2008-06-04 Xinliang David Li <davidxl@google.com>
[official-gcc.git] / gcc / tree-flow-inline.h
bloba8dc8fffa733bf981e53d5f4c981481c7dfe8534
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef _TREE_FLOW_INLINE_H
22 #define _TREE_FLOW_INLINE_H 1
24 /* Inline functions for manipulating various data structures defined in
25 tree-flow.h. See tree-flow.h for documentation. */
27 /* Return true when gimple SSA form was built.
28 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
29 infrastructure is initialized. Check for presence of the datastructures
30 at first place. */
31 static inline bool
32 gimple_in_ssa_p (const struct function *fun)
34 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
37 /* 'true' after aliases have been computed (see compute_may_aliases). */
38 static inline bool
39 gimple_aliases_computed_p (const struct function *fun)
41 gcc_assert (fun && fun->gimple_df);
42 return fun->gimple_df->aliases_computed_p;
45 /* Addressable variables in the function. If bit I is set, then
46 REFERENCED_VARS (I) has had its address taken. Note that
47 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
48 addressable variable is not necessarily call-clobbered (e.g., a
49 local addressable whose address does not escape) and not all
50 call-clobbered variables are addressable (e.g., a local static
51 variable). */
52 static inline bitmap
53 gimple_addressable_vars (const struct function *fun)
55 gcc_assert (fun && fun->gimple_df);
56 return fun->gimple_df->addressable_vars;
59 /* Call clobbered variables in the function. If bit I is set, then
60 REFERENCED_VARS (I) is call-clobbered. */
61 static inline bitmap
62 gimple_call_clobbered_vars (const struct function *fun)
64 gcc_assert (fun && fun->gimple_df);
65 return fun->gimple_df->call_clobbered_vars;
68 /* Array of all variables referenced in the function. */
69 static inline htab_t
70 gimple_referenced_vars (const struct function *fun)
72 if (!fun->gimple_df)
73 return NULL;
74 return fun->gimple_df->referenced_vars;
77 /* Artificial variable used to model the effects of function calls. */
78 static inline tree
79 gimple_global_var (const struct function *fun)
81 gcc_assert (fun && fun->gimple_df);
82 return fun->gimple_df->global_var;
85 /* Artificial variable used to model the effects of nonlocal
86 variables. */
87 static inline tree
88 gimple_nonlocal_all (const struct function *fun)
90 gcc_assert (fun && fun->gimple_df);
91 return fun->gimple_df->nonlocal_all;
94 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
96 static inline void *
97 first_htab_element (htab_iterator *hti, htab_t table)
99 hti->htab = table;
100 hti->slot = table->entries;
101 hti->limit = hti->slot + htab_size (table);
104 PTR x = *(hti->slot);
105 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
106 break;
107 } while (++(hti->slot) < hti->limit);
109 if (hti->slot < hti->limit)
110 return *(hti->slot);
111 return NULL;
114 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
115 or NULL if we have reached the end. */
117 static inline bool
118 end_htab_p (const htab_iterator *hti)
120 if (hti->slot >= hti->limit)
121 return true;
122 return false;
125 /* Advance the hashtable iterator pointed to by HTI to the next element of the
126 hashtable. */
128 static inline void *
129 next_htab_element (htab_iterator *hti)
131 while (++(hti->slot) < hti->limit)
133 PTR x = *(hti->slot);
134 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
135 return x;
137 return NULL;
140 /* Initialize ITER to point to the first referenced variable in the
141 referenced_vars hashtable, and return that variable. */
143 static inline tree
144 first_referenced_var (referenced_var_iterator *iter)
146 return (tree) first_htab_element (&iter->hti,
147 gimple_referenced_vars (cfun));
150 /* Return true if we have hit the end of the referenced variables ITER is
151 iterating through. */
153 static inline bool
154 end_referenced_vars_p (const referenced_var_iterator *iter)
156 return end_htab_p (&iter->hti);
159 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
160 and return that variable. */
162 static inline tree
163 next_referenced_var (referenced_var_iterator *iter)
165 return (tree) next_htab_element (&iter->hti);
168 /* Fill up VEC with the variables in the referenced vars hashtable. */
170 static inline void
171 fill_referenced_var_vec (VEC (tree, heap) **vec)
173 referenced_var_iterator rvi;
174 tree var;
175 *vec = NULL;
176 FOR_EACH_REFERENCED_VAR (var, rvi)
177 VEC_safe_push (tree, heap, *vec, var);
180 /* Return the variable annotation for T, which must be a _DECL node.
181 Return NULL if the variable annotation doesn't already exist. */
182 static inline var_ann_t
183 var_ann (const_tree t)
185 var_ann_t ann;
187 if (!t->base.ann)
188 return NULL;
189 ann = (var_ann_t) t->base.ann;
191 gcc_assert (ann->common.type == VAR_ANN);
193 return ann;
196 /* Return the variable annotation for T, which must be a _DECL node.
197 Create the variable annotation if it doesn't exist. */
198 static inline var_ann_t
199 get_var_ann (tree var)
201 var_ann_t ann = var_ann (var);
202 return (ann) ? ann : create_var_ann (var);
205 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
206 Return NULL if the function annotation doesn't already exist. */
207 static inline function_ann_t
208 function_ann (const_tree t)
210 gcc_assert (t);
211 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
212 gcc_assert (!t->base.ann
213 || t->base.ann->common.type == FUNCTION_ANN);
215 return (function_ann_t) t->base.ann;
218 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
219 Create the function annotation if it doesn't exist. */
220 static inline function_ann_t
221 get_function_ann (tree var)
223 function_ann_t ann = function_ann (var);
224 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
225 return (ann) ? ann : create_function_ann (var);
228 /* Return true if T has a statement annotation attached to it. */
230 static inline bool
231 has_stmt_ann (tree t)
233 #ifdef ENABLE_CHECKING
234 gcc_assert (is_gimple_stmt (t));
235 #endif
236 return t->base.ann && t->base.ann->common.type == STMT_ANN;
239 /* Return the statement annotation for T, which must be a statement
240 node. Return NULL if the statement annotation doesn't exist. */
241 static inline stmt_ann_t
242 stmt_ann (tree t)
244 #ifdef ENABLE_CHECKING
245 gcc_assert (is_gimple_stmt (t));
246 #endif
247 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
248 return (stmt_ann_t) t->base.ann;
251 /* Return the statement annotation for T, which must be a statement
252 node. Create the statement annotation if it doesn't exist. */
253 static inline stmt_ann_t
254 get_stmt_ann (tree stmt)
256 stmt_ann_t ann = stmt_ann (stmt);
257 return (ann) ? ann : create_stmt_ann (stmt);
260 /* Set the uid of all non phi function statements. */
261 static inline void
262 set_gimple_stmt_uid (tree stmt, unsigned int uid)
264 get_stmt_ann (stmt)->uid = uid;
267 /* Get the uid of all non phi function statements. */
268 static inline unsigned int
269 gimple_stmt_uid (tree stmt)
271 return get_stmt_ann (stmt)->uid;
274 /* Get the number of the next statement uid to be allocated. */
275 static inline unsigned int
276 gimple_stmt_max_uid (struct function *fn)
278 return fn->last_stmt_uid;
281 /* Set the number of the next statement uid to be allocated. */
282 static inline void
283 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
285 fn->last_stmt_uid = maxid;
288 /* Set the number of the next statement uid to be allocated. */
289 static inline unsigned int
290 inc_gimple_stmt_max_uid (struct function *fn)
292 return fn->last_stmt_uid++;
295 /* Return the annotation type for annotation ANN. */
296 static inline enum tree_ann_type
297 ann_type (tree_ann_t ann)
299 return ann->common.type;
302 /* Return the basic block for statement T. */
303 static inline basic_block
304 bb_for_stmt (tree t)
306 stmt_ann_t ann;
308 if (TREE_CODE (t) == PHI_NODE)
309 return PHI_BB (t);
311 ann = stmt_ann (t);
312 return ann ? ann->bb : NULL;
315 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
316 no may aliases. */
317 static inline bitmap
318 may_aliases (const_tree var)
320 return MTAG_ALIASES (var);
323 /* Return the line number for EXPR, or return -1 if we have no line
324 number information for it. */
325 static inline int
326 get_lineno (const_tree expr)
328 if (expr == NULL_TREE)
329 return -1;
331 if (TREE_CODE (expr) == COMPOUND_EXPR)
332 expr = TREE_OPERAND (expr, 0);
334 if (! EXPR_HAS_LOCATION (expr))
335 return -1;
337 return EXPR_LINENO (expr);
340 /* Return true if T is a noreturn call. */
341 static inline bool
342 noreturn_call_p (tree t)
344 tree call = get_call_expr_in (t);
345 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
348 /* Mark statement T as modified. */
349 static inline void
350 mark_stmt_modified (tree t)
352 stmt_ann_t ann;
353 if (TREE_CODE (t) == PHI_NODE)
354 return;
356 ann = stmt_ann (t);
357 if (ann == NULL)
358 ann = create_stmt_ann (t);
359 else if (noreturn_call_p (t) && cfun->gimple_df)
360 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
361 ann->modified = 1;
364 /* Mark statement T as modified, and update it. */
365 static inline void
366 update_stmt (tree t)
368 if (TREE_CODE (t) == PHI_NODE)
369 return;
370 mark_stmt_modified (t);
371 update_stmt_operands (t);
374 static inline void
375 update_stmt_if_modified (tree t)
377 if (stmt_modified_p (t))
378 update_stmt_operands (t);
381 /* Return true if T is marked as modified, false otherwise. */
382 static inline bool
383 stmt_modified_p (tree t)
385 stmt_ann_t ann = stmt_ann (t);
387 /* Note that if the statement doesn't yet have an annotation, we consider it
388 modified. This will force the next call to update_stmt_operands to scan
389 the statement. */
390 return ann ? ann->modified : true;
393 /* Delink an immediate_uses node from its chain. */
394 static inline void
395 delink_imm_use (ssa_use_operand_t *linknode)
397 /* Return if this node is not in a list. */
398 if (linknode->prev == NULL)
399 return;
401 linknode->prev->next = linknode->next;
402 linknode->next->prev = linknode->prev;
403 linknode->prev = NULL;
404 linknode->next = NULL;
407 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
408 static inline void
409 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
411 /* Link the new node at the head of the list. If we are in the process of
412 traversing the list, we won't visit any new nodes added to it. */
413 linknode->prev = list;
414 linknode->next = list->next;
415 list->next->prev = linknode;
416 list->next = linknode;
419 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
420 static inline void
421 link_imm_use (ssa_use_operand_t *linknode, tree def)
423 ssa_use_operand_t *root;
425 if (!def || TREE_CODE (def) != SSA_NAME)
426 linknode->prev = NULL;
427 else
429 root = &(SSA_NAME_IMM_USE_NODE (def));
430 #ifdef ENABLE_CHECKING
431 if (linknode->use)
432 gcc_assert (*(linknode->use) == def);
433 #endif
434 link_imm_use_to_list (linknode, root);
438 /* Set the value of a use pointed to by USE to VAL. */
439 static inline void
440 set_ssa_use_from_ptr (use_operand_p use, tree val)
442 delink_imm_use (use);
443 *(use->use) = val;
444 link_imm_use (use, val);
447 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
448 in STMT. */
449 static inline void
450 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
452 if (stmt)
453 link_imm_use (linknode, def);
454 else
455 link_imm_use (linknode, NULL);
456 linknode->stmt = stmt;
459 /* Relink a new node in place of an old node in the list. */
460 static inline void
461 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
463 /* The node one had better be in the same list. */
464 gcc_assert (*(old->use) == *(node->use));
465 node->prev = old->prev;
466 node->next = old->next;
467 if (old->prev)
469 old->prev->next = node;
470 old->next->prev = node;
471 /* Remove the old node from the list. */
472 old->prev = NULL;
476 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
477 in STMT. */
478 static inline void
479 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
481 if (stmt)
482 relink_imm_use (linknode, old);
483 else
484 link_imm_use (linknode, NULL);
485 linknode->stmt = stmt;
489 /* Return true is IMM has reached the end of the immediate use list. */
490 static inline bool
491 end_readonly_imm_use_p (const imm_use_iterator *imm)
493 return (imm->imm_use == imm->end_p);
496 /* Initialize iterator IMM to process the list for VAR. */
497 static inline use_operand_p
498 first_readonly_imm_use (imm_use_iterator *imm, tree var)
500 gcc_assert (TREE_CODE (var) == SSA_NAME);
502 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
503 imm->imm_use = imm->end_p->next;
504 #ifdef ENABLE_CHECKING
505 imm->iter_node.next = imm->imm_use->next;
506 #endif
507 if (end_readonly_imm_use_p (imm))
508 return NULL_USE_OPERAND_P;
509 return imm->imm_use;
512 /* Bump IMM to the next use in the list. */
513 static inline use_operand_p
514 next_readonly_imm_use (imm_use_iterator *imm)
516 use_operand_p old = imm->imm_use;
518 #ifdef ENABLE_CHECKING
519 /* If this assertion fails, it indicates the 'next' pointer has changed
520 since the last bump. This indicates that the list is being modified
521 via stmt changes, or SET_USE, or somesuch thing, and you need to be
522 using the SAFE version of the iterator. */
523 gcc_assert (imm->iter_node.next == old->next);
524 imm->iter_node.next = old->next->next;
525 #endif
527 imm->imm_use = old->next;
528 if (end_readonly_imm_use_p (imm))
529 return NULL_USE_OPERAND_P;
530 return imm->imm_use;
533 /* Return true if VAR has no uses. */
534 static inline bool
535 has_zero_uses (const_tree var)
537 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
538 /* A single use means there is no items in the list. */
539 return (ptr == ptr->next);
542 /* Return true if VAR has a single use. */
543 static inline bool
544 has_single_use (const_tree var)
546 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
547 /* A single use means there is one item in the list. */
548 return (ptr != ptr->next && ptr == ptr->next->next);
552 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
553 to the use pointer and stmt of occurrence. */
554 static inline bool
555 single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt)
557 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
558 if (ptr != ptr->next && ptr == ptr->next->next)
560 *use_p = ptr->next;
561 *stmt = ptr->next->stmt;
562 return true;
564 *use_p = NULL_USE_OPERAND_P;
565 *stmt = NULL_TREE;
566 return false;
569 /* Return the number of immediate uses of VAR. */
570 static inline unsigned int
571 num_imm_uses (const_tree var)
573 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
574 const ssa_use_operand_t *ptr;
575 unsigned int num = 0;
577 for (ptr = start->next; ptr != start; ptr = ptr->next)
578 num++;
580 return num;
583 /* Return the tree pointer to by USE. */
584 static inline tree
585 get_use_from_ptr (use_operand_p use)
587 return *(use->use);
590 /* Return the tree pointer to by DEF. */
591 static inline tree
592 get_def_from_ptr (def_operand_p def)
594 return *def;
597 /* Return a def_operand_p pointer for the result of PHI. */
598 static inline def_operand_p
599 get_phi_result_ptr (tree phi)
601 return &(PHI_RESULT_TREE (phi));
604 /* Return a use_operand_p pointer for argument I of phinode PHI. */
605 static inline use_operand_p
606 get_phi_arg_def_ptr (tree phi, int i)
608 return &(PHI_ARG_IMM_USE_NODE (phi,i));
612 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
613 no addresses. */
614 static inline bitmap
615 addresses_taken (tree stmt)
617 stmt_ann_t ann = stmt_ann (stmt);
618 return ann ? ann->addresses_taken : NULL;
621 /* Return the PHI nodes for basic block BB, or NULL if there are no
622 PHI nodes. */
623 static inline tree
624 phi_nodes (const_basic_block bb)
626 gcc_assert (!(bb->flags & BB_RTL));
627 if (!bb->il.tree)
628 return NULL;
629 return bb->il.tree->phi_nodes;
632 /* Return pointer to the list of PHI nodes for basic block BB. */
634 static inline tree *
635 phi_nodes_ptr (basic_block bb)
637 gcc_assert (!(bb->flags & BB_RTL));
638 return &bb->il.tree->phi_nodes;
641 /* Set list of phi nodes of a basic block BB to L. */
643 static inline void
644 set_phi_nodes (basic_block bb, tree l)
646 tree phi;
648 gcc_assert (!(bb->flags & BB_RTL));
649 bb->il.tree->phi_nodes = l;
650 for (phi = l; phi; phi = PHI_CHAIN (phi))
651 set_bb_for_stmt (phi, bb);
654 /* Return the phi argument which contains the specified use. */
656 static inline int
657 phi_arg_index_from_use (use_operand_p use)
659 struct phi_arg_d *element, *root;
660 int index;
661 tree phi;
663 /* Since the use is the first thing in a PHI argument element, we can
664 calculate its index based on casting it to an argument, and performing
665 pointer arithmetic. */
667 phi = USE_STMT (use);
668 gcc_assert (TREE_CODE (phi) == PHI_NODE);
670 element = (struct phi_arg_d *)use;
671 root = &(PHI_ARG_ELT (phi, 0));
672 index = element - root;
674 #ifdef ENABLE_CHECKING
675 /* Make sure the calculation doesn't have any leftover bytes. If it does,
676 then imm_use is likely not the first element in phi_arg_d. */
677 gcc_assert (
678 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
679 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
680 #endif
682 return index;
685 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
687 static inline void
688 set_is_used (tree var)
690 var_ann_t ann = get_var_ann (var);
691 ann->used = 1;
695 /* Return true if T (assumed to be a DECL) is a global variable. */
697 static inline bool
698 is_global_var (const_tree t)
700 if (MTAG_P (t))
701 return MTAG_GLOBAL (t);
702 else
703 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
706 /* PHI nodes should contain only ssa_names and invariants. A test
707 for ssa_name is definitely simpler; don't let invalid contents
708 slip in in the meantime. */
710 static inline bool
711 phi_ssa_name_p (const_tree t)
713 if (TREE_CODE (t) == SSA_NAME)
714 return true;
715 #ifdef ENABLE_CHECKING
716 gcc_assert (is_gimple_min_invariant (t));
717 #endif
718 return false;
721 /* ----------------------------------------------------------------------- */
723 /* Returns the list of statements in BB. */
725 static inline tree
726 bb_stmt_list (const_basic_block bb)
728 gcc_assert (!(bb->flags & BB_RTL));
729 return bb->il.tree->stmt_list;
732 /* Sets the list of statements in BB to LIST. */
734 static inline void
735 set_bb_stmt_list (basic_block bb, tree list)
737 gcc_assert (!(bb->flags & BB_RTL));
738 bb->il.tree->stmt_list = list;
741 /* Return a block_stmt_iterator that points to beginning of basic
742 block BB. */
743 static inline block_stmt_iterator
744 bsi_start (basic_block bb)
746 block_stmt_iterator bsi;
747 if (bb->index < NUM_FIXED_BLOCKS)
749 bsi.tsi.ptr = NULL;
750 bsi.tsi.container = NULL;
752 else
753 bsi.tsi = tsi_start (bb_stmt_list (bb));
754 bsi.bb = bb;
755 return bsi;
758 /* Return a block statement iterator that points to the first non-label
759 statement in block BB. */
761 static inline block_stmt_iterator
762 bsi_after_labels (basic_block bb)
764 block_stmt_iterator bsi = bsi_start (bb);
766 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
767 bsi_next (&bsi);
769 return bsi;
772 /* Return a block statement iterator that points to the end of basic
773 block BB. */
774 static inline block_stmt_iterator
775 bsi_last (basic_block bb)
777 block_stmt_iterator bsi;
779 if (bb->index < NUM_FIXED_BLOCKS)
781 bsi.tsi.ptr = NULL;
782 bsi.tsi.container = NULL;
784 else
785 bsi.tsi = tsi_last (bb_stmt_list (bb));
786 bsi.bb = bb;
787 return bsi;
790 /* Return true if block statement iterator I has reached the end of
791 the basic block. */
792 static inline bool
793 bsi_end_p (block_stmt_iterator i)
795 return tsi_end_p (i.tsi);
798 /* Modify block statement iterator I so that it is at the next
799 statement in the basic block. */
800 static inline void
801 bsi_next (block_stmt_iterator *i)
803 tsi_next (&i->tsi);
806 /* Modify block statement iterator I so that it is at the previous
807 statement in the basic block. */
808 static inline void
809 bsi_prev (block_stmt_iterator *i)
811 tsi_prev (&i->tsi);
814 /* Return the statement that block statement iterator I is currently
815 at. */
816 static inline tree
817 bsi_stmt (block_stmt_iterator i)
819 return tsi_stmt (i.tsi);
822 /* Return a pointer to the statement that block statement iterator I
823 is currently at. */
824 static inline tree *
825 bsi_stmt_ptr (block_stmt_iterator i)
827 return tsi_stmt_ptr (i.tsi);
830 /* Returns the loop of the statement STMT. */
832 static inline struct loop *
833 loop_containing_stmt (tree stmt)
835 basic_block bb = bb_for_stmt (stmt);
836 if (!bb)
837 return NULL;
839 return bb->loop_father;
843 /* Return the memory partition tag associated with symbol SYM. */
845 static inline tree
846 memory_partition (tree sym)
848 tree tag;
850 /* MPTs belong to their own partition. */
851 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
852 return sym;
854 gcc_assert (!is_gimple_reg (sym));
855 tag = get_var_ann (sym)->mpt;
857 #if defined ENABLE_CHECKING
858 if (tag)
859 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
860 #endif
862 return tag;
865 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
866 name for a memory partition. */
868 static inline bool
869 factoring_name_p (const_tree name)
871 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
874 /* Return true if VAR is a clobbered by function calls. */
875 static inline bool
876 is_call_clobbered (const_tree var)
878 return var_ann (var)->call_clobbered;
881 /* Mark variable VAR as being clobbered by function calls. */
882 static inline void
883 mark_call_clobbered (tree var, unsigned int escape_type)
885 var_ann (var)->escape_mask |= escape_type;
886 var_ann (var)->call_clobbered = true;
887 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
890 /* Clear the call-clobbered attribute from variable VAR. */
891 static inline void
892 clear_call_clobbered (tree var)
894 var_ann_t ann = var_ann (var);
895 ann->escape_mask = 0;
896 if (MTAG_P (var))
897 MTAG_GLOBAL (var) = 0;
898 var_ann (var)->call_clobbered = false;
899 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
902 /* Return the common annotation for T. Return NULL if the annotation
903 doesn't already exist. */
904 static inline tree_ann_common_t
905 tree_common_ann (const_tree t)
907 /* Watch out static variables with unshared annotations. */
908 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
909 return &var_ann (t)->common;
910 return &t->base.ann->common;
913 /* Return a common annotation for T. Create the constant annotation if it
914 doesn't exist. */
915 static inline tree_ann_common_t
916 get_tree_common_ann (tree t)
918 tree_ann_common_t ann = tree_common_ann (t);
919 return (ann) ? ann : create_tree_common_ann (t);
922 /* ----------------------------------------------------------------------- */
924 /* The following set of routines are used to iterator over various type of
925 SSA operands. */
927 /* Return true if PTR is finished iterating. */
928 static inline bool
929 op_iter_done (const ssa_op_iter *ptr)
931 return ptr->done;
934 /* Get the next iterator use value for PTR. */
935 static inline use_operand_p
936 op_iter_next_use (ssa_op_iter *ptr)
938 use_operand_p use_p;
939 #ifdef ENABLE_CHECKING
940 gcc_assert (ptr->iter_type == ssa_op_iter_use);
941 #endif
942 if (ptr->uses)
944 use_p = USE_OP_PTR (ptr->uses);
945 ptr->uses = ptr->uses->next;
946 return use_p;
948 if (ptr->vuses)
950 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
951 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
953 ptr->vuse_index = 0;
954 ptr->vuses = ptr->vuses->next;
956 return use_p;
958 if (ptr->mayuses)
960 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
961 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
963 ptr->mayuse_index = 0;
964 ptr->mayuses = ptr->mayuses->next;
966 return use_p;
968 if (ptr->phi_i < ptr->num_phi)
970 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
972 ptr->done = true;
973 return NULL_USE_OPERAND_P;
976 /* Get the next iterator def value for PTR. */
977 static inline def_operand_p
978 op_iter_next_def (ssa_op_iter *ptr)
980 def_operand_p def_p;
981 #ifdef ENABLE_CHECKING
982 gcc_assert (ptr->iter_type == ssa_op_iter_def);
983 #endif
984 if (ptr->defs)
986 def_p = DEF_OP_PTR (ptr->defs);
987 ptr->defs = ptr->defs->next;
988 return def_p;
990 if (ptr->vdefs)
992 def_p = VDEF_RESULT_PTR (ptr->vdefs);
993 ptr->vdefs = ptr->vdefs->next;
994 return def_p;
996 ptr->done = true;
997 return NULL_DEF_OPERAND_P;
1000 /* Get the next iterator tree value for PTR. */
1001 static inline tree
1002 op_iter_next_tree (ssa_op_iter *ptr)
1004 tree val;
1005 #ifdef ENABLE_CHECKING
1006 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
1007 #endif
1008 if (ptr->uses)
1010 val = USE_OP (ptr->uses);
1011 ptr->uses = ptr->uses->next;
1012 return val;
1014 if (ptr->vuses)
1016 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1017 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1019 ptr->vuse_index = 0;
1020 ptr->vuses = ptr->vuses->next;
1022 return val;
1024 if (ptr->mayuses)
1026 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1027 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1029 ptr->mayuse_index = 0;
1030 ptr->mayuses = ptr->mayuses->next;
1032 return val;
1034 if (ptr->defs)
1036 val = DEF_OP (ptr->defs);
1037 ptr->defs = ptr->defs->next;
1038 return val;
1040 if (ptr->vdefs)
1042 val = VDEF_RESULT (ptr->vdefs);
1043 ptr->vdefs = ptr->vdefs->next;
1044 return val;
1047 ptr->done = true;
1048 return NULL_TREE;
1053 /* This functions clears the iterator PTR, and marks it done. This is normally
1054 used to prevent warnings in the compile about might be uninitialized
1055 components. */
1057 static inline void
1058 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1060 ptr->defs = NULL;
1061 ptr->uses = NULL;
1062 ptr->vuses = NULL;
1063 ptr->vdefs = NULL;
1064 ptr->mayuses = NULL;
1065 ptr->iter_type = ssa_op_iter_none;
1066 ptr->phi_i = 0;
1067 ptr->num_phi = 0;
1068 ptr->phi_stmt = NULL_TREE;
1069 ptr->done = true;
1070 ptr->vuse_index = 0;
1071 ptr->mayuse_index = 0;
1074 /* Initialize the iterator PTR to the virtual defs in STMT. */
1075 static inline void
1076 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1078 #ifdef ENABLE_CHECKING
1079 gcc_assert (stmt_ann (stmt));
1080 #endif
1082 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1083 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1084 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1085 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1086 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1087 ptr->done = false;
1089 ptr->phi_i = 0;
1090 ptr->num_phi = 0;
1091 ptr->phi_stmt = NULL_TREE;
1092 ptr->vuse_index = 0;
1093 ptr->mayuse_index = 0;
1096 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1097 the first use. */
1098 static inline use_operand_p
1099 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1101 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1102 op_iter_init (ptr, stmt, flags);
1103 ptr->iter_type = ssa_op_iter_use;
1104 return op_iter_next_use (ptr);
1107 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1108 the first def. */
1109 static inline def_operand_p
1110 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1112 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1113 op_iter_init (ptr, stmt, flags);
1114 ptr->iter_type = ssa_op_iter_def;
1115 return op_iter_next_def (ptr);
1118 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1119 the first operand as a tree. */
1120 static inline tree
1121 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1123 op_iter_init (ptr, stmt, flags);
1124 ptr->iter_type = ssa_op_iter_tree;
1125 return op_iter_next_tree (ptr);
1128 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1129 KILL and DEF. */
1130 static inline void
1131 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1132 ssa_op_iter *ptr)
1134 #ifdef ENABLE_CHECKING
1135 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1136 #endif
1137 if (ptr->mayuses)
1139 *def = VDEF_RESULT_PTR (ptr->mayuses);
1140 *use = VDEF_VECT (ptr->mayuses);
1141 ptr->mayuses = ptr->mayuses->next;
1142 return;
1145 *def = NULL_DEF_OPERAND_P;
1146 *use = NULL;
1147 ptr->done = true;
1148 return;
1152 static inline void
1153 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1154 ssa_op_iter *ptr)
1156 vuse_vec_p vp;
1157 op_iter_next_vdef (&vp, def, ptr);
1158 if (vp != NULL)
1160 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1161 *use = VUSE_ELEMENT_PTR (*vp, 0);
1163 else
1164 *use = NULL_USE_OPERAND_P;
1167 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1168 in USE and DEF. */
1169 static inline void
1170 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1171 def_operand_p *def)
1173 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1175 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1176 ptr->iter_type = ssa_op_iter_vdef;
1177 op_iter_next_vdef (use, def, ptr);
1181 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1182 return NULL. */
1183 static inline tree
1184 single_ssa_tree_operand (tree stmt, int flags)
1186 tree var;
1187 ssa_op_iter iter;
1189 var = op_iter_init_tree (&iter, stmt, flags);
1190 if (op_iter_done (&iter))
1191 return NULL_TREE;
1192 op_iter_next_tree (&iter);
1193 if (op_iter_done (&iter))
1194 return var;
1195 return NULL_TREE;
1199 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1200 return NULL. */
1201 static inline use_operand_p
1202 single_ssa_use_operand (tree stmt, int flags)
1204 use_operand_p var;
1205 ssa_op_iter iter;
1207 var = op_iter_init_use (&iter, stmt, flags);
1208 if (op_iter_done (&iter))
1209 return NULL_USE_OPERAND_P;
1210 op_iter_next_use (&iter);
1211 if (op_iter_done (&iter))
1212 return var;
1213 return NULL_USE_OPERAND_P;
1218 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1219 return NULL. */
1220 static inline def_operand_p
1221 single_ssa_def_operand (tree stmt, int flags)
1223 def_operand_p var;
1224 ssa_op_iter iter;
1226 var = op_iter_init_def (&iter, stmt, flags);
1227 if (op_iter_done (&iter))
1228 return NULL_DEF_OPERAND_P;
1229 op_iter_next_def (&iter);
1230 if (op_iter_done (&iter))
1231 return var;
1232 return NULL_DEF_OPERAND_P;
1236 /* Return true if there are zero operands in STMT matching the type
1237 given in FLAGS. */
1238 static inline bool
1239 zero_ssa_operands (tree stmt, int flags)
1241 ssa_op_iter iter;
1243 op_iter_init_tree (&iter, stmt, flags);
1244 return op_iter_done (&iter);
1248 /* Return the number of operands matching FLAGS in STMT. */
1249 static inline int
1250 num_ssa_operands (tree stmt, int flags)
1252 ssa_op_iter iter;
1253 tree t;
1254 int num = 0;
1256 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1257 num++;
1258 return num;
1262 /* Delink all immediate_use information for STMT. */
1263 static inline void
1264 delink_stmt_imm_use (tree stmt)
1266 ssa_op_iter iter;
1267 use_operand_p use_p;
1269 if (ssa_operands_active ())
1270 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1271 delink_imm_use (use_p);
1275 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1276 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1277 static inline bool
1278 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1280 ssa_op_iter iter1, iter2;
1281 tree op1 = NULL_TREE;
1282 tree op2 = NULL_TREE;
1283 bool look1, look2;
1285 if (stmt1 == stmt2)
1286 return true;
1288 look1 = stmt1 && stmt_ann (stmt1);
1289 look2 = stmt2 && stmt_ann (stmt2);
1291 if (look1)
1293 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1294 if (!look2)
1295 return op_iter_done (&iter1);
1297 else
1298 clear_and_done_ssa_iter (&iter1);
1300 if (look2)
1302 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1303 if (!look1)
1304 return op_iter_done (&iter2);
1306 else
1307 clear_and_done_ssa_iter (&iter2);
1309 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1311 if (op1 != op2)
1312 return false;
1313 op1 = op_iter_next_tree (&iter1);
1314 op2 = op_iter_next_tree (&iter2);
1317 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1321 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1322 Otherwise return NULL_DEF_OPERAND_P. */
1323 static inline tree
1324 single_phi_def (tree stmt, int flags)
1326 tree def = PHI_RESULT (stmt);
1327 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1328 return def;
1329 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1330 return def;
1331 return NULL_TREE;
1334 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1335 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1336 static inline use_operand_p
1337 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1339 tree phi_def = PHI_RESULT (phi);
1340 int comp;
1342 clear_and_done_ssa_iter (ptr);
1343 ptr->done = false;
1345 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1347 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1349 /* If the PHI node doesn't the operand type we care about, we're done. */
1350 if ((flags & comp) == 0)
1352 ptr->done = true;
1353 return NULL_USE_OPERAND_P;
1356 ptr->phi_stmt = phi;
1357 ptr->num_phi = PHI_NUM_ARGS (phi);
1358 ptr->iter_type = ssa_op_iter_use;
1359 return op_iter_next_use (ptr);
1363 /* Start an iterator for a PHI definition. */
1365 static inline def_operand_p
1366 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1368 tree phi_def = PHI_RESULT (phi);
1369 int comp;
1371 clear_and_done_ssa_iter (ptr);
1372 ptr->done = false;
1374 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1376 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1378 /* If the PHI node doesn't the operand type we care about, we're done. */
1379 if ((flags & comp) == 0)
1381 ptr->done = true;
1382 return NULL_USE_OPERAND_P;
1385 ptr->iter_type = ssa_op_iter_def;
1386 /* The first call to op_iter_next_def will terminate the iterator since
1387 all the fields are NULL. Simply return the result here as the first and
1388 therefore only result. */
1389 return PHI_RESULT_PTR (phi);
1392 /* Return true is IMM has reached the end of the immediate use stmt list. */
1394 static inline bool
1395 end_imm_use_stmt_p (const imm_use_iterator *imm)
1397 return (imm->imm_use == imm->end_p);
1400 /* Finished the traverse of an immediate use stmt list IMM by removing the
1401 placeholder node from the list. */
1403 static inline void
1404 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1406 delink_imm_use (&(imm->iter_node));
1409 /* Immediate use traversal of uses within a stmt require that all the
1410 uses on a stmt be sequentially listed. This routine is used to build up
1411 this sequential list by adding USE_P to the end of the current list
1412 currently delimited by HEAD and LAST_P. The new LAST_P value is
1413 returned. */
1415 static inline use_operand_p
1416 move_use_after_head (use_operand_p use_p, use_operand_p head,
1417 use_operand_p last_p)
1419 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1420 /* Skip head when we find it. */
1421 if (use_p != head)
1423 /* If use_p is already linked in after last_p, continue. */
1424 if (last_p->next == use_p)
1425 last_p = use_p;
1426 else
1428 /* Delink from current location, and link in at last_p. */
1429 delink_imm_use (use_p);
1430 link_imm_use_to_list (use_p, last_p);
1431 last_p = use_p;
1434 return last_p;
1438 /* This routine will relink all uses with the same stmt as HEAD into the list
1439 immediately following HEAD for iterator IMM. */
1441 static inline void
1442 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1444 use_operand_p use_p;
1445 use_operand_p last_p = head;
1446 tree head_stmt = USE_STMT (head);
1447 tree use = USE_FROM_PTR (head);
1448 ssa_op_iter op_iter;
1449 int flag;
1451 /* Only look at virtual or real uses, depending on the type of HEAD. */
1452 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1454 if (TREE_CODE (head_stmt) == PHI_NODE)
1456 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1457 if (USE_FROM_PTR (use_p) == use)
1458 last_p = move_use_after_head (use_p, head, last_p);
1460 else
1462 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1463 if (USE_FROM_PTR (use_p) == use)
1464 last_p = move_use_after_head (use_p, head, last_p);
1466 /* LInk iter node in after last_p. */
1467 if (imm->iter_node.prev != NULL)
1468 delink_imm_use (&imm->iter_node);
1469 link_imm_use_to_list (&(imm->iter_node), last_p);
1472 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1473 static inline tree
1474 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1476 gcc_assert (TREE_CODE (var) == SSA_NAME);
1478 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1479 imm->imm_use = imm->end_p->next;
1480 imm->next_imm_name = NULL_USE_OPERAND_P;
1482 /* iter_node is used as a marker within the immediate use list to indicate
1483 where the end of the current stmt's uses are. Initialize it to NULL
1484 stmt and use, which indicates a marker node. */
1485 imm->iter_node.prev = NULL_USE_OPERAND_P;
1486 imm->iter_node.next = NULL_USE_OPERAND_P;
1487 imm->iter_node.stmt = NULL_TREE;
1488 imm->iter_node.use = NULL_USE_OPERAND_P;
1490 if (end_imm_use_stmt_p (imm))
1491 return NULL_TREE;
1493 link_use_stmts_after (imm->imm_use, imm);
1495 return USE_STMT (imm->imm_use);
1498 /* Bump IMM to the next stmt which has a use of var. */
1500 static inline tree
1501 next_imm_use_stmt (imm_use_iterator *imm)
1503 imm->imm_use = imm->iter_node.next;
1504 if (end_imm_use_stmt_p (imm))
1506 if (imm->iter_node.prev != NULL)
1507 delink_imm_use (&imm->iter_node);
1508 return NULL_TREE;
1511 link_use_stmts_after (imm->imm_use, imm);
1512 return USE_STMT (imm->imm_use);
1515 /* This routine will return the first use on the stmt IMM currently refers
1516 to. */
1518 static inline use_operand_p
1519 first_imm_use_on_stmt (imm_use_iterator *imm)
1521 imm->next_imm_name = imm->imm_use->next;
1522 return imm->imm_use;
1525 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1527 static inline bool
1528 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1530 return (imm->imm_use == &(imm->iter_node));
1533 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1535 static inline use_operand_p
1536 next_imm_use_on_stmt (imm_use_iterator *imm)
1538 imm->imm_use = imm->next_imm_name;
1539 if (end_imm_use_on_stmt_p (imm))
1540 return NULL_USE_OPERAND_P;
1541 else
1543 imm->next_imm_name = imm->imm_use->next;
1544 return imm->imm_use;
1548 /* Return true if VAR cannot be modified by the program. */
1550 static inline bool
1551 unmodifiable_var_p (const_tree var)
1553 if (TREE_CODE (var) == SSA_NAME)
1554 var = SSA_NAME_VAR (var);
1556 if (MTAG_P (var))
1557 return false;
1559 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1562 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1564 static inline bool
1565 array_ref_contains_indirect_ref (const_tree ref)
1567 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1569 do {
1570 ref = TREE_OPERAND (ref, 0);
1571 } while (handled_component_p (ref));
1573 return TREE_CODE (ref) == INDIRECT_REF;
1576 /* Return true if REF, a handled component reference, has an ARRAY_REF
1577 somewhere in it. */
1579 static inline bool
1580 ref_contains_array_ref (const_tree ref)
1582 gcc_assert (handled_component_p (ref));
1584 do {
1585 if (TREE_CODE (ref) == ARRAY_REF)
1586 return true;
1587 ref = TREE_OPERAND (ref, 0);
1588 } while (handled_component_p (ref));
1590 return false;
1593 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1594 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1595 range is open-ended. Otherwise return false. */
1597 static inline bool
1598 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
1599 unsigned HOST_WIDE_INT size1,
1600 unsigned HOST_WIDE_INT pos2,
1601 unsigned HOST_WIDE_INT size2)
1603 if (pos1 >= pos2
1604 && (size2 == (unsigned HOST_WIDE_INT)-1
1605 || pos1 < (pos2 + size2)))
1606 return true;
1607 if (pos2 >= pos1
1608 && (size1 == (unsigned HOST_WIDE_INT)-1
1609 || pos2 < (pos1 + size1)))
1610 return true;
1612 return false;
1615 /* Return the memory tag associated with symbol SYM. */
1617 static inline tree
1618 symbol_mem_tag (tree sym)
1620 tree tag = get_var_ann (sym)->symbol_mem_tag;
1622 #if defined ENABLE_CHECKING
1623 if (tag)
1624 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1625 #endif
1627 return tag;
1631 /* Set the memory tag associated with symbol SYM. */
1633 static inline void
1634 set_symbol_mem_tag (tree sym, tree tag)
1636 #if defined ENABLE_CHECKING
1637 if (tag)
1638 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1639 #endif
1641 get_var_ann (sym)->symbol_mem_tag = tag;
1644 /* Get the value handle of EXPR. This is the only correct way to get
1645 the value handle for a "thing". If EXPR does not have a value
1646 handle associated, it returns NULL_TREE.
1647 NB: If EXPR is min_invariant, this function is *required* to return
1648 EXPR. */
1650 static inline tree
1651 get_value_handle (tree expr)
1653 if (TREE_CODE (expr) == SSA_NAME)
1654 return SSA_NAME_VALUE (expr);
1655 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1656 || TREE_CODE (expr) == CONSTRUCTOR)
1658 tree_ann_common_t ann = tree_common_ann (expr);
1659 return ((ann) ? ann->value_handle : NULL_TREE);
1661 else if (is_gimple_min_invariant (expr))
1662 return expr;
1663 else if (EXPR_P (expr))
1665 tree_ann_common_t ann = tree_common_ann (expr);
1666 return ((ann) ? ann->value_handle : NULL_TREE);
1668 else
1669 gcc_unreachable ();
1672 /* Accessor to tree-ssa-operands.c caches. */
1673 static inline struct ssa_operands *
1674 gimple_ssa_operands (const struct function *fun)
1676 return &fun->gimple_df->ssa_operands;
1679 /* Map describing reference statistics for function FN. */
1680 static inline struct mem_ref_stats_d *
1681 gimple_mem_ref_stats (const struct function *fn)
1683 return &fn->gimple_df->mem_ref_stats;
1686 /* Given an edge_var_map V, return the PHI arg definition. */
1688 static inline tree
1689 redirect_edge_var_map_def (edge_var_map *v)
1691 return v->def;
1694 /* Given an edge_var_map V, return the PHI result. */
1696 static inline tree
1697 redirect_edge_var_map_result (edge_var_map *v)
1699 return v->result;
1703 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1704 in function cfun. */
1706 static inline tree
1707 make_ssa_name (tree var, tree stmt)
1709 return make_ssa_name_fn (cfun, var, stmt);
1712 #endif /* _TREE_FLOW_INLINE_H */