2015-09-25 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / sese.h
blob6ce5cc87eaddbe9cc2622c2bba44a5b4f07da91f
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008-2015 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_SESE_H
23 #define GCC_SESE_H
25 typedef hash_map<tree, tree> parameter_rename_map_t;
27 /* A Single Entry, Single Exit region is a part of the CFG delimited
28 by two edges. */
29 typedef struct sese_s
31 /* Single ENTRY and single EXIT from the SESE region. */
32 edge entry, exit;
34 /* Parameters used within the SCOP. */
35 vec<tree> params;
37 /* Parameters to be renamed. */
38 parameter_rename_map_t *parameter_rename_map;
40 /* Loops completely contained in the SCOP. */
41 bitmap loops;
42 vec<loop_p> loop_nest;
44 /* Are we allowed to add more params? This is for debugging purpose. We
45 can only add new params before generating the bb domains, otherwise they
46 become invalid. */
47 bool add_params;
48 } *sese;
50 #define SESE_ENTRY(S) (S->entry)
51 #define SESE_ENTRY_BB(S) (S->entry->dest)
52 #define SESE_EXIT(S) (S->exit)
53 #define SESE_EXIT_BB(S) (S->exit->dest)
54 #define SESE_PARAMS(S) (S->params)
55 #define SESE_LOOPS(S) (S->loops)
56 #define SESE_LOOP_NEST(S) (S->loop_nest)
57 #define SESE_ADD_PARAMS(S) (S->add_params)
59 extern sese new_sese (edge, edge);
60 extern void free_sese (sese);
61 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
62 extern void build_sese_loop_nests (sese);
63 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
64 vec<tree> , bool *);
65 extern struct loop *outermost_loop_in_sese (sese, basic_block);
66 extern tree scalar_evolution_in_region (sese, loop_p, tree);
68 /* Check that SESE contains LOOP. */
70 static inline bool
71 sese_contains_loop (sese sese, struct loop *loop)
73 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
76 /* The number of parameters in REGION. */
78 static inline unsigned
79 sese_nb_params (sese region)
81 return SESE_PARAMS (region).length ();
84 /* Checks whether BB is contained in the region delimited by ENTRY and
85 EXIT blocks. */
87 static inline bool
88 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
90 #ifdef ENABLE_CHECKING
92 edge e;
93 edge_iterator ei;
95 /* Check that there are no edges coming in the region: all the
96 predecessors of EXIT are dominated by ENTRY. */
97 FOR_EACH_EDGE (e, ei, exit->preds)
98 dominated_by_p (CDI_DOMINATORS, e->src, entry);
100 #endif
102 return dominated_by_p (CDI_DOMINATORS, bb, entry)
103 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
104 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
107 /* Checks whether BB is contained in the region delimited by ENTRY and
108 EXIT blocks. */
110 static inline bool
111 bb_in_sese_p (basic_block bb, sese region)
113 basic_block entry = SESE_ENTRY_BB (region);
114 basic_block exit = SESE_EXIT_BB (region);
116 return bb_in_region (bb, entry, exit);
119 /* Returns true when STMT is defined in REGION. */
121 static inline bool
122 stmt_in_sese_p (gimple *stmt, sese region)
124 basic_block bb = gimple_bb (stmt);
125 return bb && bb_in_sese_p (bb, region);
128 /* Returns true when NAME is defined in REGION. */
130 static inline bool
131 defined_in_sese_p (tree name, sese region)
133 gimple *stmt = SSA_NAME_DEF_STMT (name);
134 return stmt_in_sese_p (stmt, region);
137 /* Returns true when LOOP is in REGION. */
139 static inline bool
140 loop_in_sese_p (struct loop *loop, sese region)
142 return (bb_in_sese_p (loop->header, region)
143 && bb_in_sese_p (loop->latch, region));
146 /* Returns the loop depth of LOOP in REGION. The loop depth
147 is the same as the normal loop depth, but limited by a region.
149 Example:
151 loop_0
152 loop_1
155 <- region start
158 loop_2
162 <- region end
165 loop_0 does not exist in the region -> invalid
166 loop_1 exists, but is not completely contained in the region -> depth 0
167 loop_2 is completely contained -> depth 1 */
169 static inline unsigned int
170 sese_loop_depth (sese region, loop_p loop)
172 unsigned int depth = 0;
174 gcc_assert ((!loop_in_sese_p (loop, region)
175 && (SESE_ENTRY_BB (region)->loop_father == loop
176 || SESE_EXIT (region)->src->loop_father == loop))
177 || loop_in_sese_p (loop, region));
179 while (loop_in_sese_p (loop, region))
181 depth++;
182 loop = loop_outer (loop);
185 return depth;
188 /* Splits BB to make a single entry single exit region. */
190 static inline sese
191 split_region_for_bb (basic_block bb)
193 edge entry, exit;
195 if (single_pred_p (bb))
196 entry = single_pred_edge (bb);
197 else
199 entry = split_block_after_labels (bb);
200 bb = single_succ (bb);
203 if (single_succ_p (bb))
204 exit = single_succ_edge (bb);
205 else
207 gimple_stmt_iterator gsi = gsi_last_bb (bb);
208 gsi_prev (&gsi);
209 exit = split_block (bb, gsi_stmt (gsi));
212 return new_sese (entry, exit);
215 /* Returns the block preceding the entry of a SESE. */
217 static inline basic_block
218 block_before_sese (sese sese)
220 return SESE_ENTRY (sese)->src;
225 /* A single entry single exit specialized for conditions. */
227 typedef struct ifsese_s {
228 sese region;
229 sese true_region;
230 sese false_region;
231 } *ifsese;
233 extern void if_region_set_false_region (ifsese, sese);
234 extern ifsese move_sese_in_condition (sese);
235 extern edge get_true_edge_from_guard_bb (basic_block);
236 extern edge get_false_edge_from_guard_bb (basic_block);
237 extern void set_ifsese_condition (ifsese, tree);
239 static inline edge
240 if_region_entry (ifsese if_region)
242 return SESE_ENTRY (if_region->region);
245 static inline edge
246 if_region_exit (ifsese if_region)
248 return SESE_EXIT (if_region->region);
251 static inline basic_block
252 if_region_get_condition_block (ifsese if_region)
254 return if_region_entry (if_region)->dest;
257 /* Free and compute again all the dominators information. */
259 static inline void
260 recompute_all_dominators (void)
262 mark_irreducible_loops ();
263 free_dominance_info (CDI_DOMINATORS);
264 calculate_dominance_info (CDI_DOMINATORS);
267 typedef struct gimple_bb
269 basic_block bb;
270 struct poly_bb *pbb;
272 /* Lists containing the restrictions of the conditional statements
273 dominating this bb. This bb can only be executed, if all conditions
274 are true.
276 Example:
278 for (i = 0; i <= 20; i++)
282 if (2i <= 8)
286 So for B there is an additional condition (2i <= 8).
288 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
289 corresponding element in CONDITION_CASES is not NULL_TREE. For a
290 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
291 CASE_LABEL_EXPR. */
292 vec<gimple *> conditions;
293 vec<gimple *> condition_cases;
294 vec<data_reference_p> data_refs;
295 } *gimple_bb_p;
297 #define GBB_BB(GBB) (GBB)->bb
298 #define GBB_PBB(GBB) (GBB)->pbb
299 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
300 #define GBB_CONDITIONS(GBB) (GBB)->conditions
301 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
303 /* Return the innermost loop that contains the basic block GBB. */
305 static inline struct loop *
306 gbb_loop (struct gimple_bb *gbb)
308 return GBB_BB (gbb)->loop_father;
311 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
312 If there is no corresponding gimple loop, we return NULL. */
314 static inline loop_p
315 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
317 loop_p loop = gbb_loop (gbb);
318 int depth = sese_loop_depth (region, loop);
320 while (--depth > index)
321 loop = loop_outer (loop);
323 gcc_assert (sese_contains_loop (region, loop));
325 return loop;
328 /* The number of common loops in REGION for GBB1 and GBB2. */
330 static inline int
331 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
333 loop_p l1 = gbb_loop (gbb1);
334 loop_p l2 = gbb_loop (gbb2);
335 loop_p common = find_common_loop (l1, l2);
337 return sese_loop_depth (region, common);
340 /* Return true when DEF can be analyzed in REGION by the scalar
341 evolution analyzer. */
343 static inline bool
344 scev_analyzable_p (tree def, sese region)
346 loop_p loop;
347 tree scev;
348 tree type = TREE_TYPE (def);
350 /* When Graphite generates code for a scev, the code generator
351 expresses the scev in function of a single induction variable.
352 This is unsafe for floating point computations, as it may replace
353 a floating point sum reduction with a multiplication. The
354 following test returns false for non integer types to avoid such
355 problems. */
356 if (!INTEGRAL_TYPE_P (type)
357 && !POINTER_TYPE_P (type))
358 return false;
360 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
361 scev = scalar_evolution_in_region (region, loop, def);
363 return !chrec_contains_undetermined (scev)
364 && (TREE_CODE (scev) != SSA_NAME
365 || !defined_in_sese_p (scev, region))
366 && (tree_does_not_contain_chrecs (scev)
367 || evolution_function_is_affine_p (scev));
370 #endif