2005-06-07 Adrian Straetling <straetling@de.ibm.com>
[official-gcc.git] / gcc / basic-block.h
blob2979e01a3ea825b4f002fb4512f398530e8c8a2c
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #ifndef GCC_BASIC_BLOCK_H
23 #define GCC_BASIC_BLOCK_H
25 #include "bitmap.h"
26 #include "sbitmap.h"
27 #include "varray.h"
28 #include "partition.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "function.h"
34 /* Head of register set linked list. */
35 typedef bitmap_head regset_head;
37 /* A pointer to a regset_head. */
38 typedef bitmap regset;
40 /* Allocate a register set with oballoc. */
41 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
43 /* Do any cleanup needed on a regset when it is no longer used. */
44 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
46 /* Initialize a new regset. */
47 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
49 /* Clear a register set by freeing up the linked list. */
50 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
52 /* Copy a register set to another register set. */
53 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
55 /* Compare two register sets. */
56 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
58 /* `and' a register set with a second register set. */
59 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
61 /* `and' the complement of a register set with a register set. */
62 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
64 /* Inclusive or a register set with a second register set. */
65 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
67 /* Exclusive or a register set with a second register set. */
68 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
70 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
71 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
72 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
74 /* Clear a single register in a register set. */
75 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
77 /* Set a single register in a register set. */
78 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
80 /* Return true if a register is set in a register set. */
81 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
83 /* Copy the hard registers in a register set to the hard register set. */
84 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
85 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
86 do { \
87 CLEAR_HARD_REG_SET (TO); \
88 reg_set_to_hard_reg_set (&TO, FROM); \
89 } while (0)
91 typedef bitmap_iterator reg_set_iterator;
93 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
94 register number and executing CODE for all registers that are set. */
95 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
96 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
98 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
99 REGNUM to the register number and executing CODE for all registers that are
100 set in the first regset and not set in the second. */
101 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
102 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
104 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
105 REGNUM to the register number and executing CODE for all registers that are
106 set in both regsets. */
107 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
108 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
110 /* Type we use to hold basic block counters. Should be at least
111 64bit. Although a counter cannot be negative, we use a signed
112 type, because erroneous negative counts can be generated when the
113 flow graph is manipulated by various optimizations. A signed type
114 makes those easy to detect. */
115 typedef HOST_WIDEST_INT gcov_type;
117 /* Control flow edge information. */
118 struct edge_def GTY(())
120 /* The two blocks at the ends of the edge. */
121 struct basic_block_def *src;
122 struct basic_block_def *dest;
124 /* Instructions queued on the edge. */
125 union edge_def_insns {
126 rtx GTY ((tag ("0"))) r;
127 tree GTY ((tag ("1"))) t;
128 } GTY ((desc ("ir_type ()"))) insns;
130 /* Auxiliary info specific to a pass. */
131 PTR GTY ((skip (""))) aux;
133 /* Location of any goto implicit in the edge, during tree-ssa. */
134 source_locus goto_locus;
136 int flags; /* see EDGE_* below */
137 int probability; /* biased by REG_BR_PROB_BASE */
138 gcov_type count; /* Expected number of executions calculated
139 in profile.c */
141 /* The index number corresponding to this edge in the edge vector
142 dest->preds. */
143 unsigned int dest_idx;
146 typedef struct edge_def *edge;
147 DEF_VEC_P(edge);
148 DEF_VEC_ALLOC_P(edge,gc);
150 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
151 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
152 label, or eh */
153 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
154 like an exception, or sibcall */
155 #define EDGE_EH 8 /* Exception throw */
156 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
157 #define EDGE_DFS_BACK 32 /* A backwards edge */
158 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
159 flow. */
160 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
161 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
162 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
163 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
164 predicate is nonzero. */
165 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
166 predicate is zero. */
167 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
168 valid during SSA-CCP. */
169 #define EDGE_CROSSING 8192 /* Edge crosses between hot
170 and cold sections, when we
171 do partitioning. */
172 #define EDGE_ALL_FLAGS 16383
174 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
176 /* Counter summary from the last set of coverage counts read by
177 profile.c. */
178 extern const struct gcov_ctr_summary *profile_info;
180 /* Declared in cfgloop.h. */
181 struct loop;
182 struct loops;
184 /* Declared in tree-flow.h. */
185 struct edge_prediction;
187 /* A basic block is a sequence of instructions with only entry and
188 only one exit. If any one of the instructions are executed, they
189 will all be executed, and in sequence from first to last.
191 There may be COND_EXEC instructions in the basic block. The
192 COND_EXEC *instructions* will be executed -- but if the condition
193 is false the conditionally executed *expressions* will of course
194 not be executed. We don't consider the conditionally executed
195 expression (which might have side-effects) to be in a separate
196 basic block because the program counter will always be at the same
197 location after the COND_EXEC instruction, regardless of whether the
198 condition is true or not.
200 Basic blocks need not start with a label nor end with a jump insn.
201 For example, a previous basic block may just "conditionally fall"
202 into the succeeding basic block, and the last basic block need not
203 end with a jump insn. Block 0 is a descendant of the entry block.
205 A basic block beginning with two labels cannot have notes between
206 the labels.
208 Data for jump tables are stored in jump_insns that occur in no
209 basic block even though these insns can follow or precede insns in
210 basic blocks. */
212 /* Basic block information indexed by block number. */
213 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 /* The first and last insns of the block. */
216 rtx head_;
217 rtx end_;
219 /* Pointers to the first and last trees of the block. */
220 tree stmt_list;
222 /* The edges into and out of the block. */
223 VEC(edge,gc) *preds;
224 VEC(edge,gc) *succs;
226 /* The registers that are live on entry to this block. */
227 bitmap GTY ((skip (""))) global_live_at_start;
229 /* The registers that are live on exit from this block. */
230 bitmap GTY ((skip (""))) global_live_at_end;
232 /* Auxiliary info specific to a pass. */
233 PTR GTY ((skip (""))) aux;
235 /* Innermost loop containing the block. */
236 struct loop * GTY ((skip (""))) loop_father;
238 /* The dominance and postdominance information node. */
239 struct et_node * GTY ((skip (""))) dom[2];
241 /* Previous and next blocks in the chain. */
242 struct basic_block_def *prev_bb;
243 struct basic_block_def *next_bb;
245 /* The data used by basic block copying and reordering functions. */
246 struct reorder_block_def * rbi;
248 /* Chain of PHI nodes for this block. */
249 tree phi_nodes;
251 /* A list of predictions. */
252 struct edge_prediction *predictions;
254 /* Expected number of executions: calculated in profile.c. */
255 gcov_type count;
257 /* The index of this block. */
258 int index;
260 /* The loop depth of this block. */
261 int loop_depth;
263 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
264 int frequency;
266 /* Various flags. See BB_* below. */
267 int flags;
270 typedef struct basic_block_def *basic_block;
272 /* Structure to hold information about the blocks during reordering and
273 copying. Needs to be put on a diet. */
275 struct reorder_block_def GTY(())
277 rtx header;
278 rtx footer;
280 basic_block next;
282 /* These pointers may be unreliable as the first is only used for
283 debugging (and should probably be removed, and the second is only
284 used by copying. The basic blocks pointed to may be removed and
285 that leaves these pointers pointing to garbage. */
286 basic_block GTY ((skip (""))) original;
287 basic_block GTY ((skip (""))) copy;
289 int duplicated;
290 int copy_number;
292 /* This field is used by the bb-reorder and tracer passes. */
293 int visited;
296 typedef struct reorder_block_def *reorder_block_def;
298 #define BB_FREQ_MAX 10000
300 /* Masks for basic_block.flags.
302 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
303 the compilation, so they are never cleared.
305 All other flags may be cleared by clear_bb_flags(). It is generally
306 a bad idea to rely on any flags being up-to-date. */
308 enum
311 /* Set if insns in BB have are modified. Used for updating liveness info. */
312 BB_DIRTY = 1,
314 /* Only set on blocks that have just been created by create_bb. */
315 BB_NEW = 2,
317 /* Set by find_unreachable_blocks. Do not rely on this being set in any
318 pass. */
319 BB_REACHABLE = 4,
321 /* Set for blocks in an irreducible loop by loop analysis. */
322 BB_IRREDUCIBLE_LOOP = 8,
324 /* Set on blocks that may actually not be single-entry single-exit block. */
325 BB_SUPERBLOCK = 16,
327 /* Set on basic blocks that the scheduler should not touch. This is used
328 by SMS to prevent other schedulers from messing with the loop schedule. */
329 BB_DISABLE_SCHEDULE = 32,
331 /* Set on blocks that should be put in a hot section. */
332 BB_HOT_PARTITION = 64,
334 /* Set on blocks that should be put in a cold section. */
335 BB_COLD_PARTITION = 128
338 /* Dummy flag for convenience in the hot/cold partitioning code. */
339 #define BB_UNPARTITIONED 0
341 /* Partitions, to be used when partitioning hot and cold basic blocks into
342 separate sections. */
343 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
344 #define BB_SET_PARTITION(bb, part) do { \
345 basic_block bb_ = (bb); \
346 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
347 | (part)); \
348 } while (0)
350 #define BB_COPY_PARTITION(dstbb, srcbb) \
351 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
353 /* A structure to group all the per-function control flow graph data.
354 The x_* prefixing is necessary because otherwise references to the
355 fields of this struct are interpreted as the defines for backward
356 source compatibility following the definition of this struct. */
357 struct control_flow_graph GTY(())
359 /* Block pointers for the exit and entry of a function.
360 These are always the head and tail of the basic block list. */
361 basic_block x_entry_block_ptr;
362 basic_block x_exit_block_ptr;
364 /* Index by basic block number, get basic block struct info. */
365 varray_type x_basic_block_info;
367 /* Number of basic blocks in this flow graph. */
368 int x_n_basic_blocks;
370 /* Number of edges in this flow graph. */
371 int x_n_edges;
373 /* The first free basic block number. */
374 int x_last_basic_block;
376 /* Mapping of labels to their associated blocks. At present
377 only used for the tree CFG. */
378 varray_type x_label_to_block_map;
380 enum profile_status {
381 PROFILE_ABSENT,
382 PROFILE_GUESSED,
383 PROFILE_READ
384 } x_profile_status;
387 /* Defines for accessing the fields of the CFG structure for function FN. */
388 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
389 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
390 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
391 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
392 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
393 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
394 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
396 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
397 (VARRAY_BB (basic_block_info_for_function(FN), (N)))
399 /* Defines for textual backward source compatibility. */
400 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
401 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
402 #define basic_block_info (cfun->cfg->x_basic_block_info)
403 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
404 #define n_edges (cfun->cfg->x_n_edges)
405 #define last_basic_block (cfun->cfg->x_last_basic_block)
406 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
407 #define profile_status (cfun->cfg->x_profile_status)
409 #define BASIC_BLOCK(N) (VARRAY_BB (basic_block_info, (N)))
411 /* TRUE if we should re-run loop discovery after threading jumps, FALSE
412 otherwise. */
413 extern bool rediscover_loops_after_threading;
415 /* For iterating over basic blocks. */
416 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
417 for (BB = FROM; BB != TO; BB = BB->DIR)
419 #define FOR_EACH_BB_FN(BB, FN) \
420 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
422 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
424 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
425 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
427 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
429 /* For iterating over insns in basic block. */
430 #define FOR_BB_INSNS(BB, INSN) \
431 for ((INSN) = BB_HEAD (BB); \
432 (INSN) != NEXT_INSN (BB_END (BB)); \
433 (INSN) = NEXT_INSN (INSN))
435 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
436 for ((INSN) = BB_END (BB); \
437 (INSN) != PREV_INSN (BB_HEAD (BB)); \
438 (INSN) = PREV_INSN (INSN))
440 /* Cycles through _all_ basic blocks, even the fake ones (entry and
441 exit block). */
443 #define FOR_ALL_BB(BB) \
444 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
446 #define FOR_ALL_BB_FN(BB, FN) \
447 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
449 extern bitmap_obstack reg_obstack;
451 /* Indexed by n, gives number of basic block that (REG n) is used in.
452 If the value is REG_BLOCK_GLOBAL (-2),
453 it means (REG n) is used in more than one basic block.
454 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
455 This information remains valid for the rest of the compilation
456 of the current function; it is used to control register allocation. */
458 #define REG_BLOCK_UNKNOWN -1
459 #define REG_BLOCK_GLOBAL -2
461 #define REG_BASIC_BLOCK(N) (VARRAY_REG (reg_n_info, N)->basic_block)
463 /* Stuff for recording basic block info. */
465 #define BB_HEAD(B) (B)->head_
466 #define BB_END(B) (B)->end_
468 /* Special block numbers [markers] for entry and exit. */
469 #define ENTRY_BLOCK (-1)
470 #define EXIT_BLOCK (-2)
472 /* Special block number not valid for any block. */
473 #define INVALID_BLOCK (-3)
475 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
476 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
478 extern void compute_bb_for_insn (void);
479 extern void free_bb_for_insn (void);
480 extern void update_bb_for_insn (basic_block);
482 extern void free_basic_block_vars (void);
484 extern void insert_insn_on_edge (rtx, edge);
485 bool safe_insert_insn_on_edge (rtx, edge);
487 extern void commit_edge_insertions (void);
488 extern void commit_edge_insertions_watch_calls (void);
490 extern void remove_fake_edges (void);
491 extern void remove_fake_exit_edges (void);
492 extern void add_noreturn_fake_exit_edges (void);
493 extern void connect_infinite_loops_to_exit (void);
494 extern edge unchecked_make_edge (basic_block, basic_block, int);
495 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
496 extern edge make_edge (basic_block, basic_block, int);
497 extern edge make_single_succ_edge (basic_block, basic_block, int);
498 extern void remove_edge (edge);
499 extern void redirect_edge_succ (edge, basic_block);
500 extern edge redirect_edge_succ_nodup (edge, basic_block);
501 extern void redirect_edge_pred (edge, basic_block);
502 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
503 extern void clear_bb_flags (void);
504 extern void flow_reverse_top_sort_order_compute (int *);
505 extern int flow_depth_first_order_compute (int *, int *);
506 extern int dfs_enumerate_from (basic_block, int,
507 bool (*)(basic_block, void *),
508 basic_block *, int, void *);
509 extern void compute_dominance_frontiers (bitmap *);
510 extern void dump_edge_info (FILE *, edge, int);
511 extern void brief_dump_cfg (FILE *);
512 extern void clear_edges (void);
513 extern rtx first_insn_after_basic_block_note (basic_block);
514 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
515 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
516 gcov_type);
518 /* Structure to group all of the information to process IF-THEN and
519 IF-THEN-ELSE blocks for the conditional execution support. This
520 needs to be in a public file in case the IFCVT macros call
521 functions passing the ce_if_block data structure. */
523 typedef struct ce_if_block
525 basic_block test_bb; /* First test block. */
526 basic_block then_bb; /* THEN block. */
527 basic_block else_bb; /* ELSE block or NULL. */
528 basic_block join_bb; /* Join THEN/ELSE blocks. */
529 basic_block last_test_bb; /* Last bb to hold && or || tests. */
530 int num_multiple_test_blocks; /* # of && and || basic blocks. */
531 int num_and_and_blocks; /* # of && blocks. */
532 int num_or_or_blocks; /* # of || blocks. */
533 int num_multiple_test_insns; /* # of insns in && and || blocks. */
534 int and_and_p; /* Complex test is &&. */
535 int num_then_insns; /* # of insns in THEN block. */
536 int num_else_insns; /* # of insns in ELSE block. */
537 int pass; /* Pass number. */
539 #ifdef IFCVT_EXTRA_FIELDS
540 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
541 #endif
543 } ce_if_block_t;
545 /* This structure maintains an edge list vector. */
546 struct edge_list
548 int num_blocks;
549 int num_edges;
550 edge *index_to_edge;
553 /* The base value for branch probability notes and edge probabilities. */
554 #define REG_BR_PROB_BASE 10000
556 /* This is the value which indicates no edge is present. */
557 #define EDGE_INDEX_NO_EDGE -1
559 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
560 if there is no edge between the 2 basic blocks. */
561 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
563 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
564 block which is either the pred or succ end of the indexed edge. */
565 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
566 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
568 /* INDEX_EDGE returns a pointer to the edge. */
569 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
571 /* Number of edges in the compressed edge list. */
572 #define NUM_EDGES(el) ((el)->num_edges)
574 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
575 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
576 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
578 /* BB is assumed to contain conditional jump. Return the branch edge. */
579 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
580 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
582 /* Return expected execution frequency of the edge E. */
583 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
584 * (e)->probability \
585 + REG_BR_PROB_BASE / 2) \
586 / REG_BR_PROB_BASE)
588 /* Return nonzero if edge is critical. */
589 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
590 && EDGE_COUNT ((e)->dest->preds) >= 2)
592 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
593 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
594 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
595 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
597 /* Returns true if BB has precisely one successor. */
599 static inline bool
600 single_succ_p (basic_block bb)
602 return EDGE_COUNT (bb->succs) == 1;
605 /* Returns true if BB has precisely one predecessor. */
607 static inline bool
608 single_pred_p (basic_block bb)
610 return EDGE_COUNT (bb->preds) == 1;
613 /* Returns the single successor edge of basic block BB. Aborts if
614 BB does not have exactly one successor. */
616 static inline edge
617 single_succ_edge (basic_block bb)
619 gcc_assert (single_succ_p (bb));
620 return EDGE_SUCC (bb, 0);
623 /* Returns the single predecessor edge of basic block BB. Aborts
624 if BB does not have exactly one predecessor. */
626 static inline edge
627 single_pred_edge (basic_block bb)
629 gcc_assert (single_pred_p (bb));
630 return EDGE_PRED (bb, 0);
633 /* Returns the single successor block of basic block BB. Aborts
634 if BB does not have exactly one successor. */
636 static inline basic_block
637 single_succ (basic_block bb)
639 return single_succ_edge (bb)->dest;
642 /* Returns the single predecessor block of basic block BB. Aborts
643 if BB does not have exactly one predecessor.*/
645 static inline basic_block
646 single_pred (basic_block bb)
648 return single_pred_edge (bb)->src;
651 /* Iterator object for edges. */
653 typedef struct {
654 unsigned index;
655 VEC(edge,gc) **container;
656 } edge_iterator;
658 static inline VEC(edge,gc) *
659 ei_container (edge_iterator i)
661 gcc_assert (i.container);
662 return *i.container;
665 #define ei_start(iter) ei_start_1 (&(iter))
666 #define ei_last(iter) ei_last_1 (&(iter))
668 /* Return an iterator pointing to the start of an edge vector. */
669 static inline edge_iterator
670 ei_start_1 (VEC(edge,gc) **ev)
672 edge_iterator i;
674 i.index = 0;
675 i.container = ev;
677 return i;
680 /* Return an iterator pointing to the last element of an edge
681 vector. */
682 static inline edge_iterator
683 ei_last_1 (VEC(edge,gc) **ev)
685 edge_iterator i;
687 i.index = EDGE_COUNT (*ev) - 1;
688 i.container = ev;
690 return i;
693 /* Is the iterator `i' at the end of the sequence? */
694 static inline bool
695 ei_end_p (edge_iterator i)
697 return (i.index == EDGE_COUNT (ei_container (i)));
700 /* Is the iterator `i' at one position before the end of the
701 sequence? */
702 static inline bool
703 ei_one_before_end_p (edge_iterator i)
705 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
708 /* Advance the iterator to the next element. */
709 static inline void
710 ei_next (edge_iterator *i)
712 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
713 i->index++;
716 /* Move the iterator to the previous element. */
717 static inline void
718 ei_prev (edge_iterator *i)
720 gcc_assert (i->index > 0);
721 i->index--;
724 /* Return the edge pointed to by the iterator `i'. */
725 static inline edge
726 ei_edge (edge_iterator i)
728 return EDGE_I (ei_container (i), i.index);
731 /* Return an edge pointed to by the iterator. Do it safely so that
732 NULL is returned when the iterator is pointing at the end of the
733 sequence. */
734 static inline edge
735 ei_safe_edge (edge_iterator i)
737 return !ei_end_p (i) ? ei_edge (i) : NULL;
740 /* Return 1 if we should continue to iterate. Return 0 otherwise.
741 *Edge P is set to the next edge if we are to continue to iterate
742 and NULL otherwise. */
744 static inline bool
745 ei_cond (edge_iterator ei, edge *p)
747 if (!ei_end_p (ei))
749 *p = ei_edge (ei);
750 return 1;
752 else
754 *p = NULL;
755 return 0;
759 /* This macro serves as a convenient way to iterate each edge in a
760 vector of predecessor or successor edges. It must not be used when
761 an element might be removed during the traversal, otherwise
762 elements will be missed. Instead, use a for-loop like that shown
763 in the following pseudo-code:
765 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
767 IF (e != taken_edge)
768 remove_edge (e);
769 ELSE
770 ei_next (&ei);
774 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
775 for ((ITER) = ei_start ((EDGE_VEC)); \
776 ei_cond ((ITER), &(EDGE)); \
777 ei_next (&(ITER)))
779 struct edge_list * create_edge_list (void);
780 void free_edge_list (struct edge_list *);
781 void print_edge_list (FILE *, struct edge_list *);
782 void verify_edge_list (FILE *, struct edge_list *);
783 int find_edge_index (struct edge_list *, basic_block, basic_block);
784 edge find_edge (basic_block, basic_block);
787 enum update_life_extent
789 UPDATE_LIFE_LOCAL = 0,
790 UPDATE_LIFE_GLOBAL = 1,
791 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
794 /* Flags for life_analysis and update_life_info. */
796 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
797 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
798 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
799 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
800 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
801 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
802 by dead code removal. */
803 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
804 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
805 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
806 to flag analysis of asms. */
807 #define PROP_DEAD_INSN 1024 /* Internal flag used within flow.c
808 to flag analysis of dead insn. */
809 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
810 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
811 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
812 | PROP_ALLOW_CFG_CHANGES \
813 | PROP_SCAN_DEAD_STORES)
814 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
815 | PROP_KILL_DEAD_CODE \
816 | PROP_SCAN_DEAD_CODE \
817 | PROP_SCAN_DEAD_STORES)
819 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
820 except for edge forwarding */
821 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
822 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
823 to care REG_DEAD notes. */
824 #define CLEANUP_PRE_LOOP 8 /* Take care to preserve syntactic loop
825 notes. */
826 #define CLEANUP_UPDATE_LIFE 16 /* Keep life information up to date. */
827 #define CLEANUP_THREADING 32 /* Do jump threading. */
828 #define CLEANUP_NO_INSN_DEL 64 /* Do not try to delete trivially dead
829 insns. */
830 #define CLEANUP_CFGLAYOUT 128 /* Do cleanup in cfglayout mode. */
831 #define CLEANUP_LOG_LINKS 256 /* Update log links. */
833 extern void life_analysis (FILE *, int);
834 extern int update_life_info (sbitmap, enum update_life_extent, int);
835 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
836 extern int count_or_remove_death_notes (sbitmap, int);
837 extern int propagate_block (basic_block, regset, regset, regset, int);
839 struct propagate_block_info;
840 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
841 extern struct propagate_block_info *init_propagate_block_info
842 (basic_block, regset, regset, regset, int);
843 extern void free_propagate_block_info (struct propagate_block_info *);
845 /* In lcm.c */
846 extern struct edge_list *pre_edge_lcm (FILE *, int, sbitmap *, sbitmap *,
847 sbitmap *, sbitmap *, sbitmap **,
848 sbitmap **);
849 extern struct edge_list *pre_edge_rev_lcm (FILE *, int, sbitmap *,
850 sbitmap *, sbitmap *,
851 sbitmap *, sbitmap **,
852 sbitmap **);
853 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
854 extern int optimize_mode_switching (FILE *);
856 /* In predict.c */
857 extern void estimate_probability (struct loops *);
858 extern void expected_value_to_br_prob (void);
859 extern bool maybe_hot_bb_p (basic_block);
860 extern bool probably_cold_bb_p (basic_block);
861 extern bool probably_never_executed_bb_p (basic_block);
862 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
863 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
864 extern void tree_predict_edge (edge, enum br_predictor, int);
865 extern void rtl_predict_edge (edge, enum br_predictor, int);
866 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
867 extern void guess_outgoing_edge_probabilities (basic_block);
868 extern void remove_predictions_associated_with_edge (edge);
870 /* In flow.c */
871 extern void init_flow (void);
872 extern void debug_bb (basic_block);
873 extern basic_block debug_bb_n (int);
874 extern void dump_regset (regset, FILE *);
875 extern void debug_regset (regset);
876 extern void allocate_reg_life_data (void);
877 extern void expunge_block (basic_block);
878 extern void link_block (basic_block, basic_block);
879 extern void unlink_block (basic_block);
880 extern void compact_blocks (void);
881 extern basic_block alloc_block (void);
882 extern void find_unreachable_blocks (void);
883 extern int delete_noop_moves (void);
884 extern basic_block force_nonfallthru (edge);
885 extern rtx block_label (basic_block);
886 extern bool forwarder_block_p (basic_block);
887 extern bool purge_all_dead_edges (void);
888 extern bool purge_dead_edges (basic_block);
889 extern void find_many_sub_basic_blocks (sbitmap);
890 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
891 extern bool can_fallthru (basic_block, basic_block);
892 extern bool could_fall_through (basic_block, basic_block);
893 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
894 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
895 extern void alloc_aux_for_block (basic_block, int);
896 extern void alloc_aux_for_blocks (int);
897 extern void clear_aux_for_blocks (void);
898 extern void free_aux_for_blocks (void);
899 extern void alloc_aux_for_edge (edge, int);
900 extern void alloc_aux_for_edges (int);
901 extern void clear_aux_for_edges (void);
902 extern void free_aux_for_edges (void);
903 extern void find_basic_blocks (rtx);
904 extern bool cleanup_cfg (int);
905 extern bool delete_unreachable_blocks (void);
906 extern bool merge_seq_blocks (void);
908 typedef struct conflict_graph_def *conflict_graph;
910 /* Callback function when enumerating conflicts. The arguments are
911 the smaller and larger regno in the conflict. Returns zero if
912 enumeration is to continue, nonzero to halt enumeration. */
913 typedef int (*conflict_graph_enum_fn) (int, int, void *);
916 /* Prototypes of operations on conflict graphs. */
918 extern conflict_graph conflict_graph_new
919 (int);
920 extern void conflict_graph_delete (conflict_graph);
921 extern int conflict_graph_add (conflict_graph, int, int);
922 extern int conflict_graph_conflict_p (conflict_graph, int, int);
923 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
924 void *);
925 extern void conflict_graph_merge_regs (conflict_graph, int, int);
926 extern void conflict_graph_print (conflict_graph, FILE*);
927 extern bool mark_dfs_back_edges (void);
928 extern void set_edge_can_fallthru_flag (void);
929 extern void update_br_prob_note (basic_block);
930 extern void fixup_abnormal_edges (void);
931 extern bool inside_basic_block_p (rtx);
932 extern bool control_flow_insn_p (rtx);
934 /* In bb-reorder.c */
935 extern void reorder_basic_blocks (unsigned int);
936 extern void duplicate_computed_gotos (void);
937 extern void partition_hot_cold_basic_blocks (void);
939 /* In cfg.c */
940 extern void initialize_bb_rbi (basic_block bb);
942 /* In dominance.c */
944 enum cdi_direction
946 CDI_DOMINATORS,
947 CDI_POST_DOMINATORS
950 enum dom_state
952 DOM_NONE, /* Not computed at all. */
953 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
954 DOM_OK /* Everything is ok. */
957 extern enum dom_state dom_computed[2];
959 extern bool dom_info_available_p (enum cdi_direction);
960 extern void calculate_dominance_info (enum cdi_direction);
961 extern void free_dominance_info (enum cdi_direction);
962 extern basic_block nearest_common_dominator (enum cdi_direction,
963 basic_block, basic_block);
964 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
965 bitmap);
966 extern void set_immediate_dominator (enum cdi_direction, basic_block,
967 basic_block);
968 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
969 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
970 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
971 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
972 unsigned, basic_block *);
973 extern void add_to_dominance_info (enum cdi_direction, basic_block);
974 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
975 basic_block recount_dominator (enum cdi_direction, basic_block);
976 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
977 basic_block);
978 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
979 extern void verify_dominators (enum cdi_direction);
980 extern basic_block first_dom_son (enum cdi_direction, basic_block);
981 extern basic_block next_dom_son (enum cdi_direction, basic_block);
982 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
983 extern void break_superblocks (void);
984 extern void check_bb_profile (basic_block, FILE *);
985 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
987 #include "cfghooks.h"
989 #endif /* GCC_BASIC_BLOCK_H */