Generate appropriate slice assignments
3470 First_After_Root := Make_Integer_Literal (Loc, 1);
3472 -- For the case of a controlled object, skip the
3473 -- Root_Controlled part.
3475 if Is_Controlled (T) then
3476 First_After_Root :=
3477 Make_Op_Add (Loc,
3478 First_After_Root,
3479 Make_Op_Divide (Loc,
3480 Make_Attribute_Reference (Loc,
3481 Prefix =>
3482 New_Occurrence_Of (RTE (RE_Root_Controlled), Loc),
3483 Attribute_Name => Name_Size),
3484 Make_Integer_Literal (Loc, System_Storage_Unit)));
3485 end if;
3487 -- For the case of a record with controlled components, skip
3488 -- the Prev and Next components of the record controller.
3489 -- These components constitute a 'hole' in the middle of the
3490 -- data to be copied.
3492 if Has_Controlled_Component (T) then
3493 Prev_Ref :=
3494 Make_Selected_Component (Loc,
3495 Prefix =>
3496 Make_Selected_Component (Loc,
3497 Prefix => Duplicate_Subexpr_No_Checks (L),
3498 Selector_Name =>
3499 New_Reference_To (Controller_Component (T), Loc)),
3500 Selector_Name => Make_Identifier (Loc, Name_Prev));
3502 -- Last index before hole: determined by position of
3503 -- the _Controller.Prev component.
3505 Last_Before_Hole :=
3506 Make_Defining_Identifier (Loc,
3507 New_Internal_Name ('L'));
3509 Append_To (Res,
3510 Make_Object_Declaration (Loc,
3511 Defining_Identifier => Last_Before_Hole,
3512 Object_Definition => New_Occurrence_Of (
3513 RTE (RE_Storage_Offset), Loc),
3514 Constant_Present => True,
3515 Expression => Make_Op_Add (Loc,
3516 Make_Attribute_Reference (Loc,
3517 Prefix => Prev_Ref,
3518 Attribute_Name => Name_Position),
3519 Make_Attribute_Reference (Loc,
3520 Prefix => New_Copy_Tree (Prefix (Prev_Ref)),
3521 Attribute_Name => Name_Position))));
3523 -- Hole length: size of the Prev and Next components
3525 Hole_Length :=
3526 Make_Op_Multiply (Loc,
3527 Left_Opnd => Make_Integer_Literal (Loc, Uint_2),
3528 Right_Opnd =>
3529 Make_Op_Divide (Loc,
3530 Left_Opnd =>
3531 Make_Attribute_Reference (Loc,
3532 Prefix => New_Copy_Tree (Prev_Ref),
3533 Attribute_Name => Name_Size),
3534 Right_Opnd =>
3535 Make_Integer_Literal (Loc,
3536 Intval => System_Storage_Unit)));
3538 -- First index after hole
3540 First_After_Hole :=
3541 Make_Defining_Identifier (Loc,
3542 New_Internal_Name ('F'));
3544 Append_To (Res,
3545 Make_Object_Declaration (Loc,
3546 Defining_Identifier => First_After_Hole,
3547 Object_Definition => New_Occurrence_Of (
3548 RTE (RE_Storage_Offset), Loc),
3549 Constant_Present => True,
3550 Expression =>
3551 Make_Op_Add (Loc,
3552 Left_Opnd =>
3553 Make_Op_Add (Loc,
3554 Left_Opnd =>
3555 New_Occurrence_Of (Last_Before_Hole, Loc),
3556 Right_Opnd => Hole_Length),
3557 Right_Opnd => Make_Integer_Literal (Loc, 1))));
3559 Last_Before_Hole := New_Occurrence_Of (Last_Before_Hole, Loc);
3560 First_After_Hole := New_Occurrence_Of (First_After_Hole, Loc);
3561 end if;
3563 -- Assign the first slice (possibly skipping Root_Controlled,
3564 -- up to the beginning of the record controller if present,
3565 -- up to the end of the object if not).
3567 Append_To (Res, Make_Assignment_Statement (Loc,
3568 Name => Build_Slice (
3569 Rec => Duplicate_Subexpr_No_Checks (L),
3570 Lo => First_After_Root,
3571 Hi => Last_Before_Hole),
3573 Expression => Build_Slice (
3574 Rec => Expression (N),
3575 Lo => First_After_Root,
3576 Hi => New_Copy_Tree (Last_Before_Hole))));
3578 if Present (First_After_Hole) then
3580 -- If a record controller is present, copy the second slice,
3581 -- from right after the _Controller.Next component up to the
3582 -- end of the object.
3584 Append_To (Res, Make_Assignment_Statement (Loc,
3585 Name => Build_Slice (
3586 Rec => Duplicate_Subexpr_No_Checks (L),
3587 Lo => First_After_Hole,
3588 Hi => Empty),
3589 Expression => Build_Slice (
3590 Rec => Duplicate_Subexpr_No_Checks (Expression (N)),
3591 Lo => New_Copy_Tree (First_After_Hole),
3592 Hi => Empty)));
3593 end if;
3594 end Controlled_Actions;
3596 else
3597 Append_To (Res, Relocate_Node (N));
3598 end if;
3600 -- Restore the tag
3602 if Save_Tag then
3603 Append_To (Res,
3604 Make_Assignment_Statement (Loc,
3605 Name =>
3606 Make_Selected_Component (Loc,
3607 Prefix => Duplicate_Subexpr_No_Checks (L),
3608 Selector_Name => New_Reference_To (First_Tag_Component (T),
3609 Loc)),
3610 Expression => New_Reference_To (Tag_Tmp, Loc)));
3611 end if;
3613 -- Adjust the target after the assignment when controlled (not in the
3614 -- init proc since it is an initialization more than an assignment).
3616 if Ctrl_Act then
3617 Append_List_To (Res,
3618 Make_Adjust_Call (
3619 Ref => Duplicate_Subexpr_Move_Checks (L),
3620 Typ => Etype (L),
3621 Flist_Ref => New_Reference_To (RTE (RE_Global_Final_List), Loc),
3622 With_Attach => Make_Integer_Literal (Loc, 0)));
3623 end if;
3625 return Res;
3627 exception
3628 -- Could use comment here ???
3630 when RE_Not_Available =>
3631 return Empty_List;
3632 end Make_Tag_Ctrl_Assignment;
3634 ------------------------------------
3635 -- Possible_Bit_Aligned_Component --
3636 ------------------------------------
3638 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
3639 begin
3640 case Nkind (N) is
3642 -- Case of indexed component
3644 when N_Indexed_Component =>
3645 declare
3646 P : constant Node_Id := Prefix (N);
3647 Ptyp : constant Entity_Id := Etype (P);
3649 begin
3650 -- If we know the component size and it is less than 64, then
3651 -- we are definitely OK. The back end always does assignment
3652 -- of misaligned small objects correctly.
3654 if Known_Static_Component_Size (Ptyp)
3655 and then Component_Size (Ptyp) <= 64
3656 then
3657 return False;
3659 -- Otherwise, we need to test the prefix, to see if we are
3660 -- indexing from a possibly unaligned component.
3662 else
3663 return Possible_Bit_Aligned_Component (P);
3664 end if;
3665 end;
3667 -- Case of selected component
3669 when N_Selected_Component =>
3670 declare
3671 P : constant Node_Id := Prefix (N);
3672 Comp : constant Entity_Id := Entity (Selector_Name (N));
3674 begin
3675 -- If there is no component clause, then we are in the clear
3676 -- since the back end will never misalign a large component
3677 -- unless it is forced to do so. In the clear means we need
3678 -- only the recursive test on the prefix.
3680 if Component_May_Be_Bit_Aligned (Comp) then
3681 return True;
3682 else
3683 return Possible_Bit_Aligned_Component (P);
3684 end if;
3685 end;
3687 -- If we have neither a record nor array component, it means that
3688 -- we have fallen off the top testing prefixes recursively, and
3689 -- we now have a stand alone object, where we don't have a problem
3691 when others =>
3692 return False;
3694 end case;
3695 end Possible_Bit_Aligned_Component;
3697 end Exp_Ch5;