2008-06-04 Xinliang David Li <davidxl@google.com>
[official-gcc.git] / gcc / libgcc2.c
blobf8e442d8537ac626c4d5b8bc9c4ae6ac747ac1c9
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
30 02110-1301, USA. */
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
39 #else
40 #define ATTRIBUTE_HIDDEN
41 #endif
43 #ifndef MIN_UNITS_PER_WORD
44 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
45 #endif
47 /* Work out the largest "word" size that we can deal with on this target. */
48 #if MIN_UNITS_PER_WORD > 4
49 # define LIBGCC2_MAX_UNITS_PER_WORD 8
50 #elif (MIN_UNITS_PER_WORD > 2 \
51 || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52 # define LIBGCC2_MAX_UNITS_PER_WORD 4
53 #else
54 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55 #endif
57 /* Work out what word size we are using for this compilation.
58 The value can be set on the command line. */
59 #ifndef LIBGCC2_UNITS_PER_WORD
60 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61 #endif
63 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
65 #include "libgcc2.h"
67 #ifdef DECLARE_LIBRARY_RENAMES
68 DECLARE_LIBRARY_RENAMES
69 #endif
71 #if defined (L_negdi2)
72 DWtype
73 __negdi2 (DWtype u)
75 const DWunion uu = {.ll = u};
76 const DWunion w = { {.low = -uu.s.low,
77 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
79 return w.ll;
81 #endif
83 #ifdef L_addvsi3
84 Wtype
85 __addvSI3 (Wtype a, Wtype b)
87 const Wtype w = (UWtype) a + (UWtype) b;
89 if (b >= 0 ? w < a : w > a)
90 abort ();
92 return w;
94 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95 SItype
96 __addvsi3 (SItype a, SItype b)
98 const SItype w = (USItype) a + (USItype) b;
100 if (b >= 0 ? w < a : w > a)
101 abort ();
103 return w;
105 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106 #endif
108 #ifdef L_addvdi3
109 DWtype
110 __addvDI3 (DWtype a, DWtype b)
112 const DWtype w = (UDWtype) a + (UDWtype) b;
114 if (b >= 0 ? w < a : w > a)
115 abort ();
117 return w;
119 #endif
121 #ifdef L_subvsi3
122 Wtype
123 __subvSI3 (Wtype a, Wtype b)
125 const Wtype w = (UWtype) a - (UWtype) b;
127 if (b >= 0 ? w > a : w < a)
128 abort ();
130 return w;
132 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133 SItype
134 __subvsi3 (SItype a, SItype b)
136 const SItype w = (USItype) a - (USItype) b;
138 if (b >= 0 ? w > a : w < a)
139 abort ();
141 return w;
143 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144 #endif
146 #ifdef L_subvdi3
147 DWtype
148 __subvDI3 (DWtype a, DWtype b)
150 const DWtype w = (UDWtype) a - (UDWtype) b;
152 if (b >= 0 ? w > a : w < a)
153 abort ();
155 return w;
157 #endif
159 #ifdef L_mulvsi3
160 Wtype
161 __mulvSI3 (Wtype a, Wtype b)
163 const DWtype w = (DWtype) a * (DWtype) b;
165 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166 abort ();
168 return w;
170 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171 #undef WORD_SIZE
172 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173 SItype
174 __mulvsi3 (SItype a, SItype b)
176 const DItype w = (DItype) a * (DItype) b;
178 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179 abort ();
181 return w;
183 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184 #endif
186 #ifdef L_negvsi2
187 Wtype
188 __negvSI2 (Wtype a)
190 const Wtype w = -(UWtype) a;
192 if (a >= 0 ? w > 0 : w < 0)
193 abort ();
195 return w;
197 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198 SItype
199 __negvsi2 (SItype a)
201 const SItype w = -(USItype) a;
203 if (a >= 0 ? w > 0 : w < 0)
204 abort ();
206 return w;
208 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209 #endif
211 #ifdef L_negvdi2
212 DWtype
213 __negvDI2 (DWtype a)
215 const DWtype w = -(UDWtype) a;
217 if (a >= 0 ? w > 0 : w < 0)
218 abort ();
220 return w;
222 #endif
224 #ifdef L_absvsi2
225 Wtype
226 __absvSI2 (Wtype a)
228 Wtype w = a;
230 if (a < 0)
231 #ifdef L_negvsi2
232 w = __negvSI2 (a);
233 #else
234 w = -(UWtype) a;
236 if (w < 0)
237 abort ();
238 #endif
240 return w;
242 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243 SItype
244 __absvsi2 (SItype a)
246 SItype w = a;
248 if (a < 0)
249 #ifdef L_negvsi2
250 w = __negvsi2 (a);
251 #else
252 w = -(USItype) a;
254 if (w < 0)
255 abort ();
256 #endif
258 return w;
260 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261 #endif
263 #ifdef L_absvdi2
264 DWtype
265 __absvDI2 (DWtype a)
267 DWtype w = a;
269 if (a < 0)
270 #ifdef L_negvdi2
271 w = __negvDI2 (a);
272 #else
273 w = -(UDWtype) a;
275 if (w < 0)
276 abort ();
277 #endif
279 return w;
281 #endif
283 #ifdef L_mulvdi3
284 DWtype
285 __mulvDI3 (DWtype u, DWtype v)
287 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288 but the checked multiplication needs only two. */
289 const DWunion uu = {.ll = u};
290 const DWunion vv = {.ll = v};
292 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
294 /* u fits in a single Wtype. */
295 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
297 /* v fits in a single Wtype as well. */
298 /* A single multiplication. No overflow risk. */
299 return (DWtype) uu.s.low * (DWtype) vv.s.low;
301 else
303 /* Two multiplications. */
304 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305 * (UDWtype) (UWtype) vv.s.low};
306 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307 * (UDWtype) (UWtype) vv.s.high};
309 if (vv.s.high < 0)
310 w1.s.high -= uu.s.low;
311 if (uu.s.low < 0)
312 w1.ll -= vv.ll;
313 w1.ll += (UWtype) w0.s.high;
314 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
316 w0.s.high = w1.s.low;
317 return w0.ll;
321 else
323 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
325 /* v fits into a single Wtype. */
326 /* Two multiplications. */
327 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328 * (UDWtype) (UWtype) vv.s.low};
329 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330 * (UDWtype) (UWtype) vv.s.low};
332 if (uu.s.high < 0)
333 w1.s.high -= vv.s.low;
334 if (vv.s.low < 0)
335 w1.ll -= uu.ll;
336 w1.ll += (UWtype) w0.s.high;
337 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
339 w0.s.high = w1.s.low;
340 return w0.ll;
343 else
345 /* A few sign checks and a single multiplication. */
346 if (uu.s.high >= 0)
348 if (vv.s.high >= 0)
350 if (uu.s.high == 0 && vv.s.high == 0)
352 const DWtype w = (UDWtype) (UWtype) uu.s.low
353 * (UDWtype) (UWtype) vv.s.low;
354 if (__builtin_expect (w >= 0, 1))
355 return w;
358 else
360 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
362 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363 * (UDWtype) (UWtype) vv.s.low};
365 ww.s.high -= uu.s.low;
366 if (__builtin_expect (ww.s.high < 0, 1))
367 return ww.ll;
371 else
373 if (vv.s.high >= 0)
375 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
377 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378 * (UDWtype) (UWtype) vv.s.low};
380 ww.s.high -= vv.s.low;
381 if (__builtin_expect (ww.s.high < 0, 1))
382 return ww.ll;
385 else
387 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
389 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390 * (UDWtype) (UWtype) vv.s.low};
392 ww.s.high -= uu.s.low;
393 ww.s.high -= vv.s.low;
394 if (__builtin_expect (ww.s.high >= 0, 1))
395 return ww.ll;
402 /* Overflow. */
403 abort ();
405 #endif
408 /* Unless shift functions are defined with full ANSI prototypes,
409 parameter b will be promoted to int if shift_count_type is smaller than an int. */
410 #ifdef L_lshrdi3
411 DWtype
412 __lshrdi3 (DWtype u, shift_count_type b)
414 if (b == 0)
415 return u;
417 const DWunion uu = {.ll = u};
418 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419 DWunion w;
421 if (bm <= 0)
423 w.s.high = 0;
424 w.s.low = (UWtype) uu.s.high >> -bm;
426 else
428 const UWtype carries = (UWtype) uu.s.high << bm;
430 w.s.high = (UWtype) uu.s.high >> b;
431 w.s.low = ((UWtype) uu.s.low >> b) | carries;
434 return w.ll;
436 #endif
438 #ifdef L_ashldi3
439 DWtype
440 __ashldi3 (DWtype u, shift_count_type b)
442 if (b == 0)
443 return u;
445 const DWunion uu = {.ll = u};
446 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447 DWunion w;
449 if (bm <= 0)
451 w.s.low = 0;
452 w.s.high = (UWtype) uu.s.low << -bm;
454 else
456 const UWtype carries = (UWtype) uu.s.low >> bm;
458 w.s.low = (UWtype) uu.s.low << b;
459 w.s.high = ((UWtype) uu.s.high << b) | carries;
462 return w.ll;
464 #endif
466 #ifdef L_ashrdi3
467 DWtype
468 __ashrdi3 (DWtype u, shift_count_type b)
470 if (b == 0)
471 return u;
473 const DWunion uu = {.ll = u};
474 const shift_count_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475 DWunion w;
477 if (bm <= 0)
479 /* w.s.high = 1..1 or 0..0 */
480 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481 w.s.low = uu.s.high >> -bm;
483 else
485 const UWtype carries = (UWtype) uu.s.high << bm;
487 w.s.high = uu.s.high >> b;
488 w.s.low = ((UWtype) uu.s.low >> b) | carries;
491 return w.ll;
493 #endif
495 #ifdef L_bswapsi2
496 SItype
497 __bswapsi2 (SItype u)
499 return ((((u) & 0xff000000) >> 24)
500 | (((u) & 0x00ff0000) >> 8)
501 | (((u) & 0x0000ff00) << 8)
502 | (((u) & 0x000000ff) << 24));
504 #endif
505 #ifdef L_bswapdi2
506 DItype
507 __bswapdi2 (DItype u)
509 return ((((u) & 0xff00000000000000ull) >> 56)
510 | (((u) & 0x00ff000000000000ull) >> 40)
511 | (((u) & 0x0000ff0000000000ull) >> 24)
512 | (((u) & 0x000000ff00000000ull) >> 8)
513 | (((u) & 0x00000000ff000000ull) << 8)
514 | (((u) & 0x0000000000ff0000ull) << 24)
515 | (((u) & 0x000000000000ff00ull) << 40)
516 | (((u) & 0x00000000000000ffull) << 56));
518 #endif
519 #ifdef L_ffssi2
520 #undef int
522 __ffsSI2 (UWtype u)
524 UWtype count;
526 if (u == 0)
527 return 0;
529 count_trailing_zeros (count, u);
530 return count + 1;
532 #endif
534 #ifdef L_ffsdi2
535 #undef int
537 __ffsDI2 (DWtype u)
539 const DWunion uu = {.ll = u};
540 UWtype word, count, add;
542 if (uu.s.low != 0)
543 word = uu.s.low, add = 0;
544 else if (uu.s.high != 0)
545 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
546 else
547 return 0;
549 count_trailing_zeros (count, word);
550 return count + add + 1;
552 #endif
554 #ifdef L_muldi3
555 DWtype
556 __muldi3 (DWtype u, DWtype v)
558 const DWunion uu = {.ll = u};
559 const DWunion vv = {.ll = v};
560 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
562 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
563 + (UWtype) uu.s.high * (UWtype) vv.s.low);
565 return w.ll;
567 #endif
569 #if (defined (L_udivdi3) || defined (L_divdi3) || \
570 defined (L_umoddi3) || defined (L_moddi3))
571 #if defined (sdiv_qrnnd)
572 #define L_udiv_w_sdiv
573 #endif
574 #endif
576 #ifdef L_udiv_w_sdiv
577 #if defined (sdiv_qrnnd)
578 #if (defined (L_udivdi3) || defined (L_divdi3) || \
579 defined (L_umoddi3) || defined (L_moddi3))
580 static inline __attribute__ ((__always_inline__))
581 #endif
582 UWtype
583 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
585 UWtype q, r;
586 UWtype c0, c1, b1;
588 if ((Wtype) d >= 0)
590 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
592 /* Dividend, divisor, and quotient are nonnegative. */
593 sdiv_qrnnd (q, r, a1, a0, d);
595 else
597 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
598 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
599 /* Divide (c1*2^32 + c0) by d. */
600 sdiv_qrnnd (q, r, c1, c0, d);
601 /* Add 2^31 to quotient. */
602 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
605 else
607 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
608 c1 = a1 >> 1; /* A/2 */
609 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
611 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
613 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
615 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
616 if ((d & 1) != 0)
618 if (r >= q)
619 r = r - q;
620 else if (q - r <= d)
622 r = r - q + d;
623 q--;
625 else
627 r = r - q + 2*d;
628 q -= 2;
632 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
634 c1 = (b1 - 1) - c1;
635 c0 = ~c0; /* logical NOT */
637 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
639 q = ~q; /* (A/2)/b1 */
640 r = (b1 - 1) - r;
642 r = 2*r + (a0 & 1); /* A/(2*b1) */
644 if ((d & 1) != 0)
646 if (r >= q)
647 r = r - q;
648 else if (q - r <= d)
650 r = r - q + d;
651 q--;
653 else
655 r = r - q + 2*d;
656 q -= 2;
660 else /* Implies c1 = b1 */
661 { /* Hence a1 = d - 1 = 2*b1 - 1 */
662 if (a0 >= -d)
664 q = -1;
665 r = a0 + d;
667 else
669 q = -2;
670 r = a0 + 2*d;
675 *rp = r;
676 return q;
678 #else
679 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
680 UWtype
681 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
682 UWtype a1 __attribute__ ((__unused__)),
683 UWtype a0 __attribute__ ((__unused__)),
684 UWtype d __attribute__ ((__unused__)))
686 return 0;
688 #endif
689 #endif
691 #if (defined (L_udivdi3) || defined (L_divdi3) || \
692 defined (L_umoddi3) || defined (L_moddi3))
693 #define L_udivmoddi4
694 #endif
696 #ifdef L_clz
697 const UQItype __clz_tab[256] =
699 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
700 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
701 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
702 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
703 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
704 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
705 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
706 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
708 #endif
710 #ifdef L_clzsi2
711 #undef int
713 __clzSI2 (UWtype x)
715 Wtype ret;
717 count_leading_zeros (ret, x);
719 return ret;
721 #endif
723 #ifdef L_clzdi2
724 #undef int
726 __clzDI2 (UDWtype x)
728 const DWunion uu = {.ll = x};
729 UWtype word;
730 Wtype ret, add;
732 if (uu.s.high)
733 word = uu.s.high, add = 0;
734 else
735 word = uu.s.low, add = W_TYPE_SIZE;
737 count_leading_zeros (ret, word);
738 return ret + add;
740 #endif
742 #ifdef L_ctzsi2
743 #undef int
745 __ctzSI2 (UWtype x)
747 Wtype ret;
749 count_trailing_zeros (ret, x);
751 return ret;
753 #endif
755 #ifdef L_ctzdi2
756 #undef int
758 __ctzDI2 (UDWtype x)
760 const DWunion uu = {.ll = x};
761 UWtype word;
762 Wtype ret, add;
764 if (uu.s.low)
765 word = uu.s.low, add = 0;
766 else
767 word = uu.s.high, add = W_TYPE_SIZE;
769 count_trailing_zeros (ret, word);
770 return ret + add;
772 #endif
774 #ifdef L_popcount_tab
775 const UQItype __popcount_tab[256] =
777 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
778 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
779 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
780 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
781 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
782 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
783 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
784 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
786 #endif
788 #ifdef L_popcountsi2
789 #undef int
791 __popcountSI2 (UWtype x)
793 int i, ret = 0;
795 for (i = 0; i < W_TYPE_SIZE; i += 8)
796 ret += __popcount_tab[(x >> i) & 0xff];
798 return ret;
800 #endif
802 #ifdef L_popcountdi2
803 #undef int
805 __popcountDI2 (UDWtype x)
807 int i, ret = 0;
809 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
810 ret += __popcount_tab[(x >> i) & 0xff];
812 return ret;
814 #endif
816 #ifdef L_paritysi2
817 #undef int
819 __paritySI2 (UWtype x)
821 #if W_TYPE_SIZE > 64
822 # error "fill out the table"
823 #endif
824 #if W_TYPE_SIZE > 32
825 x ^= x >> 32;
826 #endif
827 #if W_TYPE_SIZE > 16
828 x ^= x >> 16;
829 #endif
830 x ^= x >> 8;
831 x ^= x >> 4;
832 x &= 0xf;
833 return (0x6996 >> x) & 1;
835 #endif
837 #ifdef L_paritydi2
838 #undef int
840 __parityDI2 (UDWtype x)
842 const DWunion uu = {.ll = x};
843 UWtype nx = uu.s.low ^ uu.s.high;
845 #if W_TYPE_SIZE > 64
846 # error "fill out the table"
847 #endif
848 #if W_TYPE_SIZE > 32
849 nx ^= nx >> 32;
850 #endif
851 #if W_TYPE_SIZE > 16
852 nx ^= nx >> 16;
853 #endif
854 nx ^= nx >> 8;
855 nx ^= nx >> 4;
856 nx &= 0xf;
857 return (0x6996 >> nx) & 1;
859 #endif
861 #ifdef L_udivmoddi4
863 #if (defined (L_udivdi3) || defined (L_divdi3) || \
864 defined (L_umoddi3) || defined (L_moddi3))
865 static inline __attribute__ ((__always_inline__))
866 #endif
867 UDWtype
868 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
870 const DWunion nn = {.ll = n};
871 const DWunion dd = {.ll = d};
872 DWunion rr;
873 UWtype d0, d1, n0, n1, n2;
874 UWtype q0, q1;
875 UWtype b, bm;
877 d0 = dd.s.low;
878 d1 = dd.s.high;
879 n0 = nn.s.low;
880 n1 = nn.s.high;
882 #if !UDIV_NEEDS_NORMALIZATION
883 if (d1 == 0)
885 if (d0 > n1)
887 /* 0q = nn / 0D */
889 udiv_qrnnd (q0, n0, n1, n0, d0);
890 q1 = 0;
892 /* Remainder in n0. */
894 else
896 /* qq = NN / 0d */
898 if (d0 == 0)
899 d0 = 1 / d0; /* Divide intentionally by zero. */
901 udiv_qrnnd (q1, n1, 0, n1, d0);
902 udiv_qrnnd (q0, n0, n1, n0, d0);
904 /* Remainder in n0. */
907 if (rp != 0)
909 rr.s.low = n0;
910 rr.s.high = 0;
911 *rp = rr.ll;
915 #else /* UDIV_NEEDS_NORMALIZATION */
917 if (d1 == 0)
919 if (d0 > n1)
921 /* 0q = nn / 0D */
923 count_leading_zeros (bm, d0);
925 if (bm != 0)
927 /* Normalize, i.e. make the most significant bit of the
928 denominator set. */
930 d0 = d0 << bm;
931 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
932 n0 = n0 << bm;
935 udiv_qrnnd (q0, n0, n1, n0, d0);
936 q1 = 0;
938 /* Remainder in n0 >> bm. */
940 else
942 /* qq = NN / 0d */
944 if (d0 == 0)
945 d0 = 1 / d0; /* Divide intentionally by zero. */
947 count_leading_zeros (bm, d0);
949 if (bm == 0)
951 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
952 conclude (the most significant bit of n1 is set) /\ (the
953 leading quotient digit q1 = 1).
955 This special case is necessary, not an optimization.
956 (Shifts counts of W_TYPE_SIZE are undefined.) */
958 n1 -= d0;
959 q1 = 1;
961 else
963 /* Normalize. */
965 b = W_TYPE_SIZE - bm;
967 d0 = d0 << bm;
968 n2 = n1 >> b;
969 n1 = (n1 << bm) | (n0 >> b);
970 n0 = n0 << bm;
972 udiv_qrnnd (q1, n1, n2, n1, d0);
975 /* n1 != d0... */
977 udiv_qrnnd (q0, n0, n1, n0, d0);
979 /* Remainder in n0 >> bm. */
982 if (rp != 0)
984 rr.s.low = n0 >> bm;
985 rr.s.high = 0;
986 *rp = rr.ll;
989 #endif /* UDIV_NEEDS_NORMALIZATION */
991 else
993 if (d1 > n1)
995 /* 00 = nn / DD */
997 q0 = 0;
998 q1 = 0;
1000 /* Remainder in n1n0. */
1001 if (rp != 0)
1003 rr.s.low = n0;
1004 rr.s.high = n1;
1005 *rp = rr.ll;
1008 else
1010 /* 0q = NN / dd */
1012 count_leading_zeros (bm, d1);
1013 if (bm == 0)
1015 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1016 conclude (the most significant bit of n1 is set) /\ (the
1017 quotient digit q0 = 0 or 1).
1019 This special case is necessary, not an optimization. */
1021 /* The condition on the next line takes advantage of that
1022 n1 >= d1 (true due to program flow). */
1023 if (n1 > d1 || n0 >= d0)
1025 q0 = 1;
1026 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1028 else
1029 q0 = 0;
1031 q1 = 0;
1033 if (rp != 0)
1035 rr.s.low = n0;
1036 rr.s.high = n1;
1037 *rp = rr.ll;
1040 else
1042 UWtype m1, m0;
1043 /* Normalize. */
1045 b = W_TYPE_SIZE - bm;
1047 d1 = (d1 << bm) | (d0 >> b);
1048 d0 = d0 << bm;
1049 n2 = n1 >> b;
1050 n1 = (n1 << bm) | (n0 >> b);
1051 n0 = n0 << bm;
1053 udiv_qrnnd (q0, n1, n2, n1, d1);
1054 umul_ppmm (m1, m0, q0, d0);
1056 if (m1 > n1 || (m1 == n1 && m0 > n0))
1058 q0--;
1059 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1062 q1 = 0;
1064 /* Remainder in (n1n0 - m1m0) >> bm. */
1065 if (rp != 0)
1067 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1068 rr.s.low = (n1 << b) | (n0 >> bm);
1069 rr.s.high = n1 >> bm;
1070 *rp = rr.ll;
1076 const DWunion ww = {{.low = q0, .high = q1}};
1077 return ww.ll;
1079 #endif
1081 #ifdef L_divdi3
1082 DWtype
1083 __divdi3 (DWtype u, DWtype v)
1085 Wtype c = 0;
1086 DWunion uu = {.ll = u};
1087 DWunion vv = {.ll = v};
1088 DWtype w;
1090 if (uu.s.high < 0)
1091 c = ~c,
1092 uu.ll = -uu.ll;
1093 if (vv.s.high < 0)
1094 c = ~c,
1095 vv.ll = -vv.ll;
1097 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1098 if (c)
1099 w = -w;
1101 return w;
1103 #endif
1105 #ifdef L_moddi3
1106 DWtype
1107 __moddi3 (DWtype u, DWtype v)
1109 Wtype c = 0;
1110 DWunion uu = {.ll = u};
1111 DWunion vv = {.ll = v};
1112 DWtype w;
1114 if (uu.s.high < 0)
1115 c = ~c,
1116 uu.ll = -uu.ll;
1117 if (vv.s.high < 0)
1118 vv.ll = -vv.ll;
1120 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1121 if (c)
1122 w = -w;
1124 return w;
1126 #endif
1128 #ifdef L_umoddi3
1129 UDWtype
1130 __umoddi3 (UDWtype u, UDWtype v)
1132 UDWtype w;
1134 (void) __udivmoddi4 (u, v, &w);
1136 return w;
1138 #endif
1140 #ifdef L_udivdi3
1141 UDWtype
1142 __udivdi3 (UDWtype n, UDWtype d)
1144 return __udivmoddi4 (n, d, (UDWtype *) 0);
1146 #endif
1148 #ifdef L_cmpdi2
1149 cmp_return_type
1150 __cmpdi2 (DWtype a, DWtype b)
1152 const DWunion au = {.ll = a};
1153 const DWunion bu = {.ll = b};
1155 if (au.s.high < bu.s.high)
1156 return 0;
1157 else if (au.s.high > bu.s.high)
1158 return 2;
1159 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1160 return 0;
1161 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1162 return 2;
1163 return 1;
1165 #endif
1167 #ifdef L_ucmpdi2
1168 cmp_return_type
1169 __ucmpdi2 (DWtype a, DWtype b)
1171 const DWunion au = {.ll = a};
1172 const DWunion bu = {.ll = b};
1174 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1175 return 0;
1176 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1177 return 2;
1178 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1179 return 0;
1180 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1181 return 2;
1182 return 1;
1184 #endif
1186 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1187 UDWtype
1188 __fixunstfDI (TFtype a)
1190 if (a < 0)
1191 return 0;
1193 /* Compute high word of result, as a flonum. */
1194 const TFtype b = (a / Wtype_MAXp1_F);
1195 /* Convert that to fixed (but not to DWtype!),
1196 and shift it into the high word. */
1197 UDWtype v = (UWtype) b;
1198 v <<= W_TYPE_SIZE;
1199 /* Remove high part from the TFtype, leaving the low part as flonum. */
1200 a -= (TFtype)v;
1201 /* Convert that to fixed (but not to DWtype!) and add it in.
1202 Sometimes A comes out negative. This is significant, since
1203 A has more bits than a long int does. */
1204 if (a < 0)
1205 v -= (UWtype) (- a);
1206 else
1207 v += (UWtype) a;
1208 return v;
1210 #endif
1212 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1213 DWtype
1214 __fixtfdi (TFtype a)
1216 if (a < 0)
1217 return - __fixunstfDI (-a);
1218 return __fixunstfDI (a);
1220 #endif
1222 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1223 UDWtype
1224 __fixunsxfDI (XFtype a)
1226 if (a < 0)
1227 return 0;
1229 /* Compute high word of result, as a flonum. */
1230 const XFtype b = (a / Wtype_MAXp1_F);
1231 /* Convert that to fixed (but not to DWtype!),
1232 and shift it into the high word. */
1233 UDWtype v = (UWtype) b;
1234 v <<= W_TYPE_SIZE;
1235 /* Remove high part from the XFtype, leaving the low part as flonum. */
1236 a -= (XFtype)v;
1237 /* Convert that to fixed (but not to DWtype!) and add it in.
1238 Sometimes A comes out negative. This is significant, since
1239 A has more bits than a long int does. */
1240 if (a < 0)
1241 v -= (UWtype) (- a);
1242 else
1243 v += (UWtype) a;
1244 return v;
1246 #endif
1248 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1249 DWtype
1250 __fixxfdi (XFtype a)
1252 if (a < 0)
1253 return - __fixunsxfDI (-a);
1254 return __fixunsxfDI (a);
1256 #endif
1258 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1259 UDWtype
1260 __fixunsdfDI (DFtype a)
1262 /* Get high part of result. The division here will just moves the radix
1263 point and will not cause any rounding. Then the conversion to integral
1264 type chops result as desired. */
1265 const UWtype hi = a / Wtype_MAXp1_F;
1267 /* Get low part of result. Convert `hi' to floating type and scale it back,
1268 then subtract this from the number being converted. This leaves the low
1269 part. Convert that to integral type. */
1270 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1272 /* Assemble result from the two parts. */
1273 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1275 #endif
1277 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1278 DWtype
1279 __fixdfdi (DFtype a)
1281 if (a < 0)
1282 return - __fixunsdfDI (-a);
1283 return __fixunsdfDI (a);
1285 #endif
1287 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1288 UDWtype
1289 __fixunssfDI (SFtype a)
1291 #if LIBGCC2_HAS_DF_MODE
1292 /* Convert the SFtype to a DFtype, because that is surely not going
1293 to lose any bits. Some day someone else can write a faster version
1294 that avoids converting to DFtype, and verify it really works right. */
1295 const DFtype dfa = a;
1297 /* Get high part of result. The division here will just moves the radix
1298 point and will not cause any rounding. Then the conversion to integral
1299 type chops result as desired. */
1300 const UWtype hi = dfa / Wtype_MAXp1_F;
1302 /* Get low part of result. Convert `hi' to floating type and scale it back,
1303 then subtract this from the number being converted. This leaves the low
1304 part. Convert that to integral type. */
1305 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1307 /* Assemble result from the two parts. */
1308 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1309 #elif FLT_MANT_DIG < W_TYPE_SIZE
1310 if (a < 1)
1311 return 0;
1312 if (a < Wtype_MAXp1_F)
1313 return (UWtype)a;
1314 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1316 /* Since we know that there are fewer significant bits in the SFmode
1317 quantity than in a word, we know that we can convert out all the
1318 significant bits in one step, and thus avoid losing bits. */
1320 /* ??? This following loop essentially performs frexpf. If we could
1321 use the real libm function, or poke at the actual bits of the fp
1322 format, it would be significantly faster. */
1324 UWtype shift = 0, counter;
1325 SFtype msb;
1327 a /= Wtype_MAXp1_F;
1328 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1330 SFtype counterf = (UWtype)1 << counter;
1331 if (a >= counterf)
1333 shift |= counter;
1334 a /= counterf;
1338 /* Rescale into the range of one word, extract the bits of that
1339 one word, and shift the result into position. */
1340 a *= Wtype_MAXp1_F;
1341 counter = a;
1342 return (DWtype)counter << shift;
1344 return -1;
1345 #else
1346 # error
1347 #endif
1349 #endif
1351 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1352 DWtype
1353 __fixsfdi (SFtype a)
1355 if (a < 0)
1356 return - __fixunssfDI (-a);
1357 return __fixunssfDI (a);
1359 #endif
1361 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1362 XFtype
1363 __floatdixf (DWtype u)
1365 #if W_TYPE_SIZE > XF_SIZE
1366 # error
1367 #endif
1368 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1369 d *= Wtype_MAXp1_F;
1370 d += (UWtype)u;
1371 return d;
1373 #endif
1375 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1376 XFtype
1377 __floatundixf (UDWtype u)
1379 #if W_TYPE_SIZE > XF_SIZE
1380 # error
1381 #endif
1382 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1383 d *= Wtype_MAXp1_F;
1384 d += (UWtype)u;
1385 return d;
1387 #endif
1389 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1390 TFtype
1391 __floatditf (DWtype u)
1393 #if W_TYPE_SIZE > TF_SIZE
1394 # error
1395 #endif
1396 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1397 d *= Wtype_MAXp1_F;
1398 d += (UWtype)u;
1399 return d;
1401 #endif
1403 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1404 TFtype
1405 __floatunditf (UDWtype u)
1407 #if W_TYPE_SIZE > TF_SIZE
1408 # error
1409 #endif
1410 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1411 d *= Wtype_MAXp1_F;
1412 d += (UWtype)u;
1413 return d;
1415 #endif
1417 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1418 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1419 #define DI_SIZE (W_TYPE_SIZE * 2)
1420 #define F_MODE_OK(SIZE) \
1421 (SIZE < DI_SIZE \
1422 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1423 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1424 #if defined(L_floatdisf)
1425 #define FUNC __floatdisf
1426 #define FSTYPE SFtype
1427 #define FSSIZE SF_SIZE
1428 #else
1429 #define FUNC __floatdidf
1430 #define FSTYPE DFtype
1431 #define FSSIZE DF_SIZE
1432 #endif
1434 FSTYPE
1435 FUNC (DWtype u)
1437 #if FSSIZE >= W_TYPE_SIZE
1438 /* When the word size is small, we never get any rounding error. */
1439 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1440 f *= Wtype_MAXp1_F;
1441 f += (UWtype)u;
1442 return f;
1443 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1444 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1445 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1447 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1448 # define FSIZE DF_SIZE
1449 # define FTYPE DFtype
1450 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1451 # define FSIZE XF_SIZE
1452 # define FTYPE XFtype
1453 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1454 # define FSIZE TF_SIZE
1455 # define FTYPE TFtype
1456 #else
1457 # error
1458 #endif
1460 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1462 /* Protect against double-rounding error.
1463 Represent any low-order bits, that might be truncated by a bit that
1464 won't be lost. The bit can go in anywhere below the rounding position
1465 of the FSTYPE. A fixed mask and bit position handles all usual
1466 configurations. */
1467 if (! (- ((DWtype) 1 << FSIZE) < u
1468 && u < ((DWtype) 1 << FSIZE)))
1470 if ((UDWtype) u & (REP_BIT - 1))
1472 u &= ~ (REP_BIT - 1);
1473 u |= REP_BIT;
1477 /* Do the calculation in a wider type so that we don't lose any of
1478 the precision of the high word while multiplying it. */
1479 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1480 f *= Wtype_MAXp1_F;
1481 f += (UWtype)u;
1482 return (FSTYPE) f;
1483 #else
1484 #if FSSIZE >= W_TYPE_SIZE - 2
1485 # error
1486 #endif
1487 /* Finally, the word size is larger than the number of bits in the
1488 required FSTYPE, and we've got no suitable wider type. The only
1489 way to avoid double rounding is to special case the
1490 extraction. */
1492 /* If there are no high bits set, fall back to one conversion. */
1493 if ((Wtype)u == u)
1494 return (FSTYPE)(Wtype)u;
1496 /* Otherwise, find the power of two. */
1497 Wtype hi = u >> W_TYPE_SIZE;
1498 if (hi < 0)
1499 hi = -hi;
1501 UWtype count, shift;
1502 count_leading_zeros (count, hi);
1504 /* No leading bits means u == minimum. */
1505 if (count == 0)
1506 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1508 shift = 1 + W_TYPE_SIZE - count;
1510 /* Shift down the most significant bits. */
1511 hi = u >> shift;
1513 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1514 if ((UWtype)u << (W_TYPE_SIZE - shift))
1515 hi |= 1;
1517 /* Convert the one word of data, and rescale. */
1518 FSTYPE f = hi, e;
1519 if (shift == W_TYPE_SIZE)
1520 e = Wtype_MAXp1_F;
1521 /* The following two cases could be merged if we knew that the target
1522 supported a native unsigned->float conversion. More often, we only
1523 have a signed conversion, and have to add extra fixup code. */
1524 else if (shift == W_TYPE_SIZE - 1)
1525 e = Wtype_MAXp1_F / 2;
1526 else
1527 e = (Wtype)1 << shift;
1528 return f * e;
1529 #endif
1531 #endif
1533 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1534 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1535 #define DI_SIZE (W_TYPE_SIZE * 2)
1536 #define F_MODE_OK(SIZE) \
1537 (SIZE < DI_SIZE \
1538 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1539 && !AVOID_FP_TYPE_CONVERSION(SIZE))
1540 #if defined(L_floatundisf)
1541 #define FUNC __floatundisf
1542 #define FSTYPE SFtype
1543 #define FSSIZE SF_SIZE
1544 #else
1545 #define FUNC __floatundidf
1546 #define FSTYPE DFtype
1547 #define FSSIZE DF_SIZE
1548 #endif
1550 FSTYPE
1551 FUNC (UDWtype u)
1553 #if FSSIZE >= W_TYPE_SIZE
1554 /* When the word size is small, we never get any rounding error. */
1555 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1556 f *= Wtype_MAXp1_F;
1557 f += (UWtype)u;
1558 return f;
1559 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1560 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1561 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1563 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1564 # define FSIZE DF_SIZE
1565 # define FTYPE DFtype
1566 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1567 # define FSIZE XF_SIZE
1568 # define FTYPE XFtype
1569 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1570 # define FSIZE TF_SIZE
1571 # define FTYPE TFtype
1572 #else
1573 # error
1574 #endif
1576 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1578 /* Protect against double-rounding error.
1579 Represent any low-order bits, that might be truncated by a bit that
1580 won't be lost. The bit can go in anywhere below the rounding position
1581 of the FSTYPE. A fixed mask and bit position handles all usual
1582 configurations. */
1583 if (u >= ((UDWtype) 1 << FSIZE))
1585 if ((UDWtype) u & (REP_BIT - 1))
1587 u &= ~ (REP_BIT - 1);
1588 u |= REP_BIT;
1592 /* Do the calculation in a wider type so that we don't lose any of
1593 the precision of the high word while multiplying it. */
1594 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1595 f *= Wtype_MAXp1_F;
1596 f += (UWtype)u;
1597 return (FSTYPE) f;
1598 #else
1599 #if FSSIZE == W_TYPE_SIZE - 1
1600 # error
1601 #endif
1602 /* Finally, the word size is larger than the number of bits in the
1603 required FSTYPE, and we've got no suitable wider type. The only
1604 way to avoid double rounding is to special case the
1605 extraction. */
1607 /* If there are no high bits set, fall back to one conversion. */
1608 if ((UWtype)u == u)
1609 return (FSTYPE)(UWtype)u;
1611 /* Otherwise, find the power of two. */
1612 UWtype hi = u >> W_TYPE_SIZE;
1614 UWtype count, shift;
1615 count_leading_zeros (count, hi);
1617 shift = W_TYPE_SIZE - count;
1619 /* Shift down the most significant bits. */
1620 hi = u >> shift;
1622 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1623 if ((UWtype)u << (W_TYPE_SIZE - shift))
1624 hi |= 1;
1626 /* Convert the one word of data, and rescale. */
1627 FSTYPE f = hi, e;
1628 if (shift == W_TYPE_SIZE)
1629 e = Wtype_MAXp1_F;
1630 /* The following two cases could be merged if we knew that the target
1631 supported a native unsigned->float conversion. More often, we only
1632 have a signed conversion, and have to add extra fixup code. */
1633 else if (shift == W_TYPE_SIZE - 1)
1634 e = Wtype_MAXp1_F / 2;
1635 else
1636 e = (Wtype)1 << shift;
1637 return f * e;
1638 #endif
1640 #endif
1642 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1643 /* Reenable the normal types, in case limits.h needs them. */
1644 #undef char
1645 #undef short
1646 #undef int
1647 #undef long
1648 #undef unsigned
1649 #undef float
1650 #undef double
1651 #undef MIN
1652 #undef MAX
1653 #include <limits.h>
1655 UWtype
1656 __fixunsxfSI (XFtype a)
1658 if (a >= - (DFtype) Wtype_MIN)
1659 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1660 return (Wtype) a;
1662 #endif
1664 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1665 /* Reenable the normal types, in case limits.h needs them. */
1666 #undef char
1667 #undef short
1668 #undef int
1669 #undef long
1670 #undef unsigned
1671 #undef float
1672 #undef double
1673 #undef MIN
1674 #undef MAX
1675 #include <limits.h>
1677 UWtype
1678 __fixunsdfSI (DFtype a)
1680 if (a >= - (DFtype) Wtype_MIN)
1681 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1682 return (Wtype) a;
1684 #endif
1686 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1687 /* Reenable the normal types, in case limits.h needs them. */
1688 #undef char
1689 #undef short
1690 #undef int
1691 #undef long
1692 #undef unsigned
1693 #undef float
1694 #undef double
1695 #undef MIN
1696 #undef MAX
1697 #include <limits.h>
1699 UWtype
1700 __fixunssfSI (SFtype a)
1702 if (a >= - (SFtype) Wtype_MIN)
1703 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1704 return (Wtype) a;
1706 #endif
1708 /* Integer power helper used from __builtin_powi for non-constant
1709 exponents. */
1711 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1712 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1713 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1714 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1715 # if defined(L_powisf2)
1716 # define TYPE SFtype
1717 # define NAME __powisf2
1718 # elif defined(L_powidf2)
1719 # define TYPE DFtype
1720 # define NAME __powidf2
1721 # elif defined(L_powixf2)
1722 # define TYPE XFtype
1723 # define NAME __powixf2
1724 # elif defined(L_powitf2)
1725 # define TYPE TFtype
1726 # define NAME __powitf2
1727 # endif
1729 #undef int
1730 #undef unsigned
1731 TYPE
1732 NAME (TYPE x, int m)
1734 unsigned int n = m < 0 ? -m : m;
1735 TYPE y = n % 2 ? x : 1;
1736 while (n >>= 1)
1738 x = x * x;
1739 if (n % 2)
1740 y = y * x;
1742 return m < 0 ? 1/y : y;
1745 #endif
1747 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1748 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1749 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1750 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1752 #undef float
1753 #undef double
1754 #undef long
1756 #if defined(L_mulsc3) || defined(L_divsc3)
1757 # define MTYPE SFtype
1758 # define CTYPE SCtype
1759 # define MODE sc
1760 # define CEXT f
1761 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1762 #elif defined(L_muldc3) || defined(L_divdc3)
1763 # define MTYPE DFtype
1764 # define CTYPE DCtype
1765 # define MODE dc
1766 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1767 # define CEXT l
1768 # define NOTRUNC 1
1769 # else
1770 # define CEXT
1771 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1772 # endif
1773 #elif defined(L_mulxc3) || defined(L_divxc3)
1774 # define MTYPE XFtype
1775 # define CTYPE XCtype
1776 # define MODE xc
1777 # define CEXT l
1778 # define NOTRUNC 1
1779 #elif defined(L_multc3) || defined(L_divtc3)
1780 # define MTYPE TFtype
1781 # define CTYPE TCtype
1782 # define MODE tc
1783 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
1784 # define CEXT l
1785 # else
1786 # define CEXT LIBGCC2_TF_CEXT
1787 # endif
1788 # define NOTRUNC 1
1789 #else
1790 # error
1791 #endif
1793 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1794 #define _CONCAT3(A,B,C) A##B##C
1796 #define CONCAT2(A,B) _CONCAT2(A,B)
1797 #define _CONCAT2(A,B) A##B
1799 /* All of these would be present in a full C99 implementation of <math.h>
1800 and <complex.h>. Our problem is that only a few systems have such full
1801 implementations. Further, libgcc_s.so isn't currently linked against
1802 libm.so, and even for systems that do provide full C99, the extra overhead
1803 of all programs using libgcc having to link against libm. So avoid it. */
1805 #define isnan(x) __builtin_expect ((x) != (x), 0)
1806 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1807 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1809 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1810 #define I 1i
1812 /* Helpers to make the following code slightly less gross. */
1813 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1814 #define FABS CONCAT2(__builtin_fabs, CEXT)
1816 /* Verify that MTYPE matches up with CEXT. */
1817 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1819 /* Ensure that we've lost any extra precision. */
1820 #if NOTRUNC
1821 # define TRUNC(x)
1822 #else
1823 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1824 #endif
1826 #if defined(L_mulsc3) || defined(L_muldc3) \
1827 || defined(L_mulxc3) || defined(L_multc3)
1829 CTYPE
1830 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1832 MTYPE ac, bd, ad, bc, x, y;
1834 ac = a * c;
1835 bd = b * d;
1836 ad = a * d;
1837 bc = b * c;
1839 TRUNC (ac);
1840 TRUNC (bd);
1841 TRUNC (ad);
1842 TRUNC (bc);
1844 x = ac - bd;
1845 y = ad + bc;
1847 if (isnan (x) && isnan (y))
1849 /* Recover infinities that computed as NaN + iNaN. */
1850 _Bool recalc = 0;
1851 if (isinf (a) || isinf (b))
1853 /* z is infinite. "Box" the infinity and change NaNs in
1854 the other factor to 0. */
1855 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1856 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1857 if (isnan (c)) c = COPYSIGN (0, c);
1858 if (isnan (d)) d = COPYSIGN (0, d);
1859 recalc = 1;
1861 if (isinf (c) || isinf (d))
1863 /* w is infinite. "Box" the infinity and change NaNs in
1864 the other factor to 0. */
1865 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1866 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1867 if (isnan (a)) a = COPYSIGN (0, a);
1868 if (isnan (b)) b = COPYSIGN (0, b);
1869 recalc = 1;
1871 if (!recalc
1872 && (isinf (ac) || isinf (bd)
1873 || isinf (ad) || isinf (bc)))
1875 /* Recover infinities from overflow by changing NaNs to 0. */
1876 if (isnan (a)) a = COPYSIGN (0, a);
1877 if (isnan (b)) b = COPYSIGN (0, b);
1878 if (isnan (c)) c = COPYSIGN (0, c);
1879 if (isnan (d)) d = COPYSIGN (0, d);
1880 recalc = 1;
1882 if (recalc)
1884 x = INFINITY * (a * c - b * d);
1885 y = INFINITY * (a * d + b * c);
1889 return x + I * y;
1891 #endif /* complex multiply */
1893 #if defined(L_divsc3) || defined(L_divdc3) \
1894 || defined(L_divxc3) || defined(L_divtc3)
1896 CTYPE
1897 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1899 MTYPE denom, ratio, x, y;
1901 /* ??? We can get better behavior from logarithmic scaling instead of
1902 the division. But that would mean starting to link libgcc against
1903 libm. We could implement something akin to ldexp/frexp as gcc builtins
1904 fairly easily... */
1905 if (FABS (c) < FABS (d))
1907 ratio = c / d;
1908 denom = (c * ratio) + d;
1909 x = ((a * ratio) + b) / denom;
1910 y = ((b * ratio) - a) / denom;
1912 else
1914 ratio = d / c;
1915 denom = (d * ratio) + c;
1916 x = ((b * ratio) + a) / denom;
1917 y = (b - (a * ratio)) / denom;
1920 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1921 are nonzero/zero, infinite/finite, and finite/infinite. */
1922 if (isnan (x) && isnan (y))
1924 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
1926 x = COPYSIGN (INFINITY, c) * a;
1927 y = COPYSIGN (INFINITY, c) * b;
1929 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1931 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1932 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1933 x = INFINITY * (a * c + b * d);
1934 y = INFINITY * (b * c - a * d);
1936 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1938 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1939 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1940 x = 0.0 * (a * c + b * d);
1941 y = 0.0 * (b * c - a * d);
1945 return x + I * y;
1947 #endif /* complex divide */
1949 #endif /* all complex float routines */
1951 /* From here on down, the routines use normal data types. */
1953 #define SItype bogus_type
1954 #define USItype bogus_type
1955 #define DItype bogus_type
1956 #define UDItype bogus_type
1957 #define SFtype bogus_type
1958 #define DFtype bogus_type
1959 #undef Wtype
1960 #undef UWtype
1961 #undef HWtype
1962 #undef UHWtype
1963 #undef DWtype
1964 #undef UDWtype
1966 #undef char
1967 #undef short
1968 #undef int
1969 #undef long
1970 #undef unsigned
1971 #undef float
1972 #undef double
1974 #ifdef L__gcc_bcmp
1976 /* Like bcmp except the sign is meaningful.
1977 Result is negative if S1 is less than S2,
1978 positive if S1 is greater, 0 if S1 and S2 are equal. */
1981 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1983 while (size > 0)
1985 const unsigned char c1 = *s1++, c2 = *s2++;
1986 if (c1 != c2)
1987 return c1 - c2;
1988 size--;
1990 return 0;
1993 #endif
1995 /* __eprintf used to be used by GCC's private version of <assert.h>.
1996 We no longer provide that header, but this routine remains in libgcc.a
1997 for binary backward compatibility. Note that it is not included in
1998 the shared version of libgcc. */
1999 #ifdef L_eprintf
2000 #ifndef inhibit_libc
2002 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
2003 #include <stdio.h>
2005 void
2006 __eprintf (const char *string, const char *expression,
2007 unsigned int line, const char *filename)
2009 fprintf (stderr, string, expression, line, filename);
2010 fflush (stderr);
2011 abort ();
2014 #endif
2015 #endif
2018 #ifdef L_clear_cache
2019 /* Clear part of an instruction cache. */
2021 void
2022 __clear_cache (char *beg __attribute__((__unused__)),
2023 char *end __attribute__((__unused__)))
2025 #ifdef CLEAR_INSN_CACHE
2026 CLEAR_INSN_CACHE (beg, end);
2027 #endif /* CLEAR_INSN_CACHE */
2030 #endif /* L_clear_cache */
2032 #ifdef L_enable_execute_stack
2033 /* Attempt to turn on execute permission for the stack. */
2035 #ifdef ENABLE_EXECUTE_STACK
2036 ENABLE_EXECUTE_STACK
2037 #else
2038 void
2039 __enable_execute_stack (void *addr __attribute__((__unused__)))
2041 #endif /* ENABLE_EXECUTE_STACK */
2043 #endif /* L_enable_execute_stack */
2045 #ifdef L_trampoline
2047 /* Jump to a trampoline, loading the static chain address. */
2049 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2052 getpagesize (void)
2054 #ifdef _ALPHA_
2055 return 8192;
2056 #else
2057 return 4096;
2058 #endif
2062 mprotect (char *addr, int len, int prot)
2064 int np, op;
2066 if (prot == 7)
2067 np = 0x40;
2068 else if (prot == 5)
2069 np = 0x20;
2070 else if (prot == 4)
2071 np = 0x10;
2072 else if (prot == 3)
2073 np = 0x04;
2074 else if (prot == 1)
2075 np = 0x02;
2076 else if (prot == 0)
2077 np = 0x01;
2079 if (VirtualProtect (addr, len, np, &op))
2080 return 0;
2081 else
2082 return -1;
2085 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2087 #ifdef TRANSFER_FROM_TRAMPOLINE
2088 TRANSFER_FROM_TRAMPOLINE
2089 #endif
2090 #endif /* L_trampoline */
2092 #ifndef __CYGWIN__
2093 #ifdef L__main
2095 #include "gbl-ctors.h"
2097 /* Some systems use __main in a way incompatible with its use in gcc, in these
2098 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2099 give the same symbol without quotes for an alternative entry point. You
2100 must define both, or neither. */
2101 #ifndef NAME__MAIN
2102 #define NAME__MAIN "__main"
2103 #define SYMBOL__MAIN __main
2104 #endif
2106 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2107 #undef HAS_INIT_SECTION
2108 #define HAS_INIT_SECTION
2109 #endif
2111 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2113 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2114 code to run constructors. In that case, we need to handle EH here, too. */
2116 #ifdef EH_FRAME_SECTION_NAME
2117 #include "unwind-dw2-fde.h"
2118 extern unsigned char __EH_FRAME_BEGIN__[];
2119 #endif
2121 /* Run all the global destructors on exit from the program. */
2123 void
2124 __do_global_dtors (void)
2126 #ifdef DO_GLOBAL_DTORS_BODY
2127 DO_GLOBAL_DTORS_BODY;
2128 #else
2129 static func_ptr *p = __DTOR_LIST__ + 1;
2130 while (*p)
2132 p++;
2133 (*(p-1)) ();
2135 #endif
2136 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2138 static int completed = 0;
2139 if (! completed)
2141 completed = 1;
2142 __deregister_frame_info (__EH_FRAME_BEGIN__);
2145 #endif
2147 #endif
2149 #ifndef HAS_INIT_SECTION
2150 /* Run all the global constructors on entry to the program. */
2152 void
2153 __do_global_ctors (void)
2155 #ifdef EH_FRAME_SECTION_NAME
2157 static struct object object;
2158 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2160 #endif
2161 DO_GLOBAL_CTORS_BODY;
2162 atexit (__do_global_dtors);
2164 #endif /* no HAS_INIT_SECTION */
2166 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2167 /* Subroutine called automatically by `main'.
2168 Compiling a global function named `main'
2169 produces an automatic call to this function at the beginning.
2171 For many systems, this routine calls __do_global_ctors.
2172 For systems which support a .init section we use the .init section
2173 to run __do_global_ctors, so we need not do anything here. */
2175 extern void SYMBOL__MAIN (void);
2176 void
2177 SYMBOL__MAIN (void)
2179 /* Support recursive calls to `main': run initializers just once. */
2180 static int initialized;
2181 if (! initialized)
2183 initialized = 1;
2184 __do_global_ctors ();
2187 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2189 #endif /* L__main */
2190 #endif /* __CYGWIN__ */
2192 #ifdef L_ctors
2194 #include "gbl-ctors.h"
2196 /* Provide default definitions for the lists of constructors and
2197 destructors, so that we don't get linker errors. These symbols are
2198 intentionally bss symbols, so that gld and/or collect will provide
2199 the right values. */
2201 /* We declare the lists here with two elements each,
2202 so that they are valid empty lists if no other definition is loaded.
2204 If we are using the old "set" extensions to have the gnu linker
2205 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2206 must be in the bss/common section.
2208 Long term no port should use those extensions. But many still do. */
2209 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2210 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2211 func_ptr __CTOR_LIST__[2] = {0, 0};
2212 func_ptr __DTOR_LIST__[2] = {0, 0};
2213 #else
2214 func_ptr __CTOR_LIST__[2];
2215 func_ptr __DTOR_LIST__[2];
2216 #endif
2217 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2218 #endif /* L_ctors */
2219 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */