2015-07-05 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / libstdc++-v3 / include / bits / hashtable.h
blob0495f4bdd2fe8c778444b1572b1bf03fe245e422
1 // hashtable.h header -*- C++ -*-
3 // Copyright (C) 2007-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
33 #pragma GCC system_header
35 #include <bits/hashtable_policy.h>
37 namespace std _GLIBCXX_VISIBILITY(default)
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 template<typename _Tp, typename _Hash>
42 using __cache_default
43 = __not_<__and_<// Do not cache for fast hasher.
44 __is_fast_hash<_Hash>,
45 // Mandatory to have erase not throwing.
46 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
48 /**
49 * Primary class template _Hashtable.
51 * @ingroup hashtable-detail
53 * @tparam _Value CopyConstructible type.
55 * @tparam _Key CopyConstructible type.
57 * @tparam _Alloc An allocator type
58 * ([lib.allocator.requirements]) whose _Alloc::value_type is
59 * _Value. As a conforming extension, we allow for
60 * _Alloc::value_type != _Value.
62 * @tparam _ExtractKey Function object that takes an object of type
63 * _Value and returns a value of type _Key.
65 * @tparam _Equal Function object that takes two objects of type k
66 * and returns a bool-like value that is true if the two objects
67 * are considered equal.
69 * @tparam _H1 The hash function. A unary function object with
70 * argument type _Key and result type size_t. Return values should
71 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
73 * @tparam _H2 The range-hashing function (in the terminology of
74 * Tavori and Dreizin). A binary function object whose argument
75 * types and result type are all size_t. Given arguments r and N,
76 * the return value is in the range [0, N).
78 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79 * binary function whose argument types are _Key and size_t and
80 * whose result type is size_t. Given arguments k and N, the
81 * return value is in the range [0, N). Default: hash(k, N) =
82 * h2(h1(k), N). If _Hash is anything other than the default, _H1
83 * and _H2 are ignored.
85 * @tparam _RehashPolicy Policy class with three members, all of
86 * which govern the bucket count. _M_next_bkt(n) returns a bucket
87 * count no smaller than n. _M_bkt_for_elements(n) returns a
88 * bucket count appropriate for an element count of n.
89 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90 * current bucket count is n_bkt and the current element count is
91 * n_elt, we need to increase the bucket count. If so, returns
92 * make_pair(true, n), where n is the new bucket count. If not,
93 * returns make_pair(false, <anything>)
95 * @tparam _Traits Compile-time class with three boolean
96 * std::integral_constant members: __cache_hash_code, __constant_iterators,
97 * __unique_keys.
99 * Each _Hashtable data structure has:
101 * - _Bucket[] _M_buckets
102 * - _Hash_node_base _M_before_begin
103 * - size_type _M_bucket_count
104 * - size_type _M_element_count
106 * with _Bucket being _Hash_node* and _Hash_node containing:
108 * - _Hash_node* _M_next
109 * - Tp _M_value
110 * - size_t _M_hash_code if cache_hash_code is true
112 * In terms of Standard containers the hashtable is like the aggregation of:
114 * - std::forward_list<_Node> containing the elements
115 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
117 * The non-empty buckets contain the node before the first node in the
118 * bucket. This design makes it possible to implement something like a
119 * std::forward_list::insert_after on container insertion and
120 * std::forward_list::erase_after on container erase
121 * calls. _M_before_begin is equivalent to
122 * std::forward_list::before_begin. Empty buckets contain
123 * nullptr. Note that one of the non-empty buckets contains
124 * &_M_before_begin which is not a dereferenceable node so the
125 * node pointer in a bucket shall never be dereferenced, only its
126 * next node can be.
128 * Walking through a bucket's nodes requires a check on the hash code to
129 * see if each node is still in the bucket. Such a design assumes a
130 * quite efficient hash functor and is one of the reasons it is
131 * highly advisable to set __cache_hash_code to true.
133 * The container iterators are simply built from nodes. This way
134 * incrementing the iterator is perfectly efficient independent of
135 * how many empty buckets there are in the container.
137 * On insert we compute the element's hash code and use it to find the
138 * bucket index. If the element must be inserted in an empty bucket
139 * we add it at the beginning of the singly linked list and make the
140 * bucket point to _M_before_begin. The bucket that used to point to
141 * _M_before_begin, if any, is updated to point to its new before
142 * begin node.
144 * On erase, the simple iterator design requires using the hash
145 * functor to get the index of the bucket to update. For this
146 * reason, when __cache_hash_code is set to false the hash functor must
147 * not throw and this is enforced by a static assertion.
149 * Functionality is implemented by decomposition into base classes,
150 * where the derived _Hashtable class is used in _Map_base,
151 * _Insert, _Rehash_base, and _Equality base classes to access the
152 * "this" pointer. _Hashtable_base is used in the base classes as a
153 * non-recursive, fully-completed-type so that detailed nested type
154 * information, such as iterator type and node type, can be
155 * used. This is similar to the "Curiously Recurring Template
156 * Pattern" (CRTP) technique, but uses a reconstructed, not
157 * explicitly passed, template pattern.
159 * Base class templates are:
160 * - __detail::_Hashtable_base
161 * - __detail::_Map_base
162 * - __detail::_Insert
163 * - __detail::_Rehash_base
164 * - __detail::_Equality
166 template<typename _Key, typename _Value, typename _Alloc,
167 typename _ExtractKey, typename _Equal,
168 typename _H1, typename _H2, typename _Hash,
169 typename _RehashPolicy, typename _Traits>
170 class _Hashtable
171 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 _H1, _H2, _Hash, _Traits>,
173 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181 private __detail::_Hashtable_alloc<
182 __alloc_rebind<_Alloc,
183 __detail::_Hash_node<_Value,
184 _Traits::__hash_cached::value>>>
186 using __traits_type = _Traits;
187 using __hash_cached = typename __traits_type::__hash_cached;
188 using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
191 using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
193 using __value_alloc_traits =
194 typename __hashtable_alloc::__value_alloc_traits;
195 using __node_alloc_traits =
196 typename __hashtable_alloc::__node_alloc_traits;
197 using __node_base = typename __hashtable_alloc::__node_base;
198 using __bucket_type = typename __hashtable_alloc::__bucket_type;
200 public:
201 typedef _Key key_type;
202 typedef _Value value_type;
203 typedef _Alloc allocator_type;
204 typedef _Equal key_equal;
206 // mapped_type, if present, comes from _Map_base.
207 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
208 typedef typename __value_alloc_traits::pointer pointer;
209 typedef typename __value_alloc_traits::const_pointer const_pointer;
210 typedef value_type& reference;
211 typedef const value_type& const_reference;
213 private:
214 using __rehash_type = _RehashPolicy;
215 using __rehash_state = typename __rehash_type::_State;
217 using __constant_iterators = typename __traits_type::__constant_iterators;
218 using __unique_keys = typename __traits_type::__unique_keys;
220 using __key_extract = typename std::conditional<
221 __constant_iterators::value,
222 __detail::_Identity,
223 __detail::_Select1st>::type;
225 using __hashtable_base = __detail::
226 _Hashtable_base<_Key, _Value, _ExtractKey,
227 _Equal, _H1, _H2, _Hash, _Traits>;
229 using __hash_code_base = typename __hashtable_base::__hash_code_base;
230 using __hash_code = typename __hashtable_base::__hash_code;
231 using __ireturn_type = typename __hashtable_base::__ireturn_type;
233 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
234 _Equal, _H1, _H2, _Hash,
235 _RehashPolicy, _Traits>;
237 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
238 _ExtractKey, _Equal,
239 _H1, _H2, _Hash,
240 _RehashPolicy, _Traits>;
242 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
243 _Equal, _H1, _H2, _Hash,
244 _RehashPolicy, _Traits>;
246 using __reuse_or_alloc_node_type =
247 __detail::_ReuseOrAllocNode<__node_alloc_type>;
249 // Metaprogramming for picking apart hash caching.
250 template<typename _Cond>
251 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253 template<typename _Cond>
254 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256 // Compile-time diagnostics.
258 // _Hash_code_base has everything protected, so use this derived type to
259 // access it.
260 struct __hash_code_base_access : __hash_code_base
261 { using __hash_code_base::_M_bucket_index; };
263 // Getting a bucket index from a node shall not throw because it is used
264 // in methods (erase, swap...) that shall not throw.
265 static_assert(noexcept(declval<const __hash_code_base_access&>()
266 ._M_bucket_index((const __node_type*)nullptr,
267 (std::size_t)0)),
268 "Cache the hash code or qualify your functors involved"
269 " in hash code and bucket index computation with noexcept");
271 // Following two static assertions are necessary to guarantee
272 // that local_iterator will be default constructible.
274 // When hash codes are cached local iterator inherits from H2 functor
275 // which must then be default constructible.
276 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
277 "Functor used to map hash code to bucket index"
278 " must be default constructible");
280 template<typename _Keya, typename _Valuea, typename _Alloca,
281 typename _ExtractKeya, typename _Equala,
282 typename _H1a, typename _H2a, typename _Hasha,
283 typename _RehashPolicya, typename _Traitsa,
284 bool _Unique_keysa>
285 friend struct __detail::_Map_base;
287 template<typename _Keya, typename _Valuea, typename _Alloca,
288 typename _ExtractKeya, typename _Equala,
289 typename _H1a, typename _H2a, typename _Hasha,
290 typename _RehashPolicya, typename _Traitsa>
291 friend struct __detail::_Insert_base;
293 template<typename _Keya, typename _Valuea, typename _Alloca,
294 typename _ExtractKeya, typename _Equala,
295 typename _H1a, typename _H2a, typename _Hasha,
296 typename _RehashPolicya, typename _Traitsa,
297 bool _Constant_iteratorsa, bool _Unique_keysa>
298 friend struct __detail::_Insert;
300 public:
301 using size_type = typename __hashtable_base::size_type;
302 using difference_type = typename __hashtable_base::difference_type;
304 using iterator = typename __hashtable_base::iterator;
305 using const_iterator = typename __hashtable_base::const_iterator;
307 using local_iterator = typename __hashtable_base::local_iterator;
308 using const_local_iterator = typename __hashtable_base::
309 const_local_iterator;
311 private:
312 __bucket_type* _M_buckets = &_M_single_bucket;
313 size_type _M_bucket_count = 1;
314 __node_base _M_before_begin;
315 size_type _M_element_count = 0;
316 _RehashPolicy _M_rehash_policy;
318 // A single bucket used when only need for 1 bucket. Especially
319 // interesting in move semantic to leave hashtable with only 1 buckets
320 // which is not allocated so that we can have those operations noexcept
321 // qualified.
322 // Note that we can't leave hashtable with 0 bucket without adding
323 // numerous checks in the code to avoid 0 modulus.
324 __bucket_type _M_single_bucket = nullptr;
326 bool
327 _M_uses_single_bucket(__bucket_type* __bkts) const
328 { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330 bool
331 _M_uses_single_bucket() const
332 { return _M_uses_single_bucket(_M_buckets); }
334 __hashtable_alloc&
335 _M_base_alloc() { return *this; }
337 __bucket_type*
338 _M_allocate_buckets(size_type __n)
340 if (__builtin_expect(__n == 1, false))
342 _M_single_bucket = nullptr;
343 return &_M_single_bucket;
346 return __hashtable_alloc::_M_allocate_buckets(__n);
349 void
350 _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352 if (_M_uses_single_bucket(__bkts))
353 return;
355 __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
358 void
359 _M_deallocate_buckets()
360 { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362 // Gets bucket begin, deals with the fact that non-empty buckets contain
363 // their before begin node.
364 __node_type*
365 _M_bucket_begin(size_type __bkt) const;
367 __node_type*
368 _M_begin() const
369 { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371 template<typename _NodeGenerator>
372 void
373 _M_assign(const _Hashtable&, const _NodeGenerator&);
375 void
376 _M_move_assign(_Hashtable&&, std::true_type);
378 void
379 _M_move_assign(_Hashtable&&, std::false_type);
381 void
382 _M_reset() noexcept;
384 _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
385 const _Equal& __eq, const _ExtractKey& __exk,
386 const allocator_type& __a)
387 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
388 __hashtable_alloc(__node_alloc_type(__a))
391 public:
392 // Constructor, destructor, assignment, swap
393 _Hashtable() = default;
394 _Hashtable(size_type __bucket_hint,
395 const _H1&, const _H2&, const _Hash&,
396 const _Equal&, const _ExtractKey&,
397 const allocator_type&);
399 template<typename _InputIterator>
400 _Hashtable(_InputIterator __first, _InputIterator __last,
401 size_type __bucket_hint,
402 const _H1&, const _H2&, const _Hash&,
403 const _Equal&, const _ExtractKey&,
404 const allocator_type&);
406 _Hashtable(const _Hashtable&);
408 _Hashtable(_Hashtable&&) noexcept;
410 _Hashtable(const _Hashtable&, const allocator_type&);
412 _Hashtable(_Hashtable&&, const allocator_type&);
414 // Use delegating constructors.
415 explicit
416 _Hashtable(const allocator_type& __a)
417 : __hashtable_alloc(__node_alloc_type(__a))
420 explicit
421 _Hashtable(size_type __n,
422 const _H1& __hf = _H1(),
423 const key_equal& __eql = key_equal(),
424 const allocator_type& __a = allocator_type())
425 : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
426 __key_extract(), __a)
429 template<typename _InputIterator>
430 _Hashtable(_InputIterator __f, _InputIterator __l,
431 size_type __n = 0,
432 const _H1& __hf = _H1(),
433 const key_equal& __eql = key_equal(),
434 const allocator_type& __a = allocator_type())
435 : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
436 __key_extract(), __a)
439 _Hashtable(initializer_list<value_type> __l,
440 size_type __n = 0,
441 const _H1& __hf = _H1(),
442 const key_equal& __eql = key_equal(),
443 const allocator_type& __a = allocator_type())
444 : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
445 __key_extract(), __a)
448 _Hashtable&
449 operator=(const _Hashtable& __ht);
451 _Hashtable&
452 operator=(_Hashtable&& __ht)
453 noexcept(__node_alloc_traits::_S_nothrow_move()
454 && is_nothrow_move_assignable<_H1>::value
455 && is_nothrow_move_assignable<_Equal>::value)
457 constexpr bool __move_storage =
458 __node_alloc_traits::_S_propagate_on_move_assign()
459 || __node_alloc_traits::_S_always_equal();
460 _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
461 return *this;
464 _Hashtable&
465 operator=(initializer_list<value_type> __l)
467 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 _M_before_begin._M_nxt = nullptr;
469 clear();
470 this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 return *this;
474 ~_Hashtable() noexcept;
476 void
477 swap(_Hashtable&)
478 noexcept(__node_alloc_traits::_S_nothrow_swap()
479 && __is_nothrow_swappable<_H1>::value
480 && __is_nothrow_swappable<_Equal>::value);
482 // Basic container operations
483 iterator
484 begin() noexcept
485 { return iterator(_M_begin()); }
487 const_iterator
488 begin() const noexcept
489 { return const_iterator(_M_begin()); }
491 iterator
492 end() noexcept
493 { return iterator(nullptr); }
495 const_iterator
496 end() const noexcept
497 { return const_iterator(nullptr); }
499 const_iterator
500 cbegin() const noexcept
501 { return const_iterator(_M_begin()); }
503 const_iterator
504 cend() const noexcept
505 { return const_iterator(nullptr); }
507 size_type
508 size() const noexcept
509 { return _M_element_count; }
511 bool
512 empty() const noexcept
513 { return size() == 0; }
515 allocator_type
516 get_allocator() const noexcept
517 { return allocator_type(this->_M_node_allocator()); }
519 size_type
520 max_size() const noexcept
521 { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
523 // Observers
524 key_equal
525 key_eq() const
526 { return this->_M_eq(); }
528 // hash_function, if present, comes from _Hash_code_base.
530 // Bucket operations
531 size_type
532 bucket_count() const noexcept
533 { return _M_bucket_count; }
535 size_type
536 max_bucket_count() const noexcept
537 { return max_size(); }
539 size_type
540 bucket_size(size_type __n) const
541 { return std::distance(begin(__n), end(__n)); }
543 size_type
544 bucket(const key_type& __k) const
545 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
547 local_iterator
548 begin(size_type __n)
550 return local_iterator(*this, _M_bucket_begin(__n),
551 __n, _M_bucket_count);
554 local_iterator
555 end(size_type __n)
556 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
558 const_local_iterator
559 begin(size_type __n) const
561 return const_local_iterator(*this, _M_bucket_begin(__n),
562 __n, _M_bucket_count);
565 const_local_iterator
566 end(size_type __n) const
567 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
569 // DR 691.
570 const_local_iterator
571 cbegin(size_type __n) const
573 return const_local_iterator(*this, _M_bucket_begin(__n),
574 __n, _M_bucket_count);
577 const_local_iterator
578 cend(size_type __n) const
579 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
581 float
582 load_factor() const noexcept
584 return static_cast<float>(size()) / static_cast<float>(bucket_count());
587 // max_load_factor, if present, comes from _Rehash_base.
589 // Generalization of max_load_factor. Extension, not found in
590 // TR1. Only useful if _RehashPolicy is something other than
591 // the default.
592 const _RehashPolicy&
593 __rehash_policy() const
594 { return _M_rehash_policy; }
596 void
597 __rehash_policy(const _RehashPolicy& __pol)
598 { _M_rehash_policy = __pol; }
600 // Lookup.
601 iterator
602 find(const key_type& __k);
604 const_iterator
605 find(const key_type& __k) const;
607 size_type
608 count(const key_type& __k) const;
610 std::pair<iterator, iterator>
611 equal_range(const key_type& __k);
613 std::pair<const_iterator, const_iterator>
614 equal_range(const key_type& __k) const;
616 protected:
617 // Bucket index computation helpers.
618 size_type
619 _M_bucket_index(__node_type* __n) const noexcept
620 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
622 size_type
623 _M_bucket_index(const key_type& __k, __hash_code __c) const
624 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
626 // Find and insert helper functions and types
627 // Find the node before the one matching the criteria.
628 __node_base*
629 _M_find_before_node(size_type, const key_type&, __hash_code) const;
631 __node_type*
632 _M_find_node(size_type __bkt, const key_type& __key,
633 __hash_code __c) const
635 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
636 if (__before_n)
637 return static_cast<__node_type*>(__before_n->_M_nxt);
638 return nullptr;
641 // Insert a node at the beginning of a bucket.
642 void
643 _M_insert_bucket_begin(size_type, __node_type*);
645 // Remove the bucket first node
646 void
647 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
648 size_type __next_bkt);
650 // Get the node before __n in the bucket __bkt
651 __node_base*
652 _M_get_previous_node(size_type __bkt, __node_base* __n);
654 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
655 // no element with its key already present). Take ownership of the node,
656 // deallocate it on exception.
657 iterator
658 _M_insert_unique_node(size_type __bkt, __hash_code __code,
659 __node_type* __n);
661 // Insert node with hash code __code. Take ownership of the node,
662 // deallocate it on exception.
663 iterator
664 _M_insert_multi_node(__node_type* __hint,
665 __hash_code __code, __node_type* __n);
667 template<typename... _Args>
668 std::pair<iterator, bool>
669 _M_emplace(std::true_type, _Args&&... __args);
671 template<typename... _Args>
672 iterator
673 _M_emplace(std::false_type __uk, _Args&&... __args)
674 { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
676 // Emplace with hint, useless when keys are unique.
677 template<typename... _Args>
678 iterator
679 _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
680 { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
682 template<typename... _Args>
683 iterator
684 _M_emplace(const_iterator, std::false_type, _Args&&... __args);
686 template<typename _Arg, typename _NodeGenerator>
687 std::pair<iterator, bool>
688 _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
690 template<typename _Arg, typename _NodeGenerator>
691 iterator
692 _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
693 std::false_type __uk)
695 return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
696 __uk);
699 // Insert with hint, not used when keys are unique.
700 template<typename _Arg, typename _NodeGenerator>
701 iterator
702 _M_insert(const_iterator, _Arg&& __arg,
703 const _NodeGenerator& __node_gen, std::true_type __uk)
705 return
706 _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
709 // Insert with hint when keys are not unique.
710 template<typename _Arg, typename _NodeGenerator>
711 iterator
712 _M_insert(const_iterator, _Arg&&,
713 const _NodeGenerator&, std::false_type);
715 size_type
716 _M_erase(std::true_type, const key_type&);
718 size_type
719 _M_erase(std::false_type, const key_type&);
721 iterator
722 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
724 public:
725 // Emplace
726 template<typename... _Args>
727 __ireturn_type
728 emplace(_Args&&... __args)
729 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
731 template<typename... _Args>
732 iterator
733 emplace_hint(const_iterator __hint, _Args&&... __args)
735 return _M_emplace(__hint, __unique_keys(),
736 std::forward<_Args>(__args)...);
739 // Insert member functions via inheritance.
741 // Erase
742 iterator
743 erase(const_iterator);
745 // LWG 2059.
746 iterator
747 erase(iterator __it)
748 { return erase(const_iterator(__it)); }
750 size_type
751 erase(const key_type& __k)
752 { return _M_erase(__unique_keys(), __k); }
754 iterator
755 erase(const_iterator, const_iterator);
757 void
758 clear() noexcept;
760 // Set number of buckets to be appropriate for container of n element.
761 void rehash(size_type __n);
763 // DR 1189.
764 // reserve, if present, comes from _Rehash_base.
766 private:
767 // Helper rehash method used when keys are unique.
768 void _M_rehash_aux(size_type __n, std::true_type);
770 // Helper rehash method used when keys can be non-unique.
771 void _M_rehash_aux(size_type __n, std::false_type);
773 // Unconditionally change size of bucket array to n, restore
774 // hash policy state to __state on exception.
775 void _M_rehash(size_type __n, const __rehash_state& __state);
779 // Definitions of class template _Hashtable's out-of-line member functions.
780 template<typename _Key, typename _Value,
781 typename _Alloc, typename _ExtractKey, typename _Equal,
782 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
783 typename _Traits>
784 auto
785 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
786 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
787 _M_bucket_begin(size_type __bkt) const
788 -> __node_type*
790 __node_base* __n = _M_buckets[__bkt];
791 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
794 template<typename _Key, typename _Value,
795 typename _Alloc, typename _ExtractKey, typename _Equal,
796 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
797 typename _Traits>
798 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
799 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
800 _Hashtable(size_type __bucket_hint,
801 const _H1& __h1, const _H2& __h2, const _Hash& __h,
802 const _Equal& __eq, const _ExtractKey& __exk,
803 const allocator_type& __a)
804 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
806 auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
807 if (__bkt > _M_bucket_count)
809 _M_buckets = _M_allocate_buckets(__bkt);
810 _M_bucket_count = __bkt;
814 template<typename _Key, typename _Value,
815 typename _Alloc, typename _ExtractKey, typename _Equal,
816 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
817 typename _Traits>
818 template<typename _InputIterator>
819 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
820 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
821 _Hashtable(_InputIterator __f, _InputIterator __l,
822 size_type __bucket_hint,
823 const _H1& __h1, const _H2& __h2, const _Hash& __h,
824 const _Equal& __eq, const _ExtractKey& __exk,
825 const allocator_type& __a)
826 : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
828 auto __nb_elems = __detail::__distance_fw(__f, __l);
829 auto __bkt_count =
830 _M_rehash_policy._M_next_bkt(
831 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
832 __bucket_hint));
834 if (__bkt_count > _M_bucket_count)
836 _M_buckets = _M_allocate_buckets(__bkt_count);
837 _M_bucket_count = __bkt_count;
840 __try
842 for (; __f != __l; ++__f)
843 this->insert(*__f);
845 __catch(...)
847 clear();
848 _M_deallocate_buckets();
849 __throw_exception_again;
853 template<typename _Key, typename _Value,
854 typename _Alloc, typename _ExtractKey, typename _Equal,
855 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
856 typename _Traits>
857 auto
858 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
859 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
860 operator=(const _Hashtable& __ht)
861 -> _Hashtable&
863 if (&__ht == this)
864 return *this;
866 if (__node_alloc_traits::_S_propagate_on_copy_assign())
868 auto& __this_alloc = this->_M_node_allocator();
869 auto& __that_alloc = __ht._M_node_allocator();
870 if (!__node_alloc_traits::_S_always_equal()
871 && __this_alloc != __that_alloc)
873 // Replacement allocator cannot free existing storage.
874 this->_M_deallocate_nodes(_M_begin());
875 _M_before_begin._M_nxt = nullptr;
876 _M_deallocate_buckets();
877 _M_buckets = nullptr;
878 std::__alloc_on_copy(__this_alloc, __that_alloc);
879 __hashtable_base::operator=(__ht);
880 _M_bucket_count = __ht._M_bucket_count;
881 _M_element_count = __ht._M_element_count;
882 _M_rehash_policy = __ht._M_rehash_policy;
883 __try
885 _M_assign(__ht,
886 [this](const __node_type* __n)
887 { return this->_M_allocate_node(__n->_M_v()); });
889 __catch(...)
891 // _M_assign took care of deallocating all memory. Now we
892 // must make sure this instance remains in a usable state.
893 _M_reset();
894 __throw_exception_again;
896 return *this;
898 std::__alloc_on_copy(__this_alloc, __that_alloc);
901 // Reuse allocated buckets and nodes.
902 __bucket_type* __former_buckets = nullptr;
903 std::size_t __former_bucket_count = _M_bucket_count;
904 const __rehash_state& __former_state = _M_rehash_policy._M_state();
906 if (_M_bucket_count != __ht._M_bucket_count)
908 __former_buckets = _M_buckets;
909 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
910 _M_bucket_count = __ht._M_bucket_count;
912 else
913 __builtin_memset(_M_buckets, 0,
914 _M_bucket_count * sizeof(__bucket_type));
916 __try
918 __hashtable_base::operator=(__ht);
919 _M_element_count = __ht._M_element_count;
920 _M_rehash_policy = __ht._M_rehash_policy;
921 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
922 _M_before_begin._M_nxt = nullptr;
923 _M_assign(__ht,
924 [&__roan](const __node_type* __n)
925 { return __roan(__n->_M_v()); });
926 if (__former_buckets)
927 _M_deallocate_buckets(__former_buckets, __former_bucket_count);
929 __catch(...)
931 if (__former_buckets)
933 // Restore previous buckets.
934 _M_deallocate_buckets();
935 _M_rehash_policy._M_reset(__former_state);
936 _M_buckets = __former_buckets;
937 _M_bucket_count = __former_bucket_count;
939 __builtin_memset(_M_buckets, 0,
940 _M_bucket_count * sizeof(__bucket_type));
941 __throw_exception_again;
943 return *this;
946 template<typename _Key, typename _Value,
947 typename _Alloc, typename _ExtractKey, typename _Equal,
948 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
949 typename _Traits>
950 template<typename _NodeGenerator>
951 void
952 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
953 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
954 _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
956 __bucket_type* __buckets = nullptr;
957 if (!_M_buckets)
958 _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
960 __try
962 if (!__ht._M_before_begin._M_nxt)
963 return;
965 // First deal with the special first node pointed to by
966 // _M_before_begin.
967 __node_type* __ht_n = __ht._M_begin();
968 __node_type* __this_n = __node_gen(__ht_n);
969 this->_M_copy_code(__this_n, __ht_n);
970 _M_before_begin._M_nxt = __this_n;
971 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
973 // Then deal with other nodes.
974 __node_base* __prev_n = __this_n;
975 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
977 __this_n = __node_gen(__ht_n);
978 __prev_n->_M_nxt = __this_n;
979 this->_M_copy_code(__this_n, __ht_n);
980 size_type __bkt = _M_bucket_index(__this_n);
981 if (!_M_buckets[__bkt])
982 _M_buckets[__bkt] = __prev_n;
983 __prev_n = __this_n;
986 __catch(...)
988 clear();
989 if (__buckets)
990 _M_deallocate_buckets();
991 __throw_exception_again;
995 template<typename _Key, typename _Value,
996 typename _Alloc, typename _ExtractKey, typename _Equal,
997 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
998 typename _Traits>
999 void
1000 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1001 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1002 _M_reset() noexcept
1004 _M_rehash_policy._M_reset();
1005 _M_bucket_count = 1;
1006 _M_single_bucket = nullptr;
1007 _M_buckets = &_M_single_bucket;
1008 _M_before_begin._M_nxt = nullptr;
1009 _M_element_count = 0;
1012 template<typename _Key, typename _Value,
1013 typename _Alloc, typename _ExtractKey, typename _Equal,
1014 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1015 typename _Traits>
1016 void
1017 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1018 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1019 _M_move_assign(_Hashtable&& __ht, std::true_type)
1021 this->_M_deallocate_nodes(_M_begin());
1022 _M_deallocate_buckets();
1023 __hashtable_base::operator=(std::move(__ht));
1024 _M_rehash_policy = __ht._M_rehash_policy;
1025 if (!__ht._M_uses_single_bucket())
1026 _M_buckets = __ht._M_buckets;
1027 else
1029 _M_buckets = &_M_single_bucket;
1030 _M_single_bucket = __ht._M_single_bucket;
1032 _M_bucket_count = __ht._M_bucket_count;
1033 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1034 _M_element_count = __ht._M_element_count;
1035 std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1037 // Fix buckets containing the _M_before_begin pointers that can't be
1038 // moved.
1039 if (_M_begin())
1040 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1041 __ht._M_reset();
1044 template<typename _Key, typename _Value,
1045 typename _Alloc, typename _ExtractKey, typename _Equal,
1046 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1047 typename _Traits>
1048 void
1049 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1050 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1051 _M_move_assign(_Hashtable&& __ht, std::false_type)
1053 if (__ht._M_node_allocator() == this->_M_node_allocator())
1054 _M_move_assign(std::move(__ht), std::true_type());
1055 else
1057 // Can't move memory, move elements then.
1058 __bucket_type* __former_buckets = nullptr;
1059 size_type __former_bucket_count = _M_bucket_count;
1060 const __rehash_state& __former_state = _M_rehash_policy._M_state();
1062 if (_M_bucket_count != __ht._M_bucket_count)
1064 __former_buckets = _M_buckets;
1065 _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1066 _M_bucket_count = __ht._M_bucket_count;
1068 else
1069 __builtin_memset(_M_buckets, 0,
1070 _M_bucket_count * sizeof(__bucket_type));
1072 __try
1074 __hashtable_base::operator=(std::move(__ht));
1075 _M_element_count = __ht._M_element_count;
1076 _M_rehash_policy = __ht._M_rehash_policy;
1077 __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1078 _M_before_begin._M_nxt = nullptr;
1079 _M_assign(__ht,
1080 [&__roan](__node_type* __n)
1081 { return __roan(std::move_if_noexcept(__n->_M_v())); });
1082 __ht.clear();
1084 __catch(...)
1086 if (__former_buckets)
1088 _M_deallocate_buckets();
1089 _M_rehash_policy._M_reset(__former_state);
1090 _M_buckets = __former_buckets;
1091 _M_bucket_count = __former_bucket_count;
1093 __builtin_memset(_M_buckets, 0,
1094 _M_bucket_count * sizeof(__bucket_type));
1095 __throw_exception_again;
1100 template<typename _Key, typename _Value,
1101 typename _Alloc, typename _ExtractKey, typename _Equal,
1102 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1103 typename _Traits>
1104 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1105 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1106 _Hashtable(const _Hashtable& __ht)
1107 : __hashtable_base(__ht),
1108 __map_base(__ht),
1109 __rehash_base(__ht),
1110 __hashtable_alloc(
1111 __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1112 _M_buckets(nullptr),
1113 _M_bucket_count(__ht._M_bucket_count),
1114 _M_element_count(__ht._M_element_count),
1115 _M_rehash_policy(__ht._M_rehash_policy)
1117 _M_assign(__ht,
1118 [this](const __node_type* __n)
1119 { return this->_M_allocate_node(__n->_M_v()); });
1122 template<typename _Key, typename _Value,
1123 typename _Alloc, typename _ExtractKey, typename _Equal,
1124 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1125 typename _Traits>
1126 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1127 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1128 _Hashtable(_Hashtable&& __ht) noexcept
1129 : __hashtable_base(__ht),
1130 __map_base(__ht),
1131 __rehash_base(__ht),
1132 __hashtable_alloc(std::move(__ht._M_base_alloc())),
1133 _M_buckets(__ht._M_buckets),
1134 _M_bucket_count(__ht._M_bucket_count),
1135 _M_before_begin(__ht._M_before_begin._M_nxt),
1136 _M_element_count(__ht._M_element_count),
1137 _M_rehash_policy(__ht._M_rehash_policy)
1139 // Update, if necessary, buckets if __ht is using its single bucket.
1140 if (__ht._M_uses_single_bucket())
1142 _M_buckets = &_M_single_bucket;
1143 _M_single_bucket = __ht._M_single_bucket;
1146 // Update, if necessary, bucket pointing to before begin that hasn't
1147 // moved.
1148 if (_M_begin())
1149 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1151 __ht._M_reset();
1154 template<typename _Key, typename _Value,
1155 typename _Alloc, typename _ExtractKey, typename _Equal,
1156 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1157 typename _Traits>
1158 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1159 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1160 _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1161 : __hashtable_base(__ht),
1162 __map_base(__ht),
1163 __rehash_base(__ht),
1164 __hashtable_alloc(__node_alloc_type(__a)),
1165 _M_buckets(),
1166 _M_bucket_count(__ht._M_bucket_count),
1167 _M_element_count(__ht._M_element_count),
1168 _M_rehash_policy(__ht._M_rehash_policy)
1170 _M_assign(__ht,
1171 [this](const __node_type* __n)
1172 { return this->_M_allocate_node(__n->_M_v()); });
1175 template<typename _Key, typename _Value,
1176 typename _Alloc, typename _ExtractKey, typename _Equal,
1177 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1178 typename _Traits>
1179 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1180 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1181 _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1182 : __hashtable_base(__ht),
1183 __map_base(__ht),
1184 __rehash_base(__ht),
1185 __hashtable_alloc(__node_alloc_type(__a)),
1186 _M_buckets(nullptr),
1187 _M_bucket_count(__ht._M_bucket_count),
1188 _M_element_count(__ht._M_element_count),
1189 _M_rehash_policy(__ht._M_rehash_policy)
1191 if (__ht._M_node_allocator() == this->_M_node_allocator())
1193 if (__ht._M_uses_single_bucket())
1195 _M_buckets = &_M_single_bucket;
1196 _M_single_bucket = __ht._M_single_bucket;
1198 else
1199 _M_buckets = __ht._M_buckets;
1201 _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1202 // Update, if necessary, bucket pointing to before begin that hasn't
1203 // moved.
1204 if (_M_begin())
1205 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1206 __ht._M_reset();
1208 else
1210 _M_assign(__ht,
1211 [this](__node_type* __n)
1213 return this->_M_allocate_node(
1214 std::move_if_noexcept(__n->_M_v()));
1216 __ht.clear();
1220 template<typename _Key, typename _Value,
1221 typename _Alloc, typename _ExtractKey, typename _Equal,
1222 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1223 typename _Traits>
1224 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1225 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1226 ~_Hashtable() noexcept
1228 clear();
1229 _M_deallocate_buckets();
1232 template<typename _Key, typename _Value,
1233 typename _Alloc, typename _ExtractKey, typename _Equal,
1234 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1235 typename _Traits>
1236 void
1237 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1238 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1239 swap(_Hashtable& __x)
1240 noexcept(__node_alloc_traits::_S_nothrow_swap()
1241 && __is_nothrow_swappable<_H1>::value
1242 && __is_nothrow_swappable<_Equal>::value)
1244 // The only base class with member variables is hash_code_base.
1245 // We define _Hash_code_base::_M_swap because different
1246 // specializations have different members.
1247 this->_M_swap(__x);
1249 std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1250 std::swap(_M_rehash_policy, __x._M_rehash_policy);
1252 // Deal properly with potentially moved instances.
1253 if (this->_M_uses_single_bucket())
1255 if (!__x._M_uses_single_bucket())
1257 _M_buckets = __x._M_buckets;
1258 __x._M_buckets = &__x._M_single_bucket;
1261 else if (__x._M_uses_single_bucket())
1263 __x._M_buckets = _M_buckets;
1264 _M_buckets = &_M_single_bucket;
1266 else
1267 std::swap(_M_buckets, __x._M_buckets);
1269 std::swap(_M_bucket_count, __x._M_bucket_count);
1270 std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1271 std::swap(_M_element_count, __x._M_element_count);
1272 std::swap(_M_single_bucket, __x._M_single_bucket);
1274 // Fix buckets containing the _M_before_begin pointers that can't be
1275 // swapped.
1276 if (_M_begin())
1277 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1279 if (__x._M_begin())
1280 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1281 = &__x._M_before_begin;
1284 template<typename _Key, typename _Value,
1285 typename _Alloc, typename _ExtractKey, typename _Equal,
1286 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1287 typename _Traits>
1288 auto
1289 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1290 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1291 find(const key_type& __k)
1292 -> iterator
1294 __hash_code __code = this->_M_hash_code(__k);
1295 std::size_t __n = _M_bucket_index(__k, __code);
1296 __node_type* __p = _M_find_node(__n, __k, __code);
1297 return __p ? iterator(__p) : end();
1300 template<typename _Key, typename _Value,
1301 typename _Alloc, typename _ExtractKey, typename _Equal,
1302 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1303 typename _Traits>
1304 auto
1305 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1306 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1307 find(const key_type& __k) const
1308 -> const_iterator
1310 __hash_code __code = this->_M_hash_code(__k);
1311 std::size_t __n = _M_bucket_index(__k, __code);
1312 __node_type* __p = _M_find_node(__n, __k, __code);
1313 return __p ? const_iterator(__p) : end();
1316 template<typename _Key, typename _Value,
1317 typename _Alloc, typename _ExtractKey, typename _Equal,
1318 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1319 typename _Traits>
1320 auto
1321 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1322 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1323 count(const key_type& __k) const
1324 -> size_type
1326 __hash_code __code = this->_M_hash_code(__k);
1327 std::size_t __n = _M_bucket_index(__k, __code);
1328 __node_type* __p = _M_bucket_begin(__n);
1329 if (!__p)
1330 return 0;
1332 std::size_t __result = 0;
1333 for (;; __p = __p->_M_next())
1335 if (this->_M_equals(__k, __code, __p))
1336 ++__result;
1337 else if (__result)
1338 // All equivalent values are next to each other, if we
1339 // found a non-equivalent value after an equivalent one it
1340 // means that we won't find any new equivalent value.
1341 break;
1342 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1343 break;
1345 return __result;
1348 template<typename _Key, typename _Value,
1349 typename _Alloc, typename _ExtractKey, typename _Equal,
1350 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1351 typename _Traits>
1352 auto
1353 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1354 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1355 equal_range(const key_type& __k)
1356 -> pair<iterator, iterator>
1358 __hash_code __code = this->_M_hash_code(__k);
1359 std::size_t __n = _M_bucket_index(__k, __code);
1360 __node_type* __p = _M_find_node(__n, __k, __code);
1362 if (__p)
1364 __node_type* __p1 = __p->_M_next();
1365 while (__p1 && _M_bucket_index(__p1) == __n
1366 && this->_M_equals(__k, __code, __p1))
1367 __p1 = __p1->_M_next();
1369 return std::make_pair(iterator(__p), iterator(__p1));
1371 else
1372 return std::make_pair(end(), end());
1375 template<typename _Key, typename _Value,
1376 typename _Alloc, typename _ExtractKey, typename _Equal,
1377 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1378 typename _Traits>
1379 auto
1380 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1381 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1382 equal_range(const key_type& __k) const
1383 -> pair<const_iterator, const_iterator>
1385 __hash_code __code = this->_M_hash_code(__k);
1386 std::size_t __n = _M_bucket_index(__k, __code);
1387 __node_type* __p = _M_find_node(__n, __k, __code);
1389 if (__p)
1391 __node_type* __p1 = __p->_M_next();
1392 while (__p1 && _M_bucket_index(__p1) == __n
1393 && this->_M_equals(__k, __code, __p1))
1394 __p1 = __p1->_M_next();
1396 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1398 else
1399 return std::make_pair(end(), end());
1402 // Find the node whose key compares equal to k in the bucket n.
1403 // Return nullptr if no node is found.
1404 template<typename _Key, typename _Value,
1405 typename _Alloc, typename _ExtractKey, typename _Equal,
1406 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1407 typename _Traits>
1408 auto
1409 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1410 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1411 _M_find_before_node(size_type __n, const key_type& __k,
1412 __hash_code __code) const
1413 -> __node_base*
1415 __node_base* __prev_p = _M_buckets[__n];
1416 if (!__prev_p)
1417 return nullptr;
1419 for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1420 __p = __p->_M_next())
1422 if (this->_M_equals(__k, __code, __p))
1423 return __prev_p;
1425 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1426 break;
1427 __prev_p = __p;
1429 return nullptr;
1432 template<typename _Key, typename _Value,
1433 typename _Alloc, typename _ExtractKey, typename _Equal,
1434 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1435 typename _Traits>
1436 void
1437 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1438 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1439 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1441 if (_M_buckets[__bkt])
1443 // Bucket is not empty, we just need to insert the new node
1444 // after the bucket before begin.
1445 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1446 _M_buckets[__bkt]->_M_nxt = __node;
1448 else
1450 // The bucket is empty, the new node is inserted at the
1451 // beginning of the singly-linked list and the bucket will
1452 // contain _M_before_begin pointer.
1453 __node->_M_nxt = _M_before_begin._M_nxt;
1454 _M_before_begin._M_nxt = __node;
1455 if (__node->_M_nxt)
1456 // We must update former begin bucket that is pointing to
1457 // _M_before_begin.
1458 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1459 _M_buckets[__bkt] = &_M_before_begin;
1463 template<typename _Key, typename _Value,
1464 typename _Alloc, typename _ExtractKey, typename _Equal,
1465 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1466 typename _Traits>
1467 void
1468 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1469 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1470 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1471 size_type __next_bkt)
1473 if (!__next || __next_bkt != __bkt)
1475 // Bucket is now empty
1476 // First update next bucket if any
1477 if (__next)
1478 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1480 // Second update before begin node if necessary
1481 if (&_M_before_begin == _M_buckets[__bkt])
1482 _M_before_begin._M_nxt = __next;
1483 _M_buckets[__bkt] = nullptr;
1487 template<typename _Key, typename _Value,
1488 typename _Alloc, typename _ExtractKey, typename _Equal,
1489 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1490 typename _Traits>
1491 auto
1492 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1493 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1494 _M_get_previous_node(size_type __bkt, __node_base* __n)
1495 -> __node_base*
1497 __node_base* __prev_n = _M_buckets[__bkt];
1498 while (__prev_n->_M_nxt != __n)
1499 __prev_n = __prev_n->_M_nxt;
1500 return __prev_n;
1503 template<typename _Key, typename _Value,
1504 typename _Alloc, typename _ExtractKey, typename _Equal,
1505 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1506 typename _Traits>
1507 template<typename... _Args>
1508 auto
1509 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511 _M_emplace(std::true_type, _Args&&... __args)
1512 -> pair<iterator, bool>
1514 // First build the node to get access to the hash code
1515 __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1516 const key_type& __k = this->_M_extract()(__node->_M_v());
1517 __hash_code __code;
1518 __try
1520 __code = this->_M_hash_code(__k);
1522 __catch(...)
1524 this->_M_deallocate_node(__node);
1525 __throw_exception_again;
1528 size_type __bkt = _M_bucket_index(__k, __code);
1529 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1531 // There is already an equivalent node, no insertion
1532 this->_M_deallocate_node(__node);
1533 return std::make_pair(iterator(__p), false);
1536 // Insert the node
1537 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1538 true);
1541 template<typename _Key, typename _Value,
1542 typename _Alloc, typename _ExtractKey, typename _Equal,
1543 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1544 typename _Traits>
1545 template<typename... _Args>
1546 auto
1547 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1548 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1549 _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1550 -> iterator
1552 // First build the node to get its hash code.
1553 __node_type* __node =
1554 this->_M_allocate_node(std::forward<_Args>(__args)...);
1556 __hash_code __code;
1557 __try
1559 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1561 __catch(...)
1563 this->_M_deallocate_node(__node);
1564 __throw_exception_again;
1567 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1570 template<typename _Key, typename _Value,
1571 typename _Alloc, typename _ExtractKey, typename _Equal,
1572 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1573 typename _Traits>
1574 auto
1575 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1576 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1577 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1578 __node_type* __node)
1579 -> iterator
1581 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1582 std::pair<bool, std::size_t> __do_rehash
1583 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1585 __try
1587 if (__do_rehash.first)
1589 _M_rehash(__do_rehash.second, __saved_state);
1590 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1593 this->_M_store_code(__node, __code);
1595 // Always insert at the beginning of the bucket.
1596 _M_insert_bucket_begin(__bkt, __node);
1597 ++_M_element_count;
1598 return iterator(__node);
1600 __catch(...)
1602 this->_M_deallocate_node(__node);
1603 __throw_exception_again;
1607 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1608 // already present). Take ownership of the node, deallocate it on exception.
1609 template<typename _Key, typename _Value,
1610 typename _Alloc, typename _ExtractKey, typename _Equal,
1611 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1612 typename _Traits>
1613 auto
1614 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1615 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1616 _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1617 __node_type* __node)
1618 -> iterator
1620 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1621 std::pair<bool, std::size_t> __do_rehash
1622 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1624 __try
1626 if (__do_rehash.first)
1627 _M_rehash(__do_rehash.second, __saved_state);
1629 this->_M_store_code(__node, __code);
1630 const key_type& __k = this->_M_extract()(__node->_M_v());
1631 size_type __bkt = _M_bucket_index(__k, __code);
1633 // Find the node before an equivalent one or use hint if it exists and
1634 // if it is equivalent.
1635 __node_base* __prev
1636 = __builtin_expect(__hint != nullptr, false)
1637 && this->_M_equals(__k, __code, __hint)
1638 ? __hint
1639 : _M_find_before_node(__bkt, __k, __code);
1640 if (__prev)
1642 // Insert after the node before the equivalent one.
1643 __node->_M_nxt = __prev->_M_nxt;
1644 __prev->_M_nxt = __node;
1645 if (__builtin_expect(__prev == __hint, false))
1646 // hint might be the last bucket node, in this case we need to
1647 // update next bucket.
1648 if (__node->_M_nxt
1649 && !this->_M_equals(__k, __code, __node->_M_next()))
1651 size_type __next_bkt = _M_bucket_index(__node->_M_next());
1652 if (__next_bkt != __bkt)
1653 _M_buckets[__next_bkt] = __node;
1656 else
1657 // The inserted node has no equivalent in the
1658 // hashtable. We must insert the new node at the
1659 // beginning of the bucket to preserve equivalent
1660 // elements' relative positions.
1661 _M_insert_bucket_begin(__bkt, __node);
1662 ++_M_element_count;
1663 return iterator(__node);
1665 __catch(...)
1667 this->_M_deallocate_node(__node);
1668 __throw_exception_again;
1672 // Insert v if no element with its key is already present.
1673 template<typename _Key, typename _Value,
1674 typename _Alloc, typename _ExtractKey, typename _Equal,
1675 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1676 typename _Traits>
1677 template<typename _Arg, typename _NodeGenerator>
1678 auto
1679 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1680 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1681 _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1682 -> pair<iterator, bool>
1684 const key_type& __k = this->_M_extract()(__v);
1685 __hash_code __code = this->_M_hash_code(__k);
1686 size_type __bkt = _M_bucket_index(__k, __code);
1688 __node_type* __n = _M_find_node(__bkt, __k, __code);
1689 if (__n)
1690 return std::make_pair(iterator(__n), false);
1692 __n = __node_gen(std::forward<_Arg>(__v));
1693 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1696 // Insert v unconditionally.
1697 template<typename _Key, typename _Value,
1698 typename _Alloc, typename _ExtractKey, typename _Equal,
1699 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1700 typename _Traits>
1701 template<typename _Arg, typename _NodeGenerator>
1702 auto
1703 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1704 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1705 _M_insert(const_iterator __hint, _Arg&& __v,
1706 const _NodeGenerator& __node_gen, std::false_type)
1707 -> iterator
1709 // First compute the hash code so that we don't do anything if it
1710 // throws.
1711 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1713 // Second allocate new node so that we don't rehash if it throws.
1714 __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1716 return _M_insert_multi_node(__hint._M_cur, __code, __node);
1719 template<typename _Key, typename _Value,
1720 typename _Alloc, typename _ExtractKey, typename _Equal,
1721 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1722 typename _Traits>
1723 auto
1724 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1725 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1726 erase(const_iterator __it)
1727 -> iterator
1729 __node_type* __n = __it._M_cur;
1730 std::size_t __bkt = _M_bucket_index(__n);
1732 // Look for previous node to unlink it from the erased one, this
1733 // is why we need buckets to contain the before begin to make
1734 // this search fast.
1735 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1736 return _M_erase(__bkt, __prev_n, __n);
1739 template<typename _Key, typename _Value,
1740 typename _Alloc, typename _ExtractKey, typename _Equal,
1741 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1742 typename _Traits>
1743 auto
1744 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1745 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1746 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1747 -> iterator
1749 if (__prev_n == _M_buckets[__bkt])
1750 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1751 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1752 else if (__n->_M_nxt)
1754 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1755 if (__next_bkt != __bkt)
1756 _M_buckets[__next_bkt] = __prev_n;
1759 __prev_n->_M_nxt = __n->_M_nxt;
1760 iterator __result(__n->_M_next());
1761 this->_M_deallocate_node(__n);
1762 --_M_element_count;
1764 return __result;
1767 template<typename _Key, typename _Value,
1768 typename _Alloc, typename _ExtractKey, typename _Equal,
1769 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1770 typename _Traits>
1771 auto
1772 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1773 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1774 _M_erase(std::true_type, const key_type& __k)
1775 -> size_type
1777 __hash_code __code = this->_M_hash_code(__k);
1778 std::size_t __bkt = _M_bucket_index(__k, __code);
1780 // Look for the node before the first matching node.
1781 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1782 if (!__prev_n)
1783 return 0;
1785 // We found a matching node, erase it.
1786 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1787 _M_erase(__bkt, __prev_n, __n);
1788 return 1;
1791 template<typename _Key, typename _Value,
1792 typename _Alloc, typename _ExtractKey, typename _Equal,
1793 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1794 typename _Traits>
1795 auto
1796 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1797 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1798 _M_erase(std::false_type, const key_type& __k)
1799 -> size_type
1801 __hash_code __code = this->_M_hash_code(__k);
1802 std::size_t __bkt = _M_bucket_index(__k, __code);
1804 // Look for the node before the first matching node.
1805 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1806 if (!__prev_n)
1807 return 0;
1809 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1810 // 526. Is it undefined if a function in the standard changes
1811 // in parameters?
1812 // We use one loop to find all matching nodes and another to deallocate
1813 // them so that the key stays valid during the first loop. It might be
1814 // invalidated indirectly when destroying nodes.
1815 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1816 __node_type* __n_last = __n;
1817 std::size_t __n_last_bkt = __bkt;
1820 __n_last = __n_last->_M_next();
1821 if (!__n_last)
1822 break;
1823 __n_last_bkt = _M_bucket_index(__n_last);
1825 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1827 // Deallocate nodes.
1828 size_type __result = 0;
1831 __node_type* __p = __n->_M_next();
1832 this->_M_deallocate_node(__n);
1833 __n = __p;
1834 ++__result;
1835 --_M_element_count;
1837 while (__n != __n_last);
1839 if (__prev_n == _M_buckets[__bkt])
1840 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1841 else if (__n_last && __n_last_bkt != __bkt)
1842 _M_buckets[__n_last_bkt] = __prev_n;
1843 __prev_n->_M_nxt = __n_last;
1844 return __result;
1847 template<typename _Key, typename _Value,
1848 typename _Alloc, typename _ExtractKey, typename _Equal,
1849 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1850 typename _Traits>
1851 auto
1852 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1853 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1854 erase(const_iterator __first, const_iterator __last)
1855 -> iterator
1857 __node_type* __n = __first._M_cur;
1858 __node_type* __last_n = __last._M_cur;
1859 if (__n == __last_n)
1860 return iterator(__n);
1862 std::size_t __bkt = _M_bucket_index(__n);
1864 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1865 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1866 std::size_t __n_bkt = __bkt;
1867 for (;;)
1871 __node_type* __tmp = __n;
1872 __n = __n->_M_next();
1873 this->_M_deallocate_node(__tmp);
1874 --_M_element_count;
1875 if (!__n)
1876 break;
1877 __n_bkt = _M_bucket_index(__n);
1879 while (__n != __last_n && __n_bkt == __bkt);
1880 if (__is_bucket_begin)
1881 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1882 if (__n == __last_n)
1883 break;
1884 __is_bucket_begin = true;
1885 __bkt = __n_bkt;
1888 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1889 _M_buckets[__n_bkt] = __prev_n;
1890 __prev_n->_M_nxt = __n;
1891 return iterator(__n);
1894 template<typename _Key, typename _Value,
1895 typename _Alloc, typename _ExtractKey, typename _Equal,
1896 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1897 typename _Traits>
1898 void
1899 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1900 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1901 clear() noexcept
1903 this->_M_deallocate_nodes(_M_begin());
1904 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1905 _M_element_count = 0;
1906 _M_before_begin._M_nxt = nullptr;
1909 template<typename _Key, typename _Value,
1910 typename _Alloc, typename _ExtractKey, typename _Equal,
1911 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1912 typename _Traits>
1913 void
1914 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1915 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1916 rehash(size_type __n)
1918 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1919 std::size_t __buckets
1920 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1921 __n);
1922 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1924 if (__buckets != _M_bucket_count)
1925 _M_rehash(__buckets, __saved_state);
1926 else
1927 // No rehash, restore previous state to keep a consistent state.
1928 _M_rehash_policy._M_reset(__saved_state);
1931 template<typename _Key, typename _Value,
1932 typename _Alloc, typename _ExtractKey, typename _Equal,
1933 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1934 typename _Traits>
1935 void
1936 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1937 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1938 _M_rehash(size_type __n, const __rehash_state& __state)
1940 __try
1942 _M_rehash_aux(__n, __unique_keys());
1944 __catch(...)
1946 // A failure here means that buckets allocation failed. We only
1947 // have to restore hash policy previous state.
1948 _M_rehash_policy._M_reset(__state);
1949 __throw_exception_again;
1953 // Rehash when there is no equivalent elements.
1954 template<typename _Key, typename _Value,
1955 typename _Alloc, typename _ExtractKey, typename _Equal,
1956 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1957 typename _Traits>
1958 void
1959 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1960 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1961 _M_rehash_aux(size_type __n, std::true_type)
1963 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1964 __node_type* __p = _M_begin();
1965 _M_before_begin._M_nxt = nullptr;
1966 std::size_t __bbegin_bkt = 0;
1967 while (__p)
1969 __node_type* __next = __p->_M_next();
1970 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1971 if (!__new_buckets[__bkt])
1973 __p->_M_nxt = _M_before_begin._M_nxt;
1974 _M_before_begin._M_nxt = __p;
1975 __new_buckets[__bkt] = &_M_before_begin;
1976 if (__p->_M_nxt)
1977 __new_buckets[__bbegin_bkt] = __p;
1978 __bbegin_bkt = __bkt;
1980 else
1982 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1983 __new_buckets[__bkt]->_M_nxt = __p;
1985 __p = __next;
1988 _M_deallocate_buckets();
1989 _M_bucket_count = __n;
1990 _M_buckets = __new_buckets;
1993 // Rehash when there can be equivalent elements, preserve their relative
1994 // order.
1995 template<typename _Key, typename _Value,
1996 typename _Alloc, typename _ExtractKey, typename _Equal,
1997 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1998 typename _Traits>
1999 void
2000 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2001 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2002 _M_rehash_aux(size_type __n, std::false_type)
2004 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2006 __node_type* __p = _M_begin();
2007 _M_before_begin._M_nxt = nullptr;
2008 std::size_t __bbegin_bkt = 0;
2009 std::size_t __prev_bkt = 0;
2010 __node_type* __prev_p = nullptr;
2011 bool __check_bucket = false;
2013 while (__p)
2015 __node_type* __next = __p->_M_next();
2016 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2018 if (__prev_p && __prev_bkt == __bkt)
2020 // Previous insert was already in this bucket, we insert after
2021 // the previously inserted one to preserve equivalent elements
2022 // relative order.
2023 __p->_M_nxt = __prev_p->_M_nxt;
2024 __prev_p->_M_nxt = __p;
2026 // Inserting after a node in a bucket require to check that we
2027 // haven't change the bucket last node, in this case next
2028 // bucket containing its before begin node must be updated. We
2029 // schedule a check as soon as we move out of the sequence of
2030 // equivalent nodes to limit the number of checks.
2031 __check_bucket = true;
2033 else
2035 if (__check_bucket)
2037 // Check if we shall update the next bucket because of
2038 // insertions into __prev_bkt bucket.
2039 if (__prev_p->_M_nxt)
2041 std::size_t __next_bkt
2042 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2043 __n);
2044 if (__next_bkt != __prev_bkt)
2045 __new_buckets[__next_bkt] = __prev_p;
2047 __check_bucket = false;
2050 if (!__new_buckets[__bkt])
2052 __p->_M_nxt = _M_before_begin._M_nxt;
2053 _M_before_begin._M_nxt = __p;
2054 __new_buckets[__bkt] = &_M_before_begin;
2055 if (__p->_M_nxt)
2056 __new_buckets[__bbegin_bkt] = __p;
2057 __bbegin_bkt = __bkt;
2059 else
2061 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2062 __new_buckets[__bkt]->_M_nxt = __p;
2065 __prev_p = __p;
2066 __prev_bkt = __bkt;
2067 __p = __next;
2070 if (__check_bucket && __prev_p->_M_nxt)
2072 std::size_t __next_bkt
2073 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2074 if (__next_bkt != __prev_bkt)
2075 __new_buckets[__next_bkt] = __prev_p;
2078 _M_deallocate_buckets();
2079 _M_bucket_count = __n;
2080 _M_buckets = __new_buckets;
2083 _GLIBCXX_END_NAMESPACE_VERSION
2084 } // namespace std
2086 #endif // _HASHTABLE_H