2015-09-25 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / predict.c
blob0b3016ce81f77528c113f84ed115e1eb54f81967
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "cfghooks.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "gimple-predict.h"
38 #include "rtl.h"
39 #include "ssa.h"
40 #include "alias.h"
41 #include "fold-const.h"
42 #include "calls.h"
43 #include "tm_p.h"
44 #include "cfganal.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "flags.h"
48 #include "profile.h"
49 #include "except.h"
50 #include "diagnostic-core.h"
51 #include "recog.h"
52 #include "expmed.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "coverage.h"
60 #include "sreal.h"
61 #include "params.h"
62 #include "target.h"
63 #include "cfgloop.h"
64 #include "internal-fn.h"
65 #include "gimple-iterator.h"
66 #include "cgraph.h"
67 #include "tree-cfg.h"
68 #include "tree-ssa-loop-niter.h"
69 #include "tree-ssa-loop.h"
70 #include "tree-pass.h"
71 #include "tree-scalar-evolution.h"
73 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
74 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
75 static sreal real_almost_one, real_br_prob_base,
76 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
78 static void combine_predictions_for_insn (rtx_insn *, basic_block);
79 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
80 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
81 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
82 static bool can_predict_insn_p (const rtx_insn *);
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
87 struct predictor_info
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
99 /* Recompute hitrate in percent to our representation. */
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
110 #undef DEF_PREDICTOR
112 /* Return TRUE if frequency FREQ is considered to be hot. */
114 static inline bool
115 maybe_hot_frequency_p (struct function *fun, int freq)
117 struct cgraph_node *node = cgraph_node::get (fun->decl);
118 if (!profile_info
119 || !opt_for_fn (fun->decl, flag_branch_probabilities))
121 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
122 return false;
123 if (node->frequency == NODE_FREQUENCY_HOT)
124 return true;
126 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
127 return true;
128 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
129 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
130 return false;
131 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
132 return false;
133 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
134 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
135 return false;
136 return true;
139 static gcov_type min_count = -1;
141 /* Determine the threshold for hot BB counts. */
143 gcov_type
144 get_hot_bb_threshold ()
146 gcov_working_set_t *ws;
147 if (min_count == -1)
149 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
150 gcc_assert (ws);
151 min_count = ws->min_counter;
153 return min_count;
156 /* Set the threshold for hot BB counts. */
158 void
159 set_hot_bb_threshold (gcov_type min)
161 min_count = min;
164 /* Return TRUE if frequency FREQ is considered to be hot. */
166 bool
167 maybe_hot_count_p (struct function *fun, gcov_type count)
169 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
170 return true;
171 /* Code executed at most once is not hot. */
172 if (profile_info->runs >= count)
173 return false;
174 return (count >= get_hot_bb_threshold ());
177 /* Return true in case BB can be CPU intensive and should be optimized
178 for maximal performance. */
180 bool
181 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
183 gcc_checking_assert (fun);
184 if (profile_status_for_fn (fun) == PROFILE_READ)
185 return maybe_hot_count_p (fun, bb->count);
186 return maybe_hot_frequency_p (fun, bb->frequency);
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
192 bool
193 maybe_hot_edge_p (edge e)
195 if (profile_status_for_fn (cfun) == PROFILE_READ)
196 return maybe_hot_count_p (cfun, e->count);
197 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
200 /* Return true if profile COUNT and FREQUENCY, or function FUN static
201 node frequency reflects never being executed. */
203 static bool
204 probably_never_executed (struct function *fun,
205 gcov_type count, int frequency)
207 gcc_checking_assert (fun);
208 if (profile_status_for_fn (fun) == PROFILE_READ)
210 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
211 if (count * unlikely_count_fraction >= profile_info->runs)
212 return false;
213 if (!frequency)
214 return true;
215 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
216 return false;
217 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
219 gcov_type computed_count;
220 /* Check for possibility of overflow, in which case entry bb count
221 is large enough to do the division first without losing much
222 precision. */
223 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
224 REG_BR_PROB_BASE)
226 gcov_type scaled_count
227 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
228 unlikely_count_fraction;
229 computed_count = RDIV (scaled_count,
230 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
232 else
234 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
235 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
236 computed_count *= frequency * unlikely_count_fraction;
238 if (computed_count >= profile_info->runs)
239 return false;
241 return true;
243 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
244 && (cgraph_node::get (fun->decl)->frequency
245 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
246 return true;
247 return false;
251 /* Return true in case BB is probably never executed. */
253 bool
254 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
256 return probably_never_executed (fun, bb->count, bb->frequency);
260 /* Return true in case edge E is probably never executed. */
262 bool
263 probably_never_executed_edge_p (struct function *fun, edge e)
265 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
268 /* Return true when current function should always be optimized for size. */
270 bool
271 optimize_function_for_size_p (struct function *fun)
273 if (!fun || !fun->decl)
274 return optimize_size;
275 cgraph_node *n = cgraph_node::get (fun->decl);
276 return n && n->optimize_for_size_p ();
279 /* Return true when current function should always be optimized for speed. */
281 bool
282 optimize_function_for_speed_p (struct function *fun)
284 return !optimize_function_for_size_p (fun);
287 /* Return TRUE when BB should be optimized for size. */
289 bool
290 optimize_bb_for_size_p (const_basic_block bb)
292 return (optimize_function_for_size_p (cfun)
293 || (bb && !maybe_hot_bb_p (cfun, bb)));
296 /* Return TRUE when BB should be optimized for speed. */
298 bool
299 optimize_bb_for_speed_p (const_basic_block bb)
301 return !optimize_bb_for_size_p (bb);
304 /* Return TRUE when BB should be optimized for size. */
306 bool
307 optimize_edge_for_size_p (edge e)
309 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
312 /* Return TRUE when BB should be optimized for speed. */
314 bool
315 optimize_edge_for_speed_p (edge e)
317 return !optimize_edge_for_size_p (e);
320 /* Return TRUE when BB should be optimized for size. */
322 bool
323 optimize_insn_for_size_p (void)
325 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
328 /* Return TRUE when BB should be optimized for speed. */
330 bool
331 optimize_insn_for_speed_p (void)
333 return !optimize_insn_for_size_p ();
336 /* Return TRUE when LOOP should be optimized for size. */
338 bool
339 optimize_loop_for_size_p (struct loop *loop)
341 return optimize_bb_for_size_p (loop->header);
344 /* Return TRUE when LOOP should be optimized for speed. */
346 bool
347 optimize_loop_for_speed_p (struct loop *loop)
349 return optimize_bb_for_speed_p (loop->header);
352 /* Return TRUE when LOOP nest should be optimized for speed. */
354 bool
355 optimize_loop_nest_for_speed_p (struct loop *loop)
357 struct loop *l = loop;
358 if (optimize_loop_for_speed_p (loop))
359 return true;
360 l = loop->inner;
361 while (l && l != loop)
363 if (optimize_loop_for_speed_p (l))
364 return true;
365 if (l->inner)
366 l = l->inner;
367 else if (l->next)
368 l = l->next;
369 else
371 while (l != loop && !l->next)
372 l = loop_outer (l);
373 if (l != loop)
374 l = l->next;
377 return false;
380 /* Return TRUE when LOOP nest should be optimized for size. */
382 bool
383 optimize_loop_nest_for_size_p (struct loop *loop)
385 return !optimize_loop_nest_for_speed_p (loop);
388 /* Return true when edge E is likely to be well predictable by branch
389 predictor. */
391 bool
392 predictable_edge_p (edge e)
394 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
395 return false;
396 if ((e->probability
397 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
398 || (REG_BR_PROB_BASE - e->probability
399 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
400 return true;
401 return false;
405 /* Set RTL expansion for BB profile. */
407 void
408 rtl_profile_for_bb (basic_block bb)
410 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
413 /* Set RTL expansion for edge profile. */
415 void
416 rtl_profile_for_edge (edge e)
418 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
421 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
422 void
423 default_rtl_profile (void)
425 crtl->maybe_hot_insn_p = true;
428 /* Return true if the one of outgoing edges is already predicted by
429 PREDICTOR. */
431 bool
432 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
434 rtx note;
435 if (!INSN_P (BB_END (bb)))
436 return false;
437 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
438 if (REG_NOTE_KIND (note) == REG_BR_PRED
439 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
440 return true;
441 return false;
444 /* Structure representing predictions in tree level. */
446 struct edge_prediction {
447 struct edge_prediction *ep_next;
448 edge ep_edge;
449 enum br_predictor ep_predictor;
450 int ep_probability;
453 /* This map contains for a basic block the list of predictions for the
454 outgoing edges. */
456 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
458 /* Return true if the one of outgoing edges is already predicted by
459 PREDICTOR. */
461 bool
462 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
464 struct edge_prediction *i;
465 edge_prediction **preds = bb_predictions->get (bb);
467 if (!preds)
468 return false;
470 for (i = *preds; i; i = i->ep_next)
471 if (i->ep_predictor == predictor)
472 return true;
473 return false;
476 /* Return true when the probability of edge is reliable.
478 The profile guessing code is good at predicting branch outcome (ie.
479 taken/not taken), that is predicted right slightly over 75% of time.
480 It is however notoriously poor on predicting the probability itself.
481 In general the profile appear a lot flatter (with probabilities closer
482 to 50%) than the reality so it is bad idea to use it to drive optimization
483 such as those disabling dynamic branch prediction for well predictable
484 branches.
486 There are two exceptions - edges leading to noreturn edges and edges
487 predicted by number of iterations heuristics are predicted well. This macro
488 should be able to distinguish those, but at the moment it simply check for
489 noreturn heuristic that is only one giving probability over 99% or bellow
490 1%. In future we might want to propagate reliability information across the
491 CFG if we find this information useful on multiple places. */
492 static bool
493 probability_reliable_p (int prob)
495 return (profile_status_for_fn (cfun) == PROFILE_READ
496 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
497 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
500 /* Same predicate as above, working on edges. */
501 bool
502 edge_probability_reliable_p (const_edge e)
504 return probability_reliable_p (e->probability);
507 /* Same predicate as edge_probability_reliable_p, working on notes. */
508 bool
509 br_prob_note_reliable_p (const_rtx note)
511 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
512 return probability_reliable_p (XINT (note, 0));
515 static void
516 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
518 gcc_assert (any_condjump_p (insn));
519 if (!flag_guess_branch_prob)
520 return;
522 add_reg_note (insn, REG_BR_PRED,
523 gen_rtx_CONCAT (VOIDmode,
524 GEN_INT ((int) predictor),
525 GEN_INT ((int) probability)));
528 /* Predict insn by given predictor. */
530 void
531 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
532 enum prediction taken)
534 int probability = predictor_info[(int) predictor].hitrate;
536 if (taken != TAKEN)
537 probability = REG_BR_PROB_BASE - probability;
539 predict_insn (insn, predictor, probability);
542 /* Predict edge E with given probability if possible. */
544 void
545 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
547 rtx_insn *last_insn;
548 last_insn = BB_END (e->src);
550 /* We can store the branch prediction information only about
551 conditional jumps. */
552 if (!any_condjump_p (last_insn))
553 return;
555 /* We always store probability of branching. */
556 if (e->flags & EDGE_FALLTHRU)
557 probability = REG_BR_PROB_BASE - probability;
559 predict_insn (last_insn, predictor, probability);
562 /* Predict edge E with the given PROBABILITY. */
563 void
564 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
566 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
567 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
569 && flag_guess_branch_prob && optimize)
571 struct edge_prediction *i = XNEW (struct edge_prediction);
572 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
574 i->ep_next = preds;
575 preds = i;
576 i->ep_probability = probability;
577 i->ep_predictor = predictor;
578 i->ep_edge = e;
582 /* Remove all predictions on given basic block that are attached
583 to edge E. */
584 void
585 remove_predictions_associated_with_edge (edge e)
587 if (!bb_predictions)
588 return;
590 edge_prediction **preds = bb_predictions->get (e->src);
592 if (preds)
594 struct edge_prediction **prediction = preds;
595 struct edge_prediction *next;
597 while (*prediction)
599 if ((*prediction)->ep_edge == e)
601 next = (*prediction)->ep_next;
602 free (*prediction);
603 *prediction = next;
605 else
606 prediction = &((*prediction)->ep_next);
611 /* Clears the list of predictions stored for BB. */
613 static void
614 clear_bb_predictions (basic_block bb)
616 edge_prediction **preds = bb_predictions->get (bb);
617 struct edge_prediction *pred, *next;
619 if (!preds)
620 return;
622 for (pred = *preds; pred; pred = next)
624 next = pred->ep_next;
625 free (pred);
627 *preds = NULL;
630 /* Return true when we can store prediction on insn INSN.
631 At the moment we represent predictions only on conditional
632 jumps, not at computed jump or other complicated cases. */
633 static bool
634 can_predict_insn_p (const rtx_insn *insn)
636 return (JUMP_P (insn)
637 && any_condjump_p (insn)
638 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
641 /* Predict edge E by given predictor if possible. */
643 void
644 predict_edge_def (edge e, enum br_predictor predictor,
645 enum prediction taken)
647 int probability = predictor_info[(int) predictor].hitrate;
649 if (taken != TAKEN)
650 probability = REG_BR_PROB_BASE - probability;
652 predict_edge (e, predictor, probability);
655 /* Invert all branch predictions or probability notes in the INSN. This needs
656 to be done each time we invert the condition used by the jump. */
658 void
659 invert_br_probabilities (rtx insn)
661 rtx note;
663 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
664 if (REG_NOTE_KIND (note) == REG_BR_PROB)
665 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
666 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
667 XEXP (XEXP (note, 0), 1)
668 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
671 /* Dump information about the branch prediction to the output file. */
673 static void
674 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
675 basic_block bb, int used)
677 edge e;
678 edge_iterator ei;
680 if (!file)
681 return;
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (! (e->flags & EDGE_FALLTHRU))
685 break;
687 fprintf (file, " %s heuristics%s: %.1f%%",
688 predictor_info[predictor].name,
689 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
691 if (bb->count)
693 fprintf (file, " exec %" PRId64, bb->count);
694 if (e)
696 fprintf (file, " hit %" PRId64, e->count);
697 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
701 fprintf (file, "\n");
704 /* We can not predict the probabilities of outgoing edges of bb. Set them
705 evenly and hope for the best. */
706 static void
707 set_even_probabilities (basic_block bb)
709 int nedges = 0;
710 edge e;
711 edge_iterator ei;
713 FOR_EACH_EDGE (e, ei, bb->succs)
714 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
715 nedges ++;
716 FOR_EACH_EDGE (e, ei, bb->succs)
717 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
718 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
719 else
720 e->probability = 0;
723 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
724 note if not already present. Remove now useless REG_BR_PRED notes. */
726 static void
727 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
729 rtx prob_note;
730 rtx *pnote;
731 rtx note;
732 int best_probability = PROB_EVEN;
733 enum br_predictor best_predictor = END_PREDICTORS;
734 int combined_probability = REG_BR_PROB_BASE / 2;
735 int d;
736 bool first_match = false;
737 bool found = false;
739 if (!can_predict_insn_p (insn))
741 set_even_probabilities (bb);
742 return;
745 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
746 pnote = &REG_NOTES (insn);
747 if (dump_file)
748 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
749 bb->index);
751 /* We implement "first match" heuristics and use probability guessed
752 by predictor with smallest index. */
753 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
754 if (REG_NOTE_KIND (note) == REG_BR_PRED)
756 enum br_predictor predictor = ((enum br_predictor)
757 INTVAL (XEXP (XEXP (note, 0), 0)));
758 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
760 found = true;
761 if (best_predictor > predictor)
762 best_probability = probability, best_predictor = predictor;
764 d = (combined_probability * probability
765 + (REG_BR_PROB_BASE - combined_probability)
766 * (REG_BR_PROB_BASE - probability));
768 /* Use FP math to avoid overflows of 32bit integers. */
769 if (d == 0)
770 /* If one probability is 0% and one 100%, avoid division by zero. */
771 combined_probability = REG_BR_PROB_BASE / 2;
772 else
773 combined_probability = (((double) combined_probability) * probability
774 * REG_BR_PROB_BASE / d + 0.5);
777 /* Decide which heuristic to use. In case we didn't match anything,
778 use no_prediction heuristic, in case we did match, use either
779 first match or Dempster-Shaffer theory depending on the flags. */
781 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
782 first_match = true;
784 if (!found)
785 dump_prediction (dump_file, PRED_NO_PREDICTION,
786 combined_probability, bb, true);
787 else
789 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
790 bb, !first_match);
791 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
792 bb, first_match);
795 if (first_match)
796 combined_probability = best_probability;
797 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
799 while (*pnote)
801 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
803 enum br_predictor predictor = ((enum br_predictor)
804 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
805 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
807 dump_prediction (dump_file, predictor, probability, bb,
808 !first_match || best_predictor == predictor);
809 *pnote = XEXP (*pnote, 1);
811 else
812 pnote = &XEXP (*pnote, 1);
815 if (!prob_note)
817 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
819 /* Save the prediction into CFG in case we are seeing non-degenerated
820 conditional jump. */
821 if (!single_succ_p (bb))
823 BRANCH_EDGE (bb)->probability = combined_probability;
824 FALLTHRU_EDGE (bb)->probability
825 = REG_BR_PROB_BASE - combined_probability;
828 else if (!single_succ_p (bb))
830 int prob = XINT (prob_note, 0);
832 BRANCH_EDGE (bb)->probability = prob;
833 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
835 else
836 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
839 /* Combine predictions into single probability and store them into CFG.
840 Remove now useless prediction entries. */
842 static void
843 combine_predictions_for_bb (basic_block bb)
845 int best_probability = PROB_EVEN;
846 enum br_predictor best_predictor = END_PREDICTORS;
847 int combined_probability = REG_BR_PROB_BASE / 2;
848 int d;
849 bool first_match = false;
850 bool found = false;
851 struct edge_prediction *pred;
852 int nedges = 0;
853 edge e, first = NULL, second = NULL;
854 edge_iterator ei;
856 FOR_EACH_EDGE (e, ei, bb->succs)
857 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
859 nedges ++;
860 if (first && !second)
861 second = e;
862 if (!first)
863 first = e;
866 /* When there is no successor or only one choice, prediction is easy.
868 We are lazy for now and predict only basic blocks with two outgoing
869 edges. It is possible to predict generic case too, but we have to
870 ignore first match heuristics and do more involved combining. Implement
871 this later. */
872 if (nedges != 2)
874 if (!bb->count)
875 set_even_probabilities (bb);
876 clear_bb_predictions (bb);
877 if (dump_file)
878 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
879 nedges, bb->index);
880 return;
883 if (dump_file)
884 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
886 edge_prediction **preds = bb_predictions->get (bb);
887 if (preds)
889 /* We implement "first match" heuristics and use probability guessed
890 by predictor with smallest index. */
891 for (pred = *preds; pred; pred = pred->ep_next)
893 enum br_predictor predictor = pred->ep_predictor;
894 int probability = pred->ep_probability;
896 if (pred->ep_edge != first)
897 probability = REG_BR_PROB_BASE - probability;
899 found = true;
900 /* First match heuristics would be widly confused if we predicted
901 both directions. */
902 if (best_predictor > predictor)
904 struct edge_prediction *pred2;
905 int prob = probability;
907 for (pred2 = (struct edge_prediction *) *preds;
908 pred2; pred2 = pred2->ep_next)
909 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
911 int probability2 = pred->ep_probability;
913 if (pred2->ep_edge != first)
914 probability2 = REG_BR_PROB_BASE - probability2;
916 if ((probability < REG_BR_PROB_BASE / 2) !=
917 (probability2 < REG_BR_PROB_BASE / 2))
918 break;
920 /* If the same predictor later gave better result, go for it! */
921 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
922 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
923 prob = probability2;
925 if (!pred2)
926 best_probability = prob, best_predictor = predictor;
929 d = (combined_probability * probability
930 + (REG_BR_PROB_BASE - combined_probability)
931 * (REG_BR_PROB_BASE - probability));
933 /* Use FP math to avoid overflows of 32bit integers. */
934 if (d == 0)
935 /* If one probability is 0% and one 100%, avoid division by zero. */
936 combined_probability = REG_BR_PROB_BASE / 2;
937 else
938 combined_probability = (((double) combined_probability)
939 * probability
940 * REG_BR_PROB_BASE / d + 0.5);
944 /* Decide which heuristic to use. In case we didn't match anything,
945 use no_prediction heuristic, in case we did match, use either
946 first match or Dempster-Shaffer theory depending on the flags. */
948 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
949 first_match = true;
951 if (!found)
952 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
953 else
955 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
956 !first_match);
957 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
958 first_match);
961 if (first_match)
962 combined_probability = best_probability;
963 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
965 if (preds)
967 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
969 enum br_predictor predictor = pred->ep_predictor;
970 int probability = pred->ep_probability;
972 if (pred->ep_edge != EDGE_SUCC (bb, 0))
973 probability = REG_BR_PROB_BASE - probability;
974 dump_prediction (dump_file, predictor, probability, bb,
975 !first_match || best_predictor == predictor);
978 clear_bb_predictions (bb);
980 if (!bb->count)
982 first->probability = combined_probability;
983 second->probability = REG_BR_PROB_BASE - combined_probability;
987 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
988 Return the SSA_NAME if the condition satisfies, NULL otherwise.
990 T1 and T2 should be one of the following cases:
991 1. T1 is SSA_NAME, T2 is NULL
992 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
993 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
995 static tree
996 strips_small_constant (tree t1, tree t2)
998 tree ret = NULL;
999 int value = 0;
1001 if (!t1)
1002 return NULL;
1003 else if (TREE_CODE (t1) == SSA_NAME)
1004 ret = t1;
1005 else if (tree_fits_shwi_p (t1))
1006 value = tree_to_shwi (t1);
1007 else
1008 return NULL;
1010 if (!t2)
1011 return ret;
1012 else if (tree_fits_shwi_p (t2))
1013 value = tree_to_shwi (t2);
1014 else if (TREE_CODE (t2) == SSA_NAME)
1016 if (ret)
1017 return NULL;
1018 else
1019 ret = t2;
1022 if (value <= 4 && value >= -4)
1023 return ret;
1024 else
1025 return NULL;
1028 /* Return the SSA_NAME in T or T's operands.
1029 Return NULL if SSA_NAME cannot be found. */
1031 static tree
1032 get_base_value (tree t)
1034 if (TREE_CODE (t) == SSA_NAME)
1035 return t;
1037 if (!BINARY_CLASS_P (t))
1038 return NULL;
1040 switch (TREE_OPERAND_LENGTH (t))
1042 case 1:
1043 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1044 case 2:
1045 return strips_small_constant (TREE_OPERAND (t, 0),
1046 TREE_OPERAND (t, 1));
1047 default:
1048 return NULL;
1052 /* Check the compare STMT in LOOP. If it compares an induction
1053 variable to a loop invariant, return true, and save
1054 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1055 Otherwise return false and set LOOP_INVAIANT to NULL. */
1057 static bool
1058 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1059 tree *loop_invariant,
1060 enum tree_code *compare_code,
1061 tree *loop_step,
1062 tree *loop_iv_base)
1064 tree op0, op1, bound, base;
1065 affine_iv iv0, iv1;
1066 enum tree_code code;
1067 tree step;
1069 code = gimple_cond_code (stmt);
1070 *loop_invariant = NULL;
1072 switch (code)
1074 case GT_EXPR:
1075 case GE_EXPR:
1076 case NE_EXPR:
1077 case LT_EXPR:
1078 case LE_EXPR:
1079 case EQ_EXPR:
1080 break;
1082 default:
1083 return false;
1086 op0 = gimple_cond_lhs (stmt);
1087 op1 = gimple_cond_rhs (stmt);
1089 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1090 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1091 return false;
1092 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1093 return false;
1094 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1095 return false;
1096 if (TREE_CODE (iv0.step) != INTEGER_CST
1097 || TREE_CODE (iv1.step) != INTEGER_CST)
1098 return false;
1099 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1100 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1101 return false;
1103 if (integer_zerop (iv0.step))
1105 if (code != NE_EXPR && code != EQ_EXPR)
1106 code = invert_tree_comparison (code, false);
1107 bound = iv0.base;
1108 base = iv1.base;
1109 if (tree_fits_shwi_p (iv1.step))
1110 step = iv1.step;
1111 else
1112 return false;
1114 else
1116 bound = iv1.base;
1117 base = iv0.base;
1118 if (tree_fits_shwi_p (iv0.step))
1119 step = iv0.step;
1120 else
1121 return false;
1124 if (TREE_CODE (bound) != INTEGER_CST)
1125 bound = get_base_value (bound);
1126 if (!bound)
1127 return false;
1128 if (TREE_CODE (base) != INTEGER_CST)
1129 base = get_base_value (base);
1130 if (!base)
1131 return false;
1133 *loop_invariant = bound;
1134 *compare_code = code;
1135 *loop_step = step;
1136 *loop_iv_base = base;
1137 return true;
1140 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1142 static bool
1143 expr_coherent_p (tree t1, tree t2)
1145 gimple *stmt;
1146 tree ssa_name_1 = NULL;
1147 tree ssa_name_2 = NULL;
1149 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1150 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1152 if (t1 == t2)
1153 return true;
1155 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1156 return true;
1157 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1158 return false;
1160 /* Check to see if t1 is expressed/defined with t2. */
1161 stmt = SSA_NAME_DEF_STMT (t1);
1162 gcc_assert (stmt != NULL);
1163 if (is_gimple_assign (stmt))
1165 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1166 if (ssa_name_1 && ssa_name_1 == t2)
1167 return true;
1170 /* Check to see if t2 is expressed/defined with t1. */
1171 stmt = SSA_NAME_DEF_STMT (t2);
1172 gcc_assert (stmt != NULL);
1173 if (is_gimple_assign (stmt))
1175 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1176 if (ssa_name_2 && ssa_name_2 == t1)
1177 return true;
1180 /* Compare if t1 and t2's def_stmts are identical. */
1181 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1182 return true;
1183 else
1184 return false;
1187 /* Predict branch probability of BB when BB contains a branch that compares
1188 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1189 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1191 E.g.
1192 for (int i = 0; i < bound; i++) {
1193 if (i < bound - 2)
1194 computation_1();
1195 else
1196 computation_2();
1199 In this loop, we will predict the branch inside the loop to be taken. */
1201 static void
1202 predict_iv_comparison (struct loop *loop, basic_block bb,
1203 tree loop_bound_var,
1204 tree loop_iv_base_var,
1205 enum tree_code loop_bound_code,
1206 int loop_bound_step)
1208 gimple *stmt;
1209 tree compare_var, compare_base;
1210 enum tree_code compare_code;
1211 tree compare_step_var;
1212 edge then_edge;
1213 edge_iterator ei;
1215 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1216 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1217 || predicted_by_p (bb, PRED_LOOP_EXIT))
1218 return;
1220 stmt = last_stmt (bb);
1221 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1222 return;
1223 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1224 loop, &compare_var,
1225 &compare_code,
1226 &compare_step_var,
1227 &compare_base))
1228 return;
1230 /* Find the taken edge. */
1231 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1232 if (then_edge->flags & EDGE_TRUE_VALUE)
1233 break;
1235 /* When comparing an IV to a loop invariant, NE is more likely to be
1236 taken while EQ is more likely to be not-taken. */
1237 if (compare_code == NE_EXPR)
1239 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1240 return;
1242 else if (compare_code == EQ_EXPR)
1244 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1245 return;
1248 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1249 return;
1251 /* If loop bound, base and compare bound are all constants, we can
1252 calculate the probability directly. */
1253 if (tree_fits_shwi_p (loop_bound_var)
1254 && tree_fits_shwi_p (compare_var)
1255 && tree_fits_shwi_p (compare_base))
1257 int probability;
1258 bool overflow, overall_overflow = false;
1259 widest_int compare_count, tem;
1261 /* (loop_bound - base) / compare_step */
1262 tem = wi::sub (wi::to_widest (loop_bound_var),
1263 wi::to_widest (compare_base), SIGNED, &overflow);
1264 overall_overflow |= overflow;
1265 widest_int loop_count = wi::div_trunc (tem,
1266 wi::to_widest (compare_step_var),
1267 SIGNED, &overflow);
1268 overall_overflow |= overflow;
1270 if (!wi::neg_p (wi::to_widest (compare_step_var))
1271 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1273 /* (loop_bound - compare_bound) / compare_step */
1274 tem = wi::sub (wi::to_widest (loop_bound_var),
1275 wi::to_widest (compare_var), SIGNED, &overflow);
1276 overall_overflow |= overflow;
1277 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1278 SIGNED, &overflow);
1279 overall_overflow |= overflow;
1281 else
1283 /* (compare_bound - base) / compare_step */
1284 tem = wi::sub (wi::to_widest (compare_var),
1285 wi::to_widest (compare_base), SIGNED, &overflow);
1286 overall_overflow |= overflow;
1287 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1288 SIGNED, &overflow);
1289 overall_overflow |= overflow;
1291 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1292 ++compare_count;
1293 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1294 ++loop_count;
1295 if (wi::neg_p (compare_count))
1296 compare_count = 0;
1297 if (wi::neg_p (loop_count))
1298 loop_count = 0;
1299 if (loop_count == 0)
1300 probability = 0;
1301 else if (wi::cmps (compare_count, loop_count) == 1)
1302 probability = REG_BR_PROB_BASE;
1303 else
1305 tem = compare_count * REG_BR_PROB_BASE;
1306 tem = wi::udiv_trunc (tem, loop_count);
1307 probability = tem.to_uhwi ();
1310 if (!overall_overflow)
1311 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1313 return;
1316 if (expr_coherent_p (loop_bound_var, compare_var))
1318 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1319 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1320 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1321 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1322 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1323 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1324 else if (loop_bound_code == NE_EXPR)
1326 /* If the loop backedge condition is "(i != bound)", we do
1327 the comparison based on the step of IV:
1328 * step < 0 : backedge condition is like (i > bound)
1329 * step > 0 : backedge condition is like (i < bound) */
1330 gcc_assert (loop_bound_step != 0);
1331 if (loop_bound_step > 0
1332 && (compare_code == LT_EXPR
1333 || compare_code == LE_EXPR))
1334 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1335 else if (loop_bound_step < 0
1336 && (compare_code == GT_EXPR
1337 || compare_code == GE_EXPR))
1338 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1339 else
1340 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1342 else
1343 /* The branch is predicted not-taken if loop_bound_code is
1344 opposite with compare_code. */
1345 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1347 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1349 /* For cases like:
1350 for (i = s; i < h; i++)
1351 if (i > s + 2) ....
1352 The branch should be predicted taken. */
1353 if (loop_bound_step > 0
1354 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1355 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1356 else if (loop_bound_step < 0
1357 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1358 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1359 else
1360 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1364 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1365 exits are resulted from short-circuit conditions that will generate an
1366 if_tmp. E.g.:
1368 if (foo() || global > 10)
1369 break;
1371 This will be translated into:
1373 BB3:
1374 loop header...
1375 BB4:
1376 if foo() goto BB6 else goto BB5
1377 BB5:
1378 if global > 10 goto BB6 else goto BB7
1379 BB6:
1380 goto BB7
1381 BB7:
1382 iftmp = (PHI 0(BB5), 1(BB6))
1383 if iftmp == 1 goto BB8 else goto BB3
1384 BB8:
1385 outside of the loop...
1387 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1388 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1389 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1390 exits to predict them using PRED_LOOP_EXIT. */
1392 static void
1393 predict_extra_loop_exits (edge exit_edge)
1395 unsigned i;
1396 bool check_value_one;
1397 gimple *lhs_def_stmt;
1398 gphi *phi_stmt;
1399 tree cmp_rhs, cmp_lhs;
1400 gimple *last;
1401 gcond *cmp_stmt;
1403 last = last_stmt (exit_edge->src);
1404 if (!last)
1405 return;
1406 cmp_stmt = dyn_cast <gcond *> (last);
1407 if (!cmp_stmt)
1408 return;
1410 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1411 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1412 if (!TREE_CONSTANT (cmp_rhs)
1413 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1414 return;
1415 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1416 return;
1418 /* If check_value_one is true, only the phi_args with value '1' will lead
1419 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1420 loop exit. */
1421 check_value_one = (((integer_onep (cmp_rhs))
1422 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1423 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1425 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1426 if (!lhs_def_stmt)
1427 return;
1429 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1430 if (!phi_stmt)
1431 return;
1433 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1435 edge e1;
1436 edge_iterator ei;
1437 tree val = gimple_phi_arg_def (phi_stmt, i);
1438 edge e = gimple_phi_arg_edge (phi_stmt, i);
1440 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1441 continue;
1442 if ((check_value_one ^ integer_onep (val)) == 1)
1443 continue;
1444 if (EDGE_COUNT (e->src->succs) != 1)
1446 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1447 continue;
1450 FOR_EACH_EDGE (e1, ei, e->src->preds)
1451 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1455 /* Predict edge probabilities by exploiting loop structure. */
1457 static void
1458 predict_loops (void)
1460 struct loop *loop;
1462 /* Try to predict out blocks in a loop that are not part of a
1463 natural loop. */
1464 FOR_EACH_LOOP (loop, 0)
1466 basic_block bb, *bbs;
1467 unsigned j, n_exits;
1468 vec<edge> exits;
1469 struct tree_niter_desc niter_desc;
1470 edge ex;
1471 struct nb_iter_bound *nb_iter;
1472 enum tree_code loop_bound_code = ERROR_MARK;
1473 tree loop_bound_step = NULL;
1474 tree loop_bound_var = NULL;
1475 tree loop_iv_base = NULL;
1476 gcond *stmt = NULL;
1478 exits = get_loop_exit_edges (loop);
1479 n_exits = exits.length ();
1480 if (!n_exits)
1482 exits.release ();
1483 continue;
1486 FOR_EACH_VEC_ELT (exits, j, ex)
1488 tree niter = NULL;
1489 HOST_WIDE_INT nitercst;
1490 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1491 int probability;
1492 enum br_predictor predictor;
1494 predict_extra_loop_exits (ex);
1496 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1497 niter = niter_desc.niter;
1498 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1499 niter = loop_niter_by_eval (loop, ex);
1501 if (TREE_CODE (niter) == INTEGER_CST)
1503 if (tree_fits_uhwi_p (niter)
1504 && max
1505 && compare_tree_int (niter, max - 1) == -1)
1506 nitercst = tree_to_uhwi (niter) + 1;
1507 else
1508 nitercst = max;
1509 predictor = PRED_LOOP_ITERATIONS;
1511 /* If we have just one exit and we can derive some information about
1512 the number of iterations of the loop from the statements inside
1513 the loop, use it to predict this exit. */
1514 else if (n_exits == 1)
1516 nitercst = estimated_stmt_executions_int (loop);
1517 if (nitercst < 0)
1518 continue;
1519 if (nitercst > max)
1520 nitercst = max;
1522 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1524 else
1525 continue;
1527 /* If the prediction for number of iterations is zero, do not
1528 predict the exit edges. */
1529 if (nitercst == 0)
1530 continue;
1532 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1533 predict_edge (ex, predictor, probability);
1535 exits.release ();
1537 /* Find information about loop bound variables. */
1538 for (nb_iter = loop->bounds; nb_iter;
1539 nb_iter = nb_iter->next)
1540 if (nb_iter->stmt
1541 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1543 stmt = as_a <gcond *> (nb_iter->stmt);
1544 break;
1546 if (!stmt && last_stmt (loop->header)
1547 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1548 stmt = as_a <gcond *> (last_stmt (loop->header));
1549 if (stmt)
1550 is_comparison_with_loop_invariant_p (stmt, loop,
1551 &loop_bound_var,
1552 &loop_bound_code,
1553 &loop_bound_step,
1554 &loop_iv_base);
1556 bbs = get_loop_body (loop);
1558 for (j = 0; j < loop->num_nodes; j++)
1560 int header_found = 0;
1561 edge e;
1562 edge_iterator ei;
1564 bb = bbs[j];
1566 /* Bypass loop heuristics on continue statement. These
1567 statements construct loops via "non-loop" constructs
1568 in the source language and are better to be handled
1569 separately. */
1570 if (predicted_by_p (bb, PRED_CONTINUE))
1571 continue;
1573 /* Loop branch heuristics - predict an edge back to a
1574 loop's head as taken. */
1575 if (bb == loop->latch)
1577 e = find_edge (loop->latch, loop->header);
1578 if (e)
1580 header_found = 1;
1581 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1585 /* Loop exit heuristics - predict an edge exiting the loop if the
1586 conditional has no loop header successors as not taken. */
1587 if (!header_found
1588 /* If we already used more reliable loop exit predictors, do not
1589 bother with PRED_LOOP_EXIT. */
1590 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1591 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1593 /* For loop with many exits we don't want to predict all exits
1594 with the pretty large probability, because if all exits are
1595 considered in row, the loop would be predicted to iterate
1596 almost never. The code to divide probability by number of
1597 exits is very rough. It should compute the number of exits
1598 taken in each patch through function (not the overall number
1599 of exits that might be a lot higher for loops with wide switch
1600 statements in them) and compute n-th square root.
1602 We limit the minimal probability by 2% to avoid
1603 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1604 as this was causing regression in perl benchmark containing such
1605 a wide loop. */
1607 int probability = ((REG_BR_PROB_BASE
1608 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1609 / n_exits);
1610 if (probability < HITRATE (2))
1611 probability = HITRATE (2);
1612 FOR_EACH_EDGE (e, ei, bb->succs)
1613 if (e->dest->index < NUM_FIXED_BLOCKS
1614 || !flow_bb_inside_loop_p (loop, e->dest))
1615 predict_edge (e, PRED_LOOP_EXIT, probability);
1617 if (loop_bound_var)
1618 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1619 loop_bound_code,
1620 tree_to_shwi (loop_bound_step));
1623 /* Free basic blocks from get_loop_body. */
1624 free (bbs);
1628 /* Attempt to predict probabilities of BB outgoing edges using local
1629 properties. */
1630 static void
1631 bb_estimate_probability_locally (basic_block bb)
1633 rtx_insn *last_insn = BB_END (bb);
1634 rtx cond;
1636 if (! can_predict_insn_p (last_insn))
1637 return;
1638 cond = get_condition (last_insn, NULL, false, false);
1639 if (! cond)
1640 return;
1642 /* Try "pointer heuristic."
1643 A comparison ptr == 0 is predicted as false.
1644 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1645 if (COMPARISON_P (cond)
1646 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1647 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1649 if (GET_CODE (cond) == EQ)
1650 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1651 else if (GET_CODE (cond) == NE)
1652 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1654 else
1656 /* Try "opcode heuristic."
1657 EQ tests are usually false and NE tests are usually true. Also,
1658 most quantities are positive, so we can make the appropriate guesses
1659 about signed comparisons against zero. */
1660 switch (GET_CODE (cond))
1662 case CONST_INT:
1663 /* Unconditional branch. */
1664 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1665 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1666 break;
1668 case EQ:
1669 case UNEQ:
1670 /* Floating point comparisons appears to behave in a very
1671 unpredictable way because of special role of = tests in
1672 FP code. */
1673 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1675 /* Comparisons with 0 are often used for booleans and there is
1676 nothing useful to predict about them. */
1677 else if (XEXP (cond, 1) == const0_rtx
1678 || XEXP (cond, 0) == const0_rtx)
1680 else
1681 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1682 break;
1684 case NE:
1685 case LTGT:
1686 /* Floating point comparisons appears to behave in a very
1687 unpredictable way because of special role of = tests in
1688 FP code. */
1689 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1691 /* Comparisons with 0 are often used for booleans and there is
1692 nothing useful to predict about them. */
1693 else if (XEXP (cond, 1) == const0_rtx
1694 || XEXP (cond, 0) == const0_rtx)
1696 else
1697 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1698 break;
1700 case ORDERED:
1701 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1702 break;
1704 case UNORDERED:
1705 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1706 break;
1708 case LE:
1709 case LT:
1710 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1711 || XEXP (cond, 1) == constm1_rtx)
1712 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1713 break;
1715 case GE:
1716 case GT:
1717 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1718 || XEXP (cond, 1) == constm1_rtx)
1719 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1720 break;
1722 default:
1723 break;
1727 /* Set edge->probability for each successor edge of BB. */
1728 void
1729 guess_outgoing_edge_probabilities (basic_block bb)
1731 bb_estimate_probability_locally (bb);
1732 combine_predictions_for_insn (BB_END (bb), bb);
1735 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1737 /* Helper function for expr_expected_value. */
1739 static tree
1740 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1741 tree op1, bitmap visited, enum br_predictor *predictor)
1743 gimple *def;
1745 if (predictor)
1746 *predictor = PRED_UNCONDITIONAL;
1748 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1750 if (TREE_CONSTANT (op0))
1751 return op0;
1753 if (code != SSA_NAME)
1754 return NULL_TREE;
1756 def = SSA_NAME_DEF_STMT (op0);
1758 /* If we were already here, break the infinite cycle. */
1759 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1760 return NULL;
1762 if (gimple_code (def) == GIMPLE_PHI)
1764 /* All the arguments of the PHI node must have the same constant
1765 length. */
1766 int i, n = gimple_phi_num_args (def);
1767 tree val = NULL, new_val;
1769 for (i = 0; i < n; i++)
1771 tree arg = PHI_ARG_DEF (def, i);
1772 enum br_predictor predictor2;
1774 /* If this PHI has itself as an argument, we cannot
1775 determine the string length of this argument. However,
1776 if we can find an expected constant value for the other
1777 PHI args then we can still be sure that this is
1778 likely a constant. So be optimistic and just
1779 continue with the next argument. */
1780 if (arg == PHI_RESULT (def))
1781 continue;
1783 new_val = expr_expected_value (arg, visited, &predictor2);
1785 /* It is difficult to combine value predictors. Simply assume
1786 that later predictor is weaker and take its prediction. */
1787 if (predictor && *predictor < predictor2)
1788 *predictor = predictor2;
1789 if (!new_val)
1790 return NULL;
1791 if (!val)
1792 val = new_val;
1793 else if (!operand_equal_p (val, new_val, false))
1794 return NULL;
1796 return val;
1798 if (is_gimple_assign (def))
1800 if (gimple_assign_lhs (def) != op0)
1801 return NULL;
1803 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1804 gimple_assign_rhs1 (def),
1805 gimple_assign_rhs_code (def),
1806 gimple_assign_rhs2 (def),
1807 visited, predictor);
1810 if (is_gimple_call (def))
1812 tree decl = gimple_call_fndecl (def);
1813 if (!decl)
1815 if (gimple_call_internal_p (def)
1816 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1818 gcc_assert (gimple_call_num_args (def) == 3);
1819 tree val = gimple_call_arg (def, 0);
1820 if (TREE_CONSTANT (val))
1821 return val;
1822 if (predictor)
1824 tree val2 = gimple_call_arg (def, 2);
1825 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1826 && tree_fits_uhwi_p (val2)
1827 && tree_to_uhwi (val2) < END_PREDICTORS);
1828 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1830 return gimple_call_arg (def, 1);
1832 return NULL;
1834 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1835 switch (DECL_FUNCTION_CODE (decl))
1837 case BUILT_IN_EXPECT:
1839 tree val;
1840 if (gimple_call_num_args (def) != 2)
1841 return NULL;
1842 val = gimple_call_arg (def, 0);
1843 if (TREE_CONSTANT (val))
1844 return val;
1845 if (predictor)
1846 *predictor = PRED_BUILTIN_EXPECT;
1847 return gimple_call_arg (def, 1);
1850 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1851 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1852 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1855 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1856 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1857 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1860 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1861 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1862 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1863 /* Assume that any given atomic operation has low contention,
1864 and thus the compare-and-swap operation succeeds. */
1865 if (predictor)
1866 *predictor = PRED_COMPARE_AND_SWAP;
1867 return boolean_true_node;
1868 default:
1869 break;
1873 return NULL;
1876 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1878 tree res;
1879 enum br_predictor predictor2;
1880 op0 = expr_expected_value (op0, visited, predictor);
1881 if (!op0)
1882 return NULL;
1883 op1 = expr_expected_value (op1, visited, &predictor2);
1884 if (predictor && *predictor < predictor2)
1885 *predictor = predictor2;
1886 if (!op1)
1887 return NULL;
1888 res = fold_build2 (code, type, op0, op1);
1889 if (TREE_CONSTANT (res))
1890 return res;
1891 return NULL;
1893 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1895 tree res;
1896 op0 = expr_expected_value (op0, visited, predictor);
1897 if (!op0)
1898 return NULL;
1899 res = fold_build1 (code, type, op0);
1900 if (TREE_CONSTANT (res))
1901 return res;
1902 return NULL;
1904 return NULL;
1907 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1908 The function is used by builtin_expect branch predictor so the evidence
1909 must come from this construct and additional possible constant folding.
1911 We may want to implement more involved value guess (such as value range
1912 propagation based prediction), but such tricks shall go to new
1913 implementation. */
1915 static tree
1916 expr_expected_value (tree expr, bitmap visited,
1917 enum br_predictor *predictor)
1919 enum tree_code code;
1920 tree op0, op1;
1922 if (TREE_CONSTANT (expr))
1924 if (predictor)
1925 *predictor = PRED_UNCONDITIONAL;
1926 return expr;
1929 extract_ops_from_tree (expr, &code, &op0, &op1);
1930 return expr_expected_value_1 (TREE_TYPE (expr),
1931 op0, code, op1, visited, predictor);
1934 /* Predict using opcode of the last statement in basic block. */
1935 static void
1936 tree_predict_by_opcode (basic_block bb)
1938 gimple *stmt = last_stmt (bb);
1939 edge then_edge;
1940 tree op0, op1;
1941 tree type;
1942 tree val;
1943 enum tree_code cmp;
1944 bitmap visited;
1945 edge_iterator ei;
1946 enum br_predictor predictor;
1948 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1949 return;
1950 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1951 if (then_edge->flags & EDGE_TRUE_VALUE)
1952 break;
1953 op0 = gimple_cond_lhs (stmt);
1954 op1 = gimple_cond_rhs (stmt);
1955 cmp = gimple_cond_code (stmt);
1956 type = TREE_TYPE (op0);
1957 visited = BITMAP_ALLOC (NULL);
1958 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1959 &predictor);
1960 BITMAP_FREE (visited);
1961 if (val && TREE_CODE (val) == INTEGER_CST)
1963 if (predictor == PRED_BUILTIN_EXPECT)
1965 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1967 gcc_assert (percent >= 0 && percent <= 100);
1968 if (integer_zerop (val))
1969 percent = 100 - percent;
1970 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1972 else
1973 predict_edge (then_edge, predictor,
1974 integer_zerop (val) ? NOT_TAKEN : TAKEN);
1976 /* Try "pointer heuristic."
1977 A comparison ptr == 0 is predicted as false.
1978 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1979 if (POINTER_TYPE_P (type))
1981 if (cmp == EQ_EXPR)
1982 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1983 else if (cmp == NE_EXPR)
1984 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1986 else
1988 /* Try "opcode heuristic."
1989 EQ tests are usually false and NE tests are usually true. Also,
1990 most quantities are positive, so we can make the appropriate guesses
1991 about signed comparisons against zero. */
1992 switch (cmp)
1994 case EQ_EXPR:
1995 case UNEQ_EXPR:
1996 /* Floating point comparisons appears to behave in a very
1997 unpredictable way because of special role of = tests in
1998 FP code. */
1999 if (FLOAT_TYPE_P (type))
2001 /* Comparisons with 0 are often used for booleans and there is
2002 nothing useful to predict about them. */
2003 else if (integer_zerop (op0) || integer_zerop (op1))
2005 else
2006 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2007 break;
2009 case NE_EXPR:
2010 case LTGT_EXPR:
2011 /* Floating point comparisons appears to behave in a very
2012 unpredictable way because of special role of = tests in
2013 FP code. */
2014 if (FLOAT_TYPE_P (type))
2016 /* Comparisons with 0 are often used for booleans and there is
2017 nothing useful to predict about them. */
2018 else if (integer_zerop (op0)
2019 || integer_zerop (op1))
2021 else
2022 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2023 break;
2025 case ORDERED_EXPR:
2026 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2027 break;
2029 case UNORDERED_EXPR:
2030 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2031 break;
2033 case LE_EXPR:
2034 case LT_EXPR:
2035 if (integer_zerop (op1)
2036 || integer_onep (op1)
2037 || integer_all_onesp (op1)
2038 || real_zerop (op1)
2039 || real_onep (op1)
2040 || real_minus_onep (op1))
2041 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2042 break;
2044 case GE_EXPR:
2045 case GT_EXPR:
2046 if (integer_zerop (op1)
2047 || integer_onep (op1)
2048 || integer_all_onesp (op1)
2049 || real_zerop (op1)
2050 || real_onep (op1)
2051 || real_minus_onep (op1))
2052 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2053 break;
2055 default:
2056 break;
2060 /* Try to guess whether the value of return means error code. */
2062 static enum br_predictor
2063 return_prediction (tree val, enum prediction *prediction)
2065 /* VOID. */
2066 if (!val)
2067 return PRED_NO_PREDICTION;
2068 /* Different heuristics for pointers and scalars. */
2069 if (POINTER_TYPE_P (TREE_TYPE (val)))
2071 /* NULL is usually not returned. */
2072 if (integer_zerop (val))
2074 *prediction = NOT_TAKEN;
2075 return PRED_NULL_RETURN;
2078 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2080 /* Negative return values are often used to indicate
2081 errors. */
2082 if (TREE_CODE (val) == INTEGER_CST
2083 && tree_int_cst_sgn (val) < 0)
2085 *prediction = NOT_TAKEN;
2086 return PRED_NEGATIVE_RETURN;
2088 /* Constant return values seems to be commonly taken.
2089 Zero/one often represent booleans so exclude them from the
2090 heuristics. */
2091 if (TREE_CONSTANT (val)
2092 && (!integer_zerop (val) && !integer_onep (val)))
2094 *prediction = TAKEN;
2095 return PRED_CONST_RETURN;
2098 return PRED_NO_PREDICTION;
2101 /* Find the basic block with return expression and look up for possible
2102 return value trying to apply RETURN_PREDICTION heuristics. */
2103 static void
2104 apply_return_prediction (void)
2106 greturn *return_stmt = NULL;
2107 tree return_val;
2108 edge e;
2109 gphi *phi;
2110 int phi_num_args, i;
2111 enum br_predictor pred;
2112 enum prediction direction;
2113 edge_iterator ei;
2115 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2117 gimple *last = last_stmt (e->src);
2118 if (last
2119 && gimple_code (last) == GIMPLE_RETURN)
2121 return_stmt = as_a <greturn *> (last);
2122 break;
2125 if (!e)
2126 return;
2127 return_val = gimple_return_retval (return_stmt);
2128 if (!return_val)
2129 return;
2130 if (TREE_CODE (return_val) != SSA_NAME
2131 || !SSA_NAME_DEF_STMT (return_val)
2132 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2133 return;
2134 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2135 phi_num_args = gimple_phi_num_args (phi);
2136 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2138 /* Avoid the degenerate case where all return values form the function
2139 belongs to same category (ie they are all positive constants)
2140 so we can hardly say something about them. */
2141 for (i = 1; i < phi_num_args; i++)
2142 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2143 break;
2144 if (i != phi_num_args)
2145 for (i = 0; i < phi_num_args; i++)
2147 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2148 if (pred != PRED_NO_PREDICTION)
2149 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2150 direction);
2154 /* Look for basic block that contains unlikely to happen events
2155 (such as noreturn calls) and mark all paths leading to execution
2156 of this basic blocks as unlikely. */
2158 static void
2159 tree_bb_level_predictions (void)
2161 basic_block bb;
2162 bool has_return_edges = false;
2163 edge e;
2164 edge_iterator ei;
2166 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2167 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2169 has_return_edges = true;
2170 break;
2173 apply_return_prediction ();
2175 FOR_EACH_BB_FN (bb, cfun)
2177 gimple_stmt_iterator gsi;
2179 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2181 gimple *stmt = gsi_stmt (gsi);
2182 tree decl;
2184 if (is_gimple_call (stmt))
2186 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2187 && has_return_edges)
2188 predict_paths_leading_to (bb, PRED_NORETURN,
2189 NOT_TAKEN);
2190 decl = gimple_call_fndecl (stmt);
2191 if (decl
2192 && lookup_attribute ("cold",
2193 DECL_ATTRIBUTES (decl)))
2194 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2195 NOT_TAKEN);
2197 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2199 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2200 gimple_predict_outcome (stmt));
2201 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2202 hints to callers. */
2208 #ifdef ENABLE_CHECKING
2210 /* Callback for hash_map::traverse, asserts that the pointer map is
2211 empty. */
2213 bool
2214 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2215 void *)
2217 gcc_assert (!value);
2218 return false;
2220 #endif
2222 /* Predict branch probabilities and estimate profile for basic block BB. */
2224 static void
2225 tree_estimate_probability_bb (basic_block bb)
2227 edge e;
2228 edge_iterator ei;
2229 gimple *last;
2231 FOR_EACH_EDGE (e, ei, bb->succs)
2233 /* Predict edges to user labels with attributes. */
2234 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2236 gimple_stmt_iterator gi;
2237 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2239 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2240 tree decl;
2242 if (!label_stmt)
2243 break;
2244 decl = gimple_label_label (label_stmt);
2245 if (DECL_ARTIFICIAL (decl))
2246 continue;
2248 /* Finally, we have a user-defined label. */
2249 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2250 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2251 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2252 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2256 /* Predict early returns to be probable, as we've already taken
2257 care for error returns and other cases are often used for
2258 fast paths through function.
2260 Since we've already removed the return statements, we are
2261 looking for CFG like:
2263 if (conditional)
2266 goto return_block
2268 some other blocks
2269 return_block:
2270 return_stmt. */
2271 if (e->dest != bb->next_bb
2272 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2273 && single_succ_p (e->dest)
2274 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2275 && (last = last_stmt (e->dest)) != NULL
2276 && gimple_code (last) == GIMPLE_RETURN)
2278 edge e1;
2279 edge_iterator ei1;
2281 if (single_succ_p (bb))
2283 FOR_EACH_EDGE (e1, ei1, bb->preds)
2284 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2285 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2286 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2287 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2289 else
2290 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2291 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2292 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2293 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2296 /* Look for block we are guarding (ie we dominate it,
2297 but it doesn't postdominate us). */
2298 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2299 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2300 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2302 gimple_stmt_iterator bi;
2304 /* The call heuristic claims that a guarded function call
2305 is improbable. This is because such calls are often used
2306 to signal exceptional situations such as printing error
2307 messages. */
2308 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2309 gsi_next (&bi))
2311 gimple *stmt = gsi_stmt (bi);
2312 if (is_gimple_call (stmt)
2313 /* Constant and pure calls are hardly used to signalize
2314 something exceptional. */
2315 && gimple_has_side_effects (stmt))
2317 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2318 break;
2323 tree_predict_by_opcode (bb);
2326 /* Predict branch probabilities and estimate profile of the tree CFG.
2327 This function can be called from the loop optimizers to recompute
2328 the profile information. */
2330 void
2331 tree_estimate_probability (void)
2333 basic_block bb;
2335 add_noreturn_fake_exit_edges ();
2336 connect_infinite_loops_to_exit ();
2337 /* We use loop_niter_by_eval, which requires that the loops have
2338 preheaders. */
2339 create_preheaders (CP_SIMPLE_PREHEADERS);
2340 calculate_dominance_info (CDI_POST_DOMINATORS);
2342 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2343 tree_bb_level_predictions ();
2344 record_loop_exits ();
2346 if (number_of_loops (cfun) > 1)
2347 predict_loops ();
2349 FOR_EACH_BB_FN (bb, cfun)
2350 tree_estimate_probability_bb (bb);
2352 FOR_EACH_BB_FN (bb, cfun)
2353 combine_predictions_for_bb (bb);
2355 #ifdef ENABLE_CHECKING
2356 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2357 #endif
2358 delete bb_predictions;
2359 bb_predictions = NULL;
2361 estimate_bb_frequencies (false);
2362 free_dominance_info (CDI_POST_DOMINATORS);
2363 remove_fake_exit_edges ();
2366 /* Predict edges to successors of CUR whose sources are not postdominated by
2367 BB by PRED and recurse to all postdominators. */
2369 static void
2370 predict_paths_for_bb (basic_block cur, basic_block bb,
2371 enum br_predictor pred,
2372 enum prediction taken,
2373 bitmap visited)
2375 edge e;
2376 edge_iterator ei;
2377 basic_block son;
2379 /* We are looking for all edges forming edge cut induced by
2380 set of all blocks postdominated by BB. */
2381 FOR_EACH_EDGE (e, ei, cur->preds)
2382 if (e->src->index >= NUM_FIXED_BLOCKS
2383 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2385 edge e2;
2386 edge_iterator ei2;
2387 bool found = false;
2389 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2390 if (e->flags & (EDGE_EH | EDGE_FAKE))
2391 continue;
2392 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2394 /* See if there is an edge from e->src that is not abnormal
2395 and does not lead to BB. */
2396 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2397 if (e2 != e
2398 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2399 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2401 found = true;
2402 break;
2405 /* If there is non-abnormal path leaving e->src, predict edge
2406 using predictor. Otherwise we need to look for paths
2407 leading to e->src.
2409 The second may lead to infinite loop in the case we are predicitng
2410 regions that are only reachable by abnormal edges. We simply
2411 prevent visiting given BB twice. */
2412 if (found)
2413 predict_edge_def (e, pred, taken);
2414 else if (bitmap_set_bit (visited, e->src->index))
2415 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2417 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2418 son;
2419 son = next_dom_son (CDI_POST_DOMINATORS, son))
2420 predict_paths_for_bb (son, bb, pred, taken, visited);
2423 /* Sets branch probabilities according to PREDiction and
2424 FLAGS. */
2426 static void
2427 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2428 enum prediction taken)
2430 bitmap visited = BITMAP_ALLOC (NULL);
2431 predict_paths_for_bb (bb, bb, pred, taken, visited);
2432 BITMAP_FREE (visited);
2435 /* Like predict_paths_leading_to but take edge instead of basic block. */
2437 static void
2438 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2439 enum prediction taken)
2441 bool has_nonloop_edge = false;
2442 edge_iterator ei;
2443 edge e2;
2445 basic_block bb = e->src;
2446 FOR_EACH_EDGE (e2, ei, bb->succs)
2447 if (e2->dest != e->src && e2->dest != e->dest
2448 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2449 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2451 has_nonloop_edge = true;
2452 break;
2454 if (!has_nonloop_edge)
2456 bitmap visited = BITMAP_ALLOC (NULL);
2457 predict_paths_for_bb (bb, bb, pred, taken, visited);
2458 BITMAP_FREE (visited);
2460 else
2461 predict_edge_def (e, pred, taken);
2464 /* This is used to carry information about basic blocks. It is
2465 attached to the AUX field of the standard CFG block. */
2467 struct block_info
2469 /* Estimated frequency of execution of basic_block. */
2470 sreal frequency;
2472 /* To keep queue of basic blocks to process. */
2473 basic_block next;
2475 /* Number of predecessors we need to visit first. */
2476 int npredecessors;
2479 /* Similar information for edges. */
2480 struct edge_prob_info
2482 /* In case edge is a loopback edge, the probability edge will be reached
2483 in case header is. Estimated number of iterations of the loop can be
2484 then computed as 1 / (1 - back_edge_prob). */
2485 sreal back_edge_prob;
2486 /* True if the edge is a loopback edge in the natural loop. */
2487 unsigned int back_edge:1;
2490 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2491 #undef EDGE_INFO
2492 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2494 /* Helper function for estimate_bb_frequencies.
2495 Propagate the frequencies in blocks marked in
2496 TOVISIT, starting in HEAD. */
2498 static void
2499 propagate_freq (basic_block head, bitmap tovisit)
2501 basic_block bb;
2502 basic_block last;
2503 unsigned i;
2504 edge e;
2505 basic_block nextbb;
2506 bitmap_iterator bi;
2508 /* For each basic block we need to visit count number of his predecessors
2509 we need to visit first. */
2510 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2512 edge_iterator ei;
2513 int count = 0;
2515 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2517 FOR_EACH_EDGE (e, ei, bb->preds)
2519 bool visit = bitmap_bit_p (tovisit, e->src->index);
2521 if (visit && !(e->flags & EDGE_DFS_BACK))
2522 count++;
2523 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2524 fprintf (dump_file,
2525 "Irreducible region hit, ignoring edge to %i->%i\n",
2526 e->src->index, bb->index);
2528 BLOCK_INFO (bb)->npredecessors = count;
2529 /* When function never returns, we will never process exit block. */
2530 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2531 bb->count = bb->frequency = 0;
2534 BLOCK_INFO (head)->frequency = 1;
2535 last = head;
2536 for (bb = head; bb; bb = nextbb)
2538 edge_iterator ei;
2539 sreal cyclic_probability = 0;
2540 sreal frequency = 0;
2542 nextbb = BLOCK_INFO (bb)->next;
2543 BLOCK_INFO (bb)->next = NULL;
2545 /* Compute frequency of basic block. */
2546 if (bb != head)
2548 #ifdef ENABLE_CHECKING
2549 FOR_EACH_EDGE (e, ei, bb->preds)
2550 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2551 || (e->flags & EDGE_DFS_BACK));
2552 #endif
2554 FOR_EACH_EDGE (e, ei, bb->preds)
2555 if (EDGE_INFO (e)->back_edge)
2557 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2559 else if (!(e->flags & EDGE_DFS_BACK))
2561 /* frequency += (e->probability
2562 * BLOCK_INFO (e->src)->frequency /
2563 REG_BR_PROB_BASE); */
2565 sreal tmp = e->probability;
2566 tmp *= BLOCK_INFO (e->src)->frequency;
2567 tmp *= real_inv_br_prob_base;
2568 frequency += tmp;
2571 if (cyclic_probability == 0)
2573 BLOCK_INFO (bb)->frequency = frequency;
2575 else
2577 if (cyclic_probability > real_almost_one)
2578 cyclic_probability = real_almost_one;
2580 /* BLOCK_INFO (bb)->frequency = frequency
2581 / (1 - cyclic_probability) */
2583 cyclic_probability = sreal (1) - cyclic_probability;
2584 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2588 bitmap_clear_bit (tovisit, bb->index);
2590 e = find_edge (bb, head);
2591 if (e)
2593 /* EDGE_INFO (e)->back_edge_prob
2594 = ((e->probability * BLOCK_INFO (bb)->frequency)
2595 / REG_BR_PROB_BASE); */
2597 sreal tmp = e->probability;
2598 tmp *= BLOCK_INFO (bb)->frequency;
2599 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2602 /* Propagate to successor blocks. */
2603 FOR_EACH_EDGE (e, ei, bb->succs)
2604 if (!(e->flags & EDGE_DFS_BACK)
2605 && BLOCK_INFO (e->dest)->npredecessors)
2607 BLOCK_INFO (e->dest)->npredecessors--;
2608 if (!BLOCK_INFO (e->dest)->npredecessors)
2610 if (!nextbb)
2611 nextbb = e->dest;
2612 else
2613 BLOCK_INFO (last)->next = e->dest;
2615 last = e->dest;
2621 /* Estimate frequencies in loops at same nest level. */
2623 static void
2624 estimate_loops_at_level (struct loop *first_loop)
2626 struct loop *loop;
2628 for (loop = first_loop; loop; loop = loop->next)
2630 edge e;
2631 basic_block *bbs;
2632 unsigned i;
2633 bitmap tovisit = BITMAP_ALLOC (NULL);
2635 estimate_loops_at_level (loop->inner);
2637 /* Find current loop back edge and mark it. */
2638 e = loop_latch_edge (loop);
2639 EDGE_INFO (e)->back_edge = 1;
2641 bbs = get_loop_body (loop);
2642 for (i = 0; i < loop->num_nodes; i++)
2643 bitmap_set_bit (tovisit, bbs[i]->index);
2644 free (bbs);
2645 propagate_freq (loop->header, tovisit);
2646 BITMAP_FREE (tovisit);
2650 /* Propagates frequencies through structure of loops. */
2652 static void
2653 estimate_loops (void)
2655 bitmap tovisit = BITMAP_ALLOC (NULL);
2656 basic_block bb;
2658 /* Start by estimating the frequencies in the loops. */
2659 if (number_of_loops (cfun) > 1)
2660 estimate_loops_at_level (current_loops->tree_root->inner);
2662 /* Now propagate the frequencies through all the blocks. */
2663 FOR_ALL_BB_FN (bb, cfun)
2665 bitmap_set_bit (tovisit, bb->index);
2667 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2668 BITMAP_FREE (tovisit);
2671 /* Drop the profile for NODE to guessed, and update its frequency based on
2672 whether it is expected to be hot given the CALL_COUNT. */
2674 static void
2675 drop_profile (struct cgraph_node *node, gcov_type call_count)
2677 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2678 /* In the case where this was called by another function with a
2679 dropped profile, call_count will be 0. Since there are no
2680 non-zero call counts to this function, we don't know for sure
2681 whether it is hot, and therefore it will be marked normal below. */
2682 bool hot = maybe_hot_count_p (NULL, call_count);
2684 if (dump_file)
2685 fprintf (dump_file,
2686 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2687 node->name (), node->order,
2688 hot ? "Function is hot" : "Function is normal");
2689 /* We only expect to miss profiles for functions that are reached
2690 via non-zero call edges in cases where the function may have
2691 been linked from another module or library (COMDATs and extern
2692 templates). See the comments below for handle_missing_profiles.
2693 Also, only warn in cases where the missing counts exceed the
2694 number of training runs. In certain cases with an execv followed
2695 by a no-return call the profile for the no-return call is not
2696 dumped and there can be a mismatch. */
2697 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2698 && call_count > profile_info->runs)
2700 if (flag_profile_correction)
2702 if (dump_file)
2703 fprintf (dump_file,
2704 "Missing counts for called function %s/%i\n",
2705 node->name (), node->order);
2707 else
2708 warning (0, "Missing counts for called function %s/%i",
2709 node->name (), node->order);
2712 profile_status_for_fn (fn)
2713 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2714 node->frequency
2715 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2718 /* In the case of COMDAT routines, multiple object files will contain the same
2719 function and the linker will select one for the binary. In that case
2720 all the other copies from the profile instrument binary will be missing
2721 profile counts. Look for cases where this happened, due to non-zero
2722 call counts going to 0-count functions, and drop the profile to guessed
2723 so that we can use the estimated probabilities and avoid optimizing only
2724 for size.
2726 The other case where the profile may be missing is when the routine
2727 is not going to be emitted to the object file, e.g. for "extern template"
2728 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2729 all other cases of non-zero calls to 0-count functions. */
2731 void
2732 handle_missing_profiles (void)
2734 struct cgraph_node *node;
2735 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2736 vec<struct cgraph_node *> worklist;
2737 worklist.create (64);
2739 /* See if 0 count function has non-0 count callers. In this case we
2740 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2741 FOR_EACH_DEFINED_FUNCTION (node)
2743 struct cgraph_edge *e;
2744 gcov_type call_count = 0;
2745 gcov_type max_tp_first_run = 0;
2746 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2748 if (node->count)
2749 continue;
2750 for (e = node->callers; e; e = e->next_caller)
2752 call_count += e->count;
2754 if (e->caller->tp_first_run > max_tp_first_run)
2755 max_tp_first_run = e->caller->tp_first_run;
2758 /* If time profile is missing, let assign the maximum that comes from
2759 caller functions. */
2760 if (!node->tp_first_run && max_tp_first_run)
2761 node->tp_first_run = max_tp_first_run + 1;
2763 if (call_count
2764 && fn && fn->cfg
2765 && (call_count * unlikely_count_fraction >= profile_info->runs))
2767 drop_profile (node, call_count);
2768 worklist.safe_push (node);
2772 /* Propagate the profile dropping to other 0-count COMDATs that are
2773 potentially called by COMDATs we already dropped the profile on. */
2774 while (worklist.length () > 0)
2776 struct cgraph_edge *e;
2778 node = worklist.pop ();
2779 for (e = node->callees; e; e = e->next_caller)
2781 struct cgraph_node *callee = e->callee;
2782 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2784 if (callee->count > 0)
2785 continue;
2786 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2787 && profile_status_for_fn (fn) == PROFILE_READ)
2789 drop_profile (node, 0);
2790 worklist.safe_push (callee);
2794 worklist.release ();
2797 /* Convert counts measured by profile driven feedback to frequencies.
2798 Return nonzero iff there was any nonzero execution count. */
2801 counts_to_freqs (void)
2803 gcov_type count_max, true_count_max = 0;
2804 basic_block bb;
2806 /* Don't overwrite the estimated frequencies when the profile for
2807 the function is missing. We may drop this function PROFILE_GUESSED
2808 later in drop_profile (). */
2809 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2810 return 0;
2812 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2813 true_count_max = MAX (bb->count, true_count_max);
2815 count_max = MAX (true_count_max, 1);
2816 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2817 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2819 return true_count_max;
2822 /* Return true if function is likely to be expensive, so there is no point to
2823 optimize performance of prologue, epilogue or do inlining at the expense
2824 of code size growth. THRESHOLD is the limit of number of instructions
2825 function can execute at average to be still considered not expensive. */
2827 bool
2828 expensive_function_p (int threshold)
2830 unsigned int sum = 0;
2831 basic_block bb;
2832 unsigned int limit;
2834 /* We can not compute accurately for large thresholds due to scaled
2835 frequencies. */
2836 gcc_assert (threshold <= BB_FREQ_MAX);
2838 /* Frequencies are out of range. This either means that function contains
2839 internal loop executing more than BB_FREQ_MAX times or profile feedback
2840 is available and function has not been executed at all. */
2841 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2842 return true;
2844 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2845 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2846 FOR_EACH_BB_FN (bb, cfun)
2848 rtx_insn *insn;
2850 FOR_BB_INSNS (bb, insn)
2851 if (active_insn_p (insn))
2853 sum += bb->frequency;
2854 if (sum > limit)
2855 return true;
2859 return false;
2862 /* Estimate and propagate basic block frequencies using the given branch
2863 probabilities. If FORCE is true, the frequencies are used to estimate
2864 the counts even when there are already non-zero profile counts. */
2866 void
2867 estimate_bb_frequencies (bool force)
2869 basic_block bb;
2870 sreal freq_max;
2872 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2874 static int real_values_initialized = 0;
2876 if (!real_values_initialized)
2878 real_values_initialized = 1;
2879 real_br_prob_base = REG_BR_PROB_BASE;
2880 real_bb_freq_max = BB_FREQ_MAX;
2881 real_one_half = sreal (1, -1);
2882 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2883 real_almost_one = sreal (1) - real_inv_br_prob_base;
2886 mark_dfs_back_edges ();
2888 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2889 REG_BR_PROB_BASE;
2891 /* Set up block info for each basic block. */
2892 alloc_aux_for_blocks (sizeof (block_info));
2893 alloc_aux_for_edges (sizeof (edge_prob_info));
2894 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2896 edge e;
2897 edge_iterator ei;
2899 FOR_EACH_EDGE (e, ei, bb->succs)
2901 EDGE_INFO (e)->back_edge_prob = e->probability;
2902 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2906 /* First compute frequencies locally for each loop from innermost
2907 to outermost to examine frequencies for back edges. */
2908 estimate_loops ();
2910 freq_max = 0;
2911 FOR_EACH_BB_FN (bb, cfun)
2912 if (freq_max < BLOCK_INFO (bb)->frequency)
2913 freq_max = BLOCK_INFO (bb)->frequency;
2915 freq_max = real_bb_freq_max / freq_max;
2916 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2918 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2919 bb->frequency = tmp.to_int ();
2922 free_aux_for_blocks ();
2923 free_aux_for_edges ();
2925 compute_function_frequency ();
2928 /* Decide whether function is hot, cold or unlikely executed. */
2929 void
2930 compute_function_frequency (void)
2932 basic_block bb;
2933 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2935 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2936 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2937 node->only_called_at_startup = true;
2938 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2939 node->only_called_at_exit = true;
2941 if (profile_status_for_fn (cfun) != PROFILE_READ)
2943 int flags = flags_from_decl_or_type (current_function_decl);
2944 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2945 != NULL)
2946 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2947 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2948 != NULL)
2949 node->frequency = NODE_FREQUENCY_HOT;
2950 else if (flags & ECF_NORETURN)
2951 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2952 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2953 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2954 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2955 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2956 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2957 return;
2960 /* Only first time try to drop function into unlikely executed.
2961 After inlining the roundoff errors may confuse us.
2962 Ipa-profile pass will drop functions only called from unlikely
2963 functions to unlikely and that is most of what we care about. */
2964 if (!cfun->after_inlining)
2965 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2966 FOR_EACH_BB_FN (bb, cfun)
2968 if (maybe_hot_bb_p (cfun, bb))
2970 node->frequency = NODE_FREQUENCY_HOT;
2971 return;
2973 if (!probably_never_executed_bb_p (cfun, bb))
2974 node->frequency = NODE_FREQUENCY_NORMAL;
2978 /* Build PREDICT_EXPR. */
2979 tree
2980 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2982 tree t = build1 (PREDICT_EXPR, void_type_node,
2983 build_int_cst (integer_type_node, predictor));
2984 SET_PREDICT_EXPR_OUTCOME (t, taken);
2985 return t;
2988 const char *
2989 predictor_name (enum br_predictor predictor)
2991 return predictor_info[predictor].name;
2994 /* Predict branch probabilities and estimate profile of the tree CFG. */
2996 namespace {
2998 const pass_data pass_data_profile =
3000 GIMPLE_PASS, /* type */
3001 "profile_estimate", /* name */
3002 OPTGROUP_NONE, /* optinfo_flags */
3003 TV_BRANCH_PROB, /* tv_id */
3004 PROP_cfg, /* properties_required */
3005 0, /* properties_provided */
3006 0, /* properties_destroyed */
3007 0, /* todo_flags_start */
3008 0, /* todo_flags_finish */
3011 class pass_profile : public gimple_opt_pass
3013 public:
3014 pass_profile (gcc::context *ctxt)
3015 : gimple_opt_pass (pass_data_profile, ctxt)
3018 /* opt_pass methods: */
3019 virtual bool gate (function *) { return flag_guess_branch_prob; }
3020 virtual unsigned int execute (function *);
3022 }; // class pass_profile
3024 unsigned int
3025 pass_profile::execute (function *fun)
3027 unsigned nb_loops;
3029 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3030 return 0;
3032 loop_optimizer_init (LOOPS_NORMAL);
3033 if (dump_file && (dump_flags & TDF_DETAILS))
3034 flow_loops_dump (dump_file, NULL, 0);
3036 mark_irreducible_loops ();
3038 nb_loops = number_of_loops (fun);
3039 if (nb_loops > 1)
3040 scev_initialize ();
3042 tree_estimate_probability ();
3044 if (nb_loops > 1)
3045 scev_finalize ();
3047 loop_optimizer_finalize ();
3048 if (dump_file && (dump_flags & TDF_DETAILS))
3049 gimple_dump_cfg (dump_file, dump_flags);
3050 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3051 profile_status_for_fn (fun) = PROFILE_GUESSED;
3052 return 0;
3055 } // anon namespace
3057 gimple_opt_pass *
3058 make_pass_profile (gcc::context *ctxt)
3060 return new pass_profile (ctxt);
3063 namespace {
3065 const pass_data pass_data_strip_predict_hints =
3067 GIMPLE_PASS, /* type */
3068 "*strip_predict_hints", /* name */
3069 OPTGROUP_NONE, /* optinfo_flags */
3070 TV_BRANCH_PROB, /* tv_id */
3071 PROP_cfg, /* properties_required */
3072 0, /* properties_provided */
3073 0, /* properties_destroyed */
3074 0, /* todo_flags_start */
3075 0, /* todo_flags_finish */
3078 class pass_strip_predict_hints : public gimple_opt_pass
3080 public:
3081 pass_strip_predict_hints (gcc::context *ctxt)
3082 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3085 /* opt_pass methods: */
3086 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3087 virtual unsigned int execute (function *);
3089 }; // class pass_strip_predict_hints
3091 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3092 we no longer need. */
3093 unsigned int
3094 pass_strip_predict_hints::execute (function *fun)
3096 basic_block bb;
3097 gimple *ass_stmt;
3098 tree var;
3100 FOR_EACH_BB_FN (bb, fun)
3102 gimple_stmt_iterator bi;
3103 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3105 gimple *stmt = gsi_stmt (bi);
3107 if (gimple_code (stmt) == GIMPLE_PREDICT)
3109 gsi_remove (&bi, true);
3110 continue;
3112 else if (is_gimple_call (stmt))
3114 tree fndecl = gimple_call_fndecl (stmt);
3116 if ((fndecl
3117 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3118 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3119 && gimple_call_num_args (stmt) == 2)
3120 || (gimple_call_internal_p (stmt)
3121 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3123 var = gimple_call_lhs (stmt);
3124 if (var)
3126 ass_stmt
3127 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3128 gsi_replace (&bi, ass_stmt, true);
3130 else
3132 gsi_remove (&bi, true);
3133 continue;
3137 gsi_next (&bi);
3140 return 0;
3143 } // anon namespace
3145 gimple_opt_pass *
3146 make_pass_strip_predict_hints (gcc::context *ctxt)
3148 return new pass_strip_predict_hints (ctxt);
3151 /* Rebuild function frequencies. Passes are in general expected to
3152 maintain profile by hand, however in some cases this is not possible:
3153 for example when inlining several functions with loops freuqencies might run
3154 out of scale and thus needs to be recomputed. */
3156 void
3157 rebuild_frequencies (void)
3159 timevar_push (TV_REBUILD_FREQUENCIES);
3161 /* When the max bb count in the function is small, there is a higher
3162 chance that there were truncation errors in the integer scaling
3163 of counts by inlining and other optimizations. This could lead
3164 to incorrect classification of code as being cold when it isn't.
3165 In that case, force the estimation of bb counts/frequencies from the
3166 branch probabilities, rather than computing frequencies from counts,
3167 which may also lead to frequencies incorrectly reduced to 0. There
3168 is less precision in the probabilities, so we only do this for small
3169 max counts. */
3170 gcov_type count_max = 0;
3171 basic_block bb;
3172 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3173 count_max = MAX (bb->count, count_max);
3175 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3176 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3177 && count_max < REG_BR_PROB_BASE/10))
3179 loop_optimizer_init (0);
3180 add_noreturn_fake_exit_edges ();
3181 mark_irreducible_loops ();
3182 connect_infinite_loops_to_exit ();
3183 estimate_bb_frequencies (true);
3184 remove_fake_exit_edges ();
3185 loop_optimizer_finalize ();
3187 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3188 counts_to_freqs ();
3189 else
3190 gcc_unreachable ();
3191 timevar_pop (TV_REBUILD_FREQUENCIES);