2014-04-15 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / mode-switching.c
blob2848da34c1f6b8950cfe82221cc7d19dcbfa2ec4
1 /* CPU mode switching
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "tm_p.h"
33 #include "function.h"
34 #include "tree-pass.h"
35 #include "df.h"
36 #include "emit-rtl.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), which contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry without a mode (each basic block in the
53 flow graph must have at least one entry in the segment table).
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority mode with respect to the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details can be found in the code of optimize_mode_switching. */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
85 /* These bitmaps are used for the LCM algorithm. */
87 static sbitmap *antic;
88 static sbitmap *transp;
89 static sbitmap *comp;
91 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
92 static void add_seginfo (struct bb_info *, struct seginfo *);
93 static void reg_dies (rtx, HARD_REG_SET *);
94 static void reg_becomes_live (rtx, const_rtx, void *);
95 static void make_preds_opaque (basic_block, int);
98 /* This function will allocate a new BBINFO structure, initialized
99 with the MODE, INSN, and basic block BB parameters.
100 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
101 basic block; that allows us later to insert instructions in a FIFO-like
102 manner. */
104 static struct seginfo *
105 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
107 struct seginfo *ptr;
109 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
110 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
111 ptr = XNEW (struct seginfo);
112 ptr->mode = mode;
113 ptr->insn_ptr = insn;
114 ptr->bbnum = bb;
115 ptr->next = NULL;
116 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
117 return ptr;
120 /* Add a seginfo element to the end of a list.
121 HEAD is a pointer to the list beginning.
122 INFO is the structure to be linked in. */
124 static void
125 add_seginfo (struct bb_info *head, struct seginfo *info)
127 struct seginfo *ptr;
129 if (head->seginfo == NULL)
130 head->seginfo = info;
131 else
133 ptr = head->seginfo;
134 while (ptr->next != NULL)
135 ptr = ptr->next;
136 ptr->next = info;
140 /* Make all predecessors of basic block B opaque, recursively, till we hit
141 some that are already non-transparent, or an edge where aux is set; that
142 denotes that a mode set is to be done on that edge.
143 J is the bit number in the bitmaps that corresponds to the entity that
144 we are currently handling mode-switching for. */
146 static void
147 make_preds_opaque (basic_block b, int j)
149 edge e;
150 edge_iterator ei;
152 FOR_EACH_EDGE (e, ei, b->preds)
154 basic_block pb = e->src;
156 if (e->aux || ! bitmap_bit_p (transp[pb->index], j))
157 continue;
159 bitmap_clear_bit (transp[pb->index], j);
160 make_preds_opaque (pb, j);
164 /* Record in LIVE that register REG died. */
166 static void
167 reg_dies (rtx reg, HARD_REG_SET *live)
169 int regno;
171 if (!REG_P (reg))
172 return;
174 regno = REGNO (reg);
175 if (regno < FIRST_PSEUDO_REGISTER)
176 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
179 /* Record in LIVE that register REG became live.
180 This is called via note_stores. */
182 static void
183 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
185 int regno;
187 if (GET_CODE (reg) == SUBREG)
188 reg = SUBREG_REG (reg);
190 if (!REG_P (reg))
191 return;
193 regno = REGNO (reg);
194 if (regno < FIRST_PSEUDO_REGISTER)
195 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
198 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
199 and vice versa. */
200 #if defined (MODE_ENTRY) != defined (MODE_EXIT)
201 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
202 #endif
204 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
205 /* Split the fallthrough edge to the exit block, so that we can note
206 that there NORMAL_MODE is required. Return the new block if it's
207 inserted before the exit block. Otherwise return null. */
209 static basic_block
210 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
212 edge eg;
213 edge_iterator ei;
214 basic_block pre_exit;
216 /* The only non-call predecessor at this stage is a block with a
217 fallthrough edge; there can be at most one, but there could be
218 none at all, e.g. when exit is called. */
219 pre_exit = 0;
220 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
221 if (eg->flags & EDGE_FALLTHRU)
223 basic_block src_bb = eg->src;
224 rtx last_insn, ret_reg;
226 gcc_assert (!pre_exit);
227 /* If this function returns a value at the end, we have to
228 insert the final mode switch before the return value copy
229 to its hard register. */
230 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
231 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
232 && GET_CODE (PATTERN (last_insn)) == USE
233 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
235 int ret_start = REGNO (ret_reg);
236 int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
237 int ret_end = ret_start + nregs;
238 bool short_block = false;
239 bool multi_reg_return = false;
240 bool forced_late_switch = false;
241 rtx before_return_copy;
245 rtx return_copy = PREV_INSN (last_insn);
246 rtx return_copy_pat, copy_reg;
247 int copy_start, copy_num;
248 int j;
250 if (NONDEBUG_INSN_P (return_copy))
252 /* When using SJLJ exceptions, the call to the
253 unregister function is inserted between the
254 clobber of the return value and the copy.
255 We do not want to split the block before this
256 or any other call; if we have not found the
257 copy yet, the copy must have been deleted. */
258 if (CALL_P (return_copy))
260 short_block = true;
261 break;
263 return_copy_pat = PATTERN (return_copy);
264 switch (GET_CODE (return_copy_pat))
266 case USE:
267 /* Skip USEs of multiple return registers.
268 __builtin_apply pattern is also handled here. */
269 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
270 && (targetm.calls.function_value_regno_p
271 (REGNO (XEXP (return_copy_pat, 0)))))
273 multi_reg_return = true;
274 last_insn = return_copy;
275 continue;
277 break;
279 case ASM_OPERANDS:
280 /* Skip barrier insns. */
281 if (!MEM_VOLATILE_P (return_copy_pat))
282 break;
284 /* Fall through. */
286 case ASM_INPUT:
287 case UNSPEC_VOLATILE:
288 last_insn = return_copy;
289 continue;
291 default:
292 break;
295 /* If the return register is not (in its entirety)
296 likely spilled, the return copy might be
297 partially or completely optimized away. */
298 return_copy_pat = single_set (return_copy);
299 if (!return_copy_pat)
301 return_copy_pat = PATTERN (return_copy);
302 if (GET_CODE (return_copy_pat) != CLOBBER)
303 break;
304 else if (!optimize)
306 /* This might be (clobber (reg [<result>]))
307 when not optimizing. Then check if
308 the previous insn is the clobber for
309 the return register. */
310 copy_reg = SET_DEST (return_copy_pat);
311 if (GET_CODE (copy_reg) == REG
312 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
314 if (INSN_P (PREV_INSN (return_copy)))
316 return_copy = PREV_INSN (return_copy);
317 return_copy_pat = PATTERN (return_copy);
318 if (GET_CODE (return_copy_pat) != CLOBBER)
319 break;
324 copy_reg = SET_DEST (return_copy_pat);
325 if (GET_CODE (copy_reg) == REG)
326 copy_start = REGNO (copy_reg);
327 else if (GET_CODE (copy_reg) == SUBREG
328 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
329 copy_start = REGNO (SUBREG_REG (copy_reg));
330 else
332 /* When control reaches end of non-void function,
333 there are no return copy insns at all. This
334 avoids an ice on that invalid function. */
335 if (ret_start + nregs == ret_end)
336 short_block = true;
337 break;
339 if (!targetm.calls.function_value_regno_p (copy_start))
340 copy_num = 0;
341 else
342 copy_num
343 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
345 /* If the return register is not likely spilled, - as is
346 the case for floating point on SH4 - then it might
347 be set by an arithmetic operation that needs a
348 different mode than the exit block. */
349 for (j = n_entities - 1; j >= 0; j--)
351 int e = entity_map[j];
352 int mode = MODE_NEEDED (e, return_copy);
354 if (mode != num_modes[e] && mode != MODE_EXIT (e))
355 break;
357 if (j >= 0)
359 /* __builtin_return emits a sequence of loads to all
360 return registers. One of them might require
361 another mode than MODE_EXIT, even if it is
362 unrelated to the return value, so we want to put
363 the final mode switch after it. */
364 if (multi_reg_return
365 && targetm.calls.function_value_regno_p
366 (copy_start))
367 forced_late_switch = true;
369 /* For the SH4, floating point loads depend on fpscr,
370 thus we might need to put the final mode switch
371 after the return value copy. That is still OK,
372 because a floating point return value does not
373 conflict with address reloads. */
374 if (copy_start >= ret_start
375 && copy_start + copy_num <= ret_end
376 && OBJECT_P (SET_SRC (return_copy_pat)))
377 forced_late_switch = true;
378 break;
380 if (copy_num == 0)
382 last_insn = return_copy;
383 continue;
386 if (copy_start >= ret_start
387 && copy_start + copy_num <= ret_end)
388 nregs -= copy_num;
389 else if (!multi_reg_return
390 || !targetm.calls.function_value_regno_p
391 (copy_start))
392 break;
393 last_insn = return_copy;
395 /* ??? Exception handling can lead to the return value
396 copy being already separated from the return value use,
397 as in unwind-dw2.c .
398 Similarly, conditionally returning without a value,
399 and conditionally using builtin_return can lead to an
400 isolated use. */
401 if (return_copy == BB_HEAD (src_bb))
403 short_block = true;
404 break;
406 last_insn = return_copy;
408 while (nregs);
410 /* If we didn't see a full return value copy, verify that there
411 is a plausible reason for this. If some, but not all of the
412 return register is likely spilled, we can expect that there
413 is a copy for the likely spilled part. */
414 gcc_assert (!nregs
415 || forced_late_switch
416 || short_block
417 || !(targetm.class_likely_spilled_p
418 (REGNO_REG_CLASS (ret_start)))
419 || (nregs
420 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
421 /* For multi-hard-register floating point
422 values, sometimes the likely-spilled part
423 is ordinarily copied first, then the other
424 part is set with an arithmetic operation.
425 This doesn't actually cause reload
426 failures, so let it pass. */
427 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
428 && nregs != 1));
430 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
432 before_return_copy
433 = emit_note_before (NOTE_INSN_DELETED, last_insn);
434 /* Instructions preceding LAST_INSN in the same block might
435 require a different mode than MODE_EXIT, so if we might
436 have such instructions, keep them in a separate block
437 from pre_exit. */
438 src_bb = split_block (src_bb,
439 PREV_INSN (before_return_copy))->dest;
441 else
442 before_return_copy = last_insn;
443 pre_exit = split_block (src_bb, before_return_copy)->src;
445 else
447 pre_exit = split_edge (eg);
451 return pre_exit;
453 #endif
455 /* Find all insns that need a particular mode setting, and insert the
456 necessary mode switches. Return true if we did work. */
458 static int
459 optimize_mode_switching (void)
461 rtx insn;
462 int e;
463 basic_block bb;
464 int need_commit = 0;
465 sbitmap *kill;
466 struct edge_list *edge_list;
467 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
468 #define N_ENTITIES ARRAY_SIZE (num_modes)
469 int entity_map[N_ENTITIES];
470 struct bb_info *bb_info[N_ENTITIES];
471 int i, j;
472 int n_entities;
473 int max_num_modes = 0;
474 bool emitted ATTRIBUTE_UNUSED = false;
475 basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
477 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
478 if (OPTIMIZE_MODE_SWITCHING (e))
480 int entry_exit_extra = 0;
482 /* Create the list of segments within each basic block.
483 If NORMAL_MODE is defined, allow for two extra
484 blocks split from the entry and exit block. */
485 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
486 entry_exit_extra = 3;
487 #endif
488 bb_info[n_entities]
489 = XCNEWVEC (struct bb_info,
490 last_basic_block_for_fn (cfun) + entry_exit_extra);
491 entity_map[n_entities++] = e;
492 if (num_modes[e] > max_num_modes)
493 max_num_modes = num_modes[e];
496 if (! n_entities)
497 return 0;
499 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
500 /* Split the edge from the entry block, so that we can note that
501 there NORMAL_MODE is supplied. */
502 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
503 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
504 #endif
506 df_analyze ();
508 /* Create the bitmap vectors. */
510 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
511 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
512 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
514 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
516 for (j = n_entities - 1; j >= 0; j--)
518 int e = entity_map[j];
519 int no_mode = num_modes[e];
520 struct bb_info *info = bb_info[j];
522 /* Determine what the first use (if any) need for a mode of entity E is.
523 This will be the mode that is anticipatable for this block.
524 Also compute the initial transparency settings. */
525 FOR_EACH_BB_FN (bb, cfun)
527 struct seginfo *ptr;
528 int last_mode = no_mode;
529 bool any_set_required = false;
530 HARD_REG_SET live_now;
532 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
534 /* Pretend the mode is clobbered across abnormal edges. */
536 edge_iterator ei;
537 edge e;
538 FOR_EACH_EDGE (e, ei, bb->preds)
539 if (e->flags & EDGE_COMPLEX)
540 break;
541 if (e)
543 rtx ins_pos = BB_HEAD (bb);
544 if (LABEL_P (ins_pos))
545 ins_pos = NEXT_INSN (ins_pos);
546 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
547 if (ins_pos != BB_END (bb))
548 ins_pos = NEXT_INSN (ins_pos);
549 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
550 add_seginfo (info + bb->index, ptr);
551 bitmap_clear_bit (transp[bb->index], j);
555 FOR_BB_INSNS (bb, insn)
557 if (INSN_P (insn))
559 int mode = MODE_NEEDED (e, insn);
560 rtx link;
562 if (mode != no_mode && mode != last_mode)
564 any_set_required = true;
565 last_mode = mode;
566 ptr = new_seginfo (mode, insn, bb->index, live_now);
567 add_seginfo (info + bb->index, ptr);
568 bitmap_clear_bit (transp[bb->index], j);
570 #ifdef MODE_AFTER
571 last_mode = MODE_AFTER (e, last_mode, insn);
572 #endif
573 /* Update LIVE_NOW. */
574 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
575 if (REG_NOTE_KIND (link) == REG_DEAD)
576 reg_dies (XEXP (link, 0), &live_now);
578 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
579 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
580 if (REG_NOTE_KIND (link) == REG_UNUSED)
581 reg_dies (XEXP (link, 0), &live_now);
585 info[bb->index].computing = last_mode;
586 /* Check for blocks without ANY mode requirements.
587 N.B. because of MODE_AFTER, last_mode might still
588 be different from no_mode, in which case we need to
589 mark the block as nontransparent. */
590 if (!any_set_required)
592 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
593 add_seginfo (info + bb->index, ptr);
594 if (last_mode != no_mode)
595 bitmap_clear_bit (transp[bb->index], j);
598 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
600 int mode = MODE_ENTRY (e);
602 if (mode != no_mode)
604 bb = post_entry;
606 /* By always making this nontransparent, we save
607 an extra check in make_preds_opaque. We also
608 need this to avoid confusing pre_edge_lcm when
609 antic is cleared but transp and comp are set. */
610 bitmap_clear_bit (transp[bb->index], j);
612 /* Insert a fake computing definition of MODE into entry
613 blocks which compute no mode. This represents the mode on
614 entry. */
615 info[bb->index].computing = mode;
617 if (pre_exit)
618 info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
621 #endif /* NORMAL_MODE */
624 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
625 for (i = 0; i < max_num_modes; i++)
627 int current_mode[N_ENTITIES];
628 sbitmap *del;
629 sbitmap *insert;
631 /* Set the anticipatable and computing arrays. */
632 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
633 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
634 for (j = n_entities - 1; j >= 0; j--)
636 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
637 struct bb_info *info = bb_info[j];
639 FOR_EACH_BB_FN (bb, cfun)
641 if (info[bb->index].seginfo->mode == m)
642 bitmap_set_bit (antic[bb->index], j);
644 if (info[bb->index].computing == m)
645 bitmap_set_bit (comp[bb->index], j);
649 /* Calculate the optimal locations for the
650 placement mode switches to modes with priority I. */
652 FOR_EACH_BB_FN (bb, cfun)
653 bitmap_not (kill[bb->index], transp[bb->index]);
654 edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
655 kill, &insert, &del);
657 for (j = n_entities - 1; j >= 0; j--)
659 /* Insert all mode sets that have been inserted by lcm. */
660 int no_mode = num_modes[entity_map[j]];
662 /* Wherever we have moved a mode setting upwards in the flow graph,
663 the blocks between the new setting site and the now redundant
664 computation ceases to be transparent for any lower-priority
665 mode of the same entity. First set the aux field of each
666 insertion site edge non-transparent, then propagate the new
667 non-transparency from the redundant computation upwards till
668 we hit an insertion site or an already non-transparent block. */
669 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
671 edge eg = INDEX_EDGE (edge_list, e);
672 int mode;
673 basic_block src_bb;
674 HARD_REG_SET live_at_edge;
675 rtx mode_set;
677 eg->aux = 0;
679 if (! bitmap_bit_p (insert[e], j))
680 continue;
682 eg->aux = (void *)1;
684 mode = current_mode[j];
685 src_bb = eg->src;
687 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
689 rtl_profile_for_edge (eg);
690 start_sequence ();
691 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
692 mode_set = get_insns ();
693 end_sequence ();
694 default_rtl_profile ();
696 /* Do not bother to insert empty sequence. */
697 if (mode_set == NULL_RTX)
698 continue;
700 /* We should not get an abnormal edge here. */
701 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
703 need_commit = 1;
704 insert_insn_on_edge (mode_set, eg);
707 FOR_EACH_BB_REVERSE_FN (bb, cfun)
708 if (bitmap_bit_p (del[bb->index], j))
710 make_preds_opaque (bb, j);
711 /* Cancel the 'deleted' mode set. */
712 bb_info[j][bb->index].seginfo->mode = no_mode;
716 sbitmap_vector_free (del);
717 sbitmap_vector_free (insert);
718 clear_aux_for_edges ();
719 free_edge_list (edge_list);
722 /* Now output the remaining mode sets in all the segments. */
723 for (j = n_entities - 1; j >= 0; j--)
725 int no_mode = num_modes[entity_map[j]];
727 FOR_EACH_BB_REVERSE_FN (bb, cfun)
729 struct seginfo *ptr, *next;
730 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
732 next = ptr->next;
733 if (ptr->mode != no_mode)
735 rtx mode_set;
737 rtl_profile_for_bb (bb);
738 start_sequence ();
739 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
740 mode_set = get_insns ();
741 end_sequence ();
743 /* Insert MODE_SET only if it is nonempty. */
744 if (mode_set != NULL_RTX)
746 emitted = true;
747 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
748 /* We need to emit the insns in a FIFO-like manner,
749 i.e. the first to be emitted at our insertion
750 point ends up first in the instruction steam.
751 Because we made sure that NOTE_INSN_BASIC_BLOCK is
752 only used for initially empty basic blocks, we
753 can archive this by appending at the end of
754 the block. */
755 emit_insn_after
756 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
757 else
758 emit_insn_before (mode_set, ptr->insn_ptr);
761 default_rtl_profile ();
764 free (ptr);
768 free (bb_info[j]);
771 /* Finished. Free up all the things we've allocated. */
772 sbitmap_vector_free (kill);
773 sbitmap_vector_free (antic);
774 sbitmap_vector_free (transp);
775 sbitmap_vector_free (comp);
777 if (need_commit)
778 commit_edge_insertions ();
780 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
781 cleanup_cfg (CLEANUP_NO_INSN_DEL);
782 #else
783 if (!need_commit && !emitted)
784 return 0;
785 #endif
787 return 1;
790 #endif /* OPTIMIZE_MODE_SWITCHING */
792 static bool
793 gate_mode_switching (void)
795 #ifdef OPTIMIZE_MODE_SWITCHING
796 return true;
797 #else
798 return false;
799 #endif
802 static unsigned int
803 rest_of_handle_mode_switching (void)
805 #ifdef OPTIMIZE_MODE_SWITCHING
806 optimize_mode_switching ();
807 #endif /* OPTIMIZE_MODE_SWITCHING */
808 return 0;
812 namespace {
814 const pass_data pass_data_mode_switching =
816 RTL_PASS, /* type */
817 "mode_sw", /* name */
818 OPTGROUP_NONE, /* optinfo_flags */
819 true, /* has_gate */
820 true, /* has_execute */
821 TV_MODE_SWITCH, /* tv_id */
822 0, /* properties_required */
823 0, /* properties_provided */
824 0, /* properties_destroyed */
825 0, /* todo_flags_start */
826 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
829 class pass_mode_switching : public rtl_opt_pass
831 public:
832 pass_mode_switching (gcc::context *ctxt)
833 : rtl_opt_pass (pass_data_mode_switching, ctxt)
836 /* opt_pass methods: */
837 /* The epiphany backend creates a second instance of this pass, so we need
838 a clone method. */
839 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
840 bool gate () { return gate_mode_switching (); }
841 unsigned int execute () { return rest_of_handle_mode_switching (); }
843 }; // class pass_mode_switching
845 } // anon namespace
847 rtl_opt_pass *
848 make_pass_mode_switching (gcc::context *ctxt)
850 return new pass_mode_switching (ctxt);