2015-09-25 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / stmt.c
blob134d78e751beda0b38be9249fade1604f5fd4865
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "predict.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "stor-layout.h"
38 #include "tm_p.h"
39 #include "flags.h"
40 #include "except.h"
41 #include "insn-config.h"
42 #include "expmed.h"
43 #include "dojump.h"
44 #include "explow.h"
45 #include "calls.h"
46 #include "emit-rtl.h"
47 #include "stmt.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "recog.h"
51 #include "diagnostic-core.h"
52 #include "output.h"
53 #include "langhooks.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "target.h"
57 #include "cfganal.h"
58 #include "internal-fn.h"
59 #include "regs.h"
60 #include "alloc-pool.h"
61 #include "pretty-print.h"
62 #include "params.h"
63 #include "dumpfile.h"
64 #include "builtins.h"
67 /* Functions and data structures for expanding case statements. */
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
73 We start with a vector of case nodes sorted in ascending order, and
74 the default label as the last element in the vector. Before expanding
75 to RTL, we transform this vector into a list linked via the RIGHT
76 fields in the case_node struct. Nodes with higher case values are
77 later in the list.
79 Switch statements can be output in three forms. A branch table is
80 used if there are more than a few labels and the labels are dense
81 within the range between the smallest and largest case value. If a
82 branch table is used, no further manipulations are done with the case
83 node chain.
85 The alternative to the use of a branch table is to generate a series
86 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
87 and PARENT fields to hold a binary tree. Initially the tree is
88 totally unbalanced, with everything on the right. We balance the tree
89 with nodes on the left having lower case values than the parent
90 and nodes on the right having higher values. We then output the tree
91 in order.
93 For very small, suitable switch statements, we can generate a series
94 of simple bit test and branches instead. */
96 struct case_node
98 struct case_node *left; /* Left son in binary tree */
99 struct case_node *right; /* Right son in binary tree; also node chain */
100 struct case_node *parent; /* Parent of node in binary tree */
101 tree low; /* Lowest index value for this label */
102 tree high; /* Highest index value for this label */
103 tree code_label; /* Label to jump to when node matches */
104 int prob; /* Probability of taking this case. */
105 /* Probability of reaching subtree rooted at this node */
106 int subtree_prob;
109 typedef struct case_node *case_node_ptr;
111 extern basic_block label_to_block_fn (struct function *, tree);
113 static bool check_unique_operand_names (tree, tree, tree);
114 static char *resolve_operand_name_1 (char *, tree, tree, tree);
115 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
116 static int node_has_low_bound (case_node_ptr, tree);
117 static int node_has_high_bound (case_node_ptr, tree);
118 static int node_is_bounded (case_node_ptr, tree);
119 static void emit_case_nodes (rtx, case_node_ptr, rtx_code_label *, int, tree);
121 /* Return the rtx-label that corresponds to a LABEL_DECL,
122 creating it if necessary. */
124 rtx_insn *
125 label_rtx (tree label)
127 gcc_assert (TREE_CODE (label) == LABEL_DECL);
129 if (!DECL_RTL_SET_P (label))
131 rtx_code_label *r = gen_label_rtx ();
132 SET_DECL_RTL (label, r);
133 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
134 LABEL_PRESERVE_P (r) = 1;
137 return as_a <rtx_insn *> (DECL_RTL (label));
140 /* As above, but also put it on the forced-reference list of the
141 function that contains it. */
142 rtx_insn *
143 force_label_rtx (tree label)
145 rtx_insn *ref = label_rtx (label);
146 tree function = decl_function_context (label);
148 gcc_assert (function);
150 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
151 return ref;
154 /* As label_rtx, but ensures (in check build), that returned value is
155 an existing label (i.e. rtx with code CODE_LABEL). */
156 rtx_code_label *
157 jump_target_rtx (tree label)
159 return as_a <rtx_code_label *> (label_rtx (label));
162 /* Add an unconditional jump to LABEL as the next sequential instruction. */
164 void
165 emit_jump (rtx label)
167 do_pending_stack_adjust ();
168 emit_jump_insn (targetm.gen_jump (label));
169 emit_barrier ();
172 /* Handle goto statements and the labels that they can go to. */
174 /* Specify the location in the RTL code of a label LABEL,
175 which is a LABEL_DECL tree node.
177 This is used for the kind of label that the user can jump to with a
178 goto statement, and for alternatives of a switch or case statement.
179 RTL labels generated for loops and conditionals don't go through here;
180 they are generated directly at the RTL level, by other functions below.
182 Note that this has nothing to do with defining label *names*.
183 Languages vary in how they do that and what that even means. */
185 void
186 expand_label (tree label)
188 rtx_code_label *label_r = jump_target_rtx (label);
190 do_pending_stack_adjust ();
191 emit_label (label_r);
192 if (DECL_NAME (label))
193 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
195 if (DECL_NONLOCAL (label))
197 expand_builtin_setjmp_receiver (NULL);
198 nonlocal_goto_handler_labels
199 = gen_rtx_INSN_LIST (VOIDmode, label_r,
200 nonlocal_goto_handler_labels);
203 if (FORCED_LABEL (label))
204 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
206 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
207 maybe_set_first_label_num (label_r);
210 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
211 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
212 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
213 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
214 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
215 constraint allows the use of a register operand. And, *IS_INOUT
216 will be true if the operand is read-write, i.e., if it is used as
217 an input as well as an output. If *CONSTRAINT_P is not in
218 canonical form, it will be made canonical. (Note that `+' will be
219 replaced with `=' as part of this process.)
221 Returns TRUE if all went well; FALSE if an error occurred. */
223 bool
224 parse_output_constraint (const char **constraint_p, int operand_num,
225 int ninputs, int noutputs, bool *allows_mem,
226 bool *allows_reg, bool *is_inout)
228 const char *constraint = *constraint_p;
229 const char *p;
231 /* Assume the constraint doesn't allow the use of either a register
232 or memory. */
233 *allows_mem = false;
234 *allows_reg = false;
236 /* Allow the `=' or `+' to not be at the beginning of the string,
237 since it wasn't explicitly documented that way, and there is a
238 large body of code that puts it last. Swap the character to
239 the front, so as not to uglify any place else. */
240 p = strchr (constraint, '=');
241 if (!p)
242 p = strchr (constraint, '+');
244 /* If the string doesn't contain an `=', issue an error
245 message. */
246 if (!p)
248 error ("output operand constraint lacks %<=%>");
249 return false;
252 /* If the constraint begins with `+', then the operand is both read
253 from and written to. */
254 *is_inout = (*p == '+');
256 /* Canonicalize the output constraint so that it begins with `='. */
257 if (p != constraint || *is_inout)
259 char *buf;
260 size_t c_len = strlen (constraint);
262 if (p != constraint)
263 warning (0, "output constraint %qc for operand %d "
264 "is not at the beginning",
265 *p, operand_num);
267 /* Make a copy of the constraint. */
268 buf = XALLOCAVEC (char, c_len + 1);
269 strcpy (buf, constraint);
270 /* Swap the first character and the `=' or `+'. */
271 buf[p - constraint] = buf[0];
272 /* Make sure the first character is an `='. (Until we do this,
273 it might be a `+'.) */
274 buf[0] = '=';
275 /* Replace the constraint with the canonicalized string. */
276 *constraint_p = ggc_alloc_string (buf, c_len);
277 constraint = *constraint_p;
280 /* Loop through the constraint string. */
281 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
282 switch (*p)
284 case '+':
285 case '=':
286 error ("operand constraint contains incorrectly positioned "
287 "%<+%> or %<=%>");
288 return false;
290 case '%':
291 if (operand_num + 1 == ninputs + noutputs)
293 error ("%<%%%> constraint used with last operand");
294 return false;
296 break;
298 case '?': case '!': case '*': case '&': case '#':
299 case '$': case '^':
300 case 'E': case 'F': case 'G': case 'H':
301 case 's': case 'i': case 'n':
302 case 'I': case 'J': case 'K': case 'L': case 'M':
303 case 'N': case 'O': case 'P': case ',':
304 break;
306 case '0': case '1': case '2': case '3': case '4':
307 case '5': case '6': case '7': case '8': case '9':
308 case '[':
309 error ("matching constraint not valid in output operand");
310 return false;
312 case '<': case '>':
313 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
314 excepting those that expand_call created. So match memory
315 and hope. */
316 *allows_mem = true;
317 break;
319 case 'g': case 'X':
320 *allows_reg = true;
321 *allows_mem = true;
322 break;
324 default:
325 if (!ISALPHA (*p))
326 break;
327 enum constraint_num cn = lookup_constraint (p);
328 if (reg_class_for_constraint (cn) != NO_REGS
329 || insn_extra_address_constraint (cn))
330 *allows_reg = true;
331 else if (insn_extra_memory_constraint (cn))
332 *allows_mem = true;
333 else
334 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
335 break;
338 return true;
341 /* Similar, but for input constraints. */
343 bool
344 parse_input_constraint (const char **constraint_p, int input_num,
345 int ninputs, int noutputs, int ninout,
346 const char * const * constraints,
347 bool *allows_mem, bool *allows_reg)
349 const char *constraint = *constraint_p;
350 const char *orig_constraint = constraint;
351 size_t c_len = strlen (constraint);
352 size_t j;
353 bool saw_match = false;
355 /* Assume the constraint doesn't allow the use of either
356 a register or memory. */
357 *allows_mem = false;
358 *allows_reg = false;
360 /* Make sure constraint has neither `=', `+', nor '&'. */
362 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
363 switch (constraint[j])
365 case '+': case '=': case '&':
366 if (constraint == orig_constraint)
368 error ("input operand constraint contains %qc", constraint[j]);
369 return false;
371 break;
373 case '%':
374 if (constraint == orig_constraint
375 && input_num + 1 == ninputs - ninout)
377 error ("%<%%%> constraint used with last operand");
378 return false;
380 break;
382 case '<': case '>':
383 case '?': case '!': case '*': case '#':
384 case '$': case '^':
385 case 'E': case 'F': case 'G': case 'H':
386 case 's': case 'i': case 'n':
387 case 'I': case 'J': case 'K': case 'L': case 'M':
388 case 'N': case 'O': case 'P': case ',':
389 break;
391 /* Whether or not a numeric constraint allows a register is
392 decided by the matching constraint, and so there is no need
393 to do anything special with them. We must handle them in
394 the default case, so that we don't unnecessarily force
395 operands to memory. */
396 case '0': case '1': case '2': case '3': case '4':
397 case '5': case '6': case '7': case '8': case '9':
399 char *end;
400 unsigned long match;
402 saw_match = true;
404 match = strtoul (constraint + j, &end, 10);
405 if (match >= (unsigned long) noutputs)
407 error ("matching constraint references invalid operand number");
408 return false;
411 /* Try and find the real constraint for this dup. Only do this
412 if the matching constraint is the only alternative. */
413 if (*end == '\0'
414 && (j == 0 || (j == 1 && constraint[0] == '%')))
416 constraint = constraints[match];
417 *constraint_p = constraint;
418 c_len = strlen (constraint);
419 j = 0;
420 /* ??? At the end of the loop, we will skip the first part of
421 the matched constraint. This assumes not only that the
422 other constraint is an output constraint, but also that
423 the '=' or '+' come first. */
424 break;
426 else
427 j = end - constraint;
428 /* Anticipate increment at end of loop. */
429 j--;
431 /* Fall through. */
433 case 'g': case 'X':
434 *allows_reg = true;
435 *allows_mem = true;
436 break;
438 default:
439 if (! ISALPHA (constraint[j]))
441 error ("invalid punctuation %qc in constraint", constraint[j]);
442 return false;
444 enum constraint_num cn = lookup_constraint (constraint + j);
445 if (reg_class_for_constraint (cn) != NO_REGS
446 || insn_extra_address_constraint (cn))
447 *allows_reg = true;
448 else if (insn_extra_memory_constraint (cn))
449 *allows_mem = true;
450 else
451 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
452 break;
455 if (saw_match && !*allows_reg)
456 warning (0, "matching constraint does not allow a register");
458 return true;
461 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
462 can be an asm-declared register. Called via walk_tree. */
464 static tree
465 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
466 void *data)
468 tree decl = *declp;
469 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
471 if (TREE_CODE (decl) == VAR_DECL)
473 if (DECL_HARD_REGISTER (decl)
474 && REG_P (DECL_RTL (decl))
475 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
477 rtx reg = DECL_RTL (decl);
479 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
480 return decl;
482 walk_subtrees = 0;
484 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
485 walk_subtrees = 0;
486 return NULL_TREE;
489 /* If there is an overlap between *REGS and DECL, return the first overlap
490 found. */
491 tree
492 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
494 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
498 /* A subroutine of expand_asm_operands. Check that all operand names
499 are unique. Return true if so. We rely on the fact that these names
500 are identifiers, and so have been canonicalized by get_identifier,
501 so all we need are pointer comparisons. */
503 static bool
504 check_unique_operand_names (tree outputs, tree inputs, tree labels)
506 tree i, j, i_name = NULL_TREE;
508 for (i = outputs; i ; i = TREE_CHAIN (i))
510 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
511 if (! i_name)
512 continue;
514 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
515 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
516 goto failure;
519 for (i = inputs; i ; i = TREE_CHAIN (i))
521 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
522 if (! i_name)
523 continue;
525 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
526 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
527 goto failure;
528 for (j = outputs; j ; j = TREE_CHAIN (j))
529 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
530 goto failure;
533 for (i = labels; i ; i = TREE_CHAIN (i))
535 i_name = TREE_PURPOSE (i);
536 if (! i_name)
537 continue;
539 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
540 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
541 goto failure;
542 for (j = inputs; j ; j = TREE_CHAIN (j))
543 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
544 goto failure;
547 return true;
549 failure:
550 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
551 return false;
554 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
555 and replace the name expansions in STRING and in the constraints to
556 those numbers. This is generally done in the front end while creating
557 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
559 tree
560 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
562 char *buffer;
563 char *p;
564 const char *c;
565 tree t;
567 check_unique_operand_names (outputs, inputs, labels);
569 /* Substitute [<name>] in input constraint strings. There should be no
570 named operands in output constraints. */
571 for (t = inputs; t ; t = TREE_CHAIN (t))
573 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
574 if (strchr (c, '[') != NULL)
576 p = buffer = xstrdup (c);
577 while ((p = strchr (p, '[')) != NULL)
578 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
579 TREE_VALUE (TREE_PURPOSE (t))
580 = build_string (strlen (buffer), buffer);
581 free (buffer);
585 /* Now check for any needed substitutions in the template. */
586 c = TREE_STRING_POINTER (string);
587 while ((c = strchr (c, '%')) != NULL)
589 if (c[1] == '[')
590 break;
591 else if (ISALPHA (c[1]) && c[2] == '[')
592 break;
593 else
595 c += 1 + (c[1] == '%');
596 continue;
600 if (c)
602 /* OK, we need to make a copy so we can perform the substitutions.
603 Assume that we will not need extra space--we get to remove '['
604 and ']', which means we cannot have a problem until we have more
605 than 999 operands. */
606 buffer = xstrdup (TREE_STRING_POINTER (string));
607 p = buffer + (c - TREE_STRING_POINTER (string));
609 while ((p = strchr (p, '%')) != NULL)
611 if (p[1] == '[')
612 p += 1;
613 else if (ISALPHA (p[1]) && p[2] == '[')
614 p += 2;
615 else
617 p += 1 + (p[1] == '%');
618 continue;
621 p = resolve_operand_name_1 (p, outputs, inputs, labels);
624 string = build_string (strlen (buffer), buffer);
625 free (buffer);
628 return string;
631 /* A subroutine of resolve_operand_names. P points to the '[' for a
632 potential named operand of the form [<name>]. In place, replace
633 the name and brackets with a number. Return a pointer to the
634 balance of the string after substitution. */
636 static char *
637 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
639 char *q;
640 int op;
641 tree t;
643 /* Collect the operand name. */
644 q = strchr (++p, ']');
645 if (!q)
647 error ("missing close brace for named operand");
648 return strchr (p, '\0');
650 *q = '\0';
652 /* Resolve the name to a number. */
653 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
655 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
656 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
657 goto found;
659 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
661 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
662 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
663 goto found;
665 for (t = labels; t ; t = TREE_CHAIN (t), op++)
667 tree name = TREE_PURPOSE (t);
668 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
669 goto found;
672 error ("undefined named operand %qs", identifier_to_locale (p));
673 op = 0;
675 found:
676 /* Replace the name with the number. Unfortunately, not all libraries
677 get the return value of sprintf correct, so search for the end of the
678 generated string by hand. */
679 sprintf (--p, "%d", op);
680 p = strchr (p, '\0');
682 /* Verify the no extra buffer space assumption. */
683 gcc_assert (p <= q);
685 /* Shift the rest of the buffer down to fill the gap. */
686 memmove (p, q + 1, strlen (q + 1) + 1);
688 return p;
692 /* Generate RTL to return directly from the current function.
693 (That is, we bypass any return value.) */
695 void
696 expand_naked_return (void)
698 rtx_code_label *end_label;
700 clear_pending_stack_adjust ();
701 do_pending_stack_adjust ();
703 end_label = naked_return_label;
704 if (end_label == 0)
705 end_label = naked_return_label = gen_label_rtx ();
707 emit_jump (end_label);
710 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
711 is the probability of jumping to LABEL. */
712 static void
713 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx_code_label *label,
714 int unsignedp, int prob)
716 gcc_assert (prob <= REG_BR_PROB_BASE);
717 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
718 NULL_RTX, NULL, label, prob);
721 /* Do the insertion of a case label into case_list. The labels are
722 fed to us in descending order from the sorted vector of case labels used
723 in the tree part of the middle end. So the list we construct is
724 sorted in ascending order.
726 LABEL is the case label to be inserted. LOW and HIGH are the bounds
727 against which the index is compared to jump to LABEL and PROB is the
728 estimated probability LABEL is reached from the switch statement. */
730 static struct case_node *
731 add_case_node (struct case_node *head, tree low, tree high,
732 tree label, int prob,
733 object_allocator<case_node> &case_node_pool)
735 struct case_node *r;
737 gcc_checking_assert (low);
738 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
740 /* Add this label to the chain. */
741 r = case_node_pool.allocate ();
742 r->low = low;
743 r->high = high;
744 r->code_label = label;
745 r->parent = r->left = NULL;
746 r->prob = prob;
747 r->subtree_prob = prob;
748 r->right = head;
749 return r;
752 /* Dump ROOT, a list or tree of case nodes, to file. */
754 static void
755 dump_case_nodes (FILE *f, struct case_node *root,
756 int indent_step, int indent_level)
758 if (root == 0)
759 return;
760 indent_level++;
762 dump_case_nodes (f, root->left, indent_step, indent_level);
764 fputs (";; ", f);
765 fprintf (f, "%*s", indent_step * indent_level, "");
766 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
767 if (!tree_int_cst_equal (root->low, root->high))
769 fprintf (f, " ... ");
770 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
772 fputs ("\n", f);
774 dump_case_nodes (f, root->right, indent_step, indent_level);
777 /* Return the smallest number of different values for which it is best to use a
778 jump-table instead of a tree of conditional branches. */
780 static unsigned int
781 case_values_threshold (void)
783 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
785 if (threshold == 0)
786 threshold = targetm.case_values_threshold ();
788 return threshold;
791 /* Return true if a switch should be expanded as a decision tree.
792 RANGE is the difference between highest and lowest case.
793 UNIQ is number of unique case node targets, not counting the default case.
794 COUNT is the number of comparisons needed, not counting the default case. */
796 static bool
797 expand_switch_as_decision_tree_p (tree range,
798 unsigned int uniq ATTRIBUTE_UNUSED,
799 unsigned int count)
801 int max_ratio;
803 /* If neither casesi or tablejump is available, or flag_jump_tables
804 over-ruled us, we really have no choice. */
805 if (!targetm.have_casesi () && !targetm.have_tablejump ())
806 return true;
807 if (!flag_jump_tables)
808 return true;
809 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
810 if (flag_pic)
811 return true;
812 #endif
814 /* If the switch is relatively small such that the cost of one
815 indirect jump on the target are higher than the cost of a
816 decision tree, go with the decision tree.
818 If range of values is much bigger than number of values,
819 or if it is too large to represent in a HOST_WIDE_INT,
820 make a sequence of conditional branches instead of a dispatch.
822 The definition of "much bigger" depends on whether we are
823 optimizing for size or for speed. If the former, the maximum
824 ratio range/count = 3, because this was found to be the optimal
825 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
826 10 is much older, and was probably selected after an extensive
827 benchmarking investigation on numerous platforms. Or maybe it
828 just made sense to someone at some point in the history of GCC,
829 who knows... */
830 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
831 if (count < case_values_threshold ()
832 || ! tree_fits_uhwi_p (range)
833 || compare_tree_int (range, max_ratio * count) > 0)
834 return true;
836 return false;
839 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
840 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
841 DEFAULT_PROB is the estimated probability that it jumps to
842 DEFAULT_LABEL.
844 We generate a binary decision tree to select the appropriate target
845 code. This is done as follows:
847 If the index is a short or char that we do not have
848 an insn to handle comparisons directly, convert it to
849 a full integer now, rather than letting each comparison
850 generate the conversion.
852 Load the index into a register.
854 The list of cases is rearranged into a binary tree,
855 nearly optimal assuming equal probability for each case.
857 The tree is transformed into RTL, eliminating redundant
858 test conditions at the same time.
860 If program flow could reach the end of the decision tree
861 an unconditional jump to the default code is emitted.
863 The above process is unaware of the CFG. The caller has to fix up
864 the CFG itself. This is done in cfgexpand.c. */
866 static void
867 emit_case_decision_tree (tree index_expr, tree index_type,
868 case_node_ptr case_list, rtx_code_label *default_label,
869 int default_prob)
871 rtx index = expand_normal (index_expr);
873 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
874 && ! have_insn_for (COMPARE, GET_MODE (index)))
876 int unsignedp = TYPE_UNSIGNED (index_type);
877 machine_mode wider_mode;
878 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
879 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
880 if (have_insn_for (COMPARE, wider_mode))
882 index = convert_to_mode (wider_mode, index, unsignedp);
883 break;
887 do_pending_stack_adjust ();
889 if (MEM_P (index))
891 index = copy_to_reg (index);
892 if (TREE_CODE (index_expr) == SSA_NAME)
893 set_reg_attrs_for_decl_rtl (index_expr, index);
896 balance_case_nodes (&case_list, NULL);
898 if (dump_file && (dump_flags & TDF_DETAILS))
900 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
901 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
902 dump_case_nodes (dump_file, case_list, indent_step, 0);
905 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
906 if (default_label)
907 emit_jump (default_label);
910 /* Return the sum of probabilities of outgoing edges of basic block BB. */
912 static int
913 get_outgoing_edge_probs (basic_block bb)
915 edge e;
916 edge_iterator ei;
917 int prob_sum = 0;
918 if (!bb)
919 return 0;
920 FOR_EACH_EDGE (e, ei, bb->succs)
921 prob_sum += e->probability;
922 return prob_sum;
925 /* Computes the conditional probability of jumping to a target if the branch
926 instruction is executed.
927 TARGET_PROB is the estimated probability of jumping to a target relative
928 to some basic block BB.
929 BASE_PROB is the probability of reaching the branch instruction relative
930 to the same basic block BB. */
932 static inline int
933 conditional_probability (int target_prob, int base_prob)
935 if (base_prob > 0)
937 gcc_assert (target_prob >= 0);
938 gcc_assert (target_prob <= base_prob);
939 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
941 return -1;
944 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
945 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
946 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
947 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
949 First, a jump insn is emitted. First we try "casesi". If that
950 fails, try "tablejump". A target *must* have one of them (or both).
952 Then, a table with the target labels is emitted.
954 The process is unaware of the CFG. The caller has to fix up
955 the CFG itself. This is done in cfgexpand.c. */
957 static void
958 emit_case_dispatch_table (tree index_expr, tree index_type,
959 struct case_node *case_list, rtx default_label,
960 tree minval, tree maxval, tree range,
961 basic_block stmt_bb)
963 int i, ncases;
964 struct case_node *n;
965 rtx *labelvec;
966 rtx_insn *fallback_label = label_rtx (case_list->code_label);
967 rtx_code_label *table_label = gen_label_rtx ();
968 bool has_gaps = false;
969 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
970 int default_prob = default_edge ? default_edge->probability : 0;
971 int base = get_outgoing_edge_probs (stmt_bb);
972 bool try_with_tablejump = false;
974 int new_default_prob = conditional_probability (default_prob,
975 base);
977 if (! try_casesi (index_type, index_expr, minval, range,
978 table_label, default_label, fallback_label,
979 new_default_prob))
981 /* Index jumptables from zero for suitable values of minval to avoid
982 a subtraction. For the rationale see:
983 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
984 if (optimize_insn_for_speed_p ()
985 && compare_tree_int (minval, 0) > 0
986 && compare_tree_int (minval, 3) < 0)
988 minval = build_int_cst (index_type, 0);
989 range = maxval;
990 has_gaps = true;
992 try_with_tablejump = true;
995 /* Get table of labels to jump to, in order of case index. */
997 ncases = tree_to_shwi (range) + 1;
998 labelvec = XALLOCAVEC (rtx, ncases);
999 memset (labelvec, 0, ncases * sizeof (rtx));
1001 for (n = case_list; n; n = n->right)
1003 /* Compute the low and high bounds relative to the minimum
1004 value since that should fit in a HOST_WIDE_INT while the
1005 actual values may not. */
1006 HOST_WIDE_INT i_low
1007 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1008 n->low, minval));
1009 HOST_WIDE_INT i_high
1010 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1011 n->high, minval));
1012 HOST_WIDE_INT i;
1014 for (i = i_low; i <= i_high; i ++)
1015 labelvec[i]
1016 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1019 /* Fill in the gaps with the default. We may have gaps at
1020 the beginning if we tried to avoid the minval subtraction,
1021 so substitute some label even if the default label was
1022 deemed unreachable. */
1023 if (!default_label)
1024 default_label = fallback_label;
1025 for (i = 0; i < ncases; i++)
1026 if (labelvec[i] == 0)
1028 has_gaps = true;
1029 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1032 if (has_gaps)
1034 /* There is at least one entry in the jump table that jumps
1035 to default label. The default label can either be reached
1036 through the indirect jump or the direct conditional jump
1037 before that. Split the probability of reaching the
1038 default label among these two jumps. */
1039 new_default_prob = conditional_probability (default_prob/2,
1040 base);
1041 default_prob /= 2;
1042 base -= default_prob;
1044 else
1046 base -= default_prob;
1047 default_prob = 0;
1050 if (default_edge)
1051 default_edge->probability = default_prob;
1053 /* We have altered the probability of the default edge. So the probabilities
1054 of all other edges need to be adjusted so that it sums up to
1055 REG_BR_PROB_BASE. */
1056 if (base)
1058 edge e;
1059 edge_iterator ei;
1060 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1061 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1064 if (try_with_tablejump)
1066 bool ok = try_tablejump (index_type, index_expr, minval, range,
1067 table_label, default_label, new_default_prob);
1068 gcc_assert (ok);
1070 /* Output the table. */
1071 emit_label (table_label);
1073 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1074 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1075 gen_rtx_LABEL_REF (Pmode,
1076 table_label),
1077 gen_rtvec_v (ncases, labelvec),
1078 const0_rtx, const0_rtx));
1079 else
1080 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1081 gen_rtvec_v (ncases, labelvec)));
1083 /* Record no drop-through after the table. */
1084 emit_barrier ();
1087 /* Reset the aux field of all outgoing edges of basic block BB. */
1089 static inline void
1090 reset_out_edges_aux (basic_block bb)
1092 edge e;
1093 edge_iterator ei;
1094 FOR_EACH_EDGE (e, ei, bb->succs)
1095 e->aux = (void *)0;
1098 /* Compute the number of case labels that correspond to each outgoing edge of
1099 STMT. Record this information in the aux field of the edge. */
1101 static inline void
1102 compute_cases_per_edge (gswitch *stmt)
1104 basic_block bb = gimple_bb (stmt);
1105 reset_out_edges_aux (bb);
1106 int ncases = gimple_switch_num_labels (stmt);
1107 for (int i = ncases - 1; i >= 1; --i)
1109 tree elt = gimple_switch_label (stmt, i);
1110 tree lab = CASE_LABEL (elt);
1111 basic_block case_bb = label_to_block_fn (cfun, lab);
1112 edge case_edge = find_edge (bb, case_bb);
1113 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1117 /* Terminate a case (Pascal/Ada) or switch (C) statement
1118 in which ORIG_INDEX is the expression to be tested.
1119 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1120 type as given in the source before any compiler conversions.
1121 Generate the code to test it and jump to the right place. */
1123 void
1124 expand_case (gswitch *stmt)
1126 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1127 rtx_code_label *default_label = NULL;
1128 unsigned int count, uniq;
1129 int i;
1130 int ncases = gimple_switch_num_labels (stmt);
1131 tree index_expr = gimple_switch_index (stmt);
1132 tree index_type = TREE_TYPE (index_expr);
1133 tree elt;
1134 basic_block bb = gimple_bb (stmt);
1136 /* A list of case labels; it is first built as a list and it may then
1137 be rearranged into a nearly balanced binary tree. */
1138 struct case_node *case_list = 0;
1140 /* A pool for case nodes. */
1141 object_allocator<case_node> case_node_pool ("struct case_node pool");
1143 /* An ERROR_MARK occurs for various reasons including invalid data type.
1144 ??? Can this still happen, with GIMPLE and all? */
1145 if (index_type == error_mark_node)
1146 return;
1148 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1149 expressions being INTEGER_CST. */
1150 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1153 do_pending_stack_adjust ();
1155 /* Find the default case target label. */
1156 default_label = jump_target_rtx
1157 (CASE_LABEL (gimple_switch_default_label (stmt)));
1158 edge default_edge = EDGE_SUCC (bb, 0);
1159 int default_prob = default_edge->probability;
1161 /* Get upper and lower bounds of case values. */
1162 elt = gimple_switch_label (stmt, 1);
1163 minval = fold_convert (index_type, CASE_LOW (elt));
1164 elt = gimple_switch_label (stmt, ncases - 1);
1165 if (CASE_HIGH (elt))
1166 maxval = fold_convert (index_type, CASE_HIGH (elt));
1167 else
1168 maxval = fold_convert (index_type, CASE_LOW (elt));
1170 /* Compute span of values. */
1171 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1173 /* Listify the labels queue and gather some numbers to decide
1174 how to expand this switch(). */
1175 uniq = 0;
1176 count = 0;
1177 hash_set<tree> seen_labels;
1178 compute_cases_per_edge (stmt);
1180 for (i = ncases - 1; i >= 1; --i)
1182 elt = gimple_switch_label (stmt, i);
1183 tree low = CASE_LOW (elt);
1184 gcc_assert (low);
1185 tree high = CASE_HIGH (elt);
1186 gcc_assert (! high || tree_int_cst_lt (low, high));
1187 tree lab = CASE_LABEL (elt);
1189 /* Count the elements.
1190 A range counts double, since it requires two compares. */
1191 count++;
1192 if (high)
1193 count++;
1195 /* If we have not seen this label yet, then increase the
1196 number of unique case node targets seen. */
1197 if (!seen_labels.add (lab))
1198 uniq++;
1200 /* The bounds on the case range, LOW and HIGH, have to be converted
1201 to case's index type TYPE. Note that the original type of the
1202 case index in the source code is usually "lost" during
1203 gimplification due to type promotion, but the case labels retain the
1204 original type. Make sure to drop overflow flags. */
1205 low = fold_convert (index_type, low);
1206 if (TREE_OVERFLOW (low))
1207 low = wide_int_to_tree (index_type, low);
1209 /* The canonical from of a case label in GIMPLE is that a simple case
1210 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1211 the back ends want simple cases to have high == low. */
1212 if (! high)
1213 high = low;
1214 high = fold_convert (index_type, high);
1215 if (TREE_OVERFLOW (high))
1216 high = wide_int_to_tree (index_type, high);
1218 basic_block case_bb = label_to_block_fn (cfun, lab);
1219 edge case_edge = find_edge (bb, case_bb);
1220 case_list = add_case_node (
1221 case_list, low, high, lab,
1222 case_edge->probability / (intptr_t)(case_edge->aux),
1223 case_node_pool);
1225 reset_out_edges_aux (bb);
1227 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1228 destination, such as one with a default case only.
1229 It also removes cases that are out of range for the switch
1230 type, so we should never get a zero here. */
1231 gcc_assert (count > 0);
1233 rtx_insn *before_case = get_last_insn ();
1235 /* Decide how to expand this switch.
1236 The two options at this point are a dispatch table (casesi or
1237 tablejump) or a decision tree. */
1239 if (expand_switch_as_decision_tree_p (range, uniq, count))
1240 emit_case_decision_tree (index_expr, index_type,
1241 case_list, default_label,
1242 default_prob);
1243 else
1244 emit_case_dispatch_table (index_expr, index_type,
1245 case_list, default_label,
1246 minval, maxval, range, bb);
1248 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1250 free_temp_slots ();
1253 /* Expand the dispatch to a short decrement chain if there are few cases
1254 to dispatch to. Likewise if neither casesi nor tablejump is available,
1255 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1256 tablejump. The index mode is always the mode of integer_type_node.
1257 Trap if no case matches the index.
1259 DISPATCH_INDEX is the index expression to switch on. It should be a
1260 memory or register operand.
1262 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1263 ascending order, be contiguous, starting with value 0, and contain only
1264 single-valued case labels. */
1266 void
1267 expand_sjlj_dispatch_table (rtx dispatch_index,
1268 vec<tree> dispatch_table)
1270 tree index_type = integer_type_node;
1271 machine_mode index_mode = TYPE_MODE (index_type);
1273 int ncases = dispatch_table.length ();
1275 do_pending_stack_adjust ();
1276 rtx_insn *before_case = get_last_insn ();
1278 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1279 labels. This covers more than 98% of the cases in libjava,
1280 and seems to be a reasonable compromise between the "old way"
1281 of expanding as a decision tree or dispatch table vs. the "new
1282 way" with decrement chain or dispatch table. */
1283 if (dispatch_table.length () <= 5
1284 || (!targetm.have_casesi () && !targetm.have_tablejump ())
1285 || !flag_jump_tables)
1287 /* Expand the dispatch as a decrement chain:
1289 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1293 if (index == 0) do_0; else index--;
1294 if (index == 0) do_1; else index--;
1296 if (index == 0) do_N; else index--;
1298 This is more efficient than a dispatch table on most machines.
1299 The last "index--" is redundant but the code is trivially dead
1300 and will be cleaned up by later passes. */
1301 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1302 rtx zero = CONST0_RTX (index_mode);
1303 for (int i = 0; i < ncases; i++)
1305 tree elt = dispatch_table[i];
1306 rtx_code_label *lab = jump_target_rtx (CASE_LABEL (elt));
1307 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1308 force_expand_binop (index_mode, sub_optab,
1309 index, CONST1_RTX (index_mode),
1310 index, 0, OPTAB_DIRECT);
1313 else
1315 /* Similar to expand_case, but much simpler. */
1316 struct case_node *case_list = 0;
1317 object_allocator<case_node> case_node_pool ("struct sjlj_case pool");
1318 tree index_expr = make_tree (index_type, dispatch_index);
1319 tree minval = build_int_cst (index_type, 0);
1320 tree maxval = CASE_LOW (dispatch_table.last ());
1321 tree range = maxval;
1322 rtx_code_label *default_label = gen_label_rtx ();
1324 for (int i = ncases - 1; i >= 0; --i)
1326 tree elt = dispatch_table[i];
1327 tree low = CASE_LOW (elt);
1328 tree lab = CASE_LABEL (elt);
1329 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1332 emit_case_dispatch_table (index_expr, index_type,
1333 case_list, default_label,
1334 minval, maxval, range,
1335 BLOCK_FOR_INSN (before_case));
1336 emit_label (default_label);
1339 /* Dispatching something not handled? Trap! */
1340 expand_builtin_trap ();
1342 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1344 free_temp_slots ();
1348 /* Take an ordered list of case nodes
1349 and transform them into a near optimal binary tree,
1350 on the assumption that any target code selection value is as
1351 likely as any other.
1353 The transformation is performed by splitting the ordered
1354 list into two equal sections plus a pivot. The parts are
1355 then attached to the pivot as left and right branches. Each
1356 branch is then transformed recursively. */
1358 static void
1359 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1361 case_node_ptr np;
1363 np = *head;
1364 if (np)
1366 int i = 0;
1367 int ranges = 0;
1368 case_node_ptr *npp;
1369 case_node_ptr left;
1371 /* Count the number of entries on branch. Also count the ranges. */
1373 while (np)
1375 if (!tree_int_cst_equal (np->low, np->high))
1376 ranges++;
1378 i++;
1379 np = np->right;
1382 if (i > 2)
1384 /* Split this list if it is long enough for that to help. */
1385 npp = head;
1386 left = *npp;
1388 /* If there are just three nodes, split at the middle one. */
1389 if (i == 3)
1390 npp = &(*npp)->right;
1391 else
1393 /* Find the place in the list that bisects the list's total cost,
1394 where ranges count as 2.
1395 Here I gets half the total cost. */
1396 i = (i + ranges + 1) / 2;
1397 while (1)
1399 /* Skip nodes while their cost does not reach that amount. */
1400 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1401 i--;
1402 i--;
1403 if (i <= 0)
1404 break;
1405 npp = &(*npp)->right;
1408 *head = np = *npp;
1409 *npp = 0;
1410 np->parent = parent;
1411 np->left = left;
1413 /* Optimize each of the two split parts. */
1414 balance_case_nodes (&np->left, np);
1415 balance_case_nodes (&np->right, np);
1416 np->subtree_prob = np->prob;
1417 np->subtree_prob += np->left->subtree_prob;
1418 np->subtree_prob += np->right->subtree_prob;
1420 else
1422 /* Else leave this branch as one level,
1423 but fill in `parent' fields. */
1424 np = *head;
1425 np->parent = parent;
1426 np->subtree_prob = np->prob;
1427 for (; np->right; np = np->right)
1429 np->right->parent = np;
1430 (*head)->subtree_prob += np->right->subtree_prob;
1436 /* Search the parent sections of the case node tree
1437 to see if a test for the lower bound of NODE would be redundant.
1438 INDEX_TYPE is the type of the index expression.
1440 The instructions to generate the case decision tree are
1441 output in the same order as nodes are processed so it is
1442 known that if a parent node checks the range of the current
1443 node minus one that the current node is bounded at its lower
1444 span. Thus the test would be redundant. */
1446 static int
1447 node_has_low_bound (case_node_ptr node, tree index_type)
1449 tree low_minus_one;
1450 case_node_ptr pnode;
1452 /* If the lower bound of this node is the lowest value in the index type,
1453 we need not test it. */
1455 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1456 return 1;
1458 /* If this node has a left branch, the value at the left must be less
1459 than that at this node, so it cannot be bounded at the bottom and
1460 we need not bother testing any further. */
1462 if (node->left)
1463 return 0;
1465 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1466 node->low,
1467 build_int_cst (TREE_TYPE (node->low), 1));
1469 /* If the subtraction above overflowed, we can't verify anything.
1470 Otherwise, look for a parent that tests our value - 1. */
1472 if (! tree_int_cst_lt (low_minus_one, node->low))
1473 return 0;
1475 for (pnode = node->parent; pnode; pnode = pnode->parent)
1476 if (tree_int_cst_equal (low_minus_one, pnode->high))
1477 return 1;
1479 return 0;
1482 /* Search the parent sections of the case node tree
1483 to see if a test for the upper bound of NODE would be redundant.
1484 INDEX_TYPE is the type of the index expression.
1486 The instructions to generate the case decision tree are
1487 output in the same order as nodes are processed so it is
1488 known that if a parent node checks the range of the current
1489 node plus one that the current node is bounded at its upper
1490 span. Thus the test would be redundant. */
1492 static int
1493 node_has_high_bound (case_node_ptr node, tree index_type)
1495 tree high_plus_one;
1496 case_node_ptr pnode;
1498 /* If there is no upper bound, obviously no test is needed. */
1500 if (TYPE_MAX_VALUE (index_type) == NULL)
1501 return 1;
1503 /* If the upper bound of this node is the highest value in the type
1504 of the index expression, we need not test against it. */
1506 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1507 return 1;
1509 /* If this node has a right branch, the value at the right must be greater
1510 than that at this node, so it cannot be bounded at the top and
1511 we need not bother testing any further. */
1513 if (node->right)
1514 return 0;
1516 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1517 node->high,
1518 build_int_cst (TREE_TYPE (node->high), 1));
1520 /* If the addition above overflowed, we can't verify anything.
1521 Otherwise, look for a parent that tests our value + 1. */
1523 if (! tree_int_cst_lt (node->high, high_plus_one))
1524 return 0;
1526 for (pnode = node->parent; pnode; pnode = pnode->parent)
1527 if (tree_int_cst_equal (high_plus_one, pnode->low))
1528 return 1;
1530 return 0;
1533 /* Search the parent sections of the
1534 case node tree to see if both tests for the upper and lower
1535 bounds of NODE would be redundant. */
1537 static int
1538 node_is_bounded (case_node_ptr node, tree index_type)
1540 return (node_has_low_bound (node, index_type)
1541 && node_has_high_bound (node, index_type));
1545 /* Emit step-by-step code to select a case for the value of INDEX.
1546 The thus generated decision tree follows the form of the
1547 case-node binary tree NODE, whose nodes represent test conditions.
1548 INDEX_TYPE is the type of the index of the switch.
1550 Care is taken to prune redundant tests from the decision tree
1551 by detecting any boundary conditions already checked by
1552 emitted rtx. (See node_has_high_bound, node_has_low_bound
1553 and node_is_bounded, above.)
1555 Where the test conditions can be shown to be redundant we emit
1556 an unconditional jump to the target code. As a further
1557 optimization, the subordinates of a tree node are examined to
1558 check for bounded nodes. In this case conditional and/or
1559 unconditional jumps as a result of the boundary check for the
1560 current node are arranged to target the subordinates associated
1561 code for out of bound conditions on the current node.
1563 We can assume that when control reaches the code generated here,
1564 the index value has already been compared with the parents
1565 of this node, and determined to be on the same side of each parent
1566 as this node is. Thus, if this node tests for the value 51,
1567 and a parent tested for 52, we don't need to consider
1568 the possibility of a value greater than 51. If another parent
1569 tests for the value 50, then this node need not test anything. */
1571 static void
1572 emit_case_nodes (rtx index, case_node_ptr node, rtx_code_label *default_label,
1573 int default_prob, tree index_type)
1575 /* If INDEX has an unsigned type, we must make unsigned branches. */
1576 int unsignedp = TYPE_UNSIGNED (index_type);
1577 int probability;
1578 int prob = node->prob, subtree_prob = node->subtree_prob;
1579 machine_mode mode = GET_MODE (index);
1580 machine_mode imode = TYPE_MODE (index_type);
1582 /* Handle indices detected as constant during RTL expansion. */
1583 if (mode == VOIDmode)
1584 mode = imode;
1586 /* See if our parents have already tested everything for us.
1587 If they have, emit an unconditional jump for this node. */
1588 if (node_is_bounded (node, index_type))
1589 emit_jump (label_rtx (node->code_label));
1591 else if (tree_int_cst_equal (node->low, node->high))
1593 probability = conditional_probability (prob, subtree_prob + default_prob);
1594 /* Node is single valued. First see if the index expression matches
1595 this node and then check our children, if any. */
1596 do_jump_if_equal (mode, index,
1597 convert_modes (mode, imode,
1598 expand_normal (node->low),
1599 unsignedp),
1600 jump_target_rtx (node->code_label),
1601 unsignedp, probability);
1602 /* Since this case is taken at this point, reduce its weight from
1603 subtree_weight. */
1604 subtree_prob -= prob;
1605 if (node->right != 0 && node->left != 0)
1607 /* This node has children on both sides.
1608 Dispatch to one side or the other
1609 by comparing the index value with this node's value.
1610 If one subtree is bounded, check that one first,
1611 so we can avoid real branches in the tree. */
1613 if (node_is_bounded (node->right, index_type))
1615 probability = conditional_probability (
1616 node->right->prob,
1617 subtree_prob + default_prob);
1618 emit_cmp_and_jump_insns (index,
1619 convert_modes
1620 (mode, imode,
1621 expand_normal (node->high),
1622 unsignedp),
1623 GT, NULL_RTX, mode, unsignedp,
1624 label_rtx (node->right->code_label),
1625 probability);
1626 emit_case_nodes (index, node->left, default_label, default_prob,
1627 index_type);
1630 else if (node_is_bounded (node->left, index_type))
1632 probability = conditional_probability (
1633 node->left->prob,
1634 subtree_prob + default_prob);
1635 emit_cmp_and_jump_insns (index,
1636 convert_modes
1637 (mode, imode,
1638 expand_normal (node->high),
1639 unsignedp),
1640 LT, NULL_RTX, mode, unsignedp,
1641 label_rtx (node->left->code_label),
1642 probability);
1643 emit_case_nodes (index, node->right, default_label, default_prob,
1644 index_type);
1647 /* If both children are single-valued cases with no
1648 children, finish up all the work. This way, we can save
1649 one ordered comparison. */
1650 else if (tree_int_cst_equal (node->right->low, node->right->high)
1651 && node->right->left == 0
1652 && node->right->right == 0
1653 && tree_int_cst_equal (node->left->low, node->left->high)
1654 && node->left->left == 0
1655 && node->left->right == 0)
1657 /* Neither node is bounded. First distinguish the two sides;
1658 then emit the code for one side at a time. */
1660 /* See if the value matches what the right hand side
1661 wants. */
1662 probability = conditional_probability (
1663 node->right->prob,
1664 subtree_prob + default_prob);
1665 do_jump_if_equal (mode, index,
1666 convert_modes (mode, imode,
1667 expand_normal (node->right->low),
1668 unsignedp),
1669 jump_target_rtx (node->right->code_label),
1670 unsignedp, probability);
1672 /* See if the value matches what the left hand side
1673 wants. */
1674 probability = conditional_probability (
1675 node->left->prob,
1676 subtree_prob + default_prob);
1677 do_jump_if_equal (mode, index,
1678 convert_modes (mode, imode,
1679 expand_normal (node->left->low),
1680 unsignedp),
1681 jump_target_rtx (node->left->code_label),
1682 unsignedp, probability);
1685 else
1687 /* Neither node is bounded. First distinguish the two sides;
1688 then emit the code for one side at a time. */
1690 tree test_label
1691 = build_decl (curr_insn_location (),
1692 LABEL_DECL, NULL_TREE, void_type_node);
1694 /* The default label could be reached either through the right
1695 subtree or the left subtree. Divide the probability
1696 equally. */
1697 probability = conditional_probability (
1698 node->right->subtree_prob + default_prob/2,
1699 subtree_prob + default_prob);
1700 /* See if the value is on the right. */
1701 emit_cmp_and_jump_insns (index,
1702 convert_modes
1703 (mode, imode,
1704 expand_normal (node->high),
1705 unsignedp),
1706 GT, NULL_RTX, mode, unsignedp,
1707 label_rtx (test_label),
1708 probability);
1709 default_prob /= 2;
1711 /* Value must be on the left.
1712 Handle the left-hand subtree. */
1713 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1714 /* If left-hand subtree does nothing,
1715 go to default. */
1716 if (default_label)
1717 emit_jump (default_label);
1719 /* Code branches here for the right-hand subtree. */
1720 expand_label (test_label);
1721 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1725 else if (node->right != 0 && node->left == 0)
1727 /* Here we have a right child but no left so we issue a conditional
1728 branch to default and process the right child.
1730 Omit the conditional branch to default if the right child
1731 does not have any children and is single valued; it would
1732 cost too much space to save so little time. */
1734 if (node->right->right || node->right->left
1735 || !tree_int_cst_equal (node->right->low, node->right->high))
1737 if (!node_has_low_bound (node, index_type))
1739 probability = conditional_probability (
1740 default_prob/2,
1741 subtree_prob + default_prob);
1742 emit_cmp_and_jump_insns (index,
1743 convert_modes
1744 (mode, imode,
1745 expand_normal (node->high),
1746 unsignedp),
1747 LT, NULL_RTX, mode, unsignedp,
1748 default_label,
1749 probability);
1750 default_prob /= 2;
1753 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1755 else
1757 probability = conditional_probability (
1758 node->right->subtree_prob,
1759 subtree_prob + default_prob);
1760 /* We cannot process node->right normally
1761 since we haven't ruled out the numbers less than
1762 this node's value. So handle node->right explicitly. */
1763 do_jump_if_equal (mode, index,
1764 convert_modes
1765 (mode, imode,
1766 expand_normal (node->right->low),
1767 unsignedp),
1768 jump_target_rtx (node->right->code_label),
1769 unsignedp, probability);
1773 else if (node->right == 0 && node->left != 0)
1775 /* Just one subtree, on the left. */
1776 if (node->left->left || node->left->right
1777 || !tree_int_cst_equal (node->left->low, node->left->high))
1779 if (!node_has_high_bound (node, index_type))
1781 probability = conditional_probability (
1782 default_prob/2,
1783 subtree_prob + default_prob);
1784 emit_cmp_and_jump_insns (index,
1785 convert_modes
1786 (mode, imode,
1787 expand_normal (node->high),
1788 unsignedp),
1789 GT, NULL_RTX, mode, unsignedp,
1790 default_label,
1791 probability);
1792 default_prob /= 2;
1795 emit_case_nodes (index, node->left, default_label,
1796 default_prob, index_type);
1798 else
1800 probability = conditional_probability (
1801 node->left->subtree_prob,
1802 subtree_prob + default_prob);
1803 /* We cannot process node->left normally
1804 since we haven't ruled out the numbers less than
1805 this node's value. So handle node->left explicitly. */
1806 do_jump_if_equal (mode, index,
1807 convert_modes
1808 (mode, imode,
1809 expand_normal (node->left->low),
1810 unsignedp),
1811 jump_target_rtx (node->left->code_label),
1812 unsignedp, probability);
1816 else
1818 /* Node is a range. These cases are very similar to those for a single
1819 value, except that we do not start by testing whether this node
1820 is the one to branch to. */
1822 if (node->right != 0 && node->left != 0)
1824 /* Node has subtrees on both sides.
1825 If the right-hand subtree is bounded,
1826 test for it first, since we can go straight there.
1827 Otherwise, we need to make a branch in the control structure,
1828 then handle the two subtrees. */
1829 tree test_label = 0;
1831 if (node_is_bounded (node->right, index_type))
1833 /* Right hand node is fully bounded so we can eliminate any
1834 testing and branch directly to the target code. */
1835 probability = conditional_probability (
1836 node->right->subtree_prob,
1837 subtree_prob + default_prob);
1838 emit_cmp_and_jump_insns (index,
1839 convert_modes
1840 (mode, imode,
1841 expand_normal (node->high),
1842 unsignedp),
1843 GT, NULL_RTX, mode, unsignedp,
1844 label_rtx (node->right->code_label),
1845 probability);
1847 else
1849 /* Right hand node requires testing.
1850 Branch to a label where we will handle it later. */
1852 test_label = build_decl (curr_insn_location (),
1853 LABEL_DECL, NULL_TREE, void_type_node);
1854 probability = conditional_probability (
1855 node->right->subtree_prob + default_prob/2,
1856 subtree_prob + default_prob);
1857 emit_cmp_and_jump_insns (index,
1858 convert_modes
1859 (mode, imode,
1860 expand_normal (node->high),
1861 unsignedp),
1862 GT, NULL_RTX, mode, unsignedp,
1863 label_rtx (test_label),
1864 probability);
1865 default_prob /= 2;
1868 /* Value belongs to this node or to the left-hand subtree. */
1870 probability = conditional_probability (
1871 prob,
1872 subtree_prob + default_prob);
1873 emit_cmp_and_jump_insns (index,
1874 convert_modes
1875 (mode, imode,
1876 expand_normal (node->low),
1877 unsignedp),
1878 GE, NULL_RTX, mode, unsignedp,
1879 label_rtx (node->code_label),
1880 probability);
1882 /* Handle the left-hand subtree. */
1883 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1885 /* If right node had to be handled later, do that now. */
1887 if (test_label)
1889 /* If the left-hand subtree fell through,
1890 don't let it fall into the right-hand subtree. */
1891 if (default_label)
1892 emit_jump (default_label);
1894 expand_label (test_label);
1895 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1899 else if (node->right != 0 && node->left == 0)
1901 /* Deal with values to the left of this node,
1902 if they are possible. */
1903 if (!node_has_low_bound (node, index_type))
1905 probability = conditional_probability (
1906 default_prob/2,
1907 subtree_prob + default_prob);
1908 emit_cmp_and_jump_insns (index,
1909 convert_modes
1910 (mode, imode,
1911 expand_normal (node->low),
1912 unsignedp),
1913 LT, NULL_RTX, mode, unsignedp,
1914 default_label,
1915 probability);
1916 default_prob /= 2;
1919 /* Value belongs to this node or to the right-hand subtree. */
1921 probability = conditional_probability (
1922 prob,
1923 subtree_prob + default_prob);
1924 emit_cmp_and_jump_insns (index,
1925 convert_modes
1926 (mode, imode,
1927 expand_normal (node->high),
1928 unsignedp),
1929 LE, NULL_RTX, mode, unsignedp,
1930 label_rtx (node->code_label),
1931 probability);
1933 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1936 else if (node->right == 0 && node->left != 0)
1938 /* Deal with values to the right of this node,
1939 if they are possible. */
1940 if (!node_has_high_bound (node, index_type))
1942 probability = conditional_probability (
1943 default_prob/2,
1944 subtree_prob + default_prob);
1945 emit_cmp_and_jump_insns (index,
1946 convert_modes
1947 (mode, imode,
1948 expand_normal (node->high),
1949 unsignedp),
1950 GT, NULL_RTX, mode, unsignedp,
1951 default_label,
1952 probability);
1953 default_prob /= 2;
1956 /* Value belongs to this node or to the left-hand subtree. */
1958 probability = conditional_probability (
1959 prob,
1960 subtree_prob + default_prob);
1961 emit_cmp_and_jump_insns (index,
1962 convert_modes
1963 (mode, imode,
1964 expand_normal (node->low),
1965 unsignedp),
1966 GE, NULL_RTX, mode, unsignedp,
1967 label_rtx (node->code_label),
1968 probability);
1970 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1973 else
1975 /* Node has no children so we check low and high bounds to remove
1976 redundant tests. Only one of the bounds can exist,
1977 since otherwise this node is bounded--a case tested already. */
1978 int high_bound = node_has_high_bound (node, index_type);
1979 int low_bound = node_has_low_bound (node, index_type);
1981 if (!high_bound && low_bound)
1983 probability = conditional_probability (
1984 default_prob,
1985 subtree_prob + default_prob);
1986 emit_cmp_and_jump_insns (index,
1987 convert_modes
1988 (mode, imode,
1989 expand_normal (node->high),
1990 unsignedp),
1991 GT, NULL_RTX, mode, unsignedp,
1992 default_label,
1993 probability);
1996 else if (!low_bound && high_bound)
1998 probability = conditional_probability (
1999 default_prob,
2000 subtree_prob + default_prob);
2001 emit_cmp_and_jump_insns (index,
2002 convert_modes
2003 (mode, imode,
2004 expand_normal (node->low),
2005 unsignedp),
2006 LT, NULL_RTX, mode, unsignedp,
2007 default_label,
2008 probability);
2010 else if (!low_bound && !high_bound)
2012 /* Widen LOW and HIGH to the same width as INDEX. */
2013 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2014 tree low = build1 (CONVERT_EXPR, type, node->low);
2015 tree high = build1 (CONVERT_EXPR, type, node->high);
2016 rtx low_rtx, new_index, new_bound;
2018 /* Instead of doing two branches, emit one unsigned branch for
2019 (index-low) > (high-low). */
2020 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2021 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2022 NULL_RTX, unsignedp,
2023 OPTAB_WIDEN);
2024 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2025 high, low),
2026 NULL_RTX, mode, EXPAND_NORMAL);
2028 probability = conditional_probability (
2029 default_prob,
2030 subtree_prob + default_prob);
2031 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2032 mode, 1, default_label, probability);
2035 emit_jump (jump_target_rtx (node->code_label));